Compare commits

..

19 Commits

Author SHA1 Message Date
Krzysztof Czerwinski
d897c99682 Move migration 2026-01-29 19:10:03 +09:00
Krzysztof Czerwinski
250a640a6a Merge branch 'dev' into kpczerwinski/secrt-1778-update-new-builder-search 2026-01-29 17:23:12 +09:00
Krzysztof Czerwinski
449834fcb2 Update migration 2026-01-29 17:22:48 +09:00
Krzysztof Czerwinski
8e65854458 Update migration 2026-01-28 16:41:25 +09:00
Krzysztof Czerwinski
dd3b4c3527 Lint 2026-01-28 15:37:09 +09:00
Krzysztof Czerwinski
a844d14d18 Fix search filter types 2026-01-28 15:26:40 +09:00
Krzysztof Czerwinski
ca1df77c20 Merge branch 'dev' into kpczerwinski/secrt-1778-update-new-builder-search 2026-01-28 14:41:46 +09:00
Krzysztof Czerwinski
8f7429e3fd Format 2026-01-27 19:01:23 +09:00
Krzysztof Czerwinski
6935661ea5 Rename Block suffix from blocks names in builder 2026-01-27 19:00:39 +09:00
Krzysztof Czerwinski
1ea47eacbd Exclude AgentExecutorBlock from builder blocks 2026-01-27 18:59:57 +09:00
Krzysztof Czerwinski
a733dd5b4b Move migration 2026-01-27 18:26:19 +09:00
Krzysztof Czerwinski
cfa2464918 Fix 2026-01-27 17:29:08 +09:00
Krzysztof Czerwinski
eb1c2a04a2 Merge branch 'dev' into kpczerwinski/secrt-1778-update-new-builder-search 2026-01-27 16:15:50 +09:00
Krzysztof Czerwinski
9594a0bc23 Your Agent badge 2026-01-27 16:15:40 +09:00
Krzysztof Czerwinski
5ee71a86c7 Update openapi schema 2026-01-27 16:15:22 +09:00
Krzysztof Czerwinski
af85c4a3a9 Update builder search 2026-01-20 16:43:27 +09:00
Krzysztof Czerwinski
43794c71fa Hybrid search in builder 2026-01-20 16:34:39 +09:00
Krzysztof Czerwinski
259eff725e Add materialized view for suggested blocks 2026-01-20 15:55:36 +09:00
Krzysztof Czerwinski
9577b93576 Update routes 2026-01-20 15:15:24 +09:00
84 changed files with 1007 additions and 3755 deletions

View File

@@ -29,7 +29,8 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install"
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/api/features/`
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,5 +178,4 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs

View File

@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
## Component Documentation
## Essential Commands
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
### Backend Development
## Key Concepts
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
#### Docker Environment Loading Order
@@ -45,12 +167,127 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Handling files in blocks with `store_media_file()`:**
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -1,170 +0,0 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/api/conftest.py`:
Two global auth fixtures are provided by `backend/server/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -1,16 +1,17 @@
import logging
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from difflib import SequenceMatcher
from typing import Sequence
import prisma
from prisma.enums import ContentType
import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
@@ -37,6 +38,16 @@ MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
# Boost blocks over marketplace agents in search results
BLOCK_SCORE_BOOST = 50.0
# Block IDs to exclude from search results
EXCLUDED_BLOCK_IDS = frozenset(
{
"e189baac-8c20-45a1-94a7-55177ea42565", # AgentExecutorBlock
}
)
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
@@ -111,6 +122,9 @@ def get_blocks(
# Skip disabled blocks
if block.disabled:
continue
# Skip excluded blocks
if block.id in EXCLUDED_BLOCK_IDS:
continue
# Skip blocks that don't match the category
if category and category not in {c.name.lower() for c in block.categories}:
continue
@@ -250,14 +264,25 @@ async def _build_cached_search_results(
"my_agents": 0,
}
block_results, block_total, integration_total = _collect_block_results(
normalized_query=normalized_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
# Use hybrid search when query is present, otherwise list all blocks
if (include_blocks or include_integrations) and normalized_query:
block_results, block_total, integration_total = await _hybrid_search_blocks(
query=search_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
elif include_blocks or include_integrations:
# No query - list all blocks using in-memory approach
block_results, block_total, integration_total = _collect_block_results(
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
if include_library_agents:
library_response = await library_db.list_library_agents(
@@ -302,10 +327,14 @@ async def _build_cached_search_results(
def _collect_block_results(
*,
normalized_query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
"""
Collect all blocks for listing (no search query).
All blocks get BLOCK_SCORE_BOOST to prioritize them over marketplace agents.
"""
results: list[_ScoredItem] = []
block_count = 0
integration_count = 0
@@ -318,6 +347,10 @@ def _collect_block_results(
if block.disabled:
continue
# Skip excluded blocks
if block.id in EXCLUDED_BLOCK_IDS:
continue
block_info = block.get_info()
credentials = list(block.input_schema.get_credentials_fields().values())
is_integration = len(credentials) > 0
@@ -327,10 +360,6 @@ def _collect_block_results(
if not is_integration and not include_blocks:
continue
score = _score_block(block, block_info, normalized_query)
if not _should_include_item(score, normalized_query):
continue
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
integration_count += 1
@@ -341,8 +370,116 @@ def _collect_block_results(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=score,
sort_key=_get_item_name(block_info),
score=BLOCK_SCORE_BOOST,
sort_key=block_info.name.lower(),
)
)
return results, block_count, integration_count
async def _hybrid_search_blocks(
*,
query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
"""
Search blocks using hybrid search with builder-specific filtering.
Uses unified_hybrid_search for semantic + lexical search, then applies
post-filtering for block/integration types and LLM model bonus scoring.
Args:
query: The search query string
include_blocks: Whether to include regular blocks
include_integrations: Whether to include integration blocks
Returns:
Tuple of (scored_items, block_count, integration_count)
"""
results: list[_ScoredItem] = []
block_count = 0
integration_count = 0
if not include_blocks and not include_integrations:
return results, block_count, integration_count
normalized_query = query.strip().lower()
# Fetch more results to account for post-filtering
search_results, _ = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=150,
min_score=0.10,
)
# Load all blocks for getting BlockInfo
all_blocks = load_all_blocks()
for result in search_results:
block_id = result["content_id"]
# Skip excluded blocks
if block_id in EXCLUDED_BLOCK_IDS:
continue
metadata = result.get("metadata", {})
hybrid_score = result.get("relevance", 0.0)
# Get the actual block class
if block_id not in all_blocks:
continue
block_cls = all_blocks[block_id]
block: AnyBlockSchema = block_cls()
if block.disabled:
continue
# Check block/integration filter using metadata
is_integration = metadata.get("is_integration", False)
if is_integration and not include_integrations:
continue
if not is_integration and not include_blocks:
continue
# Get block info
block_info = block.get_info()
# Calculate final score: scale hybrid score and add builder-specific bonuses
# Hybrid scores are 0-1, builder scores were 0-200+
# Add BLOCK_SCORE_BOOST to prioritize blocks over marketplace agents
final_score = hybrid_score * 100 + BLOCK_SCORE_BOOST
# Add LLM model match bonus
has_llm_field = metadata.get("has_llm_model_field", False)
if has_llm_field and _matches_llm_model(block.input_schema, normalized_query):
final_score += 20
# Add exact/prefix match bonus for deterministic tie-breaking
name = block_info.name.lower()
if name == normalized_query:
final_score += 30
elif name.startswith(normalized_query):
final_score += 15
# Track counts
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
integration_count += 1
else:
block_count += 1
results.append(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=final_score,
sort_key=name,
)
)
@@ -502,38 +639,6 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
return False
def _score_block(
block: AnyBlockSchema,
block_info: BlockInfo,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = block_info.name.lower()
description = block_info.description.lower()
score = _score_primary_fields(name, description, normalized_query)
category_text = " ".join(
category.get("category", "").lower() for category in block_info.categories
)
score += _score_additional_field(category_text, normalized_query, 12, 6)
credentials_info = block.input_schema.get_credentials_fields_info().values()
provider_names = [
provider.value.lower()
for info in credentials_info
for provider in info.provider
]
provider_text = " ".join(provider_names)
score += _score_additional_field(provider_text, normalized_query, 15, 6)
if _matches_llm_model(block.input_schema, normalized_query):
score += 20
return score
def _score_library_agent(
agent: library_model.LibraryAgent,
normalized_query: str,
@@ -640,26 +745,15 @@ def _get_all_providers() -> dict[ProviderName, Provider]:
return providers
@cached(ttl_seconds=3600)
@cached(ttl_seconds=3600, shared_cache=True)
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
suggested_blocks = []
# Sum the number of executions for each block type
# Prisma cannot group by nested relations, so we do a raw query
# Calculate the cutoff timestamp
timestamp_threshold = datetime.now(timezone.utc) - timedelta(days=30)
# Query the materialized view for execution counts per block
# The view aggregates executions from the last 14 days and is refreshed hourly
results = await query_raw_with_schema(
"""
SELECT
agent_node."agentBlockId" AS block_id,
COUNT(execution.id) AS execution_count
FROM {schema_prefix}"AgentNodeExecution" execution
JOIN {schema_prefix}"AgentNode" agent_node ON execution."agentNodeId" = agent_node.id
WHERE execution."endedTime" >= $1::timestamp
GROUP BY agent_node."agentBlockId"
ORDER BY execution_count DESC;
""",
timestamp_threshold,
SELECT block_id, execution_count
FROM {schema_prefix}"mv_suggested_blocks";
"""
)
# Get the top blocks based on execution count

View File

@@ -27,7 +27,6 @@ class SearchEntry(BaseModel):
# Suggestions
class SuggestionsResponse(BaseModel):
otto_suggestions: list[str]
recent_searches: list[SearchEntry]
providers: list[ProviderName]
top_blocks: list[BlockInfo]

View File

@@ -1,5 +1,5 @@
import logging
from typing import Annotated, Sequence
from typing import Annotated, Sequence, cast, get_args
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
@@ -10,6 +10,8 @@ from backend.util.models import Pagination
from . import db as builder_db
from . import model as builder_model
VALID_FILTER_VALUES = get_args(builder_model.FilterType)
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
@@ -17,7 +19,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/api/features/store/db.py
# Taken from backend/server/v2/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query
@@ -49,11 +51,6 @@ async def get_suggestions(
Get all suggestions for the Blocks Menu.
"""
return builder_model.SuggestionsResponse(
otto_suggestions=[
"What blocks do I need to get started?",
"Help me create a list",
"Help me feed my data to Google Maps",
],
recent_searches=await builder_db.get_recent_searches(user_id),
providers=[
ProviderName.TWITTER,
@@ -151,7 +148,7 @@ async def get_providers(
async def search(
user_id: Annotated[str, fastapi.Security(get_user_id)],
search_query: Annotated[str | None, fastapi.Query()] = None,
filter: Annotated[list[builder_model.FilterType] | None, fastapi.Query()] = None,
filter: Annotated[str | None, fastapi.Query()] = None,
search_id: Annotated[str | None, fastapi.Query()] = None,
by_creator: Annotated[list[str] | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
@@ -160,9 +157,20 @@ async def search(
"""
Search for blocks (including integrations), marketplace agents, and user library agents.
"""
# If no filters are provided, then we will return all types
if not filter:
filter = [
# Parse and validate filter parameter
filters: list[builder_model.FilterType]
if filter:
filter_values = [f.strip() for f in filter.split(",")]
invalid_filters = [f for f in filter_values if f not in VALID_FILTER_VALUES]
if invalid_filters:
raise fastapi.HTTPException(
status_code=400,
detail=f"Invalid filter value(s): {', '.join(invalid_filters)}. "
f"Valid values are: {', '.join(VALID_FILTER_VALUES)}",
)
filters = cast(list[builder_model.FilterType], filter_values)
else:
filters = [
"blocks",
"integrations",
"marketplace_agents",
@@ -174,7 +182,7 @@ async def search(
cached_results = await builder_db.get_sorted_search_results(
user_id=user_id,
search_query=search_query,
filters=filter,
filters=filters,
by_creator=by_creator,
)
@@ -196,7 +204,7 @@ async def search(
user_id,
builder_model.SearchEntry(
search_query=search_query,
filter=filter,
filter=filters,
by_creator=by_creator,
search_id=search_id,
),

