This commit is contained in:
coolprop
2014-09-24 02:43:10 -07:00
154 changed files with 3329 additions and 1296 deletions

View File

@@ -2049,7 +2049,7 @@ TAGFILES =
# tag file that is based on the input files it reads. See section "Linking to
# external documentation" for more information about the usage of tag files.
GENERATE_TAGFILE = CoolPropDoxyLink.tag
GENERATE_TAGFILE = Web/_static/doxygen/CoolPropDoxyLink.tag
# If the ALLEXTERNALS tag is set to YES all external class will be listed in the
# class index. If set to NO only the inherited external classes will be listed.

View File

@@ -67,7 +67,7 @@ Once mono c# is installed, you can run the builder and tests using::
# Move into the folder you just created
cd CoolProp
# Make a build folder
mkdir -p build/Csharp && cd build
mkdir build && cd build
# Build the makefile using CMake
cmake .. -DCOOLPROP_CSHARP_MODULE=ON -DBUILD_TESTING=ON
# Make the C# files (by default files will be generated in folder install_root/Csharp relative to CMakeLists.txt file)

View File

@@ -1,4 +1,8 @@
********
Buildbot
********
Setting MIME type handler
=========================

View File

@@ -0,0 +1,9 @@
.. _cmake:
*****
CMake
*****
CMake is a very powerful cross-platform system for generating automated build systems. On Unix it builds makefiles which it then runs, on windows, it normally builds projects for Visual Studio (though it can also build Makefiles using MinGW on windows).
CMake is used to build each of the wrappers for CoolProp.

View File

@@ -190,7 +190,8 @@ Values here are obtained at documentation build-time using the Humid Air Propert
.. ipython::
In [1]: execfile('Validation/HAValidation.py')
In [1]: execfile('fluid_properties/Validation/HAValidation.py')
..

View File

@@ -0,0 +1,241 @@
% This file was created with JabRef 2.10.
% Encoding: ASCII
@Book{ASHRAE2001,
Title = {{2001 ASHRAE Handbook: Fundamentals}},
Author = {{American Society of Heating, Refrigerating and Air-Conditioning Engineers}},
Publisher = {{ASHRAE}},
Year = {2001},
Volume = {111},
ISBN = {9781883413880},
Owner = {jowr},
Timestamp = {2014.09.17}
}
@TechReport{Kauffeld2001,
Title = {{RP-1166---Behavior of Ice Slurries in Thermal Storage Systems}},
Author = {Michael Kauffeld},
Institution = {{Danish Technological Institute}},
Year = {2001},
Note = {{Sponsored by ASHRAE Technical Committee 6.9 Thermal Storage}},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Book{Melinder2010,
Title = {{Properties of Secondary Working Fluids for Indirect Systems}},
Author = {{\AA}ke Melinder},
Publisher = {IIF-IIR Publishing},
Year = {2010},
Owner = {jowr},
Timestamp = {2014.09.17}
}
@Article{Patek2006,
Title = {{A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range}},
Author = {Jaroslav P\'atek and Jaroslav Klomfar},
Journal = {International Journal of Refrigeration},
Year = {2006},
Month = {June},
Number = {4},
Pages = {566--578},
Volume = {29},
Doi = {10.1016/j.ijrefrig.2005.10.007},
Owner = {jowr},
Timestamp = {2013.11.22}
}
@InBook{Preisegger2010,
Title = {VDI Heat Atlas},
Author = {Ewald Preisegger and Felix Flohr and Gernot Krakat and Andreas Gl{\"u}ck and Dietmar Hunold},
Chapter = {D4 Properties of Industrial Heat Transfer Media},
Editor = {Peter Stephan},
Pages = {419--512},
Publisher = {Springer},
Year = {2010},
Address = {Berlin Heidelberg},
Edition = {2nd},
Doi = {10.1007/978-3-540-77877-6_20},
Owner = {jowr},
Timestamp = {2013.06.18}
}
@Book{Schmidt1979,
Title = {Properties of Water and Steam in SI-Units},
Author = {Ernst Schmidt},
Publisher = {Springer},
Year = {1979},
Edition = {2nd},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Skovrup2013,
Title = {{SecCool Properties v1.33}},
Author = {Morten Juel Skovrup},
Organization = {IPU Refrigeration and Energy Technology},
Year = {2013},
Owner = {jowr},
Timestamp = {2014.09.17},
Url = {http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx}
}
@TechReport{Zavoico2001,
Title = {{Solar Power Tower Design Basis Document}},
Author = {Alexis B. Zavoico},
Institution = {Sandia National Laboratories},
Year = {2001},
Month = {July},
Owner = {jowr},
Timestamp = {2013.10.23},
Url = {http://prod.sandia.gov/techlib/access-control.cgi/2001/012100.pdf}
}
@Manual{Dynalene2014,
Title = {{Technical Data Sheet}},
Organization = {{Dynalene Inc.}},
Year = {2014},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Therminol2014,
Title = {{Therminol Heat Transfer Reference Disk v5.1}},
Organization = {{Eastman Chemical Company}},
Year = {2014},
Owner = {jowr},
Timestamp = {2014.09.17},
Url = {http://www.therminol.com/resources/therminol-reference-disk}
}
@Manual{Paratherm2013,
Title = {{Thermal Properties Calculator v6.4}},
Organization = {{Paratherm Ltd.}},
Year = {2013},
Owner = {jowr},
Timestamp = {2014.09.22},
Url = {http://paracalc.paratherm.com}
}
@Manual{Arteco2010,
Title = {{Technical Information}},
Organization = {{Arteco NV/SA}},
Year = {2010},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{3M2007,
Title = {{Technical Information}},
Organization = {{3M Company}},
Year = {2007},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{PKS2005,
Title = {{Technical Data Sheet}},
Organization = {{pro K{\"u}hlsole GmbH}},
Year = {2005},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Chevron2004,
Title = {{Technical Data Sheet}},
Organization = {{Chevron Products Company}},
Year = {2004},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Aspen2001,
Title = {{Technical Data Sheet}},
Organization = {{Aspen Petroleum AB}},
Year = {2001},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Clariant2000,
Title = {{Technical Data Sheet}},
Organization = {{Clariant GmbH}},
Year = {2000},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Hydro2000,
Title = {{Technical Information}},
Organization = {{Hydro Chemicals}},
Year = {2000},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Sulzer1999,
Title = {{Technical Information}},
Organization = {{Sulzer Chemtech AG}},
Year = {1999},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Tyfoprop1999,
Title = {{Technical Information}},
Organization = {{Tyforop Chemie Gmbh}},
Year = {1999},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Kemira1998,
Title = {{Technical Data Sheet}},
Organization = {{Kemira Chemicals OY}},
Year = {1998},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Dow1997,
Title = {{Technical Data Sheet}},
Organization = {{The Dow Chemical Company}},
Year = {1997},
Owner = {jowr},
Timestamp = {2014.09.22}
}
@Manual{Hoechst1995,
Title = {{Technical Information}},
Organization = {{Hoechst AG}},
Year = {1995},
Owner = {jowr},
Timestamp = {2014.09.22}
}

View File

@@ -1,18 +1,22 @@
.. |degC| replace:: :math:`^\circ\!\!` C
.. _Incompressibles:
Incompressible Fluids
=====================
In CoolProp, the incompressible fluids are divided into four major groups.
General Introduction
--------------------
In CoolProp, the incompressible fluids are divided into three major groups.
* :ref:`Pure fluids <Pure>`.
* :ref:`Mass-based binary mixtures <MassMix>`.
.. * :ref:`Mole-based binary mixtures <MoleMix>`.
* :ref:`Volume-based binary mixtures <VoluMix>`.
.. * :ref:`Mole-based binary mixtures <MoleMix>`.
The pure fluids and mass-based binary mixtures are by far the most common fluids
in this library. While the pure fluids contain data for many different kinds of
incompressible liquids, almost all of the binary mixtures are aqueous solutions.
@@ -30,17 +34,36 @@ documents with all the
You can read more about these reports in a dedicated
:ref:`section<FittingReports>` called :ref:`Fitting Reports<FittingReports>` below.
All incompressible fluids have an arbitrary reference state for enthalpy and entropy.
During initialisation, the reference state is defined as a temperature of 20 °C
and a pressure of 1 atm according to the U.S. National Institute of Standards and
Technology ([NIST](http://www.nist.gov)).
.. math::
T_\text{ref} &= 293.15\:\text{K} &= 68\:\text{°F} \\
p_\text{ref} &= 101325\:\text{Pa} &= 14.696\:\text{psi} \\
h_\text{ref} &= 0\:\text{KJ}\,\text{kg}^{-1} & \\
s_\text{ref} &= 0\:\text{KJ}\,\text{kg}^{-1}\,\text{K}^{-1} & \\
If you use a mixture, the reference state gets updated each time you change the
composition.
Pure Fluid Examples
-------------------
Incompressible fluids only allow for a limited subset of input variables. The
following input pairs are supported: :math:`f(p,T)`, :math:`f(h,p)`, :math:`f(\rho,T)`,
:math:`f(p,u)` and :math:`f(p,s)`. All functions iterate on :math:`f(p,T)` calls
following input pairs are supported: :math:`f(p,T)`, :math:`f(p,h)`, :math:`f(p,\rho)`,
:math:`f(p,u)` and :math:`f(p,s)`. Some fluids also provide saturation state
information as :math:`f(Q,T)` with :math:`Q=0`. All functions iterate on :math:`f(p,T)` calls
internally, which makes this combination by far the fastest. However, also the
other inputs should be fast compared to the full Helmholtz-based EOS implemented
for then compressible fluids.
A call to the top-level function ``PropsSI`` can provide : density, heat capacity,
internal energy, enthalpy, entropy, viscosity and thermal conductivity. Hence,
the available output keys are: ``D``, ``C``, ``U``, ``H``, ``S``, ``V``, ``L``,
``Tmin``, ``Tmax`` and ``Psat``.
A call to the top-level function ``PropsSI`` can provide : temperature, pressure,
density, heat capacity, internal energy, enthalpy, entropy, viscosity and
thermal conductivity. Hence, the available output keys are: ``T``, ``P``, ``D``,
``C``, ``U``, ``H``, ``S``, ``V``, ``L``, ``Tmin`` and ``Tmax``.
.. ipython::
@@ -52,20 +75,10 @@ the available output keys are: ``D``, ``C``, ``U``, ``H``, ``S``, ``V``, ``L``,
#Specific heat capacity of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('C','T',500,'P',101325,'INCOMP::DowQ')
#Internal energy of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('U','T',500,'P',101325,'INCOMP::DowQ')
In [1]: PropsSI('C','D',809.0659,'P',101325,'INCOMP::DowQ')
#Enthalpy of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('H','T',500,'P',101325,'INCOMP::DowQ')
#Entropy of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('S','T',500,'P',101325,'INCOMP::DowQ')
#Viscosity of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('V','T',500,'P',101325,'INCOMP::DowQ')
#Thermal conductivity of Downtherm Q at 500 K and 1 atm
In [1]: PropsSI('L','T',500,'P',101325,'INCOMP::DowQ')
#Saturation pressure of Downtherm Q at 500 K
In [1]: PropsSI('P','T',500,'Q',0,'INCOMP::DowQ')
#Minimum temperature for Downtherm Q
In [1]: PropsSI('Tmin','T',0,'P',0,'INCOMP::DowQ')
@@ -74,65 +87,40 @@ the available output keys are: ``D``, ``C``, ``U``, ``H``, ``S``, ``V``, ``L``,
In [1]: PropsSI('Tmax','T',0,'P',0,'INCOMP::DowQ')
.. #Vapour pressure of Downtherm Q at 500 K, note the dummy pressure to work around https://github.com/CoolProp/CoolProp/issues/145
In [1]: PropsSI('Psat','T',500,'P',1e8,'INCOMP::DowQ')
Mixture Examples
----------------
Almost the same syntax can be used for mixtures. Please note that the mixture
interface developed for CoolProp 5 has not been ported to the incompressible
fluids, yet. For now, you have to use the ``PropsSI`` function with a special
composition notation. Depending on your fluid, you have to supply either the
:ref:`mass fraction<MassMix>` or the :ref:`volume fraction<VoluMix>` as additional
parameter. This is done via the fluid name by appending a dash and the
fraction of the substance other than water. The fraction notation can be in the
form of percent, ``LiBr-23%``, or as a fraction like in ``LiBr-0.23`` or
``LiBr[0.23]``, which corresponds to the new mixture syntax in CoolProp5.
.. In addition to the properties available for the pure fluids (``D``, ``C``,
``U``, ``H``, ``S``, ``V``, ``L``,``Tmin`` and ``Tmax``, some mixtures also
provide the freezing temperature ``Tfreeze`` as a function of composition.
.. ipython::
In [1]: from CoolProp.CoolProp import PropsSI
#Density of a lithium bromide solution at 300 K and 1 atm.
In [1]: PropsSI('D','T',300,'P',101325,'INCOMP::LiBr[0.23]')
#Specific heat capacity of a lithium bromide solution at 300 K and 1 atm
In [1]: PropsSI('C','T',300,'P',101325,'INCOMP::LiBr-0.23%')
Pure Fluids
-----------
For refrigeration applications, 8 fluids were implemented from Aake Melinder's
book "Properties of Secondary Working Fluids for Indirect Systems" published in 2010
by IIR :cite:`Melinder-BOOK-2010` with coefficients obtained from a fit between
-80 |degC| and +100 |degC|: DEB, HCM, HFE, PMS1, PMS2, SAB, HCB and TCO.
Some additional secondary cooling fluids are based on data compiled by Morten
Juel Skovrup in his `SecCool software <http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx>`_
provided by his employer `IPU <http://en.ipu.dk>`_. Fits have been made for the
manufacturer data stored in the software. The Aspen Temper fluids (AS10, AS20,
AS30, AS40, AS55) are a blend of potassium formate and sodiumpropionate and the
Zitrec S group (ZS10, ZS25, ZS40, ZS45 and ZS55) consists mainly of potassium
acetate and potassium formate.
There are also a few high temperature heat transfer fluids with individual
temperature ranges. Please refer to the table below for a complete overview.
For these fluids, information from commercial data sheets was used to obtain
coefficients.
.. _Pure:
.. csv-table:: All incompressible pure fluids included in CoolProp
:widths: 10, 35, 25, 15, 15
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/pure-fluids.csv
Aqueous Mixtures - Solutions and Brines
---------------------------------------
.. _MassMix:
.. csv-table:: All incompressible mass-based binary mixtures included in CoolProp
:widths: 10, 30, 20, 10, 10, 10, 10
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/mass-based-fluids.csv
.. .. _MoleMix:
.. .. csv-table:: All incompressible mole-based binary mixtures included in CoolProp
:widths: 10, 30, 20, 10, 10, 10, 10
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/mole-based-fluids.csv
.. _VoluMix:
.. csv-table:: All incompressible volume-based binary mixtures included in CoolProp
:widths: 10, 30, 20, 10, 10, 10, 10
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/volume-based-fluids.csv
@@ -178,85 +166,12 @@ Equations
Exp or log for visc, other poly or log poly
.. math::
x(T) &= \sum_{i=0}^n C[i] \cdot T^i \\
x(T) &= \exp\left( \frac{C[0]}{T+C[1]} - C[2] \right) \\
x(T) &= \exp\left( \log \left( \left(T+C[0]\right)^{-1} + \left( T+C[0] \right)^{-2} \right) *C[1]+C[2] \right) \\
Incompressible Liquids
----------------------
There is also a selection of incompressible liquids implemented. These only allow for calls with
temperature and pressure as input and provide only a subset of thermophysical properties, namely:
density, heat capacity, internal energy, enthalpy, entropy, viscosity and thermal conductivity.
Hence, the available output keys for the ``Props`` function are: "D", "C", "U", "H", "S", "V", "L",
"Tmin", "Tmax" and "Psat". An internal iteration allows us to use enthalpy and pressure as inputs,
but be aware of the reduced computational efficiency.
.. ipython::
In [1]: from CoolProp.CoolProp import PropsSI
#Density of HFE-7100 at 300 K and 1 atm.
In [1]: PropsSI('D','T',300,'P',101325,'INCOMP::HFE')
For refrigeration applications, 8 fluids were implemented from Aake Melinder "Properties of
Secondary Working Fluids for Indirect Systems" published in 2010 by IIR and coefficients are
obtained from a fit between -80 and +100 degrees Celsius.
========================== ===================================================
Fluid Name Description
========================== ===================================================
``DEB`` Diethyl Benzene
``HCM`` Hydrocarbon Mixture (Therminol D12 Solutia)
``HFE`` Hydrofluoroether HFE-7100
``PMS1`` Polydimethylsiloxan 1.
``PMS2`` Polydimethylsiloxan 2.
``SAB`` Synthetic alkyl benzene
``HCB`` Hydrocarbon blend (Dynalene MV)
``TCO`` Terpene from citrus oils
========================== ===================================================
Some additional secondary cooling fluids are based on data compiled by Morten Juel Skovrup in
his `SecCool software <http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx>`_
provided by his employer `IPU <http://en.ipu.dk>`_. Fits have been made according to the manufacturer
data stored in the sodtware. The Aspen Temper fluids are a blend of potassium formate and sodiumpropionate
and the Zitrec S group consists mainly of potassium acetate and potassium formate.
========================== ===================================================
Fluid Name Description
========================== ===================================================
``AS10`` Aspen Temper -10 (-10 to +27.5 C)
``AS20`` Aspen Temper -20 (-20 to +27.5 C)
``AS30`` Aspen Temper -30 (-30 to +27.5 C)
``AS40`` Aspen Temper -40 (-40 to +27.5 C)
``AS55`` Aspen Temper -55 (-55 to +27.5 C)
``ZS10`` Zitrec S -10 (-10 to +85 C)
``ZS25`` Zitrec S -25 (-25 to +85 C)
``ZS40`` Zitrec S -40 (-40 to +85 C)
``ZS45`` Zitrec S -45 (-45 to +85 C)
``ZS55`` Zitrec S -55 (-55 to +85 C)
========================== ===================================================
There are also a few high temperature heat transfer fluids with individual temperature ranges. Please
refer to the file IncompLiquid.h for a complete overview. For these fluids, information from commercial
data sheets was used to obtain coefficients.
========================== ===================================================
Fluid Name Description
========================== ===================================================
``TD12`` Therminol D12 (-85 to +230 C)
``TVP1`` Therminol VP-1 (+12 to +397 C)
``T72`` Therminol 72 (-10 to +380 C)
``T66`` Therminol 66 (0 to +345 C)
``DowJ`` Dowtherm J (-80 to +345 C)
``DowQ`` Dowtherm Q (-35 to +360 C)
``TX22`` Texatherm 22 (0 to +350 C)
``NaK`` Nitrate Salt Blend (+300 to +600 C)
``XLT`` Syltherm XLT (-100 to +260 C)
``HC10`` Dynalene HC-10 (-10 to +218 C)
``HC20`` Dynalene HC-20 (-20 to +210 C)
``HC30`` Dynalene HC-30 (-30 to +210 C)
``HC40`` Dynalene HC-40 (-40 to +200 C)
``HC50`` Dynalene HC-50 (-50 to +210 C)
========================== ===================================================
All fluids are implemented with polynomials for density and heat capacity with typically 4 coefficients
and hence a third order polynomial. Thermal conductivity is a second order polynomial and viscosity and
@@ -277,6 +192,8 @@ vapour pressure are exponential functions.
\mu &= \exp\left( \frac{C_{\mu}[0]}{T+C_{\mu}[1]} - C_{\mu}[2] \right) \\
p_{sat} &= \exp\left( \frac{C_{sat}[0]}{T+C_{sat}[1]} - C_{sat}[2] \right) \\
In some cases, the fit quality for the
Brines and Solutions
--------------------
@@ -388,5 +305,76 @@ then yields the final factor :math:`D` to be multiplied with the other coefficie
.. bibliography:: ../../CoolPropBibTeXLibrary.bib
:style: unsrt
The Different Fluids
--------------------
The fluids implemented in CoolProp cover a wide range of industrial heat
transfer media. This database has initially been developed with refrigeration
systems in mind. That is why the majority of fluids are secondary refrigerants
with application temperatures close to the freezing point of water. Besides those,
there is also incompressible water, high temperature heat transfer oils and a
molten salt mixture for extreme temperatures.
Besides the different technical data sheets and calculation tools provided by
manufactures, two specific publications provided a lot of data used for the
incompressible fluids: Åke Melinder's book *Properties of Secondary Working
Fluids for Indirect Systems* :cite:`Melinder2010` has inspired both, the work on
pure fluids and aqueous solutions. The second major source of inspiration is the
`SecCool software <http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx>`_
:cite:`Skovrup2013` software, which contains data compiled by Morten Juel
Skovrup. It is provided free of charge by his employer `IPU <http://en.ipu.dk>`_.
.. _Pure:
.. csv-table:: All incompressible pure fluids included in CoolProp
:widths: 10, 35, 15, 20, 20
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/pure-fluids.csv
There are also a number of water-based mixtures implemented in CoolProp. Most of them
are secondary heat transfer fluids, but there are also aqueous solutions of
ammonia :cite:`Melinder2010`, :download:`MAM<../_static/fluid_properties/incompressible/report/MAM_fitreport.pdf>`,
and lithium bromide :cite:`Patek2006`, :download:`LiBr<../_static/fluid_properties/incompressible/report/LiBr_fitreport.pdf>`.
.. _MassMix:
.. csv-table:: All incompressible mass-based binary mixtures included in CoolProp
:widths: 10, 30, 12, 12, 12, 12, 12
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/mass-based-fluids.csv
.. .. _MoleMix:
.. .. csv-table:: All incompressible mole-based binary mixtures included in CoolProp
:widths: 10, 30, 12, 12, 12, 12, 12
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/mole-based-fluids.csv
.. _VoluMix:
.. csv-table:: All incompressible volume-based binary mixtures included in CoolProp
:widths: 10, 30, 12, 12, 12, 12, 12
:header-rows: 1
:file: ../_static/fluid_properties/incompressible/table/volume-based-fluids.csv
For slurry ice, the concentration :math:`x` refers to the solid content and the
heat capacity includes the heat of fusion. It might be necessary to adjust the
solid content during heat transfer. The implementation is based on the data
available in `SecCool<http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx>`_,
which was originally recorded at the `Danish Technological Institute (DTI) <http://www.dti.dk/>`_.
References
----------
.. bibliography:: Incompressibles.bib
:filter: docname in docnames
:style: unsrt

View File

@@ -214,10 +214,10 @@ print "Isothermal Compressibility of water (kT) [1/Pa]"
from CoolProp.HumidAirProp import HAProps_Aux
import numpy as np
Tv=np.linspace(-60,300,13)+273.15
Pv=[101325,200,500,1000]
Pv=[101325,200000,500000,1000000]
variables="%-10s"%('T')
for p in Pv:
variables+="%-20s"%("p = %-0.3f kPa "%(p))
variables+="%-20s"%("p = %-0.3f Pa "%(p))
print variables
#Build the actual table
for T in Tv:
@@ -235,10 +235,10 @@ print "Molar volume of saturated liquid water or ice (vbar_ws) [m^3/mol_H2O]"
from CoolProp.HumidAirProp import HAProps_Aux
import numpy as np
Tv=np.linspace(-60,300,13)+273.15
Pv=[101325,200,500,1000]
Pv=[101325,200000,500000,1000000]
variables="%-10s"%('T')
for p in Pv:
variables+="%-20s"%("p = %-0.3f kPa "%(p))
variables+="%-20s"%("p = %-0.3f Pa "%(p))
print variables
#Build the actual table
for T in Tv:
@@ -256,10 +256,10 @@ print "Enhancement factor (f) [no units]"
from CoolProp.HumidAirProp import HAProps_Aux
import numpy as np
Tv=np.array([-60,-40,-20,0,40,80,120,160,200,250,300,350])+273.15
Pv=[101325,200,500,1000,10000]
Pv=[101325,200000,500000,1000000,10000000]
variables="%-10s"%(u'T')
for p in Pv:
variables+="%-20s"%("p = %-0.3f kPa "%(p))
variables+="%-20s"%("p = %-0.3f Pa "%(p))
print variables
#Build the actual table
for T in Tv:

