Compare commits

..

4 Commits

Author SHA1 Message Date
Otto
efd1e96235 feat(copilot): Add detailed API error logging for debugging
Adds comprehensive error logging for OpenRouter/OpenAI API errors to help
diagnose issues like provider routing failures, context length exceeded,
rate limits, etc.

Changes:
- Add _extract_api_error_details() to extract rich info from API errors
  including status code, response body, OpenRouter headers, etc.
- Add _log_api_error() helper to log errors with context (session ID,
  message count, model, retry count)
- Update error handling in _stream_chat_chunks() to use new logging
- Update error handling in _generate_llm_continuation() to use new logging
- Extract provider's error message from response body for better user feedback

This helps debug issues like SECRT-1859 where OpenRouter returns
'provider returned error' with provider_name='unknown' without
capturing the actual error details.

Refs: SECRT-1859
2026-02-03 12:36:54 +00:00
Krzysztof Czerwinski
14cee1670a fix(backend): Prevent leaking Redis connections in ws_api (#11869)
Fixing
https://github.com/Significant-Gravitas/AutoGPT/pull/11297#discussion_r2496833421

### Changes 🏗️

1. event_bus.py - Added close method to AsyncRedisEventBus
- Added __init__ method to track the _pubsub instance attribute
- Added async def close() method that closes the PubSub connection
safely
- Modified listen_events() to store the pubsub reference in self._pubsub

2. ws_api.py - Added cleanup in event_broadcaster
- Wrapped the worker coroutines in try/finally block
- The finally block calls close() on both event buses to ensure cleanup
happens on any exit (including exceptions before retry)
2026-02-03 08:07:48 +00:00
Zamil Majdy
d81d1ce024 refactor(backend): extract context window management and fix LLM continuation (#11936)
## Summary

Fixes CoPilot becoming unresponsive after long-running tools complete,
and refactors context window management into a reusable function.

## Problem

After `create_agent` completes, `_generate_llm_continuation()` was
sending ALL messages to OpenRouter without any context compaction. When
conversations exceeded ~50 messages, OpenRouter rejected requests with
`provider_name: 'unknown'` (no provider would accept).

**Evidence:** Langfuse session
[44fbb803-092e-4ebd-b288-852959f4faf5](https://cloud.langfuse.com/project/cmk5qhf210003ad079sd8utjt/sessions/44fbb803-092e-4ebd-b288-852959f4faf5)
showed:
- Successful calls: 32-50 messages, known providers
- Failed calls: 52+ messages, `provider: unknown`, `completion: null`

## Changes

### Refactor: Extract reusable `_manage_context_window()`
- Counts tokens and checks against 120k threshold
- Summarizes old messages while keeping recent 15
- Ensures tool_call/tool_response pairs stay intact
- Progressive truncation if still over limit
- Returns `ContextWindowResult` dataclass with messages, token count,
compaction status, and errors
- Helper `_messages_to_dicts()` reduces code duplication

### Fix: Update `_generate_llm_continuation()`
- Now calls `_manage_context_window()` before making LLM calls
- Adds retry logic with exponential backoff (matching
`_stream_chat_chunks` behavior)

### Cleanup: Update `_stream_chat_chunks()`
- Replaced inline context management with call to
`_manage_context_window()`
- Eliminates code duplication between the two functions

## Testing

- Syntax check: 
- Ruff lint: 
- Import verification: 

## Checklist

- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] My changes generate no new warnings
- [x] I have checked that my changes do not break existing functionality

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-03 04:41:43 +00:00
Zamil Majdy
2dd341c369 refactor: enrich description with context before calling Agent Generator (#11932)
## Summary
Updates the Agent Generator client to enrich the description with
context before calling, instead of sending `user_instruction` as a
separate parameter.

## Context
Companion PR to Significant-Gravitas/AutoGPT-Agent-Generator#105 which
removes unused parameters from the decompose API.