View File

@@ -1834,11 +1834,6 @@ async def _execute_long_running_tool(
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally:
await _mark_operation_completed(tool_call_id)

View File

@@ -2,54 +2,27 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
# Core functions
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"get_agent_as_json",
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
]

View File

@@ -1,22 +1,11 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any, NotRequired, TypedDict
from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.data.graph import Graph, Link, Node, create_graph
from .service import (
decompose_goal_external,
@@ -27,74 +16,6 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -115,422 +36,15 @@ def _check_service_configured() -> None:
)
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
DecompositionResult with either:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -540,36 +54,26 @@ async def decompose_goal(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
return await decompose_goal_external(description, context)
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents)
)
result = await generate_agent_external(instructions)
if result:
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -579,12 +83,6 @@ async def generate_agent(
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -593,55 +91,25 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
for n in agent_json.get("nodes", []):
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=block_id,
block_id=n["block_id"],
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
for link_data in agent_json.get("links", []):
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -662,40 +130,22 @@ def _reassign_node_ids(graph: Graph) -> None:
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4())
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -709,27 +159,33 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
@@ -741,31 +197,25 @@ async def save_agent_to_library(
async def get_agent_as_json(
agent_id: str, user_id: str | None
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
agent_id: Graph ID or library agent ID
graph_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -803,9 +253,7 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -817,17 +265,13 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(
update_request, current_agent, _to_dict_list(library_agents)
)
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -1,95 +0,0 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
base_message = (
validation_message
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
base_message = "The service is currently busy. Please try again in a moment."
else:
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -14,70 +14,6 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -117,16 +53,13 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -134,8 +67,7 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
Or None on error
"""
client = _get_client()
@@ -144,8 +76,6 @@ async def decompose_goal_external(
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -153,13 +83,8 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
@@ -181,120 +106,88 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
return None
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict on success, or error dict {"type": "error", ...} on error
Agent JSON dict or None on error
"""
client = _get_client()
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/generate-agent", json=payload)
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict, or error dict on error
Updated agent JSON, clarifying questions dict, or None on error
"""
client = _get_client()
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/update-agent", json=payload)
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -303,28 +196,18 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -1,7 +1,6 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -20,85 +19,6 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -149,37 +69,29 @@ async def search_agents(
is_featured=False,
)
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass

View File

@@ -8,10 +8,7 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -105,24 +102,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(
description, context, library_agents
)
decomposition_result = await decompose_goal(description, context)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -135,31 +117,15 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
"description": description[:100]
}, # Include context for debugging
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -178,6 +144,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -204,22 +171,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result, library_agents)
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -232,34 +186,11 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
"description": description[:100]
}, # Include context for debugging
session_id=session_id,
)
@@ -268,6 +199,7 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -282,6 +214,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -299,7 +232,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -9,8 +9,6 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -118,6 +116,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -127,30 +126,14 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Build the update request with context
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(
update_request, current_agent, library_agents
)
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -169,28 +152,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -209,6 +171,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -216,6 +179,7 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -231,6 +195,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -248,7 +213,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -266,14 +266,13 @@ async def match_user_credentials_to_graph(
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
# Find first matching credential by provider and type
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -297,17 +296,10 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} (requires {', '.join(error_parts)})"
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
)
logger.info(
@@ -317,28 +309,6 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -39,7 +39,6 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -50,9 +49,6 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -80,6 +76,7 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -96,6 +93,7 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -107,7 +105,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=include_executions
user_id, include_nodes=False, include_executions=False
),
order=order_by,
skip=(page - 1) * page_size,

View File

@@ -9,7 +9,6 @@ import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -17,10 +16,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -40,30 +39,6 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -73,7 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -89,7 +64,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any]
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -106,19 +81,25 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
# Whether the user can access the underlying graph
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -142,6 +123,7 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -154,6 +136,7 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -162,55 +145,13 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
# Hard-coded to True until a method to check is implemented
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -249,15 +190,11 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=_parse_settings(agent.settings),
settings=GraphSettings.model_validate(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -283,15 +220,18 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:

View File

@@ -229,6 +229,28 @@ class BlockHandler(ContentHandler):
[cat.value for cat in categories] if categories else []
)
# Extract provider names from credentials fields
provider_names: list[str] = []
is_integration = False
if hasattr(block_instance, "input_schema"):
credentials_info = (
block_instance.input_schema.get_credentials_fields_info()
)
is_integration = len(credentials_info) > 0
for info in credentials_info.values():
for provider in info.provider:
provider_names.append(provider.value.lower())
# Check if block has LlmModel field in input schema
has_llm_model_field = False
if hasattr(block_instance, "input_schema"):
from backend.blocks.llm import LlmModel
for field in block_instance.input_schema.model_fields.values():
if field.annotation == LlmModel:
has_llm_model_field = True
break
items.append(
ContentItem(
content_id=block_id,
@@ -237,6 +259,9 @@ class BlockHandler(ContentHandler):
metadata={
"name": getattr(block_instance, "name", ""),
"categories": categories_list,
"providers": provider_names,
"has_llm_model_field": has_llm_model_field,
"is_integration": is_integration,
},
user_id=None, # Blocks are public
)

View File

@@ -112,7 +112,6 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -171,7 +170,6 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)

View File

@@ -600,7 +600,6 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
sa."agentGraphId",
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
@@ -660,7 +659,6 @@ async def hybrid_search(
featured,
is_available,
updated_at,
"agentGraphId",
searchable_text,
semantic_score,
lexical_score,

View File

@@ -38,7 +38,6 @@ class StoreAgent(pydantic.BaseModel):
description: str
runs: int
rating: float
agent_graph_id: str
class StoreAgentsResponse(pydantic.BaseModel):

View File

@@ -26,13 +26,11 @@ def test_store_agent():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
assert agent.slug == "test-agent"
assert agent.agent_name == "Test Agent"
assert agent.runs == 50
assert agent.rating == 4.5
assert agent.agent_graph_id == "test-graph-id"
def test_store_agents_response():
@@ -48,7 +46,6 @@ def test_store_agents_response():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=store_model.Pagination(

View File

@@ -82,7 +82,6 @@ def test_get_agents_featured(
description="Featured agent description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-1",
)
],
pagination=store_model.Pagination(
@@ -128,7 +127,6 @@ def test_get_agents_by_creator(
description="Creator agent description",
runs=50,
rating=4.0,
agent_graph_id="test-graph-2",
)
],
pagination=store_model.Pagination(
@@ -174,7 +172,6 @@ def test_get_agents_sorted(
description="Top agent description",
runs=1000,
rating=5.0,
agent_graph_id="test-graph-3",
)
],
pagination=store_model.Pagination(
@@ -220,7 +217,6 @@ def test_get_agents_search(
description="Specific search term description",
runs=75,
rating=4.2,
agent_graph_id="test-graph-search",
)
],
pagination=store_model.Pagination(
@@ -266,7 +262,6 @@ def test_get_agents_category(
description="Category agent description",
runs=60,
rating=4.1,
agent_graph_id="test-graph-category",
)
],
pagination=store_model.Pagination(
@@ -311,7 +306,6 @@ def test_get_agents_pagination(
description=f"Agent {i} description",
runs=i * 10,
rating=4.0,
agent_graph_id="test-graph-2",
)
for i in range(5)
],

View File

@@ -33,7 +33,6 @@ class TestCacheDeletion:
description="Test description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=Pagination(

View File

@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -279,6 +280,9 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307

View File

@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
@property
def provider_name(self) -> str:
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()

View File

@@ -81,6 +81,7 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,

View File

@@ -1028,39 +1028,6 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings
"""
if not graph_ids:
return {}
store_listings = await StoreListingVersion.prisma().find_many(
where={
"agentGraphId": {"in": list(graph_ids)},
"submissionStatus": SubmissionStatus.APPROVED,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
distinct=["agentGraphId"],
order={"agentGraphVersion": "desc"},
)
return {
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
for listing in store_listings
if listing.AgentGraph
}
async def get_graph_as_admin(
graph_id: str,
version: int | None = None,

View File

@@ -666,16 +666,10 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
if not (self.discriminator and self.discriminator_mapping):
return self
try:
provider = self.discriminator_mapping[discriminator_value]
except KeyError:
raise ValueError(
f"Model '{discriminator_value}' is not supported. "
"It may have been deprecated. Please update your agent configuration."
)
return CredentialsFieldInfo(
credentials_provider=frozenset([provider]),
credentials_provider=frozenset(
[self.discriminator_mapping[discriminator_value]]
),
credentials_types=self.supported_types,
credentials_scopes=self.required_scopes,
discriminator=self.discriminator,

View File

@@ -1,39 +0,0 @@
from urllib.parse import urlparse
import fastapi
from fastapi.routing import APIRoute
from backend.api.features.integrations.router import router as integrations_router
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import utils as webhooks_utils
def test_webhook_ingress_url_matches_route(monkeypatch) -> None:
app = fastapi.FastAPI()
app.include_router(integrations_router, prefix="/api/integrations")
provider = ProviderName.GITHUB
webhook_id = "webhook_123"
base_url = "https://example.com"
monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url)
route = next(
route
for route in integrations_router.routes
if isinstance(route, APIRoute)
and route.path == "/{provider}/webhooks/{webhook_id}/ingress"
and "POST" in route.methods
)
expected_path = f"/api/integrations{route.path}".format(
provider=provider.value,
webhook_id=webhook_id,
)
actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id))
expected_base = urlparse(base_url)
assert (actual_url.scheme, actual_url.netloc) == (
expected_base.scheme,
expected_base.netloc,
)
assert actual_url.path == expected_path

View File

@@ -1,22 +0,0 @@
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
-- Update AgentNode constant inputs
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';