View File

@@ -1,163 +0,0 @@
# coding: utf-8
from pybtex.database.input import bibtex
def accent_substitutions(name):
mapping = [('{\\~n}','\xf1'), # <20>
('{\\`e}','\xe8'), # <20>
("{\\'e}",'\xe9'), # <20>
("{\\'a}",'\xe1'), # <20>
("{\\`a}",'\xe0'), # <20>
("{\\'i}",'\xed'), # <20>
("{\\'i}",'\xed'), # <20>
('{\\\"o}','\xf6'), # <20>
('{\\\"u}','\xfc'), # <20>
('{\\v s}','\x161'), # <20>
]
for old, new in mapping:
name = name.replace(old, new)
return name
def count_substr(s, ss):
c = 0
for e in s:
if e == ss:
c += 1
return c
def DE(s):
try:
return s.decode('ascii').encode('utf-8')
except UnicodeEncodeError:
print 'Decoding error for',s
class BibTeXerClass:
def __init__(self, fName = '../CoolPropBibTeXLibrary.bib'):
parser = bibtex.Parser()
bib_data = parser.parse_file(fName)
self.entries = bib_data.entries
def entry2rst(self, key):
if key.startswith('__'):
return ''
entry = self.entries[key]
if entry is None:
return ''
try:
authors = '; '.join([accent_substitutions(unicode(author).decode('ascii').encode('utf-8')) for author in entry.persons['author']])
except UnicodeEncodeError:
print 'Decoding error for',[author for author in entry.persons['author']]
if authors.find('{') > -1 or authors.find('}') > -1:
print authors
raise ValueError("authors [{authors:s}] may not have '{{' or '}}' character".format(authors = authors))
fields = entry.fields
# Strip off the opening and closing brackets
fields['title'] = fields['title'].strip()
if fields['title'].startswith('{') and fields['title'].endswith('}'):
fields['title'] = fields['title'][1:len(entry.fields['title'])-1]
f = fields
for key in f:
f[key] = DE(f[key])
authors = str(authors)
if entry.type == 'article':
if 'journal' not in fields: fields['journal'] = ''
if 'volume' not in fields: fields['volume'] = ''
if 'pages' not in fields: fields['pages'] = ''
return authors + ', ' + f['year'] + ', ' + f['title'] + ', *' + f['journal'] + '*, ' + f['volume'] + ':' + f['pages']
elif entry.type == 'conference':
if 'journal' not in f: f['journal'] = ''
return authors + ', ' + f['year'] + ', ' + f['title'] + ', *' + f['booktitle'] + '*'
elif entry.type == 'mastersthesis':
return authors + ', ' + f['year'] + ', ' + f['title'] + ', *' + f['school'] + '*'
elif entry.type == 'unpublished':
return authors + ', ' + f['year'] + ', ' + f['title'] + ', note: ' + f['note']
elif entry.type == 'book':
return authors + ', ' + f['year'] + ', *' + f['title'] + '*, ' + f['publisher']
elif entry.type == 'techreport':
return authors + ', ' + f['year'] + ', *' + f['title'] + '*, ' + f['institution']
else:
print entry
def entry2HTML(self, key):
if key.startswith('__'):
return ''
entry = self.entries[key]
if entry is None:
return ''
try:
authors = '; '.join([accent_substitutions(unicode(author).decode('ascii').encode('utf-8')) for author in entry.persons['author']])
except UnicodeEncodeError:
print 'Decoding error for',[author for author in entry.persons['author']]
if authors.find('{') > -1 or authors.find('}') > -1:
print authors
raise ValueError("authors [{authors:s}] may not have '{{' or '}}' character".format(authors = authors))
fields = entry.fields
# Strip off the opening and closing brackets
fields['title'] = fields['title'].strip()
if fields['title'].startswith('{') and fields['title'].endswith('}'):
fields['title'] = fields['title'][1:len(entry.fields['title'])-1]
f = fields
for key in f:
f[key] = DE(f[key])
authors = str(authors)
if entry.type == 'article':
if 'journal' not in fields: fields['journal'] = ''
if 'volume' not in fields: fields['volume'] = ''
if 'pages' not in fields: fields['pages'] = ''
return authors + ', ' + f['year'] + ', ' + f['title'] + ', <i>' + f['journal'] + '</i>, ' + f['volume'] + ':' + f['pages']
elif entry.type == 'conference':
if 'journal' not in f: f['journal'] = ''
return authors + ', ' + f['year'] + ', ' + f['title'] + ', <i>' + f['booktitle'] + '</i>'
elif entry.type == 'mastersthesis':
return authors + ', ' + f['year'] + ', ' + f['title'] + ', <i>' + f['school'] + '</i>'
elif entry.type == 'unpublished':
return authors + ', ' + f['year'] + ', ' + f['title'] + ', note: ' + f['note']
elif entry.type == 'book':
return authors + ', ' + f['year'] + ', <i>' + f['title'] + '</i>, ' + f['publisher']
elif entry.type == 'techreport':
return authors + ', ' + f['year'] + ', <i>' + f['title'] + '</i>, ' + f['institution']
else:
print entry
def findentry(self, key):
for entry in self.entries:
if entry['key'] == key:
return entry
if __name__=='__main__':
B = BibTeXerClass()
print B.entry2rst('Mulero-JPCRD-2012')

View File

@@ -1,7 +1,7 @@
{
"ALIASES": [
"propylene",
"PROPYLENE",
"PROPYLENE",
"PROPYLEN"
],
"ANCILLARIES": {
@@ -512,5 +512,61 @@
"rhomolar": 1.021729100294701e-06,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00109939,
3.72539e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.3521,
-0.123177
],
"rhomolar_reducing": 5309.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 298.9,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.33962,
-0.256307,
0.0468211
],
"rhomolar_reducing": 5309.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 4.678e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -399,5 +399,61 @@
"rhomolar": 18.4372956441027,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00132,
0.0
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.1804,
-0.0539975
],
"rhomolar_reducing": 4518.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "R134a",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 226.16,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.21996,
-0.0647835,
0.0
],
"rhomolar_reducing": 4518.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "R134a",
"sigma_eta": 5.249e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -419,7 +419,7 @@
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "",
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
@@ -437,34 +437,38 @@
1.0898,
-0.0154229
],
"rhomolar_reducing": 4103.279546177282,
"rhomolar_reducing": 4103.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "",
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 275.8,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.04253,
0.00138528
0.00138528,
0.0
],
"rhomolar_reducing": 4103.279546177282,
"rhomolar_reducing": 4103.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.501e-10,
"sigma_eta": 5.501000000000001e-10,
"sigma_eta_units": "m",
"type": "ECS"
}

View File

@@ -449,5 +449,61 @@
"rhomolar": 0.0011096803080017864,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00107447,
6.42373e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.1394,
-0.0365562
],
"rhomolar_reducing": 5580.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 2860117379.217243,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 204.0,
"epsilon_over_k_units": "K",
"psi": {
"a": [
0.97618,
0.0148047,
0.0
],
"rhomolar_reducing": 5580.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 4.971e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -468,5 +468,61 @@
"rhomolar": 11.391239450514538,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00119864,
1.90048e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.0442,
0.0
],
"rhomolar_reducing": 7109.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 4413724919.008148,
"q_D_units": "m",
"reference_fluid": "Nitrogen",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 164.44,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.10941,
-0.0630268,
0.0
],
"rhomolar_reducing": 7109.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Nitrogen",
"sigma_eta": 4.543e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -382,5 +382,61 @@
"rhomolar": 0.0046023582649346376,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.000521722,
2.92456e-06
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.0867,
-0.0216469
],
"rhomolar_reducing": 3933.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 370.44,
"epsilon_over_k_units": "K",
"psi": {
"a": [
0.92135,
0.041091,
0.0
],
"rhomolar_reducing": 3933.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.493000000000001e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -382,5 +382,61 @@
"rhomolar": 0.0030613593463350687,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.000940725,
9.88196e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.0749,
-0.0177916
],
"rhomolar_reducing": 4438.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1624288967.5044746,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 278.2,
"epsilon_over_k_units": "K",
"psi": {
"a": [
0.9716,
0.019181,
0.0
],
"rhomolar_reducing": 4438.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.362000000000001e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -397,5 +397,61 @@
"rhomolar": 0.0019353026559894213,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.000892659,
1.14912e-06
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.2877,
-0.0758811
],
"rhomolar_reducing": 3340.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 917069412.9838686,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 266.35,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.10225,
-0.00550442,
0.0
],
"rhomolar_reducing": 3340.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.8e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -469,5 +469,61 @@
"rhomolar": 0.006025348183498283,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00142313,
8.31496e-09
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.3122,
-0.0874448
],
"rhomolar_reducing": 3370.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 289.34,
"epsilon_over_k_units": "K",
"psi": {
"a": [
0.76758,
0.254482,
-0.0533748
],
"rhomolar_reducing": 3370.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.746000000000001e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -447,5 +447,61 @@
"rhomolar": 8.768503197733738,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00170267,
-4.91063e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
0.9617,
0.0337897
],
"rhomolar_reducing": 3703.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "R134a",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 318.33,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.12216,
-0.0273101,
0.0
],
"rhomolar_reducing": 3703.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "R134a",
"sigma_eta": 5.604e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -424,5 +424,61 @@
"rhomolar": 0.10739880724453099,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00100946,
1.21255e-06
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.1627,
-0.0437246
],
"rhomolar_reducing": 3626.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "R134a",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 307.24,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.10195,
-0.0294253,
0.0
],
"rhomolar_reducing": 3626.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "R134a",
"sigma_eta": 5.644e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -580,5 +580,61 @@
"rhomolar": 0.009673802590130228,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00164999,
-3.28868e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.1627,
-0.0473491
],
"rhomolar_reducing": 3857.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "R134a",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 329.72,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.1529,
-0.044154,
0.0
],
"rhomolar_reducing": 3857.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "R134a",
"sigma_eta": 5.529e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -427,5 +427,61 @@
"rhomolar": 0.042352544355903056,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.000436654,
1.78134e-06
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.2942,
-0.0924549
],
"rhomolar_reducing": 8150.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 1999999999.9999998,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 289.65,
"epsilon_over_k_units": "K",
"psi": {
"a": [
0.7954,
0.0542658,
0.0
],
"rhomolar_reducing": 8150.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 4.098e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -466,5 +466,61 @@
"rhomolar": 10.156903370453128,
"rhomolar_units": "mol/m^3"
}
},
"TRANSPORT": {
"conductivity": {
"BibTeX": "Huber-IECR-2003",
"f_int": {
"T_reducing": 1.0,
"T_reducing_units": "K",
"a": [
0.00135697,
-1.11635e-07
],
"t": [
0,
1
]
},
"psi": {
"a": [
1.5249,
-0.147564
],
"rhomolar_reducing": 3099.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1
]
},
"q_D": 2808318238.622801,
"q_D_units": "m",
"reference_fluid": "Propane",
"type": "ECS"
},
"viscosity": {
"BibTeX": "Huber-IECR-2003",
"epsilon_over_k": 299.76,
"epsilon_over_k_units": "K",
"psi": {
"a": [
1.21141,
-0.0337573,
0.0
],
"rhomolar_reducing": 3099.0,
"rhomolar_reducing_units": "mol/m^3",
"t": [
0,
1,
2
]
},
"reference_fluid": "Propane",
"sigma_eta": 5.947e-10,
"sigma_eta_units": "m",
"type": "ECS"
}
}
}

View File

@@ -135,14 +135,21 @@ class IncompressibleData(object):
eqnType=self.type, \
coeffs=self.coeffs, DEBUG=self.DEBUG)
elif self.type==IncompressibleData.INCOMPRESSIBLE_LOGEXPONENTIAL and self.data.size>10:
if self.DEBUG: print("Poor solution found with log exponential, trying once more with exponential polynomial.")
self.type=IncompressibleData.INCOMPRESSIBLE_EXPPOLYNOMIAL
self.coeffs = np.zeros((4,6))
res,sErr = IncompressibleFitter.fitter(x=x, y=y, z=self.data, \
xbase=xbase, ybase=ybase, \
eqnType=self.type, \
coeffs=self.coeffs, DEBUG=self.DEBUG)
elif self.type==IncompressibleData.INCOMPRESSIBLE_LOGEXPONENTIAL:
xLen = np.round([len(x)/1.5])
yLen = np.round([len(y)/1.5])
xLen = np.min([xLen,4])
yLen = np.min([yLen,6])
if (xLen+yLen) > 2:
if self.DEBUG: print("Poor solution found with log exponential, trying once more with exponential polynomial.")
self.type=IncompressibleData.INCOMPRESSIBLE_EXPPOLYNOMIAL
self.coeffs = np.zeros((xLen,yLen))
res,sErr = IncompressibleFitter.fitter(x=x, y=y, z=self.data, \
xbase=xbase, ybase=ybase, \
eqnType=self.type, \
coeffs=self.coeffs, DEBUG=self.DEBUG)
# elif self.type==IncompressibleData.INCOMPRESSIBLE_EXPPOLYNOMIAL:
# if self.DEBUG: print("Poor solution found with exponential polynomial, trying once more with normal polynomial.")
@@ -485,7 +492,7 @@ class IncompressibleFitter(object):
expLog = True
xData = np.array(x_in.flat)
if expLog: zData = np.log(z_in.flat)
if expLog: zData = np.log(np.clip(z_in.flat,1e-10,IncompressibleData.maxLin))
else: zData = np.array(z_in.flat)
# Remove np.nan elements

View File

@@ -4,29 +4,29 @@ from CPIncomp.DataObjects import CoefficientData,PureData
class NitrateSalt(PureData,CoefficientData):
"""
"""
Heat transfer fluid based on 60% NaNO3 and 40% KNO3
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "NaK"
self.description = "NitrateSalt"
self.reference = "Solar Power Tower Design Basis Document, Alexis B. Zavoico, Sandia Labs, USA"
PureData.__init__(self)
self.name = "NaK"
self.description = "Nitrate salt, heat transfer fluid based on 60% NaNO3 and 40% KNO3"
self.reference = "Zavoico2001"
self.Tmin = 300 + 273.15
self.Tmax = 600 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.Tbase = 273.15
#self.temperature.data = self.getTrange()
#self.concentration.data = np.array([ 0 ]) # mass fraction
self.density.type = self.density.INCOMPRESSIBLE_POLYNOMIAL
self.density.source = self.density.SOURCE_COEFFS
self.density.coeffs = np.array([[2090],[-0.636]])
self.specific_heat.type = self.specific_heat.INCOMPRESSIBLE_POLYNOMIAL
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.specific_heat.coeffs = np.array([[1443],[+0.172]])
@@ -38,5 +38,4 @@ class NitrateSalt(PureData,CoefficientData):
self.viscosity.type = self.viscosity.INCOMPRESSIBLE_POLYNOMIAL
self.viscosity.source = self.viscosity.SOURCE_COEFFS
self.viscosity.coeffs = np.array([[22.714],[-0.120],[2.281 * 1e-4],[-1.474 * 1e-7]])/1e3

View File

@@ -467,7 +467,7 @@ class CoefficientData(SolutionData):
if len(array)!=18:
raise ValueError("The lenght is not equal to 18!")
self.reference = "Melinder Book"
#self.reference = "Melinder Book"
array = np.array(array)
tmp = np.zeros((6,4))

View File

@@ -20,7 +20,7 @@ class HyCool20(PureData,DigitalData):
self.name = "HY20"
self.description = "HYCOOL 20, Potassium formate"
self.reference = "Hydro Chemicals"
self.reference = "Hydro2000"
self.Tmax = 50 + 273.15
self.Tmin = -20 + 273.15
@@ -61,8 +61,8 @@ class HyCool30(PureData,DigitalData):
PureData.__init__(self)
self.name = "HY30"
self.description = "HYCOOL 30, Potassium formate"
self.reference = "Hydro Chemicals"
self.description = "HyCool 30, Potassium formate"
self.reference = "Hydro2000"
self.Tmax = 50 + 273.15
self.Tmin = -30 + 273.15
@@ -103,8 +103,8 @@ class HyCool40(PureData,DigitalData):
PureData.__init__(self)
self.name = "HY40"
self.description = "HYCOOL 40, Potassium formate"
self.reference = "Hydro Chemicals"
self.description = "HyCool 40, Potassium formate"
self.reference = "Hydro2000"
self.Tmax = 20 + 273.15
self.Tmin = -40 + 273.15
@@ -139,8 +139,8 @@ class HyCool45(PureData,DigitalData):
PureData.__init__(self)
self.name = "HY45"
self.description = "HYCOOL 45, Potassium formate"
self.reference = "Hydro Chemicals"
self.description = "HyCool 45, Potassium formate"
self.reference = "Hydro2000"
self.Tmax = 20 + 273.15
self.Tmin = -45 + 273.15
@@ -175,8 +175,8 @@ class HyCool50(PureData,DigitalData):
PureData.__init__(self)
self.name = "HY50"
self.description = "HYCOOL 50, Potassium formate"
self.reference = "Hydro Chemicals"
self.description = "HyCool 50, Potassium formate"
self.reference = "Hydro2000"
self.Tmax = 20 + 273.15
self.Tmin = -50 + 273.15

View File

@@ -5,20 +5,20 @@ from CPIncomp.DataObjects import PureData, SolutionData, DigitalData,\
class PureExample(PureData):
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.name = "ExamplePure"
self.description = "Heat transfer fluid TherminolD12 by Solutia"
self.reference = "Solutia data sheet"
self.Tmax = 150 + 273.15
self.Tmin = 50 + 273.15
self.TminPsat = self.Tmax
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([ 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150])+273.15 # Kelvin
self.density.data = np.array([ 740, 733, 726, 717, 710, 702, 695, 687, 679, 670, 662]) # kg/m3
self.specific_heat.data = np.array([ 2235, 2280, 2326, 2361, 2406, 2445, 2485, 2528, 2571, 2607, 2645]) # J/kg-K
@@ -30,14 +30,14 @@ class PureExample(PureData):
class SolutionExample(SolutionData):
def __init__(self):
SolutionData.__init__(self)
SolutionData.__init__(self)
self.name = "ExampleSolution"
self.description = "Ethanol ice slurry"
self.reference = "SecCool software"
self.reference = "SecCool software,Skovrup2013"
self.temperature.data = np.array([ -45 , -40 , -35 , -30 , -25 , -20 , -15 , -10])+273.15 # Kelvin
self.concentration.data = np.array([ 5 , 10 , 15 , 20 , 25 , 30 , 35 ])/100.0 # mass fraction
self.density.data = np.array([
[1064.0, 1054.6, 1045.3, 1036.3, 1027.4, 1018.6, 1010.0],
[1061.3, 1052.1, 1043.1, 1034.3, 1025.6, 1017.0, 1008.6],
@@ -47,12 +47,12 @@ class SolutionExample(SolutionData):
[1040.7, 1033.2, 1025.7, 1018.4, 1011.2, 1004.0, 997.0],
[1032.3, 1025.3, 1018.5, 1011.7, 1005.1, 998.5, 992.0],
[1021.5, 1015.3, 1009.2, 1003.1, 997.1, 991.2, 985.4]]) # kg/m3
self.specific_heat.data = np.copy(self.density.data)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.Tmax = np.max(self.temperature.data)
self.Tmin = np.min(self.temperature.data)
self.xmax = np.max(self.concentration.data)
@@ -63,51 +63,51 @@ class SolutionExample(SolutionData):
class DigitalExample(DigitalData):
def __init__(self):
DigitalData.__init__(self)
DigitalData.__init__(self)
self.name = "ExampleDigital"
self.description = "some fluid"
self.reference = "none"
self.Tmin = 273.00;
self.Tmax = 500.00;
self.xmax = 1.0
self.xmin = 0.0
self.xid = self.ifrac_mass
self.TminPsat = self.Tmin;
self.temperature.data = self.getTrange()
self.concentration.data = self.getxrange()
def funcRho(T,x):
return T + x*100.0 + T*(x+0.5)
self.density.xData,self.density.yData,self.density.data = self.getArray(dataID="D", func=funcRho, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.density.DEBUG)
self.density.source = self.density.SOURCE_EQUATION
def funcCp(T,x):
return T + x*50.0 + T*(x+0.6)
self.specific_heat.xData,self.specific_heat.yData,self.specific_heat.data = self.getArray(dataID="C", func=funcCp, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.specific_heat.DEBUG)
self.specific_heat.source = self.specific_heat.SOURCE_EQUATION
class DigitalExamplePure(PureData,DigitalData):
def __init__(self):
DigitalData.__init__(self)
PureData.__init__(self)
DigitalData.__init__(self)
PureData.__init__(self)
self.name = "ExampleDigitalPure"
self.description = "water at 100 bar"
self.reference = "none"
self.Tmin = 280.00;
self.Tmax = 500.00;
self.TminPsat = self.Tmin;
self.temperature.data = self.getTrange()
self.concentration.data = self.getxrange()
import CoolProp.CoolProp as CP
def funcD(T,x):
return CP.PropsSI('D','T',T,'P',1e7,'water')
def funcC(T,x):
@@ -118,34 +118,34 @@ class DigitalExamplePure(PureData,DigitalData):
return CP.PropsSI('V','T',T,'P',1e7,'water')
def funcP(T,x):
return CP.PropsSI('P','T',T,'Q',0.0,'water')
self.density.xData,self.density.yData,self.density.data = self.getArray(dataID="D", func=funcD, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.density.DEBUG)
self.density.source = self.density.SOURCE_EQUATION
self.specific_heat.xData,self.specific_heat.yData,self.specific_heat.data = self.getArray(dataID="C", func=funcC, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.specific_heat.DEBUG)
self.specific_heat.source = self.specific_heat.SOURCE_EQUATION
self.conductivity.xData,self.conductivity.yData,self.conductivity.data = self.getArray(dataID="L", func=funcL, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.conductivity.DEBUG)
self.conductivity.source = self.conductivity.SOURCE_EQUATION
self.viscosity.xData,self.viscosity.yData,self.viscosity.data = self.getArray(dataID="V", func=funcV, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.viscosity.DEBUG)
self.viscosity.source = self.viscosity.SOURCE_EQUATION
self.saturation_pressure.xData,self.saturation_pressure.yData,self.saturation_pressure.data = self.getArray(dataID="P", func=funcP, x_in=self.temperature.data, y_in=self.concentration.data,DEBUG=self.saturation_pressure.DEBUG)
self.saturation_pressure.source = self.saturation_pressure.SOURCE_EQUATION
class SecCoolExample(CoefficientData):
"""
"""
Ethanol-Water mixture according to Melinder book
Source: SecCool Software
"""
"""
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "ExampleSecCool"
self.description = "Methanol solution"
#self.reference = "SecCool software"
@@ -155,17 +155,17 @@ class SecCoolExample(CoefficientData):
self.xmin = 0.0
self.xid = self.ifrac_mass
self.TminPsat = 20 + 273.15
self.Tbase = -4.48 + 273.15
self.xbase = 31.57 / 100.0
self.density.type = self.density.INCOMPRESSIBLE_POLYNOMIAL
self.density.coeffs = self.convertSecCoolArray(np.array([
960.24665800,
-1.2903839100,
-0.0161042520,
-0.0001969888,
1.131559E-05,
960.24665800,
-1.2903839100,
-0.0161042520,
-0.0001969888,
1.131559E-05,
9.181999E-08,
-0.4020348270,
-0.0162463989,
@@ -176,12 +176,12 @@ class SecCoolExample(CoefficientData):
0.0001101514,
-2.320217E-07,
7.794999E-08,
9.937483E-06,
9.937483E-06,
-1.346886E-06,
4.141999E-08]))
self.specific_heat.type = self.specific_heat.INCOMPRESSIBLE_POLYNOMIAL
self.specific_heat.coeffs = self.convertSecCoolArray(np.array([
3822.9712300,
@@ -189,97 +189,97 @@ class SecCoolExample(CoefficientData):
0.0678775826,
0.0022413893,
-0.0003045332,
-4.758000E-06,
2.3501449500,
0.1788839410,
0.0006828000,
0.0002101166,
-9.812000E-06,
-0.0004724176,
-0.0003317949,
0.0001002032,
-5.306000E-06,
4.242194E-05,
2.347190E-05,
-4.758000E-06,
2.3501449500,
0.1788839410,
0.0006828000,
0.0002101166,
-9.812000E-06,
-0.0004724176,
-0.0003317949,
0.0001002032,
-5.306000E-06,
4.242194E-05,
2.347190E-05,
-1.894000E-06]))
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
self.conductivity.coeffs = self.convertSecCoolArray(np.array([
0.4082066700,
-0.0039816870,
1.583368E-05,
-3.552049E-07,
-9.884176E-10,
4.460000E-10,
0.0006629321,
-2.686475E-05,
9.039150E-07,
-2.128257E-08,
-5.562000E-10,
3.685975E-07,
7.188416E-08,
-1.041773E-08,
2.278001E-10,
4.703395E-08,
7.612361E-11,
0.4082066700,
-0.0039816870,
1.583368E-05,
-3.552049E-07,
-9.884176E-10,
4.460000E-10,
0.0006629321,
-2.686475E-05,
9.039150E-07,
-2.128257E-08,
-5.562000E-10,
3.685975E-07,
7.188416E-08,
-1.041773E-08,
2.278001E-10,
4.703395E-08,
7.612361E-11,
-2.734000E-10]))
self.viscosity.type = self.viscosity.INCOMPRESSIBLE_EXPPOLYNOMIAL
self.viscosity.coeffs = self.convertSecCoolArray(np.array([
1.4725525500,
0.0022218998,
-0.0004406139,
6.047984E-06,
-1.954730E-07,
-2.372000E-09,
-0.0411841566,
0.0001784479,
-3.564413E-06,
4.064671E-08,
1.915000E-08,
0.0002572862,
-9.226343E-07,
-2.178577E-08,
-9.529999E-10,
-1.699844E-06,
-1.023552E-07,
1.4725525500,
0.0022218998,
-0.0004406139,
6.047984E-06,
-1.954730E-07,
-2.372000E-09,
-0.0411841566,
0.0001784479,
-3.564413E-06,
4.064671E-08,
1.915000E-08,
0.0002572862,
-9.226343E-07,
-2.178577E-08,
-9.529999E-10,
-1.699844E-06,
-1.023552E-07,
4.482000E-09]))
self.T_freeze.type = self.T_freeze.INCOMPRESSIBLE_POLYOFFSET
self.T_freeze.coeffs = np.array([
27.755555600/100.0,
-22.973221700+273.15,
-1.1040507200*100.0,
-0.0120762281*100.0*100.0,
-22.973221700+273.15,
-1.1040507200*100.0,
-0.0120762281*100.0*100.0,
-9.343458E-05*100.0*100.0*100.0])
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
self.viscosity.source = self.viscosity.SOURCE_COEFFS
self.T_freeze.source = self.T_freeze.SOURCE_COEFFS
class MelinderExample(CoefficientData):
"""
"""
Methanol-Water mixture according to Melinder book
Source: Book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "ExampleMelinder"
self.description = "Methanol solution"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmax = 40 + 273.15
self.Tmin = -50 + 273.15
self.xmax = 0.6
self.xmin = 0.0
self.xid = self.ifrac_mass
self.TminPsat = self.Tmax
self.Tbase = 3.5359 + 273.15;
self.xbase = 30.5128 / 100.0
coeffs = np.array([
[-26.29 , 958.1 ,3887 , 0.4175 , 1.153 ],
[ -0.000002575 , -0.4151 , 7.201 , 0.0007271 , -0.03866 ],
@@ -300,7 +300,6 @@ class MelinderExample(CoefficientData):
[ -0.0000000005407, -0.0000001325 , 0.000007373 , -0.0000000000004573, -0.0000000009105 ],
[ 0.00000002363 , -0.00000007727 , 0.000006433 , -0.0000000002033 , -0.0000000008472 ]
])
self.setMelinderMatrix(coeffs)

