Compare commits

..

4 Commits

Author SHA1 Message Date
Otto
a093d57ed2 fix: address CodeRabbit review bugs
- customize_agent.py: Strip whitespace from split parts of agent_id
- edit_agent.py: Use model_config instead of deprecated class Config
- edit_agent.py: Fix undefined agent_id/changes → params.agent_id/params.changes
- find_library_agent.py: Remove docstrings per coding guidelines
- get_doc_page.py: Fix undefined path → params.path
- run_block.py: Fix undefined block_id → params.block_id
- workspace_files.py: Fix undefined include_all_sessions → params.include_all_sessions
2026-02-04 09:17:44 +00:00
Otto
6692f39cbd refactor(copilot): add Pydantic input models to all tools
Convert all CoPilot tools from kwargs.get() pattern to Pydantic models:

Tools updated:
- find_agent.py: FindAgentInput
- find_library_agent.py: FindLibraryAgentInput
- find_block.py: FindBlockInput
- search_docs.py: SearchDocsInput
- get_doc_page.py: GetDocPageInput
- create_agent.py: CreateAgentInput
- edit_agent.py: EditAgentInput
- run_block.py: RunBlockInput
- workspace_files.py: 4 input models (List/Read/Write/Delete)

Benefits:
- Type safety with automatic validation
- Consistent string stripping via field_validators
- Better IDE support and error messages
- Cleaner _execute methods using params object

Addresses ntindle review feedback about kwargs pattern.
2026-02-04 09:05:18 +00:00
Otto
aeba28266c refactor(copilot): use Pydantic models and match/case in customize_agent
Addresses review feedback from ntindle on PR #11943:

1. Use typed parameters instead of kwargs.get():
   - Added CustomizeAgentInput Pydantic model with field_validator
   - Tool now uses params = CustomizeAgentInput(**kwargs) pattern

2. Use match/case for cleaner pattern matching:
   - Extracted response handling to _handle_customization_result method
   - Uses match result_type: case 'error' | 'clarifying_questions' | _

3. Improved code organization:
   - Split monolithic _execute into smaller focused methods
   - _handle_customization_result for response type handling
   - _save_or_preview_agent for final save/preview logic
2026-02-04 08:54:27 +00:00
Otto
6d8c83c039 refactor(backend): move local imports to module level in chat service
Addresses review feedback from PRs #11937, #11856:
- Move uuid import to top level (was duplicated in 3 functions)
- Move compress_context import to top level
- Remove redundant local imports for cast and ChatCompletionMessageParam
  (already imported at module level)

Refs:
- https://github.com/Significant-Gravitas/AutoGPT/pull/11937#discussion_r2761107861
- https://github.com/Significant-Gravitas/AutoGPT/pull/11856#discussion_r2761558008
- https://github.com/Significant-Gravitas/AutoGPT/pull/11856#discussion_r2761559661
2026-02-04 03:33:15 +00:00
88 changed files with 1032 additions and 4156 deletions

View File

@@ -152,7 +152,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -62,12 +62,10 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.6", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",

View File

@@ -1,12 +1,15 @@
import asyncio
import logging
import time
import uuid as uuid_module
from asyncio import CancelledError
from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Any, cast
import openai
from backend.util.prompt import compress_context
if TYPE_CHECKING:
from backend.util.prompt import CompressResult
@@ -33,7 +36,7 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
@@ -222,18 +225,8 @@ async def _get_system_prompt_template(context: str) -> str:
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
@@ -477,8 +470,6 @@ async def stream_chat_completion(
should_retry = False
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
@@ -628,9 +619,6 @@ async def stream_chat_completion(
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
@@ -839,10 +827,6 @@ async def _manage_context_window(
Returns:
CompressResult with compacted messages and metadata
"""
import openai
from backend.util.prompt import compress_context
# Convert messages to dict format
messages_dict = []
for msg in messages:
@@ -1153,8 +1137,6 @@ async def _yield_tool_call(
KeyError: If expected tool call fields are missing
TypeError: If tool call structure is invalid
"""
import uuid as uuid_module
tool_name = tool_calls[yield_idx]["function"]["name"]
tool_call_id = tool_calls[yield_idx]["id"]
@@ -1775,8 +1757,6 @@ async def _generate_llm_continuation_with_streaming(
after a tool result is saved. Chunks are published to the stream registry
so reconnecting clients can receive them.
"""
import uuid as uuid_module
try:
# Load fresh session from DB (bypass cache to get the updated tool result)
await invalidate_session_cache(session_id)
@@ -1812,10 +1792,6 @@ async def _generate_llm_continuation_with_streaming(
extra_body["session_id"] = session_id[:128]
# Make streaming LLM call (no tools - just text response)
from typing import cast
from openai.types.chat import ChatCompletionMessageParam
# Generate unique IDs for AI SDK protocol
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())

View File

@@ -7,7 +7,15 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -20,6 +28,8 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -659,6 +669,45 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,10 +721,35 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -1,251 +0,0 @@
"""
Detect and save embedded binary data in block outputs.
Scans stdout_logs and other string outputs for embedded base64 patterns,
saves detected binary content to workspace, and replaces the base64 with
workspace:// references. This reduces LLM output token usage by ~97% for
file generation tasks.
Primary use case: ExecuteCodeBlock prints base64 to stdout, which appears
in stdout_logs. Without this processor, the LLM would re-type the entire
base64 string when saving files.
"""
import base64
import binascii
import hashlib
import logging
import re
import uuid
from typing import Any, Optional
from backend.util.file import sanitize_filename
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
logger = logging.getLogger(__name__)
# Minimum decoded size to process (filters out small base64 strings)
MIN_DECODED_SIZE = 1024 # 1KB
# Pattern to find base64 chunks in text (at least 100 chars to be worth checking)
# Matches continuous base64 characters (with optional whitespace for line wrapping),
# optionally ending with = padding
EMBEDDED_BASE64_PATTERN = re.compile(r"[A-Za-z0-9+/\s]{100,}={0,2}")
# Magic numbers for binary file detection
MAGIC_SIGNATURES = [
(b"\x89PNG\r\n\x1a\n", "png"),
(b"\xff\xd8\xff", "jpg"),
(b"%PDF-", "pdf"),
(b"GIF87a", "gif"),
(b"GIF89a", "gif"),
(b"RIFF", "webp"), # Also check content[8:12] == b'WEBP'
]
async def process_binary_outputs(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
block_name: str,
) -> dict[str, list[Any]]:
"""
Scan all string values in outputs for embedded base64 binary content.
Save detected binaries to workspace and replace with references.
Args:
outputs: Block execution outputs (dict of output_name -> list of values)
workspace_manager: WorkspaceManager instance with session scoping
block_name: Name of the block (used in generated filenames)
Returns:
Processed outputs with embedded base64 replaced by workspace references
"""
cache: dict[str, str] = {} # content_hash -> workspace_ref
processed: dict[str, list[Any]] = {}
for name, items in outputs.items():
processed_items = []
for item in items:
processed_items.append(
await _process_value(item, workspace_manager, block_name, cache)
)
processed[name] = processed_items
return processed
async def _process_value(
value: Any,
wm: WorkspaceManager,
block: str,
cache: dict[str, str],
) -> Any:
"""Recursively process a value, detecting embedded base64 in strings."""
if isinstance(value, dict):
result = {}
for k, v in value.items():
result[k] = await _process_value(v, wm, block, cache)
return result
if isinstance(value, list):
return [await _process_value(v, wm, block, cache) for v in value]
if isinstance(value, str) and len(value) > MIN_DECODED_SIZE:
return await _extract_and_replace_base64(value, wm, block, cache)
return value
async def _extract_and_replace_base64(
text: str,
wm: WorkspaceManager,
block: str,
cache: dict[str, str],
) -> str:
"""
Find embedded base64 in text, save binaries, replace with references.
Scans for base64 patterns, validates each as binary via magic numbers,
saves valid binaries to workspace, and replaces the base64 portion
(plus any surrounding markers) with the workspace reference.
"""
result = text
offset = 0
for match in EMBEDDED_BASE64_PATTERN.finditer(text):
b64_str = match.group(0)
# Try to decode and validate
detection = _decode_and_validate(b64_str)
if detection is None:
continue
content, ext = detection
# Save to workspace
ref = await _save_binary(content, ext, wm, block, cache)
if ref is None:
continue
# Calculate replacement bounds (include surrounding markers if present)
start, end = match.start(), match.end()
start, end = _expand_to_markers(text, start, end)
# Apply replacement with offset adjustment
adj_start = start + offset
adj_end = end + offset
result = result[:adj_start] + ref + result[adj_end:]
offset += len(ref) - (end - start)
return result
def _decode_and_validate(b64_str: str) -> Optional[tuple[bytes, str]]:
"""
Decode base64 and validate it's a known binary format.
Tries multiple 4-byte aligned offsets to handle cases where marker text
(e.g., "START" from "PDF_BASE64_START") bleeds into the regex match.
Base64 works in 4-char chunks, so we only check aligned offsets.
Returns (content, extension) if valid binary, None otherwise.
"""
# Strip whitespace for RFC 2045 line-wrapped base64
normalized = re.sub(r"\s+", "", b64_str)
# Try offsets 0, 4, 8, ... up to 32 chars (handles markers up to ~24 chars)
# This handles cases like "STARTJVBERi0..." where "START" bleeds into match
for char_offset in range(0, min(33, len(normalized)), 4):
candidate = normalized[char_offset:]
try:
content = base64.b64decode(candidate, validate=True)
except (ValueError, binascii.Error):
continue
# Must meet minimum size
if len(content) < MIN_DECODED_SIZE:
continue
# Check magic numbers
for magic, ext in MAGIC_SIGNATURES:
if content.startswith(magic):
# Special case for WebP: RIFF container, verify "WEBP" at offset 8
if magic == b"RIFF":
if len(content) < 12 or content[8:12] != b"WEBP":
continue
return content, ext
return None
def _expand_to_markers(text: str, start: int, end: int) -> tuple[int, int]:
"""
Expand replacement bounds to include surrounding markers if present.
Handles patterns like:
- ---BASE64_START---\\n{base64}\\n---BASE64_END---
- [BASE64]{base64}[/BASE64]
- Or just the raw base64
"""
# Common marker patterns to strip (order matters - check longer patterns first)
start_markers = [
"PDF_BASE64_START",
"---BASE64_START---\n",
"---BASE64_START---",
"[BASE64]\n",
"[BASE64]",
]
end_markers = [
"PDF_BASE64_END",
"\n---BASE64_END---",
"---BASE64_END---",
"\n[/BASE64]",
"[/BASE64]",
]
# Check for start markers
for marker in start_markers:
marker_start = start - len(marker)
if marker_start >= 0 and text[marker_start:start] == marker:
start = marker_start
break
# Check for end markers
for marker in end_markers:
marker_end = end + len(marker)
if marker_end <= len(text) and text[end:marker_end] == marker:
end = marker_end
break
return start, end
async def _save_binary(
content: bytes,
ext: str,
wm: WorkspaceManager,
block: str,
cache: dict[str, str],
) -> Optional[str]:
"""
Save binary content to workspace with deduplication.
Returns workspace://file-id reference, or None on failure.
"""
content_hash = hashlib.sha256(content).hexdigest()
if content_hash in cache:
return cache[content_hash]
try:
safe_block = sanitize_filename(block)[:20].lower()
filename = f"{safe_block}_{uuid.uuid4().hex[:12]}.{ext}"
# Scan for viruses before saving
await scan_content_safe(content, filename=filename)
file = await wm.write_file(content, filename)
ref = f"workspace://{file.id}"
cache[content_hash] = ref
return ref
except Exception as e:
logger.warning("Failed to save binary output: %s", e)
return None

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -28,6 +30,26 @@ from .models import (
logger = logging.getLogger(__name__)
class CreateAgentInput(BaseModel):
"""Input parameters for the create_agent tool."""
description: str = ""
context: str = ""
save: bool = True
# Internal async processing params (passed by long-running tool handler)
_operation_id: str | None = None
_task_id: str | None = None
@field_validator("description", "context", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str:
"""Strip whitespace from string fields."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class Config:
extra = "allow" # Allow _operation_id, _task_id from kwargs
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@@ -85,7 +107,7 @@ class CreateAgentTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Execute the create_agent tool.
@@ -94,16 +116,14 @@ class CreateAgentTool(BaseTool):
2. Generate agent JSON (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
params = CreateAgentInput(**kwargs)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
# Extract async processing params
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not description:
if not params.description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
error="Missing description parameter",
@@ -115,7 +135,7 @@ class CreateAgentTool(BaseTool):
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
search_query=params.description,
include_marketplace=True,
)
logger.debug(
@@ -126,7 +146,7 @@ class CreateAgentTool(BaseTool):
try:
decomposition_result = await decompose_goal(
description, context, library_agents
params.description, params.context, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
@@ -142,7 +162,7 @@ class CreateAgentTool(BaseTool):
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
details={"description": params.description[:100]},
session_id=session_id,
)
@@ -158,7 +178,7 @@ class CreateAgentTool(BaseTool):
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"description": params.description[:100],
"service_error": error_msg,
"error_type": error_type,
},
@@ -244,7 +264,7 @@ class CreateAgentTool(BaseTool):
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
details={"description": params.description[:100]},
session_id=session_id,
)
@@ -266,7 +286,7 @@ class CreateAgentTool(BaseTool):
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"description": params.description[:100],
"service_error": error_msg,
"error_type": error_type,
},
@@ -291,7 +311,7 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
if not save:
if not params.save:
return AgentPreviewResponse(
message=(
f"I've generated an agent called '{agent_name}' with {node_count} blocks. "

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
@@ -27,6 +29,23 @@ from .models import (
logger = logging.getLogger(__name__)
class CustomizeAgentInput(BaseModel):
"""Input parameters for the customize_agent tool."""
agent_id: str = ""
modifications: str = ""
context: str = ""
save: bool = True
@field_validator("agent_id", "modifications", "context", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str:
"""Strip whitespace from string fields."""
if isinstance(v, str):
return v.strip()
return v if v is not None else ""
class CustomizeAgentTool(BaseTool):
"""Tool for customizing marketplace/template agents using natural language."""
@@ -92,7 +111,7 @@ class CustomizeAgentTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Execute the customize_agent tool.
@@ -102,20 +121,17 @@ class CustomizeAgentTool(BaseTool):
3. Call customize_template with the modification request
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
modifications = kwargs.get("modifications", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
params = CustomizeAgentInput(**kwargs)
session_id = session.session_id if session else None
if not agent_id:
if not params.agent_id:
return ErrorResponse(
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
error="missing_agent_id",
session_id=session_id,
)
if not modifications:
if not params.modifications:
return ErrorResponse(
message="Please describe how you want to customize this agent.",
error="missing_modifications",
@@ -123,11 +139,11 @@ class CustomizeAgentTool(BaseTool):
)
# Parse agent_id in format "creator/slug"
parts = [p.strip() for p in agent_id.split("/")]
parts = [p.strip() for p in params.agent_id.split("/")]
if len(parts) != 2 or not parts[0] or not parts[1]:
return ErrorResponse(
message=(
f"Invalid agent ID format: '{agent_id}'. "
f"Invalid agent ID format: '{params.agent_id}'. "
"Expected format is 'creator/agent-name' "
"(e.g., 'autogpt/newsletter-writer')."
),
@@ -145,14 +161,14 @@ class CustomizeAgentTool(BaseTool):
except AgentNotFoundError:
return ErrorResponse(
message=(
f"Could not find marketplace agent '{agent_id}'. "
f"Could not find marketplace agent '{params.agent_id}'. "
"Please check the agent ID and try again."
),
error="agent_not_found",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
logger.error(f"Error fetching marketplace agent {params.agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the marketplace agent. Please try again.",
error="fetch_error",
@@ -162,7 +178,7 @@ class CustomizeAgentTool(BaseTool):
if not agent_details.store_listing_version_id:
return ErrorResponse(
message=(
f"The agent '{agent_id}' does not have an available version. "
f"The agent '{params.agent_id}' does not have an available version. "
"Please try a different agent."
),
error="no_version_available",
@@ -174,7 +190,7 @@ class CustomizeAgentTool(BaseTool):
graph = await store_db.get_agent(agent_details.store_listing_version_id)
template_agent = graph_to_json(graph)
except Exception as e:
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
logger.error(f"Error fetching agent graph for {params.agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the agent configuration. Please try again.",
error="graph_fetch_error",
@@ -185,8 +201,8 @@ class CustomizeAgentTool(BaseTool):
try:
result = await customize_template(
template_agent=template_agent,
modification_request=modifications,
context=context,
modification_request=params.modifications,
context=params.context,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
@@ -198,7 +214,7 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
except Exception as e:
logger.error(f"Error calling customize_template for {agent_id}: {e}")
logger.error(f"Error calling customize_template for {params.agent_id}: {e}")
return ErrorResponse(
message=(
"Failed to customize the agent due to a service error. "
@@ -219,55 +235,25 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
# Handle error response
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
# Handle response using match/case for cleaner pattern matching
return await self._handle_customization_result(
result=result,
params=params,
agent_details=agent_details,
user_id=user_id,
session_id=session_id,
)
# Handle clarifying questions
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
questions = result.get("questions") or []
if not isinstance(questions, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions)}"
)
questions = []
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
if isinstance(q, dict)
],
session_id=session_id,
)
# Result should be the customized agent JSON
async def _handle_customization_result(
self,
result: dict[str, Any],
params: CustomizeAgentInput,
agent_details: Any,
user_id: str | None,
session_id: str | None,
) -> ToolResponseBase:
"""Handle the result from customize_template using pattern matching."""
# Ensure result is a dict
if not isinstance(result, dict):
logger.error(f"Unexpected customize_template response type: {type(result)}")
return ErrorResponse(
@@ -276,8 +262,77 @@ class CustomizeAgentTool(BaseTool):
session_id=session_id,
)
customized_agent = result
result_type = result.get("type")
match result_type:
case "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
case "clarifying_questions":
questions_data = result.get("questions") or []
if not isinstance(questions_data, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions_data)}"
)
questions_data = []
questions = [
ClarifyingQuestion(
question=q.get("question", "") if isinstance(q, dict) else "",
keyword=q.get("keyword", "") if isinstance(q, dict) else "",
example=q.get("example") if isinstance(q, dict) else None,
)
for q in questions_data
if isinstance(q, dict)
]
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=questions,
session_id=session_id,
)
case _:
# Default case: result is the customized agent JSON
return await self._save_or_preview_agent(
customized_agent=result,
params=params,
agent_details=agent_details,
user_id=user_id,
session_id=session_id,
)
async def _save_or_preview_agent(
self,
customized_agent: dict[str, Any],
params: CustomizeAgentInput,
agent_details: Any,
user_id: str | None,
session_id: str | None,
) -> ToolResponseBase:
"""Save or preview the customized agent based on params.save."""
agent_name = customized_agent.get(
"name", f"Customized {agent_details.agent_name}"
)
@@ -287,7 +342,7 @@ class CustomizeAgentTool(BaseTool):
node_count = len(nodes) if isinstance(nodes, list) else 0
link_count = len(links) if isinstance(links, list) else 0
if not save:
if not params.save:
return AgentPreviewResponse(
message=(
f"I've customized the agent '{agent_details.agent_name}'. "