View File

@@ -0,0 +1,109 @@
-- This migration creates a materialized view for suggested blocks based on execution counts
-- The view aggregates execution counts per block for the last 14 days
--
-- IMPORTANT: For production environments, pg_cron is REQUIRED for automatic refresh
-- Prerequisites for production:
-- 1. pg_cron extension must be installed: CREATE EXTENSION pg_cron;
-- 2. pg_cron must be configured in postgresql.conf:
-- shared_preload_libraries = 'pg_cron'
-- cron.database_name = 'your_database_name'
--
-- For development environments without pg_cron:
-- The migration will succeed but you must manually refresh views with:
-- SET search_path TO platform;
-- SELECT refresh_suggested_blocks_view();
-- Check if pg_cron extension is installed and set a flag
DO $$
DECLARE
has_pg_cron BOOLEAN;
BEGIN
SELECT EXISTS (SELECT 1 FROM pg_extension WHERE extname = 'pg_cron') INTO has_pg_cron;
IF NOT has_pg_cron THEN
RAISE WARNING 'pg_cron extension is not installed!';
RAISE WARNING 'Materialized view will be created but WILL NOT refresh automatically.';
RAISE WARNING 'For production use, install pg_cron with: CREATE EXTENSION pg_cron;';
RAISE WARNING 'For development, manually refresh with: SELECT refresh_suggested_blocks_view();';
END IF;
-- Store the flag for later use in the migration
PERFORM set_config('migration.has_pg_cron', has_pg_cron::text, false);
END
$$;
-- Create materialized view for suggested blocks based on execution counts in last 14 days
-- The 14-day threshold is hardcoded to ensure consistent behavior
CREATE MATERIALIZED VIEW IF NOT EXISTS "mv_suggested_blocks" AS
SELECT
agent_node."agentBlockId" AS block_id,
COUNT(execution.id) AS execution_count
FROM "AgentNodeExecution" execution
JOIN "AgentNode" agent_node ON execution."agentNodeId" = agent_node.id
WHERE execution."endedTime" >= (NOW() - INTERVAL '14 days')
GROUP BY agent_node."agentBlockId"
ORDER BY execution_count DESC;
-- Create unique index for concurrent refresh support
CREATE UNIQUE INDEX IF NOT EXISTS "idx_mv_suggested_blocks_block_id" ON "mv_suggested_blocks"("block_id");
-- Create refresh function
CREATE OR REPLACE FUNCTION refresh_suggested_blocks_view()
RETURNS void
LANGUAGE plpgsql
AS $$
DECLARE
current_schema_name text;
BEGIN
-- Get the current schema
current_schema_name := current_schema();
-- Use CONCURRENTLY for better performance during refresh (schema-qualified)
EXECUTE format('REFRESH MATERIALIZED VIEW CONCURRENTLY %I."mv_suggested_blocks"', current_schema_name);
RAISE NOTICE 'Suggested blocks materialized view refreshed in schema % at %', current_schema_name, NOW();
EXCEPTION
WHEN OTHERS THEN
-- Fallback to non-concurrent refresh if concurrent fails
EXECUTE format('REFRESH MATERIALIZED VIEW %I."mv_suggested_blocks"', current_schema_name);
RAISE NOTICE 'Suggested blocks materialized view refreshed (non-concurrent) in schema % at %. Concurrent refresh failed due to: %', current_schema_name, NOW(), SQLERRM;
END;
$$;
-- Initial refresh of the materialized view
SELECT refresh_suggested_blocks_view();
-- Schedule automatic refresh every hour (only if pg_cron is available)
DO $$
DECLARE
has_pg_cron BOOLEAN;
current_schema_name text := current_schema();
old_job_name text;
job_name text;
BEGIN
-- Check if pg_cron extension exists
SELECT EXISTS (SELECT 1 FROM pg_extension WHERE extname = 'pg_cron') INTO has_pg_cron;
IF has_pg_cron THEN
job_name := format('refresh-suggested-blocks_%s', current_schema_name);
-- Try to unschedule existing job (ignore errors if it doesn't exist)
BEGIN
PERFORM cron.unschedule(job_name);
EXCEPTION WHEN OTHERS THEN
NULL;
END;
-- Schedule the new job to run every hour
PERFORM cron.schedule(
job_name,
'0 * * * *', -- Every hour at minute 0
format('SET search_path TO %I; SELECT refresh_suggested_blocks_view();', current_schema_name)
);
RAISE NOTICE 'Scheduled job %; runs every hour for schema %', job_name, current_schema_name;
ELSE
RAISE WARNING 'Automatic refresh NOT configured - pg_cron is not available';
RAISE WARNING 'You must manually refresh the view with: SELECT refresh_suggested_blocks_view();';
RAISE WARNING 'Or install pg_cron for automatic refresh in production';
END IF;
END;
$$;

View File

@@ -9,8 +9,7 @@
"sub_heading": "Creator agent subheading",
"description": "Creator agent description",
"runs": 50,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
}
],
"pagination": {

View File

@@ -9,8 +9,7 @@
"sub_heading": "Category agent subheading",
"description": "Category agent description",
"runs": 60,
"rating": 4.1,
"agent_graph_id": "test-graph-category"
"rating": 4.1
}
],
"pagination": {

View File

@@ -9,8 +9,7 @@
"sub_heading": "Agent 0 subheading",
"description": "Agent 0 description",
"runs": 0,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
},
{
"slug": "agent-1",
@@ -21,8 +20,7 @@
"sub_heading": "Agent 1 subheading",
"description": "Agent 1 description",
"runs": 10,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
},
{
"slug": "agent-2",
@@ -33,8 +31,7 @@
"sub_heading": "Agent 2 subheading",
"description": "Agent 2 description",
"runs": 20,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
},
{
"slug": "agent-3",
@@ -45,8 +42,7 @@
"sub_heading": "Agent 3 subheading",
"description": "Agent 3 description",
"runs": 30,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
},
{
"slug": "agent-4",
@@ -57,8 +53,7 @@
"sub_heading": "Agent 4 subheading",
"description": "Agent 4 description",
"runs": 40,
"rating": 4.0,
"agent_graph_id": "test-graph-2"
"rating": 4.0
}
],
"pagination": {

View File

@@ -9,8 +9,7 @@
"sub_heading": "Search agent subheading",
"description": "Specific search term description",
"runs": 75,
"rating": 4.2,
"agent_graph_id": "test-graph-search"
"rating": 4.2
}
],
"pagination": {

View File

@@ -9,8 +9,7 @@
"sub_heading": "Top agent subheading",
"description": "Top agent description",
"runs": 1000,
"rating": 5.0,
"agent_graph_id": "test-graph-3"
"rating": 5.0
}
],
"pagination": {

View File

@@ -9,8 +9,7 @@
"sub_heading": "Featured agent subheading",
"description": "Featured agent description",
"runs": 100,
"rating": 4.5,
"agent_graph_id": "test-graph-1"
"rating": 4.5
}
],
"pagination": {

View File

@@ -31,10 +31,6 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": true,
"is_latest_version": true,
"is_favorite": false,
@@ -76,10 +72,6 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": false,
"is_latest_version": true,
"is_favorite": false,

View File

@@ -57,8 +57,7 @@ class TestDecomposeGoal:
result = await core.decompose_goal("Build a chatbot")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "", None)
mock_external.assert_called_once_with("Build a chatbot", "")
assert result == expected_result
@pytest.mark.asyncio
@@ -75,8 +74,7 @@ class TestDecomposeGoal:
await core.decompose_goal("Build a chatbot", "Use Python")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "Use Python", None)
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
@pytest.mark.asyncio
async def test_returns_none_on_service_failure(self):
@@ -111,8 +109,7 @@ class TestGenerateAgent:
instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions)
# library_agents defaults to None
mock_external.assert_called_once_with(instructions, None)
mock_external.assert_called_once_with(instructions)
# Result should have id, version, is_active added if not present
assert result is not None
assert result["name"] == "Test Agent"
@@ -177,8 +174,7 @@ class TestGenerateAgentPatch:
current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent)
# library_agents defaults to None
mock_external.assert_called_once_with("Add a node", current_agent, None)
mock_external.assert_called_once_with("Add a node", current_agent)
assert result == expected_result
@pytest.mark.asyncio