View File

@@ -5,15 +5,15 @@ from CPIncomp.BaseObjects import IncompressibleFitter
class DEBLiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
PureData.__init__(self)
self.name = "DEB"
self.description = "Diethylbenzene mixture - Dowtherm J Dow Chemical Co."
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -30,7 +30,7 @@ class DEBLiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000189132,-2.06364e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -38,15 +38,15 @@ class DEBLiquidClass(CoefficientData,PureData):
class HCMLiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "HCM"
self.description = "Hydrocarbon mixture (synthetic) - Therminol D12 (Gilotherm D12) Solutia"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -63,7 +63,7 @@ class HCMLiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000153716,-1.51212e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -71,15 +71,15 @@ class HCMLiquidClass(CoefficientData,PureData):
class HFELiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "HFE"
self.description = "Hydrofluoroether - HFE-7100 3M Novec"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -96,7 +96,7 @@ class HFELiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([9.92958e-05,-8.33333e-08]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -104,15 +104,15 @@ class HFELiquidClass(CoefficientData,PureData):
class PMS1LiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "PMS1"
self.description = "Polydimethylsiloxan 1. - Baysilone KT3"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -129,7 +129,7 @@ class PMS1LiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000207526,-2.84167e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -137,15 +137,15 @@ class PMS1LiquidClass(CoefficientData,PureData):
class PMS2LiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "PMS2"
self.description = "Polydimethylsiloxan 2. - Syltherm XLT Dow Corning Co."
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -162,7 +162,7 @@ class PMS2LiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000172305,-2.11212e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -170,15 +170,15 @@ class PMS2LiquidClass(CoefficientData,PureData):
class SABLiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "SAB"
self.description = "Synthetic alkyl benzene - Marlotherm X"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -195,7 +195,7 @@ class SABLiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000208374,-2.61667e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -203,15 +203,15 @@ class SABLiquidClass(CoefficientData,PureData):
class HCBLiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "HCB"
self.description = "Hydrocarbon blend - Dynalene MV"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -228,7 +228,7 @@ class HCBLiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000203186,-2.3869e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -236,15 +236,15 @@ class HCBLiquidClass(CoefficientData,PureData):
class TCOLiquidClass(CoefficientData,PureData):
"""
"""
Pure fluid according to Melinder's book
"""
"""
def __init__(self):
CoefficientData.__init__(self)
PureData.__init__(self)
CoefficientData.__init__(self)
PureData.__init__(self)
self.name = "TCO"
self.description = "Terpene from citrus oils - d-Limonene"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin = -80.0 + 273.15
self.Tmax = 100.0 + 273.15
@@ -261,7 +261,7 @@ class TCOLiquidClass(CoefficientData,PureData):
self.conductivity.type = self.conductivity.INCOMPRESSIBLE_POLYNOMIAL
_,_,self.conductivity.coeffs = IncompressibleFitter.shapeArray(np.array([0.000174156,-1.85052e-07]))
self.density.source = self.density.SOURCE_COEFFS
self.specific_heat.source = self.specific_heat.SOURCE_COEFFS
self.conductivity.source = self.conductivity.SOURCE_COEFFS
@@ -275,18 +275,18 @@ class TCOLiquidClass(CoefficientData,PureData):
class EGSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MEG"
self.description = "Ethylene Glycol"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 100 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.6
@@ -317,18 +317,18 @@ class EGSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class PGSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MPG"
self.description = "Propylene Glycol"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 100 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.6
@@ -359,18 +359,18 @@ class PGSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class EASolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MEA"
self.description = "Ethyl Alcohol (Ethanol)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 40 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.6
@@ -401,18 +401,18 @@ class EASolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class MASolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MMA"
self.description = "Methyl Alcohol (Methanol)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 40 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.6
@@ -444,18 +444,18 @@ class MASolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class GLSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MGL"
self.description = "Glycerol"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 40 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.6
@@ -486,18 +486,18 @@ class GLSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class AMSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MAM"
self.description = "Ammonia (NH3)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 30 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.3
@@ -528,18 +528,18 @@ class AMSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class KCSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MKC"
self.description = "Potassium Carbonate (K2CO3)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100 + 273.15
self.Tmax = 40 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.4
@@ -570,18 +570,18 @@ class KCSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class CASolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MCA"
self.description = "Calcium Chloride (CaCl2)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.3
@@ -612,18 +612,18 @@ class CASolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class MGSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MMG"
self.description = "(MgCl2)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.3
@@ -654,18 +654,18 @@ class MGSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class NASolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MNA"
self.description = "Sodium Chloride (NaCl)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.23
@@ -696,18 +696,18 @@ class NASolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class KASolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MKA"
self.description = "Potassium Acetate (CH3CO2K)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.45
@@ -738,18 +738,18 @@ class KASolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class KFSolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MKF"
self.description = "Potassium Formate (CHKO2)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.48
@@ -780,18 +780,18 @@ class KFSolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)
class LISolution(CoefficientData):
def __init__(self):
CoefficientData.__init__(self)
CoefficientData.__init__(self)
self.name = "MLI"
self.description = "Lithium Chloride (LiCl)"
self.reference = "Melinder-BOOK-2010"
self.reference = "Melinder2010"
self.Tmin =-100.0 + 273.15
self.Tmax = 40.0 + 273.15
self.TminPsat = self.Tmax
self.TminPsat = self.Tmax
self.xmin = 0.0
self.xmax = 0.24
@@ -822,4 +822,4 @@ class LISolution(CoefficientData):
])
self.setMelinderMatrix(coeffs)