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from pydantic import BaseModel, ConfigDict, field_validator
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -27,6 +29,20 @@ from .models import (
logger = logging.getLogger(__name__)
class EditAgentInput(BaseModel):
model_config = ConfigDict(extra="allow")
agent_id: str = ""
changes: str = ""
context: str = ""
save: bool = True
@field_validator("agent_id", "changes", "context", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str:
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@@ -90,7 +106,7 @@ class EditAgentTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Execute the edit_agent tool.
@@ -99,35 +115,32 @@ class EditAgentTool(BaseTool):
2. Generate updated agent (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
params = EditAgentInput(**kwargs)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not agent_id:
if not params.agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
error="Missing agent_id parameter",
session_id=session_id,
)
if not changes:
if not params.changes:
return ErrorResponse(
message="Please describe what changes you want to make.",
error="Missing changes parameter",
session_id=session_id,
)
current_agent = await get_agent_as_json(agent_id, user_id)
current_agent = await get_agent_as_json(params.agent_id, user_id)
if current_agent is None:
return ErrorResponse(
message=f"Could not find agent with ID '{agent_id}' in your library.",
message=f"Could not find agent '{params.agent_id}' in your library.",
error="agent_not_found",
session_id=session_id,
)
@@ -138,7 +151,7 @@ class EditAgentTool(BaseTool):
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
search_query=params.changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
@@ -148,9 +161,11 @@ class EditAgentTool(BaseTool):
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
update_request = params.changes
if params.context:
update_request = (
f"{params.changes}\n\nAdditional context:\n{params.context}"
)
try:
result = await generate_agent_patch(
@@ -174,7 +189,7 @@ class EditAgentTool(BaseTool):
return ErrorResponse(
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
error="update_generation_failed",
details={"agent_id": agent_id, "changes": changes[:100]},
details={"agent_id": params.agent_id, "changes": params.changes[:100]},
session_id=session_id,
)
@@ -206,8 +221,8 @@ class EditAgentTool(BaseTool):
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"agent_id": params.agent_id,
"changes": params.changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
@@ -239,7 +254,7 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
if not save:
if not params.save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. "

View File

@@ -2,6 +2,8 @@
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -9,6 +11,18 @@ from .base import BaseTool
from .models import ToolResponseBase
class FindAgentInput(BaseModel):
"""Input parameters for the find_agent tool."""
query: str = ""
@field_validator("query", mode="before")
@classmethod
def strip_string(cls, v: Any) -> str:
"""Strip whitespace from query."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class FindAgentTool(BaseTool):
"""Tool for discovering agents from the marketplace."""
@@ -36,10 +50,11 @@ class FindAgentTool(BaseTool):
}
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
self, user_id: str | None, session: ChatSession, **kwargs: Any
) -> ToolResponseBase:
params = FindAgentInput(**kwargs)
return await search_agents(
query=kwargs.get("query", "").strip(),
query=params.query,
source="marketplace",
session_id=session.session_id,
user_id=user_id,

View File

@@ -2,6 +2,7 @@ import logging
from typing import Any
from prisma.enums import ContentType
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
@@ -18,6 +19,18 @@ from backend.data.block import get_block
logger = logging.getLogger(__name__)
class FindBlockInput(BaseModel):
"""Input parameters for the find_block tool."""
query: str = ""
@field_validator("query", mode="before")
@classmethod
def strip_string(cls, v: Any) -> str:
"""Strip whitespace from query."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@@ -59,24 +72,24 @@ class FindBlockTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
**kwargs: Tool parameters
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
params = FindBlockInput(**kwargs)
session_id = session.session_id
if not query:
if not params.query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
@@ -85,7 +98,7 @@ class FindBlockTool(BaseTool):
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
query=params.query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
@@ -93,7 +106,7 @@ class FindBlockTool(BaseTool):
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
message=f"No blocks found for '{params.query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
@@ -165,7 +178,7 @@ class FindBlockTool(BaseTool):
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
message=f"No blocks found for '{params.query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
@@ -174,13 +187,13 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
f"Found {len(blocks)} block(s) matching '{params.query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
query=params.query,
session_id=session_id,
)

View File

@@ -2,6 +2,8 @@
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -9,6 +11,15 @@ from .base import BaseTool
from .models import ToolResponseBase
class FindLibraryAgentInput(BaseModel):
query: str = ""
@field_validator("query", mode="before")
@classmethod
def strip_string(cls, v: Any) -> str:
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class FindLibraryAgentTool(BaseTool):
"""Tool for searching agents in the user's library."""
@@ -42,10 +53,11 @@ class FindLibraryAgentTool(BaseTool):
return True
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
self, user_id: str | None, session: ChatSession, **kwargs: Any
) -> ToolResponseBase:
params = FindLibraryAgentInput(**kwargs)
return await search_agents(
query=kwargs.get("query", "").strip(),
query=params.query,
source="library",
session_id=session.session_id,
user_id=user_id,

View File

@@ -4,6 +4,8 @@ import logging
from pathlib import Path
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -18,6 +20,18 @@ logger = logging.getLogger(__name__)
DOCS_BASE_URL = "https://docs.agpt.co"
class GetDocPageInput(BaseModel):
"""Input parameters for the get_doc_page tool."""
path: str = ""
@field_validator("path", mode="before")
@classmethod
def strip_string(cls, v: Any) -> str:
"""Strip whitespace from path."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class GetDocPageTool(BaseTool):
"""Tool for fetching full content of a documentation page."""
@@ -75,23 +89,23 @@ class GetDocPageTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Fetch full content of a documentation page.
Args:
user_id: User ID (not required for docs)
session: Chat session
path: Path to the documentation file
**kwargs: Tool parameters
Returns:
DocPageResponse: Full document content
ErrorResponse: Error message
"""
path = kwargs.get("path", "").strip()
params = GetDocPageInput(**kwargs)
session_id = session.session_id if session else None
if not path:
if not params.path:
return ErrorResponse(
message="Please provide a documentation path.",
error="Missing path parameter",
@@ -99,7 +113,7 @@ class GetDocPageTool(BaseTool):
)
# Sanitize path to prevent directory traversal
if ".." in path or path.startswith("/"):
if ".." in params.path or params.path.startswith("/"):
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
@@ -107,11 +121,11 @@ class GetDocPageTool(BaseTool):
)
docs_root = self._get_docs_root()
full_path = docs_root / path
full_path = docs_root / params.path
if not full_path.exists():
return ErrorResponse(
message=f"Documentation page not found: {path}",
message=f"Documentation page not found: {params.path}",
error="not_found",
session_id=session_id,
)
@@ -128,19 +142,19 @@ class GetDocPageTool(BaseTool):
try:
content = full_path.read_text(encoding="utf-8")
title = self._extract_title(content, path)
title = self._extract_title(content, params.path)
return DocPageResponse(
message=f"Retrieved documentation page: {title}",
title=title,
path=path,
path=params.path,
content=content,
doc_url=self._make_doc_url(path),
doc_url=self._make_doc_url(params.path),
session_id=session_id,
)
except Exception as e:
logger.error(f"Failed to read documentation page {path}: {e}")
logger.error(f"Failed to read documentation page {params.path}: {e}")
return ErrorResponse(
message=f"Failed to read documentation page: {str(e)}",
error="read_failed",

View File

@@ -5,6 +5,7 @@ import uuid
from collections import defaultdict
from typing import Any
from pydantic import BaseModel, field_validator
from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
@@ -14,10 +15,8 @@ from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .binary_output_processor import process_binary_outputs
from .models import (
BlockOutputResponse,
ErrorResponse,
@@ -31,6 +30,25 @@ from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
class RunBlockInput(BaseModel):
"""Input parameters for the run_block tool."""
block_id: str = ""
input_data: dict[str, Any] = {}
@field_validator("block_id", mode="before")
@classmethod
def strip_block_id(cls, v: Any) -> str:
"""Strip whitespace from block_id."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
@field_validator("input_data", mode="before")
@classmethod
def ensure_dict(cls, v: Any) -> dict[str, Any]:
"""Ensure input_data is a dict."""
return v if isinstance(v, dict) else {}
class RunBlockTool(BaseTool):
"""Tool for executing a block and returning its outputs."""
@@ -164,37 +182,29 @@ class RunBlockTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Execute a block with the given input data.
Args:
user_id: User ID (required)
session: Chat session
block_id: Block UUID to execute
input_data: Input values for the block
**kwargs: Tool parameters
Returns:
BlockOutputResponse: Block execution outputs
SetupRequirementsResponse: Missing credentials
ErrorResponse: Error message
"""
block_id = kwargs.get("block_id", "").strip()
input_data = kwargs.get("input_data", {})
params = RunBlockInput(**kwargs)
session_id = session.session_id
if not block_id:
if not params.block_id:
return ErrorResponse(
message="Please provide a block_id",
session_id=session_id,
)
if not isinstance(input_data, dict):
return ErrorResponse(
message="input_data must be an object",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required",
@@ -202,23 +212,25 @@ class RunBlockTool(BaseTool):
)
# Get the block
block = get_block(block_id)
block = get_block(params.block_id)
if not block:
return ErrorResponse(
message=f"Block '{block_id}' not found",
message=f"Block '{params.block_id}' not found",
session_id=session_id,
)
if block.disabled:
return ErrorResponse(
message=f"Block '{block_id}' is disabled",
message=f"Block '{params.block_id}' is disabled",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
logger.info(
f"Executing block {block.name} ({params.block_id}) for user {user_id}"
)
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block, input_data
user_id, block, params.input_data
)
if missing_credentials:
@@ -236,7 +248,7 @@ class RunBlockTool(BaseTool):
),
session_id=session_id,
setup_info=SetupInfo(
agent_id=block_id,
agent_id=params.block_id,
agent_name=block.name,
user_readiness=UserReadiness(
has_all_credentials=False,
@@ -265,7 +277,7 @@ class RunBlockTool(BaseTool):
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_id = f"copilot-node-{params.block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
@@ -300,8 +312,8 @@ class RunBlockTool(BaseTool):
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)
if field_name not in input_data:
input_data[field_name] = cred_meta.model_dump()
if field_name not in params.input_data:
params.input_data[field_name] = cred_meta.model_dump()
# Fetch actual credentials and pass as kwargs (for execution)
actual_credentials = await creds_manager.get(
@@ -318,24 +330,14 @@ class RunBlockTool(BaseTool):
# Execute the block and collect outputs
outputs: dict[str, list[Any]] = defaultdict(list)
async for output_name, output_data in block.execute(
input_data,
params.input_data,
**exec_kwargs,
):
outputs[output_name].append(output_data)
# Post-process outputs to save binary content to workspace
workspace_manager = WorkspaceManager(
user_id=user_id,
workspace_id=workspace.id,
session_id=session.session_id,
)
outputs = await process_binary_outputs(
dict(outputs), workspace_manager, block.name
)
return BlockOutputResponse(
message=f"Block '{block.name}' executed successfully",
block_id=block_id,
block_id=params.block_id,
block_name=block.name,
outputs=dict(outputs),
success=True,

View File

@@ -4,6 +4,7 @@ import logging
from typing import Any
from prisma.enums import ContentType
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
@@ -28,6 +29,18 @@ MAX_RESULTS = 5
SNIPPET_LENGTH = 200
class SearchDocsInput(BaseModel):
"""Input parameters for the search_docs tool."""
query: str = ""
@field_validator("query", mode="before")
@classmethod
def strip_string(cls, v: Any) -> str:
"""Strip whitespace from query."""
return v.strip() if isinstance(v, str) else (v if v is not None else "")
class SearchDocsTool(BaseTool):
"""Tool for searching AutoGPT platform documentation."""
@@ -91,24 +104,24 @@ class SearchDocsTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
"""Search documentation and return relevant sections.
Args:
user_id: User ID (not required for docs)
session: Chat session
query: Search query
**kwargs: Tool parameters
Returns:
DocSearchResultsResponse: List of matching documentation sections
NoResultsResponse: No results found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
params = SearchDocsInput(**kwargs)
session_id = session.session_id if session else None
if not query:
if not params.query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
@@ -118,7 +131,7 @@ class SearchDocsTool(BaseTool):
try:
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
query=query,
query=params.query,
content_types=[ContentType.DOCUMENTATION],
page=1,
page_size=MAX_RESULTS * 2, # Fetch extra for deduplication
@@ -127,7 +140,7 @@ class SearchDocsTool(BaseTool):
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
message=f"No documentation found for '{params.query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
@@ -162,7 +175,7 @@ class SearchDocsTool(BaseTool):
if not deduplicated:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
message=f"No documentation found for '{params.query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
@@ -195,7 +208,7 @@ class SearchDocsTool(BaseTool):
message=f"Found {len(doc_results)} relevant documentation sections.",
results=doc_results,
count=len(doc_results),
query=query,
query=params.query,
session_id=session_id,
)

