|
|
|
|
@@ -1,13 +1,13 @@
|
|
|
|
|
from __future__ import division, print_function
|
|
|
|
|
import numpy as np
|
|
|
|
|
from CPIncomp.DataObjects import PureData
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TherminolD12(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Therminol D12 by Solutia
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -17,22 +17,22 @@ class TherminolD12(PureData):
|
|
|
|
|
self.density.data = np.array([+8.35000E+2, +8.32000E+2, +8.28000E+2, +8.25000E+2, +8.22000E+2, +8.18000E+2, +8.15000E+2, +8.11000E+2, +8.08000E+2, +8.05000E+2, +8.01000E+2, +7.98000E+2, +7.94000E+2, +7.91000E+2, +7.87000E+2, +7.84000E+2, +7.80000E+2, +7.77000E+2, +7.73000E+2, +7.70000E+2, +7.66000E+2, +7.62000E+2, +7.59000E+2, +7.55000E+2, +7.52000E+2, +7.48000E+2, +7.44000E+2, +7.41000E+2, +7.37000E+2, +7.33000E+2, +7.29000E+2, +7.26000E+2, +7.22000E+2, +7.18000E+2, +7.14000E+2, +7.10000E+2, +7.06000E+2, +7.03000E+2, +6.99000E+2, +6.95000E+2, +6.91000E+2, +6.87000E+2, +6.82000E+2, +6.78000E+2, +6.74000E+2, +6.70000E+2, +6.66000E+2, +6.61000E+2, +6.57000E+2, +6.53000E+2, +6.48000E+2, +6.44000E+2, +6.39000E+2, +6.35000E+2, +6.30000E+2, +6.25000E+2, +6.20000E+2, +6.16000E+2, +6.11000E+2, +6.06000E+2, +6.00000E+2, +5.95000E+2, +5.90000E+2, +5.84000E+2]) # kg/m3
|
|
|
|
|
self.specific_heat.data = np.array([+1.69400E+0, +1.71200E+0, +1.73100E+0, +1.75000E+0, +1.76800E+0, +1.78700E+0, +1.80600E+0, +1.82400E+0, +1.84300E+0, +1.86200E+0, +1.88100E+0, +1.90000E+0, +1.91900E+0, +1.93800E+0, +1.95700E+0, +1.97700E+0, +1.99600E+0, +2.01500E+0, +2.03500E+0, +2.05400E+0, +2.07300E+0, +2.09300E+0, +2.11300E+0, +2.13200E+0, +2.15200E+0, +2.17200E+0, +2.19100E+0, +2.21100E+0, +2.23100E+0, +2.25100E+0, +2.27100E+0, +2.29100E+0, +2.31200E+0, +2.33200E+0, +2.35200E+0, +2.37300E+0, +2.39300E+0, +2.41400E+0, +2.43400E+0, +2.45500E+0, +2.47600E+0, +2.49600E+0, +2.51700E+0, +2.53800E+0, +2.55900E+0, +2.58000E+0, +2.60200E+0, +2.62300E+0, +2.64400E+0, +2.66600E+0, +2.68700E+0, +2.70900E+0, +2.73100E+0, +2.75300E+0, +2.77500E+0, +2.79700E+0, +2.82000E+0, +2.84200E+0, +2.86500E+0, +2.88800E+0, +2.91100E+0, +2.93500E+0, +2.95900E+0, +2.98300E+0])*1000. # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.24400E-1, +1.23800E-1, +1.23200E-1, +1.22500E-1, +1.21900E-1, +1.21300E-1, +1.20600E-1, +1.20000E-1, +1.19300E-1, +1.18600E-1, +1.18000E-1, +1.17300E-1, +1.16600E-1, +1.15900E-1, +1.15200E-1, +1.14500E-1, +1.13700E-1, +1.13000E-1, +1.12200E-1, +1.11500E-1, +1.10700E-1, +1.10000E-1, +1.09200E-1, +1.08400E-1, +1.07600E-1, +1.06800E-1, +1.06000E-1, +1.05200E-1, +1.04400E-1, +1.03500E-1, +1.02700E-1, +1.01900E-1, +1.01000E-1, +1.00100E-1, +9.93000E-2, +9.84000E-2, +9.75000E-2, +9.66000E-2, +9.57000E-2, +9.48