View File

@@ -1,13 +1,13 @@
from __future__ import division, print_function
import numpy as np
from CPIncomp.DataObjects import PureData
class TherminolD12(PureData):
"""
"""
Heat transfer fluid Therminol D12 by Solutia
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -17,22 +17,22 @@ class TherminolD12(PureData):
self.density.data = np.array([+8.35000E+2, +8.32000E+2, +8.28000E+2, +8.25000E+2, +8.22000E+2, +8.18000E+2, +8.15000E+2, +8.11000E+2, +8.08000E+2, +8.05000E+2, +8.01000E+2, +7.98000E+2, +7.94000E+2, +7.91000E+2, +7.87000E+2, +7.84000E+2, +7.80000E+2, +7.77000E+2, +7.73000E+2, +7.70000E+2, +7.66000E+2, +7.62000E+2, +7.59000E+2, +7.55000E+2, +7.52000E+2, +7.48000E+2, +7.44000E+2, +7.41000E+2, +7.37000E+2, +7.33000E+2, +7.29000E+2, +7.26000E+2, +7.22000E+2, +7.18000E+2, +7.14000E+2, +7.10000E+2, +7.06000E+2, +7.03000E+2, +6.99000E+2, +6.95000E+2, +6.91000E+2, +6.87000E+2, +6.82000E+2, +6.78000E+2, +6.74000E+2, +6.70000E+2, +6.66000E+2, +6.61000E+2, +6.57000E+2, +6.53000E+2, +6.48000E+2, +6.44000E+2, +6.39000E+2, +6.35000E+2, +6.30000E+2, +6.25000E+2, +6.20000E+2, +6.16000E+2, +6.11000E+2, +6.06000E+2, +6.00000E+2, +5.95000E+2, +5.90000E+2, +5.84000E+2]) # kg/m3
self.specific_heat.data = np.array([+1.69400E+0, +1.71200E+0, +1.73100E+0, +1.75000E+0, +1.76800E+0, +1.78700E+0, +1.80600E+0, +1.82400E+0, +1.84300E+0, +1.86200E+0, +1.88100E+0, +1.90000E+0, +1.91900E+0, +1.93800E+0, +1.95700E+0, +1.97700E+0, +1.99600E+0, +2.01500E+0, +2.03500E+0, +2.05400E+0, +2.07300E+0, +2.09300E+0, +2.11300E+0, +2.13200E+0, +2.15200E+0, +2.17200E+0, +2.19100E+0, +2.21100E+0, +2.23100E+0, +2.25100E+0, +2.27100E+0, +2.29100E+0, +2.31200E+0, +2.33200E+0, +2.35200E+0, +2.37300E+0, +2.39300E+0, +2.41400E+0, +2.43400E+0, +2.45500E+0, +2.47600E+0, +2.49600E+0, +2.51700E+0, +2.53800E+0, +2.55900E+0, +2.58000E+0, +2.60200E+0, +2.62300E+0, +2.64400E+0, +2.66600E+0, +2.68700E+0, +2.70900E+0, +2.73100E+0, +2.75300E+0, +2.77500E+0, +2.79700E+0, +2.82000E+0, +2.84200E+0, +2.86500E+0, +2.88800E+0, +2.91100E+0, +2.93500E+0, +2.95900E+0, +2.98300E+0])*1000. # J/kg-K
self.conductivity.data = np.array([+1.24400E-1, +1.23800E-1, +1.23200E-1, +1.22500E-1, +1.21900E-1, +1.21300E-1, +1.20600E-1, +1.20000E-1, +1.19300E-1, +1.18600E-1, +1.18000E-1, +1.17300E-1, +1.16600E-1, +1.15900E-1, +1.15200E-1, +1.14500E-1, +1.13700E-1, +1.13000E-1, +1.12200E-1, +1.11500E-1, +1.10700E-1, +1.10000E-1, +1.09200E-1, +1.08400E-1, +1.07600E-1, +1.06800E-1, +1.06000E-1, +1.05200E-1, +1.04400E-1, +1.03500E-1, +1.02700E-1, +1.01900E-1, +1.01000E-1, +1.00100E-1, +9.93000E-2, +9.84000E-2, +9.75000E-2, +9.66000E-2, +9.57000E-2, +9.48000E-2, +9.39000E-2, +9.29000E-2, +9.20000E-2, +9.10000E-2, +9.01000E-2, +8.91000E-2, +8.82000E-2, +8.72000E-2, +8.62000E-2, +8.52000E-2, +8.42000E-2, +8.32000E-2, +8.22000E-2, +8.12000E-2, +8.01000E-2, +7.91000E-2, +7.80000E-2, +7.70000E-2, +7.59000E-2, +7.48000E-2, +7.38000E-2, +7.27000E-2, +7.16000E-2, +7.05000E-2]) # W/m-K
self.viscosity.data = np.array([+3.59000E-1, +1.77000E-1, +9.59000E-2, +5.64000E-2, +3.55000E-2, +2.36000E-2, +1.65000E-2, +1.20000E-2, +9.07000E-3, +7.06000E-3, +5.63000E-3, +4.60000E-3, +3.82000E-3, +3.24000E-3, +2.78000E-3, +2.41000E-3, +2.12000E-3, +1.88000E-3, +1.69000E-3, +1.52000E-3, +1.38000E-3, +1.26000E-3, +1.16000E-3, +1.07000E-3, +9.88000E-4, +9.18000E-4, +8.56000E-4, +8.00000E-4, +7.50000E-4, +7.05000E-4, +6.64000E-4, +6.26000E-4, +5.92000E-4, +5.61000E-4, +5.31000E-4, +5.04000E-4, +4.79000E-4, +4.56000E-4, +4.35000E-4, +4.14000E-4, +3.95000E-4, +3.78000E-4, +3.61000E-4, +3.45000E-4, +3.30000E-4, +3.16000E-4, +3.03000E-4, +2.90000E-4, +2.78000E-4, +2.67000E-4, +2.57000E-4, +2.46000E-4, +2.37000E-4, +2.27000E-4, +2.19000E-4, +2.10000E-4, +2.02000E-4, +1.95000E-4, +1.87000E-4, +1.80000E-4, +1.74000E-4, +1.67000E-4, +1.61000E-4, +1.56000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+4.75000E-9, +2.07000E-8, +8.08000E-8, +2.81000E-7, +8.86000E-7, +2.56000E-6, +6.82000E-6, +1.70000E-5, +3.96000E-5, +8.75000E-5, +1.84000E-4, +3.68000E-4, +7.06000E-4, +1.30000E-3, +2.33000E-3, +4.02000E-3, +6.75000E-3, +1.10000E-2, +1.76000E-2, +2.73000E-2, +4.16000E-2, +6.21000E-2, +9.10000E-2, +1.31000E-1, +1.86000E-1, +2.59000E-1, +3.56000E-1, +4.84000E-1, +6.48000E-1, +8.59000E-1, +1.13000E+0, +1.46000E+0, +1.88000E+0, +2.39000E+0, +3.01000E+0, +3.77000E+0, +4.68000E+0, +5.76000E+0, +7.05000E+0, +8.57000E+0, +1.03000E+1, +1.24000E+1, +1.48000E+1, +1.76000E+1, +2.08000E+1, +2.44000E+1, +2.85000E+1, +3.32000E+1, +3.84000E+1, +4.43000E+1, +5.09000E+1, +5.83000E+1, +6.64000E+1, +7.55000E+1, +8.55000E+1, +9.65000E+1, +1.09000E+2, +1.22000E+2, +1.36000E+2, +1.52000E+2, +1.69000E+2, +1.88000E+2, +2.08000E+2, +2.29000E+2])*1000. # Pa
self.viscosity.data = np.array([+3.59000E-1, +1.77000E-1, +9.59000E-2, +5.64000E-2, +3.55000E-2, +2.36000E-2, +1.65000E-2, +1.20000E-2, +9.07000E-3, +7.06000E-3, +5.63000E-3, +4.60000E-3, +3.82000E-3, +3.24000E-3, +2.78000E-3, +2.41000E-3, +2.12000E-3, +1.88000E-3, +1.69000E-3, +1.52000E-3, +1.38000E-3, +1.26000E-3, +1.16000E-3, +1.07000E-3, +9.88000E-4, +9.18000E-4, +8.56000E-4, +8.00000E-4, +7.50000E-4, +7.05000E-4, +6.64000E-4, +6.26000E-4, +5.92000E-4, +5.61000E-4, +5.31000E-4, +5.04000E-4, +4.79000E-4, +4.56000E-4, +4.35000E-4, +4.14000E-4, +3.95000E-4, +3.78000E-4, +3.61000E-4, +3.45000E-4, +3.30000E-4, +3.16000E-4, +3.03000E-4, +2.90000E-4, +2.78000E-4, +2.67000E-4, +2.57000E-4, +2.46000E-4, +2.37000E-4, +2.27000E-4, +2.19000E-4, +2.10000E-4, +2.02000E-4, +1.95000E-4, +1.87000E-4, +1.80000E-4, +1.74000E-4, +1.67000E-4, +1.61000E-4, +1.56000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+4.75000E-9, +2.07000E-8, +8.08000E-8, +2.81000E-7, +8.86000E-7, +2.56000E-6, +6.82000E-6, +1.70000E-5, +3.96000E-5, +8.75000E-5, +1.84000E-4, +3.68000E-4, +7.06000E-4, +1.30000E-3, +2.33000E-3, +4.02000E-3, +6.75000E-3, +1.10000E-2, +1.76000E-2, +2.73000E-2, +4.16000E-2, +6.21000E-2, +9.10000E-2, +1.31000E-1, +1.86000E-1, +2.59000E-1, +3.56000E-1, +4.84000E-1, +6.48000E-1, +8.59000E-1, +1.13000E+0, +1.46000E+0, +1.88000E+0, +2.39000E+0, +3.01000E+0, +3.77000E+0, +4.68000E+0, +5.76000E+0, +7.05000E+0, +8.57000E+0, +1.03000E+1, +1.24000E+1, +1.48000E+1, +1.76000E+1, +2.08000E+1, +2.44000E+1, +2.85000E+1, +3.32000E+1, +3.84000E+1, +4.43000E+1, +5.09000E+1, +5.83000E+1, +6.64000E+1, +7.55000E+1, +8.55000E+1, +9.65000E+1, +1.09000E+2, +1.22000E+2, +1.36000E+2, +1.52000E+2, +1.69000E+2, +1.88000E+2, +2.08000E+2, +2.29000E+2])*1000. # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = self.Tmin
self.name = "TD12"
self.name = "TD12"
self.description = "TherminolD12"
self.reference = "Therminol Heat Transfer Reference Disk"
self.reference = "Therminol2014"
self.reshapeAll()
class TherminolVP1(PureData):
"""
"""
Heat transfer fluid Therminol VP-1 by Solutia
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -42,23 +42,23 @@ class TherminolVP1(PureData):
self.density.data = np.array([+1.07000E+3, +1.07000E+3, +1.06000E+3, +1.06000E+3, +1.05000E+3, +1.05000E+3, +1.05000E+3, +1.04000E+3, +1.04000E+3, +1.03000E+3, +1.03000E+3, +1.03000E+3, +1.02000E+3, +1.02000E+3, +1.01000E+3, +1.01000E+3, +1.01000E+3, +1.00000E+3, +9.97000E+2, +9.93000E+2, +9.88000E+2, +9.84000E+2, +9.80000E+2, +9.76000E+2, +9.72000E+2, +9.67000E+2, +9.63000E+2, +9.59000E+2, +9.55000E+2, +9.50000E+2, +9.46000E+2, +9.42000E+2, +9.37000E+2, +9.33000E+2, +9.29000E+2, +9.24000E+2, +9.20000E+2, +9.15000E+2, +9.11000E+2, +9.06000E+2, +9.02000E+2, +8.98000E+2, +8.93000E+2, +8.89000E+2, +8.84000E+2, +8.79000E+2, +8.75000E+2, +8.70000E+2, +8.65000E+2, +8.60000E+2, +8.56000E+2, +8.51000E+2, +8.46000E+2, +8.41000E+2, +8.36000E+2, +8.31000E+2, +8.25000E+2, +8.20000E+2, +8.15000E+2, +8.10000E+2, +8.04000E+2, +7.99000E+2, +7.93000E+2, +7.88000E+2, +7.82000E+2, +7.76000E+2, +7.70000E+2, +7.65000E+2, +7.59000E+2, +7.52000E+2, +7.46000E+2, +7.40000E+2, +7.33000E+2, +7.27000E+2, +7.20000E+2, +7.13000E+2, +7.06000E+2, +6.99000E+2]) # kg/m3
self.specific_heat.data = np.array([+1.52300E+0, +1.53700E+0, +1.55200E+0, +1.56600E+0, +1.58100E+0, +1.59600E+0, +1.61000E+0, +1.62400E+0, +1.63900E+0, +1.65300E+0, +1.66800E+0, +1.68200E+0, +1.69600E+0, +1.71000E+0, +1.72400E+0, +1.73900E+0, +1.75300E+0, +1.76700E+0, +1.78100E+0, +1.79500E+0, +1.80900E+0, +1.82200E+0, +1.83600E+0, +1.85000E+0, +1.86400E+0, +1.87800E+0, +1.89100E+0, +1.90500E+0, +1.91900E+0, +1.93200E+0, +1.94600E+0, +1.95900E+0, +1.97300E+0, +1.98600E+0, +2.00000E+0, +2.01300E+0, +2.02700E+0, +2.04000E+0, +2.05400E+0, +2.06700E+0, +2.08000E+0, +2.09300E+0, +2.10700E+0, +2.12000E+0, +2.13300E+0, +2.14700E+0, +2.16000E+0, +2.17300E+0, +2.18600E+0, +2.19900E+0, +2.21300E+0, +2.22600E+0, +2.23900E+0, +2.25200E+0, +2.26600E+0, +2.27900E+0, +2.29300E+0, +2.30600E+0, +2.31900E+0, +2.33300E+0, +2.34700E+0, +2.36000E+0, +2.37400E+0, +2.38800E+0, +2.40200E+0, +2.41600E+0, +2.43100E+0, +2.44600E+0, +2.46000E+0, +2.47600E+0, +2.49100E+0, +2.50700E+0, +2.52300E+0, +2.54000E+0, +2.55800E+0, +2.57600E+0, +2.59500E+0, +2.61500E+0])*1000. # J/kg-K
self.conductivity.data = np.array([+1.37000E-1, +1.36600E-1, +1.36100E-1, +1.35600E-1, +1.35200E-1, +1.34700E-1, +1.34200E-1, +1.33600E-1, +1.33100E-1, +1.32600E-1, +1.32000E-1, +1.31500E-1, +1.30900E-1, +1.30400E-1, +1.29800E-1, +1.29200E-1, +1.28600E-1, +1.28000E-1, +1.27400E-1, +1.26800E-1, +1.26200E-1, +1.25600E-1, +1.24900E-1, +1.24300E-1, +1.23600E-1, +1.22900E-1, +1.22300E-1, +1.21600E-1, +1.20900E-1, +1.20200E-1, +1.19500E-1, +1.18700E-1, +1.18000E-1, +1.17300E-1, +1.16500E-1, +1.15800E-1, +1.15000E-1, +1.14200E-1, +1.13500E-1, +1.12700E-1, +1.11900E-1, +1.11100E-1, +1.10300E-1, +1.09400E-1, +1.08600E-1, +1.07800E-1, +1.06900E-1, +1.06000E-1, +1.05200E-1, +1.04300E-1, +1.03400E-1, +1.02500E-1, +1.01600E-1, +1.00700E-1, +9.98000E-2, +9.89000E-2, +9.79000E-2, +9.70000E-2, +9.60000E-2, +9.51000E-2, +9.41000E-2, +9.31000E-2, +9.21000E-2, +9.11000E-2, +9.01000E-2, +8.91000E-2, +8.81000E-2, +8.71000E-2, +8.60000E-2, +8.50000E-2, +8.39000E-2, +8.29000E-2, +8.18000E-2, +8.07000E-2, +7.96000E-2, +7.85000E-2, +7.74000E-2, +7.63000E-2]) # W/m-K
self.viscosity.data = np.array([+5.48000E-3, +4.68000E-3, +4.05000E-3, +3.54000E-3, +3.12000E-3, +2.78000E-3, +2.49000E-3, +2.24000E-3, +2.04000E-3, +1.86000E-3, +1.70000E-3, +1.57000E-3, +1.45000E-3, +1.34000E-3, +1.25000E-3, +1.16000E-3, +1.09000E-3, +1.02000E-3, +9.62000E-4, +9.06000E-4, +8.56000E-4, +8.10000E-4, +7.68000E-4, +7.29000E-4, +6.93000E-4, +6.60000E-4, +6.30000E-4, +6.01000E-4, +5.75000E-4, +5.51000E-4, +5.28000E-4, +5.06000E-4, +4.86000E-4, +4.67000E-4, +4.50000E-4, +4.33000E-4, +4.18000E-4, +4.03000E-4, +3.89000E-4, +3.76000E-4, +3.64000E-4, +3.52000E-4, +3.41000E-4, +3.30000E-4, +3.20000E-4, +3.10000E-4, +3.01000E-4, +2.93000E-4, +2.84000E-4, +2.77000E-4, +2.69000E-4, +2.62000E-4, +2.55000E-4, +2.48000E-4, +2.42000E-4, +2.36000E-4, +2.30000E-4, +2.25000E-4, +2.19000E-4, +2.14000E-4, +2.09000E-4, +2.04000E-4, +2.00000E-4, +1.96000E-4, +1.91000E-4, +1.87000E-4, +1.83000E-4, +1.80000E-4, +1.76000E-4, +1.72000E-4, +1.69000E-4, +1.66000E-4, +1.62000E-4, +1.59000E-4, +1.56000E-4, +1.53000E-4, +1.51000E-4, +1.48000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+5.76000E-4, +9.86000E-4, +1.65000E-3, +2.68000E-3, +4.27000E-3, +6.67000E-3, +1.02000E-2, +1.53000E-2, +2.26000E-2, +3.29000E-2, +4.71000E-2, +6.65000E-2, +9.26000E-2, +1.27000E-1, +1.73000E-1, +2.32000E-1, +3.09000E-1, +4.07000E-1, +5.30000E-1, +6.85000E-1, +8.77000E-1, +1.11000E+0, +1.40000E+0, +1.76000E+0, +2.18000E+0, +2.70000E+0, +3.31000E+0, +4.03000E+0, +4.88000E+0, +5.88000E+0, +7.05000E+0, +8.40000E+0, +9.96000E+0, +1.18000E+1, +1.38000E+1, +1.62000E+1, +1.89000E+1, +2.19000E+1, +2.53000E+1, +2.92000E+1, +3.35000E+1, +3.84000E+1, +4.37000E+1, +4.97000E+1, +5.63000E+1, +6.37000E+1, +7.17000E+1, +8.06000E+1, +9.03000E+1, +1.01000E+2, +1.13000E+2, +1.25000E+2, +1.39000E+2, +1.54000E+2, +1.70000E+2, +1.87000E+2, +2.06000E+2, +2.26000E+2, +2.48000E+2, +2.71000E+2, +2.96000E+2, +3.23000E+2, +3.51000E+2, +3.82000E+2, +4.14000E+2, +4.48000E+2, +4.85000E+2, +5.24000E+2, +5.64000E+2, +6.08000E+2, +6.54000E+2, +7.02000E+2, +7.53000E+2, +8.06000E+2, +8.62000E+2, +9.21000E+2, +9.83000E+2, +1.05000E+3])*1000. # Pa
self.viscosity.data = np.array([+5.48000E-3, +4.68000E-3, +4.05000E-3, +3.54000E-3, +3.12000E-3, +2.78000E-3, +2.49000E-3, +2.24000E-3, +2.04000E-3, +1.86000E-3, +1.70000E-3, +1.57000E-3, +1.45000E-3, +1.34000E-3, +1.25000E-3, +1.16000E-3, +1.09000E-3, +1.02000E-3, +9.62000E-4, +9.06000E-4, +8.56000E-4, +8.10000E-4, +7.68000E-4, +7.29000E-4, +6.93000E-4, +6.60000E-4, +6.30000E-4, +6.01000E-4, +5.75000E-4, +5.51000E-4, +5.28000E-4, +5.06000E-4, +4.86000E-4, +4.67000E-4, +4.50000E-4, +4.33000E-4, +4.18000E-4, +4.03000E-4, +3.89000E-4, +3.76000E-4, +3.64000E-4, +3.52000E-4, +3.41000E-4, +3.30000E-4, +3.20000E-4, +3.10000E-4, +3.01000E-4, +2.93000E-4, +2.84000E-4, +2.77000E-4, +2.69000E-4, +2.62000E-4, +2.55000E-4, +2.48000E-4, +2.42000E-4, +2.36000E-4, +2.30000E-4, +2.25000E-4, +2.19000E-4, +2.14000E-4, +2.09000E-4, +2.04000E-4, +2.00000E-4, +1.96000E-4, +1.91000E-4, +1.87000E-4, +1.83000E-4, +1.80000E-4, +1.76000E-4, +1.72000E-4, +1.69000E-4, +1.66000E-4, +1.62000E-4, +1.59000E-4, +1.56000E-4, +1.53000E-4, +1.51000E-4, +1.48000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+5.76000E-4, +9.86000E-4, +1.65000E-3, +2.68000E-3, +4.27000E-3, +6.67000E-3, +1.02000E-2, +1.53000E-2, +2.26000E-2, +3.29000E-2, +4.71000E-2, +6.65000E-2, +9.26000E-2, +1.27000E-1, +1.73000E-1, +2.32000E-1, +3.09000E-1, +4.07000E-1, +5.30000E-1, +6.85000E-1, +8.77000E-1, +1.11000E+0, +1.40000E+0, +1.76000E+0, +2.18000E+0, +2.70000E+0, +3.31000E+0, +4.03000E+0, +4.88000E+0, +5.88000E+0, +7.05000E+0, +8.40000E+0, +9.96000E+0, +1.18000E+1, +1.38000E+1, +1.62000E+1, +1.89000E+1, +2.19000E+1, +2.53000E+1, +2.92000E+1, +3.35000E+1, +3.84000E+1, +4.37000E+1, +4.97000E+1, +5.63000E+1, +6.37000E+1, +7.17000E+1, +8.06000E+1, +9.03000E+1, +1.01000E+2, +1.13000E+2, +1.25000E+2, +1.39000E+2, +1.54000E+2, +1.70000E+2, +1.87000E+2, +2.06000E+2, +2.26000E+2, +2.48000E+2, +2.71000E+2, +2.96000E+2, +3.23000E+2, +3.51000E+2, +3.82000E+2, +4.14000E+2, +4.48000E+2, +4.85000E+2, +5.24000E+2, +5.64000E+2, +6.08000E+2, +6.54000E+2, +7.02000E+2, +7.53000E+2, +8.06000E+2, +8.62000E+2, +9.21000E+2, +9.83000E+2, +1.05000E+3])*1000. # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = self.Tmin
self.name = "TVP1"
self.TminPsat = self.Tmin
self.name = "TVP1"
self.description = "TherminolVP1"
self.reference = "Therminol Heat Transfer Reference Disk"
self.reference = "Therminol2014"
self.reshapeAll()
class Therminol66(PureData):
"""
"""
Heat transfer fluid Therminol 66 by Solutia
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -72,19 +72,19 @@ class Therminol66(PureData):
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, 1.0000E+01, 2.0000E+01, 3.0000E+01, 5.0000E+01, 8.0000E+01, 1.2000E+02, 1.8000E+02, 2.7000E+02, 4.0000E+02, 5.8000E+02, 8.3000E+02, 1.1700E+03, 1.6200E+03, 2.2300E+03, 3.0200E+03, 4.0600E+03, 5.3900E+03, 7.1000E+03, 9.2500E+03, 1.1950E+04, 1.5310E+04, 1.9460E+04, 2.4550E+04, 3.0730E+04, 3.8220E+04, 4.7200E+04, 5.7940E+04, 7.0680E+04, 8.5740E+04, 1.0342E+05, 1.2409E+05, 1.4813E+05])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 70+273.15
self.name = "T66"
self.TminPsat = 70+273.15
self.name = "T66"
self.description = "Therminol66"
self.reference = "Therminol Heat Transfer Reference Disk"
self.reshapeAll()
self.reference = "Therminol2014"
self.reshapeAll()
class Therminol72(PureData):
"""
"""
Heat transfer fluid Therminol 72 by Solutia
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -94,24 +94,24 @@ class Therminol72(PureData):
self.density.data = np.array([+1.11000E+3, +1.10000E+3, +1.10000E+3, +1.09000E+3, +1.09000E+3, +1.08000E+3, +1.08000E+3, +1.07000E+3, +1.07000E+3, +1.07000E+3, +1.06000E+3, +1.06000E+3, +1.05000E+3, +1.05000E+3, +1.04000E+3, +1.04000E+3, +1.03000E+3, +1.03000E+3, +1.02000E+3, +1.02000E+3, +1.02000E+3, +1.01000E+3, +1.01000E+3, +1.00000E+3, +9.97000E+2, +9.93000E+2, +9.88000E+2, +9.84000E+2, +9.79000E+2, +9.74000E+2, +9.70000E+2, +9.65000E+2, +9.61000E+2, +9.56000E+2, +9.52000E+2, +9.47000E+2, +9.43000E+2, +9.38000E+2, +9.34000E+2, +9.29000E+2, +9.25000E+2, +9.20000E+2, +9.16000E+2, +9.11000E+2, +9.06000E+2, +9.02000E+2, +8.98000E+2, +8.93000E+2, +8.89000E+2, +8.84000E+2, +8.80000E+2, +8.75000E+2, +8.71000E+2, +8.66000E+2, +8.62000E+2, +8.57000E+2, +8.53000E+2, +8.48000E+2, +8.44000E+2, +8.39000E+2, +8.34000E+2, +8.30000E+2, +8.25000E+2, +8.21000E+2, +8.16000E+2, +8.12000E+2, +8.07000E+2, +8.03000E+2, +7.98000E+2, +7.94000E+2, +7.89000E+2, +7.85000E+2, +7.80000E+2, +7.76000E+2, +7.71000E+2, +7.66000E+2, +7.62000E+2, +7.57000E+2, +7.53000E+2]) # kg/m3
self.specific_heat.data = np.array([+1.47100E+0, +1.48400E+0, +1.49800E+0, +1.51200E+0, +1.52500E+0, +1.53900E+0, +1.55200E+0, +1.56600E+0, +1.57900E+0, +1.59300E+0, +1.60600E+0, +1.62000E+0, +1.63400E+0, +1.64700E+0, +1.66100E+0, +1.67400E+0, +1.68800E+0, +1.70100E+0, +1.71500E+0, +1.72800E+0, +1.74200E+0, +1.75500E+0, +1.76900E+0, +1.78300E+0, +1.79600E+0, +1.81000E+0, +1.82300E+0, +1.83700E+0, +1.85000E+0, +1.86400E+0, +1.87700E+0, +1.89100E+0, +1.90500E+0, +1.91800E+0, +1.93200E+0, +1.94500E+0, +1.95900E+0, +1.97200E+0, +1.98600E+0, +1.99900E+0, +2.01300E+0, +2.02600E+0, +2.04000E+0, +2.05400E+0, +2.06700E+0, +2.08100E+0, +2.09400E+0, +2.10800E+0, +2.12100E+0, +2.13500E+0, +2.14800E+0, +2.16200E+0, +2.17600E+0, +2.18900E+0, +2.20300E+0, +2.21600E+0, +2.23000E+0, +2.24300E+0, +2.25700E+0, +2.27000E+0, +2.28400E+0, +2.29700E+0, +2.31100E+0, +2.32500E+0, +2.33800E+0, +2.35200E+0, +2.36500E+0, +2.37900E+0, +2.39200E+0, +2.40600E+0, +2.41900E+0, +2.43300E+0, +2.44600E+0, +2.46000E+0, +2.47400E+0, +2.48700E+0, +2.50100E+0, +2.51400E+0, +2.52800E+0])*1000. # J/kg-K
self.conductivity.data = np.array([+1.43200E-1, +1.42600E-1, +1.42000E-1, +1.41400E-1, +1.40800E-1, +1.40200E-1, +1.39600E-1, +1.39000E-1, +1.38400E-1, +1.37800E-1, +1.37100E-1, +1.36500E-1, +1.35900E-1, +1.35300E-1, +1.34700E-1, +1.34100E-1, +1.33500E-1, +1.32900E-1, +1.32300E-1, +1.31700E-1, +1.31100E-1, +1.30500E-1, +1.29900E-1, +1.29300E-1, +1.28700E-1, +1.28000E-1, +1.27400E-1, +1.26800E-1, +1.26200E-1, +1.25600E-1, +1.25000E-1, +1.24400E-1, +1.23800E-1, +1.23200E-1, +1.22600E-1, +1.22000E-1, +1.21400E-1, +1.20800E-1, +1.20200E-1, +1.19600E-1, +1.18900E-1, +1.18300E-1, +1.17700E-1, +1.17100E-1, +1.16500E-1, +1.15900E-1, +1.15300E-1, +1.14700E-1, +1.14100E-1, +1.13500E-1, +1.12900E-1, +1.12300E-1, +1.11700E-1, +1.11100E-1, +1.10500E-1, +1.09800E-1, +1.09200E-1, +1.08600E-1, +1.08000E-1, +1.07400E-1, +1.06800E-1, +1.06200E-1, +1.05600E-1, +1.05000E-1, +1.04400E-1, +1.03800E-1, +1.03200E-1, +1.02600E-1, +1.02000E-1, +1.01400E-1, +1.00700E-1, +1.00100E-1, +9.95000E-2, +9.89000E-2, +9.83000E-2, +9.77000E-2, +9.71000E-2, +9.65000E-2, +9.59000E-2]) # W/m-K
self.viscosity.data = np.array([+3.83000E-1, +1.19000E-1, +5.92000E-2, +3.60000E-2, +2.44000E-2, +1.77000E-2, +1.35000E-2, +1.07000E-2, +8.68000E-3, +7.21000E-3, +6.09000E-3, +5.21000E-3, +4.52000E-3, +3.96000E-3, +3.50000E-3, +3.12000E-3, +2.79000E-3, +2.52000E-3, +2.28000E-3, +2.08000E-3, +1.90000E-3, +1.75000E-3, +1.61000E-3, +1.49000E-3, +1.38000E-3, +1.29000E-3, +1.20000E-3, +1.12000E-3, +1.05000E-3, +9.86000E-4, +9.28000E-4, +8.74000E-4, +8.25000E-4, +7.79000E-4, +7.38000E-4, +6.99000E-4, +6.64000E-4, +6.31000E-4, +6.00000E-4, +5.72000E-4, +5.45000E-4, +5.20000E-4, +4.97000E-4, +4.75000E-4, +4.55000E-4, +4.36000E-4, +4.18000E-4, +4.01000E-4, +3.85000E-4, +3.70000E-4, +3.55000E-4, +3.42000E-4, +3.29000E-4, +3.17000E-4, +3.05000E-4, +2.95000E-4, +2.84000E-4, +2.74000E-4, +2.65000E-4, +2.56000E-4, +2.47000E-4, +2.39000E-4, +2.31000E-4, +2.24000E-4, +2.17000E-4, +2.10000E-4, +2.03000E-4, +1.97000E-4, +1.91000E-4, +1.85000E-4, +1.80000E-4, +1.75000E-4, +1.69000E-4, +1.65000E-4, +1.60000E-4, +1.55000E-4, +1.51000E-4, +1.47000E-4, +1.43000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+9.60000E-1, +1.05000E+0, +1.14000E+0, +1.24000E+0, +1.35000E+0, +1.47000E+0, +1.60000E+0, +1.74000E+0, +1.89000E+0, +2.06000E+0, +2.24000E+0, +2.44000E+0, +2.65000E+0, +2.88000E+0, +3.14000E+0, +3.41000E+0, +3.71000E+0, +4.03000E+0, +4.39000E+0, +4.77000E+0, +5.18000E+0, +5.63000E+0, +6.12000E+0, +6.66000E+0, +7.23000E+0, +7.86000E+0, +8.54000E+0, +9.27000E+0, +1.01000E+1, +1.10000E+1, +1.19000E+1, +1.29000E+1, +1.40000E+1, +1.52000E+1, +1.65000E+1, +1.80000E+1, +1.95000E+1, +2.12000E+1, +2.30000E+1, +2.49000E+1, +2.71000E+1, +2.94000E+1, +3.19000E+1, +3.46000E+1, +3.75000E+1, +4.07000E+1, +4.42000E+1, +4.79000E+1, +5.20000E+1, +5.64000E+1, +6.11000E+1, +6.63000E+1, +7.19000E+1, +7.79000E+1, +8.45000E+1, +9.15000E+1, +9.92000E+1, +1.08000E+2, +1.17000E+2, +1.26000E+2, +1.37000E+2, +1.48000E+2, +1.61000E+2, +1.74000E+2, +1.89000E+2, +2.04000E+2, +2.21000E+2, +2.40000E+2, +2.60000E+2, +2.81000E+2, +3.04000E+2, +3.30000E+2, +3.57000E+2, +3.86000E+2, +4.18000E+2, +4.53000E+2, +4.90000E+2, +5.30000E+2, +5.74000E+2])*1000. # Pa
self.viscosity.data = np.array([+3.83000E-1, +1.19000E-1, +5.92000E-2, +3.60000E-2, +2.44000E-2, +1.77000E-2, +1.35000E-2, +1.07000E-2, +8.68000E-3, +7.21000E-3, +6.09000E-3, +5.21000E-3, +4.52000E-3, +3.96000E-3, +3.50000E-3, +3.12000E-3, +2.79000E-3, +2.52000E-3, +2.28000E-3, +2.08000E-3, +1.90000E-3, +1.75000E-3, +1.61000E-3, +1.49000E-3, +1.38000E-3, +1.29000E-3, +1.20000E-3, +1.12000E-3, +1.05000E-3, +9.86000E-4, +9.28000E-4, +8.74000E-4, +8.25000E-4, +7.79000E-4, +7.38000E-4, +6.99000E-4, +6.64000E-4, +6.31000E-4, +6.00000E-4, +5.72000E-4, +5.45000E-4, +5.20000E-4, +4.97000E-4, +4.75000E-4, +4.55000E-4, +4.36000E-4, +4.18000E-4, +4.01000E-4, +3.85000E-4, +3.70000E-4, +3.55000E-4, +3.42000E-4, +3.29000E-4, +3.17000E-4, +3.05000E-4, +2.95000E-4, +2.84000E-4, +2.74000E-4, +2.65000E-4, +2.56000E-4, +2.47000E-4, +2.39000E-4, +2.31000E-4, +2.24000E-4, +2.17000E-4, +2.10000E-4, +2.03000E-4, +1.97000E-4, +1.91000E-4, +1.85000E-4, +1.80000E-4, +1.75000E-4, +1.69000E-4, +1.65000E-4, +1.60000E-4, +1.55000E-4, +1.51000E-4, +1.47000E-4, +1.43000E-4]) # Pa-s
self.saturation_pressure.data = np.array([+9.60000E-1, +1.05000E+0, +1.14000E+0, +1.24000E+0, +1.35000E+0, +1.47000E+0, +1.60000E+0, +1.74000E+0, +1.89000E+0, +2.06000E+0, +2.24000E+0, +2.44000E+0, +2.65000E+0, +2.88000E+0, +3.14000E+0, +3.41000E+0, +3.71000E+0, +4.03000E+0, +4.39000E+0, +4.77000E+0, +5.18000E+0, +5.63000E+0, +6.12000E+0, +6.66000E+0, +7.23000E+0, +7.86000E+0, +8.54000E+0, +9.27000E+0, +1.01000E+1, +1.10000E+1, +1.19000E+1, +1.29000E+1, +1.40000E+1, +1.52000E+1, +1.65000E+1, +1.80000E+1, +1.95000E+1, +2.12000E+1, +2.30000E+1, +2.49000E+1, +2.71000E+1, +2.94000E+1, +3.19000E+1, +3.46000E+1, +3.75000E+1, +4.07000E+1, +4.42000E+1, +4.79000E+1, +5.20000E+1, +5.64000E+1, +6.11000E+1, +6.63000E+1, +7.19000E+1, +7.79000E+1, +8.45000E+1, +9.15000E+1, +9.92000E+1, +1.08000E+2, +1.17000E+2, +1.26000E+2, +1.37000E+2, +1.48000E+2, +1.61000E+2, +1.74000E+2, +1.89000E+2, +2.04000E+2, +2.21000E+2, +2.40000E+2, +2.60000E+2, +2.81000E+2, +3.04000E+2, +3.30000E+2, +3.57000E+2, +3.86000E+2, +4.18000E+2, +4.53000E+2, +4.90000E+2, +5.30000E+2, +5.74000E+2])*1000. # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = self.Tmin