View File

@@ -1,857 +0,0 @@
"""
Tests for library agent fetching functionality in agent generator.
This test suite verifies the search-based library agent fetching,
including the combination of library and marketplace agents.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
"""Test get_library_agents_for_generation function."""
@pytest.mark.asyncio
async def test_fetches_agents_with_search_term(self):
"""Test that search_term is passed to the library db."""
# Create a mock agent with proper attribute values
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Email Agent"
mock_agent.description = "Sends emails"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
mock_agent.recent_executions = []
mock_response = MagicMock()
mock_response.agents = [mock_agent]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
page_size=15,
include_executions=True,
)
# Verify result format
assert len(result) == 1
assert result[0]["graph_id"] == "agent-123"
assert result[0]["name"] == "Email Agent"
@pytest.mark.asyncio
async def test_excludes_specified_graph_id(self):
"""Test that agents with excluded graph_id are filtered out."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
graph_id="agent-123",
graph_version=1,
name="Agent 1",
description="First agent",
input_schema={},
output_schema={},
recent_executions=[],
),
MagicMock(
graph_id="agent-456",
graph_version=1,
name="Agent 2",
description="Second agent",
input_schema={},
output_schema={},
recent_executions=[],
),
]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
exclude_graph_id="agent-123",
)
# Verify the excluded agent is not in results
assert len(result) == 1
assert result[0]["graph_id"] == "agent-456"
@pytest.mark.asyncio
async def test_respects_max_results(self):
"""Test that max_results parameter limits the page_size."""
mock_response = MagicMock()
mock_response.agents = []
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
page_size=5,
include_executions=True,
)
class TestSearchMarketplaceAgentsForGeneration:
"""Test search_marketplace_agents_for_generation function."""
@pytest.mark.asyncio
async def test_searches_marketplace_with_query(self):
"""Test that marketplace is searched with the query."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
agent_name="Public Agent",
description="A public agent",
sub_heading="Does something useful",
creator="creator-1",
agent_graph_id="graph-123",
)
]
mock_graph = MagicMock()
mock_graph.id = "graph-123"
mock_graph.version = 1
mock_graph.input_schema = {"type": "object"}
mock_graph.output_schema = {"type": "object"}
with (
patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search,
patch(
"backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs",
new_callable=AsyncMock,
return_value={"graph-123": mock_graph},
),
):
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
)
assert len(result) == 1
assert result[0]["name"] == "Public Agent"
assert result[0]["graph_id"] == "graph-123"
@pytest.mark.asyncio
async def test_handles_marketplace_error_gracefully(self):
"""Test that marketplace errors don't crash the function."""
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
side_effect=Exception("Marketplace unavailable"),
):
result = await core.search_marketplace_agents_for_generation(
search_query="test"
)
# Should return empty list, not raise exception
assert result == []
class TestGetAllRelevantAgentsForGeneration:
"""Test get_all_relevant_agents_for_generation function."""
@pytest.mark.asyncio
async def test_combines_library_and_marketplace_agents(self):
"""Test that agents from both sources are combined."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "market-456",
"graph_version": 1,
"name": "Market Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test query",
include_marketplace=True,
)
# Library agents should come first
assert len(result) == 2
assert result[0]["name"] == "Library Agent"
assert result[1]["name"] == "Market Agent"
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that marketplace agents with same graph_id as library are excluded."""
library_agents = [
{
"graph_id": "shared-123",
"graph_version": 1,
"name": "Shared Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "shared-123", # Same graph_id, should be deduplicated
"graph_version": 1,
"name": "Shared Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
},
{
"graph_id": "unique-456",
"graph_version": 1,
"name": "Unique Agent",
"description": "Only in marketplace",
"input_schema": {},
"output_schema": {},
},
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=True,
)
# Shared Agent from marketplace should be excluded by graph_id
assert len(result) == 2
names = [a["name"] for a in result]
assert "Shared Agent" in names
assert "Unique Agent" in names
@pytest.mark.asyncio
async def test_skips_marketplace_when_disabled(self):
"""Test that marketplace is not searched when include_marketplace=False."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=False,
)
# Marketplace should not be called
mock_marketplace.assert_not_called()
assert len(result) == 1
@pytest.mark.asyncio
async def test_skips_marketplace_when_no_search_query(self):
"""Test that marketplace is not searched without a search query."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query=None, # No search query
include_marketplace=True,
)
# Marketplace should not be called without search query
mock_marketplace.assert_not_called()
assert len(result) == 1
class TestExtractSearchTermsFromSteps:
"""Test extract_search_terms_from_steps function."""
def test_extracts_terms_from_instructions_type(self):
"""Test extraction from valid instructions decomposition result."""
decomposition_result = {
"type": "instructions",
"steps": [
{
"description": "Send an email notification",
"block_name": "GmailSendBlock",
},
{"description": "Fetch weather data", "action": "Get weather API"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "Send an email notification" in result
assert "GmailSendBlock" in result
assert "Fetch weather data" in result
assert "Get weather API" in result
def test_returns_empty_for_non_instructions_type(self):
"""Test that non-instructions types return empty list."""
decomposition_result = {
"type": "clarifying_questions",
"questions": [{"question": "What email?"}],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
def test_deduplicates_terms_case_insensitively(self):
"""Test that duplicate terms are removed (case-insensitive)."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send Email", "name": "send email"},
{"description": "Other task"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
# Should only have one "send email" variant
email_terms = [t for t in result if "email" in t.lower()]
assert len(email_terms) == 1
def test_filters_short_terms(self):
"""Test that terms with 3 or fewer characters are filtered out."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "ab", "action": "xyz"}, # Both too short
{"description": "Valid term here"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "ab" not in result
assert "xyz" not in result
assert "Valid term here" in result
def test_handles_empty_steps(self):
"""Test handling of empty steps list."""
decomposition_result = {
"type": "instructions",
"steps": [],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
class TestEnrichLibraryAgentsFromSteps:
"""Test enrich_library_agents_from_steps function."""
@pytest.mark.asyncio
async def test_enriches_with_additional_agents(self):
"""Test that additional agents are found based on steps."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
additional_agents = [
{
"graph_id": "new-456",
"graph_version": 1,
"name": "Email Agent",
"description": "For sending emails",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send email notification"},
],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should have both existing and new agents
assert len(result) == 2
names = [a["name"] for a in result]
assert "Existing Agent" in names
assert "Email Agent" in names
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that agents with same graph_id are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns same agent
additional_agents = [
{
"graph_id": "agent-123", # Same ID
"graph_version": 1,
"name": "Existing Agent Copy",
"description": "Same agent different name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Some action"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate
assert len(result) == 1
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that agents with same name are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns agent with same name but different ID
additional_agents = [
{
"graph_id": "agent-456", # Different ID
"graph_version": 1,
"name": "Email Agent", # Same name
"description": "Different agent same name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Send email"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate by name
assert len(result) == 1
assert result[0].get("graph_id") == "agent-123" # Original kept
@pytest.mark.asyncio
async def test_returns_existing_when_no_steps(self):
"""Test that existing agents are returned when no search terms extracted."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "clarifying_questions", # Not instructions type
"questions": [],
}
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should return existing unchanged
assert result == existing_agents
@pytest.mark.asyncio
async def test_limits_search_terms_to_three(self):
"""Test that only first 3 search terms are used."""
existing_agents = []
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "First action"},
{"description": "Second action"},
{"description": "Third action"},
{"description": "Fourth action"},
{"description": "Fifth action"},
],
}
call_count = 0
async def mock_get_agents(*args, **kwargs):
nonlocal call_count
call_count += 1
return []
with patch.object(
core,
"get_all_relevant_agents_for_generation",
side_effect=mock_get_agents,
):
await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should only make 3 calls (limited to first 3 terms)
assert call_count == 3
class TestExtractUuidsFromText:
"""Test extract_uuids_from_text function."""
def test_extracts_single_uuid(self):
"""Test extraction of a single UUID from text."""
text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task"
result = core.extract_uuids_from_text(text)
assert len(result) == 1
assert "46631191-e8a8-486f-ad90-84f89738321d" in result
def test_extracts_multiple_uuids(self):
"""Test extraction of multiple UUIDs from text."""
text = (
"Combine agents 11111111-1111-4111-8111-111111111111 "
"and 22222222-2222-4222-9222-222222222222"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 2
assert "11111111-1111-4111-8111-111111111111" in result
assert "22222222-2222-4222-9222-222222222222" in result
def test_deduplicates_uuids(self):
"""Test that duplicate UUIDs are deduplicated."""
text = (
"Use 46631191-e8a8-486f-ad90-84f89738321d twice: "
"46631191-e8a8-486f-ad90-84f89738321d"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 1
def test_normalizes_to_lowercase(self):
"""Test that UUIDs are normalized to lowercase."""
text = "Use 46631191-E8A8-486F-AD90-84F89738321D"
result = core.extract_uuids_from_text(text)
assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d"
def test_returns_empty_for_no_uuids(self):
"""Test that empty list is returned when no UUIDs found."""
text = "Create an email agent that sends notifications"
result = core.extract_uuids_from_text(text)
assert result == []
def test_ignores_invalid_uuids(self):
"""Test that invalid UUID-like strings are ignored."""
text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc"
result = core.extract_uuids_from_text(text)
# UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth)
assert len(result) == 0
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
"""Test that agent is returned when found by graph_id."""
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Test Agent"
mock_agent.description = "Test description"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
assert result["graph_id"] == "agent-123"
assert result["name"] == "Test Agent"
@pytest.mark.asyncio
async def test_falls_back_to_library_agent_id(self):
"""Test that lookup falls back to library agent ID when graph_id not found."""
mock_agent = MagicMock()
mock_agent.graph_id = "graph-456" # Different from the lookup ID
mock_agent.graph_version = 1
mock_agent.name = "Library Agent"
mock_agent.description = "Found by library ID"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
assert result["graph_id"] == "graph-456"
assert result["name"] == "Library Agent"
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
class TestGetAllRelevantAgentsWithUuids:
"""Test UUID extraction in get_all_relevant_agents_for_generation."""
@pytest.mark.asyncio
async def test_fetches_explicitly_mentioned_agents(self):
"""Test that agents mentioned by UUID are fetched directly."""
mock_agent = MagicMock()
mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d"
mock_agent.graph_version = 1