000E-2, +9.39000E-2, +9.29000E-2, +9.20000E-2, +9.10000E-2, +9.01000E-2, +8.91000E-2, +8.82000E-2, +8.72000E-2, +8.62000E-2, +8.52000E-2, +8.42000E-2, +8.32000E-2, +8.22000E-2, +8.12000E-2, +8.01000E-2, +7.91000E-2, +7.80000E-2, +7.70000E-2, +7.59000E-2, +7.48000E-2, +7.38000E-2, +7.27000E-2, +7.16000E-2, +7.05000E-2]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+3.59000E-1, +1.77000E-1, +9.59000E-2, +5.64000E-2, +3.55000E-2, +2.36000E-2, +1.65000E-2, +1.20000E-2, +9.07000E-3, +7.06000E-3, +5.63000E-3, +4.60000E-3, +3.82000E-3, +3.24000E-3, +2.78000E-3, +2.41000E-3, +2.12000E-3, +1.88000E-3, +1.69000E-3, +1.52000E-3, +1.38000E-3, +1.26000E-3, +1.16000E-3, +1.07000E-3, +9.88000E-4, +9.18000E-4, +8.56000E-4, +8.00000E-4, +7.50000E-4, +7.05000E-4, +6.64000E-4, +6.26000E-4, +5.92000E-4, +5.61000E-4, +5.31000E-4, +5.04000E-4, +4.79000E-4, +4.56000E-4, +4.35000E-4, +4.14000E-4, +3.95000E-4, +3.78000E-4, +3.61000E-4, +3.45000E-4, +3.30000E-4, +3.16000E-4, +3.03000E-4, +2.90000E-4, +2.78000E-4, +2.67000E-4, +2.57000E-4, +2.46000E-4, +2.37000E-4, +2.27000E-4, +2.19000E-4, +2.10000E-4, +2.02000E-4, +1.95000E-4, +1.87000E-4, +1.80000E-4, +1.74000E-4, +1.67000E-4, +1.61000E-4, +1.56000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+4.75000E-9, +2.07000E-8, +8.08000E-8, +2.81000E-7, +8.86000E-7, +2.56000E-6, +6.82000E-6, +1.70000E-5, +3.96000E-5, +8.75000E-5, +1.84000E-4, +3.68000E-4, +7.06000E-4, +1.30000E-3, +2.33000E-3, +4.02000E-3, +6.75000E-3, +1.10000E-2, +1.76000E-2, +2.73000E-2, +4.16000E-2, +6.21000E-2, +9.10000E-2, +1.31000E-1, +1.86000E-1, +2.59000E-1, +3.56000E-1, +4.84000E-1, +6.48000E-1, +8.59000E-1, +1.13000E+0, +1.46000E+0, +1.88000E+0, +2.39000E+0, +3.01000E+0, +3.77000E+0, +4.68000E+0, +5.76000E+0, +7.05000E+0, +8.57000E+0, +1.03000E+1, +1.24000E+1, +1.48000E+1, +1.76000E+1, +2.08000E+1, +2.44000E+1, +2.85000E+1, +3.32000E+1, +3.84000E+1, +4.43000E+1, +5.09000E+1, +5.83000E+1, +6.64000E+1, +7.55000E+1, +8.55000E+1, +9.65000E+1, +1.09000E+2, +1.22000E+2, +1.36000E+2, +1.52000E+2, +1.69000E+2, +1.88000E+2, +2.08000E+2, +2.29000E+2])*1000. # Pa
|
|
|
|
|
self.viscosity.data = np.array([+3.59000E-1, +1.77000E-1, +9.59000E-2, +5.64000E-2, +3.55000E-2, +2.36000E-2, +1.65000E-2, +1.20000E-2, +9.07000E-3, +7.06000E-3, +5.63000E-3, +4.60000E-3, +3.82000E-3, +3.24000E-3, +2.78000E-3, +2.41000E-3, +2.12000E-3, +1.88000E-3, +1.69000E-3, +1.52000E-3, +1.38000E-3, +1.26000E-3, +1.16000E-3, +1.07000E-3, +9.88000E-4, +9.18000E-4, +8.56000E-4, +8.00000E-4, +7.50000E-4, +7.05000E-4, +6.64000E-4, +6.26000E-4, +5.92000E-4, +5.61000E-4, +5.31000E-4, +5.04000E-4, +4.79000E-4, +4.56000E-4, +4.35000E-4, +4.14000E-4, +3.95000E-4, +3.78000E-4, +3.61000E-4, +3.45000E-4, +3.30000E-4, +3.16000E-4, +