self.name = "T72"
self.TminPsat = self.Tmin
self.name = "T72"
self.description = "Therminol72"
self.reference = "Therminol Heat Transfer Reference Disk"
self.reference = "Therminol2014"
self.reshapeAll()
class DowthermJ(PureData):
"""
"""
Heat transfer fluid Dowtherm J by Dow Chemicals
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -122,17 +122,17 @@ class DowthermJ(PureData):
self.specific_heat.data = np.array([+1.58400E+0, +1.59400E+0, +1.61600E+0, +1.63900E+0, +1.66300E+0, +1.68800E+0, +1.71400E+0, +1.74100E+0, +1.76900E+0, +1.79800E+0, +1.82800E+0, +1.85900E+0, +1.89000E+0, +1.92300E+0, +1.95500E+0, +1.98900E+0, +2.02300E+0, +2.05800E+0, +2.09300E+0, +2.12900E+0, +2.16500E+0, +2.20200E+0, +2.23900E+0, +2.27700E+0, +2.31500E+0, +2.35300E+0, +2.39200E+0, +2.39700E+0, +2.43200E+0, +2.47200E+0, +2.51200E+0, +2.55300E+0, +2.59400E+0, +2.63600E+0, +2.68000E+0, +2.72400E+0, +2.76900E+0, +2.81600E+0, +2.86600E+0, +2.91900E+0, +2.97600E+0, +3.04000E+0, +3.11500E+0, +3.20800E+0, +3.26500E+0])*1000. # J/kg-K
self.conductivity.data = np.array([+1.48500E-1, +1.47500E-1, +1.45300E-1, +1.43200E-1, +1.41100E-1, +1.39000E-1, +1.36800E-1, +1.34700E-1, +1.32600E-1, +1.30500E-1, +1.28400E-1, +1.26200E-1, +1.24100E-1, +1.22000E-1, +1.19900E-1, +1.17700E-1, +1.15600E-1, +1.13500E-1, +1.11400E-1, +1.09300E-1, +1.07100E-1, +1.05000E-1, +1.02900E-1, +1.00800E-1, +9.87000E-2, +9.65000E-2, +9.44000E-2, +9.41000E-2, +9.23000E-2, +9.02000E-2, +8.80000E-2, +8.59000E-2, +8.38000E-2, +8.17000E-2, +7.96000E-2, +7.74000E-2, +7.53000E-2, +7.32000E-2, +7.11000E-2, +6.90000E-2, +6.68000E-2, +6.47000E-2, +6.26000E-2, +6.05000E-2, +5.94000E-2]) # W/m-K
self.viscosity.data = np.array([+8.43000E+0, +7.11000E+0, +5.12000E+0, +3.78000E+0, +2.88000E+0, +2.25000E+0, +1.80000E+0, +1.48000E+0, +1.23000E+0, +1.05000E+0, +9.10000E-1, +7.90000E-1, +7.00000E-1, +6.30000E-1, +5.60000E-1, +5.10000E-1, +4.70000E-1, +4.30000E-1, +4.00000E-1, +3.70000E-1, +3.50000E-1, +3.30000E-1, +3.10000E-1, +2.90000E-1, +2.80000E-1, +2.70000E-1, +2.50000E-1, +2.50000E-1, +2.40000E-1, +2.30000E-1, +2.30000E-1, +2.20000E-1, +2.10000E-1, +2.00000E-1, +2.00000E-1, +1.90000E-1, +1.80000E-1, +1.80000E-1, +1.70000E-1, +1.70000E-1, +1.70000E-1, +1.60000E-1, +1.60000E-1, +1.60000E-1, +1.50000E-1])/1000. # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +8.00000E-2, +1.10000E-1, +1.60000E-1, +2.30000E-1, +3.20000E-1, +4.30000E-1, +5.80000E-1, +7.60000E-1, +9.80000E-1, +1.01000E+0, +1.25000E+0, +1.58000E+0, +1.97000E+0, +2.43000E+0, +2.96000E+0, +3.59000E+0, +4.30000E+0, +5.13000E+0, +6.06000E+0, +7.12000E+0, +8.31000E+0, +9.64000E+0, +1.11300E+1, +1.27900E+1, +1.46400E+1, +1.66900E+1, +1.78000E+1])*1e5 # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +8.00000E-2, +1.10000E-1, +1.60000E-1, +2.30000E-1, +3.20000E-1, +4.30000E-1, +5.80000E-1, +7.60000E-1, +9.80000E-1, +1.01000E+0, +1.25000E+0, +1.58000E+0, +1.97000E+0, +2.43000E+0, +2.96000E+0, +3.59000E+0, +4.30000E+0, +5.13000E+0, +6.06000E+0, +7.12000E+0, +8.31000E+0, +9.64000E+0, +1.11300E+1, +1.27900E+1, +1.46400E+1, +1.66900E+1, +1.78000E+1])*1e5 # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 50 + 273.15
self.name = "DowJ"
self.TminPsat = 50 + 273.15
self.name = "DowJ"
self.description = "DowthermJ"
self.reference = "Dow Chemicals data sheet"
self.reference = "Dow1997"
self.reshapeAll()
class DowthermQ(PureData):
"""
"""
Heat transfer fluid Dowtherm Q by Dow Chemicals
"""
def __init__(self):
@@ -141,28 +141,28 @@ class DowthermQ(PureData):
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([-3.50000E+1, -3.00000E+1, -2.00000E+1, -1.00000E+1, +0.00000E+0, +1.00000E+1, +2.00000E+1, +3.00000E+1, +4.00000E+1, +5.00000E+1, +6.00000E+1, +7.00000E+1, +8.00000E+1, +9.00000E+1, +1.00000E+2, +1.10000E+2, +1.20000E+2, +1.30000E+2, +1.40000E+2, +1.50000E+2, +1.60000E+2, +1.70000E+2, +1.80000E+2, +1.90000E+2, +2.00000E+2, +2.10000E+2, +2.20000E+2, +2.30000E+2, +2.40000E+2, +2.50000E+2, +2.60000E+2, +2.70000E+2, +2.80000E+2, +2.90000E+2, +3.00000E+2, +3.10000E+2, +3.20000E+2, +3.30000E+2, +3.40000E+2, +3.50000E+2, +3.60000E+2])+273.15 # Kelvin
self.density.data = np.array([+1.01140E+3, +1.00320E+3, +9.95600E+2, +9.88000E+2, +9.80500E+2, +9.72900E+2, +9.65400E+2, +9.57800E+2, +9.50200E+2, +9.42700E+2, +9.35100E+2, +9.27600E+2, +9.20000E+2, +9.12400E+2, +9.04900E+2, +8.97300E+2, +8.89800E+2, +8.82200E+2, +8.74600E+2, +8.67100E+2, +8.59500E+2, +8.52000E+2, +8.44400E+2, +8.36800E+2, +8.29300E+2, +8.21700E+2, +8.14200E+2, +8.06600E+2, +7.99000E+2, +7.91500E+2, +7.83900E+2, +7.76400E+2, +7.68800E+2, +7.61200E+2, +7.53700E+2, +7.46100E+2, +7.38600E+2, +7.31000E+2, +7.23400E+2, +7.15900E+2, +7.08300E+2]) # kg/m3
self.specific_heat.data = np.array([+1.47800E+0, +1.49200E+0, +1.52500E+0, +1.55700E+0, +1.58900E+0, +1.62100E+0, +1.65300E+0, +1.68500E+0, +1.71600E+0, +1.74800E+0, +1.77900E+0, +1.81100E+0, +1.84200E+0, +1.87300E+0, +1.90400E+0, +1.93500E+0, +1.96600E+0, +1.99700E+0, +2.02700E+0, +2.05800E+0, +2.08800E+0, +2.11800E+0, +2.14800E+0, +2.17800E+0, +2.20800E+0, +2.23800E+0, +2.26800E+0, +2.29700E+0, +2.32700E+0, +2.35600E+0, +2.38600E+0, +2.41500E+0, +2.44400E+0, +2.47300E+0, +2.50200E+0, +2.53000E+0, +2.55900E+0, +2.58700E+0, +2.61600E+0, +2.64400E+0, +2.67200E+0])*1000. # J/kg-K
self.conductivity.data = np.array([+1.28000E-1, +1.27700E-1, +1.26600E-1, +1.25500E-1, +1.24400E-1, +1.23200E-1, +1.22000E-1, +1.20800E-1, +1.19500E-1, +1.18300E-1, +1.17000E-1, +1.15600E-1, +1.14300E-1, +1.12900E-1, +1.11500E-1, +1.10100E-1, +1.08700E-1, +1.07200E-1, +1.05800E-1, +1.04300E-1, +1.02800E-1, +1.01300E-1, +9.98000E-2, +9.82000E-2, +9.67000E-2, +9.52000E-2, +9.36000E-2, +9.21000E-2, +9.05000E-2, +8.89000E-2, +8.74000E-2, +8.58000E-2, +8.43000E-2, +8.27000E-2, +8.11000E-2, +7.96000E-2, +7.80000E-2, +7.65000E-2, +7.49000E-2, +7.34000E-2, +7.19000E-2]) # W/m-K
self.viscosity.data = np.array([+4.66000E+1, +2.42000E+1, +1.61000E+1, +1.09000E+1, +7.56000E+0, +5.42000E+0, +4.00000E+0, +3.04000E+0, +2.37000E+0, +1.89000E+0, +1.54000E+0, +1.28000E+0, +1.07000E+0, +9.20000E-1, +8.00000E-1, +7.00000E-1, +6.20000E-1, +5.50000E-1, +5.00000E-1, +4.50000E-1, +4.10000E-1, +3.80000E-1, +3.50000E-1, +3.30000E-1, +3.10000E-1, +2.90000E-1, +2.70000E-1, +2.60000E-1, +2.40000E-1, +2.30000E-1, +2.20000E-1, +2.10000E-1, +2.00000E-1, +1.90000E-1, +1.90000E-1, +1.80000E-1, +1.70000E-1, +1.70000E-1, +1.60000E-1, +1.60000E-1, +1.50000E-1])/1000. # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +7.00000E-2, +9.00000E-2, +1.30000E-1, +1.70000E-1, +2.30000E-1, +3.10000E-1, +4.00000E-1, +5.10000E-1, +6.40000E-1, +8.10000E-1, +1.00000E+0, +1.24000E+0, +1.51000E+0, +1.82000E+0, +2.19000E+0, +2.61000E+0, +3.09000E+0, +3.64000E+0, +4.25000E+0, +4.95000E+0])*1e5 # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +7.00000E-2, +9.00000E-2, +1.30000E-1, +1.70000E-1, +2.30000E-1, +3.10000E-1, +4.00000E-1, +5.10000E-1, +6.40000E-1, +8.10000E-1, +1.00000E+0, +1.24000E+0, +1.51000E+0, +1.82000E+0, +2.19000E+0, +2.61000E+0, +3.09000E+0, +3.64000E+0, +4.25000E+0, +4.95000E+0])*1e5 # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 120 + 273.15
self.name = "DowQ"
self.TminPsat = 120 + 273.15
self.name = "DowQ"
self.description = "DowthermQ"
self.reference = "Dow Chemicals data sheet"
self.reference = "Dow1997"
self.reshapeAll()
class Texatherm22(PureData):
"""
"""
Heat transfer fluid Texatherm 22 by Texaco
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -173,20 +173,20 @@ class Texatherm22(PureData):
self.specific_heat.data = np.array([+1.81000E+0, +1.95000E+0, +1.99000E+0, +2.18000E+0, +2.36000E+0, +2.54000E+0, +2.72000E+0, +2.90000E+0, +3.08000E+0])*1e3 # J/kg-K
self.conductivity.data = np.array([+1.35000E-1, +1.32000E-1, +1.32000E-1, +1.28000E-1, +1.25000E-1, +1.21000E-1, +1.17100E-1, +1.13000E-1, +1.10000E-1]) # W/m-K
self.viscosity.data = np.array([+4.19760E+2, np.NAN, +2.31688E+1, np.NAN, +2.09601E+0, +1.26072E+0, np.NAN, np.NAN, np.NAN])/1000. # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, +5.3300E-10, +4.00000E-8, +2.67000E-7, +2.27000E-5, +4.67000E-4, +6.67000E-3, +2.13000E-2, +5.33000E-2])*1e5 # Pa
self.saturation_pressure.data = np.array([ np.NAN, +5.3300E-10, +4.00000E-8, +2.67000E-7, +2.27000E-5, +4.67000E-4, +6.67000E-3, +2.13000E-2, +5.33000E-2])*1e5 # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 40 + 273.15
self.name = "TX22"
self.TminPsat = 40 + 273.15
self.name = "TX22"
self.description = "Texatherm22"
self.reference = "Texaco data sheet"
self.reference = "Chevron2004"
self.reshapeAll()
class SylthermXLT(PureData):
"""
"""
Heat transfer fluid Syltherm XLT by Dow Chemicals
"""
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
@@ -200,19 +200,19 @@ class SylthermXLT(PureData):
self.viscosity.data = np.array([+7.86100E+1, +5.01300E+1, +3.48600E+1, +2.58300E+1, +2.00400E+1, +1.60800E+1, +1.32200E+1, +1.10500E+1, +9.35600E+0, +7.99400E+0, +6.87900E+0, +5.95600E+0, +5.18400E+0, +4.53500E+0, +3.98600E+0, +3.52100E+0, +3.12600E+0, +2.78800E+0, +2.49900E+0, +2.25000E+0, +2.03500E+0, +1.84900E+0, +1.68700E+0, +1.54500E+0, +1.41900E+0, +1.30900E+0, +1.21000E+0, +1.12200E+0, +1.04300E+0, +9.72000E-1, +9.08000E-1, +8.49000E-1, +7.96000E-1, +7.48000E-1, +7.05000E-1, +6.65000E-1, +6.28000E-1, +5.95000E-1, +5.64000E-1, +5.36000E-1, +5.11000E-1, +4.87000E-1, +4.65000E-1, +4.45000E-1, +4.26000E-1, +4.09000E-1, +3.93000E-1, +3.77000E-1, +3.63000E-1, +3.50000E-1, +3.37000E-1, +3.25000E-1, +3.14000E-1, +3.03000E-1, +2.93000E-1, +2.84000E-1, +2.75000E-1, +2.66000E-1, +2.58000E-1, +2.51000E-1, +2.44000E-1, +2.38000E-1, +2.32000E-1, +2.26000E-1, +2.20000E-1, +2.15000E-1, +2.09000E-1, +2.04000E-1, +1.99000E-1, +1.94000E-1, +1.89000E-1, +1.85000E-1, +1.82000E-1])/1000. # Pa-s
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = self.Tmax
self.name = "XLT"
self.TminPsat = self.Tmax
self.name = "XLT"
self.description = "SylthermXLT"
self.reference = "Dow Chemicals data sheet"
self.reference = "Dow1997"
self.reshapeAll()
class HC50(PureData):
"""
"""
Heat transfer fluid Dynalene HC-50
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -223,22 +223,22 @@ class HC50(PureData):
self.specific_heat.data = np.array([+2.56300E+3,+2.58300E+3,+2.60200E+3,+2.62200E+3,+2.64200E+3,+2.66100E+3,+2.68100E+3,+2.70100E+3,+2.72000E+3,+2.74000E+3,+2.76000E+3,+2.78000E+3,+2.79900E+3,+2.81900E+3,+2.83900E+3,+2.85800E+3,+2.87800E+3,+2.89800E+3,+2.91700E+3,+2.93700E+3,+2.95700E+3,+2.97700E+3,+2.99600E+3,+3.01600E+3,+3.03600E+3,+3.05500E+3,+3.07500E+3]) # J/kg-K
self.conductivity.data = np.array([+4.35000E+2,+4.45000E+2,+4.55000E+2,+4.65000E+2,+4.75000E+2,+4.85000E+2,+4.95000E+2,+5.05000E+2,+5.15000E+2,+5.25000E+2,+5.35000E+2,+5.45000E+2,+5.55000E+2,+5.65000E+2,+5.75000E+2,+5.85000E+2,+5.95000E+2,+6.05000E+2,+6.15000E+2,+6.25000E+2,+6.35000E+2,+6.45000E+2,+6.55000E+2,+6.65000E+2,+6.75000E+2,+6.85000E+2,+6.94500E+2])/1e3 # W/m-K
self.viscosity.data = np.array([+3.84000E-2,+2.04000E-2,+1.25000E-2,+8.40000E-3,+5.99000E-3,+4.70000E-3,+3.80000E-3,+3.20000E-3,+2.70000E-3,+2.40000E-3,+2.10000E-3,+1.80000E-3,+1.60000E-3,+1.50000E-3,+1.30000E-3,+1.20000E-3,+1.10000E-3,+1.00000E-3,+9.40000E-4,+8.70000E-4,+8.10000E-4,+7.60000E-4,+7.10000E-4,+6.60000E-4,+6.20000E-4,+5.80000E-4,+5.50000E-4]) # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.58579E+3,+1.93053E+3,+3.10264E+3,+5.58475E+3,+9.85950E+3,+1.64785E+4,+2.60622E+4,+3.93691E+4,+5.72954E+4,+8.06687E+4,+1.11695E+5,+1.50995E+5,+2.00637E+5,+2.63380E+5,+3.41290E+5,+4.36438E+5,+5.53649E+5,+6.95681E+5,+8.67360E+5,+1.07282E+6]) # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.58579E+3,+1.93053E+3,+3.10264E+3,+5.58475E+3,+9.85950E+3,+1.64785E+4,+2.60622E+4,+3.93691E+4,+5.72954E+4,+8.06687E+4,+1.11695E+5,+1.50995E+5,+2.00637E+5,+2.63380E+5,+3.41290E+5,+4.36438E+5,+5.53649E+5,+6.95681E+5,+8.67360E+5,+1.07282E+6]) # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 20+273.15
self.TminPsat = 20+273.15
self.name = "HC50"
self.description = "Dynalene "+ self.name
self.reference = "Dynalene data sheet"
self.reference = "Dynalene2014"
self.reshapeAll()
class HC40(PureData):
"""
"""
Heat transfer fluid Dynalene HC-40
"""
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -249,22 +249,22 @@ class HC40(PureData):
self.specific_heat.data = np.array([+2.80000E+3,+2.82000E+3,+2.84000E+3,+2.87000E+3,+2.89000E+3,+2.91000E+3,+2.93000E+3,+2.96000E+3,+2.98000E+3,+3.00000E+3,+3.03000E+3,+3.05000E+3,+3.07000E+3,+3.09000E+3,+3.12000E+3,+3.14000E+3,+3.16000E+3,+3.19000E+3,+3.21000E+3,+3.23000E+3,+3.25000E+3,+3.27000E+3,+3.28000E+3,+3.30000E+3,+3.32000E+3,+3.35000E+3]) # J/kg-K
self.conductivity.data = np.array([+4.49000E+2,+4.59000E+2,+4.69000E+2,+4.79000E+2,+4.89000E+2,+4.99000E+2,+5.09000E+2,+5.19000E+2,+5.29000E+2,+5.39000E+2,+5.49000E+2,+5.59000E+2,+5.69000E+2,+5.79000E+2,+5.89000E+2,+5.99000E+2,+6.09000E+2,+6.19000E+2,+6.29000E+2,+6.39000E+2,+6.49000E+2,+6.54000E+2,+6.59000E+2,+6.69000E+2,+6.79000E+2,+6.89000E+2])/1e3 # W/m-K
self.viscosity.data = np.array([+1.49000E-2,+9.20000E-3,+6.50000E-3,+4.90000E-3,+3.90000E-3,+3.20000E-3,+2.70000E-3,+2.30000E-3,+1.96000E-3,+1.70000E-3,+1.50000E-3,+1.40000E-3,+1.20000E-3,+1.10000E-3,+9.90000E-4,+9.10000E-4,+8.30000E-4,+7.70000E-4,+7.10000E-4,+6.60000E-4,+6.10000E-4,+5.90000E-4,+5.70000E-4,+5.30000E-4,+5.00000E-4,+4.70000E-4]) # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.51685E+3,+2.20632E+3,+3.79212E+3,+6.68791E+3,+1.15142E+4,+1.87537E+4,+2.92338E+4,+4.37817E+4,+6.35007E+4,+8.96318E+4,+1.23416E+5,+1.66853E+5,+2.22701E+5,+2.92338E+5,+3.79212E+5,+4.85391E+5,+6.16391E+5,+7.74971E+5,+9.65955E+5,+1.19417E+6]) # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.51685E+3,+2.20632E+3,+3.79212E+3,+6.68791E+3,+1.15142E+4,+1.87537E+4,+2.92338E+4,+4.37817E+4,+6.35007E+4,+8.96318E+4,+1.23416E+5,+1.66853E+5,+2.22701E+5,+2.92338E+5,+3.79212E+5,+4.85391E+5,+6.16391E+5,+7.74971E+5,+9.65955E+5,+1.19417E+6]) # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 20+273.15
self.TminPsat = 20+273.15
self.name = "HC40"
self.description = "Dynalene "+ self.name
self.reference = "Dynalene data sheet"
self.reference = "Dynalene2014"
self.reshapeAll()
class HC30(PureData):
"""
"""
Heat transfer fluid Dynalene HC-30
"""
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -275,22 +275,22 @@ class HC30(PureData):
self.specific_heat.data = np.array([+2.96100E+3,+2.98400E+3,+3.00700E+3,+3.03100E+3,+3.05400E+3,+3.07700E+3,+3.10000E+3,+3.12300E+3,+3.14600E+3,+3.16900E+3,+3.19200E+3,+3.21500E+3,+3.23800E+3,+3.26200E+3,+3.28500E+3,+3.30800E+3,+3.33100E+3,+3.35400E+3,+3.37700E+3,+3.40000E+3,+3.42300E+3,+3.44600E+3,+3.46900E+3,+3.49300E+3,+3.51600E+3]) # J/kg-K
self.conductivity.data = np.array([+4.69000E+2,+4.79000E+2,+4.89000E+2,+4.99000E+2,+5.09000E+2,+5.19000E+2,+5.29000E+2,+5.39000E+2,+5.49000E+2,+5.59000E+2,+5.69000E+2,+5.79000E+2,+5.89000E+2,+5.99000E+2,+6.09000E+2,+6.19000E+2,+6.29000E+2,+6.39000E+2,+6.49000E+2,+6.59000E+2,+6.69000E+2,+6.79000E+2,+6.89000E+2,+6.99000E+2,+7.09000E+2])/1e3 # W/m-K
self.viscosity.data = np.array([+7.00000E-3,+5.50000E-3,+4.50000E-3,+3.70000E-3,+3.00000E-3,+2.50000E-3,+2.20000E-3,+1.90000E-3,+1.60000E-3,+1.40000E-3,+1.30000E-3,+1.10000E-3,+9.90000E-4,+8.90000E-4,+8.00000E-4,+7.30000E-4,+6.70000E-4,+6.10000E-4,+5.70000E-4,+5.20000E-4,+4.80000E-4,+4.50000E-4,+4.20000E-4,+3.90000E-4,+3.70000E-4]) # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.79264E+3,+2.41317E+3,+3.99896E+3,+7.17055E+3,+1.24795E+4,+2.06153E+4,+3.23364E+4,+4.86770E+4,+7.10160E+4,+9.99740E+4,+1.37895E+5,+1.86158E+5,+2.47522E+5,+3.24743E+5,+4.20580E+5,+5.39170E+5,+6.83960E+5,+8.59087E+5,+1.07145E+6,+1.32517E+6]) # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.79264E+3,+2.41317E+3,+3.99896E+3,+7.17055E+3,+1.24795E+4,+2.06153E+4,+3.23364E+4,+4.86770E+4,+7.10160E+4,+9.99740E+4,+1.37895E+5,+1.86158E+5,+2.47522E+5,+3.24743E+5,+4.20580E+5,+5.39170E+5,+6.83960E+5,+8.59087E+5,+1.07145E+6,+1.32517E+6]) # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 20+273.15
self.TminPsat = 20+273.15
self.name = "HC30"
self.description = "Dynalene "+ self.name
self.reference = "Dynalene data sheet"
self.reference = "Dynalene2014"
self.reshapeAll()
class HC20(PureData):
"""
"""
Heat transfer fluid Dynalene HC-20
"""
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -301,22 +301,22 @@ class HC20(PureData):
self.specific_heat.data = np.array([+3.11700E+3,+3.14100E+3,+3.16400E+3,+3.18800E+3,+3.21200E+3,+3.23500E+3,+3.25900E+3,+3.28200E+3,+3.30600E+3,+3.33000E+3,+3.35300E+3,+3.37700E+3,+3.40000E+3,+3.42400E+3,+3.44800E+3,+3.47100E+3,+3.49500E+3,+3.51800E+3,+3.54200E+3,+3.56600E+3,+3.58900E+3,+3.61300E+3,+3.63600E+3,+3.66000E+3]) # J/kg-K
self.conductivity.data = np.array([+4.83000E+2,+4.93000E+2,+5.03000E+2,+5.13000E+2,+5.23000E+2,+5.33000E+2,+5.43000E+2,+5.53000E+2,+5.63000E+2,+5.73000E+2,+5.83000E+2,+5.93000E+2,+6.03000E+2,+6.13000E+2,+6.23000E+2,+6.33000E+2,+6.43000E+2,+6.53000E+2,+6.63000E+2,+6.73000E+2,+6.83000E+2,+6.93000E+2,+7.03000E+2,+7.13000E+2])/1e3 # W/m-K
self.viscosity.data = np.array([+4.50000E-3,+3.60000E-3,+3.00000E-3,+2.50000E-3,+2.10000E-3,+1.80000E-3,+1.60000E-3,+1.40000E-3,+1.20000E-3,+1.10000E-3,+9.50000E-4,+8.50000E-4,+7.70000E-4,+7.00000E-4,+6.30000E-4,+5.80000E-4,+5.40000E-4,+4.90000E-4,+4.60000E-4,+4.30000E-4,+4.00000E-4,+3.70000E-4,+3.50000E-4,+3.30000E-4]) # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN,+2.06843E+3,+2.75790E+3,+4.55054E+3,+7.99792E+3,+1.37206E+4,+2.24769E+4,+3.52322E+4,+5.29517E+4,+7.72213E+4,+1.08937E+5,+1.50306E+5,+2.04085E+5,+2.71653E+5,+3.57148E+5,+4.62638E+5,+5.93639E+5,+7.52907E+5,+9.46650E+5,+1.18038E+6,+1.45962E+6]) # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN,+2.06843E+3,+2.75790E+3,+4.55054E+3,+7.99792E+3,+1.37206E+4,+2.24769E+4,+3.52322E+4,+5.29517E+4,+7.72213E+4,+1.08937E+5,+1.50306E+5,+2.04085E+5,+2.71653E+5,+3.57148E+5,+4.62638E+5,+5.93639E+5,+7.52907E+5,+9.46650E+5,+1.18038E+6,+1.45962E+6]) # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 20+273.15
self.TminPsat = 20+273.15
self.name = "HC20"
self.description = "Dynalene "+ self.name
self.reference = "Dynalene data sheet"
self.reference = "Dynalene2014"
self.reshapeAll()
class HC10(PureData):
"""
"""
Heat transfer fluid Dynalene HC-10
"""
"""
def __init__(self):
PureData.__init__(self)
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
@@ -327,13 +327,238 @@ class HC10(PureData):
self.specific_heat.data = np.array([+3.24600E+3,+3.27100E+3,+3.29600E+3,+3.32000E+3,+3.34500E+3,+3.37000E+3,+3.39500E+3,+3.42000E+3,+3.44400E+3,+3.46900E+3,+3.49400E+3,+3.51900E+3,+3.54400E+3,+3.56800E+3,+3.59300E+3,+3.61800E+3,+3.64300E+3,+3.66800E+3,+3.69200E+3,+3.71700E+3,+3.74200E+3,+3.76700E+3,+3.79200E+3,+3.81100E+3]) # J/kg-K
self.conductivity.data = np.array([+4.94000E+2,+5.04000E+2,+5.14000E+2,+5.24000E+2,+5.34000E+2,+5.44000E+2,+5.54000E+2,+5.64000E+2,+5.74000E+2,+5.84000E+2,+5.94000E+2,+6.04000E+2,+6.14000E+2,+6.24000E+2,+6.34000E+2,+6.44000E+2,+6.54000E+2,+6.64000E+2,+6.74000E+2,+6.84000E+2,+6.94000E+2,+7.04000E+2,+7.14000E+2,+7.22000E+2])/1e3 # W/m-K
self.viscosity.data = np.array([+3.00000E-3,+2.50000E-3,+2.10000E-3,+1.80000E-3,+1.50000E-3,+1.30000E-3,+1.20000E-3,+1.00000E-3,+9.10000E-4,+8.10000E-4,+7.30000E-4,+6.60000E-4,+6.00000E-4,+5.50000E-4,+5.10000E-4,+4.70000E-4,+4.30000E-4,+4.00000E-4,+3.70000E-4,+3.50000E-4,+3.30000E-4,+3.10000E-4,+2.90000E-4,+2.80000E-4]) # Pa-s
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN,+2.27527E+3,+2.89580E+3,+4.75738E+3,+8.54950E+3,+1.48927E+4,+2.46143E+4,+3.87485E+4,+5.83986E+4,+8.48055E+4,+1.19969E+5,+1.65474E+5,+2.23390E+5,+2.97164E+5,+3.90243E+5,+5.05386E+5,+6.47418E+5,+8.20476E+5,+1.03146E+6,+1.28587E+6,+1.58993E+6,+1.87468E+6]) # Pa
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN,+2.27527E+3,+2.89580E+3,+4.75738E+3,+8.54950E+3,+1.48927E+4,+2.46143E+4,+3.87485E+4,+5.83986E+4,+8.48055E+4,+1.19969E+5,+1.65474E+5,+2.23390E+5,+2.97164E+5,+3.90243E+5,+5.05386E+5,+6.47418E+5,+8.20476E+5,+1.03146E+6,+1.28587E+6,+1.58993E+6,+1.87468E+6]) # Pa
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = 20+273.15
self.TminPsat = 20+273.15
self.name = "HC10"
self.description = "Dynalene "+ self.name
self.reference = "Dynalene data sheet"
self.reference = "Dynalene2014"
self.reshapeAll()
## Paratherm, see http://paracalc.paratherm.com
class PCR(PureData):
"""
The Paratherm CR (Patent Pending) heat transfer fluid provides predictable,
repeatable performance in cryogenically-driven processes. Consistent
properties improve productivity, and eliminate runaway coil freeze-ups.
10-cP viscosity @ -88 C (20-cP @ -96 C) brings higher efficiency at lower
temperatures. Ease of containment and handling allow greater latitude in
system design and component specification, and eliminate contamination and
costly clean-up.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([1.731500E+2,1.741500E+2,1.751500E+2,1.761500E+2,1.771500E+2,1.781500E+2,1.791500E+2,1.801500E+2,1.811500E+2,1.821500E+2,1.831500E+2,1.841500E+2,1.851500E+2,1.861500E+2,1.871500E+2,1.881500E+2,1.891500E+2,1.901500E+2,1.911500E+2,1.921500E+2,1.931500E+2,1.941500E+2,1.951500E+2,1.961500E+2,1.971500E+2,1.981500E+2,1.991500E+2,2.001500E+2,2.011500E+2,2.021500E+2,2.031500E+2,2.041500E+2,2.051500E+2,2.061500E+2,2.071500E+2,2.081500E+2,2.091500E+2,2.101500E+2,2.111500E+2,2.121500E+2,2.131500E+2,2.141500E+2,2.151500E+2,2.161500E+2,2.171500E+2,2.181500E+2,2.191500E+2,2.201500E+2,2.211500E+2,2.221500E+2,2.231500E+2,2.241500E+2,2.251500E+2,2.261500E+2,2.271500E+2,2.281500E+2,2.291500E+2,2.301500E+2,2.311500E+2,2.321500E+2,2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2])
self.density.data = np.array([9.490000E+2,9.480000E+2,9.470000E+2,9.460000E+2,9.450000E+2,9.440000E+2,9.430000E+2,9.420000E+2,9.410000E+2,9.400000E+2,9.390000E+2,9.380000E+2,9.370000E+2,9.360000E+2,9.350000E+2,9.340000E+2,9.330000E+2,9.320000E+2,9.310000E+2,9.300000E+2,9.290000E+2,9.280000E+2,9.270000E+2,9.260000E+2,9.250000E+2,9.240000E+2,9.230000E+2,9.220000E+2,9.210000E+2,9.200000E+2,9.190000E+2,9.180000E+2,9.170000E+2,9.160000E+2,9.150000E+2,9.140000E+2,9.130000E+2,9.120000E+2,9.110000E+2,9.100000E+2,9.090000E+2,9.080000E+2,9.070000E+2,9.060000E+2,9.050000E+2,9.040000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.710000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.640000E+2,6.630000E+2,6.620000E+2,6.610000E+2,6.600000E+2,6.590000E+2,6.580000E+2,6.570000E+2,6.560000E+2,6.550000E+2,6.540000E+2,6.530000E+2,6.520000E+2,6.510000E+2,6.500000E+2,6.490000E+2,6.480000E+2,6.470000E+2,6.460000E+2,6.450000E+2,6.440000E+2,6.430000E+2,6.420000E+2,6.410000E+2,6.400000E+2,6.390000E+2,6.380000E+2,6.370000E+2,6.360000E+2,6.350000E+2,6.340000E+2,6.330000E+2,6.320000E+2,6.310000E+2,6.300000E+2,6.290000E+2,6.280000E+2,6.270000E+2])
self.viscosity.data = np.array([3.400000E-5,3.300000E-5,3.100000E-5,3.000000E-5,2.800000E-5,2.700000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.100000E-5,9.900000E-6,9.100000E-6,8.300000E-6,7.500000E-6,6.800000E-6,6.100000E-6,5.500000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.700000E-7,9.600000E-7,9.400000E-7,9.300000E-7,9.100000E-7,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.700000E-7,9.400000E-7,9.200000E-7,9.000000E-7,8.800000E-7,8.600000E-7,8.400000E-7,8.200000E-7,8.000000E-7,7.900000E-7,7.700000E-7,7.500000E-7,7.300000E-7,7.200000E-7,7.000000E-7,6.800000E-7,6.700000E-7,6.500000E-7,6.400000E-7,6.200000E-7,6.100000E-7,5.900000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.100000E-7,5.000000E-7,4.900000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.900000E-7,3.900000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7])
self.specific_heat.data = np.array([1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3])
self.conductivity.data = np.array([1.500000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.100000E+4,1.200000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.600000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.000000E+4,5.100000E+4,5.200000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.600000E+4,5.700000E+4,5.800000E+4,5.900000E+4,6.000000E+4,6.100000E+4,6.200000E+4,6.300000E+4,6.400000E+4,6.600000E+4,6.700000E+4,6.800000E+4,6.900000E+4,7.000000E+4,7.100000E+4,7.200000E+4,7.300000E+4,7.500000E+4,7.600000E+4,7.700000E+4,7.800000E+4,7.900000E+4,8.000000E+4,8.200000E+4,8.300000E+4,8.400000E+4,8.500000E+4,8.600000E+4,8.800000E+4,8.900000E+4,9.000000E+4,9.100000E+4,9.200000E+4,9.400000E+4,9.500000E+4,9.600000E+4,9.700000E+4,9.900000E+4,1.000000E+5,1.010000E+5,1.030000E+5,1.040000E+5,1.050000E+5,1.060000E+5,1.080000E+5,1.090000E+5,1.100000E+5,1.120000E+5,1.130000E+5,1.140000E+5,1.160000E+5,1.170000E+5,1.180000E+5,1.200000E+5,1.210000E+5,1.220000E+5,1.240000E+5,1.250000E+5,1.270000E+5,1.280000E+5,1.290000E+5,1.310000E+5,1.320000E+5,1.340000E+5,1.350000E+5,1.370000E+5,1.380000E+5,1.390000E+5,1.410000E+5,1.420000E+5,1.440000E+5,1.450000E+5,1.470000E+5,1.480000E+5,1.500000E+5,1.510000E+5])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PCR"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PGLT(PureData):
"""
Heat transfer fluid Paratherm GLT The Paratherm GLT heat transfer fluid is
an alkylated-aromatic based heat transfer fluid formulated for closed-loop
liquid-phase heating systems to 550 F using fired heaters and to 575 F in
waste-heat recovery systems.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
self.density.data = np.array([9.020000E+2,9.010000E+2,9.000000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.860000E+2,8.850000E+2,8.840000E+2,8.840000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.790000E+2,8.780000E+2,8.770000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.550000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.250000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.720000E+2])
self.viscosity.data = np.array([5.620000E-4,5.120000E-4,4.660000E-4,4.240000E-4,3.860000E-4,3.500000E-4,3.180000E-4,2.890000E-4,2.620000E-4,2.380000E-4,2.170000E-4,1.980000E-4,1.810000E-4,1.660000E-4,1.530000E-4,1.380000E-4,1.300000E-4,1.230000E-4,1.160000E-4,1.090000E-4,1.020000E-4,9.600000E-5,9.100000E-5,8.500000E-5,8.000000E-5,7.600000E-5,7.100000E-5,6.700000E-5,6.300000E-5,5.900000E-5,5.600000E-5,5.300000E-5,5.000000E-5,4.700000E-5,4.400000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.600000E-5,3.400000E-5,3.200000E-5,3.100000E-5,2.900000E-5,2.800000E-5,2.700000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.900000E-6,9.600000E-6,9.200000E-6,8.900000E-6,8.600000E-6,8.300000E-6,8.100000E-6,7.800000E-6,7.600000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.700000E-6,6.500000E-6,6.300000E-6,6.100000E-6,5.900000E-6,5.800000E-6,5.600000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.300000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7])
self.specific_heat.data = np.array([1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3])
self.conductivity.data = np.array([1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.400000E+4,2.500000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.700000E+4,2.800000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.600000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PGLT"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PHE(PureData):
"""
The Paratherm HE high flash and fire point heat transfer fluid is rated for
an optimal service range of 150 F to 600 F (66 C to 316 C). Engineered for
higher thermal and oxidative stability, it is efficient and cost effective.
Its greater purity allows it to strongly resist degradation while holding
thermal properties and maintaining efficiency. This provides for low
maintenance and solid performance over an extended operating life.
Non-toxic, the HE fluid is safe to use and easy to dispose. It can be
safely combined with spent lubricating oils and recycled locally.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2,5.891500E+2,5.901500E+2,5.911500E+2,5.921500E+2,5.931500E+2,5.941500E+2,5.951500E+2,5.961500E+2,5.971500E+2,5.981500E+2,5.991500E+2,6.001500E+2,6.011500E+2,6.021500E+2,6.031500E+2])
self.density.data = np.array([8.750000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.500000E+2,8.490000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.450000E+2,8.440000E+2,8.430000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.020000E+2,8.010000E+2,8.000000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.840000E+2,7.830000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.860000E+2,6.850000E+2,6.840000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.720000E+2,6.710000E+2,6.700000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.650000E+2,6.640000E+2])
self.viscosity.data = np.array([4.070000E-4,3.770000E-4,3.490000E-4,3.230000E-4,2.990000E-4,2.760000E-4,2.560000E-4,2.370000E-4,2.190000E-4,2.030000E-4,1.880000E-4,1.740000E-4,1.610000E-4,1.490000E-4,1.380000E-4,1.270000E-4,1.180000E-4,1.140000E-4,1.050000E-4,9.700000E-5,9.000000E-5,8.400000E-5,7.800000E-5,7.400000E-5,6.900000E-5,6.500000E-5,6.200000E-5,5.800000E-5,5.500000E-5,5.300000E-5,5.000000E-5,4.800000E-5,4.600000E-5,4.400000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.700000E-5,3.500000E-5,3.400000E-5,3.300000E-5,3.200000E-5,3.100000E-5,3.000000E-5,2.900000E-5,2.800000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.800000E-6,9.500000E-6,9.300000E-6,9.000000E-6,8.800000E-6,8.500000E-6,8.300000E-6,8.100000E-6,7.900000E-6,7.700000E-6,7.500000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.800000E-6,6.600000E-6,6.500000E-6,6.300000E-6,6.200000E-6,6.000000E-6,5.900000E-6,5.800000E-6,5.600000E-6,5.500000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.100000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.600000E-6,3.500000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7])
self.specific_heat.data = np.array([1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3])
self.conductivity.data = np.array([1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PHE"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PHR(PureData):
"""
The Paratherm HR Heat Transfer Fluid is an alkylated-aromatic based heat
transfer fluid formulated for closed loop liquid phase heating to 650 F in
fired heaters and 675 F in waste heat recovery and full convection heaters.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2,5.891500E+2,5.901500E+2,5.911500E+2,5.921500E+2,5.931500E+2,5.941500E+2,5.951500E+2,5.961500E+2,5.971500E+2,5.981500E+2,5.991500E+2,6.001500E+2,6.011500E+2,6.021500E+2,6.031500E+2,6.041500E+2,6.051500E+2,6.061500E+2,6.071500E+2,6.081500E+2,6.091500E+2,6.101500E+2,6.111500E+2,6.121500E+2,6.131500E+2,6.141500E+2,6.151500E+2,6.161500E+2,6.171500E+2,6.181500E+2,6.191500E+2,6.201500E+2,6.211500E+2,6.221500E+2,6.231500E+2,6.241500E+2,6.251500E+2,6.261500E+2,6.271500E+2,6.281500E+2,6.291500E+2,6.301500E+2,6.311500E+2,6.321500E+2,6.331500E+2,6.341500E+2,6.351500E+2,6.361500E+2,6.371500E+2,6.381500E+2,6.391500E+2,6.401500E+2,6.411500E+2,6.421500E+2,6.431500E+2])
self.density.data = np.array([9.870000E+2,9.860000E+2,9.850000E+2,9.850000E+2,9.840000E+2,9.830000E+2,9.820000E+2,9.810000E+2,9.810000E+2,9.800000E+2,9.790000E+2,9.780000E+2,9.780000E+2,9.770000E+2,9.760000E+2,9.750000E+2,9.750000E+2,9.740000E+2,9.730000E+2,9.720000E+2,9.710000E+2,9.710000E+2,9.700000E+2,9.690000E+2,9.680000E+2,9.680000E+2,9.670000E+2,9.660000E+2,9.650000E+2,9.650000E+2,9.640000E+2,9.630000E+2,9.620000E+2,9.610000E+2,9.610000E+2,9.600000E+2,9.590000E+2,9.580000E+2,9.580000E+2,9.570000E+2,9.560000E+2,9.550000E+2,9.550000E+2,9.540000E+2,9.530000E+2,9.520000E+2,9.510000E+2,9.510000E+2,9.500000E+2,9.490000E+2,9.480000E+2,9.480000E+2,9.470000E+2,9.460000E+2,9.450000E+2,9.450000E+2,9.440000E+2,9.430000E+2,9.420000E+2,9.410000E+2,9.410000E+2,9.400000E+2,9.390000E+2,9.380000E+2,9.380000E+2,9.370000E+2,9.360000E+2,9.350000E+2,9.350000E+2,9.340000E+2,9.330000E+2,9.320000E+2,9.310000E+2,9.310000E+2,9.300000E+2,9.290000E+2,9.280000E+2,9.280000E+2,9.270000E+2,9.260000E+2,9.250000E+2,9.250000E+2,9.240000E+2,9.230000E+2,9.220000E+2,9.210000E+2,9.210000E+2,9.200000E+2,9.190000E+2,9.180000E+2,9.180000E+2,9.170000E+2,9.160000E+2,9.150000E+2,9.150000E+2,9.140000E+2,9.130000E+2,9.120000E+2,9.110000E+2,9.110000E+2,9.100000E+2,9.090000E+2,9.080000E+2,9.080000E+2,9.070000E+2,9.060000E+2,9.050000E+2,9.050000E+2,9.040000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.980000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.850000E+2,8.840000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.780000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.750000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.710000E+2,8.710000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.510000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.910000E+2])
self.viscosity.data = np.array([4.180000E-4,3.800000E-4,3.440000E-4,3.120000E-4,2.810000E-4,2.530000E-4,2.280000E-4,2.040000E-4,1.830000E-4,1.640000E-4,1.470000E-4,1.320000E-4,1.180000E-4,1.060000E-4,9.600000E-5,8.600000E-5,7.900000E-5,7.500000E-5,7.100000E-5,6.800000E-5,6.500000E-5,6.200000E-5,5.900000E-5,5.600000E-5,5.300000E-5,5.000000E-5,4.700000E-5,4.500000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.500000E-5,3.300000E-5,3.100000E-5,2.900000E-5,2.800000E-5,2.600000E-5,2.400000E-5,2.300000E-5,2.100000E-5,2.000000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.900000E-6,9.500000E-6,9.200000E-6,8.800000E-6,8.500000E-6,8.300000E-6,8.000000E-6,7.800000E-6,7.600000E-6,7.300000E-6,7.100000E-6,6.800000E-6,6.600000E-6,6.400000E-6,6.200000E-6,6.000000E-6,5.800000E-6,5.700000E-6,5.500000E-6,5.300000E-6,5.200000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.600000E-7,7.500000E-7,7.400000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7])
self.specific_heat.data = np.array([1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3])
self.conductivity.data = np.array([1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.300000E-2])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.500000E+4,2.600000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,2.900000E+4,3.000000E+4,3.100000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.000000E+4,5.100000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.600000E+4,5.800000E+4,5.900000E+4,6.000000E+4,6.100000E+4,6.300000E+4,6.400000E+4,6.600000E+4,6.700000E+4,6.900000E+4,7.000000E+4,7.200000E+4,7.300000E+4,7.500000E+4,7.600000E+4,7.800000E+4,8.000000E+4,8.100000E+4,8.300000E+4,8.500000E+4,8.700000E+4,8.900000E+4,9.000000E+4,9.200000E+4,9.400000E+4,9.600000E+4,9.800000E+4,1.000000E+5,1.020000E+5,1.050000E+5,1.070000E+5,1.090000E+5,1.110000E+5,1.130000E+5,1.160000E+5,1.180000E+5,1.200000E+5,1.230000E+5,1.250000E+5,1.280000E+5,1.300000E+5,1.330000E+5,1.360000E+5,1.380000E+5,1.410000E+5,1.440000E+5,1.470000E+5,1.500000E+5,1.520000E+5,1.550000E+5,1.580000E+5,1.610000E+5,1.650000E+5,1.680000E+5,1.710000E+5,1.740000E+5,1.780000E+5,1.810000E+5,1.840000E+5,1.880000E+5,1.920000E+5,1.950000E+5])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PHR"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PLR(PureData):
"""
The Paratherm LR low-range heat transfer fluid is rated for service from
-40 F to 400 F (-40 C to 204 C). Non-aromatic, this non-toxic liquid is safe
to use and is easy to dispose. Tough and durable, the Paratherm LR fluid is
designed for a broad variety of cooling and heating applications. It is
engineered to provide extended performance under rugged operating
conditions, yet is easy and safe to handle.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([1.881500E+2,1.891500E+2,1.901500E+2,1.911500E+2,1.921500E+2,1.931500E+2,1.941500E+2,1.951500E+2,1.961500E+2,1.971500E+2,1.981500E+2,1.991500E+2,2.001500E+2,2.011500E+2,2.021500E+2,2.031500E+2,2.041500E+2,2.051500E+2,2.061500E+2,2.071500E+2,2.081500E+2,2.091500E+2,2.101500E+2,2.111500E+2,2.121500E+2,2.131500E+2,2.141500E+2,2.151500E+2,2.161500E+2,2.171500E+2,2.181500E+2,2.191500E+2,2.201500E+2,2.211500E+2,2.221500E+2,2.231500E+2,2.241500E+2,2.251500E+2,2.261500E+2,2.271500E+2,2.281500E+2,2.291500E+2,2.301500E+2,2.311500E+2,2.321500E+2,2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2])
self.density.data = np.array([8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.820000E+2,6.820000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.710000E+2,6.710000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.650000E+2,6.640000E+2,6.630000E+2,6.620000E+2,6.620000E+2,6.610000E+2,6.600000E+2,6.600000E+2,6.590000E+2,6.580000E+2,6.570000E+2,6.570000E+2,6.560000E+2,6.550000E+2,6.540000E+2,6.540000E+2,6.530000E+2,6.520000E+2,6.510000E+2,6.510000E+2,6.500000E+2,6.490000E+2,6.490000E+2,6.480000E+2,6.470000E+2,6.460000E+2,6.460000E+2,6.450000E+2,6.440000E+2,6.430000E+2,6.430000E+2,6.420000E+2,6.410000E+2,6.400000E+2,6.400000E+2,6.390000E+2,6.380000E+2,6.370000E+2,6.370000E+2,6.360000E+2,6.350000E+2,6.350000E+2,6.340000E+2,6.330000E+2,6.320000E+2,6.320000E+2,6.310000E+2,6.300000E+2,6.290000E+2,6.290000E+2,6.280000E+2,6.270000E+2,6.260000E+2,6.260000E+2,6.250000E+2,6.240000E+2,6.230000E+2,6.230000E+2,6.220000E+2,6.210000E+2,6.210000E+2,6.200000E+2,6.190000E+2,6.180000E+2,6.180000E+2,6.170000E+2,6.160000E+2,6.150000E+2,6.150000E+2,6.140000E+2,6.130000E+2,6.120000E+2,6.120000E+2,6.110000E+2,6.100000E+2,6.090000E+2,6.090000E+2,6.080000E+2,6.070000E+2])
self.viscosity.data = np.array([5.020000E-4,4.540000E-4,4.100000E-4,3.700000E-4,3.350000E-4,3.020000E-4,2.730000E-4,2.470000E-4,2.230000E-4,2.010000E-4,1.820000E-4,1.640000E-4,1.490000E-4,1.340000E-4,1.210000E-4,1.100000E-4,9.900000E-5,8.900000E-5,8.100000E-5,7.300000E-5,6.600000E-5,6.000000E-5,5.400000E-5,4.900000E-5,4.400000E-5,4.000000E-5,3.600000E-5,3.200000E-5,2.900000E-5,2.600000E-5,2.400000E-5,2.200000E-5,2.000000E-5,1.800000E-5,2.200000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.600000E-6,9.200000E-6,8.800000E-6,8.400000E-6,8.000000E-6,7.700000E-6,7.400000E-6,7.100000E-6,6.800000E-6,6.500000E-6,6.300000E-6,6.000000E-6,5.800000E-6,5.600000E-6,5.400000E-6,5.200000E-6,5.000000E-6,4.800000E-6,4.700000E-6,4.500000E-6,4.400000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.100000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.800000E-7,9.700000E-7,9.600000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.100000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.200000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.000000E-7,4.900000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.800000E-7])
self.specific_heat.data = np.array([1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3])
self.conductivity.data = np.array([1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.700000E+4,4.800000E+4,5.000000E+4,5.100000E+4,5.300000E+4,5.500000E+4,5.700000E+4,6.000000E+4,6.200000E+4,6.400000E+4,6.600000E+4,6.800000E+4,7.000000E+4,7.200000E+4,7.400000E+4,7.600000E+4,7.800000E+4,8.000000E+4,8.200000E+4,8.400000E+4,8.600000E+4,8.800000E+4,8.900000E+4,9.100000E+4,9.300000E+4,9.500000E+4,9.700000E+4,9.800000E+4,1.000000E+5,1.020000E+5,1.030000E+5,1.050000E+5,1.070000E+5,1.080000E+5,1.100000E+5,1.110000E+5,1.130000E+5,1.150000E+5,1.160000E+5,1.180000E+5,1.190000E+5,1.210000E+5,1.220000E+5,1.230000E+5,1.250000E+5,1.260000E+5,1.270000E+5,1.290000E+5,1.300000E+5,1.310000E+5,1.330000E+5,1.340000E+5,1.350000E+5,1.360000E+5,1.380000E+5,1.390000E+5,1.400000E+5])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PLR"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PMR(PureData):
"""
Paratherm MR is a food grade (NSF Certified) single fluid heating and
cooling from 36 F to 550 F. Eliminates design and maintenance problems
caused by steam/chilled water temperature control systems. Quick low-
temperature start-ups.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
self.density.data = np.array([8.680000E+2,8.670000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.570000E+2,8.550000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.530000E+2,7.530000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.390000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.190000E+2,7.180000E+2,7.170000E+2,7.170000E+2,7.160000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.940000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.910000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.890000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.870000E+2,6.870000E+2,6.860000E+2,6.860000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.840000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.820000E+2,6.820000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.800000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.780000E+2,6.780000E+2,6.780000E+2,6.770000E+2,6.770000E+2,6.770000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2])
self.viscosity.data = np.array([3.860000E-4,3.150000E-4,2.730000E-4,2.440000E-4,2.210000E-4,2.030000E-4,1.870000E-4,1.730000E-4,1.610000E-4,1.500000E-4,1.410000E-4,1.320000E-4,1.240000E-4,1.160000E-4,1.090000E-4,1.020000E-4,9.600000E-5,9.000000E-5,8.500000E-5,8.000000E-5,7.500000E-5,7.000000E-5,6.500000E-5,6.100000E-5,5.700000E-5,5.300000E-5,4.900000E-5,4.500000E-5,4.200000E-5,3.800000E-5,3.500000E-5,3.200000E-5,2.800000E-5,2.500000E-5,2.800000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.600000E-6,9.200000E-6,8.900000E-6,8.500000E-6,8.200000E-6,8.000000E-6,7.700000E-6,7.500000E-6,7.300000E-6,7.100000E-6,7.000000E-6,6.800000E-6,6.600000E-6,6.400000E-6,6.200000E-6,6.000000E-6,5.800000E-6,5.700000E-6,5.500000E-6,5.300000E-6,5.200000E-6,5.100000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7])
self.specific_heat.data = np.array([2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3])
self.conductivity.data = np.array([1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.400000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.100000E+4,5.200000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.700000E+4,5.800000E+4,5.900000E+4,6.100000E+4,6.200000E+4,6.400000E+4,6.500000E+4,6.700000E+4,6.800000E+4,7.000000E+4,7.100000E+4,7.300000E+4,7.400000E+4,7.600000E+4,7.800000E+4])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PMR"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()
class PNF(PureData):
"""
The Paratherm NF heat transfer fluid is highly efficient, thermally stable
and cost-effective. Completely non-toxic, it is exceptionally safe to use
and is easy to dispose. Used fluid can be safely combined with spent
lubricating oils and recycled locally (EPA, citation 57FR21524). The NF
fluid is specified in a broad variety of applications, world wide. It is
tough and durable with a proven record of success under demanding
conditions, yet is easy and safe to handle.
"""
def __init__(self):
PureData.__init__(self)
self.density.source = self.density.SOURCE_DATA
self.viscosity.source = self.viscosity.SOURCE_DATA
self.specific_heat.source = self.specific_heat.SOURCE_DATA
self.conductivity.source = self.conductivity.SOURCE_DATA
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
self.temperature.data = np.array([2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
self.density.data = np.array([9.040000E+2,9.030000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.890000E+2,8.880000E+2,8.870000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.850000E+2,8.840000E+2,8.830000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.790000E+2,8.780000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.660000E+2,8.650000E+2,8.640000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.620000E+2,8.610000E+2,8.600000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.000000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.910000E+2,6.900000E+2,6.890000E+2,6.890000E+2])
self.viscosity.data = np.array([4.760000E-4,4.380000E-4,4.040000E-4,3.720000E-4,3.430000E-4,3.160000E-4,2.910000E-4,2.680000E-4,2.470000E-4,2.280000E-4,2.100000E-4,1.940000E-4,1.780000E-4,1.640000E-4,1.510000E-4,1.400000E-4,1.290000E-4,1.180000E-4,1.090000E-4,1.010000E-4,9.300000E-5,8.600000E-5,8.000000E-5,7.400000E-5,6.900000E-5,6.400000E-5,5.900000E-5,5.500000E-5,5.100000E-5,4.800000E-5,4.500000E-5,4.200000E-5,3.900000E-5,3.700000E-5,3.400000E-5,3.200000E-5,3.100000E-5,2.900000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.200000E-5,2.100000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.700000E-6,9.400000E-6,9.100000E-6,8.800000E-6,8.500000E-6,8.200000E-6,8.000000E-6,7.800000E-6,7.500000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.700000E-6,6.500000E-6,6.300000E-6,6.200000E-6,6.000000E-6,5.900000E-6,5.700000E-6,5.600000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.100000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.900000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.300000E-7,6.200000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.000000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.000000E-7,2.000000E-7,2.000000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.800000E-7,1.800000E-7,1.800000E-7,1.800000E-7,1.700000E-7,1.700000E-7,1.700000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.500000E-7,1.500000E-7,1.500000E-7,1.500000E-7])
self.specific_heat.data = np.array([1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3])
self.conductivity.data = np.array([1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2])
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.400000E+4,1.400000E+4])
self.Tmin = np.min(self.temperature.data)
self.Tmax = np.max(self.temperature.data)
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
self.name = "PNF"
self.description = "Paratherm "+ self.name[1:]
self.reference = "Paratherm2013"
self.reshapeAll()

View File

@@ -295,104 +295,104 @@ class SecCoolSolutionData(DigitalData):
"""
print("Loading SecCool fluids: ", end="")
sec = []
sec += [SecCoolSolutionData(sFile='Antifrogen KF' ,sFolder='xVolume',name='AKF',desc='Antifrogen KF, Potassium Formate' ,ref='Clariant GmbH Jan. 2000, SecCool software')]
sec += [SecCoolSolutionData(sFile='Antifrogen KF' ,sFolder='xVolume',name='AKF',desc='Antifrogen KF, Potassium Formate' ,ref='Clariant2000,Skovrup2013')]
print("{0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Antifrogen L' ,sFolder='xVolume',name='AL' ,desc='Antifrogen L, Propylene Glycol' ,ref='Clariant GmbH Jan. 2000, SecCool software')]
sec += [SecCoolSolutionData(sFile='Antifrogen L' ,sFolder='xVolume',name='AL' ,desc='Antifrogen L, Propylene Glycol' ,ref='Clariant2000,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Antifrogen N' ,sFolder='xVolume',name='AN' ,desc='Antifrogen N, Ethylene Glycol' ,ref='Clariant GmbH Jan. 2000, SecCool software')]
sec += [SecCoolSolutionData(sFile='Antifrogen N' ,sFolder='xVolume',name='AN' ,desc='Antifrogen N, Ethylene Glycol' ,ref='Clariant2000,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='ASHRAE, Ethylene Glycol' ,sFolder='xVolume',name='AEG',desc='ASHRAE, Ethylene Glycol' ,ref='ASHRAE Fundamentals Handbook 2001, SecCool software')]
sec += [SecCoolSolutionData(sFile='ASHRAE, Ethylene Glycol' ,sFolder='xVolume',name='AEG',desc='ASHRAE, Ethylene Glycol' ,ref='ASHRAE2001,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='ASHRAE, Propylene Glycol',sFolder='xVolume',name='APG',desc='ASHRAE, Propylene Glycol' ,ref='ASHRAE Fundamentals Handbook 2001, SecCool software')]
sec += [SecCoolSolutionData(sFile='ASHRAE, Propylene Glycol',sFolder='xVolume',name='APG',desc='ASHRAE, Propylene Glycol' ,ref='ASHRAE2001,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Glykosol N' ,sFolder='xVolume',name='GKN',desc='Glykosol N, Ethylene Glycol' ,ref='pro KUEHLSOLE GmbH, SecCool software')]
sec += [SecCoolSolutionData(sFile='Glykosol N' ,sFolder='xVolume',name='GKN',desc='Glykosol N, Ethylene Glycol' ,ref='PKS2005,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Pekasol 2000' ,sFolder='xVolume',name='PK2',desc='Pekasol 2000, Potassium acetate/formate',ref='pro KUEHLSOLE GmbH, SecCool software')]
sec += [SecCoolSolutionData(sFile='Pekasol 2000' ,sFolder='xVolume',name='PK2',desc='Pekasol 2000, Potassium acetate/formate',ref='PKS2005,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Pekasol L' ,sFolder='xVolume',name='PKL',desc='Pekasol L, Propylene Glycol' ,ref='pro KUEHLSOLE GmbH, SecCool software')]
sec += [SecCoolSolutionData(sFile='Pekasol L' ,sFolder='xVolume',name='PKL',desc='Pekasol L, Propylene Glycol' ,ref='PKS2005,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec AC' ,sFolder='xVolume',name='ZAC',desc='Zitrec AC, Corrosion Inhibitor' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec AC' ,sFolder='xVolume',name='ZAC',desc='Zitrec AC, Corrosion Inhibitor' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec FC' ,sFolder='xVolume',name='ZFC',desc='Zitrec FC, Propylene Glycol' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec FC' ,sFolder='xVolume',name='ZFC',desc='Zitrec FC, Propylene Glycol' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec LC' ,sFolder='xVolume',name='ZLC',desc='Zitrec LC, Propylene Glycol' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec LC' ,sFolder='xVolume',name='ZLC',desc='Zitrec LC, Propylene Glycol' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec MC' ,sFolder='xVolume',name='ZMC',desc='Zitrec MC, Ethylene Glycol' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec MC' ,sFolder='xVolume',name='ZMC',desc='Zitrec MC, Ethylene Glycol' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec M' ,sFolder='xVolume',name='ZM' ,desc='Zitrec M, Ethylene Glycol' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec M' ,sFolder='xVolume',name='ZM' ,desc='Zitrec M, Ethylene Glycol' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Ammonia' ,sFolder='xMass',name='MAM2',desc='Melinder, Ammonia' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Ammonia' ,sFolder='xMass',name='MAM2',desc='Melinder, Ammonia' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Calcium Cloride' ,sFolder='xMass',name='MCA2',desc='Melinder, Calcium Chloride' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Calcium Cloride' ,sFolder='xMass',name='MCA2',desc='Melinder, Calcium Chloride' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Ethanol' ,sFolder='xMass',name='MEA2',desc='Melinder, Ethanol' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Ethanol' ,sFolder='xMass',name='MEA2',desc='Melinder, Ethanol' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Ethylene glycol' ,sFolder='xMass',name='MEG2',desc='Melinder, Ethylene Glycol' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Ethylene glycol' ,sFolder='xMass',name='MEG2',desc='Melinder, Ethylene Glycol' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Glycerol' ,sFolder='xMass',name='MGL2',desc='Melinder, Glycerol' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Glycerol' ,sFolder='xMass',name='MGL2',desc='Melinder, Glycerol' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Magnesium Chloride' ,sFolder='xMass',name='MMG2',desc='Melinder, Magnesium Chloride' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Magnesium Chloride' ,sFolder='xMass',name='MMG2',desc='Melinder, Magnesium Chloride' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Methanol' ,sFolder='xMass',name='MMA2',desc='Melinder, Methanol' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Methanol' ,sFolder='xMass',name='MMA2',desc='Melinder, Methanol' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Potassium Acetate' ,sFolder='xMass',name='MKA2',desc='Melinder, Potassium Acetate' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Potassium Acetate' ,sFolder='xMass',name='MKA2',desc='Melinder, Potassium Acetate' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Potassium Carbonate',sFolder='xMass',name='MKC2',desc='Melinder, Potassium Carbonate',ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Potassium Carbonate',sFolder='xMass',name='MKC2',desc='Melinder, Potassium Carbonate',ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Propylene Glycol' ,sFolder='xMass',name='MPG2',desc='Melinder, Propylene Glycol' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Propylene Glycol' ,sFolder='xMass',name='MPG2',desc='Melinder, Propylene Glycol' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Melinder, Sodium Chloride' ,sFolder='xMass',name='MNA2',desc='Melinder, Sodium Chloride' ,ref='Melinder-BOOK-2010, SecCool software')]
sec += [SecCoolSolutionData(sFile='Melinder, Sodium Chloride' ,sFolder='xMass',name='MNA2',desc='Melinder, Sodium Chloride' ,ref='Melinder2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='VDI, Calcium Cloride' ,sFolder='xMass',name='VCA' ,desc='VDI, Calcium Cloride' ,ref='VDI Waermeatlas 9th Edition 2002, SecCool software')]
sec += [SecCoolSolutionData(sFile='VDI, Calcium Cloride' ,sFolder='xMass',name='VCA' ,desc='VDI, Calcium Cloride' ,ref='Preisegger2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='VDI, Magnesium Chloride' ,sFolder='xMass',name='VMG' ,desc='VDI, Magnesium Chloride' ,ref='VDI Waermeatlas 9th Edition 2002, SecCool software')]
sec += [SecCoolSolutionData(sFile='VDI, Magnesium Chloride' ,sFolder='xMass',name='VMG' ,desc='VDI, Magnesium Chloride' ,ref='Preisegger2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='VDI, Methanol' ,sFolder='xMass',name='VMA' ,desc='VDI, Methanol' ,ref='VDI Waermeatlas 9th Edition 2002, SecCool software')]
sec += [SecCoolSolutionData(sFile='VDI, Methanol' ,sFolder='xMass',name='VMA' ,desc='VDI, Methanol' ,ref='Preisegger2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='VDI, Potassium Carbonate' ,sFolder='xMass',name='VKC' ,desc='VDI, Potassium Carbonate' ,ref='VDI Waermeatlas 9th Edition 2002, SecCool software')]
sec += [SecCoolSolutionData(sFile='VDI, Potassium Carbonate' ,sFolder='xMass',name='VKC' ,desc='VDI, Potassium Carbonate' ,ref='Preisegger2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='VDI, Sodium Chloride' ,sFolder='xMass',name='VNA' ,desc='VDI, Sodium Chloride' ,ref='VDI Waermeatlas 9th Edition 2002, SecCool software')]
sec += [SecCoolSolutionData(sFile='VDI, Sodium Chloride' ,sFolder='xMass',name='VNA' ,desc='VDI, Sodium Chloride' ,ref='Preisegger2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='HFE-7100' ,sFolder='xPure',name='HFE2' ,desc='HFE-7100, Hydrofluoroether' ,ref='3M Novec, SecCool software')]
sec += [SecCoolSolutionData(sFile='HFE-7100' ,sFolder='xPure',name='HFE2' ,desc='HFE-7100, Hydrofluoroether' ,ref='3M2007,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='NBS, Water' ,sFolder='xPure',name='NBS' ,desc='NBS, Water' ,ref='Properties of Water and Steam in SI-Units, 2nd Revised and Updated Printing, Springer 1979, pp. 175 ff., SecCool software')]
sec += [SecCoolSolutionData(sFile='NBS, Water' ,sFolder='xPure',name='NBS' ,desc='NBS, Water' ,ref='Schmidt1979,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Paracryol' ,sFolder='xPure',name='PCL' ,desc='Paracryol, Aliphatic Hydrocarbon' ,ref='Sulzer Chemtech AG, SecCool software')]
sec += [SecCoolSolutionData(sFile='Paracryol' ,sFolder='xPure',name='PCL' ,desc='Paracryol, Aliphatic Hydrocarbon' ,ref='Sulzer1999,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Paratherm NF' ,sFolder='xPure',name='PNF' ,desc='Paratherm NF, Hydrotreated mineral oil' ,ref='Paratherm Ltd, SecCool software')]
sec += [SecCoolSolutionData(sFile='Paratherm NF' ,sFolder='xPure',name='PNF2' ,desc='Paratherm NF, Hydrotreated mineral oil' ,ref='Paratherm2013,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.10' ,sFolder='xPure',name='TY10',desc='Tyfoxit 1.10, Potassium Acetate' ,ref='Tyforop Chemie Gmbh - Technical information 09/99, SecCool software')]
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.10' ,sFolder='xPure',name='TY10',desc='Tyfoxit 1.10, Potassium Acetate' ,ref='Tyfoprop1999,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.15' ,sFolder='xPure',name='TY15',desc='Tyfoxit 1.15, Potassium Acetate' ,ref='Tyforop Chemie Gmbh - Technical information 09/99, SecCool software')]
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.15' ,sFolder='xPure',name='TY15',desc='Tyfoxit 1.15, Potassium Acetate' ,ref='Tyfoprop1999,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.20' ,sFolder='xPure',name='TY20',desc='Tyfoxit 1.20, Potassium Acetate' ,ref='Tyforop Chemie Gmbh - Technical information 09/99, SecCool software')]
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.20' ,sFolder='xPure',name='TY20',desc='Tyfoxit 1.20, Potassium Acetate' ,ref='Tyfoprop1999,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.24' ,sFolder='xPure',name='TY24',desc='Tyfoxit 1.24, Potassium Acetate' ,ref='Tyforop Chemie Gmbh - Technical information 09/99, SecCool software')]
sec += [SecCoolSolutionData(sFile='Tyfoxit 1.24' ,sFolder='xPure',name='TY24',desc='Tyfoxit 1.24, Potassium Acetate' ,ref='Tyfoprop1999,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec S10' ,sFolder='xPure',name='ZS10',desc='Zitrec S10, Potassium formate/Sodium propionate' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec S10' ,sFolder='xPure',name='ZS10',desc='Zitrec S10, Potassium formate/Sodium propionate' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec S25' ,sFolder='xPure',name='ZS25',desc='Zitrec S25, Potassium formate/Sodium propionate' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec S25' ,sFolder='xPure',name='ZS25',desc='Zitrec S25, Potassium formate/Sodium propionate' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec S40' ,sFolder='xPure',name='ZS40',desc='Zitrec S40, Potassium formate/Sodium propionate' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec S40' ,sFolder='xPure',name='ZS40',desc='Zitrec S40, Potassium formate/Sodium propionate' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec S45' ,sFolder='xPure',name='ZS45',desc='Zitrec S45, Potassium formate/Sodium propionate' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec S45' ,sFolder='xPure',name='ZS45',desc='Zitrec S45, Potassium formate/Sodium propionate' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Zitrec S55' ,sFolder='xPure',name='ZS55',desc='Zitrec S55, Potassium formate/Sodium propionate' ,ref='Arteco, SecCool software')]
sec += [SecCoolSolutionData(sFile='Zitrec S55' ,sFolder='xPure',name='ZS55',desc='Zitrec S55, Potassium formate/Sodium propionate' ,ref='Arteco2010,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Syltherm XLT' ,sFolder='xPure',name='XLT2',desc='Syltherm XLT, Polydimethylsiloxan' ,ref='Dow Chemicals, SecCool software')]
sec += [SecCoolSolutionData(sFile='Syltherm XLT' ,sFolder='xPure',name='XLT2',desc='Syltherm XLT, Polydimethylsiloxan' ,ref='Dow1997,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Dowtherm J' ,sFolder='xPure',name='DowJ2',desc='Dowtherm J, Diethylbenzene mixture' ,ref='Dow Chemicals, SecCool software')]
sec += [SecCoolSolutionData(sFile='Dowtherm J' ,sFolder='xPure',name='DowJ2',desc='Dowtherm J, Diethylbenzene mixture' ,ref='Dow1997,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolSolutionData(sFile='Dowtherm Q' ,sFolder='xPure',name='DowQ2',desc='Dowtherm Q, Diphenylethane/alkylated aromatics' ,ref='Dow Chemicals, SecCool software')]
sec += [SecCoolSolutionData(sFile='Dowtherm Q' ,sFolder='xPure',name='DowQ2',desc='Dowtherm Q, Diphenylethane/alkylated aromatics' ,ref='Dow1997,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolIceData(sFile='IceEA' ,sFolder='xMass',name='IceEA',desc='Ice slurry with Ethanol' ,ref='Danish Technological Institute, SecCool software')]
sec += [SecCoolIceData(sFile='IceEA' ,sFolder='xMass',name='IceEA',desc='Ice slurry with Ethanol' ,ref='Kauffeld2001,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolIceData(sFile='IceNA' ,sFolder='xMass',name='IceNA',desc='Ice slurry with NaCl' ,ref='Danish Technological Institute, SecCool software')]
sec += [SecCoolIceData(sFile='IceNA' ,sFolder='xMass',name='IceNA',desc='Ice slurry with NaCl' ,ref='Kauffeld2001,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [SecCoolIceData(sFile='IcePG' ,sFolder='xMass',name='IcePG',desc='Ice slurry with Propylene Glycol' ,ref='Danish Technological Institute, SecCool software')]
sec += [SecCoolIceData(sFile='IcePG' ,sFolder='xMass',name='IcePG',desc='Ice slurry with Propylene Glycol' ,ref='Kauffeld2001,Skovrup2013')]
print(", {0}".format(sec[-1].name), end="")
sec += [ThermogenVP1869()]
@@ -421,7 +421,7 @@ class SecCoolIceData(SecCoolSolutionData):
A base class that can be fed with a fluid ID from SecCool
to read data files sitting in data/SecCool/xTables.
"""
def __init__(self,sFile=None,sFolder=None,name=None,desc=None,ref='Danish Technological Institute, SecCool software'):
def __init__(self,sFile=None,sFolder=None,name=None,desc=None,ref='Danish Technological Institute,Skovrup2013'):
SecCoolSolutionData.__init__(self,sFile=sFile,sFolder=sFolder,name=name,desc=desc,ref=ref)
#self.density.xData,self.density.yData,self.density.data = self.getArray(dataID="Rho")
@@ -520,7 +520,7 @@ class ThermogenVP1869(PureData,DigitalData):
PureData.__init__(self)
self.name = "TVP1869"
self.description = "Thermogen VP 1869"
self.reference = "Hoechst, SecCool software"
self.reference = "Hoechst1995,Skovrup2013"
self.Tmax = 20 + 273.15
self.Tmin = -80 + 273.15
@@ -569,7 +569,7 @@ class Freezium(DigitalData):
self.name = "FRE"
self.description = "Freezium, Potassium Formate"
self.reference = "Kemira Chemicals OY, SecCool software"
self.reference = "Kemira1998,Skovrup2013"
self.Tmin = -40 + 273.00
self.Tmax = +40 + 273.00
@@ -668,7 +668,7 @@ class AS10(PureData,DigitalData):
PureData.__init__(self)
self.name = "AS10"
self.description = "Aspen Temper -10, Potassium acetate/formate"
self.reference = "Aspen Petroleum AB, SecCool software"
self.reference = "Aspen2001,Skovrup2013"
self.Tmax = 30 + 273.15
self.Tmin = -10 + 273.15
@@ -704,7 +704,7 @@ class AS20(PureData,DigitalData):
PureData.__init__(self)
self.name = "AS20"
self.description = "Aspen Temper -20, Potassium acetate/formate"
self.reference = "Aspen Petroleum AB, SecCool software"
self.reference = "Aspen2001,Skovrup2013"
self.Tmax = 30 + 273.15
self.Tmin = -20 + 273.15
@@ -752,7 +752,7 @@ class AS30(PureData,DigitalData):
PureData.__init__(self)
self.name = "AS30"
self.description = "Aspen Temper -30, Potassium acetate/formate"
self.reference = "Aspen Petroleum AB, SecCool software"
self.reference = "Aspen2001,Skovrup2013"
self.Tmax = 30 + 273.15
self.Tmin = -30 + 273.15
@@ -800,7 +800,7 @@ class AS40(PureData,DigitalData):
PureData.__init__(self)
self.name = "AS40"
self.description = "Aspen Temper -40, Potassium acetate/formate"
self.reference = "Aspen Petroleum AB, SecCool software"
self.reference = "Aspen2001,Skovrup2013"
self.Tmax = 30 + 273.15
self.Tmin = -40 + 273.15
@@ -847,7 +847,7 @@ class AS55(PureData,DigitalData):
PureData.__init__(self)
self.name = "AS55"
self.description = "Aspen Temper -55, Potassium acetate/formate"
self.reference = "Aspen Petroleum AB, SecCool software"
self.reference = "Aspen2001,Skovrup2013"
self.Tmax = 30 + 273.15
self.Tmin = -55 + 273.15

View File

@@ -11,7 +11,7 @@ class LiBrData(SolutionData):
def __init__(self):
SolutionData.__init__(self)
self.name = "LiBr"
self.description = "Lithium-Bromide solution from Patek2006"
self.description = "Aqueous lithium-bromide solution "
self.reference = "Patek2006"
self.temperature.data = np.array([2.73000e+02, 2.84947e+02, 2.96895e+02, 3.08842e+02, 3.20789e+02, 3.32737e+02, 3.44684e+02, 3.56632e+02, 3.68579e+02, 3.80526e+02, 3.92474e+02, 4.04421e+02, 4.16368e+02, 4.28316e+02, 4.40263e+02, 4.52211e+02, 4.64158e+02, 4.76105e+02, 4.88053e+02, 5.00000e+02]) # Kelvin

View File

@@ -1,3 +1,5 @@
#!/usr/bin/env python
# -*- coding: utf8 -*-
from __future__ import division, print_function
import numpy as np
@@ -10,9 +12,73 @@ from matplotlib.patches import Rectangle
from matplotlib.ticker import MaxNLocator
from matplotlib.backends.backend_pdf import PdfPages
import itertools
from datetime import datetime
import matplotlib
import csv
from CoolProp.BibtexParser import BibTeXerClass
from warnings import warn
# See: https://docs.python.org/2/library/csv.html#csv-examples
import csv, codecs, cStringIO
class UTF8Recoder:
"""
Iterator that reads an encoded stream and reencodes the input to UTF-8
"""
def __init__(self, f, encoding):
self.reader = codecs.getreader(encoding)(f)
def __iter__(self):
return self
def next(self):
return self.reader.next().encode("utf-8")
class UnicodeReader:
"""
A CSV reader which will iterate over lines in the CSV file "f",
which is encoded in the given encoding.
"""
def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
f = UTF8Recoder(f, encoding)
self.reader = csv.reader(f, dialect=dialect, **kwds)
def next(self):
row = self.reader.next()
return [unicode(s, "utf-8") for s in row]
def __iter__(self):
return self
class UnicodeWriter:
"""
A CSV writer which will write rows to CSV file "f",
which is encoded in the given encoding.
"""
def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
# Redirect output to a queue
self.queue = cStringIO.StringIO()
self.writer = csv.writer(self.queue, dialect=dialect, **kwds)
self.stream = f
self.encoder = codecs.getincrementalencoder(encoding)()
def writerow(self, row):
self.writer.writerow([s.encode("utf-8") for s in row])
# Fetch UTF-8 output from the queue ...
data = self.queue.getvalue()
data = data.decode("utf-8")
# ... and reencode it into the target encoding
data = self.encoder.encode(data)
# write to the target stream
self.stream.write(data)
# empty queue
self.queue.truncate(0)
def writerows(self, rows):
for row in rows:
self.writerow(row)
class SolutionDataWriter(object):
"""
@@ -22,7 +88,8 @@ class SolutionDataWriter(object):
information came from.
"""
def __init__(self):
pass
bibFile = os.path.join(os.path.dirname(__file__),'../../../Web/fluid_properties/Incompressibles.bib')
self.bibtexer = BibTeXerClass(bibFile)
def fitAll(self, fluidObject=SolutionData()):
@@ -660,6 +727,9 @@ class SolutionDataWriter(object):
axVal.plot(pFree, zFree, alpha=0.25, ls=':', color=fitFormatter["color"])
if not zError is None and not axErr is None:
#formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
#axErr.yaxis.set_major_formatter(formatter)
#axErr.yaxis.get_major_formatter().useOffset=False
axErr.plot(pData, zError, label='error' , **errorFormatter)
elif not axErr is None:
@@ -732,7 +802,27 @@ class SolutionDataWriter(object):
#myAnnotate('Name: ',solObj.name,x=x,y=y); x += .0; y -= dy
myAnnotate('Description: ',solObj.description,x=x,y=y); x += .0; y -= dy
myAnnotate('Source: ',solObj.reference,x=x,y=y); x += .0; y -= dy
# TODO: Debug bibtexer
refs = solObj.reference.split(",")
maxLength = 75
for i in range(len(refs)):
refs[i] = refs[i].strip()
try:
refs[i] = self.bibtexer.getEntry(key=refs[i], fmt='plaintext').strip()
except Exception as e:
warn("Your string \"{0}\"was not a valid Bibtex key, I will use it directly: {1}".format(refs[i],e))
pass
if len(refs[i])>maxLength:
refs[i] = refs[i][0:maxLength-3]+u'...'
if i==0:
myAnnotate('Source: ',refs[i],x=x,y=y); x += .0 #; y -= 2*dy
elif i==1:
myAnnotate( ' ',refs[i],x=x,y=y-dy); x += .0 #; y -= 2*dy
y -= 2*dy
yRestart = y
myAnnotate('Temperature: ',u'{0} \u00B0C to {1} \u00B0C'.format(solObj.Tmin-273.15, solObj.Tmax-273.15),x=x,y=y); x += .0; y -= dy
conc = False
if solObj.xid==solObj.ifrac_mass: conc=True
@@ -755,7 +845,7 @@ class SolutionDataWriter(object):
myAnnotate('Spec. Heat: ','no information',x=x,y=y)
x += .0; y -= dy
x = xStart + dx; y = yStart-dy-dy
x = xStart + dx; y = yRestart
if solObj.conductivity.source!=solObj.conductivity.SOURCE_NOT_SET:
myAnnotate('Th. Cond.: ',u'{0} to {1} {2}'.format(solObj.conductivity.source, solObj.conductivity.type, solObj.conductivity.coeffs.shape),x=x,y=y)
else:
@@ -968,7 +1058,7 @@ class SolutionDataWriter(object):
table_axis.legend(
legVal, legKey,
bbox_to_anchor=(0.0, -0.025, 1., -0.025),
bbox_to_anchor=(0.0, -0.03, 1., -0.03),
ncol=len(legKey), mode="expand", borderaxespad=0.,
numpoints=1)
#table_axis.legend(handles, labels, bbox_to_anchor=(0.0, -0.1), loc=2, ncol=3)
@@ -1101,26 +1191,26 @@ class SolutionDataWriter(object):
return rst
def table_div(self, max_cols, header_flag=1, indent=2):
out = ""
out = u""
for i in range(indent):
out += " "
out += u" "
if header_flag == 1:
style = "="
style = u"="
else:
style = "-"
style = u"-"
for max_col in max_cols:
out += max_col * style + " "
out += "\n"
out += max_col * style + u" "
out += u"\n"
return out
def normalize_row(self, row, max_cols, indent=2):
r = ""
r = u""
for i in range(indent):
r += " "
r += u" "
for i, max_col in enumerate(max_cols):
r += row[i] + (max_col - len(row[i]) + 1) * " "
return r + "\n"
r += row[i] + (max_col - len(row[i]) + 1) * u" "
return r + u"\n"
def writeTextToFile(self, path,text):
@@ -1128,19 +1218,21 @@ class SolutionDataWriter(object):
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
with open(path, 'w') as f:
f.write(text)
f.write(text.encode('utf-8'))
return True
def writeTxtTableToFile(self, path,table,head=""):
if not head == "":
return self.writeTextToFile(path+".txt", head+"\n\n"+self.make_table(table))
def writeTxtTableToFile(self, path,table,head=u""):
if not head == u"":
return self.writeTextToFile(path+".txt", head+u"\n\n"+self.make_table(table))
return self.writeTextToFile(path+".txt", self.make_table(table))
def writeCsvTableToFile(self, path,table):
if not os.path.exists(os.path.dirname(path+".csv")):
os.makedirs(os.path.dirname(path+".csv"))
with open(path+".csv", 'wb') as f:
writer = csv.writer(f)
#writer = csv.writer(f)
writer = UnicodeWriter(f)
writer.writerows(table)
return True
@@ -1156,6 +1248,10 @@ class SolutionDataWriter(object):
reportFile = os.path.join("..","_static","fluid_properties","incompressible","report","{0}_fitreport.pdf".format(name))
return self.d(name,reportFile)
def getCitation(self, keys):
return u":cite:`{0}`".format(keys)
def checkForNumber(self, number):
try:
n = float(number)
@@ -1174,20 +1270,20 @@ class SolutionDataWriter(object):
# link = "{0}".format(text)
# pass
# TODO: Fix this!
link = ":download:`{0}<{1}>`".format(text,target)
link = u":download:`{0}<{1}>`".format(text,target)
return link
def m(self, math):
text = ":math:`{0}`".format(math)
text = u":math:`{0}`".format(math)
return text
def c(self, number):
#text = "{0:5.2f} |degC|".format(self.checkForNumber(number)-273.15)
text = "{0:5.2f}".format(self.checkForNumber(number)-273.15)
text = u"{0:5.2f}".format(self.checkForNumber(number)-273.15)
return text
def x(self, number):
text = "{0:3.2f}".format(self.checkForNumber(number))
text = u"{0:3.2f}".format(self.checkForNumber(number))
return text
@@ -1200,14 +1296,20 @@ class SolutionDataWriter(object):
if np.any(xmin>0.0) and np.any(xmax<1.0): use_x = True
else: use_x = False
header = ['Name', 'Description', 'Reference', \
self.m('T_{min}')+" (|degC|)", self.m('T_{max}')+" (|degC|)"]
if use_x: header.extend([self.m('x_{min}'), self.m('x_{max}')])
header = [u'Name', u'Description', u'Reference', \
self.m(u'T_\\text{min}')+u" (°C)", self.m(u'T_\\text{max}')+u" (°C)"]
if use_x: header.extend([self.m(u'x_\\text{min}'), self.m(u'x_\\text{max}')])
testTable = []
testTable.append(header) # Headline
for fluid in solObjs:
testTable.append([self.getReportLink(fluid.name), fluid.description, fluid.reference, self.c(fluid.Tmin), self.c(fluid.Tmax)])
testTable.append([
self.getReportLink(fluid.name),
fluid.description,
self.getCitation(fluid.reference),
self.c(fluid.Tmin),
self.c(fluid.Tmax)
])
if use_x: testTable[-1].extend([self.x(fluid.xmin), self.x(fluid.xmax)])
self.writeTableToFile(path, testTable)

View File

@@ -65,23 +65,13 @@ if __name__ == '__main__':
if runTest:
solObjs = []
from CPIncomp.SecCoolFluids import SecCoolSolutionData,SecCoolIceData,ThermogenVP1869
from CPIncomp.PureFluids import Texatherm22
solObjs += [SecCoolSolutionData(sFile='Melinder, Ammonia' ,sFolder='xMass',name='MAM2',desc='Melinder, Ammonia' ,ref='Melinder-BOOK-2010, SecCool software')]
solObjs += [SecCoolIceData(sFile='IceNA' ,sFolder='xMass',name='IceNA',desc='Ice slurry with NaCl' ,ref='Danish Technological Institute, SecCool software')]
#solObjs = [Freezium()]
#solObjs[0].density.DEBUG = True
#solObjs[0].specific_heat.DEBUG = True
#solObjs[0].conductivity.DEBUG = True
#solObjs[0].viscosity.DEBUG = True
#solObjs[0].T_freeze.DEBUG = True
#writer.fitSecCoolList(solObjs)
solObjs = [ThermogenVP1869()]#,Therminol72()]
solObjs[0].viscosity.DEBUG=True
#solObjs[0].saturation_pressure.DEBUG=True
#
##from CPIncomp.ExampleObjects import SecCoolExample
##solObjs = [SecCoolExample()]
#writer.fitFluidList(solObjs)
from CPIncomp.PureFluids import PMR
#from CPIncomp.PureFluids import Texatherm22
#solObjs += [SecCoolSolutionData(sFile='Melinder, Ethanol' ,sFolder='xMass',name='MEA2',desc='Melinder, Ethanol' ,ref='Melinder2010,Skovrup2013')]
#solObjs += [SecCoolSolutionData(sFile='Melinder, Ammonia' ,sFolder='xMass',name='MAM2',desc='Melinder, Ammonia' ,ref='Melinder2010,Skovrup2013')]
solObjs += [PMR()]
writer.fitSecCoolList(solObjs)
writer.writeFluidList(solObjs)
writer.writeReportList(solObjs)

View File

@@ -82,7 +82,7 @@
[
-9.073173e-07,
4.118599e-06,
-4.391163e-06,
-4.391164e-06,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -109,7 +109,7 @@
"type": "notdefined"
},
"name": "AEG",
"reference": "ASHRAE Fundamentals Handbook 2001, SecCool software",
"reference": "ASHRAE2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -133,7 +133,7 @@
"type": "notdefined"
},
"name": "AKF",
"reference": "Clariant GmbH Jan. 2000, SecCool software",
"reference": "Clariant2000,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -133,7 +133,7 @@
"type": "notdefined"
},
"name": "AL",
"reference": "Clariant GmbH Jan. 2000, SecCool software",
"reference": "Clariant2000,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -133,7 +133,7 @@
"type": "notdefined"
},
"name": "AN",
"reference": "Clariant GmbH Jan. 2000, SecCool software",
"reference": "Clariant2000,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -80,7 +80,7 @@
0.000000e+00
],
[
3.270564e-08,
3.270563e-08,
-2.261472e-07,
3.368862e-07,
0.000000e+00,
@@ -109,7 +109,7 @@
"type": "notdefined"
},
"name": "APG",
"reference": "ASHRAE Fundamentals Handbook 2001, SecCool software",
"reference": "ASHRAE2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "AS10",
"reference": "Aspen Petroleum AB, SecCool software",
"reference": "Aspen2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "AS20",
"reference": "Aspen Petroleum AB, SecCool software",
"reference": "Aspen2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "AS30",
"reference": "Aspen Petroleum AB, SecCool software",
"reference": "Aspen2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "AS40",
"reference": "Aspen Petroleum AB, SecCool software",
"reference": "Aspen2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -48,7 +48,7 @@
"type": "notdefined"
},
"name": "AS55",
"reference": "Aspen Petroleum AB, SecCool software",
"reference": "Aspen2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "DEB",
"reference": "Melinder-BOOK-2010",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "DowJ",
"reference": "Dow Chemicals data sheet",
"reference": "Dow1997",
"saturation_pressure": {
"coeffs": [
-2.573167e+02,

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "DowJ2",
"reference": "Dow Chemicals, SecCool software",
"reference": "Dow1997,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "DowQ",
"reference": "Dow Chemicals data sheet",
"reference": "Dow1997",
"saturation_pressure": {
"coeffs": [
-3.242462e+02,

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "DowQ2",
"reference": "Dow Chemicals, SecCool software",
"reference": "Dow1997,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -76,8 +76,8 @@
],
[
-4.117538e-10,
3.193137e-09,
-3.138206e-09,
3.193145e-09,
-3.138209e-09,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -160,9 +160,9 @@
0.000000e+00
],
[
-1.548862e-10,
8.615137e-10,
-8.067025e-11,
-1.548841e-10,
8.615147e-10,
-8.067086e-11,
0.000000e+00,
0.000000e+00,
0.000000e+00

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "ExampleMelinder",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -95,7 +95,7 @@
"type": "notdefined"
},
"name": "ExampleSolution",
"reference": "SecCool software",
"reference": "SecCool software,Skovrup2013",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -54,7 +54,7 @@
"type": "notdefined"
},
"name": "FRE",
"reference": "Kemira Chemicals OY, SecCool software",
"reference": "Kemira1998,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"
@@ -86,9 +86,9 @@
0.000000e+00
],
[
-6.379647e-08,
-6.379657e-08,
3.363858e-07,
-3.132405e-07,
-3.132406e-07,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -124,8 +124,8 @@
],
[
-2.058397e-06,
-3.348859e-10,
5.467784e-10,
-3.348864e-10,
5.467785e-10,
0.000000e+00,
0.000000e+00,
0.000000e+00

View File

@@ -45,7 +45,7 @@
[
1.059366e-09,
-2.212375e-09,
2.522431e-10,
2.522430e-10,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -109,7 +109,7 @@
"type": "notdefined"
},
"name": "GKN",
"reference": "pro KUEHLSOLE GmbH, SecCool software",
"reference": "PKS2005,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HC10",
"reference": "Dynalene data sheet",
"reference": "Dynalene2014",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -16,7 +16,7 @@
1.000000e-03
],
[
4.945495e-17
4.945410e-17
],
[
4.446923e-20
@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HC20",
"reference": "Dynalene data sheet",
"reference": "Dynalene2014",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -16,7 +16,7 @@
1.000000e-03
],
[
3.613874e-17
3.613676e-17
],
[
3.832824e-20
@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HC30",
"reference": "Dynalene data sheet",
"reference": "Dynalene2014",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -16,7 +16,7 @@
1.000000e-03
],
[
9.106767e-17
9.107021e-17
],
[
1.979940e-20
@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HC40",
"reference": "Dynalene data sheet",
"reference": "Dynalene2014",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HC50",
"reference": "Dynalene data sheet",
"reference": "Dynalene2014",
"saturation_pressure": {
"coeffs": [
[

View File

@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HCB",
"reference": "Melinder-BOOK-2010",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HCM",
"reference": "Melinder-BOOK-2010",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HFE",
"reference": "Melinder-BOOK-2010",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -33,7 +33,7 @@
-2.269000e+00
],
[
-1.492754e-13
-1.493085e-13
],
[
1.637145e-16
@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "HFE2",
"reference": "3M Novec, SecCool software",
"reference": "3M2007,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"
@@ -65,7 +65,7 @@
2.000000e+00
],
[
1.348892e-13
1.348812e-13
],
[
-2.528359e-16

View File

@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "HY20",
"reference": "Hydro Chemicals",
"reference": "Hydro2000",
"saturation_pressure": {
"coeffs": [
-5.000000e+03,

View File

@@ -35,7 +35,7 @@
],
"type": "polynomial"
},
"description": "HYCOOL 30, Potassium formate",
"description": "HyCool 30, Potassium formate",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -45,7 +45,7 @@
"type": "notdefined"
},
"name": "HY30",
"reference": "Hydro Chemicals",
"reference": "Hydro2000",
"saturation_pressure": {
"coeffs": [
-5.000000e+03,

View File

@@ -29,7 +29,7 @@
],
"type": "polynomial"
},
"description": "HYCOOL 40, Potassium formate",
"description": "HyCool 40, Potassium formate",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HY40",
"reference": "Hydro Chemicals",
"reference": "Hydro2000",
"saturation_pressure": {
"coeffs": [
-5.000000e+03,

View File

@@ -29,7 +29,7 @@
],
"type": "polynomial"
},
"description": "HYCOOL 45, Potassium formate",
"description": "HyCool 45, Potassium formate",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HY45",
"reference": "Hydro Chemicals",
"reference": "Hydro2000",
"saturation_pressure": {
"coeffs": [
-5.000000e+03,

View File

@@ -29,7 +29,7 @@
],
"type": "polynomial"
},
"description": "HYCOOL 50, Potassium formate",
"description": "HyCool 50, Potassium formate",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "HY50",
"reference": "Hydro Chemicals",
"reference": "Hydro2000",
"saturation_pressure": {
"coeffs": [
-5.000000e+03,

View File

@@ -91,7 +91,7 @@
"type": "notdefined"
},
"name": "IceEA",
"reference": "Danish Technological Institute, SecCool software",
"reference": "Kauffeld2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -91,7 +91,7 @@
"type": "notdefined"
},
"name": "IceNA",
"reference": "Danish Technological Institute, SecCool software",
"reference": "Kauffeld2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -91,7 +91,7 @@
"type": "notdefined"
},
"name": "IcePG",
"reference": "Danish Technological Institute, SecCool software",
"reference": "Kauffeld2001,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -85,7 +85,7 @@
],
"type": "polynomial"
},
"description": "Lithium-Bromide solution from Patek2006",
"description": "Aqueous lithium-bromide solution ",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -160,7 +160,7 @@
0.000000e+00
],
[
3.074006e-05,
3.074005e-05,
4.644860e-04,
-4.128601e-04,
0.000000e+00,

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MAM",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,13 @@
{
"T_freeze": {
"coeffs": [
9.292564e+05,
6.000000e+04,
1.000000e+01
[
5.582814e+00,
1.512284e-01,
-3.735343e+00
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 2.931500e+02,
@@ -87,7 +89,7 @@
"type": "notdefined"
},
"name": "MAM2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MCA",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,14 @@
{
"T_freeze": {
"coeffs": [
9.308955e+05,
6.000000e+04,
1.000000e+01
[
5.653313e+00,
-1.078524e+00,
5.849055e+00,
-1.617841e+01
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.031500e+02,
@@ -95,7 +98,7 @@
"type": "notdefined"
},
"name": "MCA2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MEA",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -80,7 +80,7 @@
0.000000e+00
],
[
-1.261406e-06,
-1.261407e-06,
1.595687e-04,
-2.874999e-04,
0.000000e+00,
@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MEA2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MEG",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MEG2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MGL",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,16 @@
{
"T_freeze": {
"coeffs": [
9.321636e+05,
6.000000e+04,
1.000000e+01
[
5.643904e+00,
-5.983132e-01,
3.208226e+00,
-1.038046e+01,
1.531831e+01,
-9.146761e+00
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.131500e+02,
@@ -95,7 +100,7 @@
"type": "notdefined"
},
"name": "MGL2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MKA",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,15 @@
{
"T_freeze": {
"coeffs": [
9.317439e+05,
6.000000e+04,
1.000000e+01
[
5.643432e+00,
-8.156028e-01,
4.484583e+00,
-1.364947e+01,
1.090680e+01
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.031500e+02,
@@ -95,7 +99,7 @@
"type": "notdefined"
},
"name": "MKA2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MKC",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,16 @@
{
"T_freeze": {
"coeffs": [
9.337457e+05,
6.000000e+04,
1.000000e+01
[
5.610043e+00,
1.018931e-01,
-3.926708e+00,
2.335889e+01,
-6.343317e+01,
5.565994e+01
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.031500e+02,
@@ -95,7 +100,7 @@
"type": "notdefined"
},
"name": "MKC2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MKF",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MLI",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MMA",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,16 @@
{
"T_freeze": {
"coeffs": [
9.307502e+05,
6.000000e+04,
1.000000e+01
[
5.612846e+00,
-2.775615e-01,
1.946035e-01,
-2.014309e+00,
3.148512e+00,
-2.580098e+00
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 2.931500e+02,
@@ -95,7 +100,7 @@
"type": "notdefined"
},
"name": "MMA2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MMG",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,14 @@
{
"T_freeze": {
"coeffs": [
9.332731e+05,
6.000000e+04,
1.000000e+01
[
5.609983e+00,
-1.321822e-01,
-1.458488e+00,
-3.263464e+00
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.031500e+02,
@@ -38,9 +41,9 @@
0.000000e+00
],
[
-3.201909e-14,
-8.491526e-14,
1.265223e-12,
-3.116864e-14,
-8.496811e-14,
1.264271e-12,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -75,9 +78,9 @@
0.000000e+00
],
[
1.986411e-11,
-3.429773e-10,
7.354027e-10,
1.984946e-11,
-3.372422e-10,
7.093277e-10,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -95,7 +98,7 @@
"type": "notdefined"
},
"name": "MMG2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"
@@ -127,9 +130,9 @@
0.000000e+00
],
[
5.248779e-11,
-7.030447e-10,
1.861376e-09,
5.482548e-11,
-6.893357e-10,
1.956098e-09,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -164,9 +167,9 @@
0.000000e+00
],
[
-1.262879e-15,
-4.101099e-13,
1.456601e-12,
-9.388323e-15,
-4.140820e-13,
1.454213e-12,
0.000000e+00,
0.000000e+00,
0.000000e+00

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MNA",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -39,8 +39,8 @@
],
[
5.963914e-14,
-1.171232e-12,
3.544925e-12,
-1.171287e-12,
3.544939e-12,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -75,9 +75,9 @@
0.000000e+00
],
[
2.382838e-11,
-4.371017e-10,
2.078221e-09,
2.382339e-11,
-4.369353e-10,
2.078946e-09,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -95,7 +95,7 @@
"type": "notdefined"
},
"name": "MNA2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"
@@ -129,7 +129,7 @@
[
-7.407941e-11,
1.506720e-09,
-5.254342e-09,
-5.256161e-09,
0.000000e+00,
0.000000e+00,
0.000000e+00
@@ -164,9 +164,9 @@
0.000000e+00
],
[
1.144571e-14,
-5.037253e-13,
2.031073e-12,
1.141968e-14,
-5.033025e-13,
2.031147e-12,
0.000000e+00,
0.000000e+00,
0.000000e+00

View File

@@ -100,7 +100,7 @@
"type": "notdefined"
},
"name": "MPG",
"reference": "Melinder Book",
"reference": "Melinder2010",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -1,11 +1,16 @@
{
"T_freeze": {
"coeffs": [
9.314963e+05,
6.000000e+04,
1.000000e+01
[
5.551677e+00,
9.351475e-01,
-6.934728e+00,
2.055368e+01,
-2.940299e+01,
1.483940e+01
]
],
"type": "exponential"
"type": "exppolynomial"
},
"Tbase": 0.000000e+00,
"Tmax": 3.131500e+02,
@@ -95,7 +100,7 @@
"type": "notdefined"
},
"name": "MPG2",
"reference": "Melinder-BOOK-2010, SecCool software",
"reference": "Melinder2010,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "NBS",
"reference": "Properties of Water and Steam in SI-Units, 2nd Revised and Updated Printing, Springer 1979, pp. 175 ff., SecCool software",
"reference": "Schmidt1979,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -29,7 +29,7 @@
],
"type": "polynomial"
},
"description": "NitrateSalt",
"description": "Nitrate salt, heat transfer fluid based on 60% NaNO3 and 40% KNO3",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
@@ -39,7 +39,7 @@
"type": "notdefined"
},
"name": "NaK",
"reference": "Solar Power Tower Design Basis Document, Alexis B. Zavoico, Sandia Labs, USA",
"reference": "Zavoico2001",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -51,7 +51,7 @@
"type": "notdefined"
},
"name": "PCL",
"reference": "Sulzer Chemtech AG, SecCool software",
"reference": "Sulzer1999,Skovrup2013",
"saturation_pressure": {
"coeffs": "null",
"type": "notdefined"

View File

@@ -0,0 +1,96 @@
{
"T_freeze": {
"coeffs": "null",
"type": "notdefined"
},
"Tbase": 0.000000e+00,
"Tmax": 4.931500e+02,
"Tmin": 1.731500e+02,
"TminPsat": 3.581500e+02,
"conductivity": {
"coeffs": [
[
1.631059e-01
],
[
-7.723938e-05
],
[
-9.279440e-09
],
[
9.384425e-12
]
],
"type": "polynomial"
},
"density": {
"coeffs": [
[
1.122801e+03
],
[
-9.963599e-01
],
[
-4.931404e-05
],
[
6.240201e-08
]
],
"type": "polynomial"
},
"description": "Paratherm CR",
"mass2input": {
"coeffs": "null",
"type": "notdefined"
},
"mole2input": {
"coeffs": "null",
"type": "notdefined"
},
"name": "PCR",
"reference": "Paratherm2013",
"saturation_pressure": {
"coeffs": [
-3.500387e+02,
-1.263655e+00,
5.633270e+00
],
"type": "logexponential"
},
"specific_heat": {
"coeffs": [
[
7.239249e+02
],
[
4.715865e+00
],
[
-3.019390e-03
],
[
2.864835e-06
]
],
"type": "polynomial"
},
"viscosity": {
"coeffs": [
5.082283e+02,
-9.138133e+01,
1.654139e+01
],
"type": "exponential"
},
"volume2input": {
"coeffs": "null",
"type": "notdefined"
},
"xbase": 0.000000e+00,
"xid": "pure",
"xmax": 1.000000e+00,
"xmin": 0.000000e+00
}

Some files were not shown because too many files have changed in this diff Show More