mock_agent.name = "Mentioned Agent"
mock_agent.description = "Explicitly mentioned"
mock_agent.input_schema = {}
mock_agent.output_schema = {}
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",
include_marketplace=False,
)
assert len(result) == 1
assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d"
assert result[0].get("name") == "Mentioned Agent"
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -151,20 +151,15 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully."""
mock_response = MagicMock()
mock_response.status_code = 500
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=mock_response
"Server error", request=MagicMock(), response=MagicMock()
)
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "http_error"
assert "Server error" in result.get("error", "")
assert result is None
@pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self):
@@ -175,10 +170,7 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
assert result is None
@pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self):
@@ -187,7 +179,6 @@ class TestDecomposeGoalExternal:
mock_response.json.return_value = {
"success": False,
"error": "Internal error",
"error_type": "internal_error",
}
mock_response.raise_for_status = MagicMock()
@@ -197,10 +188,7 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is not None
assert result.get("type") == "error"
assert result.get("error") == "Internal error"
assert result.get("error_type") == "internal_error"
assert result is None
class TestGenerateAgentExternal:
@@ -248,10 +236,7 @@ class TestGenerateAgentExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []})
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
assert result is None
class TestGenerateAgentPatchExternal:
@@ -433,139 +418,5 @@ class TestGetBlocksExternal:
assert result is None
class TestLibraryAgentsPassthrough:
"""Test that library_agents are passed correctly in all requests."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_passes_library_agents(self):
"""Test that library_agents are included in decompose goal payload."""
library_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Sender",
"description": "Sends emails",
"input_schema": {"properties": {"to": {"type": "string"}}},
"output_schema": {"properties": {"sent": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Send an email",
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_passes_library_agents(self):
"""Test that library_agents are included in generate agent payload."""
library_agents = [
{
"graph_id": "agent-456",
"graph_version": 2,
"name": "Data Fetcher",
"description": "Fetches data from API",
"input_schema": {"properties": {"url": {"type": "string"}}},
"output_schema": {"properties": {"data": {"type": "object"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Test Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_external(
{"steps": ["Step 1"]},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_patch_passes_library_agents(self):
"""Test that library_agents are included in patch generation payload."""
library_agents = [
{
"graph_id": "agent-789",
"graph_version": 1,
"name": "Slack Notifier",
"description": "Sends Slack messages",
"input_schema": {"properties": {"message": {"type": "string"}}},
"output_schema": {"properties": {"success": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Updated Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_patch_external(
"Add error handling",
{"name": "Original Agent", "nodes": []},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_decompose_goal_without_library_agents(self):
"""Test that decompose goal works without library_agents."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external("Build a workflow")
# Verify library_agents was NOT passed when not provided
call_args = mock_client.post.call_args
assert "library_agents" not in call_args[1]["json"]
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -43,24 +43,19 @@ faker = Faker()
# Constants for data generation limits (reduced for E2E tests)
NUM_USERS = 15
NUM_AGENT_BLOCKS = 30
MIN_GRAPHS_PER_USER = 25
MAX_GRAPHS_PER_USER = 25
MIN_GRAPHS_PER_USER = 15
MAX_GRAPHS_PER_USER = 15
MIN_NODES_PER_GRAPH = 3
MAX_NODES_PER_GRAPH = 6
MIN_PRESETS_PER_USER = 2
MAX_PRESETS_PER_USER = 3
MIN_AGENTS_PER_USER = 25
MAX_AGENTS_PER_USER = 25
MIN_AGENTS_PER_USER = 15
MAX_AGENTS_PER_USER = 15
MIN_EXECUTIONS_PER_GRAPH = 2
MAX_EXECUTIONS_PER_GRAPH = 8
MIN_REVIEWS_PER_VERSION = 2
MAX_REVIEWS_PER_VERSION = 5
# Guaranteed minimums for marketplace tests (deterministic)
GUARANTEED_FEATURED_AGENTS = 8
GUARANTEED_FEATURED_CREATORS = 5
GUARANTEED_TOP_AGENTS = 10
def get_image():
"""Generate a consistent image URL using picsum.photos service."""
@@ -390,7 +385,7 @@ class TestDataCreator:
library_agents = []
for user in self.users:
num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
num_agents = 10 # Create exactly 10 agents per user
# Get available graphs for this user
user_graphs = [
@@ -512,17 +507,14 @@ class TestDataCreator:
existing_profiles, min(num_creators, len(existing_profiles))
)
# Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators
num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5))
# Mark about 50% of creators as featured (more for testing)
num_featured = max(2, int(num_creators * 0.5))
num_featured = min(
num_featured, len(selected_profiles)
) # Don't exceed available profiles
featured_profile_ids = set(
random.sample([p.id for p in selected_profiles], num_featured)
)
print(
f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})"
)
for profile in selected_profiles:
try:
@@ -553,25 +545,21 @@ class TestDataCreator:
return profiles
async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
"""Create test store submissions using the API function.
DETERMINISTIC: Guarantees minimum featured agents for E2E tests.
"""
"""Create test store submissions using the API function."""
print("Creating test store submissions...")
submissions = []
approved_submissions = []
featured_count = 0
submission_counter = 0
# Create a special test submission for test123@gmail.com (ALWAYS approved + featured)
# Create a special test submission for test123@gmail.com
test_user = next(
(user for user in self.users if user["email"] == "test123@gmail.com"), None
)
if test_user and self.agent_graphs:
if test_user:
# Special test data for consistent testing
test_submission_data = {
"user_id": test_user["id"],
"agent_id": self.agent_graphs[0]["id"],
"agent_id": self.agent_graphs[0]["id"], # Use first available graph
"agent_version": 1,
"slug": "test-agent-submission",
"name": "Test Agent Submission",
@@ -592,24 +580,37 @@ class TestDataCreator:
submissions.append(test_submission.model_dump())
print("✅ Created special test store submission for test123@gmail.com")
# ALWAYS approve and feature the test submission
# Randomly approve, reject, or leave pending the test submission
if test_submission.store_listing_version_id:
approved_submission = await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=True,
external_comments="Test submission approved",
internal_comments="Auto-approved test submission",
reviewer_id=test_user["id"],
)
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
random_value = random.random()
if random_value < 0.4: # 40% chance to approve
approved_submission = await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=True,
external_comments="Test submission approved",
internal_comments="Auto-approved test submission",
reviewer_id=test_user["id"],
)
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
await prisma.storelistingversion.update(
where={"id": test_submission.store_listing_version_id},
data={"isFeatured": True},
)
featured_count += 1
print("🌟 Marked test agent as FEATURED")
# Mark approved submission as featured
await prisma.storelistingversion.update(
where={"id": test_submission.store_listing_version_id},
data={"isFeatured": True},
)
print("🌟 Marked test agent as FEATURED")
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=False,
external_comments="Test submission rejected - needs improvements",
internal_comments="Auto-rejected test submission for E2E testing",
reviewer_id=test_user["id"],
)
print("❌ Rejected test store submission")
else: # 30% chance to leave pending (70% to 100%)
print("⏳ Left test submission pending for review")
except Exception as e:
print(f"Error creating test store submission: {e}")
@@ -619,6 +620,7 @@ class TestDataCreator:
# Create regular submissions for all users
for user in self.users:
# Get available graphs for this specific user
user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"]
]
@@ -629,17 +631,18 @@ class TestDataCreator:
)
continue
# Create exactly 4 store submissions per user
for submission_index in range(4):
graph = random.choice(user_graphs)
submission_counter += 1
try:
print(
f"Creating store submission for user {user['id']} with graph {graph['id']}"
f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})"
)
# Use the API function to create store submission with correct parameters
submission = await create_store_submission(
user_id=user["id"],
user_id=user["id"], # Must match graph's userId
agent_id=graph["id"],
agent_version=graph.get("version", 1),
slug=faker.slug(),
@@ -648,24 +651,22 @@ class TestDataCreator:
video_url=get_video_url() if random.random() < 0.3 else None,
image_urls=[get_image() for _ in range(3)],
description=faker.text(),
categories=[get_category()],
categories=[
get_category()
], # Single category from predefined list
changes_summary="Initial E2E test submission",
)
submissions.append(submission.model_dump())
print(f"✅ Created store submission: {submission.name}")
# Randomly approve, reject, or leave pending the submission
if submission.store_listing_version_id:
# DETERMINISTIC: First N submissions are always approved
# First GUARANTEED_FEATURED_AGENTS of those are always featured
should_approve = (
submission_counter <= GUARANTEED_TOP_AGENTS
or random.random() < 0.4
)
should_feature = featured_count < GUARANTEED_FEATURED_AGENTS
if should_approve:
random_value = random.random()
if random_value < 0.4: # 40% chance to approve
try:
# Pick a random user as the reviewer (admin)
reviewer_id = random.choice(self.users)["id"]
approved_submission = await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=True,
@@ -680,7 +681,16 @@ class TestDataCreator:
f"✅ Approved store submission: {submission.name}"
)
if should_feature:
# Mark some agents as featured during creation (30% chance)
# More likely for creators and first submissions
is_creator = user["id"] in [
p.get("userId") for p in self.profiles
]
feature_chance = (
0.5 if is_creator else 0.2
) # 50% for creators, 20% for others
if random.random() < feature_chance:
try:
await prisma.storelistingversion.update(
where={
@@ -688,25 +698,8 @@ class TestDataCreator:
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not mark submission as featured: {e}"
)
elif random.random() < 0.2:
try:
await prisma.storelistingversion.update(
where={
"id": submission.store_listing_version_id
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED (bonus): {submission.name}"
f"🌟 Marked agent as FEATURED: {submission.name}"
)
except Exception as e:
print(
@@ -717,9 +710,11 @@ class TestDataCreator:
print(
f"Warning: Could not approve submission {submission.name}: {e}"
)
elif random.random() < 0.5:
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
try:
# Pick a random user as the reviewer (admin)
reviewer_id = random.choice(self.users)["id"]
await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=False,
@@ -734,7 +729,7 @@ class TestDataCreator:
print(
f"Warning: Could not reject submission {submission.name}: {e}"
)
else:
else: # 30% chance to leave pending (70% to 100%)
print(
f"⏳ Left submission pending for review: {submission.name}"
)
@@ -748,13 +743,9 @@ class TestDataCreator:
traceback.print_exc()
continue
print("\n📊 Store Submissions Summary:")
print(f" Created: {len(submissions)}")
print(f" Approved: {len(approved_submissions)}")
print(
f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})"
f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}"
)
self.store_submissions = submissions
return submissions
@@ -834,15 +825,12 @@ class TestDataCreator:
print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
print(f"✅ Library agents created: {len(self.library_agents)}")
print(f"✅ Creator profiles updated: {len(self.profiles)}")
print(f"✅ Store submissions created: {len(self.store_submissions)}")
print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)")
print(
f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)"
)
print(f"✅ API keys created: {len(self.api_keys)}")
print(f"✅ Presets created: {len(self.presets)}")
print("\n🎯 Deterministic Guarantees:")
print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}")
print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}")
print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}")
print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}")
print("\n🚀 Your E2E test database is ready to use!")

