mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-28 08:28:00 -05:00
Compare commits
67 Commits
remove-cla
...
user-works
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ef5120ad45 | ||
|
|
788713dfb5 | ||
|
|
704e2959ba | ||
|
|
cc95f1dbd6 | ||
|
|
7357c26c00 | ||
|
|
5d82a42b49 | ||
|
|
d2fca0adbd | ||
|
|
0acf868b18 | ||
|
|
d81e97b881 | ||
|
|
ef3dfb8af4 | ||
|
|
eb22180e6d | ||
|
|
f3d8d953f5 | ||
|
|
2b0afc348e | ||
|
|
e3a389ba00 | ||
|
|
f7c59b00d8 | ||
|
|
1feed23475 | ||
|
|
3a295b3192 | ||
|
|
4872eb3ccd | ||
|
|
f5d7b3f618 | ||
|
|
de9ef2366e | ||
|
|
c4d83505c0 | ||
|
|
28e4da5b13 | ||
|
|
72b1542a43 | ||
|
|
5bbc3d55f0 | ||
|
|
87814bcdcb | ||
|
|
85c229dd6c | ||
|
|
270586751b | ||
|
|
fa1afd6a6d | ||
|
|
af2bcd900a | ||
|
|
8f7204484d | ||
|
|
5af4c60b8e | ||
|
|
49b67ccd94 | ||
|
|
efb2e2792d | ||
|
|
d51d811497 | ||
|
|
83f93d00f4 | ||
|
|
c132b6dfa5 | ||
|
|
7eb7b7186f | ||
|
|
4b58eac877 | ||
|
|
bae6be915f | ||
|
|
8f16d583a4 | ||
|
|
0b8c671a27 | ||
|
|
cb074b0076 | ||
|
|
f29dd34f51 | ||
|
|
581dc337f2 | ||
|
|
f8b041fd63 | ||
|
|
56248ae7b7 | ||
|
|
bec0157f9e | ||
|
|
57f44e166a | ||
|
|
2c678f2658 | ||
|
|
669e33d709 | ||
|
|
953e7a5afb | ||
|
|
e9c55ed5a3 | ||
|
|
ce3b8fa8d8 | ||
|
|
ce67b7eca4 | ||
|
|
0e34c7e5c4 | ||
|
|
5c5dd160dd | ||
|
|
759248b7fe | ||
|
|
ca5758cce6 | ||
|
|
d40df5a8c8 | ||
|
|
0db228ed43 | ||
|
|
590f434d0a | ||
|
|
8f171a0537 | ||
|
|
c814a43465 | ||
|
|
5923041fe8 | ||
|
|
936a2d70db | ||
|
|
80c54b7f46 | ||
|
|
28caf01ca7 |
@@ -194,6 +194,50 @@ ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Handling files in blocks with `store_media_file()`:**
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
|
||||
@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .workspace_tools import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
|
||||
@@ -28,6 +28,12 @@ class ResponseType(str, Enum):
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
|
||||
@@ -0,0 +1,625 @@
|
||||
"""CoPilot tools for workspace file operations."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from prisma.enums import WorkspaceFileSource
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ResponseType, ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceFileInfoData(BaseModel):
|
||||
"""Data model for workspace file information (not a response itself)."""
|
||||
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
source: str
|
||||
|
||||
|
||||
class WorkspaceFileListResponse(ToolResponseBase):
|
||||
"""Response containing list of workspace files."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
|
||||
files: list[WorkspaceFileInfoData]
|
||||
total_count: int
|
||||
|
||||
|
||||
class WorkspaceFileContentResponse(ToolResponseBase):
|
||||
"""Response containing workspace file content (legacy, for small text files)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
content_base64: str
|
||||
|
||||
|
||||
class WorkspaceFileMetadataResponse(ToolResponseBase):
|
||||
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
download_url: str
|
||||
preview: str | None = None # First 500 chars for text files
|
||||
|
||||
|
||||
class WorkspaceWriteResponse(ToolResponseBase):
|
||||
"""Response after writing a file to workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceDeleteResponse(ToolResponseBase):
|
||||
"""Response after deleting a file from workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
|
||||
file_id: str
|
||||
success: bool
|
||||
|
||||
|
||||
class ListWorkspaceFilesTool(BaseTool):
|
||||
"""Tool for listing files in user's workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "list_workspace_files"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's workspace. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"path_prefix": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional path prefix to filter files "
|
||||
"(e.g., '/documents/' to list only files in documents folder). "
|
||||
"By default, only files from the current session are listed."
|
||||
),
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of files to return (default 50, max 100)",
|
||||
"minimum": 1,
|
||||
"maximum": 100,
|
||||
},
|
||||
"include_all_sessions": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, list files from all sessions. "
|
||||
"Default is false (only current session's files)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
path_prefix: Optional[str] = kwargs.get("path_prefix")
|
||||
limit = min(kwargs.get("limit", 50), 100)
|
||||
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
files = await manager.list_files(
|
||||
path=path_prefix,
|
||||
limit=limit,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
total = await manager.get_file_count(
|
||||
path=path_prefix,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
|
||||
file_infos = [
|
||||
WorkspaceFileInfoData(
|
||||
file_id=f.id,
|
||||
name=f.name,
|
||||
path=f.path,
|
||||
mime_type=f.mimeType,
|
||||
size_bytes=f.sizeBytes,
|
||||
source=f.source,
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
scope_msg = "all sessions" if include_all_sessions else "current session"
|
||||
return WorkspaceFileListResponse(
|
||||
files=file_infos,
|
||||
total_count=total,
|
||||
message=f"Found {len(files)} files in workspace ({scope_msg})",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing workspace files: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to list workspace files: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class ReadWorkspaceFileTool(BaseTool):
|
||||
"""Tool for reading file content from workspace."""
|
||||
|
||||
# Size threshold for returning full content vs metadata+URL
|
||||
# Files larger than this return metadata with download URL to prevent context bloat
|
||||
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
|
||||
# Preview size for text files
|
||||
PREVIEW_SIZE = 500
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "read_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
"force_download_url": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, always return metadata+URL instead of inline content. "
|
||||
"Default is false (auto-selects based on file size/type)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
def _is_text_mime_type(self, mime_type: str) -> bool:
|
||||
"""Check if the MIME type is a text-based type."""
|
||||
text_types = [
|
||||
"text/",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/javascript",
|
||||
"application/x-python",
|
||||
"application/x-sh",
|
||||
]
|
||||
return any(mime_type.startswith(t) for t in text_types)
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
force_download_url: bool = kwargs.get("force_download_url", False)
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Get file info
|
||||
if file_id:
|
||||
file_info = await manager.get_file_info(file_id)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
# Decide whether to return inline content or metadata+URL
|
||||
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
|
||||
is_text_file = self._is_text_mime_type(file_info.mimeType)
|
||||
|
||||
# Return inline content for small text files (unless force_download_url)
|
||||
if is_small_file and is_text_file and not force_download_url:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
content_b64 = base64.b64encode(content).decode("utf-8")
|
||||
|
||||
return WorkspaceFileContentResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
content_base64=content_b64,
|
||||
message=f"Successfully read file: {file_info.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Return metadata + workspace:// reference for large or binary files
|
||||
# This prevents context bloat (100KB file = ~133KB as base64)
|
||||
# Use workspace:// format so frontend urlTransform can add proxy prefix
|
||||
download_url = f"workspace://{target_file_id}"
|
||||
|
||||
# Generate preview for text files
|
||||
preview: str | None = None
|
||||
if is_text_file:
|
||||
try:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
preview_text = content[: self.PREVIEW_SIZE].decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
if len(content) > self.PREVIEW_SIZE:
|
||||
preview_text += "..."
|
||||
preview = preview_text
|
||||
except Exception:
|
||||
pass # Preview is optional
|
||||
|
||||
return WorkspaceFileMetadataResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
size_bytes=file_info.sizeBytes,
|
||||
download_url=download_url,
|
||||
preview=preview,
|
||||
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except FileNotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to read workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class WriteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for writing files to workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "write_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's workspace. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"filename": {
|
||||
"type": "string",
|
||||
"description": "Name for the file (e.g., 'report.pdf')",
|
||||
},
|
||||
"content_base64": {
|
||||
"type": "string",
|
||||
"description": "Base64-encoded file content",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional virtual path where to save the file "
|
||||
"(e.g., '/documents/report.pdf'). "
|
||||
"Defaults to '/{filename}'. Scoped to current session."
|
||||
),
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional MIME type of the file. "
|
||||
"Auto-detected from filename if not provided."
|
||||
),
|
||||
},
|
||||
"overwrite": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to overwrite if file exists at path (default: false)",
|
||||
},
|
||||
},
|
||||
"required": ["filename", "content_base64"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
filename: str = kwargs.get("filename", "")
|
||||
content_b64: str = kwargs.get("content_base64", "")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
mime_type: Optional[str] = kwargs.get("mime_type")
|
||||
overwrite: bool = kwargs.get("overwrite", False)
|
||||
|
||||
if not filename:
|
||||
return ErrorResponse(
|
||||
message="Please provide a filename",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not content_b64:
|
||||
return ErrorResponse(
|
||||
message="Please provide content_base64",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Decode content
|
||||
try:
|
||||
content = base64.b64decode(content_b64)
|
||||
except Exception:
|
||||
return ErrorResponse(
|
||||
message="Invalid base64-encoded content",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check size
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
return ErrorResponse(
|
||||
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Virus scan
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
file_record = await manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
path=path,
|
||||
mime_type=mime_type,
|
||||
source=WorkspaceFileSource.COPILOT,
|
||||
source_session_id=session.session_id,
|
||||
overwrite=overwrite,
|
||||
)
|
||||
|
||||
return WorkspaceWriteResponse(
|
||||
file_id=file_record.id,
|
||||
name=file_record.name,
|
||||
path=file_record.path,
|
||||
size_bytes=file_record.sizeBytes,
|
||||
message=f"Successfully wrote file: {file_record.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error writing workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to write workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class DeleteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for deleting files from workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "delete_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's workspace. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Determine the file_id to delete
|
||||
target_file_id: str
|
||||
if file_id:
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
success = await manager.delete_file(target_file_id)
|
||||
|
||||
if not success:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {target_file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return WorkspaceDeleteResponse(
|
||||
file_id=target_file_id,
|
||||
success=True,
|
||||
message="File deleted successfully",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to delete workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -0,0 +1 @@
|
||||
# Workspace API feature module
|
||||
@@ -0,0 +1,122 @@
|
||||
"""
|
||||
Workspace API routes for managing user file storage.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Annotated
|
||||
from urllib.parse import quote
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
from fastapi.responses import Response
|
||||
|
||||
from backend.data.workspace import get_workspace, get_workspace_file
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
|
||||
def _sanitize_filename_for_header(filename: str) -> str:
|
||||
"""
|
||||
Sanitize filename for Content-Disposition header to prevent header injection.
|
||||
|
||||
Removes/replaces characters that could break the header or inject new headers.
|
||||
Uses RFC5987 encoding for non-ASCII characters.
|
||||
"""
|
||||
# Remove CR, LF, and null bytes (header injection prevention)
|
||||
sanitized = re.sub(r"[\r\n\x00]", "", filename)
|
||||
# Escape quotes
|
||||
sanitized = sanitized.replace('"', '\\"')
|
||||
# For non-ASCII, use RFC5987 filename* parameter
|
||||
# Check if filename has non-ASCII characters
|
||||
try:
|
||||
sanitized.encode("ascii")
|
||||
return f'attachment; filename="{sanitized}"'
|
||||
except UnicodeEncodeError:
|
||||
# Use RFC5987 encoding for UTF-8 filenames
|
||||
encoded = quote(sanitized, safe="")
|
||||
return f"attachment; filename*=UTF-8''{encoded}"
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = fastapi.APIRouter(
|
||||
dependencies=[fastapi.Security(requires_user)],
|
||||
)
|
||||
|
||||
|
||||
def _create_streaming_response(content: bytes, file) -> Response:
|
||||
"""Create a streaming response for file content."""
|
||||
return Response(
|
||||
content=content,
|
||||
media_type=file.mimeType,
|
||||
headers={
|
||||
"Content-Disposition": _sanitize_filename_for_header(file.name),
|
||||
"Content-Length": str(len(content)),
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def _create_file_download_response(file) -> Response:
|
||||
"""
|
||||
Create a download response for a workspace file.
|
||||
|
||||
Handles both local storage (direct streaming) and GCS (signed URL redirect
|
||||
with fallback to streaming).
|
||||
"""
|
||||
storage = await get_workspace_storage()
|
||||
|
||||
# For local storage, stream the file directly
|
||||
if file.storagePath.startswith("local://"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
|
||||
# For GCS, try to redirect to signed URL, fall back to streaming
|
||||
try:
|
||||
url = await storage.get_download_url(file.storagePath, expires_in=300)
|
||||
# If we got back an API path (fallback), stream directly instead
|
||||
if url.startswith("/api/"):
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
return fastapi.responses.RedirectResponse(url=url, status_code=302)
|
||||
except Exception as e:
|
||||
# Log the signed URL failure with context
|
||||
logger.error(
|
||||
f"Failed to get signed URL for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Fall back to streaming directly from GCS
|
||||
try:
|
||||
content = await storage.retrieve(file.storagePath)
|
||||
return _create_streaming_response(content, file)
|
||||
except Exception as fallback_error:
|
||||
logger.error(
|
||||
f"Fallback streaming also failed for file {file.id} "
|
||||
f"(storagePath={file.storagePath}): {fallback_error}",
|
||||
exc_info=True,
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
@router.get(
|
||||
"/files/{file_id}/download",
|
||||
summary="Download file by ID",
|
||||
)
|
||||
async def download_file(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
file_id: str,
|
||||
) -> Response:
|
||||
"""
|
||||
Download a file by its ID.