View File

@@ -1,518 +0,0 @@
"""Tests for embedded binary detection in block outputs."""
import base64
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from .binary_output_processor import (
_decode_and_validate,
_expand_to_markers,
process_binary_outputs,
)
@pytest.fixture
def mock_workspace_manager():
"""Create a mock workspace manager that returns predictable file IDs."""
wm = MagicMock()
async def mock_write_file(content, filename):
file = MagicMock()
file.id = f"file-{filename[:10]}"
return file
wm.write_file = AsyncMock(side_effect=mock_write_file)
return wm
def _make_pdf_base64(size: int = 2000) -> str:
"""Create a valid PDF base64 string of specified size."""
pdf_content = b"%PDF-1.4 " + b"x" * size
return base64.b64encode(pdf_content).decode()
def _make_png_base64(size: int = 2000) -> str:
"""Create a valid PNG base64 string of specified size."""
png_content = b"\x89PNG\r\n\x1a\n" + b"\x00" * size
return base64.b64encode(png_content).decode()
# =============================================================================
# Decode and Validate Tests
# =============================================================================
class TestDecodeAndValidate:
"""Tests for _decode_and_validate function."""
def test_detects_pdf_magic_number(self):
"""Should detect valid PDF by magic number."""
pdf_b64 = _make_pdf_base64()
result = _decode_and_validate(pdf_b64)
assert result is not None
content, ext = result
assert ext == "pdf"
assert content.startswith(b"%PDF-")
def test_detects_png_magic_number(self):
"""Should detect valid PNG by magic number."""
png_b64 = _make_png_base64()
result = _decode_and_validate(png_b64)
assert result is not None
content, ext = result
assert ext == "png"
def test_detects_jpeg_magic_number(self):
"""Should detect valid JPEG by magic number."""
jpeg_content = b"\xff\xd8\xff\xe0" + b"\x00" * 2000
jpeg_b64 = base64.b64encode(jpeg_content).decode()
result = _decode_and_validate(jpeg_b64)
assert result is not None
_, ext = result
assert ext == "jpg"
def test_detects_gif_magic_number(self):
"""Should detect valid GIF by magic number."""
gif_content = b"GIF89a" + b"\x00" * 2000
gif_b64 = base64.b64encode(gif_content).decode()
result = _decode_and_validate(gif_b64)
assert result is not None
_, ext = result
assert ext == "gif"
def test_detects_webp_magic_number(self):
"""Should detect valid WebP by magic number."""
webp_content = b"RIFF\x00\x00\x00\x00WEBP" + b"\x00" * 2000
webp_b64 = base64.b64encode(webp_content).decode()
result = _decode_and_validate(webp_b64)
assert result is not None
_, ext = result
assert ext == "webp"
def test_rejects_small_content(self):
"""Should reject content smaller than threshold."""
small_pdf = b"%PDF-1.4 small"
small_b64 = base64.b64encode(small_pdf).decode()
result = _decode_and_validate(small_b64)
assert result is None
def test_rejects_no_magic_number(self):
"""Should reject content without recognized magic number."""
random_content = b"This is just random text" * 100
random_b64 = base64.b64encode(random_content).decode()
result = _decode_and_validate(random_b64)
assert result is None
def test_rejects_invalid_base64(self):
"""Should reject invalid base64."""
result = _decode_and_validate("not-valid-base64!!!")
assert result is None
def test_rejects_riff_without_webp(self):
"""Should reject RIFF files that aren't WebP (e.g., WAV)."""
wav_content = b"RIFF\x00\x00\x00\x00WAVE" + b"\x00" * 2000
wav_b64 = base64.b64encode(wav_content).decode()
result = _decode_and_validate(wav_b64)
assert result is None
def test_handles_line_wrapped_base64(self):
"""Should handle RFC 2045 line-wrapped base64."""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
# Simulate line wrapping at 76 chars
wrapped = "\n".join(pdf_b64[i : i + 76] for i in range(0, len(pdf_b64), 76))
result = _decode_and_validate(wrapped)
assert result is not None
content, ext = result
assert ext == "pdf"
assert content == pdf_content
# =============================================================================
# Marker Expansion Tests
# =============================================================================
class TestExpandToMarkers:
"""Tests for _expand_to_markers function."""
def test_expands_base64_start_end_markers(self):
"""Should expand to include ---BASE64_START--- and ---BASE64_END---."""
text = "prefix\n---BASE64_START---\nABCDEF\n---BASE64_END---\nsuffix"
# Base64 "ABCDEF" is at position 26-32
start, end = _expand_to_markers(text, 26, 32)
assert text[start:end] == "---BASE64_START---\nABCDEF\n---BASE64_END---"
def test_expands_bracket_markers(self):
"""Should expand to include [BASE64] and [/BASE64] markers."""
text = "prefix[BASE64]ABCDEF[/BASE64]suffix"
# Base64 is at position 14-20
start, end = _expand_to_markers(text, 14, 20)
assert text[start:end] == "[BASE64]ABCDEF[/BASE64]"
def test_no_expansion_without_markers(self):
"""Should not expand if no markers present."""
text = "prefix ABCDEF suffix"
start, end = _expand_to_markers(text, 7, 13)
assert start == 7
assert end == 13
# =============================================================================
# Process Binary Outputs Tests
# =============================================================================
@pytest.fixture
def mock_scan():
"""Patch virus scanner for tests."""
with patch(
"backend.api.features.chat.tools.binary_output_processor.scan_content_safe",
new_callable=AsyncMock,
) as mock:
yield mock
class TestProcessBinaryOutputs:
"""Tests for process_binary_outputs function."""
@pytest.mark.asyncio
async def test_detects_embedded_pdf_in_stdout_logs(
self, mock_workspace_manager, mock_scan
):
"""Should detect and replace embedded PDF in stdout_logs."""
pdf_b64 = _make_pdf_base64()
stdout = f"PDF generated!\n---BASE64_START---\n{pdf_b64}\n---BASE64_END---\n"
outputs = {"stdout_logs": [stdout]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "ExecuteCodeBlock"
)
# Should contain workspace reference, not base64
assert "workspace://" in result["stdout_logs"][0]
assert pdf_b64 not in result["stdout_logs"][0]
assert "PDF generated!" in result["stdout_logs"][0]
mock_workspace_manager.write_file.assert_called_once()
@pytest.mark.asyncio
async def test_detects_embedded_png_without_markers(
self, mock_workspace_manager, mock_scan
):
"""Should detect embedded PNG even without markers."""
png_b64 = _make_png_base64()
stdout = f"Image created: {png_b64} done"
outputs = {"stdout_logs": [stdout]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "ExecuteCodeBlock"
)
assert "workspace://" in result["stdout_logs"][0]
assert "Image created:" in result["stdout_logs"][0]
assert "done" in result["stdout_logs"][0]
@pytest.mark.asyncio
async def test_preserves_small_strings(self, mock_workspace_manager, mock_scan):
"""Should not process small strings."""
outputs = {"stdout_logs": ["small output"]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
assert result["stdout_logs"][0] == "small output"
mock_workspace_manager.write_file.assert_not_called()
@pytest.mark.asyncio
async def test_preserves_non_binary_large_strings(
self, mock_workspace_manager, mock_scan
):
"""Should preserve large strings that don't contain valid binary."""
large_text = "A" * 5000 # Large string - decodes to nulls, no magic number
outputs = {"stdout_logs": [large_text]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
assert result["stdout_logs"][0] == large_text
mock_workspace_manager.write_file.assert_not_called()
@pytest.mark.asyncio
async def test_deduplicates_identical_content(
self, mock_workspace_manager, mock_scan
):
"""Should save identical content only once."""
pdf_b64 = _make_pdf_base64()
stdout1 = f"First: {pdf_b64}"
stdout2 = f"Second: {pdf_b64}"
outputs = {"stdout_logs": [stdout1, stdout2]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Both should have references
assert "workspace://" in result["stdout_logs"][0]
assert "workspace://" in result["stdout_logs"][1]
# But only one write
assert mock_workspace_manager.write_file.call_count == 1
@pytest.mark.asyncio
async def test_handles_multiple_binaries_in_one_string(
self, mock_workspace_manager, mock_scan
):
"""Should handle multiple embedded binaries in a single string."""
pdf_b64 = _make_pdf_base64()
png_b64 = _make_png_base64()
stdout = f"PDF: {pdf_b64}\nPNG: {png_b64}"
outputs = {"stdout_logs": [stdout]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Should have two workspace references
assert result["stdout_logs"][0].count("workspace://") == 2
assert mock_workspace_manager.write_file.call_count == 2
@pytest.mark.asyncio
async def test_processes_nested_structures(self, mock_workspace_manager, mock_scan):
"""Should recursively process nested dicts and lists."""
pdf_b64 = _make_pdf_base64()
outputs = {"result": [{"nested": {"deep": f"data: {pdf_b64}"}}]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
assert "workspace://" in result["result"][0]["nested"]["deep"]
@pytest.mark.asyncio
async def test_graceful_degradation_on_save_failure(
self, mock_workspace_manager, mock_scan
):
"""Should preserve original on save failure."""
mock_workspace_manager.write_file = AsyncMock(
side_effect=Exception("Storage error")
)
pdf_b64 = _make_pdf_base64()
stdout = f"PDF: {pdf_b64}"
outputs = {"stdout_logs": [stdout]}
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Should keep original since save failed
assert pdf_b64 in result["stdout_logs"][0]
# =============================================================================
# Offset Loop Tests (handling marker bleed-in)
# =============================================================================
class TestOffsetLoopHandling:
"""Tests for the offset-aligned decoding that handles marker bleed-in."""
def test_handles_4char_aligned_prefix(self):
"""Should detect base64 when a 4-char aligned prefix bleeds into match.
When 'TEST' (4 chars, aligned) bleeds in, offset 4 finds valid base64.
"""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
# 4-char prefix (aligned)
with_prefix = f"TEST{pdf_b64}"
result = _decode_and_validate(with_prefix)
assert result is not None
content, ext = result
assert ext == "pdf"
assert content == pdf_content
def test_handles_8char_aligned_prefix(self):
"""Should detect base64 when an 8-char prefix bleeds into match."""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
# 8-char prefix (aligned)
with_prefix = f"TESTTEST{pdf_b64}"
result = _decode_and_validate(with_prefix)
assert result is not None
content, ext = result
assert ext == "pdf"
def test_handles_misaligned_prefix(self):
"""Should handle misaligned prefix by finding a valid aligned offset.
'START' is 5 chars (misaligned). The loop tries offsets 0, 4, 8...
Since characters 0-4 include 'START' which is invalid base64 on its own,
we need the full PDF base64 to eventually decode correctly at some offset.
"""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
# 5-char prefix - misaligned, but offset 4 should start mid-'START'
# and offset 8 will be past the prefix
with_prefix = f"START{pdf_b64}"
result = _decode_and_validate(with_prefix)
# Should find valid PDF at some offset (8 in this case)
assert result is not None
_, ext = result
assert ext == "pdf"
def test_handles_pdf_base64_start_marker_bleed(self):
"""Should handle PDF_BASE64_START marker bleeding into regex match.
This is the real-world case: regex matches 'STARTJVBERi0...' because
'START' chars are in the base64 alphabet. Offset loop skips past it.
PDF_BASE64_START is 16 chars (4-aligned), so offset 16 finds valid base64.
"""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
# Simulate regex capturing 'PDF_BASE64_START' + base64 together
# This happens when there's no delimiter between marker and content
with_full_marker = f"PDF_BASE64_START{pdf_b64}"
result = _decode_and_validate(with_full_marker)
assert result is not None
_, ext = result
assert ext == "pdf"
def test_clean_base64_works_at_offset_zero(self):
"""Should detect clean base64 at offset 0 without issues."""
pdf_content = b"%PDF-1.4 " + b"x" * 2000
pdf_b64 = base64.b64encode(pdf_content).decode()
result = _decode_and_validate(pdf_b64)
assert result is not None
content, ext = result
assert ext == "pdf"
assert content == pdf_content
# =============================================================================
# PDF Marker Tests
# =============================================================================
class TestPdfMarkerExpansion:
"""Tests for PDF_BASE64_START/END marker handling."""
def test_expands_pdf_base64_start_marker(self):
"""Should expand to include PDF_BASE64_START marker."""
text = "prefixPDF_BASE64_STARTABCDEF"
# Base64 'ABCDEF' is at position 22-28
start, end = _expand_to_markers(text, 22, 28)
assert text[start:end] == "PDF_BASE64_STARTABCDEF"
def test_expands_pdf_base64_end_marker(self):
"""Should expand to include PDF_BASE64_END marker."""
text = "ABCDEFPDF_BASE64_ENDsuffix"
# Base64 'ABCDEF' is at position 0-6
start, end = _expand_to_markers(text, 0, 6)
assert text[start:end] == "ABCDEFPDF_BASE64_END"
def test_expands_both_pdf_markers(self):
"""Should expand to include both PDF_BASE64_START and END."""
text = "xPDF_BASE64_STARTABCDEFPDF_BASE64_ENDy"
# Base64 'ABCDEF' is at position 17-23
start, end = _expand_to_markers(text, 17, 23)
assert text[start:end] == "PDF_BASE64_STARTABCDEFPDF_BASE64_END"
def test_partial_marker_not_expanded(self):
"""Should not expand if only partial marker present."""
text = "BASE64_STARTABCDEF" # Missing 'PDF_' prefix
start, end = _expand_to_markers(text, 12, 18)
# Should not expand since it's not the full marker
assert start == 12
assert end == 18
@pytest.mark.asyncio
async def test_full_pipeline_with_pdf_markers(self, mock_workspace_manager):
"""Test full pipeline with PDF_BASE64_START/END markers."""
pdf_b64 = _make_pdf_base64()
stdout = f"Output: PDF_BASE64_START{pdf_b64}PDF_BASE64_END done"
outputs = {"stdout_logs": [stdout]}
with patch(
"backend.api.features.chat.tools.binary_output_processor.scan_content_safe",
new_callable=AsyncMock,
):
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Should have workspace reference
assert "workspace://" in result["stdout_logs"][0]
# Markers should be consumed along with base64
assert "PDF_BASE64_START" not in result["stdout_logs"][0]
assert "PDF_BASE64_END" not in result["stdout_logs"][0]
# Surrounding text preserved
assert "Output:" in result["stdout_logs"][0]
assert "done" in result["stdout_logs"][0]
# =============================================================================
# Virus Scanning Tests
# =============================================================================
class TestVirusScanning:
"""Tests for virus scanning integration."""
@pytest.mark.asyncio
async def test_calls_virus_scanner_before_save(self, mock_workspace_manager):
"""Should call scan_content_safe before writing file."""
pdf_b64 = _make_pdf_base64()
stdout = f"PDF: {pdf_b64}"
outputs = {"stdout_logs": [stdout]}
with patch(
"backend.api.features.chat.tools.binary_output_processor.scan_content_safe",
new_callable=AsyncMock,
) as mock_scan:
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Verify scanner was called
mock_scan.assert_called_once()
# Verify file was written after scan
mock_workspace_manager.write_file.assert_called_once()
# Verify result has workspace reference
assert "workspace://" in result["stdout_logs"][0]
@pytest.mark.asyncio
async def test_virus_scan_failure_preserves_original(self, mock_workspace_manager):
"""Should preserve original if virus scan fails."""
pdf_b64 = _make_pdf_base64()
stdout = f"PDF: {pdf_b64}"
outputs = {"stdout_logs": [stdout]}
with patch(
"backend.api.features.chat.tools.binary_output_processor.scan_content_safe",
new_callable=AsyncMock,
side_effect=Exception("Virus detected"),
):
result = await process_binary_outputs(
outputs, mock_workspace_manager, "TestBlock"
)
# Should keep original since scan failed
assert pdf_b64 in result["stdout_logs"][0]
# File should not have been written
mock_workspace_manager.write_file.assert_not_called()

View File

@@ -8,12 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
OAuth2Credentials,
)
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -278,14 +273,7 @@ async def match_user_credentials_to_graph(
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and (
cred.type != "oauth2"
or _credential_has_required_scopes(cred, credential_requirements)
)
and (
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -330,10 +318,19 @@ async def match_user_credentials_to_graph(
def _credential_has_required_scopes(
credential: OAuth2Credentials,
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an OAuth2 credential has all the scopes required by the input."""
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
@@ -342,22 +339,6 @@ def _credential_has_required_scopes(
return set(credential.scopes).issuperset(requirements.required_scopes)
def _credential_is_for_host(
credential: HostScopedCredentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if a host-scoped credential matches the host required by the input."""
# We need to know the host to match host-scoped credentials to.
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
# to discriminator_values. No discriminator_values -> no host to match against.
if not requirements.discriminator_values:
return True
# Check that credential host matches required host.
# Host-scoped credential inputs are grouped by host, so any item from the set works.
return credential.matches_url(list(requirements.discriminator_values)[0])
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -2,9 +2,9 @@
import base64
import logging
from typing import Any, Optional
from typing import Any
from pydantic import BaseModel
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
@@ -78,6 +78,65 @@ class WorkspaceDeleteResponse(ToolResponseBase):
success: bool
# Input models for workspace tools
class ListWorkspaceFilesInput(BaseModel):
"""Input parameters for list_workspace_files tool."""
path_prefix: str | None = None
limit: int = 50
include_all_sessions: bool = False
@field_validator("path_prefix", mode="before")
@classmethod
def strip_path(cls, v: Any) -> str | None:
return v.strip() if isinstance(v, str) else None
class ReadWorkspaceFileInput(BaseModel):
"""Input parameters for read_workspace_file tool."""
file_id: str | None = None
path: str | None = None
force_download_url: bool = False
@field_validator("file_id", "path", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str | None:
return v.strip() if isinstance(v, str) else None
class WriteWorkspaceFileInput(BaseModel):
"""Input parameters for write_workspace_file tool."""
filename: str = ""
content_base64: str = ""
path: str | None = None
mime_type: str | None = None
overwrite: bool = False
@field_validator("filename", "content_base64", mode="before")
@classmethod
def strip_required(cls, v: Any) -> str:
return v.strip() if isinstance(v, str) else (v if v is not None else "")
@field_validator("path", "mime_type", mode="before")
@classmethod
def strip_optional(cls, v: Any) -> str | None:
return v.strip() if isinstance(v, str) else None
class DeleteWorkspaceFileInput(BaseModel):
"""Input parameters for delete_workspace_file tool."""
file_id: str | None = None
path: str | None = None
@field_validator("file_id", "path", mode="before")
@classmethod
def strip_strings(cls, v: Any) -> str | None:
return v.strip() if isinstance(v, str) else None
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@@ -131,8 +190,9 @@ class ListWorkspaceFilesTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
params = ListWorkspaceFilesInput(**kwargs)
session_id = session.session_id
if not user_id:
@@ -141,9 +201,7 @@ class ListWorkspaceFilesTool(BaseTool):
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
limit = min(params.limit, 100)
try:
workspace = await get_or_create_workspace(user_id)
@@ -151,13 +209,13 @@ class ListWorkspaceFilesTool(BaseTool):
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
path=params.path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
include_all_sessions=params.include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
path=params.path_prefix,
include_all_sessions=params.include_all_sessions,
)
file_infos = [
@@ -171,7 +229,9 @@ class ListWorkspaceFilesTool(BaseTool):
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
scope_msg = (
"all sessions" if params.include_all_sessions else "current session"
)
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
@@ -259,8 +319,9 @@ class ReadWorkspaceFileTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
params = ReadWorkspaceFileInput(**kwargs)
session_id = session.session_id
if not user_id:
@@ -269,11 +330,7 @@ class ReadWorkspaceFileTool(BaseTool):
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
if not params.file_id and not params.path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
@@ -285,21 +342,21 @@ class ReadWorkspaceFileTool(BaseTool):
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if params.file_id:
file_info = await manager.get_file_info(params.file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
message=f"File not found: {params.file_id}",
session_id=session_id,
)
target_file_id = file_id
target_file_id = params.file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
assert params.path is not None
file_info = await manager.get_file_info_by_path(params.path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
message=f"File not found at path: {params.path}",
session_id=session_id,
)
target_file_id = file_info.id
@@ -309,7 +366,7 @@ class ReadWorkspaceFileTool(BaseTool):
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
if is_small_file and is_text_file and not params.force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
@@ -429,8 +486,9 @@ class WriteWorkspaceFileTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
params = WriteWorkspaceFileInput(**kwargs)
session_id = session.session_id
if not user_id:
@@ -439,19 +497,13 @@ class WriteWorkspaceFileTool(BaseTool):
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
if not params.filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
if not params.content_base64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
@@ -459,7 +511,7 @@ class WriteWorkspaceFileTool(BaseTool):
# Decode content
try:
content = base64.b64decode(content_b64)
content = base64.b64decode(params.content_base64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
@@ -476,7 +528,7 @@ class WriteWorkspaceFileTool(BaseTool):
try:
# Virus scan
await scan_content_safe(content, filename=filename)
await scan_content_safe(content, filename=params.filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
@@ -484,10 +536,10 @@ class WriteWorkspaceFileTool(BaseTool):
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
filename=params.filename,
path=params.path,
mime_type=params.mime_type,
overwrite=params.overwrite,
)
return WorkspaceWriteResponse(
@@ -557,8 +609,9 @@ class DeleteWorkspaceFileTool(BaseTool):
self,
user_id: str | None,
session: ChatSession,
**kwargs,
**kwargs: Any,
) -> ToolResponseBase:
params = DeleteWorkspaceFileInput(**kwargs)
session_id = session.session_id
if not user_id:
@@ -567,10 +620,7 @@ class DeleteWorkspaceFileTool(BaseTool):
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
if not params.file_id and not params.path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
@@ -583,15 +633,15 @@ class DeleteWorkspaceFileTool(BaseTool):
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
if params.file_id:
target_file_id = params.file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
assert params.path is not None
file_info = await manager.get_file_info_by_path(params.path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
message=f"File not found at path: {params.path}",
session_id=session_id,
)
target_file_id = file_info.id