View File

@@ -34,6 +34,3 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
# PostHog Analytics
NEXT_PUBLIC_POSTHOG_KEY=
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
# OpenAI (for voice transcription)
OPENAI_API_KEY=

View File

@@ -1,76 +0,0 @@
# CLAUDE.md - Frontend
This file provides guidance to Claude Code when working with the frontend.
## Essential Commands
```bash
# Install dependencies
pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
### Code Style
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
- Use function declarations (not arrow functions) for components/handlers
## Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
## Environment Configuration
`.env.default` (defaults) → `.env` (user overrides)
## Feature Development
See @CONTRIBUTING.md for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
- Put each hook in its own `.ts` file
- Put sub-components in local `components/` folder
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**:
- Use function declarations (not arrow functions) for components/handlers
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type

View File

@@ -57,7 +57,10 @@ export const Block: BlockComponent = ({
// preview when user drags it
const dragPreview = document.createElement("div");
dragPreview.style.cssText = blockDragPreviewStyle;
dragPreview.textContent = beautifyString(title || "");
dragPreview.textContent = beautifyString(title || "").replace(
/ Block$/,
"",
);
document.body.appendChild(dragPreview);
e.dataTransfer.setDragImage(dragPreview, 0, 0);
@@ -90,7 +93,10 @@ export const Block: BlockComponent = ({
"line-clamp-1 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 group-disabled:text-zinc-400",
)}
>
{highlightText(beautifyString(title), highlightedText)}
{highlightText(
beautifyString(title).replace(/ Block$/, ""),
highlightedText,
)}
</span>
)}
{description && (

View File

@@ -2,7 +2,7 @@ import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore"
import { FilterChip } from "../FilterChip";
import { categories } from "./constants";
import { FilterSheet } from "../FilterSheet/FilterSheet";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "./types";
export const BlockMenuFilters = () => {
const {
@@ -15,7 +15,7 @@ export const BlockMenuFilters = () => {
removeCreator,
} = useBlockMenuStore();
const handleFilterClick = (filter: GetV2BuilderSearchFilterAnyOfItem) => {
const handleFilterClick = (filter: CategoryKey) => {
if (filters.includes(filter)) {
removeFilter(filter);
} else {

View File

@@ -1,15 +1,8 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "./types";
export const categories: Array<{ key: CategoryKey; name: string }> = [
{ key: GetV2BuilderSearchFilterAnyOfItem.blocks, name: "Blocks" },
{
key: GetV2BuilderSearchFilterAnyOfItem.integrations,
name: "Integrations",
},
{
key: GetV2BuilderSearchFilterAnyOfItem.marketplace_agents,
name: "Marketplace agents",
},
{ key: GetV2BuilderSearchFilterAnyOfItem.my_agents, name: "My agents" },
{ key: "blocks", name: "Blocks" },
{ key: "integrations", name: "Integrations" },
{ key: "marketplace_agents", name: "Marketplace agents" },
{ key: "my_agents", name: "My agents" },
];

View File

@@ -1,5 +1,3 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export type DefaultStateType =
| "suggestion"
| "all_blocks"
@@ -10,7 +8,11 @@ export type DefaultStateType =
| "marketplace_agents"
| "my_agents";
export type CategoryKey = GetV2BuilderSearchFilterAnyOfItem;
export type CategoryKey =
| "blocks"
| "integrations"
| "marketplace_agents"
| "my_agents";
export interface Filters {
categories: {

View File

@@ -23,7 +23,7 @@ import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryCounts } from "../BlockMenuFilters/types";
export const useBlockMenuSearchContent = () => {
const {
@@ -67,7 +67,7 @@ export const useBlockMenuSearchContent = () => {
page_size: 8,
search_query: searchQuery,
search_id: searchId,
filter: filters.length > 0 ? filters : undefined,
filter: filters.length > 0 ? filters.join(",") : undefined,
by_creator: creators.length > 0 ? creators : undefined,
},
{
@@ -117,10 +117,7 @@ export const useBlockMenuSearchContent = () => {
}
const latestData = okData(searchQueryData.pages.at(-1));
setCategoryCounts(
(latestData?.total_items as Record<
GetV2BuilderSearchFilterAnyOfItem,
number
>) || {
(latestData?.total_items as CategoryCounts) || {
blocks: 0,
integrations: 0,
marketplace_agents: 0,

View File

@@ -1,7 +1,7 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { useState } from "react";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "../BlockMenuFilters/types";
export const useFilterSheet = () => {
const { filters, creators_list, creators, setFilters, setCreators } =
@@ -9,15 +9,13 @@ export const useFilterSheet = () => {
const [isOpen, setIsOpen] = useState(false);
const [localCategories, setLocalCategories] =
useState<GetV2BuilderSearchFilterAnyOfItem[]>(filters);
useState<CategoryKey[]>(filters);
const [localCreators, setLocalCreators] = useState<string[]>(creators);
const [displayedCreatorsCount, setDisplayedCreatorsCount] = useState(
INITIAL_CREATORS_TO_SHOW,
);
const handleLocalCategoryChange = (
category: GetV2BuilderSearchFilterAnyOfItem,
) => {
const handleLocalCategoryChange = (category: CategoryKey) => {
setLocalCategories((prev) => {
if (prev.includes(category)) {
return prev.filter((c) => c !== category);

View File

@@ -61,7 +61,10 @@ export const IntegrationBlock: IntegrationBlockComponent = ({
// preview when user drags it
const dragPreview = document.createElement("div");
dragPreview.style.cssText = blockDragPreviewStyle;
dragPreview.textContent = beautifyString(title || "");
dragPreview.textContent = beautifyString(title || "").replace(
/ Block$/,
"",
);
document.body.appendChild(dragPreview);
e.dataTransfer.setDragImage(dragPreview, 0, 0);
@@ -100,7 +103,10 @@ export const IntegrationBlock: IntegrationBlockComponent = ({
"line-clamp-1 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 group-disabled:text-zinc-400",
)}
>
{highlightText(beautifyString(title), highlightedText)}
{highlightText(
beautifyString(title).replace(/ Block$/, ""),
highlightedText,
)}
</span>
)}
{description && (

View File

@@ -81,6 +81,14 @@ export const UGCAgentBlock: UGCAgentBlockComponent = ({
>
Version {version}
</span>
<span
className={cn(
"rounded-[0.75rem] bg-zinc-200 px-[0.5rem] font-sans text-xs leading-[1.25rem] text-zinc-500",
)}
>
Your Agent
</span>
</div>
</div>
<div

View File

@@ -857,7 +857,7 @@ export const CustomNode = React.memo(
})();
const hasAdvancedFields =
data.inputSchema?.properties &&
data.inputSchema &&
Object.entries(data.inputSchema.properties).some(([key, value]) => {
return (
value.advanced === true && !data.inputSchema.required?.includes(key)

View File

@@ -3,28 +3,29 @@ import { DefaultStateType } from "../components/NewControlPanel/NewBlockMenu/typ
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { getSearchItemType } from "../components/NewControlPanel/NewBlockMenu/BlockMenuSearchContent/helper";
import { StoreAgent } from "@/app/api/__generated__/models/storeAgent";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import {
CategoryKey,
CategoryCounts,
} from "../components/NewControlPanel/NewBlockMenu/BlockMenuFilters/types";
type BlockMenuStore = {
searchQuery: string;
searchId: string | undefined;
defaultState: DefaultStateType;
integration: string | undefined;
filters: GetV2BuilderSearchFilterAnyOfItem[];
filters: CategoryKey[];
creators: string[];
creators_list: string[];
categoryCounts: Record<GetV2BuilderSearchFilterAnyOfItem, number>;
categoryCounts: CategoryCounts;
setCategoryCounts: (
counts: Record<GetV2BuilderSearchFilterAnyOfItem, number>,
) => void;
setCategoryCounts: (counts: CategoryCounts) => void;
setCreatorsList: (searchData: SearchResponseItemsItem[]) => void;
addCreator: (creator: string) => void;
setCreators: (creators: string[]) => void;
removeCreator: (creator: string) => void;
addFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
setFilters: (filters: GetV2BuilderSearchFilterAnyOfItem[]) => void;
removeFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
addFilter: (filter: CategoryKey) => void;
setFilters: (filters: CategoryKey[]) => void;
removeFilter: (filter: CategoryKey) => void;
setSearchQuery: (query: string) => void;
setSearchId: (id: string | undefined) => void;
setDefaultState: (state: DefaultStateType) => void;

View File

@@ -73,9 +73,9 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
};
const reset = () => {
// Only reset the offset - keep existing sessions visible during refetch
// The effect will replace sessions when new data arrives at offset 0
setOffset(0);
setAccumulatedSessions([]);
setTotalCount(null);
};
return {

View File

@@ -820,21 +820,7 @@
"in": "query",
"required": false,
"schema": {
"anyOf": [
{
"type": "array",
"items": {
"enum": [
"blocks",
"integrations",
"marketplace_agents",
"my_agents"
],
"type": "string"
}
},
{ "type": "null" }
],
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Filter"
}
},
@@ -7981,25 +7967,6 @@
]
},
"new_output": { "type": "boolean", "title": "New Output" },
"execution_count": {
"type": "integer",
"title": "Execution Count",
"default": 0
},
"success_rate": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Success Rate"
},
"avg_correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Avg Correctness Score"
},
"recent_executions": {
"items": { "$ref": "#/components/schemas/RecentExecution" },
"type": "array",
"title": "Recent Executions",
"description": "List of recent executions with status, score, and summary"
},
"can_access_graph": {
"type": "boolean",
"title": "Can Access Graph"
@@ -9393,23 +9360,6 @@
"required": ["providers", "pagination"],
"title": "ProviderResponse"
},
"RecentExecution": {
"properties": {
"status": { "type": "string", "title": "Status" },
"correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Correctness Score"
},
"activity_summary": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Activity Summary"
}
},
"type": "object",
"required": ["status"],
"title": "RecentExecution",
"description": "Summary of a recent execution for quality assessment.\n\nUsed by the LLM to understand the agent's recent performance with specific examples\nrather than just aggregate statistics."
},
"RefundRequest": {
"properties": {
"id": { "type": "string", "title": "Id" },
@@ -9833,8 +9783,7 @@
"sub_heading": { "type": "string", "title": "Sub Heading" },
"description": { "type": "string", "title": "Description" },
"runs": { "type": "integer", "title": "Runs" },
"rating": { "type": "number", "title": "Rating" },
"agent_graph_id": { "type": "string", "title": "Agent Graph Id" }
"rating": { "type": "number", "title": "Rating" }
},
"type": "object",
"required": [
@@ -9846,8 +9795,7 @@
"sub_heading",
"description",
"runs",
"rating",
"agent_graph_id"
"rating"
],
"title": "StoreAgent"
},
@@ -10284,11 +10232,6 @@
},
"SuggestionsResponse": {
"properties": {
"otto_suggestions": {
"items": { "type": "string" },
"type": "array",
"title": "Otto Suggestions"
},
"recent_searches": {
"items": { "$ref": "#/components/schemas/SearchEntry" },
"type": "array",
@@ -10309,12 +10252,7 @@
}
},
"type": "object",
"required": [
"otto_suggestions",
"recent_searches",
"providers",
"top_blocks"
],
"required": ["recent_searches", "providers", "top_blocks"],
"title": "SuggestionsResponse"
},
"TimezoneResponse": {

View File

@@ -1,77 +0,0 @@
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest, NextResponse } from "next/server";
const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions";
const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit
function getExtensionFromMimeType(mimeType: string): string {
const subtype = mimeType.split("/")[1]?.split(";")[0];
return subtype || "webm";
}
export async function POST(request: NextRequest) {
const token = await getServerAuthToken();
if (!token || token === "no-token-found") {
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
}
const apiKey = process.env.OPENAI_API_KEY;
if (!apiKey) {
return NextResponse.json(
{ error: "OpenAI API key not configured" },
{ status: 401 },
);
}
try {
const formData = await request.formData();
const audioFile = formData.get("audio");
if (!audioFile || !(audioFile instanceof Blob)) {
return NextResponse.json(
{ error: "No audio file provided" },
{ status: 400 },
);
}
if (audioFile.size > MAX_FILE_SIZE) {
return NextResponse.json(
{ error: "File too large. Maximum size is 25MB." },
{ status: 413 },
);
}
const ext = getExtensionFromMimeType(audioFile.type);
const whisperFormData = new FormData();
whisperFormData.append("file", audioFile, `recording.${ext}`);
whisperFormData.append("model", "whisper-1");
const response = await fetch(WHISPER_API_URL, {
method: "POST",
headers: {
Authorization: `Bearer ${apiKey}`,
},
body: whisperFormData,
});
if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
console.error("Whisper API error:", errorData);
return NextResponse.json(
{ error: errorData.error?.message || "Transcription failed" },
{ status: response.status },
);
}
const result = await response.json();
return NextResponse.json({ text: result.text });
} catch (error) {
console.error("Transcription error:", error);
return NextResponse.json(
{ error: "Failed to process audio" },
{ status: 500 },
);
}
}

View File

@@ -1,14 +1,7 @@
import { Button } from "@/components/atoms/Button/Button";
import { cn } from "@/lib/utils";
import {
ArrowUpIcon,
CircleNotchIcon,
MicrophoneIcon,
StopIcon,
} from "@phosphor-icons/react";
import { RecordingIndicator } from "./components/RecordingIndicator";
import { ArrowUpIcon, StopIcon } from "@phosphor-icons/react";
import { useChatInput } from "./useChatInput";
import { useVoiceRecording } from "./useVoiceRecording";