|
||||
|
||||
Returns the file content directly or redirects to a signed URL for GCS.
|
||||
"""
|
||||
workspace = await get_workspace(user_id)
|
||||
if workspace is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
|
||||
|
||||
file = await get_workspace_file(file_id, workspace.id)
|
||||
if file is None:
|
||||
raise fastapi.HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
return await _create_file_download_response(file)
|
||||
@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
|
||||
import backend.api.features.store.model
|
||||
import backend.api.features.store.routes
|
||||
import backend.api.features.v1
|
||||
import backend.api.features.workspace.routes as workspace_routes
|
||||
import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
|
||||
)
|
||||
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
|
||||
from backend.util.service import UnhealthyServiceError
|
||||
from backend.util.workspace_storage import shutdown_workspace_storage
|
||||
|
||||
from .external.fastapi_app import external_api
|
||||
from .features.analytics import router as analytics_router
|
||||
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down cloud storage handler: {e}")
|
||||
|
||||
try:
|
||||
await shutdown_workspace_storage()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error shutting down workspace storage: {e}")
|
||||
|
||||
await backend.data.db.disconnect()
|
||||
|
||||
|
||||
@@ -315,6 +322,11 @@ app.include_router(
|
||||
tags=["v2", "chat"],
|
||||
prefix="/api/chat",
|
||||
)
|
||||
app.include_router(
|
||||
workspace_routes.router,
|
||||
tags=["v2", "workspace"],
|
||||
prefix="/api/workspace",
|
||||
)
|
||||
app.include_router(
|
||||
backend.api.features.oauth.router,
|
||||
tags=["oauth"],
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("image_url", "https://replicate.delivery/generated-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: MediaFileType(
|
||||
"https://replicate.delivery/generated-image.jpg"
|
||||
""
|
||||
),
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
yield "image_url", result
|
||||
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -13,6 +14,8 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class ImageSize(str, Enum):
|
||||
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"image_url",
|
||||
"https://replicate.delivery/generated-image.webp",
|
||||
# Test output is a data URI since we now store images
|
||||
lambda x: x.startswith(""
|
||||
},
|
||||
)
|
||||
|
||||
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
|
||||
style_text = style_map.get(style, "")
|
||||
return f"{style_text} of" if style_text else ""
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
try:
|
||||
url = await self.generate_image(input_data, credentials)
|
||||
if url:
|
||||
yield "image_url", url
|
||||
# Store the generated image to the user's workspace/execution folder
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "error", "Image generation returned an empty result."
|
||||
except Exception as e:
|
||||
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -21,7 +22,9 @@ from backend.data.model import (
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import BlockExecutionError
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"voice": Voice.LILY,
|
||||
"video_style": VisualMediaType.STOCK_VIDEOS,
|
||||
},
|
||||
test_output=("video_url", "https://example.com/video.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/video.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create a new Webhook.site URL
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
|
||||
)
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
logger.debug(f"Video ready: {video_url}")
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIAdMakerVideoCreatorBlock(Block):
|
||||
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"https://cdn.revid.ai/uploads/1747076315114-image.png",
|
||||
],
|
||||
},
|
||||
test_output=("video_url", "https://example.com/ad.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/ad.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
|
||||
class AIScreenshotToVideoAdBlock(Block):
|
||||
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"script": "Amazing numbers!",
|
||||
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
|
||||
},
|
||||
test_output=("video_url", "https://example.com/screenshot.mp4"),
|
||||
test_output=(
|
||||
"video_url",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
test_mock={
|
||||
"create_webhook": lambda *args, **kwargs: (
|
||||
"test_uuid",
|
||||
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
|
||||
"check_video_status": lambda *args, **kwargs: {
|
||||
"status": "ready",
|
||||
"videoUrl": "https://example.com/screenshot.mp4",
|
||||
"videoUrl": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
|
||||
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
webhook_token, webhook_url = await self.create_webhook()
|
||||
|
||||
payload = {
|
||||
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
|
||||
raise RuntimeError("Failed to create video: No project ID returned")
|
||||
|
||||
video_url = await self.wait_for_video(credentials.api_key, pid)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
|
||||
@@ -6,6 +6,7 @@ if TYPE_CHECKING:
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -17,6 +18,8 @@ from backend.sdk import (
|
||||
Requests,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
from ._config import bannerbear
|
||||
|
||||
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
|
||||
},
|
||||
test_output=[
|
||||
("success", True),
|
||||
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
("uid", "test-uid-123"),
|
||||
("status", "completed"),
|
||||
],
|
||||
test_mock={
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"_make_api_request": lambda *args, **kwargs: {
|
||||
"uid": "test-uid-123",
|
||||
"status": "completed",
|
||||
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
|
||||
"image_url": "",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
|
||||
raise Exception(error_msg)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Build the modifications array
|
||||
modifications = []
|
||||
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
|
||||
|
||||
# Synchronous request - image should be ready
|
||||
yield "success", True
|
||||
yield "image_url", data.get("image_url", "")
|
||||
|
||||
# Store the generated image to workspace for persistence
|
||||
image_url = data.get("image_url", "")
|
||||
if image_url:
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(image_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", stored_url
|
||||
else:
|
||||
yield "image_url", ""
|
||||
|
||||
yield "uid", data.get("uid", "")
|
||||
yield "status", data.get("status", "completed")
|
||||
|
||||
@@ -9,6 +9,7 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType, convert
|
||||
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
|
||||
class FileStoreBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
file_in: MediaFileType = SchemaField(
|
||||
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
|
||||
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
|
||||
)
|
||||
base_64: bool = SchemaField(
|
||||
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
|
||||
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Produce Base64 Output",
|
||||
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
file_out: MediaFileType = SchemaField(
|
||||
description="The relative path to the stored file in the temporary directory."
|
||||
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
|
||||
description="Stores the input file in the temporary directory.",
|
||||
description=(
|
||||
"Downloads and stores a file from a URL, data URI, or local path. "
|
||||
"Use this to fetch images, documents, or other files for processing. "
|
||||
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
|
||||
"In graphs: outputs a data URI to pass to other blocks."
|
||||
),
|
||||
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
|
||||
input_schema=FileStoreBlock.Input,
|
||||
output_schema=FileStoreBlock.Output,
|
||||
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
|
||||
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
|
||||
|
||||
yield "file_out", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_in,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import APIKeyCredentials, SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
|
||||
file: MediaFileType,
|
||||
filename: str,
|
||||
message_content: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
|
||||
# Local file path - read from stored media file
|
||||
# This would be a path from a previous block's output
|
||||
stored_file = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=file,
|
||||
user_id=user_id,
|
||||
return_content=True, # Get as data URI
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content to send to Discord
|
||||
)
|
||||
# Now process as data URI
|
||||
header, encoded = stored_file.split(",", 1)
|
||||
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
|
||||
file=input_data.file,
|
||||
filename=input_data.filename,
|
||||
message_content=input_data.message_content,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
|
||||
@@ -17,8 +17,11 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import ClientResponseError, Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
|
||||
test_output=[
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
|
||||
},
|
||||
)
|
||||
|
||||
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
|
||||
raise RuntimeError(f"API request failed: {str(e)}")
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: FalCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: FalCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
video_url = await self.generate_video(input_data, credentials)
|
||||
yield "video_url", video_url
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
except Exception as e:
|
||||
error_message = str(e)
|
||||
yield "error", error_message
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("output_image", "https://replicate.com/output/edited-image.png"),
|
||||
# Output will be a workspace ref or data URI depending on context
|
||||
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
|
||||
],
|
||||
test_mock={
|
||||
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"run_model": lambda *args, **kwargs: "",
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
result = await self.run_model(
|
||||
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
|
||||
prompt=input_data.prompt,
|
||||
input_image_b64=(
|
||||
await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.input_image,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api", # Get content for Replicate API
|
||||
)
|
||||
if input_data.input_image
|
||||
else None
|
||||
),
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
seed=input_data.seed,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=execution_context.user_id or "",
|
||||
graph_exec_id=execution_context.graph_exec_id or "",
|
||||
)
|
||||
yield "output_image", result
|
||||
# Store the generated image to the user's workspace for persistence
|
||||
stored_url = await store_media_file(
|
||||
file=result,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "output_image", stored_url
|
||||
|
||||
async def run_model(
|
||||
self,
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
from backend.util.settings import Settings
|
||||
@@ -95,8 +96,7 @@ def _make_mime_text(
|
||||
|
||||
async def create_mime_message(
|
||||
input_data,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
) -> str:
|
||||
"""Create a MIME message with attachments and return base64-encoded raw message."""
|
||||
|
||||
@@ -117,12 +117,12 @@ async def create_mime_message(
|
||||
if input_data.attachments:
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._send_email(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", result
|
||||
|
||||
async def _send_email(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject or not input_data.body:
|
||||
raise ValueError(
|
||||
"At least one recipient, subject, and body are required for sending an email"
|
||||
)
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
sent_message = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.messages()
|
||||
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._create_draft(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "result", GmailDraftResult(
|
||||
id=result["id"], message_id=result["message"]["id"], status="draft_created"
|
||||
)
|
||||
|
||||
async def _create_draft(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to or not input_data.subject:
|
||||
raise ValueError(
|
||||
"At least one recipient and subject are required for creating a draft"
|
||||
)
|
||||
|
||||
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
|
||||
raw_message = await create_mime_message(input_data, execution_context)
|
||||
draft = await asyncio.to_thread(
|
||||
lambda: service.users()
|
||||
.drafts()
|
||||
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
|
||||
|
||||
|
||||
async def _build_reply_message(
|
||||
service, input_data, graph_exec_id: str, user_id: str
|
||||
service, input_data, execution_context: ExecutionContext
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Builds a reply MIME message for Gmail threads.
|
||||
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
|
||||
# Handle attachments
|
||||
for attach in input_data.attachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
message = await self._reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", message["id"]
|
||||
yield "threadId", message.get("threadId", input_data.threadId)
|
||||
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
|
||||
yield "email", email
|
||||
|
||||
async def _reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Send the message
|
||||
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
draft = await self._create_draft_reply(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "draftId", draft["id"]
|
||||
yield "messageId", draft["message"]["id"]
|
||||
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
|
||||
yield "status", "draft_created"
|
||||
|
||||
async def _create_draft_reply(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
# Build the reply message using the shared helper
|
||||
raw, thread_id = await _build_reply_message(
|
||||
service, input_data, graph_exec_id, user_id
|
||||
service, input_data, execution_context
|
||||
)
|
||||
|
||||
# Create draft with proper thread association
|
||||
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: GoogleCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
service = self._build_service(credentials, **kwargs)
|
||||
result = await self._forward_message(
|
||||
service,
|
||||
input_data,
|
||||
graph_exec_id,
|
||||
user_id,
|
||||
execution_context,
|
||||
)
|
||||
yield "messageId", result["id"]
|
||||
yield "threadId", result.get("threadId", "")
|
||||
yield "status", "forwarded"
|
||||
|
||||
async def _forward_message(
|
||||
self, service, input_data: Input, graph_exec_id: str, user_id: str
|
||||
self, service, input_data: Input, execution_context: ExecutionContext
|
||||
) -> dict:
|
||||
if not input_data.to:
|
||||
raise ValueError("At least one recipient is required for forwarding")
|
||||
@@ -1727,12 +1717,12 @@ To: {original_to}
|
||||
# Add any additional attachments
|
||||
for attach in input_data.additionalAttachments:
|
||||
local_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=attach,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, local_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
part = MIMEBase("application", "octet-stream")
|
||||
with open(abs_path, "rb") as f:
|
||||
part.set_payload(f.read())
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
async def _prepare_files(
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
files_name: str,
|
||||
files: list[MediaFileType],
|
||||
user_id: str,
|
||||
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
|
||||
"""
|
||||
Prepare files for the request by storing them and reading their content.
|
||||
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
|
||||
(files_name, (filename, BytesIO, mime_type))
|
||||
"""
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
if graph_exec_id is None:
|
||||
raise ValueError("graph_exec_id is required for file operations")
|
||||
|
||||
for media in files:
|
||||
# Normalise to a list so we can repeat the same key
|
||||
rel_path = await store_media_file(
|
||||
graph_exec_id, media, user_id, return_content=False
|
||||
file=media,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
abs_path = get_exec_file_path(graph_exec_id, rel_path)
|
||||
async with aiofiles.open(abs_path, "rb") as f:
|
||||
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
|
||||
return files_payload
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
# ─── Parse/normalise body ────────────────────────────────────
|
||||
body = input_data.body
|
||||
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
|
||||
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
|
||||
if use_files:
|
||||
files_payload = await self._prepare_files(
|
||||
graph_exec_id, input_data.files_name, input_data.files, user_id
|
||||
execution_context, input_data.files_name, input_data.files
|
||||
)
|
||||
|
||||
# Enforce body format rules
|
||||
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
credentials: HostScopedCredentials,
|
||||
user_id: str,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create SendWebRequestBlock.Input from our input (removing credentials field)
|
||||
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
|
||||
|
||||
# Use parent class run method
|
||||
async for output_name, output_data in super().run(
|
||||
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
|
||||
base_input, execution_context=execution_context, **kwargs
|
||||
):
|
||||
yield output_name, output_data
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.mock import MockObject
|
||||
@@ -462,18 +463,23 @@ class AgentFileInputBlock(AgentInputBlock):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not input_data.value:
|
||||
return
|
||||
|
||||
# Determine return format based on user preference
|
||||
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
|
||||
# for_local_processing: returns local file path
|
||||
return_format = (
|
||||
"for_external_api" if input_data.base_64 else "for_local_processing"
|
||||
)
|
||||
|
||||
yield "result", await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.value,
|
||||
user_id=user_id,
|
||||
return_content=input_data.base_64,
|
||||
execution_context=execution_context,
|
||||
return_format=return_format,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||
# AI/ML API models
|
||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||
@@ -279,6 +280,9 @@ MODEL_METADATA = {
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||
from moviepy.video.fx.Loop import Loop
|
||||
@@ -13,6 +13,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||
|
||||
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# 1) Store the input media locally
|
||||
local_media_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.media_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
assert execution_context.graph_exec_id is not None
|
||||
media_abspath = get_exec_file_path(
|
||||
execution_context.graph_exec_id, local_media_path
|
||||
)
|
||||
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
|
||||
|
||||
# 2) Load the clip
|
||||
if input_data.is_video:
|
||||
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
|
||||
default=None,
|
||||
ge=1,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="How to return the output video. Either a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: str = SchemaField(
|
||||
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the input video locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||
|
||||
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
|
||||
looped_clip = looped_clip.with_audio(clip.audio)
|
||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# Return as data URI
|
||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
|
||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||
default=1.0,
|
||||
)
|
||||
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
|
||||
description="Return the final output as a relative path or base64 data URI.",
|
||||
default="file_path",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_out: MediaFileType = SchemaField(
|
||||
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
assert execution_context.graph_exec_id is not None
|
||||
assert execution_context.node_exec_id is not None
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
node_exec_id = execution_context.node_exec_id
|
||||
|
||||
# 1) Store the inputs locally
|
||||
local_video_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.video_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
local_audio_path = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.audio_in,
|
||||
user_id=user_id,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
||||
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
|
||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
||||
|
||||
# 5) Return either path or data URI
|
||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||
video_out = await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=output_filename,
|
||||
user_id=user_id,
|
||||
return_content=input_data.output_return_type == "data_uri",
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
|
||||
yield "video_out", video_out
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
|
||||
@staticmethod
|
||||
async def take_screenshot(
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
url: str,
|
||||
viewport_width: int,
|
||||
viewport_height: int,
|
||||
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
|
||||
|
||||
return {
|
||||
"image": await store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=MediaFileType(
|
||||
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
|
||||
),
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
}
|
||||
|
||||
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
graph_exec_id: str,
|
||||
user_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
screenshot_data = await self.take_screenshot(
|
||||
credentials=credentials,
|
||||
graph_exec_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
execution_context=execution_context,
|
||||
url=input_data.url,
|
||||
viewport_width=input_data.viewport_width,
|
||||
viewport_height=input_data.viewport_height,
|
||||
|
||||
@@ -7,6 +7,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ContributorDetails, SchemaField
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
import csv
|
||||
from io import StringIO
|
||||
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
|
||||
# Determine data source - prefer file_input if provided, otherwise use contents
|
||||
if input_data.file_input:
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
assert execution_context.graph_exec_id # Validated by store_media_file
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
|
||||
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
|
||||
|
||||
# Anthropic
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
|
||||
@property
|
||||
def provider_name(self) -> str:
|
||||
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
|
||||
model: StagehandRecommendedLlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
description="LLM to use for Stagehand (provider is inferred)",
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
|
||||
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
|
||||
advanced=False,
|
||||
)
|
||||
model_credentials: AICredentials = AICredentialsField()
|
||||
|
||||
@@ -10,6 +10,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
@@ -17,7 +18,9 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.request import Requests
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"video_url",
|
||||
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
lambda x: x.startswith(("workspace://", "data:")),
|
||||
),
|
||||
],
|
||||
test_mock={
|
||||
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
|
||||
"status": "created",
|
||||
},
|
||||
# Use data URI to avoid HTTP requests during tests
|
||||
"get_clip_status": lambda *args, **kwargs: {
|
||||
"status": "done",
|
||||
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
|
||||
"result_url": "data:video/mp4;base64,AAAA",
|
||||
},
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
return response.json()
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: APIKeyCredentials,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# Create the clip
|
||||
payload = {
|
||||
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
|
||||
for _ in range(input_data.max_polling_attempts):
|
||||
status_response = await self.get_clip_status(credentials.api_key, clip_id)
|
||||
if status_response["status"] == "done":
|
||||
yield "video_url", status_response["result_url"]
|
||||
# Store the generated video to the user's workspace for persistence
|
||||
video_url = status_response["result_url"]
|
||||
stored_url = await store_media_file(
|
||||
file=MediaFileType(video_url),
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "video_url", stored_url
|
||||
return
|
||||
elif status_response["status"] == "error":
|
||||
raise RuntimeError(
|
||||
|
||||
@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
|
||||
from backend.blocks.llm import AITextSummarizerBlock
|
||||
from backend.blocks.text import ExtractTextInformationBlock
|
||||
from backend.blocks.xml_parser import XMLParserBlock
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
|
||||
|
||||
with pytest.raises(ValueError, match="File too large"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(large_data_uri),
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@patch("backend.util.file.Path")
|
||||
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
|
||||
# Should raise an error when directory size exceeds limit
|
||||
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(
|
||||
"data:text/plain;base64,dGVzdA=="
|
||||
), # Small test file
|
||||
user_id="test_user",
|
||||
execution_context=ExecutionContext(
|
||||
user_id="test_user",
|
||||
graph_exec_id="test",
|
||||
),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
@@ -11,10 +11,22 @@ from backend.blocks.http import (
|
||||
HttpMethod,
|
||||
SendAuthenticatedWebRequestBlock,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import HostScopedCredentials
|
||||
from backend.util.request import Response
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-id",
|
||||
user_id: str = "test-user-id",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestHttpBlockWithHostScopedCredentials:
|
||||
"""Test suite for HTTP block integration with HostScopedCredentials."""
|
||||
|
||||
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=wildcard_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=non_matching_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=exact_match_credentials,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=auto_discovered_creds, # Execution manager found these
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=multi_header_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
|
||||
async for output_name, output_data in http_block.run(
|
||||
input_data,
|
||||
credentials=test_creds,
|
||||
graph_exec_id="test-exec-id",
|
||||
user_id="test-user-id",
|
||||
execution_context=make_test_context(),
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util import json, text
|
||||
from backend.util.file import get_exec_file_path, store_media_file
|
||||
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
|
||||
) -> BlockOutput:
|
||||
# Store the media file properly (handles URLs, data URIs, etc.)
|
||||
stored_file_path = await store_media_file(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=input_data.file_input,
|
||||
return_content=False,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Get full file path
|
||||
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
|
||||
# Get full file path (graph_exec_id validated by store_media_file above)
|
||||
if not execution_context.graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
file_path = get_exec_file_path(
|
||||
execution_context.graph_exec_id, stored_file_path
|
||||
)
|
||||
|
||||
if not Path(file_path).exists():
|
||||
raise ValueError(f"File does not exist: {file_path}")
|
||||
|
||||
@@ -81,6 +81,7 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_7_SONNET: 5,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.AIML_API_QWEN2_5_72B: 1,
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: 1,
|
||||
|
||||
@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
|
||||
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
# Execution identity
|
||||
user_id: Optional[str] = None
|
||||
graph_id: Optional[str] = None
|
||||
graph_exec_id: Optional[str] = None
|
||||
graph_version: Optional[int] = None
|
||||
node_id: Optional[str] = None
|
||||
node_exec_id: Optional[str] = None
|
||||
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
|
||||
# User settings
|
||||
user_timezone: str = "UTC"
|
||||
|
||||
# Execution hierarchy
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
# Workspace
|
||||
workspace_id: Optional[str] = None
|
||||
session_id: Optional[str] = None
|
||||
|
||||
|
||||
# -------------------------- Models -------------------------- #
|
||||
|
||||
|
||||
@@ -666,16 +666,10 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
||||
if not (self.discriminator and self.discriminator_mapping):
|
||||
return self
|
||||
|
||||
try:
|
||||
provider = self.discriminator_mapping[discriminator_value]
|
||||
except KeyError:
|
||||
raise ValueError(
|
||||
f"Model '{discriminator_value}' is not supported. "
|
||||
"It may have been deprecated. Please update your agent configuration."
|
||||
)
|
||||
|
||||
return CredentialsFieldInfo(
|
||||
credentials_provider=frozenset([provider]),
|
||||
credentials_provider=frozenset(
|
||||
[self.discriminator_mapping[discriminator_value]]
|
||||
),
|
||||
credentials_types=self.supported_types,
|
||||
credentials_scopes=self.required_scopes,
|
||||
discriminator=self.discriminator,
|
||||
|
||||
285
autogpt_platform/backend/backend/data/workspace.py
Normal file
285
autogpt_platform/backend/backend/data/workspace.py
Normal file
@@ -0,0 +1,285 @@
|
||||
"""
|
||||
Database CRUD operations for User Workspace.
|
||||
|
||||
This module provides functions for managing user workspaces and workspace files.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from prisma.enums import WorkspaceFileSource
|
||||
from prisma.models import UserWorkspace, UserWorkspaceFile
|
||||
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
|
||||
"""
|
||||
Get user's workspace, creating one if it doesn't exist.
|
||||
|
||||
Uses upsert to handle race conditions when multiple concurrent requests
|
||||
attempt to create a workspace for the same user.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance
|
||||
"""
|
||||
workspace = await UserWorkspace.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"create": {"userId": user_id},
|
||||
"update": {}, # No updates needed if exists
|
||||
},
|
||||
)
|
||||
|
||||
return workspace
|
||||
|
||||
|
||||
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
|
||||
"""
|
||||
Get user's workspace if it exists.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspace instance or None
|
||||
"""
|
||||
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
|
||||
|
||||
|
||||
async def create_workspace_file(
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
name: str,
|
||||
path: str,
|
||||
storage_path: str,
|
||||
mime_type: str,
|
||||
size_bytes: int,
|
||||
checksum: Optional[str] = None,
|
||||
source: WorkspaceFileSource = WorkspaceFileSource.UPLOAD,
|
||||
source_exec_id: Optional[str] = None,
|
||||
source_session_id: Optional[str] = None,
|
||||
metadata: Optional[dict] = None,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Create a new workspace file record.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: The file ID (same as used in storage path for consistency)
|
||||
name: User-visible filename
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
storage_path: Actual storage path (GCS or local)
|
||||
mime_type: MIME type of the file
|
||||
size_bytes: File size in bytes
|
||||
checksum: Optional SHA256 checksum
|
||||
source: How the file was created
|
||||
source_exec_id: Graph execution ID if from execution
|
||||
source_session_id: Chat session ID if from CoPilot
|
||||
metadata: Optional additional metadata
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
"""
|
||||
# Normalize path to start with /
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
file = await UserWorkspaceFile.prisma().create(
|
||||
data={
|
||||
"id": file_id,
|
||||
"workspaceId": workspace_id,
|
||||
"name": name,
|
||||
"path": path,
|
||||
"storagePath": storage_path,
|
||||
"mimeType": mime_type,
|
||||
"sizeBytes": size_bytes,
|
||||
"checksum": checksum,
|
||||
"source": source,
|
||||
"sourceExecId": source_exec_id,
|
||||
"sourceSessionId": source_session_id,
|
||||
"metadata": SafeJson(metadata or {}),
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created workspace file {file.id} at path {path} "
|
||||
f"in workspace {workspace_id}"
|
||||
)
|
||||
return file
|
||||
|
||||
|
||||
async def get_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by ID.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
where_clause: dict = {"id": file_id, "isDeleted": False}
|
||||
if workspace_id:
|
||||
where_clause["workspaceId"] = workspace_id
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
|
||||
|
||||
|
||||
async def get_workspace_file_by_path(
|
||||
workspace_id: str,
|
||||
path: str,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get a workspace file by its virtual path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
# Normalize path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_first(
|
||||
where={
|
||||
"workspaceId": workspace_id,
|
||||
"path": path,
|
||||
"isDeleted": False,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
async def list_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
where_clause: dict = {"workspaceId": workspace_id}
|
||||
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().find_many(
|
||||
where=where_clause,
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
skip=offset,
|
||||
)
|
||||
|
||||
|
||||
async def count_workspace_files(
|
||||
workspace_id: str,
|
||||
path_prefix: Optional[str] = None,
|
||||
include_deleted: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Count files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
|
||||
include_deleted: Whether to include soft-deleted files
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
where_clause: dict = {"workspaceId": workspace_id}
|
||||
if not include_deleted:
|
||||
where_clause["isDeleted"] = False
|
||||
|
||||
if path_prefix:
|
||||
# Normalize prefix
|
||||
if not path_prefix.startswith("/"):
|
||||
path_prefix = f"/{path_prefix}"
|
||||
where_clause["path"] = {"startswith": path_prefix}
|
||||
|
||||
return await UserWorkspaceFile.prisma().count(where=where_clause)
|
||||
|
||||
|
||||
async def soft_delete_workspace_file(
|
||||
file_id: str,
|
||||
workspace_id: Optional[str] = None,
|
||||
) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Soft-delete a workspace file.
|
||||
|
||||
The path is modified to include a deletion timestamp to free up the original
|
||||
path for new files while preserving the record for potential recovery.
|
||||
|
||||
Args:
|
||||
file_id: The file ID
|
||||
workspace_id: Optional workspace ID for validation
|
||||
|
||||
Returns:
|
||||
Updated UserWorkspaceFile instance or None if not found
|
||||
"""
|
||||
# First verify the file exists and belongs to workspace
|
||||
file = await get_workspace_file(file_id, workspace_id)
|
||||
if file is None:
|
||||
return None
|
||||
|
||||
deleted_at = datetime.now(timezone.utc)
|
||||
# Modify path to free up the unique constraint for new files at original path
|
||||
# Format: {original_path}__deleted__{timestamp}
|
||||
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
|
||||
|
||||
updated = await UserWorkspaceFile.prisma().update(
|
||||
where={"id": file_id},
|
||||
data={
|
||||
"isDeleted": True,
|
||||
"deletedAt": deleted_at,
|
||||
"path": deleted_path,
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(f"Soft-deleted workspace file {file_id}")
|
||||
return updated
|
||||
|
||||
|
||||
async def get_workspace_total_size(workspace_id: str) -> int:
|
||||
"""
|
||||
Get the total size of all files in a workspace.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
|
||||
Returns:
|
||||
Total size in bytes
|
||||
"""
|
||||
files = await list_workspace_files(workspace_id)
|
||||
return sum(file.sizeBytes for file in files)
|
||||
@@ -236,7 +236,14 @@ async def execute_node(
|
||||
input_size = len(input_data_str)
|
||||
log_metadata.debug("Executed node with input", input=input_data_str)
|
||||
|
||||
# Create node-specific execution context to avoid race conditions
|
||||
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
|
||||
execution_context = execution_context.model_copy(
|
||||
update={"node_id": node_id, "node_exec_id": node_exec_id}
|
||||
)
|
||||
|
||||
# Inject extra execution arguments for the blocks via kwargs
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": graph_id,
|
||||
"graph_version": graph_version,
|
||||
|
||||
@@ -892,11 +892,19 @@ async def add_graph_execution(
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec.id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
# Safety settings
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
# User settings
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
# Execution hierarchy
|
||||
root_execution_id=graph_exec.id,
|
||||
)
|
||||
|
||||
|
||||
@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock the queue and event bus
|
||||
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Create a second mock execution for the sanity check
|
||||
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec_2.id = "execution-id-456"
|
||||
mock_graph_exec_2.node_executions = []
|
||||
mock_graph_exec_2.status = ExecutionStatus.QUEUED
|
||||
mock_graph_exec_2.graph_version = graph_version
|
||||
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Reset mocks and set up for second call
|
||||
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
|
||||
mock_graph_exec.graph_version = graph_version
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
|
||||
@@ -13,6 +13,7 @@ import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -251,7 +252,7 @@ class CloudStorageHandler:
|
||||
f"in_task: {current_task is not None}"
|
||||
)
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -261,50 +262,19 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use a fresh client for each download to avoid session issues
|
||||
# This is less efficient but more reliable with the executor's event loop
|
||||
logger.info("[CloudStorage] Creating fresh GCS client for download")
|
||||
|
||||
# Create a new session specifically for this download
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
async_client = None
|
||||
try:
|
||||
# Create a new GCS client with the fresh session
|
||||
async_client = async_gcs_storage.Storage(session=session)
|
||||
|
||||
logger.info(
|
||||
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
|
||||
)
|
||||
|
||||
# Download content using the fresh client
|
||||
content = await async_client.download(bucket_name, blob_name)
|
||||
content = await download_with_fresh_session(bucket_name, blob_name)
|
||||
logger.info(
|
||||
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
|
||||
)
|
||||
|
||||
# Clean up
|
||||
await async_client.close()
|
||||
await session.close()
|
||||
|
||||
return content
|
||||
|
||||
except FileNotFoundError:
|
||||
raise
|
||||
except Exception as e:
|
||||
# Always try to clean up
|
||||
if async_client is not None:
|
||||
try:
|
||||
await async_client.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(
|
||||
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
|
||||
)
|
||||
try:
|
||||
await session.close()
|
||||
except Exception as cleanup_error:
|
||||
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
|
||||
|
||||
# Log the specific error for debugging
|
||||
logger.error(
|
||||
f"[CloudStorage] GCS download failed - error: {str(e)}, "
|
||||
@@ -319,10 +289,6 @@ class CloudStorageHandler:
|
||||
f"current_task: {current_task}, "
|
||||
f"bucket: {bucket_name}, blob: redacted for privacy"
|
||||
)
|
||||
|
||||
# Convert gcloud-aio exceptions to standard ones
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{path}")
|
||||
raise
|
||||
|
||||
def _validate_file_access(
|
||||
@@ -445,8 +411,7 @@ class CloudStorageHandler:
|
||||
graph_exec_id: str | None = None,
|
||||
) -> str:
|
||||
"""Generate signed URL for GCS with authorization."""
|
||||
|
||||
# Parse bucket and blob name from path
|
||||
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
|
||||
parts = path.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
@@ -456,21 +421,11 @@ class CloudStorageHandler:
|
||||
# Authorization check
|
||||
self._validate_file_access(blob_name, user_id, graph_exec_id)
|
||||
|
||||
# Use sync client for signed URLs since gcloud-aio doesn't support them
|
||||
sync_client = self._get_sync_gcs_client()
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
|
||||
# Generate signed URL asynchronously using sync client
|
||||
url = await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
|
||||
method="GET",
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expiration_hours * 3600
|
||||
)
|
||||
|
||||
return url
|
||||
|
||||
async def delete_expired_files(self, provider: str = "gcs") -> int:
|
||||
"""
|
||||
Delete files that have passed their expiration time.
|
||||
|
||||
@@ -5,13 +5,28 @@ import shutil
|
||||
import tempfile
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Literal
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from prisma.enums import WorkspaceFileSource
|
||||
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Config
|
||||
from backend.util.type import MediaFileType
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
# Return format options for store_media_file
|
||||
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
||||
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
MediaReturnFormat = Literal[
|
||||
"for_local_processing", "for_external_api", "for_block_output"
|
||||
]
|
||||
|
||||
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
|
||||
|
||||
# Maximum filename length (conservative limit for most filesystems)
|
||||
@@ -67,42 +82,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
|
||||
|
||||
|
||||
async def store_media_file(
|
||||
graph_exec_id: str,
|
||||
file: MediaFileType,
|
||||
user_id: str,
|
||||
return_content: bool = False,
|
||||
execution_context: "ExecutionContext",
|
||||
*,
|
||||
return_format: MediaReturnFormat,
|
||||
) -> MediaFileType:
|
||||
"""
|
||||
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
|
||||
placing or verifying it under:
|
||||
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
|
||||
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
|
||||
{tempdir}/exec_file/{exec_id}/...
|
||||
|
||||
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
|
||||
Otherwise, returns the file media path relative to the exec_id folder.
|
||||
For each MediaFileType input:
|
||||
- Data URI: decode and store locally
|
||||
- URL: download and store locally
|
||||
- workspace:// reference: read from workspace, store locally
|
||||
- Local path: verify it exists in exec_file directory
|
||||
|
||||
For each MediaFileType type:
|
||||
- Data URI:
|
||||
-> decode and store in a new random file in that folder
|
||||
- URL:
|
||||
-> download and store in that folder
|
||||
- Local path:
|
||||
-> interpret as relative to that folder; verify it exists
|
||||
(no copying, as it's presumably already there).
|
||||
We realpath-check so no symlink or '..' can escape the folder.
|
||||
Return format options:
|
||||
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
|
||||
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
|
||||
|
||||
|
||||
:param graph_exec_id: The unique ID of the graph execution.
|
||||
:param file: Data URI, URL, or local (relative) path.
|
||||
:param return_content: If True, return a data URI of the file content.
|
||||
If False, return the *relative* path inside the exec_id folder.
|
||||
:return: The requested result: data URI or relative path of the media.
|
||||
:param file: Data URI, URL, workspace://, or local (relative) path.
|
||||
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
|
||||
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
|
||||
:return: The requested result based on return_format.
|
||||
"""
|
||||
# Extract values from execution_context
|
||||
graph_exec_id = execution_context.graph_exec_id
|
||||
user_id = execution_context.user_id
|
||||
|
||||
if not graph_exec_id:
|
||||
raise ValueError("execution_context.graph_exec_id is required")
|
||||
if not user_id:
|
||||
raise ValueError("execution_context.user_id is required")
|
||||
|
||||
# Create workspace_manager if we have workspace_id (with session scoping)
|
||||
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
workspace_manager: WorkspaceManager | None = None
|
||||
if execution_context.workspace_id:
|
||||
workspace_manager = WorkspaceManager(
|
||||
user_id, execution_context.workspace_id, execution_context.session_id
|
||||
)
|
||||
# Build base path
|
||||
base_path = Path(get_exec_file_path(graph_exec_id, ""))
|
||||
base_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Security fix: Add disk space limits to prevent DoS
|
||||
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
|
||||
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
|
||||
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
|
||||
|
||||
# Check total disk usage in base_path
|
||||
@@ -142,9 +171,57 @@ async def store_media_file(
|
||||
"""
|
||||
return str(absolute_path.relative_to(base))
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
# Get cloud storage handler for checking cloud paths
|
||||
cloud_storage = await get_cloud_storage_handler()
|
||||
if cloud_storage.is_cloud_path(file):
|
||||
|
||||
# Track if the input came from workspace (don't re-save it)
|
||||
is_from_workspace = file.startswith("workspace://")
|
||||
|
||||
# Check if this is a workspace file reference
|
||||
if is_from_workspace:
|
||||
if workspace_manager is None:
|
||||
raise ValueError(
|
||||
"Workspace file reference requires workspace context. "
|
||||
"This file type is only available in CoPilot sessions."
|
||||
)
|
||||
|
||||
# Parse workspace reference
|
||||
# workspace://abc123 - by file ID
|
||||
# workspace:///path/to/file.txt - by virtual path
|
||||
file_ref = file[12:] # Remove "workspace://"
|
||||
|
||||
if file_ref.startswith("/"):
|
||||
# Path reference
|
||||
workspace_content = await workspace_manager.read_file(file_ref)
|
||||
file_info = await workspace_manager.get_file_info_by_path(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
else:
|
||||
# ID reference
|
||||
workspace_content = await workspace_manager.read_file_by_id(file_ref)
|
||||
file_info = await workspace_manager.get_file_info(file_ref)
|
||||
filename = sanitize_filename(
|
||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||
)
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the workspace content before writing locally
|
||||
await scan_content_safe(workspace_content, filename=filename)
|
||||
target_path.write_bytes(workspace_content)
|
||||
|
||||
# Check if this is a cloud storage path
|
||||
elif cloud_storage.is_cloud_path(file):
|
||||
# Download from cloud storage and store locally
|
||||
cloud_content = await cloud_storage.retrieve_file(
|
||||
file, user_id=user_id, graph_exec_id=graph_exec_id
|
||||
@@ -159,9 +236,9 @@ async def store_media_file(
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Check file size limit
|
||||
if len(cloud_content) > MAX_FILE_SIZE:
|
||||
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the cloud content before writing locally
|
||||
@@ -189,9 +266,9 @@ async def store_media_file(
|
||||
content = base64.b64decode(b64_content)
|
||||
|
||||
# Check file size limit
|
||||
if len(content) > MAX_FILE_SIZE:
|
||||
if len(content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the base64 content before writing
|
||||
@@ -199,23 +276,31 @@ async def store_media_file(
|
||||
target_path.write_bytes(content)
|
||||
|
||||
elif file.startswith(("http://", "https://")):
|
||||
# URL
|
||||
# URL - download first to get Content-Type header
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE_BYTES:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
|
||||
)
|
||||
|
||||
# Extract filename from URL path
|
||||
parsed_url = urlparse(file)
|
||||
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
|
||||
|
||||
# If filename lacks extension, add one from Content-Type header
|
||||
if "." not in filename:
|
||||
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
|
||||
if content_type:
|
||||
ext = _extension_from_mime(content_type)
|
||||
filename = f"{filename}{ext}"
|
||||
|
||||
try:
|
||||
target_path = _ensure_inside_base(base_path / filename, base_path)
|
||||
except OSError as e:
|
||||
raise ValueError(f"Invalid file path '{filename}': {e}") from e
|
||||
|
||||
# Download and save
|
||||
resp = await Requests().get(file)
|
||||
|
||||
# Check file size limit
|
||||
if len(resp.content) > MAX_FILE_SIZE:
|
||||
raise ValueError(
|
||||
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
|
||||
)
|
||||
|
||||
# Virus scan the downloaded content before writing
|
||||
await scan_content_safe(resp.content, filename=filename)
|
||||
target_path.write_bytes(resp.content)
|
||||
@@ -230,12 +315,46 @@ async def store_media_file(
|
||||
if not target_path.is_file():
|
||||
raise ValueError(f"Local file does not exist: {target_path}")
|
||||
|
||||
# Return result
|
||||
if return_content:
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
else:
|
||||
# Return based on requested format
|
||||
if return_format == "for_local_processing":
|
||||
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
|
||||
# Returns: relative path in exec_file directory (e.g., "image.png")
|
||||
return MediaFileType(_strip_base_prefix(target_path, base_path))
|
||||
|
||||
elif return_format == "for_external_api":
|
||||
# Use when sending content to external APIs that need base64
|
||||
# Returns: data URI (e.g., "...")
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
elif return_format == "for_block_output":
|
||||
# Use when returning output from a block to user/next block
|
||||
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
|
||||
if workspace_manager is None:
|
||||
# No workspace available (graph execution without CoPilot)
|
||||
# Fallback to data URI so the content can still be used/displayed
|
||||
return MediaFileType(_file_to_data_uri(target_path))
|
||||
|
||||
# Don't re-save if input was already from workspace
|
||||
if is_from_workspace:
|
||||
# Return original workspace reference
|
||||
return MediaFileType(file)
|
||||
|
||||
# Save new content to workspace
|
||||
content = target_path.read_bytes()
|
||||
filename = target_path.name
|
||||
|
||||
file_record = await workspace_manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
source=WorkspaceFileSource.COPILOT,
|
||||
source_session_id=execution_context.session_id,
|
||||
overwrite=True,
|
||||
)
|
||||
return MediaFileType(f"workspace://{file_record.id}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid return_format: {return_format}")
|
||||
|
||||
|
||||
def get_dir_size(path: Path) -> int:
|
||||
"""Get total size of directory."""
|
||||
|
||||
@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
def make_test_context(
|
||||
graph_exec_id: str = "test-exec-123",
|
||||
user_id: str = "test-user-123",
|
||||
) -> ExecutionContext:
|
||||
"""Helper to create test ExecutionContext."""
|
||||
return ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
|
||||
|
||||
class TestFileCloudIntegration:
|
||||
"""Test cases for cloud storage integration in file utilities."""
|
||||
|
||||
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_class.side_effect = path_constructor
|
||||
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud storage operations
|
||||
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
|
||||
mock_path_obj.name = "image.png"
|
||||
with patch("backend.util.file.Path", return_value=mock_path_obj):
|
||||
result = await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(cloud_path),
|
||||
"test-user-123",
|
||||
return_content=True,
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_external_api",
|
||||
)
|
||||
|
||||
# Verify result is a data URI
|
||||
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
|
||||
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
|
||||
|
||||
await store_media_file(
|
||||
graph_exec_id,
|
||||
MediaFileType(data_uri),
|
||||
"test-user-123",
|
||||
return_content=False,
|
||||
file=MediaFileType(data_uri),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# Verify cloud handler was checked but not used for retrieval
|
||||
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
|
||||
FileNotFoundError, match="File not found in cloud storage"
|
||||
):
|
||||
await store_media_file(
|
||||
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
|
||||
file=MediaFileType(cloud_path),
|
||||
execution_context=make_test_context(graph_exec_id=graph_exec_id),
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
160
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
160
autogpt_platform/backend/backend/util/gcs_utils.py
Normal file
@@ -0,0 +1,160 @@
|
||||
"""
|
||||
Shared GCS utilities for workspace and cloud storage backends.
|
||||
|
||||
This module provides common functionality for working with Google Cloud Storage,
|
||||
including path parsing, client management, and signed URL generation.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Optional
|
||||
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_gcs_path(path: str) -> tuple[str, str]:
|
||||
"""
|
||||
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
|
||||
|
||||
Args:
|
||||
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
|
||||
|
||||
Returns:
|
||||
Tuple of (bucket_name, blob_name)
|
||||
|
||||
Raises:
|
||||
ValueError: If the path format is invalid
|
||||
"""
|
||||
if not path.startswith("gcs://"):
|
||||
raise ValueError(f"Invalid GCS path: {path}")
|
||||
|
||||
path_without_prefix = path[6:] # Remove "gcs://"
|
||||
parts = path_without_prefix.split("/", 1)
|
||||
if len(parts) != 2:
|
||||
raise ValueError(f"Invalid GCS path format: {path}")
|
||||
|
||||
return parts[0], parts[1]
|
||||
|
||||
|
||||
class GCSClientManager:
|
||||
"""
|
||||
Manages async and sync GCS clients with lazy initialization.
|
||||
|
||||
This class provides a unified way to manage GCS client lifecycle,
|
||||
supporting both async operations (uploads, downloads) and sync
|
||||
operations that require service account credentials (signed URLs).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._async_client: Optional[async_gcs_storage.Storage] = None
|
||||
self._sync_client: Optional[gcs_storage.Client] = None
|
||||
self._session: Optional[aiohttp.ClientSession] = None
|
||||
|
||||
async def get_async_client(self) -> async_gcs_storage.Storage:
|
||||
"""
|
||||
Get or create async GCS client.
|
||||
|
||||
Returns:
|
||||
Async GCS storage client
|
||||
"""
|
||||
if self._async_client is None:
|
||||
self._session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=100, force_close=False)
|
||||
)
|
||||
self._async_client = async_gcs_storage.Storage(session=self._session)
|
||||
return self._async_client
|
||||
|
||||
def get_sync_client(self) -> gcs_storage.Client:
|
||||
"""
|
||||
Get or create sync GCS client (used for signed URLs).
|
||||
|
||||
Returns:
|
||||
Sync GCS storage client
|
||||
"""
|
||||
if self._sync_client is None:
|
||||
self._sync_client = gcs_storage.Client()
|
||||
return self._sync_client
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close all client connections."""
|
||||
if self._async_client is not None:
|
||||
try:
|
||||
await self._async_client.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing GCS client: {e}")
|
||||
self._async_client = None
|
||||
|
||||
if self._session is not None:
|
||||
try:
|
||||
await self._session.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing session: {e}")
|
||||
self._session = None
|
||||
|
||||
|
||||
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
|
||||
"""
|
||||
Download file content using a fresh session.
|
||||
|
||||
This approach avoids event loop issues that can occur when reusing
|
||||
sessions across different async contexts (e.g., in executors).
|
||||
|
||||
Args:
|
||||
bucket: GCS bucket name
|
||||
blob: Blob path within the bucket
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If the file doesn't exist
|
||||
"""
|
||||
session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=10, force_close=True)
|
||||
)
|
||||
try:
|
||||
client = async_gcs_storage.Storage(session=session)
|
||||
content = await client.download(bucket, blob)
|
||||
await client.close()
|
||||
return content
|
||||
except Exception as e:
|
||||
if "404" in str(e) or "Not Found" in str(e):
|
||||
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
|
||||
raise
|
||||
finally:
|
||||
await session.close()
|
||||
|
||||
|
||||
async def generate_signed_url(
|
||||
sync_client: gcs_storage.Client,
|
||||
bucket_name: str,
|
||||
blob_name: str,
|
||||
expires_in: int,
|
||||
) -> str:
|
||||
"""
|
||||
Generate a signed URL for temporary access to a GCS file.
|
||||
|
||||
Uses asyncio.to_thread() to run the sync operation without blocking.
|
||||
|
||||
Args:
|
||||
sync_client: Sync GCS client with service account credentials
|
||||
bucket_name: GCS bucket name
|
||||
blob_name: Blob path within the bucket
|
||||
expires_in: URL expiration time in seconds
|
||||
|
||||
Returns:
|
||||
Signed URL string
|
||||
"""
|
||||
bucket = sync_client.bucket(bucket_name)
|
||||
blob = bucket.blob(blob_name)
|
||||
return await asyncio.to_thread(
|
||||
blob.generate_signed_url,
|
||||
version="v4",
|
||||
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
|
||||
method="GET",
|
||||
)
|
||||
@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="The name of the Google Cloud Storage bucket for media files",
|
||||
)
|
||||
|
||||
workspace_storage_dir: str = Field(
|
||||
default="",
|
||||
description="Local directory for workspace file storage when GCS is not configured. "
|
||||
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
description="Maximum file size in MB for file uploads (1-1024 MB)",
|
||||
)
|
||||
|
||||
max_file_size_mb: int = Field(
|
||||
default=100,
|
||||
ge=1,
|
||||
le=1024,
|
||||
description="Maximum file size in MB for workspace files (1-1024 MB)",
|
||||
)
|
||||
|
||||
# AutoMod configuration
|
||||
automod_enabled: bool = Field(
|
||||
default=False,
|
||||
|
||||
@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
|
||||
setattr(block, mock_name, mock_obj)
|
||||
|
||||
# Populate credentials argument(s)
|
||||
# Generate IDs for execution context
|
||||
graph_id = str(uuid.uuid4())
|
||||
node_id = str(uuid.uuid4())
|
||||
graph_exec_id = str(uuid.uuid4())
|
||||
node_exec_id = str(uuid.uuid4())
|
||||
user_id = str(uuid.uuid4())
|
||||
graph_version = 1 # Default version for tests
|
||||
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": str(uuid.uuid4()),
|
||||
"node_id": str(uuid.uuid4()),
|
||||
"graph_exec_id": str(uuid.uuid4()),
|
||||
"node_exec_id": str(uuid.uuid4()),
|
||||
"user_id": str(uuid.uuid4()),
|
||||
"graph_version": 1, # Default version for tests
|
||||
"execution_context": ExecutionContext(),
|
||||
"graph_id": graph_id,
|
||||
"node_id": node_id,
|
||||
"graph_exec_id": graph_exec_id,
|
||||
"node_exec_id": node_exec_id,
|
||||
"user_id": user_id,
|
||||
"graph_version": graph_version,
|
||||
"execution_context": ExecutionContext(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_version=graph_version,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
),
|
||||
}
|
||||
input_model = cast(type[BlockSchema], block.input_schema)
|
||||
|
||||
|
||||
432
autogpt_platform/backend/backend/util/workspace.py
Normal file
432
autogpt_platform/backend/backend/util/workspace.py
Normal file
@@ -0,0 +1,432 @@
|
||||
"""
|
||||
WorkspaceManager for managing user workspace file operations.
|
||||
|
||||
This module provides a high-level interface for workspace file operations,
|
||||
combining the storage backend and database layer.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import mimetypes
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from prisma.enums import WorkspaceFileSource
|
||||
from prisma.errors import UniqueViolationError
|
||||
from prisma.models import UserWorkspaceFile
|
||||
|
||||
from backend.data.workspace import (
|
||||
count_workspace_files,
|
||||
create_workspace_file,
|
||||
get_workspace_file,
|
||||
get_workspace_file_by_path,
|
||||
list_workspace_files,
|
||||
soft_delete_workspace_file,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceManager:
|
||||
"""
|
||||
Manages workspace file operations.
|
||||
|
||||
Combines storage backend operations with database record management.
|
||||
Supports session-scoped file segmentation where files are stored in
|
||||
session-specific virtual paths: /sessions/{session_id}/{filename}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Initialize WorkspaceManager.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
workspace_id: The workspace ID
|
||||
session_id: Optional session ID for session-scoped file access
|
||||
"""
|
||||
self.user_id = user_id
|
||||
self.workspace_id = workspace_id
|
||||
self.session_id = session_id
|
||||
# Session path prefix for file isolation
|
||||
self.session_path = f"/sessions/{session_id}" if session_id else ""
|
||||
|
||||
def _resolve_path(self, path: str) -> str:
|
||||
"""
|
||||
Resolve a path, defaulting to session folder if session_id is set.
|
||||
|
||||
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
|
||||
|
||||
Returns:
|
||||
Resolved path with session prefix if applicable
|
||||
"""
|
||||
# If path explicitly references a session folder, use it as-is
|
||||
if path.startswith("/sessions/"):
|
||||
return path
|
||||
|
||||
# If we have a session context, prepend session path
|
||||
if self.session_path:
|
||||
# Normalize the path
|
||||
if not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
return f"{self.session_path}{path}"
|
||||
|
||||
# No session context, use path as-is
|
||||
return path if path.startswith("/") else f"/{path}"
|
||||
|
||||
def _get_effective_path(
|
||||
self, path: Optional[str], include_all_sessions: bool
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Get effective path for list/count operations based on session context.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter
|
||||
include_all_sessions: If True, don't apply session scoping
|
||||
|
||||
Returns:
|
||||
Effective path prefix for database query
|
||||
"""
|
||||
if include_all_sessions:
|
||||
# Normalize path to ensure leading slash (stored paths are normalized)
|
||||
if path is not None and not path.startswith("/"):
|
||||
return f"/{path}"
|
||||
return path
|
||||
elif path is not None:
|
||||
# Resolve the provided path with session scoping
|
||||
return self._resolve_path(path)
|
||||
elif self.session_path:
|
||||
# Default to session folder with trailing slash to prevent prefix collisions
|
||||
# e.g., "/sessions/abc" should not match "/sessions/abc123"
|
||||
return self.session_path.rstrip("/") + "/"
|
||||
else:
|
||||
# No session context, use path as-is
|
||||
return path
|
||||
|
||||
async def read_file(self, path: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by virtual path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path (e.g., "/documents/report.pdf")
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found at path: {resolved_path}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def read_file_by_id(self, file_id: str) -> bytes:
|
||||
"""
|
||||
Read file from workspace by file ID.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.retrieve(file.storagePath)
|
||||
|
||||
async def write_file(
|
||||
self,
|
||||
content: bytes,
|
||||
filename: str,
|
||||
path: Optional[str] = None,
|
||||
mime_type: Optional[str] = None,
|
||||
source: WorkspaceFileSource = WorkspaceFileSource.UPLOAD,
|
||||
source_exec_id: Optional[str] = None,
|
||||
source_session_id: Optional[str] = None,
|
||||
overwrite: bool = False,
|
||||
) -> UserWorkspaceFile:
|
||||
"""
|
||||
Write file to workspace.
|
||||
|
||||
When session_id is set, files are written to /sessions/{session_id}/...
|
||||
by default. Use explicit /sessions/... paths for cross-session access.
|
||||
|
||||
Args:
|
||||
content: File content as bytes
|
||||
filename: Filename for the file
|
||||
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
|
||||
mime_type: MIME type (auto-detected if not provided)
|
||||
source: How the file was created
|
||||
source_exec_id: Graph execution ID if from execution
|
||||
source_session_id: Chat session ID if from CoPilot
|
||||
overwrite: Whether to overwrite existing file at path
|
||||
|
||||
Returns:
|
||||
Created UserWorkspaceFile instance
|
||||
|
||||
Raises:
|
||||
ValueError: If file exceeds size limit or path already exists
|
||||
"""
|
||||
# Enforce file size limit
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
raise ValueError(
|
||||
f"File too large: {len(content)} bytes exceeds "
|
||||
f"{Config().max_file_size_mb}MB limit"
|
||||
)
|
||||
|
||||
# Determine path with session scoping
|
||||
if path is None:
|
||||
path = f"/{filename}"
|
||||
elif not path.startswith("/"):
|
||||
path = f"/{path}"
|
||||
|
||||
# Resolve path with session prefix
|
||||
path = self._resolve_path(path)
|
||||
|
||||
# Check if file exists at path
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing is not None:
|
||||
if overwrite:
|
||||
# Delete existing file first
|
||||
await self.delete_file(existing.id)
|
||||
else:
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
|
||||
# Auto-detect MIME type if not provided
|
||||
if mime_type is None:
|
||||
mime_type, _ = mimetypes.guess_type(filename)
|
||||
mime_type = mime_type or "application/octet-stream"
|
||||
|
||||
# Compute checksum
|
||||
checksum = compute_file_checksum(content)
|
||||
|
||||
# Generate unique file ID for storage
|
||||
file_id = str(uuid.uuid4())
|
||||
|
||||
# Store file in storage backend
|
||||
storage = await get_workspace_storage()
|
||||
storage_path = await storage.store(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
filename=filename,
|
||||
content=content,
|
||||
)
|
||||
|
||||
# Create database record - handle race condition where another request
|
||||
# created a file at the same path between our check and create
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
source=source,
|
||||
source_exec_id=source_exec_id,
|
||||
source_session_id=source_session_id,
|
||||
)
|
||||
except UniqueViolationError:
|
||||
# Race condition: another request created a file at this path
|
||||
if overwrite:
|
||||
# Re-fetch and delete the conflicting file, then retry
|
||||
existing = await get_workspace_file_by_path(self.workspace_id, path)
|
||||
if existing:
|
||||
await self.delete_file(existing.id)
|
||||
# Retry the create - if this also fails, clean up storage file
|
||||
try:
|
||||
file = await create_workspace_file(
|
||||
workspace_id=self.workspace_id,
|
||||
file_id=file_id,
|
||||
name=filename,
|
||||
path=path,
|
||||
storage_path=storage_path,
|
||||
mime_type=mime_type,
|
||||
size_bytes=len(content),
|
||||
checksum=checksum,
|
||||
source=source,
|
||||
source_exec_id=source_exec_id,
|
||||
source_session_id=source_session_id,
|
||||
)
|
||||
except Exception:
|
||||
# Clean up orphaned storage file on retry failure
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
else:
|
||||
# Clean up the orphaned storage file before raising
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise ValueError(f"File already exists at path: {path}")
|
||||
except Exception:
|
||||
# Any other database error (connection, validation, etc.) - clean up storage
|
||||
try:
|
||||
await storage.delete(storage_path)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to clean up orphaned storage file: {e}")
|
||||
raise
|
||||
|
||||
logger.info(
|
||||
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
|
||||
f"at path {path}, size={len(content)} bytes"
|
||||
)
|
||||
|
||||
return file
|
||||
|
||||
async def list_files(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
offset: int = 0,
|
||||
include_all_sessions: bool = False,
|
||||
) -> list[UserWorkspaceFile]:
|
||||
"""
|
||||
List files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only files in the current session's folder are listed.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
limit: Maximum number of files to return
|
||||
offset: Number of files to skip
|
||||
include_all_sessions: If True, list files from all sessions.
|
||||
If False (default), only list current session's files.
|
||||
|
||||
Returns:
|
||||
List of UserWorkspaceFile instances
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await list_workspace_files(
|
||||
workspace_id=self.workspace_id,
|
||||
path_prefix=effective_path,
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
)
|
||||
|
||||
async def delete_file(self, file_id: str) -> bool:
|
||||
"""
|
||||
Delete a file (soft-delete).
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
True if deleted, False if not found
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
return False
|
||||
|
||||
# Delete from storage
|
||||
storage = await get_workspace_storage()
|
||||
try:
|
||||
await storage.delete(file.storagePath)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to delete file from storage: {e}")
|
||||
# Continue with database soft-delete even if storage delete fails
|
||||
|
||||
# Soft-delete database record
|
||||
result = await soft_delete_workspace_file(file_id, self.workspace_id)
|
||||
return result is not None
|
||||
|
||||
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for a file.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
expires_in: URL expiration in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, API endpoint for local)
|
||||
|
||||
Raises:
|
||||
FileNotFoundError: If file doesn't exist
|
||||
"""
|
||||
file = await get_workspace_file(file_id, self.workspace_id)
|
||||
if file is None:
|
||||
raise FileNotFoundError(f"File not found: {file_id}")
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
return await storage.get_download_url(file.storagePath, expires_in)
|
||||
|
||||
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata.
|
||||
|
||||
Args:
|
||||
file_id: The file's ID
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
return await get_workspace_file(file_id, self.workspace_id)
|
||||
|
||||
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
|
||||
"""
|
||||
Get file metadata by path.
|
||||
|
||||
When session_id is set, paths are resolved relative to the session folder
|
||||
unless they explicitly reference /sessions/...
|
||||
|
||||
Args:
|
||||
path: Virtual path
|
||||
|
||||
Returns:
|
||||
UserWorkspaceFile instance or None
|
||||
"""
|
||||
resolved_path = self._resolve_path(path)
|
||||
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
|
||||
|
||||
async def get_file_count(
|
||||
self,
|
||||
path: Optional[str] = None,
|
||||
include_all_sessions: bool = False,
|
||||
) -> int:
|
||||
"""
|
||||
Get number of files in workspace.
|
||||
|
||||
When session_id is set and include_all_sessions is False (default),
|
||||
only counts files in the current session's folder.
|
||||
|
||||
Args:
|
||||
path: Optional path prefix to filter (e.g., "/documents/")
|
||||
include_all_sessions: If True, count all files in workspace.
|
||||
If False (default), only count current session's files.
|
||||
|
||||
Returns:
|
||||
Number of files
|
||||
"""
|
||||
effective_path = self._get_effective_path(path, include_all_sessions)
|
||||
|
||||
return await count_workspace_files(
|
||||
self.workspace_id, path_prefix=effective_path
|
||||
)
|
||||
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
398
autogpt_platform/backend/backend/util/workspace_storage.py
Normal file
@@ -0,0 +1,398 @@
|
||||
"""
|
||||
Workspace storage backend abstraction for supporting both cloud and local deployments.
|
||||
|
||||
This module provides a unified interface for storing workspace files, with implementations
|
||||
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import aiofiles
|
||||
import aiohttp
|
||||
from gcloud.aio import storage as async_gcs_storage
|
||||
from google.cloud import storage as gcs_storage
|
||||
|
||||
from backend.util.data import get_data_path
|
||||
from backend.util.gcs_utils import (
|
||||
download_with_fresh_session,
|
||||
generate_signed_url,
|
||||
parse_gcs_path,
|
||||
)
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceStorageBackend(ABC):
|
||||
"""Abstract interface for workspace file storage."""
|
||||
|
||||
@abstractmethod
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""
|
||||
Store file content, return storage path.
|
||||
|
||||
Args:
|
||||
workspace_id: The workspace ID
|
||||
file_id: Unique file ID for storage
|
||||
filename: Original filename
|
||||
content: File content as bytes
|
||||
|
||||
Returns:
|
||||
Storage path string (cloud path or local path)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""
|
||||
Retrieve file content from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path returned from store()
|
||||
|
||||
Returns:
|
||||
File content as bytes
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""
|
||||
Delete file from storage.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path to delete
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get URL for downloading the file.
|
||||
|
||||
Args:
|
||||
storage_path: The storage path
|
||||
expires_in: URL expiration time in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
Download URL (signed URL for GCS, direct API path for local)
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class GCSWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Google Cloud Storage implementation for workspace storage."""
|
||||
|
||||
def __init__(self, bucket_name: str):
|
||||
self.bucket_name = bucket_name
|
||||
self._async_client: Optional[async_gcs_storage.Storage] = None
|
||||
self._sync_client: Optional[gcs_storage.Client] = None
|
||||
self._session: Optional[aiohttp.ClientSession] = None
|
||||
|
||||
async def _get_async_client(self) -> async_gcs_storage.Storage:
|
||||
"""Get or create async GCS client."""
|
||||
if self._async_client is None:
|
||||
self._session = aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=100, force_close=False)
|
||||
)
|
||||
self._async_client = async_gcs_storage.Storage(session=self._session)
|
||||
return self._async_client
|
||||
|
||||
def _get_sync_client(self) -> gcs_storage.Client:
|
||||
"""Get or create sync GCS client (for signed URLs)."""
|
||||
if self._sync_client is None:
|
||||
self._sync_client = gcs_storage.Client()
|
||||
return self._sync_client
|
||||
|
||||
async def close(self) -> None:
|
||||
"""Close all client connections."""
|
||||
if self._async_client is not None:
|
||||
try:
|
||||
await self._async_client.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing GCS client: {e}")
|
||||
self._async_client = None
|
||||
|
||||
if self._session is not None:
|
||||
try:
|
||||
await self._session.close()
|
||||
except Exception as e:
|
||||
logger.warning(f"Error closing session: {e}")
|
||||
self._session = None
|
||||
|
||||
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
|
||||
"""Build the blob path for workspace files."""
|
||||
return f"workspaces/{workspace_id}/{file_id}/{filename}"
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file in GCS."""
|
||||
client = await self._get_async_client()
|
||||
blob_name = self._build_blob_name(workspace_id, file_id, filename)
|
||||
|
||||
# Upload with metadata
|
||||
upload_time = datetime.now(timezone.utc)
|
||||
await client.upload(
|
||||
self.bucket_name,
|
||||
blob_name,
|
||||
content,
|
||||
metadata={
|
||||
"uploaded_at": upload_time.isoformat(),
|
||||
"workspace_id": workspace_id,
|
||||
"file_id": file_id,
|
||||
},
|
||||
)
|
||||
|
||||
return f"gcs://{self.bucket_name}/{blob_name}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
return await download_with_fresh_session(bucket_name, blob_name)
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from GCS."""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
client = await self._get_async_client()
|
||||
|
||||
try:
|
||||
await client.delete(bucket_name, blob_name)
|
||||
except Exception as e:
|
||||
if "404" not in str(e) and "Not Found" not in str(e):
|
||||
raise
|
||||
# File already deleted, that's fine
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Generate download URL for GCS file.
|
||||
|
||||
Attempts to generate a signed URL if running with service account credentials.
|
||||
Falls back to an API proxy endpoint if signed URL generation fails
|
||||
(e.g., when running locally with user OAuth credentials).
|
||||
"""
|
||||
bucket_name, blob_name = parse_gcs_path(storage_path)
|
||||
|
||||
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
|
||||
blob_parts = blob_name.split("/")
|
||||
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
|
||||
|
||||
# Try to generate signed URL (requires service account credentials)
|
||||
try:
|
||||
sync_client = self._get_sync_client()
|
||||
return await generate_signed_url(
|
||||
sync_client, bucket_name, blob_name, expires_in
|
||||
)
|
||||
except AttributeError as e:
|
||||
# Signed URL generation requires service account with private key.
|
||||
# When running with user OAuth credentials, fall back to API proxy.
|
||||
if "private key" in str(e) and file_id:
|
||||
logger.debug(
|
||||
"Cannot generate signed URL (no service account credentials), "
|
||||
"falling back to API proxy endpoint"
|
||||
)
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
raise
|
||||
|
||||
|
||||
class LocalWorkspaceStorage(WorkspaceStorageBackend):
|
||||
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
|
||||
|
||||
def __init__(self, base_dir: Optional[str] = None):
|
||||
"""
|
||||
Initialize local storage backend.
|
||||
|
||||
Args:
|
||||
base_dir: Base directory for workspace storage.
|
||||
If None, defaults to {app_data}/workspaces
|
||||
"""
|
||||
if base_dir:
|
||||
self.base_dir = Path(base_dir)
|
||||
else:
|
||||
self.base_dir = Path(get_data_path()) / "workspaces"
|
||||
|
||||
# Ensure base directory exists
|
||||
self.base_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
|
||||
"""Build the local file path with path traversal protection."""
|
||||
# Import here to avoid circular import
|
||||
# (file.py imports workspace.py which imports workspace_storage.py)
|
||||
from backend.util.file import sanitize_filename
|
||||
|
||||
# Sanitize filename to prevent path traversal (removes / and \ among others)
|
||||
safe_filename = sanitize_filename(filename)
|
||||
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
|
||||
|
||||
# Verify the resolved path is still under base_dir
|
||||
if not file_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid filename: path traversal detected")
|
||||
|
||||
return file_path
|
||||
|
||||
def _parse_storage_path(self, storage_path: str) -> Path:
|
||||
"""Parse local storage path to filesystem path."""
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:] # Remove "local://"
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
full_path = (self.base_dir / relative_path).resolve()
|
||||
|
||||
# Security check: ensure path is under base_dir
|
||||
# Use is_relative_to() for robust path containment check
|
||||
# (handles case-insensitive filesystems and edge cases)
|
||||
if not full_path.is_relative_to(self.base_dir.resolve()):
|
||||
raise ValueError("Invalid storage path: path traversal detected")
|
||||
|
||||
return full_path
|
||||
|
||||
async def store(
|
||||
self,
|
||||
workspace_id: str,
|
||||
file_id: str,
|
||||
filename: str,
|
||||
content: bytes,
|
||||
) -> str:
|
||||
"""Store file locally."""
|
||||
file_path = self._build_file_path(workspace_id, file_id, filename)
|
||||
|
||||
# Create parent directories
|
||||
file_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Write file asynchronously
|
||||
async with aiofiles.open(file_path, "wb") as f:
|
||||
await f.write(content)
|
||||
|
||||
# Return relative path as storage path
|
||||
relative_path = file_path.relative_to(self.base_dir)
|
||||
return f"local://{relative_path}"
|
||||
|
||||
async def retrieve(self, storage_path: str) -> bytes:
|
||||
"""Retrieve file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if not file_path.exists():
|
||||
raise FileNotFoundError(f"File not found: {storage_path}")
|
||||
|
||||
async with aiofiles.open(file_path, "rb") as f:
|
||||
return await f.read()
|
||||
|
||||
async def delete(self, storage_path: str) -> None:
|
||||
"""Delete file from local storage."""
|
||||
file_path = self._parse_storage_path(storage_path)
|
||||
|
||||
if file_path.exists():
|
||||
# Remove file
|
||||
file_path.unlink()
|
||||
|
||||
# Clean up empty parent directories
|
||||
parent = file_path.parent
|
||||
while parent != self.base_dir:
|
||||
try:
|
||||
if parent.exists() and not any(parent.iterdir()):
|
||||
parent.rmdir()
|
||||
else:
|
||||
break
|
||||
except OSError:
|
||||
break
|
||||
parent = parent.parent
|
||||
|
||||
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
|
||||
"""
|
||||
Get download URL for local file.
|
||||
|
||||
For local storage, this returns an API endpoint path.
|
||||
The actual serving is handled by the API layer.
|
||||
"""
|
||||
# Parse the storage path to get the components
|
||||
if storage_path.startswith("local://"):
|
||||
relative_path = storage_path[8:]
|
||||
else:
|
||||
relative_path = storage_path
|
||||
|
||||
# Return the API endpoint for downloading
|
||||
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
|
||||
parts = relative_path.split("/")
|
||||
if len(parts) >= 2:
|
||||
file_id = parts[1] # Second component is file_id
|
||||
return f"/api/workspace/files/{file_id}/download"
|
||||
else:
|
||||
raise ValueError(f"Invalid storage path format: {storage_path}")
|
||||
|
||||
|
||||
# Global storage backend instance
|
||||
_workspace_storage: Optional[WorkspaceStorageBackend] = None
|
||||
_storage_lock = asyncio.Lock()
|
||||
|
||||
|
||||
async def get_workspace_storage() -> WorkspaceStorageBackend:
|
||||
"""
|
||||
Get the workspace storage backend instance.
|
||||
|
||||
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is None:
|
||||
config = Config()
|
||||
|
||||
if config.media_gcs_bucket_name:
|
||||
logger.info(
|
||||
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
|
||||
)
|
||||
_workspace_storage = GCSWorkspaceStorage(
|
||||
config.media_gcs_bucket_name
|
||||
)
|
||||
else:
|
||||
storage_dir = (
|
||||
config.workspace_storage_dir
|
||||
if config.workspace_storage_dir
|
||||
else None
|
||||
)
|
||||
logger.info(
|
||||
f"Using local workspace storage: {storage_dir or 'default'}"
|
||||
)
|
||||
_workspace_storage = LocalWorkspaceStorage(storage_dir)
|
||||
|
||||
return _workspace_storage
|
||||
|
||||
|
||||
async def shutdown_workspace_storage() -> None:
|
||||
"""
|
||||
Properly shutdown the global workspace storage backend.
|
||||
|
||||
Closes aiohttp sessions and other resources for GCS backend.
|
||||
Should be called during application shutdown.
|
||||
"""
|
||||
global _workspace_storage
|
||||
|
||||
if _workspace_storage is not None:
|
||||
async with _storage_lock:
|
||||
if _workspace_storage is not None:
|
||||
if isinstance(_workspace_storage, GCSWorkspaceStorage):
|
||||
await _workspace_storage.close()
|
||||
_workspace_storage = None
|
||||
|
||||
|
||||
def compute_file_checksum(content: bytes) -> str:
|
||||
"""Compute SHA256 checksum of file content."""
|
||||
return hashlib.sha256(content).hexdigest()
|
||||
@@ -1,22 +0,0 @@
|
||||
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
|
||||
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
|
||||
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
|
||||
|
||||
-- Update AgentNode constant inputs
|
||||
UPDATE "AgentNode"
|
||||
SET "constantInput" = JSONB_SET(
|
||||
"constantInput"::jsonb,
|
||||
'{model}',
|
||||
'"claude-sonnet-4-5-20250929"'::jsonb
|
||||
)
|
||||
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
|
||||
|
||||
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
|
||||
UPDATE "AgentNodeExecutionInputOutput"
|
||||
SET "data" = JSONB_SET(
|
||||
"data"::jsonb,
|
||||
'{model}',
|
||||
'"claude-sonnet-4-5-20250929"'::jsonb
|
||||
)
|
||||
WHERE "agentPresetId" IS NOT NULL
|
||||
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
|
||||
@@ -0,0 +1,52 @@
|
||||
-- CreateEnum
|
||||
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspace" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"userId" TEXT NOT NULL,
|
||||
|
||||
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UserWorkspaceFile" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"workspaceId" TEXT NOT NULL,
|
||||
"name" TEXT NOT NULL,
|
||||
"path" TEXT NOT NULL,
|
||||
"storagePath" TEXT NOT NULL,
|
||||
"mimeType" TEXT NOT NULL,
|
||||
"sizeBytes" BIGINT NOT NULL,
|
||||
"checksum" TEXT,
|
||||
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
|
||||
"deletedAt" TIMESTAMP(3),
|
||||
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
|
||||
"sourceExecId" TEXT,
|
||||
"sourceSessionId" TEXT,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
|
||||
-- AddForeignKey
|
||||
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;
|
||||
@@ -63,6 +63,7 @@ model User {
|
||||
IntegrationWebhooks IntegrationWebhook[]
|
||||
NotificationBatches UserNotificationBatch[]
|
||||
PendingHumanReviews PendingHumanReview[]
|
||||
Workspace UserWorkspace?
|
||||
|
||||
// OAuth Provider relations
|
||||
OAuthApplications OAuthApplication[]
|
||||
@@ -137,6 +138,66 @@ model CoPilotUnderstanding {
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
//////////////// USER WORKSPACE TABLES /////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// User's persistent file storage workspace
|
||||
model UserWorkspace {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
userId String @unique
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
|
||||
Files UserWorkspaceFile[]
|
||||
|
||||
@@index([userId])
|
||||
}
|
||||
|
||||
// Source of workspace file creation
|
||||
enum WorkspaceFileSource {
|
||||
UPLOAD // Direct user upload
|
||||
EXECUTION // Created by graph execution
|
||||
COPILOT // Created by CoPilot session
|
||||
IMPORT // Imported from external source
|
||||
}
|
||||
|
||||
// Individual files in a user's workspace
|
||||
model UserWorkspaceFile {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
workspaceId String
|
||||
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
|
||||
|
||||
// File metadata
|
||||
name String // User-visible filename
|
||||
path String // Virtual path (e.g., "/documents/report.pdf")
|
||||
storagePath String // Actual GCS or local storage path
|
||||
mimeType String
|
||||
sizeBytes BigInt
|
||||
checksum String? // SHA256 for integrity
|
||||
|
||||
// File state
|
||||
isDeleted Boolean @default(false)
|
||||
deletedAt DateTime?
|
||||
|
||||
// Source tracking
|
||||
source WorkspaceFileSource @default(UPLOAD)
|
||||
sourceExecId String? // graph_exec_id if from execution
|
||||
sourceSessionId String? // chat_session_id if from CoPilot
|
||||
|
||||
metadata Json @default("{}")
|
||||
|
||||
@@unique([workspaceId, path])
|
||||
@@index([workspaceId, isDeleted])
|
||||
}
|
||||
|
||||
model BuilderSearchHistory {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
|
||||
@@ -5928,6 +5928,40 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"/api/workspace/files/{file_id}/download": {
|
||||
"get": {
|
||||
"tags": ["v2", "workspace"],
|
||||
"summary": "Download file by ID",
|
||||
"description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.",
|
||||
"operationId": "getV2Download file by id",
|
||||
"security": [{ "HTTPBearerJWT": [] }],
|
||||
"parameters": [
|
||||
{
|
||||
"name": "file_id",
|
||||
"in": "path",
|
||||
"required": true,
|
||||
"schema": { "type": "string", "title": "File Id" }
|
||||
}
|
||||
],
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Successful Response",
|
||||
"content": { "application/json": { "schema": {} } }
|
||||
},
|
||||
"401": {
|
||||
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
|
||||
},
|
||||
"422": {
|
||||
"description": "Validation Error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"/health": {
|
||||
"get": {
|
||||
"tags": ["health"],
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import {
|
||||
ApiError,
|
||||
getServerAuthToken,
|
||||
makeAuthenticatedFileUpload,
|
||||
makeAuthenticatedRequest,
|
||||
} from "@/lib/autogpt-server-api/helpers";
|
||||
@@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string {
|
||||
return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if this is a workspace file download request that needs binary response handling.
|
||||
*/
|
||||
function isWorkspaceDownloadRequest(path: string[]): boolean {
|
||||
// Match pattern: api/workspace/files/{id}/download (5 segments)
|
||||
return (
|
||||
path.length >= 5 &&
|
||||
path[0] === "api" &&
|
||||
path[1] === "workspace" &&
|
||||
path[2] === "files" &&
|
||||
path[path.length - 1] === "download"
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Handle workspace file download requests with proper binary response streaming.
|
||||
*/
|
||||
async function handleWorkspaceDownload(
|
||||
req: NextRequest,
|
||||
backendUrl: string,
|
||||
): Promise<NextResponse> {
|
||||
const token = await getServerAuthToken();
|
||||
|
||||
const headers: Record<string, string> = {};
|
||||
if (token && token !== "no-token-found") {
|
||||
headers["Authorization"] = `Bearer ${token}`;
|
||||
}
|
||||
|
||||
const response = await fetch(backendUrl, {
|
||||
method: "GET",
|
||||
headers,
|
||||
redirect: "follow", // Follow redirects to signed URLs
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
return NextResponse.json(
|
||||
{ error: `Failed to download file: ${response.statusText}` },
|
||||
{ status: response.status },
|
||||
);
|
||||
}
|
||||
|
||||
// Get the content type from the backend response
|
||||
const contentType =
|
||||
response.headers.get("Content-Type") || "application/octet-stream";
|
||||
const contentDisposition = response.headers.get("Content-Disposition");
|
||||
|
||||
// Stream the response body
|
||||
const responseHeaders: Record<string, string> = {
|
||||
"Content-Type": contentType,
|
||||
};
|
||||
|
||||
if (contentDisposition) {
|
||||
responseHeaders["Content-Disposition"] = contentDisposition;
|
||||
}
|
||||
|
||||
// Return the binary content
|
||||
const arrayBuffer = await response.arrayBuffer();
|
||||
return new NextResponse(arrayBuffer, {
|
||||
status: 200,
|
||||
headers: responseHeaders,
|
||||
});
|
||||
}
|
||||
|
||||
async function handleJsonRequest(
|
||||
req: NextRequest,
|
||||
method: string,
|
||||
@@ -180,6 +244,11 @@ async function handler(
|
||||
};
|
||||
|
||||
try {
|
||||
// Handle workspace file downloads separately (binary response)
|
||||
if (method === "GET" && isWorkspaceDownloadRequest(path)) {
|
||||
return await handleWorkspaceDownload(req, backendUrl);
|
||||
}
|
||||
|
||||
if (method === "GET" || method === "DELETE") {
|
||||
responseBody = await handleGetDeleteRequest(method, backendUrl, req);
|
||||
} else if (contentType?.includes("application/json")) {
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
"use client";
|
||||
|
||||
import { getGetV2DownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { EyeSlash } from "@phosphor-icons/react";
|
||||
import React from "react";
|
||||
import ReactMarkdown from "react-markdown";
|
||||
import remarkGfm from "remark-gfm";
|
||||
@@ -29,12 +31,88 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
|
||||
type?: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a workspace:// URL to a proxy URL that routes through Next.js to the backend.
|
||||
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
|
||||
*
|
||||
* Uses the generated API URL helper and routes through the Next.js proxy
|
||||
* which handles authentication and proper backend routing.
|
||||
*/
|
||||
/**
|
||||
* URL transformer for ReactMarkdown.
|
||||
* Converts workspace:// URLs to proxy URLs that route through Next.js to the backend.
|
||||
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
|
||||
*
|
||||
* This is needed because ReactMarkdown sanitizes URLs and only allows
|
||||
* http, https, mailto, and tel protocols by default.
|
||||
*/
|
||||
function resolveWorkspaceUrl(src: string): string {
|
||||
if (src.startsWith("workspace://")) {
|
||||
const fileId = src.replace("workspace://", "");
|
||||
// Use the generated API URL helper to get the correct path
|
||||
const apiPath = getGetV2DownloadFileByIdUrl(fileId);
|
||||
// Route through the Next.js proxy (same pattern as customMutator for client-side)
|
||||
return `/api/proxy${apiPath}`;
|
||||
}
|
||||
return src;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if the image URL is a workspace file (AI cannot see these yet).
|
||||
* After URL transformation, workspace files have URLs like /api/proxy/api/workspace/files/...
|
||||
*/
|
||||
function isWorkspaceImage(src: string | undefined): boolean {
|
||||
return src?.includes("/workspace/files/") ?? false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Custom image component that shows an indicator when the AI cannot see the image.