View File

@@ -19,10 +19,7 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -540,92 +537,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,

View File

@@ -101,6 +101,7 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -822,16 +823,18 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -839,23 +842,27 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs
assert new_graph_version_with_subgraphs # make type checker happy
return new_graph_version_with_subgraphs
@@ -893,15 +900,33 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
await _update_library_agent_version_and_settings(user_id, new_active_graph)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -1,28 +0,0 @@
"""ElevenLabs integration blocks - test credentials and shared utilities."""
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="elevenlabs",
api_key=SecretStr("mock-elevenlabs-api-key"),
title="Mock ElevenLabs API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
ElevenLabsCredentials = APIKeyCredentials
ElevenLabsCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
]

View File

@@ -1,77 +0,0 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -162,16 +162,8 @@ class LinearClient:
"searchTerm": team_name,
}
result = await self.query(query, variables)
nodes = result["teams"]["nodes"]
if not nodes:
raise LinearAPIException(
f"Team '{team_name}' not found. Check the team name or key and try again.",
status_code=404,
)
return nodes[0]["id"]
team_id = await self.query(query, variables)
return team_id["teams"]["nodes"][0]["id"]
except LinearAPIException as e:
raise e
@@ -248,44 +240,17 @@ class LinearClient:
except LinearAPIException as e:
raise e
async def try_search_issues(
self,
term: str,
max_results: int = 10,
team_id: str | None = None,
) -> list[Issue]:
async def try_search_issues(self, term: str) -> list[Issue]:
try:
query = """
query SearchIssues(
$term: String!,
$first: Int,
$teamId: String
) {
searchIssues(
term: $term,
first: $first,
teamId: $teamId
) {
query SearchIssues($term: String!, $includeComments: Boolean!) {
searchIssues(term: $term, includeComments: $includeComments) {
nodes {
id
identifier
title
description
priority
createdAt
state {
id
name
type
}
project {
id
name
}
assignee {
id
name
}
}
}
}
@@ -293,8 +258,7 @@ class LinearClient:
variables: dict[str, Any] = {
"term": term,
"first": max_results,
"teamId": team_id,
"includeComments": True,
}
issues = await self.query(query, variables)

View File

@@ -17,7 +17,7 @@ from ._config import (
LinearScope,
linear,
)
from .models import CreateIssueResponse, Issue, State
from .models import CreateIssueResponse, Issue
class LinearCreateIssueBlock(Block):
@@ -135,20 +135,9 @@ class LinearSearchIssuesBlock(Block):
description="Linear credentials with read permissions",
required_scopes={LinearScope.READ},
)
max_results: int = SchemaField(
description="Maximum number of results to return",
default=10,
ge=1,
le=100,
)
team_name: str | None = SchemaField(
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
default=None,
)
class Output(BlockSchemaOutput):
issues: list[Issue] = SchemaField(description="List of issues")
error: str = SchemaField(description="Error message if the search failed")
def __init__(self):
super().__init__(
@@ -156,11 +145,8 @@ class LinearSearchIssuesBlock(Block):
description="Searches for issues on Linear",
input_schema=self.Input,
output_schema=self.Output,
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
test_input={
"term": "Test issue",
"max_results": 10,
"team_name": None,
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
},
test_credentials=TEST_CREDENTIALS_OAUTH,
@@ -170,14 +156,10 @@ class LinearSearchIssuesBlock(Block):
[
Issue(
id="abc123",
identifier="TST-123",
identifier="abc123",
title="Test issue",
description="Test description",
priority=1,
state=State(
id="state1", name="In Progress", type="started"
),
createdAt="2026-01-15T10:00:00.000Z",
)
],
)
@@ -186,12 +168,10 @@ class LinearSearchIssuesBlock(Block):
"search_issues": lambda *args, **kwargs: [
Issue(
id="abc123",
identifier="TST-123",
identifier="abc123",
title="Test issue",
description="Test description",
priority=1,
state=State(id="state1", name="In Progress", type="started"),
createdAt="2026-01-15T10:00:00.000Z",
)
]
},
@@ -201,22 +181,10 @@ class LinearSearchIssuesBlock(Block):
async def search_issues(
credentials: OAuth2Credentials | APIKeyCredentials,
term: str,
max_results: int = 10,
team_name: str | None = None,
) -> list[Issue]:
client = LinearClient(credentials=credentials)
# Resolve team name to ID if provided
# Raises LinearAPIException with descriptive message if team not found
team_id: str | None = None
if team_name:
team_id = await client.try_get_team_by_name(team_name=team_name)
return await client.try_search_issues(
term=term,
max_results=max_results,
team_id=team_id,
)
response: list[Issue] = await client.try_search_issues(term=term)
return response
async def run(
self,
@@ -228,10 +196,7 @@ class LinearSearchIssuesBlock(Block):
"""Execute the issue search"""
try:
issues = await self.search_issues(
credentials=credentials,
term=input_data.term,
max_results=input_data.max_results,
team_name=input_data.team_name,
credentials=credentials, term=input_data.term
)
yield "issues", issues
except LinearAPIException as e:

View File

@@ -36,21 +36,12 @@ class Project(BaseModel):
content: str | None = None
class State(BaseModel):
id: str
name: str
type: str | None = (
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
)
class Issue(BaseModel):
id: str
identifier: str
title: str
description: str | None
priority: int
state: State | None = None
project: Project | None = None
createdAt: str | None = None
comments: list[Comment] | None = None

View File

@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -271,9 +270,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101

View File

@@ -0,0 +1,246 @@
import os
import tempfile
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,77 +0,0 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -1,37 +0,0 @@
"""Video editing blocks for AutoGPT Platform.
This module provides blocks for:
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
- Clipping/trimming video segments
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Dependencies:
- yt-dlp: For video downloading
- moviepy: For video editing operations
- elevenlabs: For AI narration (optional)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",
"VideoNarrationBlock",
"VideoTextOverlayBlock",
]

View File

@@ -1,131 +0,0 @@
"""Shared utilities for video blocks."""
from __future__ import annotations
import logging
import os
import re
import subprocess
from pathlib import Path
logger = logging.getLogger(__name__)
# Known operation tags added by video blocks
_VIDEO_OPS = (
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
)
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
_BLOCK_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*"
r"_" + _VIDEO_OPS + r"_"
)
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
_UUID_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*_"
)
def extract_source_name(input_path: str, max_length: int = 50) -> str:
"""Extract the original source filename by stripping block-generated prefixes.
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
when chaining video blocks, recovering the original human-readable name.
Safe for plain filenames (no UUID -> no stripping).
Falls back to "video" if everything is stripped.
"""
stem = Path(input_path).stem
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
while _BLOCK_PREFIX_RE.match(stem):
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
if _UUID_PREFIX_RE.match(stem):
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
if not stem:
return "video"
return stem[:max_length]
def get_video_codecs(output_path: str) -> tuple[str, str]:
"""Get appropriate video and audio codecs based on output file extension.
Args:
output_path: Path to the output file (used to determine extension)
Returns:
Tuple of (video_codec, audio_codec)
Codec mappings:
- .mp4: H.264 + AAC (universal compatibility)
- .webm: VP8 + Vorbis (web streaming)
- .mkv: H.264 + AAC (container supports many codecs)
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
- .m4v: H.264 + AAC (Apple iTunes/devices)
- .avi: MPEG-4 + MP3 (legacy Windows)
"""
ext = os.path.splitext(output_path)[1].lower()
codec_map: dict[str, tuple[str, str]] = {
".mp4": ("libx264", "aac"),
".webm": ("libvpx", "libvorbis"),
".mkv": ("libx264", "aac"),
".mov": ("libx264", "aac"),
".m4v": ("libx264", "aac"),
".avi": ("mpeg4", "libmp3lame"),
}
return codec_map.get(ext, ("libx264", "aac"))
def strip_chapters_inplace(video_path: str) -> None:
"""Strip chapter metadata from a media file in-place using ffmpeg.
MoviePy 2.x crashes with IndexError when parsing files with embedded
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
This strips chapters without re-encoding.
Args:
video_path: Absolute path to the media file to strip chapters from.
"""
base, ext = os.path.splitext(video_path)
tmp_path = base + ".tmp" + ext
try:
result = subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-map_chapters",
"-1",
"-codec",
"copy",
tmp_path,
],
capture_output=True,
text=True,
timeout=300,
)
if result.returncode != 0:
logger.warning(
"ffmpeg chapter strip failed (rc=%d): %s",
result.returncode,
result.stderr,
)
return
os.replace(tmp_path, video_path)
except FileNotFoundError:
logger.warning("ffmpeg not found; skipping chapter strip")
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)

View File

@@ -1,113 +0,0 @@
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Add (attach) an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
# 2) Load video + audio with moviepy
strip_chapters_inplace(video_abspath)
strip_chapters_inplace(audio_abspath)
video_clip = None
audio_clip = None
final_clip = None
try:
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
final_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if final_clip:
final_clip.close()
if audio_clip:
audio_clip.close()
if video_clip:
video_clip.close()
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,167 +0,0 @@
"""VideoClipBlock - Extract a segment from a video file."""
from typing import Literal
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoClipBlock(Block):
"""Extract a time segment from a video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Clipped video file (path or data URI)"
)
duration: float = SchemaField(description="Clip duration in seconds")
def __init__(self):
super().__init__(
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
description="Extract a time segment from a video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"start_time": 0.0,
"end_time": 10.0,
},
test_output=[("video_out", str), ("duration", float)],
test_mock={
"_clip_video": lambda *args: 10.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
self,
video_abspath: str,
output_abspath: str,
start_time: float,
end_time: float,
) -> float:
"""Extract a clip from a video. Extracted for testability."""
clip = None
subclip = None
try:
strip_chapters_inplace(video_abspath)
clip = VideoFileClip(video_abspath)
subclip = clip.subclipped(start_time, end_time)
video_codec, audio_codec = get_video_codecs(output_abspath)
subclip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return subclip.duration
finally:
if subclip:
subclip.close()
if clip:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
if input_data.end_time <= input_data.start_time:
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
output_abspath,
input_data.start_time,
input_data.end_time,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "duration", duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to clip video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,227 +0,0 @@
"""VideoConcatBlock - Concatenate multiple video clips into one."""
from typing import Literal
from moviepy import concatenate_videoclips
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoConcatBlock(Block):
"""Merge multiple video clips into one continuous video."""
class Input(BlockSchemaInput):
videos: list[MediaFileType] = SchemaField(
description="List of video files to concatenate (in order)"
)
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
description="Transition between clips", default="none"
)
transition_duration: int = SchemaField(
description="Transition duration in seconds",
default=1,
ge=0,
advanced=True,
)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Concatenated video file (path or data URI)"
)
total_duration: float = SchemaField(description="Total duration in seconds")
def __init__(self):
super().__init__(
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
description="Merge multiple video clips into one continuous video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
},
test_output=[
("video_out", str),
("total_duration", float),
],
test_mock={
"_concat_videos": lambda *args: 20.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
self,
video_abspaths: list[str],
output_abspath: str,
transition: str,
transition_duration: int,
) -> float:
"""Concatenate videos. Extracted for testability.
Returns:
Total duration of the concatenated video.
"""
clips = []
faded_clips = []
final = None
try:
# Load clips
for v in video_abspaths:
strip_chapters_inplace(v)
clips.append(VideoFileClip(v))
# Validate transition_duration against shortest clip
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
min_duration = min(c.duration for c in clips)
if transition_duration >= min_duration:
raise BlockExecutionError(
message=(
f"transition_duration ({transition_duration}s) must be "
f"shorter than the shortest clip ({min_duration:.2f}s)"
),
block_name=self.name,
block_id=str(self.id),
)
if transition == "crossfade":
for i, clip in enumerate(clips):
effects = []
if i > 0:
effects.append(CrossFadeIn(transition_duration))
if i < len(clips) - 1:
effects.append(CrossFadeOut(transition_duration))
if effects:
clip = clip.with_effects(effects)
faded_clips.append(clip)
final = concatenate_videoclips(
faded_clips,
method="compose",
padding=-transition_duration,
)
elif transition == "fade_black":
for clip in clips:
faded = clip.with_effects(
[FadeIn(transition_duration), FadeOut(transition_duration)]
)
faded_clips.append(faded)
final = concatenate_videoclips(faded_clips)
else:
final = concatenate_videoclips(clips)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return final.duration
finally:
if final:
final.close()
for clip in faded_clips:
clip.close()
for clip in clips:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
if len(input_data.videos) < 2:
raise BlockExecutionError(
message="At least 2 videos are required for concatenation",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
# Build output path
source = (
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
)
output_filename = MediaFileType(
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
output_abspath,
input_data.transition,
input_data.transition_duration,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "total_duration", total_duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to concatenate videos: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,172 +0,0 @@
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
import os
import typing
from typing import Literal
import yt_dlp
if typing.TYPE_CHECKING:
from yt_dlp import _Params
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoDownloadBlock(Block):
"""Download video from URL using yt-dlp."""
class Input(BlockSchemaInput):
url: str = SchemaField(
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
placeholder="https://www.youtube.com/watch?v=...",
)
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
description="Video quality preference", default="720p"
)
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
description="Downloaded video (path or data URI)"
)
duration: float = SchemaField(description="Video duration in seconds")
title: str = SchemaField(description="Video title from source")
source_url: str = SchemaField(description="Original source URL")
def __init__(self):
super().__init__(
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
test_input={
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"quality": "480p",
},
test_output=[
("video_file", str),
("duration", float),
("title", str),
("source_url", str),
],
test_mock={
"_download_video": lambda *args: (
"video.mp4",
212.0,
"Test Video",
),
"_store_output_video": lambda *args, **kwargs: "video.mp4",
},
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
formats = {
"best": "bestvideo+bestaudio/best",
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
"audio_only": "bestaudio/best",
}
return formats.get(quality, formats["720p"])
def _download_video(
self,
url: str,
quality: str,
output_format: str,
output_dir: str,
node_exec_id: str,
) -> tuple[str, float, str]:
"""Download video. Extracted for testability."""
output_template = os.path.join(
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
)
ydl_opts: "_Params" = {
"format": f"{self._get_format_string(quality)}/best",
"outtmpl": output_template,
"merge_output_format": output_format,
"quiet": True,
"no_warnings": True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
video_path = ydl.prepare_filename(info)
# Handle format conversion in filename
if not video_path.endswith(f".{output_format}"):
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
# Return just the filename, not the full path
filename = os.path.basename(video_path)
return (
filename,
info.get("duration") or 0.0,
info.get("title") or "Unknown",
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
input_data.url,
input_data.quality,
input_data.output_format,
output_dir,
node_exec_id,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, MediaFileType(filename)
)
yield "video_file", video_out
yield "duration", duration
yield "title", title
yield "source_url", input_data.url
except Exception as e:
raise BlockExecutionError(
message=f"Failed to download video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,77 +0,0 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file (video or audio)."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Strip chapters to avoid MoviePy crash, then load the clip
strip_chapters_inplace(media_abspath)
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
duration = clip.duration
finally:
if clip:
clip.close()
yield "duration", duration