export interface Props {
onSend: (message: string) => void;
@@ -28,37 +21,13 @@ export function ChatInput({
className,
}: Props) {
const inputId = "chat-input";
const {
value,
setValue,
handleKeyDown: baseHandleKeyDown,
handleSubmit,
handleChange,
hasMultipleLines,
} = useChatInput({
onSend,
disabled: disabled || isStreaming,
maxRows: 4,
inputId,
});
const {
isRecording,
isTranscribing,
elapsedTime,
toggleRecording,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream,
} = useVoiceRecording({
setValue,
disabled: disabled || isStreaming,
isStreaming,
value,
baseHandleKeyDown,
inputId,
});
const { value, handleKeyDown, handleSubmit, handleChange, hasMultipleLines } =
useChatInput({
onSend,
disabled: disabled || isStreaming,
maxRows: 4,
inputId,
});
return (
<form onSubmit={handleSubmit} className={cn("relative flex-1", className)}>
@@ -66,11 +35,8 @@ export function ChatInput({
<div
id={`${inputId}-wrapper`}
className={cn(
"relative overflow-hidden border bg-white shadow-sm",
"focus-within:ring-1",
isRecording
? "border-red-400 focus-within:border-red-400 focus-within:ring-red-400"
: "border-neutral-200 focus-within:border-zinc-400 focus-within:ring-zinc-400",
"relative overflow-hidden border border-neutral-200 bg-white shadow-sm",
"focus-within:border-zinc-400 focus-within:ring-1 focus-within:ring-zinc-400",
hasMultipleLines ? "rounded-xlarge" : "rounded-full",
)}
>
@@ -80,94 +46,48 @@ export function ChatInput({
value={value}
onChange={handleChange}
onKeyDown={handleKeyDown}
placeholder={
isTranscribing
? "Transcribing..."
: isRecording
? ""
: placeholder
}
disabled={isInputDisabled}
placeholder={placeholder}
disabled={disabled || isStreaming}
rows={1}
className={cn(
"w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black",
"placeholder:text-zinc-400",
"focus:outline-none focus:ring-0",
"disabled:text-zinc-500",
hasMultipleLines
? "pb-6 pl-4 pr-4 pt-2"
: showMicButton
? "pb-4 pl-14 pr-14 pt-4"
: "pb-4 pl-4 pr-14 pt-4",
hasMultipleLines ? "pb-6 pl-4 pr-4 pt-2" : "pb-4 pl-4 pr-14 pt-4",
)}
/>
{isRecording && !value && (
<div className="pointer-events-none absolute inset-0 flex items-center justify-center">
<RecordingIndicator
elapsedTime={elapsedTime}
audioStream={audioStream}
/>
</div>
)}
</div>
<span id="chat-input-hint" className="sr-only">
Press Enter to send, Shift+Enter for new line, Space to record voice
Press Enter to send, Shift+Enter for new line
</span>
{showMicButton && (
<div className="absolute bottom-[7px] left-2 flex items-center gap-1">
<Button
type="button"
variant="icon"
size="icon"
aria-label={isRecording ? "Stop recording" : "Start recording"}
onClick={toggleRecording}
disabled={disabled || isTranscribing}
className={cn(
isRecording
? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
: isTranscribing
? "border-zinc-300 bg-zinc-100 text-zinc-400"
: "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
)}
>
{isTranscribing ? (
<CircleNotchIcon className="h-4 w-4 animate-spin" />
) : (
<MicrophoneIcon className="h-4 w-4" weight="bold" />
)}
</Button>
</div>
{isStreaming ? (
<Button
type="button"
variant="icon"
size="icon"
aria-label="Stop generating"
onClick={onStop}
className="absolute bottom-[7px] right-2 border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
>
<StopIcon className="h-4 w-4" weight="bold" />
</Button>
) : (
<Button
type="submit"
variant="icon"
size="icon"
aria-label="Send message"
className={cn(
"absolute bottom-[7px] right-2 border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
(disabled || !value.trim()) && "opacity-20",
)}
disabled={disabled || !value.trim()}
>
<ArrowUpIcon className="h-4 w-4" weight="bold" />
</Button>
)}
<div className="absolute bottom-[7px] right-2 flex items-center gap-1">
{isStreaming ? (
<Button
type="button"
variant="icon"
size="icon"
aria-label="Stop generating"
onClick={onStop}
className="border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
>
<StopIcon className="h-4 w-4" weight="bold" />
</Button>
) : (
<Button
type="submit"
variant="icon"
size="icon"
aria-label="Send message"
className={cn(
"border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
(disabled || !value.trim() || isRecording) && "opacity-20",
)}
disabled={disabled || !value.trim() || isRecording}
>
<ArrowUpIcon className="h-4 w-4" weight="bold" />
</Button>
)}
</div>
</div>
</form>
);

View File

@@ -1,142 +0,0 @@
"use client";
import { useEffect, useRef, useState } from "react";
interface Props {
stream: MediaStream | null;
barCount?: number;
barWidth?: number;
barGap?: number;
barColor?: string;
minBarHeight?: number;
maxBarHeight?: number;
}
export function AudioWaveform({
stream,
barCount = 24,
barWidth = 3,
barGap = 2,
barColor = "#ef4444", // red-500
minBarHeight = 4,
maxBarHeight = 32,
}: Props) {
const [bars, setBars] = useState<number[]>(() =>
Array(barCount).fill(minBarHeight),
);
const analyserRef = useRef<AnalyserNode | null>(null);
const audioContextRef = useRef<AudioContext | null>(null);
const sourceRef = useRef<MediaStreamAudioSourceNode | null>(null);
const animationRef = useRef<number | null>(null);
useEffect(() => {
if (!stream) {
setBars(Array(barCount).fill(minBarHeight));
return;
}
// Create audio context and analyser
const audioContext = new AudioContext();
const analyser = audioContext.createAnalyser();
analyser.fftSize = 512;
analyser.smoothingTimeConstant = 0.8;
// Connect the stream to the analyser
const source = audioContext.createMediaStreamSource(stream);
source.connect(analyser);
audioContextRef.current = audioContext;
analyserRef.current = analyser;
sourceRef.current = source;
const timeData = new Uint8Array(analyser.frequencyBinCount);
const updateBars = () => {
if (!analyserRef.current) return;
analyserRef.current.getByteTimeDomainData(timeData);
// Distribute time-domain data across bars
// This shows waveform amplitude, making all bars respond to audio
const newBars: number[] = [];
const samplesPerBar = timeData.length / barCount;
for (let i = 0; i < barCount; i++) {
// Sample waveform data for this bar
let maxAmplitude = 0;
const startIdx = Math.floor(i * samplesPerBar);
const endIdx = Math.floor((i + 1) * samplesPerBar);
for (let j = startIdx; j < endIdx && j < timeData.length; j++) {
// Convert to amplitude (distance from center 128)
const amplitude = Math.abs(timeData[j] - 128);
maxAmplitude = Math.max(maxAmplitude, amplitude);
}
// Map amplitude (0-128) to bar height
const normalized = (maxAmplitude / 128) * 255;
const height =
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
newBars.push(height);
}
setBars(newBars);
animationRef.current = requestAnimationFrame(updateBars);
};
updateBars();
return () => {
if (animationRef.current) {
cancelAnimationFrame(animationRef.current);
}
if (sourceRef.current) {
sourceRef.current.disconnect();
}
if (audioContextRef.current) {
audioContextRef.current.close();
}
analyserRef.current = null;
audioContextRef.current = null;
sourceRef.current = null;
};
}, [stream, barCount, minBarHeight, maxBarHeight]);
const totalWidth = barCount * barWidth + (barCount - 1) * barGap;
return (
<div
className="flex items-center justify-center"
style={{
width: totalWidth,
height: maxBarHeight,
gap: barGap,
}}
>
{bars.map((height, i) => {
const barHeight = Math.max(minBarHeight, height);
return (
<div
key={i}
className="relative"
style={{
width: barWidth,
height: maxBarHeight,
}}
>
<div
className="absolute left-0 rounded-full transition-[height] duration-75"
style={{
width: barWidth,
height: barHeight,
top: "50%",
transform: "translateY(-50%)",
backgroundColor: barColor,
}}
/>
</div>
);
})}
</div>
);
}

View File

@@ -1,26 +0,0 @@
import { formatElapsedTime } from "../helpers";
import { AudioWaveform } from "./AudioWaveform";
type Props = {
elapsedTime: number;
audioStream: MediaStream | null;
};
export function RecordingIndicator({ elapsedTime, audioStream }: Props) {
return (
<div className="flex items-center gap-3">
<AudioWaveform
stream={audioStream}
barCount={20}
barWidth={3}
barGap={2}
barColor="#ef4444"
minBarHeight={4}
maxBarHeight={24}
/>
<span className="min-w-[3ch] text-sm font-medium text-red-500">
{formatElapsedTime(elapsedTime)}
</span>
</div>
);
}

View File

@@ -1,6 +0,0 @@
export function formatElapsedTime(ms: number): string {
const seconds = Math.floor(ms / 1000);
const minutes = Math.floor(seconds / 60);
const remainingSeconds = seconds % 60;
return `${minutes}:${remainingSeconds.toString().padStart(2, "0")}`;
}

View File

@@ -6,7 +6,7 @@ import {
useState,
} from "react";
interface Args {
interface UseChatInputArgs {
onSend: (message: string) => void;
disabled?: boolean;
maxRows?: number;
@@ -18,7 +18,7 @@ export function useChatInput({
disabled = false,
maxRows = 5,
inputId = "chat-input",
}: Args) {
}: UseChatInputArgs) {
const [value, setValue] = useState("");
const [hasMultipleLines, setHasMultipleLines] = useState(false);

View File

@@ -1,251 +0,0 @@
import { useToast } from "@/components/molecules/Toast/use-toast";
import React, {
KeyboardEvent,
useCallback,
useEffect,
useRef,
useState,
} from "react";
const MAX_RECORDING_DURATION = 2 * 60 * 1000; // 2 minutes in ms
interface Args {
setValue: React.Dispatch<React.SetStateAction<string>>;
disabled?: boolean;
isStreaming?: boolean;
value: string;
baseHandleKeyDown: (event: KeyboardEvent<HTMLTextAreaElement>) => void;
inputId?: string;
}
export function useVoiceRecording({
setValue,
disabled = false,
isStreaming = false,
value,
baseHandleKeyDown,
inputId,
}: Args) {
const [isRecording, setIsRecording] = useState(false);
const [isTranscribing, setIsTranscribing] = useState(false);
const [error, setError] = useState<string | null>(null);
const [elapsedTime, setElapsedTime] = useState(0);
const mediaRecorderRef = useRef<MediaRecorder | null>(null);
const chunksRef = useRef<Blob[]>([]);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const startTimeRef = useRef<number>(0);
const streamRef = useRef<MediaStream | null>(null);
const isRecordingRef = useRef(false);
const isSupported =
typeof window !== "undefined" &&
!!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia);
const clearTimer = useCallback(() => {
if (timerRef.current) {
clearInterval(timerRef.current);
timerRef.current = null;
}
}, []);
const cleanup = useCallback(() => {
clearTimer();
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
mediaRecorderRef.current = null;
chunksRef.current = [];
setElapsedTime(0);
}, [clearTimer]);
const handleTranscription = useCallback(
(text: string) => {
setValue((prev) => {
const trimmedPrev = prev.trim();
if (trimmedPrev) {
return `${trimmedPrev} ${text}`;
}
return text;
});
},
[setValue],
);
const transcribeAudio = useCallback(
async (audioBlob: Blob) => {
setIsTranscribing(true);
setError(null);
try {
const formData = new FormData();
formData.append("audio", audioBlob);
const response = await fetch("/api/transcribe", {
method: "POST",
body: formData,
});
if (!response.ok) {
const data = await response.json().catch(() => ({}));
throw new Error(data.error || "Transcription failed");
}
const data = await response.json();
if (data.text) {
handleTranscription(data.text);
}
} catch (err) {
const message =
err instanceof Error ? err.message : "Transcription failed";
setError(message);
console.error("Transcription error:", err);
} finally {
setIsTranscribing(false);
}
},
[handleTranscription, inputId],
);
const stopRecording = useCallback(() => {
if (mediaRecorderRef.current && isRecordingRef.current) {
mediaRecorderRef.current.stop();
isRecordingRef.current = false;
setIsRecording(false);
clearTimer();
}
}, [clearTimer]);
const startRecording = useCallback(async () => {
if (disabled || isRecordingRef.current || isTranscribing) return;
setError(null);
chunksRef.current = [];
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
streamRef.current = stream;
const mediaRecorder = new MediaRecorder(stream, {
mimeType: MediaRecorder.isTypeSupported("audio/webm")
? "audio/webm"
: "audio/mp4",
});
mediaRecorderRef.current = mediaRecorder;
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0) {
chunksRef.current.push(event.data);
}
};
mediaRecorder.onstop = async () => {
const audioBlob = new Blob(chunksRef.current, {
type: mediaRecorder.mimeType,
});
// Cleanup stream
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
if (audioBlob.size > 0) {
await transcribeAudio(audioBlob);
}
};
mediaRecorder.start(1000); // Collect data every second
isRecordingRef.current = true;
setIsRecording(true);
startTimeRef.current = Date.now();
// Start elapsed time timer
timerRef.current = setInterval(() => {
const elapsed = Date.now() - startTimeRef.current;
setElapsedTime(elapsed);
// Auto-stop at max duration
if (elapsed >= MAX_RECORDING_DURATION) {
stopRecording();
}
}, 100);
} catch (err) {
console.error("Failed to start recording:", err);
if (err instanceof DOMException && err.name === "NotAllowedError") {
setError("Microphone permission denied");
} else {
setError("Failed to access microphone");
}
cleanup();
}
}, [disabled, isTranscribing, stopRecording, transcribeAudio, cleanup]);
const toggleRecording = useCallback(() => {
if (isRecording) {
stopRecording();
} else {
startRecording();
}
}, [isRecording, startRecording, stopRecording]);
const { toast } = useToast();
useEffect(() => {
if (error) {
toast({
title: "Voice recording failed",
description: error,
variant: "destructive",
});
}
}, [error, toast]);
useEffect(() => {
if (!isTranscribing && inputId) {
const inputElement = document.getElementById(inputId);
if (inputElement) {
inputElement.focus();
}
}
}, [isTranscribing, inputId]);
const handleKeyDown = useCallback(
(event: KeyboardEvent<HTMLTextAreaElement>) => {
if (event.key === " " && !value.trim() && !isTranscribing) {
event.preventDefault();
toggleRecording();
return;
}
baseHandleKeyDown(event);