## Changes
- Enrich `description` with `context` (e.g., clarifying question
answers) before sending
- Remove `user_instruction` from request payload

## How it works
Both input boxes and chat box work the same way - the frontend
constructs a formatted message with answers and sends it as a user
message. The backend then enriches the description with this context
before calling the external Agent Generator service.
2026-02-03 02:31:07 +00:00
6 changed files with 440 additions and 350 deletions

View File

@@ -3,7 +3,8 @@ import logging
import time import time
from asyncio import CancelledError from asyncio import CancelledError
from collections.abc import AsyncGenerator from collections.abc import AsyncGenerator
from typing import Any from dataclasses import dataclass
from typing import Any, cast
import openai import openai
import orjson import orjson
@@ -15,7 +16,14 @@ from openai import (
PermissionDeniedError, PermissionDeniedError,
RateLimitError, RateLimitError,
) )
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionChunk,
ChatCompletionMessageParam,
ChatCompletionStreamOptionsParam,
ChatCompletionSystemMessageParam,
ChatCompletionToolParam,
)
from backend.data.redis_client import get_redis_async from backend.data.redis_client import get_redis_async
from backend.data.understanding import ( from backend.data.understanding import (
@@ -23,6 +31,7 @@ from backend.data.understanding import (
get_business_understanding, get_business_understanding,
) )
from backend.util.exceptions import NotFoundError from backend.util.exceptions import NotFoundError
from backend.util.prompt import estimate_token_count
from backend.util.settings import Settings from backend.util.settings import Settings
from . import db as chat_db from . import db as chat_db
@@ -794,6 +803,201 @@ def _is_region_blocked_error(error: Exception) -> bool:
return "not available in your region" in str(error).lower() return "not available in your region" in str(error).lower()
# Context window management constants
TOKEN_THRESHOLD = 120_000
KEEP_RECENT_MESSAGES = 15
@dataclass
class ContextWindowResult:
"""Result of context window management."""
messages: list[dict[str, Any]]
token_count: int
was_compacted: bool
error: str | None = None
def _messages_to_dicts(messages: list) -> list[dict[str, Any]]:
"""Convert message objects to dicts, filtering None values.
Handles both TypedDict (dict-like) and other message formats.
"""
result = []
for msg in messages:
if msg is None:
continue
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
msg_dict = dict(msg)
result.append(msg_dict)
return result
async def _manage_context_window(
messages: list,
model: str,
api_key: str | None = None,
base_url: str | None = None,
) -> ContextWindowResult:
"""
Manage context window by summarizing old messages if token count exceeds threshold.
This function handles context compaction for LLM calls by:
1. Counting tokens in the message list
2. If over threshold, summarizing old messages while keeping recent ones
3. Ensuring tool_call/tool_response pairs stay intact
4. Progressively reducing message count if still over limit
Args:
messages: List of messages in OpenAI format (with system prompt if present)
model: Model name for token counting
api_key: API key for summarization calls
base_url: Base URL for summarization calls
Returns:
ContextWindowResult with compacted messages and metadata
"""
if not messages:
return ContextWindowResult([], 0, False, "No messages to compact")
messages_dict = _messages_to_dicts(messages)
# Normalize model name for token counting (tiktoken only supports OpenAI models)
token_count_model = model.split("/")[-1] if "/" in model else model
if "claude" in token_count_model.lower() or not any(
known in token_count_model.lower()
for known in ["gpt", "o1", "chatgpt", "text-"]
):
token_count_model = "gpt-4o"
try:
token_count = estimate_token_count(messages_dict, model=token_count_model)
except Exception as e:
logger.warning(f"Token counting failed: {e}. Using gpt-4o approximation.")
token_count_model = "gpt-4o"
token_count = estimate_token_count(messages_dict, model=token_count_model)
if token_count <= TOKEN_THRESHOLD:
return ContextWindowResult(messages, token_count, False)
has_system_prompt = messages[0].get("role") == "system"
slice_start = max(0, len(messages_dict) - KEEP_RECENT_MESSAGES)
recent_messages = _ensure_tool_pairs_intact(
messages_dict[-KEEP_RECENT_MESSAGES:], messages_dict, slice_start
)
# Determine old messages to summarize (explicit bounds to avoid slice edge cases)
system_msg = messages[0] if has_system_prompt else None
if has_system_prompt:
old_messages_dict = (
messages_dict[1:-KEEP_RECENT_MESSAGES]
if len(messages_dict) > KEEP_RECENT_MESSAGES + 1
else []
)
else:
old_messages_dict = (
messages_dict[:-KEEP_RECENT_MESSAGES]
if len(messages_dict) > KEEP_RECENT_MESSAGES
else []
)
# Try to summarize old messages, fall back to truncation on failure
summary_msg = None
if old_messages_dict:
try:
summary_text = await _summarize_messages(
old_messages_dict, model=model, api_key=api_key, base_url=base_url
)
summary_msg = ChatCompletionAssistantMessageParam(
role="assistant",