View File

@@ -1,115 +0,0 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
from typing import Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
default=None,
ge=0.0,
le=3600.0, # Max 1 hour to prevent disk exhaustion
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
default=None,
ge=1,
le=10, # Max 10 loops to prevent disk exhaustion
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
strip_chapters_inplace(input_abspath)
clip = None
looped_clip = None
try:
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if looped_clip:
looped_clip.close()
if clip:
clip.close()
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,267 +0,0 @@
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
import os
from typing import Literal
from elevenlabs import ElevenLabs
from moviepy import CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.elevenlabs._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ElevenLabsCredentials,
ElevenLabsCredentialsInput,
)
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoNarrationBlock(Block):
"""Generate AI narration and add to video."""
class Input(BlockSchemaInput):
credentials: ElevenLabsCredentialsInput = CredentialsField(
description="ElevenLabs API key for voice synthesis"
)
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
script: str = SchemaField(description="Narration script text")
voice_id: str = SchemaField(
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
)
model_id: Literal[
"eleven_multilingual_v2",
"eleven_flash_v2_5",
"eleven_turbo_v2_5",
"eleven_turbo_v2",
] = SchemaField(
description="ElevenLabs TTS model",
default="eleven_multilingual_v2",
)
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
default="ducking",
)
narration_volume: float = SchemaField(
description="Narration volume (0.0 to 2.0)",
default=1.0,
ge=0.0,
le=2.0,
advanced=True,
)
original_volume: float = SchemaField(
description="Original audio volume when mixing (0.0 to 1.0)",
default=0.3,
ge=0.0,
le=1.0,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with narration (path or data URI)"
)
audio_file: MediaFileType = SchemaField(
description="Generated audio file (path or data URI)"
)
def __init__(self):
super().__init__(
id="3d036b53-859c-4b17-9826-ca340f736e0e",
description="Generate AI narration and add to video",
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"script": "Hello world",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_out", str), ("audio_file", str)],
test_mock={
"_generate_narration_audio": lambda *args: b"mock audio content",
"_add_narration_to_video": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
self, api_key: str, script: str, voice_id: str, model_id: str
) -> bytes:
"""Generate narration audio via ElevenLabs API."""
client = ElevenLabs(api_key=api_key)
audio_generator = client.text_to_speech.convert(
voice_id=voice_id,
text=script,
model_id=model_id,
)
# The SDK returns a generator, collect all chunks
return b"".join(audio_generator)
def _add_narration_to_video(
self,
video_abspath: str,
audio_abspath: str,
output_abspath: str,
mix_mode: str,
narration_volume: float,
original_volume: float,
) -> None:
"""Add narration audio to video. Extracted for testability."""
video = None
final = None
narration_original = None
narration_scaled = None
original = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
narration_original = AudioFileClip(audio_abspath)
narration_scaled = narration_original.with_volume_scaled(narration_volume)
narration = narration_scaled
if mix_mode == "replace":
final_audio = narration
elif mix_mode == "mix":
if video.audio:
original = video.audio.with_volume_scaled(original_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
else: # ducking - apply stronger attenuation
if video.audio:
# Ducking uses a much lower volume for original audio
ducking_volume = original_volume * 0.3
original = video.audio.with_volume_scaled(ducking_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
final = video.with_audio(final_audio)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if original:
original.close()
if narration_scaled:
narration_scaled.close()
if narration_original:
narration_original.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
credentials.api_key.get_secret_value(),
input_data.script,
input_data.voice_id,
input_data.model_id,
)
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
# Add narration to video
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
audio_abspath,
output_abspath,
input_data.mix_mode,
input_data.narration_volume,
input_data.original_volume,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
audio_out = await self._store_output_video(
execution_context, audio_filename
)
yield "video_out", video_out
yield "audio_file", audio_out
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add narration: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,231 +0,0 @@
"""VideoTextOverlayBlock - Add text overlay to video."""
from typing import Literal
from moviepy import CompositeVideoClip, TextClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoTextOverlayBlock(Block):
"""Add text overlay/caption to video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
text: str = SchemaField(description="Text to overlay on video")
position: Literal[
"top",
"center",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
] = SchemaField(description="Position of text on screen", default="bottom")
start_time: float | None = SchemaField(
description="When to show text (seconds). None = entire video",
default=None,
advanced=True,
)
end_time: float | None = SchemaField(
description="When to hide text (seconds). None = until end",
default=None,
advanced=True,
)
font_size: int = SchemaField(
description="Font size", default=48, ge=12, le=200, advanced=True
)
font_color: str = SchemaField(
description="Font color (hex or name)", default="white", advanced=True
)
bg_color: str | None = SchemaField(
description="Background color behind text (None for transparent)",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with text overlay (path or data URI)"
)
def __init__(self):
super().__init__(
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
description="Add text overlay/caption to video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can lockdown imagemagick security policy
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
test_output=[("video_out", str)],
test_mock={
"_add_text_overlay": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
self,
video_abspath: str,
output_abspath: str,
text: str,
position: str,
start_time: float | None,
end_time: float | None,
font_size: int,
font_color: str,
bg_color: str | None,
) -> None:
"""Add text overlay to video. Extracted for testability."""
video = None
final = None
txt_clip = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
txt_clip = TextClip(
text=text,
font_size=font_size,
color=font_color,
bg_color=bg_color,
)
# Position mapping
pos_map = {
"top": ("center", "top"),
"center": ("center", "center"),
"bottom": ("center", "bottom"),
"top-left": ("left", "top"),
"top-right": ("right", "top"),
"bottom-left": ("left", "bottom"),
"bottom-right": ("right", "bottom"),
}
txt_clip = txt_clip.with_position(pos_map[position])
# Set timing
start = start_time or 0
end = end_time or video.duration
duration = max(0, end - start)
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
final = CompositeVideoClip([video, txt_clip])
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if txt_clip:
txt_clip.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
if (
input_data.start_time is not None
and input_data.end_time is not None
and input_data.end_time <= input_data.start_time
):
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
output_abspath,
input_data.text,
input_data.position,
input_data.start_time,
input_data.end_time,
input_data.font_size,
input_data.font_color,
input_data.bg_color,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add text overlay: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -165,13 +165,10 @@ class TranscribeYoutubeVideoBlock(Block):
credentials: WebshareProxyCredentials,
**kwargs,
) -> BlockOutput:
try:
video_id = self.extract_video_id(input_data.youtube_url)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id
# Only yield after all operations succeed
yield "video_id", video_id
yield "transcript", transcript_text
except Exception as e:
yield "error", str(e)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
yield "transcript", transcript_text

View File

@@ -36,14 +36,12 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
apollo_credentials,
did_credentials,
elevenlabs_credentials,
enrichlayer_credentials,
groq_credentials,
ideogram_credentials,
@@ -80,7 +78,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
@@ -642,16 +639,4 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
},
),
],
VideoNarrationBlock: [
BlockCost(
cost_amount=5, # ElevenLabs TTS cost
cost_filter={
"credentials": {
"id": elevenlabs_credentials.id,
"provider": elevenlabs_credentials.provider,
"type": elevenlabs_credentials.type,
}
},
)
],
}

View File

@@ -134,16 +134,6 @@ async def test_block_credit_reset(server: SpinTestServer):
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
# in a different month than month1 (January). This fixes a timing bug
# where if the test runs in early February, 35 days ago would be January,
# matching the mocked month1 and preventing the refill from triggering.
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID},
data={"updatedAt": dec_previous_year},
)
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits

View File

@@ -19,6 +19,7 @@ from typing import (
cast,
get_args,
)
from urllib.parse import urlparse
from uuid import uuid4
from prisma.enums import CreditTransactionType, OnboardingStep
@@ -41,7 +42,6 @@ from typing_extensions import TypedDict
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.request import parse_url
from backend.util.settings import Secrets
# Type alias for any provider name (including custom ones)
@@ -397,25 +397,19 @@ class HostScopedCredentials(_BaseCredentials):
def matches_url(self, url: str) -> bool:
"""Check if this credential should be applied to the given URL."""
request_host, request_port = _extract_host_from_url(url)
cred_scope_host, cred_scope_port = _extract_host_from_url(self.host)
parsed_url = urlparse(url)
# Extract hostname without port
request_host = parsed_url.hostname
if not request_host:
return False
# If a port is specified in credential host, the request host port must match
if cred_scope_port is not None and request_port != cred_scope_port:
return False
# Non-standard ports are only allowed if explicitly specified in credential host
elif cred_scope_port is None and request_port not in (80, 443, None):
return False
# Simple host matching
if cred_scope_host == request_host:
# Simple host matching - exact match or wildcard subdomain match
if self.host == request_host:
return True
# Support wildcard matching (e.g., "*.example.com" matches "api.example.com")
if cred_scope_host.startswith("*."):
domain = cred_scope_host[2:] # Remove "*."
if self.host.startswith("*."):
domain = self.host[2:] # Remove "*."
return request_host.endswith(f".{domain}") or request_host == domain
return False
@@ -557,13 +551,13 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
)
def _extract_host_from_url(url: str) -> tuple[str, int | None]:
"""Extract host and port from URL for grouping host-scoped credentials."""
def _extract_host_from_url(url: str) -> str:
"""Extract host from URL for grouping host-scoped credentials."""
try:
parsed = parse_url(url)
return parsed.hostname or url, parsed.port
parsed = urlparse(url)
return parsed.hostname or url
except Exception:
return "", None
return ""
class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
@@ -612,7 +606,7 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
providers = frozenset(
[cast(CP, "http")]
+ [
cast(CP, parse_url(str(value)).netloc)
cast(CP, _extract_host_from_url(str(value)))
for value in field.discriminator_values
]
)

View File

@@ -79,23 +79,10 @@ class TestHostScopedCredentials:
headers={"Authorization": SecretStr("Bearer token")},
)
# Non-standard ports require explicit port in credential host
assert not creds.matches_url("http://localhost:8080/api/v1")
assert creds.matches_url("http://localhost:8080/api/v1")
assert creds.matches_url("https://localhost:443/secure/endpoint")
assert creds.matches_url("http://localhost/simple")
def test_matches_url_with_explicit_port(self):
"""Test URL matching with explicit port in credential host."""
creds = HostScopedCredentials(
provider="custom",
host="localhost:8080",
headers={"Authorization": SecretStr("Bearer token")},
)
assert creds.matches_url("http://localhost:8080/api/v1")
assert not creds.matches_url("http://localhost:3000/api/v1")
assert not creds.matches_url("http://localhost/simple")
def test_empty_headers_dict(self):
"""Test HostScopedCredentials with empty headers."""
creds = HostScopedCredentials(
@@ -141,20 +128,8 @@ class TestHostScopedCredentials:
("*.example.com", "https://sub.api.example.com/test", True),
("*.example.com", "https://example.com/test", True),
("*.example.com", "https://example.org/test", False),
# Non-standard ports require explicit port in credential host
("localhost", "http://localhost:3000/test", False),
("localhost:3000", "http://localhost:3000/test", True),
("localhost", "http://localhost:3000/test", True),
("localhost", "http://127.0.0.1:3000/test", False),
# IPv6 addresses (frontend stores with brackets via URL.hostname)
("[::1]", "http://[::1]/test", True),
("[::1]", "http://[::1]:80/test", True),
("[::1]", "https://[::1]:443/test", True),
("[::1]", "http://[::1]:8080/test", False), # Non-standard port
("[::1]:8080", "http://[::1]:8080/test", True),
("[::1]:8080", "http://[::1]:9090/test", False),
("[2001:db8::1]", "http://[2001:db8::1]/path", True),
("[2001:db8::1]", "https://[2001:db8::1]:443/path", True),
("[2001:db8::1]", "http://[2001:db8::ff]/path", False),
],
)
def test_url_matching_parametrized(self, host: str, test_url: str, expected: bool):

View File

@@ -224,14 +224,6 @@ openweathermap_credentials = APIKeyCredentials(
expires_at=None,
)
elevenlabs_credentials = APIKeyCredentials(
id="f4a8b6c2-3d1e-4f5a-9b8c-7d6e5f4a3b2c",
provider="elevenlabs",
api_key=SecretStr(settings.secrets.elevenlabs_api_key),
title="Use Credits for ElevenLabs",
expires_at=None,
)
DEFAULT_CREDENTIALS = [
ollama_credentials,
revid_credentials,
@@ -260,7 +252,6 @@ DEFAULT_CREDENTIALS = [
v0_credentials,
webshare_proxy_credentials,
openweathermap_credentials,
elevenlabs_credentials,
]
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
@@ -375,8 +366,6 @@ class IntegrationCredentialsStore:
all_credentials.append(webshare_proxy_credentials)
if settings.secrets.openweathermap_api_key:
all_credentials.append(openweathermap_credentials)
if settings.secrets.elevenlabs_api_key:
all_credentials.append(elevenlabs_credentials)
return all_credentials
async def get_creds_by_id(

View File

@@ -18,7 +18,6 @@ class ProviderName(str, Enum):
DISCORD = "discord"
D_ID = "d_id"
E2B = "e2b"
ELEVENLABS = "elevenlabs"
FAL = "fal"
GITHUB = "github"
GOOGLE = "google"

View File

@@ -8,8 +8,6 @@ from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from pydantic import BaseModel
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
@@ -19,35 +17,6 @@ from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
class WorkspaceUri(BaseModel):
"""Parsed workspace:// URI."""
file_ref: str # File ID or path (e.g. "abc123" or "/path/to/file.txt")
mime_type: str | None = None # MIME type from fragment (e.g. "video/mp4")
is_path: bool = False # True if file_ref is a path (starts with "/")
def parse_workspace_uri(uri: str) -> WorkspaceUri:
"""Parse a workspace:// URI into its components.
Examples:
"workspace://abc123" → WorkspaceUri(file_ref="abc123", mime_type=None, is_path=False)
"workspace://abc123#video/mp4" → WorkspaceUri(file_ref="abc123", mime_type="video/mp4", is_path=False)
"workspace:///path/to/file.txt" → WorkspaceUri(file_ref="/path/to/file.txt", mime_type=None, is_path=True)
"""
raw = uri.removeprefix("workspace://")
mime_type: str | None = None
if "#" in raw:
raw, fragment = raw.split("#", 1)
mime_type = fragment or None
return WorkspaceUri(
file_ref=raw,
mime_type=mime_type,
is_path=raw.startswith("/"),
)
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
@@ -214,20 +183,22 @@ async def store_media_file(
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference (strips #mimeType fragment from file ID)
ws = parse_workspace_uri(file)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if ws.is_path:
# Path reference: workspace:///path/to/file.txt
workspace_content = await workspace_manager.read_file(ws.file_ref)
file_info = await workspace_manager.get_file_info_by_path(ws.file_ref)
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference: workspace://abc123 or workspace://abc123#video/mp4
workspace_content = await workspace_manager.read_file_by_id(ws.file_ref)
file_info = await workspace_manager.get_file_info(ws.file_ref)
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
@@ -363,21 +334,7 @@ async def store_media_file(
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference, ensuring MIME type fragment
ws = parse_workspace_uri(file)
if not ws.mime_type:
# Add MIME type fragment if missing (older refs without it)
try:
if ws.is_path:
info = await workspace_manager.get_file_info_by_path(
ws.file_ref
)
else:
info = await workspace_manager.get_file_info(ws.file_ref)
if info:
return MediaFileType(f"{file}#{info.mimeType}")
except Exception:
pass
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
@@ -389,7 +346,7 @@ async def store_media_file(
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")

View File

@@ -157,7 +157,12 @@ async def validate_url(
is_trusted: Boolean indicating if the hostname is in trusted_origins
ip_addresses: List of IP addresses for the host; empty if the host is trusted
"""
parsed = parse_url(url)
# Canonicalize URL
url = url.strip("/ ").replace("\\", "/")
parsed = urlparse(url)
if not parsed.scheme:
url = f"http://{url}"
parsed = urlparse(url)
# Check scheme
if parsed.scheme not in ALLOWED_SCHEMES:
@@ -215,17 +220,6 @@ async def validate_url(
)
def parse_url(url: str) -> URL:
"""Canonicalizes and parses a URL string."""
url = url.strip("/ ").replace("\\", "/")
# Ensure scheme is present for proper parsing
if not re.match(r"[a-z0-9+.\-]+://", url):
url = f"http://{url}"
return urlparse(url)
def pin_url(url: URL, ip_addresses: Optional[list[str]] = None) -> URL:
"""
Pins a URL to a specific IP address to prevent DNS rebinding attacks.