},
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
);
const showMicButton = isSupported && !isStreaming;
const isInputDisabled = disabled || isStreaming || isTranscribing;
// Cleanup on unmount
useEffect(() => {
return () => {
cleanup();
};
}, [cleanup]);
return {
isRecording,
isTranscribing,
error,
elapsedTime,
startRecording,
stopRecording,
toggleRecording,
isSupported,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream: streamRef.current,
};
}

View File

@@ -156,19 +156,11 @@ export function ChatMessage({
}
if (isClarificationNeeded && message.type === "clarification_needed") {
const hasUserReplyAfter =
index >= 0 &&
messages
.slice(index + 1)
.some((m) => m.type === "message" && m.role === "user");
return (
<ClarificationQuestionsWidget
questions={message.questions}
message={message.message}
sessionId={message.sessionId}
onSubmitAnswers={handleClarificationAnswers}
isAnswered={hasUserReplyAfter}
className={className}
/>
);

View File

@@ -6,7 +6,7 @@ import { Input } from "@/components/atoms/Input/Input";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { CheckCircleIcon, QuestionIcon } from "@phosphor-icons/react";
import { useState, useEffect, useRef } from "react";
import { useState } from "react";
export interface ClarifyingQuestion {
question: string;
@@ -17,96 +17,39 @@ export interface ClarifyingQuestion {
interface Props {
questions: ClarifyingQuestion[];
message: string;
sessionId?: string;
onSubmitAnswers: (answers: Record<string, string>) => void;
onCancel?: () => void;
isAnswered?: boolean;
className?: string;
}
function getStorageKey(sessionId?: string): string | null {
if (!sessionId) return null;
return `clarification_answers_${sessionId}`;
}
export function ClarificationQuestionsWidget({
questions,
message,
sessionId,
onSubmitAnswers,
onCancel,
isAnswered = false,
className,
}: Props) {
const [answers, setAnswers] = useState<Record<string, string>>({});
const [isSubmitted, setIsSubmitted] = useState(false);
const lastSessionIdRef = useRef<string | undefined>(undefined);
useEffect(() => {
const storageKey = getStorageKey(sessionId);
if (!storageKey) {
setAnswers({});
setIsSubmitted(false);
lastSessionIdRef.current = sessionId;
return;
}
try {
const saved = localStorage.getItem(storageKey);
if (saved) {
const parsed = JSON.parse(saved) as Record<string, string>;
setAnswers(parsed);
} else {
setAnswers({});
}
setIsSubmitted(false);
} catch {
setAnswers({});
setIsSubmitted(false);
}
lastSessionIdRef.current = sessionId;
}, [sessionId]);
useEffect(() => {
if (lastSessionIdRef.current !== sessionId) {
return;
}
const storageKey = getStorageKey(sessionId);
if (!storageKey) return;
const hasAnswers = Object.values(answers).some((v) => v.trim());
try {
if (hasAnswers) {
localStorage.setItem(storageKey, JSON.stringify(answers));
} else {
localStorage.removeItem(storageKey);
}
} catch {}
}, [answers, sessionId]);
function handleAnswerChange(keyword: string, value: string) {
setAnswers((prev) => ({ ...prev, [keyword]: value }));
}
function handleSubmit() {
// Check if all questions are answered
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
if (!allAnswered) {
return;
}
setIsSubmitted(true);
onSubmitAnswers(answers);
const storageKey = getStorageKey(sessionId);
try {
if (storageKey) {
localStorage.removeItem(storageKey);
}
} catch {}
}
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
if (isAnswered || isSubmitted) {
// Show submitted state after answers are submitted
if (isSubmitted) {
return (
<div
className={cn(

View File

@@ -30,9 +30,9 @@ export function getErrorMessage(result: unknown): string {
}
if (typeof result === "object" && result !== null) {
const response = result as Record<string, unknown>;
if (response.error) return stripInternalReasoning(String(response.error));
if (response.message)
return stripInternalReasoning(String(response.message));
if (response.error) return stripInternalReasoning(String(response.error));
}
return "An error occurred";
}
@@ -363,8 +363,8 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "error":
const errorMsg =
(response.message as string) || response.error || "An error occurred";
return stripInternalReasoning(String(errorMsg));
(response.error as string) || response.message || "An error occurred";
return `Error: ${errorMsg}`;
case "no_results":
const suggestions = (response.suggestions as string[]) || [];

View File

@@ -516,7 +516,7 @@ export type GraphValidationErrorResponse = {
/* *** LIBRARY *** */
/* Mirror of backend/api/features/library/model.py:LibraryAgent */
/* Mirror of backend/server/v2/library/model.py:LibraryAgent */
export type LibraryAgent = {
id: LibraryAgentID;
graph_id: GraphID;
@@ -616,7 +616,7 @@ export enum LibraryAgentSortEnum {
/* *** CREDENTIALS *** */
/* Mirror of backend/api/features/integrations/router.py:CredentialsMetaResponse */
/* Mirror of backend/server/integrations/router.py:CredentialsMetaResponse */
export type CredentialsMetaResponse = {
id: string;
provider: CredentialsProviderName;
@@ -628,13 +628,13 @@ export type CredentialsMetaResponse = {
is_system?: boolean;
};
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionResponse */
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionResponse */
export type CredentialsDeleteResponse = {
deleted: true;
revoked: boolean | null;
};
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
export type CredentialsDeleteNeedConfirmationResponse = {
deleted: false;
need_confirmation: true;
@@ -888,7 +888,7 @@ export type Schedule = {
export type ScheduleID = Brand<string, "ScheduleID">;
/* Mirror of backend/api/features/v1.py:ScheduleCreationRequest */
/* Mirror of backend/server/routers/v1.py:ScheduleCreationRequest */
export type ScheduleCreatable = {
graph_id: GraphID;
graph_version: number;

View File

@@ -59,13 +59,12 @@ test.describe("Library", () => {
});
test("pagination works correctly", async ({ page }, testInfo) => {
test.setTimeout(testInfo.timeout * 3);
test.setTimeout(testInfo.timeout * 3); // Increase timeout for pagination operations
await page.goto("/library");
const PAGE_SIZE = 20;
const paginationResult = await libraryPage.testPagination();
if (paginationResult.initialCount >= PAGE_SIZE) {
if (paginationResult.initialCount >= 10) {
expect(paginationResult.finalCount).toBeGreaterThanOrEqual(
paginationResult.initialCount,
);
@@ -134,10 +133,7 @@ test.describe("Library", () => {
test.expect(clearedSearchValue).toBe("");
});
test("pagination while searching works correctly", async ({
page,
}, testInfo) => {
test.setTimeout(testInfo.timeout * 3);
test("pagination while searching works correctly", async ({ page }) => {
await page.goto("/library");
const allAgents = await libraryPage.getAgents();
@@ -156,10 +152,9 @@ test.describe("Library", () => {
);
expect(matchingResults.length).toEqual(initialSearchResults.length);
const PAGE_SIZE = 20;
const searchPaginationResult = await libraryPage.testPagination();
if (searchPaginationResult.initialCount >= PAGE_SIZE) {
if (searchPaginationResult.initialCount >= 10) {
expect(searchPaginationResult.finalCount).toBeGreaterThanOrEqual(
searchPaginationResult.initialCount,
);

View File

@@ -69,12 +69,9 @@ test.describe("Marketplace Creator Page Basic Functionality", () => {
await marketplacePage.getFirstCreatorProfile(page);
await firstCreatorProfile.click();
await page.waitForURL("**/marketplace/creator/**");
await page.waitForLoadState("networkidle").catch(() => {});
const firstAgent = page
.locator('[data-testid="store-card"]:visible')
.first();
await firstAgent.waitFor({ state: "visible", timeout: 30000 });
await firstAgent.click();
await page.waitForURL("**/marketplace/agent/**");

View File

@@ -77,6 +77,7 @@ test.describe("Marketplace Basic Functionality", () => {
const firstFeaturedAgent =
await marketplacePage.getFirstFeaturedAgent(page);
await firstFeaturedAgent.waitFor({ state: "visible" });
await firstFeaturedAgent.click();
await page.waitForURL("**/marketplace/agent/**");
await matchesUrl(page, /\/marketplace\/agent\/.+/);
@@ -115,15 +116,7 @@ test.describe("Marketplace Basic Functionality", () => {
const searchTerm = page.getByText("DummyInput").first();
await isVisible(searchTerm);
await page.waitForLoadState("networkidle").catch(() => {});
await page
.waitForFunction(
() =>
document.querySelectorAll('[data-testid="store-card"]').length > 0,
{ timeout: 15000 },
)
.catch(() => console.log("No search results appeared within timeout"));
await page.waitForTimeout(10000);
const results = await marketplacePage.getSearchResultsCount(page);
expect(results).toBeGreaterThan(0);

View File

@@ -300,27 +300,21 @@ export class LibraryPage extends BasePage {
async scrollToLoadMore(): Promise<void> {
console.log(`scrolling to load more agents`);
const initialCount = await this.getAgentCountByListLength();
console.log(`Initial agent count (DOM cards): ${initialCount}`);
// Get initial agent count
const initialCount = await this.getAgentCount();
console.log(`Initial agent count: ${initialCount}`);
// Scroll down to trigger pagination
await this.scrollToBottom();
await this.page
.waitForLoadState("networkidle", { timeout: 10000 })
.catch(() => console.log("Network idle timeout, continuing..."));
// Wait for potential new agents to load
await this.page.waitForTimeout(2000);
await this.page
.waitForFunction(
(prevCount) =>
document.querySelectorAll('[data-testid="library-agent-card"]')
.length > prevCount,
initialCount,
{ timeout: 5000 },
)
.catch(() => {});
// Check if more agents loaded
const newCount = await this.getAgentCount();
console.log(`New agent count after scroll: ${newCount}`);
const newCount = await this.getAgentCountByListLength();
console.log(`New agent count after scroll (DOM cards): ${newCount}`);
return;
}
async testPagination(): Promise<{

View File

@@ -9,7 +9,6 @@ export class MarketplacePage extends BasePage {
async goto(page: Page) {
await page.goto("/marketplace");
await page.waitForLoadState("networkidle").catch(() => {});
}
async getMarketplaceTitle(page: Page) {
@@ -110,24 +109,16 @@ export class MarketplacePage extends BasePage {
async getFirstFeaturedAgent(page: Page) {
const { getId } = getSelectors(page);
const card = getId("featured-store-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
return getId("featured-store-card").first();
}
async getFirstTopAgent() {
const card = this.page
.locator('[data-testid="store-card"]:visible')
.first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
return this.page.locator('[data-testid="store-card"]:visible').first();
}
async getFirstCreatorProfile(page: Page) {
const { getId } = getSelectors(page);
const card = getId("creator-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
return getId("creator-card").first();
}
async getSearchResultsCount(page: Page) {

View File

@@ -124,4 +124,3 @@ test("user can signup with existing email handling", async ({
console.error("❌ Duplicate email handling test failed:", error);
}
});

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |

View File

@@ -20,7 +20,7 @@ Configure timeouts for DOM settlement and page loading. Variables can be passed
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| url | URL to navigate to. | str | Yes |
| action | Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step. | List[str] | Yes |
| variables | Variables to use in the action. Variables contains data you want the action to use. | Dict[str, str] | No |
@@ -65,7 +65,7 @@ Supports searching within iframes and configurable timeouts for dynamic content
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |
@@ -106,7 +106,7 @@ Use this to explore a page's interactive elements before building automated work
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |

View File

@@ -25,7 +25,7 @@ This document focuses on the **API Integration OAuth flow** used for connecting
### 2. Backend API Trust Boundary
- **Location**: Server-side FastAPI application
- **Components**:
- Integration router (`/backend/backend/api/features/integrations/router.py`)
- Integration router (`/backend/backend/server/integrations/router.py`)
- OAuth handlers (`/backend/backend/integrations/oauth/`)
- Credentials store (`/backend/backend/integrations/credentials_store.py`)
- **Trust Level**: Trusted - server-controlled environment

View File

@@ -4,28 +4,6 @@
This guide walks through creating a simple question-answer AI agent using AutoGPT's visual builder. This is a basic example that can be expanded into more complex agents.
## **Prerequisites**
### **Cloud-Hosted AutoGPT**
If you're using the cloud-hosted version at [agpt.co](https://agpt.co), you're ready to go! AI blocks come with **built-in credits** — no API keys required to get started. If you'd prefer to use your own API keys, you can add them via **Profile → Integrations**.
### **Self-Hosted (Docker)**
If you're running AutoGPT locally with Docker, you'll need to add your own API keys to `autogpt_platform/backend/.env`:
```bash
# Create or edit backend/.env
OPENAI_API_KEY=sk-your-key-here
ANTHROPIC_API_KEY=sk-ant-your-key-here
# Add other provider keys as needed
```
After adding keys, restart the services:
```bash
docker compose down && docker compose up -d
```
**Note:** The Calculator example below doesn't require any API credentials — it's a good way to test your setup before adding AI blocks.
## **Example Agent: Q&A (with AI)**
A step-by-step guide to creating a simple Q&A agent using input and output blocks.

View File

@@ -246,7 +246,7 @@ If you encounter any issues, verify that:
```bash
ollama pull llama3.2
```
- If using a custom model, ensure it's added to the model list in `backend/api/model.py`
- If using a custom model, ensure it's added to the model list in `backend/server/model.py`
#### Docker Issues
- Ensure Docker daemon is running: