mirror of
https://github.com/lllyasviel/ControlNet.git
synced 2026-01-09 22:18:01 -05:00
fix a bug for DDIM inversion
fix a bug of the incorrect timestep in DDIMSampler.encode() for DDIM inversion
This commit is contained in:
@@ -233,7 +233,8 @@ class DDIMSampler(object):
|
||||
@torch.no_grad()
|
||||
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
||||
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
||||
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
||||
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||
num_reference_steps = timesteps.shape[0]
|
||||
|
||||
assert t_enc <= num_reference_steps
|
||||
num_steps = t_enc
|
||||
@@ -249,7 +250,7 @@ class DDIMSampler(object):
|
||||
intermediates = []
|
||||
inter_steps = []
|
||||
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
||||
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
||||
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
|
||||
if unconditional_guidance_scale == 1.:
|
||||
noise_pred = self.model.apply_model(x_next, t, c)
|
||||
else:
|
||||
@@ -313,4 +314,4 @@ class DDIMSampler(object):
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
if callback: callback(i)
|
||||
return x_dec
|
||||
return x_dec
|
||||
|
||||
Reference in New Issue
Block a user