content=f"[Previous conversation summary — for context only]: {summary_text}",
)
base = [system_msg, summary_msg] if has_system_prompt else [summary_msg]
messages = base + recent_messages
logger.info(
f"Context summarized: {token_count} tokens, "
f"summarized {len(old_messages_dict)} msgs, kept {KEEP_RECENT_MESSAGES}"
)
except Exception as e:
logger.warning(f"Summarization failed, falling back to truncation: {e}")
messages = (
[system_msg] + recent_messages if has_system_prompt else recent_messages
)
else:
logger.warning(
f"Token count {token_count} exceeds threshold but no old messages to summarize"
)
new_token_count = estimate_token_count(
_messages_to_dicts(messages), model=token_count_model
)
# Progressive truncation if still over limit
if new_token_count > TOKEN_THRESHOLD:
logger.warning(
f"Still over limit: {new_token_count} tokens. Reducing messages."
)
base_msgs = (
recent_messages
if old_messages_dict
else (messages_dict[1:] if has_system_prompt else messages_dict)
)
def build_messages(recent: list) -> list:
"""Build message list with optional system prompt and summary."""
prefix = []
if has_system_prompt and system_msg:
prefix.append(system_msg)
if summary_msg:
prefix.append(summary_msg)
return prefix + recent
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
if keep_count == 0:
messages = build_messages([])
if not messages:
continue
elif len(base_msgs) < keep_count:
continue
else:
reduced = _ensure_tool_pairs_intact(
base_msgs[-keep_count:],
base_msgs,
max(0, len(base_msgs) - keep_count),
)
messages = build_messages(reduced)
new_token_count = estimate_token_count(
_messages_to_dicts(messages), model=token_count_model
)
if new_token_count <= TOKEN_THRESHOLD:
logger.info(
f"Reduced to {keep_count} messages, {new_token_count} tokens"
)
break
else:
logger.error(
f"Cannot reduce below threshold. Final: {new_token_count} tokens"
)
if has_system_prompt and len(messages) > 1:
messages = messages[1:]
logger.critical("Dropped system prompt as last resort")
return ContextWindowResult(
messages, new_token_count, True, "System prompt dropped"
)
# No system prompt to drop - return error so callers don't proceed with oversized context
return ContextWindowResult(
messages,
new_token_count,
True,
"Unable to reduce context below token limit",
)
return ContextWindowResult(messages, new_token_count, True)
async def _summarize_messages( async def _summarize_messages(
messages: list, messages: list,
model: str, model: str,
@@ -1022,11 +1226,8 @@ async def _stream_chat_chunks(
logger.info("Starting pure chat stream") logger.info("Starting pure chat stream")
# Build messages with system prompt prepended
messages = session.to_openai_messages() messages = session.to_openai_messages()
if system_prompt: if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam( system_message = ChatCompletionSystemMessageParam(
role="system", role="system",
content=system_prompt, content=system_prompt,
@@ -1034,314 +1235,38 @@ async def _stream_chat_chunks(
messages = [system_message] + messages messages = [system_message] + messages
# Apply context window management # Apply context window management
token_count = 0 # Initialize for exception handler context_result = await _manage_context_window(
try: messages=messages,
from backend.util.prompt import estimate_token_count model=model,
api_key=config.api_key,
base_url=config.base_url,
)
# Convert to dict for token counting if context_result.error:
# OpenAI message types are TypedDicts, so they're already dict-like if "System prompt dropped" in context_result.error:
messages_dict = [] # Warning only - continue with reduced context
for msg in messages:
# TypedDict objects are already dicts, just filter None values
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
# Fallback for unexpected types
msg_dict = dict(msg)
messages_dict.append(msg_dict)
# Estimate tokens using appropriate tokenizer
# Normalize model name for token counting (tiktoken only supports OpenAI models)
token_count_model = model
if "/" in model:
# Strip provider prefix (e.g., "anthropic/claude-opus-4.5" -> "claude-opus-4.5")
token_count_model = model.split("/")[-1]
# For Claude and other non-OpenAI models, approximate with gpt-4o tokenizer
# Most modern LLMs have similar tokenization (~1 token per 4 chars)
if "claude" in token_count_model.lower() or not any(
known in token_count_model.lower()
for known in ["gpt", "o1", "chatgpt", "text-"]
):
token_count_model = "gpt-4o"
# Attempt token counting with error handling
try:
token_count = estimate_token_count(messages_dict, model=token_count_model)
except Exception as token_error:
# If token counting fails, use gpt-4o as fallback approximation
logger.warning(
f"Token counting failed for model {token_count_model}: {token_error}. "
"Using gpt-4o approximation."
)
token_count = estimate_token_count(messages_dict, model="gpt-4o")
# If over threshold, summarize old messages
if token_count > 120_000:
KEEP_RECENT = 15
# Check if we have a system prompt at the start
has_system_prompt = (
len(messages) > 0 and messages[0].get("role") == "system"
)
# Always attempt mitigation when over limit, even with few messages
if messages:
# Split messages based on whether system prompt exists
# Calculate start index for the slice
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
recent_messages = messages_dict[-KEEP_RECENT:]
# Ensure tool_call/tool_response pairs stay together
# This prevents API errors from orphan tool responses
recent_messages = _ensure_tool_pairs_intact(
recent_messages, messages_dict, slice_start
)
if has_system_prompt:
# Keep system prompt separate, summarize everything between system and recent
system_msg = messages[0]
old_messages_dict = messages_dict[1:-KEEP_RECENT]
else:
# No system prompt, summarize everything except recent
system_msg = None
old_messages_dict = messages_dict[:-KEEP_RECENT]
# Summarize any non-empty old messages (no minimum threshold)
# If we're over the token limit, we need to compress whatever we can
if old_messages_dict:
# Summarize old messages using the same model as chat
summary_text = await _summarize_messages(
old_messages_dict,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
# Build new message list
# Use assistant role (not system) to prevent privilege escalation
# of user-influenced content to instruction-level authority
from openai.types.chat import ChatCompletionAssistantMessageParam
summary_msg = ChatCompletionAssistantMessageParam(
role="assistant",
content=(
"[Previous conversation summary — for context only]: "
f"{summary_text}"
),
)
# Rebuild messages based on whether we have a system prompt
if has_system_prompt:
# system_prompt + summary + recent_messages
messages = [system_msg, summary_msg] + recent_messages
else:
# summary + recent_messages (no original system prompt)
messages = [summary_msg] + recent_messages
logger.info(
f"Context summarized: {token_count} tokens, "
f"summarized {len(old_messages_dict)} old messages, "
f"kept last {KEEP_RECENT} messages"
)
# Fallback: If still over limit after summarization, progressively drop recent messages
# This handles edge cases where recent messages are extremely large
new_messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count > 120_000:
# Still over limit - progressively reduce KEEP_RECENT
logger.warning(
f"Still over limit after summarization: {new_token_count} tokens. "
"Reducing number of recent messages kept."
)
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
if keep_count == 0:
# Try with just system prompt + summary (no recent messages)
if has_system_prompt:
messages = [system_msg, summary_msg]
else:
messages = [summary_msg]
logger.info(
"Trying with 0 recent messages (system + summary only)"
)
else:
# Slice from ORIGINAL recent_messages to avoid duplicating summary
reduced_recent = (
recent_messages[-keep_count:]
if len(recent_messages) >= keep_count
else recent_messages
)
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(
0, len(recent_messages) - keep_count
)
reduced_recent = _ensure_tool_pairs_intact(
reduced_recent, recent_messages, reduced_slice_start
)
if has_system_prompt:
messages = [
system_msg,
summary_msg,
] + reduced_recent
else:
messages = [summary_msg] + reduced_recent
new_messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {
k: v for k, v in msg.items() if v is not None
}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count <= 120_000:
logger.info(
f"Reduced to {keep_count} recent messages, "
f"now {new_token_count} tokens"
)
break
else:
logger.error(
f"Unable to reduce token count below threshold even with 0 messages. "
f"Final count: {new_token_count} tokens"
)
# ABSOLUTE LAST RESORT: Drop system prompt
# This should only happen if summary itself is massive
if has_system_prompt and len(messages) > 1:
messages = messages[1:] # Drop system prompt
logger.critical(
"CRITICAL: Dropped system prompt as absolute last resort. "
"Behavioral consistency may be affected."
)
# Yield error to user
yield StreamError(
errorText=(
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
else:
# No old messages to summarize - all messages are "recent"
# Apply progressive truncation to reduce token count
logger.warning(
f"Token count {token_count} exceeds threshold but no old messages to summarize. "
f"Applying progressive truncation to recent messages."
)
# Create a base list excluding system prompt to avoid duplication
# This is the pool of messages we'll slice from in the loop
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
base_msgs = (
messages_dict[1:] if has_system_prompt else messages_dict
)
# Try progressively smaller keep counts
new_token_count = token_count # Initialize with current count
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
if keep_count == 0:
# Try with just system prompt (no recent messages)
if has_system_prompt:
messages = [system_msg]
logger.info(
"Trying with 0 recent messages (system prompt only)"
)
else:
# No system prompt and no recent messages = empty messages list
# This is invalid, skip this iteration
continue
else:
if len(base_msgs) < keep_count:
continue # Skip if we don't have enough messages
# Slice from base_msgs to get recent messages (without system prompt)
recent_messages = base_msgs[-keep_count:]
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(0, len(base_msgs) - keep_count)
recent_messages = _ensure_tool_pairs_intact(
recent_messages, base_msgs, reduced_slice_start
)
if has_system_prompt:
messages = [system_msg] + recent_messages
else:
messages = recent_messages
new_messages_dict = []
for msg in messages:
if msg is None:
continue # Skip None messages (type safety)
if isinstance(msg, dict):
msg_dict = {
k: v for k, v in msg.items() if v is not None
}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count <= 120_000:
logger.info(
f"Reduced to {keep_count} recent messages, "
f"now {new_token_count} tokens"
)
break
else:
# Even with 0 messages still over limit
logger.error(
f"Unable to reduce token count below threshold even with 0 messages. "
f"Final count: {new_token_count} tokens. Messages may be extremely large."
)
# ABSOLUTE LAST RESORT: Drop system prompt
if has_system_prompt and len(messages) > 1:
messages = messages[1:] # Drop system prompt
logger.critical(
"CRITICAL: Dropped system prompt as absolute last resort. "
"Behavioral consistency may be affected."
)
# Yield error to user
yield StreamError(
errorText=(
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
except Exception as e:
logger.error(f"Context summarization failed: {e}", exc_info=True)
# If we were over the token limit, yield error to user
# Don't silently continue with oversized messages that will fail
if token_count > 120_000:
yield StreamError( yield StreamError(
errorText=( errorText=(
f"Unable to manage context window (token limit exceeded: {token_count} tokens). " "Warning: System prompt dropped due to size constraints. "
"Context summarization failed. Please start a new conversation." "Assistant behavior may be affected."
)
)
else:
# Any other error - abort to prevent failed LLM calls
yield StreamError(
errorText=(
f"Context window management failed: {context_result.error}. "
"Please start a new conversation."
) )
) )
yield StreamFinish() yield StreamFinish()
return return
# Otherwise, continue with original messages (under limit)
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for streaming: {context_result.token_count} tokens"
)
# Loop to handle tool calls and continue conversation # Loop to handle tool calls and continue conversation
while True: while True:
@@ -1369,14 +1294,6 @@ async def _stream_chat_chunks(
:128 :128
] # OpenRouter limit ] # OpenRouter limit
# Create the stream with proper types
from typing import cast
from openai.types.chat import (
ChatCompletionMessageParam,
ChatCompletionStreamOptionsParam,
)
stream = await client.chat.completions.create( stream = await client.chat.completions.create(
model=model, model=model,
messages=cast(list[ChatCompletionMessageParam], messages), messages=cast(list[ChatCompletionMessageParam], messages),
@@ -1502,6 +1419,7 @@ async def _stream_chat_chunks(
return return
except Exception as e: except Exception as e:
last_error = e last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES: if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1 retry_count += 1
# Calculate delay with exponential backoff # Calculate delay with exponential backoff
@@ -1517,12 +1435,24 @@ async def _stream_chat_chunks(
continue # Retry the stream continue # Retry the stream
else: else:
# Non-retryable error or max retries exceeded # Non-retryable error or max retries exceeded
logger.error( _log_api_error(
f"Error in stream (not retrying): {e!s}", error=e,
exc_info=True, session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=retry_count,
) )
error_code = None error_code = None
error_text = str(e) error_text = str(e)
error_details = _extract_api_error_details(e)
if error_details.get("response_body"):
body = error_details["response_body"]
if isinstance(body, dict) and body.get("error", {}).get(
"message"
):
error_text = body["error"]["message"]
if _is_region_blocked_error(e): if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION" error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = ( error_text = (
@@ -1539,9 +1469,12 @@ async def _stream_chat_chunks(
# If we exit the retry loop without returning, it means we exhausted retries # If we exit the retry loop without returning, it means we exhausted retries
if last_error: if last_error:
logger.error( _log_api_error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}", error=last_error,
exc_info=True, session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=MAX_RETRIES,
) )
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}") yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish() yield StreamFinish()
@@ -1900,17 +1833,36 @@ async def _generate_llm_continuation(
# Build system prompt # Build system prompt
system_prompt, _ = await _build_system_prompt(user_id) system_prompt, _ = await _build_system_prompt(user_id)
# Build messages in OpenAI format
messages = session.to_openai_messages() messages = session.to_openai_messages()
if system_prompt: if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam( system_message = ChatCompletionSystemMessageParam(
role="system", role="system",
content=system_prompt, content=system_prompt,
) )
messages = [system_message] + messages messages = [system_message] + messages
# Apply context window management to prevent oversized requests
context_result = await _manage_context_window(