View File

@@ -656,7 +656,6 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
e2b_api_key: str = Field(default="", description="E2B API key")
nvidia_api_key: str = Field(default="", description="Nvidia API key")
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -1169,29 +1169,6 @@ attrs = ">=21.3.0"
e2b = ">=1.5.4,<2.0.0"
httpx = ">=0.20.0,<1.0.0"
[[package]]
name = "elevenlabs"
version = "1.59.0"
description = ""
optional = false
python-versions = "<4.0,>=3.8"
groups = ["main"]
files = [
{file = "elevenlabs-1.59.0-py3-none-any.whl", hash = "sha256:468145db81a0bc867708b4a8619699f75583e9481b395ec1339d0b443da771ed"},
{file = "elevenlabs-1.59.0.tar.gz", hash = "sha256:16e735bd594e86d415dd445d249c8cc28b09996cfd627fbc10102c0a84698859"},
]
[package.dependencies]
httpx = ">=0.21.2"
pydantic = ">=1.9.2"
pydantic-core = ">=2.18.2,<3.0.0"
requests = ">=2.20"
typing_extensions = ">=4.0.0"
websockets = ">=11.0"
[package.extras]
pyaudio = ["pyaudio (>=0.2.14)"]
[[package]]
name = "email-validator"
version = "2.2.0"
@@ -7384,28 +7361,6 @@ files = [
defusedxml = ">=0.7.1,<0.8.0"
requests = "*"
[[package]]
name = "yt-dlp"
version = "2025.12.8"
description = "A feature-rich command-line audio/video downloader"
optional = false
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "yt_dlp-2025.12.8-py3-none-any.whl", hash = "sha256:36e2584342e409cfbfa0b5e61448a1c5189e345cf4564294456ee509e7d3e065"},
{file = "yt_dlp-2025.12.8.tar.gz", hash = "sha256:b773c81bb6b71cb2c111cfb859f453c7a71cf2ef44eff234ff155877184c3e4f"},
]
[package.extras]
build = ["build", "hatchling (>=1.27.0)", "pip", "setuptools (>=71.0.2)", "wheel"]
curl-cffi = ["curl-cffi (>=0.5.10,<0.6.dev0 || >=0.10.dev0,<0.14) ; implementation_name == \"cpython\""]
default = ["brotli ; implementation_name == \"cpython\"", "brotlicffi ; implementation_name != \"cpython\"", "certifi", "mutagen", "pycryptodomex", "requests (>=2.32.2,<3)", "urllib3 (>=2.0.2,<3)", "websockets (>=13.0)", "yt-dlp-ejs (==0.3.2)"]
dev = ["autopep8 (>=2.0,<3.0)", "pre-commit", "pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)", "ruff (>=0.14.0,<0.15.0)"]
pyinstaller = ["pyinstaller (>=6.17.0)"]
secretstorage = ["cffi", "secretstorage"]
static-analysis = ["autopep8 (>=2.0,<3.0)", "ruff (>=0.14.0,<0.15.0)"]
test = ["pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)"]
[[package]]
name = "zerobouncesdk"
version = "1.1.2"
@@ -7557,4 +7512,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "8239323f9ae6713224dffd1fe8ba8b449fe88b6c3c7a90940294a74f43a0387a"
content-hash = "ee5742dc1a9df50dfc06d4b26a1682cbb2b25cab6b79ce5625ec272f93e4f4bf"

View File

@@ -20,7 +20,6 @@ click = "^8.2.0"
cryptography = "^45.0"
discord-py = "^2.5.2"
e2b-code-interpreter = "^1.5.2"
elevenlabs = "^1.50.0"
fastapi = "^0.116.1"
feedparser = "^6.0.11"
flake8 = "^7.3.0"
@@ -72,7 +71,6 @@ tweepy = "^4.16.0"
uvicorn = { extras = ["standard"], version = "^0.35.0" }
websockets = "^15.0"
youtube-transcript-api = "^1.2.1"
yt-dlp = "2025.12.08"
zerobouncesdk = "^1.1.2"
# NOTE: please insert new dependencies in their alphabetical location
pytest-snapshot = "^0.9.0"

View File

@@ -1,17 +1,6 @@
import { OAuthPopupResultMessage } from "./types";
import { NextResponse } from "next/server";
/**
* Safely encode a value as JSON for embedding in a script tag.
* Escapes characters that could break out of the script context to prevent XSS.
*/
function safeJsonStringify(value: unknown): string {
return JSON.stringify(value)
.replace(/</g, "\\u003c")
.replace(/>/g, "\\u003e")
.replace(/&/g, "\\u0026");
}
// This route is intended to be used as the callback for integration OAuth flows,
// controlled by the CredentialsInput component. The CredentialsInput opens the login
// page in a pop-up window, which then redirects to this route to close the loop.
@@ -34,13 +23,12 @@ export async function GET(request: Request) {
console.debug("Sending message to opener:", message);
// Return a response with the message as JSON and a script to close the window
// Use safeJsonStringify to prevent XSS by escaping <, >, and & characters
return new NextResponse(
`
<html>
<body>
<script>
window.opener.postMessage(${safeJsonStringify(message)});
window.opener.postMessage(${JSON.stringify(message)});
window.close();
</script>
</body>

View File

@@ -1,6 +1,6 @@
import { beautifyString } from "@/lib/utils";
import { Clipboard, Maximize2 } from "lucide-react";
import React, { useMemo, useState } from "react";
import React, { useState } from "react";
import { Button } from "../../../../../components/__legacy__/ui/button";
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
import {
@@ -11,12 +11,6 @@ import {
TableHeader,
TableRow,
} from "../../../../../components/__legacy__/ui/table";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
import ExpandableOutputDialog from "./ExpandableOutputDialog";
@@ -32,9 +26,6 @@ export default function DataTable({
data,
}: DataTableProps) {
const { toast } = useToast();
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
execId: string;
@@ -42,15 +33,6 @@ export default function DataTable({
data: any[];
} | null>(null);
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const copyData = (pin: string, data: string) => {
navigator.clipboard.writeText(data).then(() => {
toast({
@@ -120,31 +102,15 @@ export default function DataTable({
<Clipboard size={18} />
</Button>
</div>
{value.map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
})}
{value.map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
))}
</div>
</TableCell>
</TableRow>

View File

@@ -1,14 +1,8 @@
import React, { useContext, useMemo, useState } from "react";
import React, { useContext, useState } from "react";
import { Button } from "@/components/__legacy__/ui/button";
import { Maximize2 } from "lucide-react";
import * as Separator from "@radix-ui/react-separator";
import { ContentRenderer } from "@/components/__legacy__/ui/render";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { beautifyString } from "@/lib/utils";
@@ -27,9 +21,6 @@ export default function NodeOutputs({
data,
}: NodeOutputsProps) {
const builderContext = useContext(BuilderContext);
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
@@ -46,15 +37,6 @@ export default function NodeOutputs({
const { getNodeTitle } = builderContext;
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const getBeautifiedPinName = (pin: string) => {
if (!pin.startsWith("tools_^_")) {
return beautifyString(pin);
@@ -105,31 +87,15 @@ export default function NodeOutputs({
<div className="mt-2">
<strong className="mr-2">Data:</strong>
<div className="mt-1">
{dataArray.slice(0, 10).map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
})}
{dataArray.slice(0, 10).map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
))}
{dataArray.length > 10 && (
<span style={{ color: "#888" }}>
<br />

View File

@@ -26,20 +26,8 @@ export function buildCopilotChatUrl(prompt: string): string {
export function getQuickActions(): string[] {
return [
"I don't know where to start, just ask me stuff",
"I do the same thing every week and it's killing me",
"Help me find where I'm wasting my time",
"Show me what I can automate",
"Design a custom workflow",
"Help me with content creation",
];
}
export function getInputPlaceholder(width?: number) {
if (!width) return "What's your role and what eats up most of your day?";
if (width < 500) {
return "I'm a chef and I hate...";
}
if (width <= 1080) {
return "What's your role and what eats up most of your day?";
}
return "What's your role and what eats up most of your day? e.g. 'I'm a recruiter and I hate...'";
}

View File

@@ -6,9 +6,7 @@ import { Text } from "@/components/atoms/Text/Text";
import { Chat } from "@/components/contextual/Chat/Chat";
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useEffect, useState } from "react";
import { useCopilotStore } from "./copilot-page-store";
import { getInputPlaceholder } from "./helpers";
import { useCopilotPage } from "./useCopilotPage";
export default function CopilotPage() {
@@ -16,25 +14,8 @@ export default function CopilotPage() {
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
const [inputPlaceholder, setInputPlaceholder] = useState(
getInputPlaceholder(),
);
useEffect(() => {
const handleResize = () => {
setInputPlaceholder(getInputPlaceholder(window.innerWidth));
};
handleResize();
window.addEventListener("resize", handleResize);
return () => window.removeEventListener("resize", handleResize);
}, []);
const { greetingName, quickActions, isLoading, hasSession, initialPrompt } =
state;
const {
handleQuickAction,
startChatWithPrompt,
@@ -92,7 +73,7 @@ export default function CopilotPage() {
}
return (
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-3 py-5 md:px-6 md:py-10">
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-6 py-10">
<div className="w-full text-center">
{isLoading ? (
<div className="mx-auto max-w-2xl">
@@ -109,25 +90,25 @@ export default function CopilotPage() {
</div>
) : (
<>
<div className="mx-auto max-w-3xl">
<div className="mx-auto max-w-2xl">
<Text
variant="h3"
className="mb-1 !text-[1.375rem] text-zinc-700"
className="mb-3 !text-[1.375rem] text-zinc-700"
>
Hey, <span className="text-violet-600">{greetingName}</span>
</Text>
<Text variant="h3" className="mb-8 !font-normal">
Tell me about your work I&apos;ll find what to automate.
What do you want to automate?
</Text>
<div className="mb-6">
<ChatInput
onSend={startChatWithPrompt}
placeholder={inputPlaceholder}
placeholder='You can search or just ask - e.g. "create a blog post outline"'
/>
</div>
</div>
<div className="flex flex-wrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
<div className="flex flex-nowrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{quickActions.map((action) => (
<Button
key={action}
@@ -135,7 +116,7 @@ export default function CopilotPage() {
variant="outline"
size="small"
onClick={() => handleQuickAction(action)}
className="h-auto shrink-0 border-zinc-300 px-3 py-2 text-[.9rem] text-zinc-600"
className="h-auto shrink-0 border-zinc-600 !px-4 !py-2 text-[1rem] text-zinc-600"
>
{action}
</Button>

View File

@@ -22,7 +22,7 @@ const isValidVideoUrl = (url: string): boolean => {
if (url.startsWith("data:video")) {
return true;
}
const videoExtensions = /\.(mp4|webm|ogg|mov|avi|mkv|m4v)$/i;
const videoExtensions = /\.(mp4|webm|ogg)$/i;
const youtubeRegex = /^(https?:\/\/)?(www\.)?(youtube\.com|youtu\.?be)\/.+$/;
const cleanedUrl = url.split("?")[0];
return (
@@ -44,29 +44,11 @@ const isValidAudioUrl = (url: string): boolean => {
if (url.startsWith("data:audio")) {
return true;
}
const audioExtensions = /\.(mp3|wav|ogg|m4a|aac|flac)$/i;
const audioExtensions = /\.(mp3|wav)$/i;
const cleanedUrl = url.split("?")[0];
return isValidMediaUri(url) && audioExtensions.test(cleanedUrl);
};
const getVideoMimeType = (url: string): string => {
if (url.startsWith("data:video/")) {
const match = url.match(/^data:(video\/[^;]+)/);
return match?.[1] || "video/mp4";
}
const extension = url.split("?")[0].split(".").pop()?.toLowerCase();
const mimeMap: Record<string, string> = {
mp4: "video/mp4",
webm: "video/webm",
ogg: "video/ogg",
mov: "video/quicktime",
avi: "video/x-msvideo",
mkv: "video/x-matroska",
m4v: "video/mp4",
};
return mimeMap[extension || ""] || "video/mp4";
};
const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
const videoId = getYouTubeVideoId(videoUrl);
return (
@@ -81,7 +63,7 @@ const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
></iframe>
) : (
<video controls width="100%" height="315">
<source src={videoUrl} type={getVideoMimeType(videoUrl)} />
<source src={videoUrl} type="video/mp4" />
Your browser does not support the video tag.
</video>
)}

View File

@@ -2,6 +2,7 @@ import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessi
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { cn } from "@/lib/utils";
import { GlobeHemisphereEastIcon } from "@phosphor-icons/react";
import { useEffect } from "react";
@@ -55,6 +56,10 @@ export function ChatContainer({
onStreamingChange?.(isStreaming);
}, [isStreaming, onStreamingChange]);
const breakpoint = useBreakpoint();
const isMobile =
breakpoint === "base" || breakpoint === "sm" || breakpoint === "md";
return (
<div
className={cn(
@@ -122,7 +127,11 @@ export function ChatContainer({
disabled={isStreaming || !sessionId}
isStreaming={isStreaming}
onStop={stopStreaming}
placeholder="What else can I help with?"
placeholder={
isMobile
? "You can search or just ask"
: 'You can search or just ask — e.g. "create a blog post outline"'
}
/>
</div>
</div>

View File

@@ -74,20 +74,19 @@ export function ChatInput({
hasMultipleLines ? "rounded-xlarge" : "rounded-full",
)}
>
{!value && !isRecording && (
<div
className="pointer-events-none absolute inset-0 top-0.5 flex items-center justify-start pl-14 text-[1rem] text-zinc-400"
aria-hidden="true"
>
{isTranscribing ? "Transcribing..." : placeholder}
</div>
)}
<textarea
id={inputId}
aria-label="Chat message input"
value={value}
onChange={handleChange}
onKeyDown={handleKeyDown}
placeholder={
isTranscribing
? "Transcribing..."
: isRecording
? ""
: placeholder
}
disabled={isInputDisabled}
rows={1}
className={cn(
@@ -123,14 +122,13 @@ export function ChatInput({
size="icon"
aria-label={isRecording ? "Stop recording" : "Start recording"}
onClick={toggleRecording}
disabled={disabled || isTranscribing || isStreaming}
disabled={disabled || isTranscribing}
className={cn(
isRecording
? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
: isTranscribing
? "border-zinc-300 bg-zinc-100 text-zinc-400"
: "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
isStreaming && "opacity-40",
)}
>
{isTranscribing ? (

View File

@@ -38,8 +38,8 @@ export function AudioWaveform({
// Create audio context and analyser
const audioContext = new AudioContext();
const analyser = audioContext.createAnalyser();
analyser.fftSize = 256;
analyser.smoothingTimeConstant = 0.3;
analyser.fftSize = 512;
analyser.smoothingTimeConstant = 0.8;
// Connect the stream to the analyser
const source = audioContext.createMediaStreamSource(stream);
@@ -73,11 +73,10 @@ export function AudioWaveform({
maxAmplitude = Math.max(maxAmplitude, amplitude);
}
// Normalize amplitude (0-128 range) to 0-1
const normalized = maxAmplitude / 128;
// Apply sensitivity boost (multiply by 4) and use sqrt curve to amplify quiet sounds
const boosted = Math.min(1, Math.sqrt(normalized) * 4);
const height = minBarHeight + boosted * (maxBarHeight - minBarHeight);
// Map amplitude (0-128) to bar height
const normalized = (maxAmplitude / 128) * 255;
const height =
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
newBars.push(height);
}

View File

@@ -224,7 +224,7 @@ export function useVoiceRecording({
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
);
const showMicButton = isSupported;
const showMicButton = isSupported && !isStreaming;
const isInputDisabled = disabled || isStreaming || isTranscribing;
// Cleanup on unmount

View File

@@ -346,7 +346,6 @@ export function ChatMessage({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -3,7 +3,7 @@
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
import { cn } from "@/lib/utils";
import { EyeSlash } from "@phosphor-icons/react";
import React, { useState } from "react";
import React from "react";
import ReactMarkdown from "react-markdown";
import remarkGfm from "remark-gfm";
@@ -48,9 +48,7 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
*/
function resolveWorkspaceUrl(src: string): string {
if (src.startsWith("workspace://")) {
// Strip MIME type fragment if present (e.g., workspace://abc123#video/mp4 → abc123)
const withoutPrefix = src.replace("workspace://", "");
const fileId = withoutPrefix.split("#")[0];
const fileId = src.replace("workspace://", "");
// Use the generated API URL helper to get the correct path
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
// Route through the Next.js proxy (same pattern as customMutator for client-side)
@@ -67,49 +65,13 @@ function isWorkspaceImage(src: string | undefined): boolean {
return src?.includes("/workspace/files/") ?? false;
}
/**
* Renders a workspace video with controls and an optional "AI cannot see" badge.
*/
function WorkspaceVideo({
src,
aiCannotSee,
}: {
src: string;
aiCannotSee: boolean;
}) {
return (
<span className="relative my-2 inline-block">
<video
controls
className="h-auto max-w-full rounded-md border border-zinc-200"
preload="metadata"
>
<source src={src} />
Your browser does not support the video tag.
</video>
{aiCannotSee && (
<span
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
title="The AI cannot see this video"
>
<EyeSlash size={14} />
<span>AI cannot see this video</span>
</span>
)}
</span>
);
}
/**
* Custom image component that shows an indicator when the AI cannot see the image.
* Also handles the "video:" alt-text prefix convention to render <video> elements.
* For workspace files with unknown types, falls back to <video> if <img> fails.
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
*/
function MarkdownImage(props: Record<string, unknown>) {
const src = props.src as string | undefined;
const alt = props.alt as string | undefined;
const [imgFailed, setImgFailed] = useState(false);
const aiCannotSee = isWorkspaceImage(src);
@@ -122,18 +84,6 @@ function MarkdownImage(props: Record<string, unknown>) {
);
}
// Detect video: prefix in alt text (set by formatOutputValue in helpers.ts)
if (alt?.startsWith("video:")) {
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
}
// If the <img> failed to load and this is a workspace file, try as video.
// This handles generic output keys like "file_out" where the MIME type
// isn't known from the key name alone.
if (imgFailed && aiCannotSee) {
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
}
return (
<span className="relative my-2 inline-block">
{/* eslint-disable-next-line @next/next/no-img-element */}
@@ -142,9 +92,6 @@ function MarkdownImage(props: Record<string, unknown>) {
alt={alt || "Image"}
className="h-auto max-w-full rounded-md border border-zinc-200"
loading="lazy"
onError={() => {
if (aiCannotSee) setImgFailed(true);
}}
/>
{aiCannotSee && (
<span