|
||||
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
|
||||
*/
|
||||
function MarkdownImage(props: Record<string, unknown>) {
|
||||
const src = props.src as string | undefined;
|
||||
const alt = props.alt as string | undefined;
|
||||
|
||||
const aiCannotSee = isWorkspaceImage(src);
|
||||
|
||||
// If no src, show a placeholder
|
||||
if (!src) {
|
||||
return (
|
||||
<span className="my-2 inline-block rounded border border-amber-200 bg-amber-50 px-2 py-1 text-sm text-amber-700">
|
||||
[Image: {alt || "missing src"}]
|
||||
</span>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<span className="relative my-2 inline-block">
|
||||
{/* eslint-disable-next-line @next/next/no-img-element */}
|
||||
<img
|
||||
src={src}
|
||||
alt={alt || "Image"}
|
||||
className="h-auto max-w-full rounded-md border border-zinc-200"
|
||||
loading="lazy"
|
||||
/>
|
||||
{aiCannotSee && (
|
||||
<span
|
||||
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
|
||||
title="The AI cannot see this image"
|
||||
>
|
||||
<EyeSlash size={14} />
|
||||
<span>AI cannot see this image</span>
|
||||
</span>
|
||||
)}
|
||||
</span>
|
||||
);
|
||||
}
|
||||
|
||||
export function MarkdownContent({ content, className }: MarkdownContentProps) {
|
||||
return (
|
||||
<div className={cn("markdown-content", className)}>
|
||||
<ReactMarkdown
|
||||
skipHtml={true}
|
||||
remarkPlugins={[remarkGfm]}
|
||||
urlTransform={resolveWorkspaceUrl}
|
||||
components={{
|
||||
code: ({ children, className, ...props }: CodeProps) => {
|
||||
const isInline = !className?.includes("language-");
|
||||
@@ -206,6 +284,9 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
|
||||
{children}
|
||||
</td>
|
||||
),
|
||||
img: ({ src, alt, ...props }) => (
|
||||
<MarkdownImage src={src} alt={alt} {...props} />
|
||||
),
|
||||
}}
|
||||
>
|
||||
{content}
|
||||
|
||||
@@ -37,6 +37,87 @@ export function getErrorMessage(result: unknown): string {
|
||||
return "An error occurred";
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a value is a workspace file reference.
|
||||
*/
|
||||
function isWorkspaceRef(value: unknown): value is string {
|
||||
return typeof value === "string" && value.startsWith("workspace://");
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a workspace reference appears to be an image based on common patterns.
|
||||
* Since workspace refs don't have extensions, we check the context or assume image
|
||||
* for certain block types.
|
||||
*
|
||||
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
|
||||
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
|
||||
* This would let frontend render correctly without fragile keyword matching.
|
||||
*/
|
||||
function isLikelyImageRef(value: string, outputKey?: string): boolean {
|
||||
if (!isWorkspaceRef(value)) return false;
|
||||
|
||||
// Check output key name for video-related hints (these are NOT images)
|
||||
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check output key name for image-related hints
|
||||
const imageKeywords = [
|
||||
"image",
|
||||
"img",
|
||||
"photo",
|
||||
"picture",
|
||||
"thumbnail",
|
||||
"avatar",
|
||||
"icon",
|
||||
"screenshot",
|
||||
];
|
||||
if (outputKey) {
|
||||
const lowerKey = outputKey.toLowerCase();
|
||||
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Default to treating workspace refs as potential images
|
||||
// since that's the most common case for generated content
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a single output value, converting workspace refs to markdown images.
|
||||
*/
|
||||
function formatOutputValue(value: unknown, outputKey?: string): string {
|
||||
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
|
||||
// Format as markdown image
|
||||
return ``;
|
||||
}
|
||||
|
||||
if (typeof value === "string") {
|
||||
// Check for data URIs (images)
|
||||
if (value.startsWith("data:image/")) {
|
||||
return ``;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
if (Array.isArray(value)) {
|
||||
return value
|
||||
.map((item, idx) => formatOutputValue(item, `${outputKey}_${idx}`))
|
||||
.join("\n\n");
|
||||
}
|
||||
|
||||
if (typeof value === "object" && value !== null) {
|
||||
return JSON.stringify(value, null, 2);
|
||||
}
|
||||
|
||||
return String(value);
|
||||
}
|
||||
|
||||
function getToolCompletionPhrase(toolName: string): string {
|
||||
const toolCompletionPhrases: Record<string, string> = {
|
||||
add_understanding: "Updated your business information",
|
||||
@@ -127,10 +208,26 @@ export function formatToolResponse(result: unknown, toolName: string): string {
|
||||
|
||||
case "block_output":
|
||||
const blockName = (response.block_name as string) || "Block";
|
||||
const outputs = response.outputs as Record<string, unknown> | undefined;
|
||||
const outputs = response.outputs as Record<string, unknown[]> | undefined;
|
||||
if (outputs && Object.keys(outputs).length > 0) {
|
||||
const outputKeys = Object.keys(outputs);
|
||||
return `${blockName} executed successfully. Outputs: ${outputKeys.join(", ")}`;
|
||||
const formattedOutputs: string[] = [];
|
||||
|
||||
for (const [key, values] of Object.entries(outputs)) {
|
||||
if (!Array.isArray(values) || values.length === 0) continue;
|
||||
|
||||
// Format each value in the output array
|
||||
for (const value of values) {
|
||||
const formatted = formatOutputValue(value, key);
|
||||
if (formatted) {
|
||||
formattedOutputs.push(formatted);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (formattedOutputs.length > 0) {
|
||||
return `${blockName} executed successfully.\n\n${formattedOutputs.join("\n\n")}`;
|
||||
}
|
||||
return `${blockName} executed successfully.`;
|
||||
}
|
||||
return `${blockName} executed successfully.`;
|
||||
|
||||
|
||||
@@ -53,7 +53,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
|
||||
| [Block Installation](block-integrations/basic.md#block-installation) | Given a code string, this block allows the verification and installation of a block code into the system |
|
||||
| [Concatenate Lists](block-integrations/basic.md#concatenate-lists) | Concatenates multiple lists into a single list |
|
||||
| [Dictionary Is Empty](block-integrations/basic.md#dictionary-is-empty) | Checks if a dictionary is empty |
|
||||
| [File Store](block-integrations/basic.md#file-store) | Stores the input file in the temporary directory |
|
||||
| [File Store](block-integrations/basic.md#file-store) | Downloads and stores a file from a URL, data URI, or local path |
|
||||
| [Find In Dictionary](block-integrations/basic.md#find-in-dictionary) | A block that looks up a value in a dictionary, list, or object by key or index and returns the corresponding value |
|
||||
| [Find In List](block-integrations/basic.md#find-in-list) | Finds the index of the value in the list |
|
||||
| [Get All Memories](block-integrations/basic.md#get-all-memories) | Retrieve all memories from Mem0 with optional conversation filtering |
|
||||
|
||||
@@ -709,7 +709,7 @@ This is useful for conditional logic where you need to verify if data was return
|
||||
## File Store
|
||||
|
||||
### What it is
|
||||
Stores the input file in the temporary directory.
|
||||
Downloads and stores a file from a URL, data URI, or local path. Use this to fetch images, documents, or other files for processing. In CoPilot: saves to workspace (use list_workspace_files to see it). In graphs: outputs a data URI to pass to other blocks.
|
||||
|
||||
### How it works
|
||||
<!-- MANUAL: how_it_works -->
|
||||
@@ -722,15 +722,15 @@ The block outputs a file path that other blocks can use to access the stored fil
|
||||
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| file_in | The file to store in the temporary directory, it can be a URL, data URI, or local path. | str (file) | Yes |
|
||||
| base_64 | Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks). | bool | No |
|
||||
| file_in | The file to download and store. Can be a URL (https://...), data URI, or local path. | str (file) | Yes |
|
||||
| base_64 | Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks). | bool | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
| Output | Description | Type |
|
||||
|--------|-------------|------|
|
||||
| error | Error message if the operation failed | str |
|
||||
| file_out | The relative path to the stored file in the temporary directory. | str (file) |
|
||||
| file_out | Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks. | str (file) |
|
||||
|
||||
### Possible use case
|
||||
<!-- MANUAL: use_case -->
|
||||
|
||||
@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
|
||||
| condition | A plaintext English description of the condition to evaluate | str | Yes |
|
||||
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
|
||||
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | No |
|
||||
| messages | List of messages in the conversation. | List[Any] | Yes |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
| ollama_host | Ollama host for local models | str | No |
|
||||
|
||||
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|
||||
|-------|-------------|------|----------|
|
||||
| focus | The focus of the list to generate. | str | No |
|
||||
| source_data | The data to generate the list from. | str | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| max_retries | Maximum number of retries for generating a valid list. | int | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
|
||||
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
|
||||
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
|
||||
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| text | The text to summarize. | str | Yes |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| focus | The topic to focus on in the summary | str | No |
|
||||
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
|
||||
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
|
||||
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| prompt | The prompt to send to the language model. | str | Yes |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
|
||||
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
|
||||
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
|
||||
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
|
||||
|
||||
@@ -12,7 +12,7 @@ Block to attach an audio file to a video file using moviepy.
|
||||
<!-- MANUAL: how_it_works -->
|
||||
This block combines a video file with an audio file using the moviepy library. The audio track is attached to the video, optionally with volume adjustment via the volume parameter (1.0 = original volume).
|
||||
|
||||
Input files can be URLs, data URIs, or local paths. The output can be returned as either a file path or base64 data URI.
|
||||
Input files can be URLs, data URIs, or local paths. The output format is automatically determined: `workspace://` URLs in CoPilot, data URIs in graph executions.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
@@ -22,7 +22,6 @@ Input files can be URLs, data URIs, or local paths. The output can be returned a
|
||||
| video_in | Video input (URL, data URI, or local path). | str (file) | Yes |
|
||||
| audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes |
|
||||
| volume | Volume scale for the newly attached audio track (1.0 = original). | float | No |
|
||||
| output_return_type | Return the final output as a relative path or base64 data URI. | "file_path" \| "data_uri" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
@@ -51,7 +50,7 @@ Block to loop a video to a given duration or number of repeats.
|
||||
<!-- MANUAL: how_it_works -->
|
||||
This block extends a video by repeating it to reach a target duration or number of loops. Set duration to specify the total length in seconds, or use n_loops to repeat the video a specific number of times.
|
||||
|
||||
The looped video is seamlessly concatenated and can be output as a file path or base64 data URI.
|
||||
The looped video is seamlessly concatenated. The output format is automatically determined: `workspace://` URLs in CoPilot, data URIs in graph executions.
|
||||
<!-- END MANUAL -->
|
||||
|
||||
### Inputs
|
||||
@@ -61,7 +60,6 @@ The looped video is seamlessly concatenated and can be output as a file path or
|
||||
| video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes |
|
||||
| duration | Target duration (in seconds) to loop the video to. If omitted, defaults to no looping. | float | No |
|
||||
| n_loops | Number of times to repeat the video. If omitted, defaults to 1 (no repeat). | int | No |
|
||||
| output_return_type | How to return the output video. Either a relative path or base64 data URI. | "file_path" \| "data_uri" | No |
|
||||
|
||||
### Outputs
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ Configure timeouts for DOM settlement and page loading. Variables can be passed
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
|
||||
| url | URL to navigate to. | str | Yes |
|
||||
| action | Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step. | List[str] | Yes |
|
||||
| variables | Variables to use in the action. Variables contains data you want the action to use. | Dict[str, str] | No |
|
||||
@@ -65,7 +65,7 @@ Supports searching within iframes and configurable timeouts for dynamic content
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
|
||||
| url | URL to navigate to. | str | Yes |
|
||||
| instruction | Natural language description of elements or actions to discover. | str | Yes |
|
||||
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |
|
||||
@@ -106,7 +106,7 @@ Use this to explore a page's interactive elements before building automated work
|
||||
| Input | Description | Type | Required |
|
||||
|-------|-------------|------|----------|
|
||||
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
|
||||
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
|
||||
| url | URL to navigate to. | str | Yes |
|
||||
| instruction | Natural language description of elements or actions to discover. | str | Yes |
|
||||
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |
|
||||
|
||||
@@ -277,6 +277,50 @@ async def run(
|
||||
token = credentials.api_key.get_secret_value()
|
||||
```
|
||||
|
||||
### Handling Files
|
||||
|
||||
When your block works with files (images, videos, documents), use `store_media_file()`:
|
||||
|
||||
```python
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
):
|
||||
# PROCESSING: Need local file path for tools like ffmpeg, MoviePy, PIL
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
|
||||
# EXTERNAL API: Need base64 content for APIs like Replicate, OpenAI
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
|
||||
# OUTPUT: Return to user/next block (auto-adapts to context)
|
||||
result = await store_media_file(
|
||||
file=generated_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output", # workspace:// in CoPilot, data URI in graphs
|
||||
)
|
||||
yield "image_url", result
|
||||
```
|
||||
|
||||
**Return format options:**
|
||||
- `"for_local_processing"` - Local file path for processing tools
|
||||
- `"for_external_api"` - Data URI for external APIs needing base64
|
||||
- `"for_block_output"` - **Always use for outputs** - automatically picks best format
|
||||
|
||||
## Testing Your Block
|
||||
|
||||
```bash
|
||||
|
||||
@@ -111,6 +111,71 @@ Follow these steps to create and test a new block:
|
||||
- `graph_exec_id`: The ID of the execution of the agent. This changes every time the agent has a new "run"
|
||||
- `node_exec_id`: The ID of the execution of the node. This changes every time the node is executed
|
||||
- `node_id`: The ID of the node that is being executed. It changes every version of the graph, but not every time the node is executed.
|
||||
- `execution_context`: An `ExecutionContext` object containing user_id, graph_exec_id, workspace_id, and session_id. Required for file handling.
|
||||
|
||||
### Handling Files in Blocks
|
||||
|
||||
When your block needs to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. This function handles downloading, validation, virus scanning, and storage.
|
||||
|
||||
**Import:**
|
||||
```python
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
```
|
||||
|
||||
**The `return_format` parameter determines what you get back:**
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
# PROCESSING: Need to work with file locally (ffmpeg, MoviePy, PIL)
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path, ffmpeg, subprocess, etc.
|
||||
full_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||
|
||||
# EXTERNAL API: Need to send content to an API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to external API
|
||||
|
||||
# OUTPUT: Returning result from block to user/next block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123" (persistent, context-efficient)
|
||||
# In graphs: result_url = "data:image/png;base64,..." (for next block/display)
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the **only** format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never manually check for `workspace_id` - let `for_block_output` handle the logic
|
||||
- The function handles URLs, data URIs, `workspace://` references, and local paths as input
|
||||
|
||||
### Field Types
|
||||
|
||||
|
||||
Reference in New Issue
Block a user