messages=messages,
model=config.model,
api_key=config.api_key,
base_url=config.base_url,
)
if context_result.error and "System prompt dropped" not in context_result.error:
logger.error(
f"Context window management failed for session {session_id}: "
f"{context_result.error} (tokens={context_result.token_count})"
)
return
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for LLM continuation: "
f"{context_result.token_count} tokens"
)
# Build extra_body for tracing # Build extra_body for tracing
extra_body: dict[str, Any] = { extra_body: dict[str, Any] = {
"posthogProperties": { "posthogProperties": {
@@ -1923,19 +1875,61 @@ async def _generate_llm_continuation(
if session_id: if session_id:
extra_body["session_id"] = session_id[:128] extra_body["session_id"] = session_id[:128]
# Make non-streaming LLM call (no tools - just text response) retry_count = 0
from typing import cast last_error: Exception | None = None
response = None
from openai.types.chat import ChatCompletionMessageParam while retry_count <= MAX_RETRIES:
try:
logger.info(
f"Generating LLM continuation for session {session_id}"
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
)
# No tools parameter = text-only response (no tool calls) response = await client.chat.completions.create(
response = await client.chat.completions.create( model=config.model,
model=config.model, messages=cast(list[ChatCompletionMessageParam], messages),
messages=cast(list[ChatCompletionMessageParam], messages), extra_body=extra_body,
extra_body=extra_body, )
) last_error = None # Clear any previous error on success
break # Success, exit retry loop
except Exception as e:
last_error = e
if response.choices and response.choices[0].message.content: if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
MAX_DELAY_SECONDS,
)
logger.warning(
f"Retryable error in LLM continuation: {e!s}. "
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
)
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log details and exit gracefully
_log_api_error(
error=e,
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=retry_count,
)
return
if last_error:
_log_api_error(
error=last_error,
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=MAX_RETRIES,
)
return
if response and response.choices and response.choices[0].message.content:
assistant_content = response.choices[0].message.content assistant_content = response.choices[0].message.content
# Reload session from DB to avoid race condition with user messages # Reload session from DB to avoid race condition with user messages
@@ -1969,3 +1963,78 @@ async def _generate_llm_continuation(
except Exception as e: except Exception as e:
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True) logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
def _log_api_error(
error: Exception,
session_id: str | None = None,
message_count: int | None = None,
model: str | None = None,
retry_count: int = 0,
) -> None:
"""Log detailed API error information for debugging."""
details = _extract_api_error_details(error)
details["session_id"] = session_id
details["message_count"] = message_count
details["model"] = model
details["retry_count"] = retry_count
if isinstance(error, RateLimitError):
logger.warning(f"Rate limit error: {details}")
elif isinstance(error, APIConnectionError):
logger.warning(f"API connection error: {details}")
elif isinstance(error, APIStatusError) and error.status_code >= 500:
logger.error(f"API server error (5xx): {details}")
else:
logger.error(f"API error: {details}")
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
"""Extract detailed information from OpenAI/OpenRouter API errors."""
error_msg = str(error)
details: dict[str, Any] = {
"error_type": type(error).__name__,
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
}
if hasattr(error, "code"):
details["code"] = error.code
if hasattr(error, "param"):
details["param"] = error.param
if isinstance(error, APIStatusError):
details["status_code"] = error.status_code
details["request_id"] = getattr(error, "request_id", None)
if hasattr(error, "body") and error.body:
details["response_body"] = _sanitize_error_body(error.body)
if hasattr(error, "response") and error.response:
headers = error.response.headers
details["openrouter_provider"] = headers.get("x-openrouter-provider")
details["openrouter_model"] = headers.get("x-openrouter-model")
details["retry_after"] = headers.get("retry-after")
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
return details
def _sanitize_error_body(body: Any, max_length: int = 2000) -> dict[str, Any] | None:
"""Extract only safe fields from error response body to avoid logging sensitive data."""
if not isinstance(body, dict):
return None
safe_fields = ("message", "type", "code", "param", "error")
sanitized: dict[str, Any] = {}
for field in safe_fields:
if field in body:
value = body[field]
if field == "error" and isinstance(value, dict):
sanitized[field] = _sanitize_error_body(value, max_length)
elif isinstance(value, str) and len(value) > max_length:
sanitized[field] = value[:max_length] + "...[truncated]"
else:
sanitized[field] = value
return sanitized if sanitized else None