View File

@@ -73,7 +73,6 @@ export function MessageList({
key={index}
message={message}
prevMessage={messages[index - 1]}
onSendMessage={onSendMessage}
/>
);
}

View File

@@ -5,13 +5,11 @@ import { shouldSkipAgentOutput } from "../../helpers";
export interface LastToolResponseProps {
message: ChatMessageData;
prevMessage: ChatMessageData | undefined;
onSendMessage?: (content: string) => void;
}
export function LastToolResponse({
message,
prevMessage,
onSendMessage,
}: LastToolResponseProps) {
if (message.type !== "tool_response") return null;
@@ -23,7 +21,6 @@ export function LastToolResponse({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -1,8 +1,6 @@
import { Progress } from "@/components/atoms/Progress/Progress";
import { cn } from "@/lib/utils";
import { useEffect, useRef, useState } from "react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { useAsymptoticProgress } from "../ToolCallMessage/useAsymptoticProgress";
export interface ThinkingMessageProps {
className?: string;
@@ -13,19 +11,18 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
const [showCoffeeMessage, setShowCoffeeMessage] = useState(false);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const coffeeTimerRef = useRef<NodeJS.Timeout | null>(null);
const progress = useAsymptoticProgress(showCoffeeMessage);
useEffect(() => {
if (timerRef.current === null) {
timerRef.current = setTimeout(() => {
setShowSlowLoader(true);
}, 3000);
}, 8000);
}
if (coffeeTimerRef.current === null) {
coffeeTimerRef.current = setTimeout(() => {
setShowCoffeeMessage(true);
}, 8000);
}, 10000);
}
return () => {
@@ -52,18 +49,9 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
<AIChatBubble>
<div className="transition-all duration-500 ease-in-out">
{showCoffeeMessage ? (
<div className="flex flex-col items-center gap-3">
<div className="flex w-full max-w-[280px] flex-col gap-1.5">
<div className="flex items-center justify-between text-xs text-neutral-500">
<span>Working on it...</span>
<span>{Math.round(progress)}%</span>
</div>
<Progress value={progress} className="h-2 w-full" />
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
) : showSlowLoader ? (
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
Taking a bit more time...

View File

@@ -1,50 +0,0 @@
import { useEffect, useRef, useState } from "react";
/**
* Hook that returns a progress value that starts fast and slows down,
* asymptotically approaching but never reaching the max value.
*
* Uses a half-life formula: progress = max * (1 - 0.5^(time/halfLife))
* This creates the "game loading bar" effect where:
* - 50% is reached at halfLifeSeconds
* - 75% is reached at 2 * halfLifeSeconds
* - 87.5% is reached at 3 * halfLifeSeconds
* - and so on...
*
* @param isActive - Whether the progress should be animating
* @param halfLifeSeconds - Time in seconds to reach 50% progress (default: 30)
* @param maxProgress - Maximum progress value to approach (default: 100)
* @param intervalMs - Update interval in milliseconds (default: 100)
* @returns Current progress value (0-maxProgress)
*/
export function useAsymptoticProgress(
isActive: boolean,
halfLifeSeconds = 30,
maxProgress = 100,
intervalMs = 100,
) {
const [progress, setProgress] = useState(0);
const elapsedTimeRef = useRef(0);
useEffect(() => {
if (!isActive) {
setProgress(0);
elapsedTimeRef.current = 0;
return;
}
const interval = setInterval(() => {
elapsedTimeRef.current += intervalMs / 1000;
// Half-life approach: progress = max * (1 - 0.5^(time/halfLife))
// At t=halfLife: 50%, at t=2*halfLife: 75%, at t=3*halfLife: 87.5%, etc.
const newProgress =
maxProgress *
(1 - Math.pow(0.5, elapsedTimeRef.current / halfLifeSeconds));
setProgress(newProgress);
}, intervalMs);
return () => clearInterval(interval);
}, [isActive, halfLifeSeconds, maxProgress, intervalMs]);
return progress;
}

View File

@@ -1,128 +0,0 @@
"use client";
import { useGetV2GetLibraryAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { RunAgentModal } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentModal/RunAgentModal";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
CheckCircleIcon,
PencilLineIcon,
PlayIcon,
} from "@phosphor-icons/react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
interface Props {
agentName: string;
libraryAgentId: string;
onSendMessage?: (content: string) => void;
}
export function AgentCreatedPrompt({
agentName,
libraryAgentId,
onSendMessage,
}: Props) {
// Fetch library agent eagerly so modal is ready when user clicks
const { data: libraryAgentResponse, isLoading } = useGetV2GetLibraryAgent(
libraryAgentId,
{
query: {
enabled: !!libraryAgentId,
},
},
);
const libraryAgent =
libraryAgentResponse?.status === 200 ? libraryAgentResponse.data : null;
function handleRunWithPlaceholders() {
onSendMessage?.(
`Run the agent "${agentName}" with placeholder/example values so I can test it.`,
);
}
function handleRunCreated(execution: GraphExecutionMeta) {
onSendMessage?.(
`I've started the agent "${agentName}". The execution ID is ${execution.id}. Please monitor its progress and let me know when it completes.`,
);
}
function handleScheduleCreated(schedule: GraphExecutionJobInfo) {
const scheduleInfo = schedule.cron
? `with cron schedule "${schedule.cron}"`
: "to run on the specified schedule";
onSendMessage?.(
`I've scheduled the agent "${agentName}" ${scheduleInfo}. The schedule ID is ${schedule.id}.`,
);
}
return (
<AIChatBubble>
<div className="flex flex-col gap-4">
<div className="flex items-center gap-2">
<div className="flex h-8 w-8 items-center justify-center rounded-full bg-green-100">
<CheckCircleIcon
size={18}
weight="fill"
className="text-green-600"
/>
</div>
<div>
<Text variant="body-medium" className="text-neutral-900">
Agent Created Successfully
</Text>
<Text variant="small" className="text-neutral-500">
&quot;{agentName}&quot; is ready to test
</Text>
</div>
</div>
<div className="flex flex-col gap-2">
<Text variant="small-medium" className="text-neutral-700">
Ready to test?
</Text>
<div className="flex flex-wrap gap-2">
<Button
variant="outline"
size="small"
onClick={handleRunWithPlaceholders}
className="gap-2"
>
<PlayIcon size={16} />
Run with example values
</Button>
{libraryAgent ? (
<RunAgentModal
triggerSlot={
<Button variant="outline" size="small" className="gap-2">
<PencilLineIcon size={16} />
Run with my inputs
</Button>
}
agent={libraryAgent}
onRunCreated={handleRunCreated}
onScheduleCreated={handleScheduleCreated}
/>
) : (
<Button
variant="outline"
size="small"
loading={isLoading}
disabled
className="gap-2"
>
<PencilLineIcon size={16} />
Run with my inputs
</Button>
)}
</div>
<Text variant="small" className="text-neutral-500">
or just ask me
</Text>
</div>
</div>
</AIChatBubble>
);
}

View File

@@ -2,13 +2,11 @@ import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import type { ToolResult } from "@/types/chat";
import { WarningCircleIcon } from "@phosphor-icons/react";
import { AgentCreatedPrompt } from "./AgentCreatedPrompt";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { MarkdownContent } from "../MarkdownContent/MarkdownContent";
import {
formatToolResponse,
getErrorMessage,
isAgentSavedResponse,
isErrorResponse,
} from "./helpers";
@@ -18,7 +16,6 @@ export interface ToolResponseMessageProps {
result?: ToolResult;
success?: boolean;
className?: string;
onSendMessage?: (content: string) => void;
}
export function ToolResponseMessage({
@@ -27,7 +24,6 @@ export function ToolResponseMessage({
result,
success: _success,
className,
onSendMessage,
}: ToolResponseMessageProps) {
if (isErrorResponse(result)) {
const errorMessage = getErrorMessage(result);
@@ -47,18 +43,6 @@ export function ToolResponseMessage({
);
}
// Check for agent_saved response - show special prompt
const agentSavedData = isAgentSavedResponse(result);
if (agentSavedData.isSaved) {
return (
<AgentCreatedPrompt
agentName={agentSavedData.agentName}
libraryAgentId={agentSavedData.libraryAgentId}
onSendMessage={onSendMessage}
/>
);
}
const formattedText = formatToolResponse(result, toolName);
return (

View File

@@ -6,43 +6,6 @@ function stripInternalReasoning(content: string): string {
.trim();
}
export interface AgentSavedData {
isSaved: boolean;
agentName: string;
agentId: string;
libraryAgentId: string;
libraryAgentLink: string;
}
export function isAgentSavedResponse(result: unknown): AgentSavedData {
if (typeof result !== "object" || result === null) {
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
const response = result as Record<string, unknown>;
if (response.type === "agent_saved") {
return {
isSaved: true,
agentName: (response.agent_name as string) || "Agent",
agentId: (response.agent_id as string) || "",
libraryAgentId: (response.library_agent_id as string) || "",
libraryAgentLink: (response.library_agent_link as string) || "",
};
}
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
export function isErrorResponse(result: unknown): boolean {
if (typeof result === "string") {
const lower = result.toLowerCase();
@@ -76,101 +39,69 @@ export function getErrorMessage(result: unknown): string {
/**
* Check if a value is a workspace file reference.
* Format: workspace://{fileId} or workspace://{fileId}#{mimeType}
*/
function isWorkspaceRef(value: unknown): value is string {
return typeof value === "string" && value.startsWith("workspace://");
}
/**
* Extract MIME type from a workspace reference fragment.
* e.g., "workspace://abc123#video/mp4" → "video/mp4"
* Returns undefined if no fragment is present.
* Check if a workspace reference appears to be an image based on common patterns.
* Since workspace refs don't have extensions, we check the context or assume image
* for certain block types.
*
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
* This would let frontend render correctly without fragile keyword matching.
*/
function getWorkspaceMimeType(value: string): string | undefined {
const hashIndex = value.indexOf("#");
if (hashIndex === -1) return undefined;
return value.slice(hashIndex + 1) || undefined;
}
function isLikelyImageRef(value: string, outputKey?: string): boolean {
if (!isWorkspaceRef(value)) return false;
/**
* Determine the media category of a workspace ref or data URI.
* Uses the MIME type fragment on workspace refs when available,
* falls back to output key keyword matching for older refs without it.
*/
function getMediaCategory(
value: string,
outputKey?: string,
): "video" | "image" | "audio" | "unknown" {
// Data URIs carry their own MIME type
if (value.startsWith("data:video/")) return "video";
if (value.startsWith("data:image/")) return "image";
if (value.startsWith("data:audio/")) return "audio";
// Workspace refs: prefer MIME type fragment
if (isWorkspaceRef(value)) {
const mime = getWorkspaceMimeType(value);
if (mime) {
if (mime.startsWith("video/")) return "video";
if (mime.startsWith("image/")) return "image";
if (mime.startsWith("audio/")) return "audio";
return "unknown";
// Check output key name for video-related hints (these are NOT images)
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
return false;
}
// Fallback: keyword matching on output key for older refs without fragment
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
const videoKeywords = [
"video",
"mp4",
"mov",
"avi",
"webm",
"movie",
"clip",
];
if (videoKeywords.some((kw) => lowerKey.includes(kw))) return "video";
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (imageKeywords.some((kw) => lowerKey.includes(kw))) return "image";
}
// Default to image for backward compatibility
return "image";
}
return "unknown";
// Check output key name for image-related hints
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
return true;
}
}
// Default to treating workspace refs as potential images
// since that's the most common case for generated content
return true;
}
/**
* Format a single output value, converting workspace refs to markdown images/videos.
* Videos use a "video:" alt-text prefix so the MarkdownContent renderer can
* distinguish them from images and render a <video> element.
* Format a single output value, converting workspace refs to markdown images.
*/
function formatOutputValue(value: unknown, outputKey?: string): string {
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
// Format as markdown image
return `![${outputKey || "Generated image"}](${value})`;
}
if (typeof value === "string") {
const category = getMediaCategory(value, outputKey);
if (category === "video") {
// Format with "video:" prefix so MarkdownContent renders <video>
return `![video:${outputKey || "Video"}](${value})`;
}
if (category === "image") {
// Check for data URIs (images)
if (value.startsWith("data:image/")) {
return `![${outputKey || "Generated image"}](${value})`;
}
// For audio, unknown workspace refs, data URIs, etc. - return as-is
return value;
}

View File

@@ -41,17 +41,7 @@ export function HostScopedCredentialsModal({
const currentHost = currentUrl ? getHostFromUrl(currentUrl) : "";
const formSchema = z.object({
host: z
.string()
.min(1, "Host is required")
.refine((val) => !/^[a-zA-Z][a-zA-Z\d+\-.]*:\/\//.test(val), {
message: "Enter only the host (e.g. api.example.com), not a full URL",
})
.refine((val) => !val.includes("/"), {
message:
"Enter only the host (e.g. api.example.com), without a trailing path. " +
"You may specify a port (e.g. api.example.com:8080) if needed.",
}),
host: z.string().min(1, "Host is required"),
title: z.string().optional(),
headers: z.record(z.string()).optional(),
});

View File

@@ -26,7 +26,6 @@ export const providerIcons: Partial<
nvidia: fallbackIcon,
discord: FaDiscord,
d_id: fallbackIcon,
elevenlabs: fallbackIcon,
google_maps: FaGoogle,
jina: fallbackIcon,
ideogram: fallbackIcon,

View File

@@ -47,7 +47,7 @@ export function Navbar() {
const actualLoggedInLinks = [
{ name: "Home", href: homeHref },
...(isChatEnabled === true ? [{ name: "Agents", href: "/library" }] : []),
...(isChatEnabled === true ? [{ name: "Tasks", href: "/library" }] : []),
...loggedInLinks,
];

View File

@@ -15,6 +15,7 @@ import {
import { cn } from "@/lib/utils";
import { useOnboarding } from "@/providers/onboarding/onboarding-provider";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { storage, Key as StorageKey } from "@/services/storage/local-storage";
import { WalletIcon } from "@phosphor-icons/react";
import { PopoverClose } from "@radix-ui/react-popover";
import { X } from "lucide-react";
@@ -174,6 +175,7 @@ export function Wallet() {
const [prevCredits, setPrevCredits] = useState<number | null>(credits);
const [flash, setFlash] = useState(false);
const [walletOpen, setWalletOpen] = useState(false);
const [lastSeenCredits, setLastSeenCredits] = useState<number | null>(null);
const totalCount = useMemo(() => {
return groups.reduce((acc, group) => acc + group.tasks.length, 0);
@@ -198,6 +200,38 @@ export function Wallet() {
setCompletedCount(completed);
}, [groups, state?.completedSteps]);
// Load last seen credits from localStorage once on mount
useEffect(() => {
const stored = storage.get(StorageKey.WALLET_LAST_SEEN_CREDITS);
if (stored !== undefined && stored !== null) {
const parsed = parseFloat(stored);
if (!Number.isNaN(parsed)) setLastSeenCredits(parsed);
else setLastSeenCredits(0);
} else {
setLastSeenCredits(0);
}
}, []);
// Auto-open once if never shown, otherwise open only when credits increase beyond last seen
useEffect(() => {
if (typeof credits !== "number") return;
// Open once for first-time users
if (state && state.walletShown === false) {
requestAnimationFrame(() => setWalletOpen(true));
// Mark as shown so it won't reopen on every reload
updateState({ walletShown: true });
return;
}
// Open if user gained more credits than last acknowledged
if (
lastSeenCredits !== null &&
credits > lastSeenCredits &&
walletOpen === false
) {
requestAnimationFrame(() => setWalletOpen(true));
}
}, [credits, lastSeenCredits, state?.walletShown, updateState, walletOpen]);
const onWalletOpen = useCallback(async () => {
if (!state?.walletShown) {
updateState({ walletShown: true });
@@ -290,7 +324,19 @@ export function Wallet() {
if (credits === null || !state) return null;
return (
<Popover open={walletOpen} onOpenChange={(open) => setWalletOpen(open)}>
<Popover
open={walletOpen}
onOpenChange={(open) => {
setWalletOpen(open);
if (!open) {
// Persist the latest acknowledged credits so we only auto-open on future gains
if (typeof credits === "number") {
storage.set(StorageKey.WALLET_LAST_SEEN_CREDITS, String(credits));
setLastSeenCredits(credits);
}
}
}}
>
<PopoverTrigger asChild>
<div className="relative inline-block">
<button

View File

@@ -62,6 +62,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get Store Agent Details](block-integrations/system/store_operations.md#get-store-agent-details) | Get detailed information about an agent from the store |
| [Get Weather Information](block-integrations/basic.md#get-weather-information) | Retrieves weather information for a specified location using OpenWeatherMap API |
| [Human In The Loop](block-integrations/basic.md#human-in-the-loop) | Pause execution and wait for human approval or modification of data |
| [Linear Search Issues](block-integrations/linear/issues.md#linear-search-issues) | Searches for issues on Linear |
| [List Is Empty](block-integrations/basic.md#list-is-empty) | Checks if a list is empty |
| [List Library Agents](block-integrations/system/library_operations.md#list-library-agents) | List all agents in your personal library |
| [Note](block-integrations/basic.md#note) | A visual annotation block that displays a sticky note in the workflow editor for documentation and organization purposes |
@@ -192,7 +193,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get Current Time](block-integrations/text.md#get-current-time) | This block outputs the current time |
| [Match Text Pattern](block-integrations/text.md#match-text-pattern) | Matches text against a regex pattern and forwards data to positive or negative output based on the match |
| [Text Decoder](block-integrations/text.md#text-decoder) | Decodes a string containing escape sequences into actual text |
| [Text Encoder](block-integrations/text.md#text-encoder) | Encodes a string by converting special characters into escape sequences |
| [Text Replace](block-integrations/text.md#text-replace) | This block is used to replace a text with a new text |
| [Text Split](block-integrations/text.md#text-split) | This block is used to split a text into a list of strings |
| [Word Character Count](block-integrations/text.md#word-character-count) | Counts the number of words and characters in a given text |
@@ -233,7 +233,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Stagehand Extract](block-integrations/stagehand/blocks.md#stagehand-extract) | Extract structured data from a webpage |
| [Stagehand Observe](block-integrations/stagehand/blocks.md#stagehand-observe) | Find suggested actions for your workflows |
| [Unreal Text To Speech](block-integrations/llm.md#unreal-text-to-speech) | Converts text to speech using the Unreal Speech API |
| [Video Narration](block-integrations/video/narration.md#video-narration) | Generate AI narration and add to video |
## Search and Information Retrieval
@@ -473,13 +472,9 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| Block Name | Description |
|------------|-------------|
| [Add Audio To Video](block-integrations/video/add_audio.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
| [Loop Video](block-integrations/video/loop.md#loop-video) | Block to loop a video to a given duration or number of repeats |
| [Media Duration](block-integrations/video/duration.md#media-duration) | Block to get the duration of a media file |
| [Video Clip](block-integrations/video/clip.md#video-clip) | Extract a time segment from a video |
| [Video Concat](block-integrations/video/concat.md#video-concat) | Merge multiple video clips into one continuous video |
| [Video Download](block-integrations/video/download.md#video-download) | Download video from URL (YouTube, Vimeo, news sites, direct links) |
| [Video Text Overlay](block-integrations/video/text_overlay.md#video-text-overlay) | Add text overlay/caption to video |
| [Add Audio To Video](block-integrations/multimedia.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
| [Loop Video](block-integrations/multimedia.md#loop-video) | Block to loop a video to a given duration or number of repeats |
| [Media Duration](block-integrations/multimedia.md#media-duration) | Block to get the duration of a media file |
## Productivity
@@ -576,7 +571,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Linear Create Comment](block-integrations/linear/comment.md#linear-create-comment) | Creates a new comment on a Linear issue |
| [Linear Create Issue](block-integrations/linear/issues.md#linear-create-issue) | Creates a new issue on Linear |
| [Linear Get Project Issues](block-integrations/linear/issues.md#linear-get-project-issues) | Gets issues from a Linear project filtered by status and assignee |
| [Linear Search Issues](block-integrations/linear/issues.md#linear-search-issues) | Searches for issues on Linear |
| [Linear Search Projects](block-integrations/linear/projects.md#linear-search-projects) | Searches for projects on Linear |
## Hardware

View File

@@ -85,6 +85,7 @@
* [LLM](block-integrations/llm.md)
* [Logic](block-integrations/logic.md)
* [Misc](block-integrations/misc.md)
* [Multimedia](block-integrations/multimedia.md)
* [Notion Create Page](block-integrations/notion/create_page.md)
* [Notion Read Database](block-integrations/notion/read_database.md)
* [Notion Read Page](block-integrations/notion/read_page.md)
@@ -128,13 +129,5 @@
* [Twitter Timeline](block-integrations/twitter/timeline.md)
* [Twitter Tweet Lookup](block-integrations/twitter/tweet_lookup.md)
* [Twitter User Lookup](block-integrations/twitter/user_lookup.md)
* [Video Add Audio](block-integrations/video/add_audio.md)
* [Video Clip](block-integrations/video/clip.md)
* [Video Concat](block-integrations/video/concat.md)
* [Video Download](block-integrations/video/download.md)
* [Video Duration](block-integrations/video/duration.md)
* [Video Loop](block-integrations/video/loop.md)
* [Video Narration](block-integrations/video/narration.md)
* [Video Text Overlay](block-integrations/video/text_overlay.md)
* [Wolfram LLM API](block-integrations/wolfram/llm_api.md)
* [Zerobounce Validate Emails](block-integrations/zerobounce/validate_emails.md)

View File

@@ -90,9 +90,9 @@ Searches for issues on Linear
### How it works
<!-- MANUAL: how_it_works -->
This block searches for issues in Linear using a text query. It searches across issue titles, descriptions, and other fields to find matching issues. You can limit the number of results returned using the `max_results` parameter (default: 10, max: 100) to control token consumption and response size.
This block searches for issues in Linear using a text query. It searches across issue titles, descriptions, and other fields to find matching issues.
Optionally filter results by team name to narrow searches to specific workspaces. If a team name is provided, the block resolves it to a team ID before searching. Returns matching issues with their state, creation date, project, and assignee information. If the search or team resolution fails, an error message is returned.
Returns a list of issues matching the search term.
<!-- END MANUAL -->
### Inputs
@@ -100,14 +100,12 @@ Optionally filter results by team name to narrow searches to specific workspaces
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| term | Term to search for issues | str | Yes |
| max_results | Maximum number of results to return | int | No |
| team_name | Optional team name to filter results (e.g., 'Internal', 'Open Source') | str | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the search failed | str |
| error | Error message if the operation failed | str |
| issues | List of issues | List[Issue] |
### Possible use case

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |

View File

@@ -380,42 +380,6 @@ This is useful when working with data from APIs or files where escape sequences
---
## Text Encoder
### What it is
Encodes a string by converting special characters into escape sequences
### How it works
<!-- MANUAL: how_it_works -->
The Text Encoder takes the input string and applies Python's `unicode_escape` encoding (equivalent to `codecs.encode(text, "unicode_escape").decode("utf-8")`) to transform special characters like newlines, tabs, and backslashes into their escaped forms.
The block relies on the input schema to ensure the value is a string; non-string inputs are rejected by validation, and any encoding failures surface as block errors. Non-ASCII characters are emitted as `\uXXXX` sequences, which is useful for ASCII-only payloads.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | A string containing special characters to be encoded | str | Yes |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if encoding fails | str |
| encoded_text | The encoded text with special characters converted to escape sequences | str |
### Possible use case
<!-- MANUAL: use_case -->
**JSON Payload Preparation**: Encode multiline or quoted text before embedding it in JSON string fields to ensure proper escaping.
**Config/ENV Generation**: Convert template text into escaped strings for `.env` or YAML values that require special character handling.
**Snapshot Fixtures**: Produce stable escaped strings for golden files or API tests where consistent text representation is needed.
<!-- END MANUAL -->
---
## Text Replace
### What it is

View File

@@ -1,39 +0,0 @@
# Video Add Audio
<!-- MANUAL: file_description -->
This block allows you to attach a separate audio track to a video file, replacing or combining with the original audio.
<!-- END MANUAL -->
## Add Audio To Video
### What it is
Block to attach an audio file to a video file using moviepy.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy to combine video and audio files. It loads the video and audio inputs (which can be URLs, data URIs, or local paths), optionally scales the audio volume, then writes the combined result to a new video file using H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Video input (URL, data URI, or local path). | str (file) | Yes |
| audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes |
| volume | Volume scale for the newly attached audio track (1.0 = original). | float | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Final video (with attached audio), as a path or data URI. | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding background music to a silent screen recording
- Replacing original audio with a voiceover or translated audio track
- Combining AI-generated speech with stock footage
- Adding sound effects to video content
<!-- END MANUAL -->
---

View File

@@ -1,41 +0,0 @@
# Video Clip
<!-- MANUAL: file_description -->
This block extracts a specific time segment from a video file, allowing you to trim videos to precise start and end times.
<!-- END MANUAL -->
## Video Clip
### What it is
Extract a time segment from a video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's `subclipped` function to extract a portion of the video between specified start and end times. It validates that end time is greater than start time, then creates a new video file containing only the selected segment. The output is encoded with H.264 video codec and AAC audio codec, preserving both video and audio from the original clip.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| start_time | Start time in seconds | float | Yes |
| end_time | End time in seconds | float | Yes |
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Clipped video file (path or data URI) | str (file) |
| duration | Clip duration in seconds | float |
### Possible use case
<!-- MANUAL: use_case -->
- Extracting highlights from a longer video
- Trimming intro/outro from recorded content
- Creating short clips for social media from longer videos
- Isolating specific segments for further processing in a workflow
<!-- END MANUAL -->
---

View File

@@ -1,41 +0,0 @@
# Video Concat
<!-- MANUAL: file_description -->
This block merges multiple video clips into a single continuous video, with optional transitions between clips.
<!-- END MANUAL -->
## Video Concat
### What it is
Merge multiple video clips into one continuous video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's `concatenate_videoclips` function to join multiple videos in sequence. It supports three transition modes: **none** (direct concatenation), **crossfade** (smooth blending where clips overlap), and **fade_black** (each clip fades out to black and the next fades in). At least 2 videos are required. The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| videos | List of video files to concatenate (in order) | List[str (file)] | Yes |
| transition | Transition between clips | "none" \| "crossfade" \| "fade_black" | No |
| transition_duration | Transition duration in seconds | int | No |
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Concatenated video file (path or data URI) | str (file) |
| total_duration | Total duration in seconds | float |
### Possible use case
<!-- MANUAL: use_case -->
- Combining multiple clips into a compilation video
- Assembling intro, main content, and outro segments
- Creating montages from multiple source videos
- Building video playlists or slideshows with transitions
<!-- END MANUAL -->
---

View File

@@ -1,42 +0,0 @@
# Video Download
<!-- MANUAL: file_description -->
This block downloads videos from URLs, supporting a wide range of video platforms and direct links.
<!-- END MANUAL -->
## Video Download
### What it is
Download video from URL (YouTube, Vimeo, news sites, direct links)
### How it works
<!-- MANUAL: how_it_works -->
The block uses yt-dlp, a powerful video downloading library that supports over 1000 websites. It accepts a URL, quality preference, and output format, then downloads the video while merging the best available video and audio streams for the selected quality. Quality options: **best** (highest available), **1080p/720p/480p** (maximum resolution at that height), **audio_only** (extracts just the audio track).
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| url | URL of the video to download (YouTube, Vimeo, direct link, etc.) | str | Yes |
| quality | Video quality preference | "best" \| "1080p" \| "720p" \| "480p" \| "audio_only" | No |
| output_format | Output video format | "mp4" \| "webm" \| "mkv" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_file | Downloaded video (path or data URI) | str (file) |
| duration | Video duration in seconds | float |
| title | Video title from source | str |
| source_url | Original source URL | str |
### Possible use case
<!-- MANUAL: use_case -->
- Downloading source videos for editing or remixing
- Archiving video content for offline processing
- Extracting audio from videos for transcription or podcast creation
- Gathering video content for automated content pipelines
<!-- END MANUAL -->
---

View File

@@ -1,38 +0,0 @@
# Video Duration
<!-- MANUAL: file_description -->
This block retrieves the duration of video or audio files, useful for planning and conditional logic in media workflows.
<!-- END MANUAL -->
## Media Duration
### What it is
Block to get the duration of a media file.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy to load the media file and extract its duration property. It supports both video files (using VideoFileClip) and audio files (using AudioFileClip), determined by the `is_video` flag. The media can be provided as a URL, data URI, or local file path. The duration is returned in seconds as a floating-point number.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| media_in | Media input (URL, data URI, or local path). | str (file) | Yes |
| is_video | Whether the media is a video (True) or audio (False). | bool | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| duration | Duration of the media file (in seconds). | float |
### Possible use case
<!-- MANUAL: use_case -->
- Checking video length before processing to avoid timeout issues
- Calculating how many times to loop a video to reach a target duration
- Validating that uploaded content meets length requirements
- Building conditional workflows based on media duration
<!-- END MANUAL -->
---

View File

@@ -1,39 +0,0 @@
# Video Loop
<!-- MANUAL: file_description -->
This block repeats a video to extend its duration, either to a specific length or a set number of repetitions.
<!-- END MANUAL -->
## Loop Video
### What it is
Block to loop a video to a given duration or number of repeats.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's Loop effect to repeat a video clip. You can specify either a target duration (the video will repeat until reaching that length) or a number of loops (the video will repeat that many times). The Loop effect handles both video and audio looping automatically, maintaining sync. Either `duration` or `n_loops` must be provided. The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes |
| duration | Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided. | float | No |
| n_loops | Number of times to repeat the video. Either n_loops or duration must be provided. | int | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Looped video returned either as a relative path or a data URI. | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Extending a short background video to match the length of narration audio
- Creating seamless looping content for digital signage
- Repeating a product demo video multiple times for emphasis
- Extending short clips to meet minimum duration requirements for platforms
<!-- END MANUAL -->
---

View File

@@ -1,44 +0,0 @@
# Video Narration
<!-- MANUAL: file_description -->
This block generates AI voiceover narration using ElevenLabs and adds it to a video, with flexible audio mixing options.
<!-- END MANUAL -->
## Video Narration
### What it is
Generate AI narration and add to video
### How it works
<!-- MANUAL: how_it_works -->
The block uses ElevenLabs text-to-speech API to generate natural-sounding narration from your script. It then combines the narration with the video using MoviePy. Three audio mixing modes are available: **replace** (completely replaces original audio), **mix** (blends narration with original audio at configurable volumes), and **ducking** (similar to mix but applies stronger attenuation to original audio, making narration more prominent). The block outputs both the final video and the generated audio file separately.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| script | Narration script text | str | Yes |
| voice_id | ElevenLabs voice ID | str | No |
| model_id | ElevenLabs TTS model | "eleven_multilingual_v2" \| "eleven_flash_v2_5" \| "eleven_turbo_v2_5" \| "eleven_turbo_v2" | No |
| mix_mode | How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'. | "replace" \| "mix" \| "ducking" | No |
| narration_volume | Narration volume (0.0 to 2.0) | float | No |
| original_volume | Original audio volume when mixing (0.0 to 1.0) | float | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Video with narration (path or data URI) | str (file) |
| audio_file | Generated audio file (path or data URI) | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding professional voiceover to product demos or tutorials
- Creating narrated explainer videos from screen recordings
- Generating multi-language versions of video content
- Adding commentary to gameplay or walkthrough videos
<!-- END MANUAL -->
---

View File

@@ -1,44 +0,0 @@
# Video Text Overlay
<!-- MANUAL: file_description -->
This block adds customizable text captions or titles to videos, with control over positioning, timing, and styling.
<!-- END MANUAL -->
## Video Text Overlay
### What it is
Add text overlay/caption to video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's TextClip and CompositeVideoClip to render text onto video frames. The text is created as a separate clip with configurable font size, color, and optional background color, then composited over the video at the specified position. Timing can be controlled to show text only during specific portions of the video. Position options include center alignments (top, center, bottom) and corner positions (top-left, top-right, bottom-left, bottom-right). The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| text | Text to overlay on video | str | Yes |
| position | Position of text on screen | "top" \| "center" \| "bottom" \| "top-left" \| "top-right" \| "bottom-left" \| "bottom-right" | No |
| start_time | When to show text (seconds). None = entire video | float | No |
| end_time | When to hide text (seconds). None = until end | float | No |
| font_size | Font size | int | No |
| font_color | Font color (hex or name) | str | No |
| bg_color | Background color behind text (None for transparent) | str | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Video with text overlay (path or data URI) | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding titles or chapter headings to video content
- Creating lower-thirds with speaker names or captions
- Watermarking videos with branding text
- Adding call-to-action text at specific moments in a video
<!-- END MANUAL -->
---