View File

@@ -139,11 +139,10 @@ async def decompose_goal_external(
""" """
client = _get_client() client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context: if context:
# The external service uses user_instruction for additional context description = f"{description}\n\nAdditional context from user:\n{context}"
payload["user_instruction"] = context
payload: dict[str, Any] = {"description": description}
if library_agents: if library_agents:
payload["library_agents"] = library_agents payload["library_agents"] = library_agents

View File

@@ -66,18 +66,24 @@ async def event_broadcaster(manager: ConnectionManager):
execution_bus = AsyncRedisExecutionEventBus() execution_bus = AsyncRedisExecutionEventBus()
notification_bus = AsyncRedisNotificationEventBus() notification_bus = AsyncRedisNotificationEventBus()
async def execution_worker(): try:
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
async def notification_worker(): async def execution_worker():
async for notification in notification_bus.listen("*"): async for event in execution_bus.listen("*"):
await manager.send_notification( await manager.send_execution_update(event)
user_id=notification.user_id,
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker()) async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
async def authenticate_websocket(websocket: WebSocket) -> str: async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -133,10 +133,23 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC): class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
def __init__(self):
self._pubsub: AsyncPubSub | None = None
@property @property
async def connection(self) -> redis.AsyncRedis: async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async() return await redis.get_redis_async()
async def close(self) -> None:
"""Close the PubSub connection if it exists."""
if self._pubsub is not None:
try:
await self._pubsub.close()
except Exception:
logger.warning("Failed to close PubSub connection", exc_info=True)
finally:
self._pubsub = None
async def publish_event(self, event: M, channel_key: str): async def publish_event(self, event: M, channel_key: str):
""" """
Publish an event to Redis. Gracefully handles connection failures Publish an event to Redis. Gracefully handles connection failures
@@ -157,6 +170,7 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
await self.connection, channel_key await self.connection, channel_key
) )
assert isinstance(pubsub, AsyncPubSub) assert isinstance(pubsub, AsyncPubSub)
self._pubsub = pubsub
if "*" in channel_key: if "*" in channel_key:
await pubsub.psubscribe(full_channel_name) await pubsub.psubscribe(full_channel_name)

View File

@@ -102,7 +102,7 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_decompose_goal_with_context(self): async def test_decompose_goal_with_context(self):
"""Test decomposition with additional context.""" """Test decomposition with additional context enriched into description."""
mock_response = MagicMock() mock_response = MagicMock()
mock_response.json.return_value = { mock_response.json.return_value = {
"success": True, "success": True,
@@ -119,9 +119,12 @@ class TestDecomposeGoalExternal:
"Build a chatbot", context="Use Python" "Build a chatbot", context="Use Python"
) )
expected_description = (
"Build a chatbot\n\nAdditional context from user:\nUse Python"
)
mock_client.post.assert_called_once_with( mock_client.post.assert_called_once_with(
"/api/decompose-description", "/api/decompose-description",
json={"description": "Build a chatbot", "user_instruction": "Use Python"}, json={"description": expected_description},
) )
@pytest.mark.asyncio @pytest.mark.asyncio

View File

@@ -124,4 +124,3 @@ test("user can signup with existing email handling", async ({
console.error("❌ Duplicate email handling test failed:", error); console.error("❌ Duplicate email handling test failed:", error);
} }
}); });