3.03000E-4, +2.90000E-4, +2.78000E-4, +2.67000E-4, +2.57000E-4, +2.46000E-4, +2.37000E-4, +2.27000E-4, +2.19000E-4, +2.10000E-4, +2.02000E-4, +1.95000E-4, +1.87000E-4, +1.80000E-4, +1.74000E-4, +1.67000E-4, +1.61000E-4, +1.56000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+4.75000E-9, +2.07000E-8, +8.08000E-8, +2.81000E-7, +8.86000E-7, +2.56000E-6, +6.82000E-6, +1.70000E-5, +3.96000E-5, +8.75000E-5, +1.84000E-4, +3.68000E-4, +7.06000E-4, +1.30000E-3, +2.33000E-3, +4.02000E-3, +6.75000E-3, +1.10000E-2, +1.76000E-2, +2.73000E-2, +4.16000E-2, +6.21000E-2, +9.10000E-2, +1.31000E-1, +1.86000E-1, +2.59000E-1, +3.56000E-1, +4.84000E-1, +6.48000E-1, +8.59000E-1, +1.13000E+0, +1.46000E+0, +1.88000E+0, +2.39000E+0, +3.01000E+0, +3.77000E+0, +4.68000E+0, +5.76000E+0, +7.05000E+0, +8.57000E+0, +1.03000E+1, +1.24000E+1, +1.48000E+1, +1.76000E+1, +2.08000E+1, +2.44000E+1, +2.85000E+1, +3.32000E+1, +3.84000E+1, +4.43000E+1, +5.09000E+1, +5.83000E+1, +6.64000E+1, +7.55000E+1, +8.55000E+1, +9.65000E+1, +1.09000E+2, +1.22000E+2, +1.36000E+2, +1.52000E+2, +1.69000E+2, +1.88000E+2, +2.08000E+2, +2.29000E+2])*1000. # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = self.Tmin
|
|
|
|
|
self.name = "TD12"
|
|
|
|
|
self.name = "TD12"
|
|
|
|
|
self.description = "TherminolD12"
|
|
|
|
|
self.reference = "Therminol Heat Transfer Reference Disk"
|
|
|
|
|
self.reference = "Therminol2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
class TherminolVP1(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Therminol VP-1 by Solutia
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -42,23 +42,23 @@ class TherminolVP1(PureData):
|
|
|
|
|
self.density.data = np.array([+1.07000E+3, +1.07000E+3, +1.06000E+3, +1.06000E+3, +1.05000E+3, +1.05000E+3, +1.05000E+3, +1.04000E+3, +1.04000E+3, +1.03000E+3, +1.03000E+3, +1.03000E+3, +1.02000E+3, +1.02000E+3, +1.01000E+3, +1.01000E+3, +1.01000E+3, +1.00000E+3, +9.97000E+2, +9.93000E+2, +9.88000E+2, +9.84000E+2, +9.80000E+2, +9.76000E+2, +9.72000E+2, +9.67000E+2, +9.63000E+2, +9.59000E+2, +9.55000E+2, +9.50000E+2, +9.46000E+2, +9.42000E+2, +9.37000E+2, +9.33000E+2, +9.29000E+2, +9.24000E+2, +9.20000E+2, +9.15000E+2, +9.11000E+2, +9.06000E+2, +9.02000E+2, +8.98000E+2, +8.93000E+2, +8.89000E+2, +8.84000E+2, +8.79000E+2, +8.75000E+2, +8.70000E+2, +8.65000E+2, +8.60000E+2, +8.56000E+2, +8.51000E+2, +8.46000E+2, +8.41000E+2, +8.36000E+2, +8.31000E+2, +8.25000E+2, +8.20000E+2, +8.15000E+2, +8.10000E+2, +8.04000E+2, +7.99000E+2, +7.93000E+2, +7.88000E+2, +7.82000E+2, +7.76000E+2, +7.70000E+2, +7.65000E+2, +7.59000E+2, +7.52000E+2, +7.46000E+2, +7.40000E+2, +7.33000E+2, +7.27000E+2, +7.20000E+2, +7.13000E+2, +7.06000E+2, +6.99000E+2]) # kg/m3
|
|
|
|
|
self.specific_heat.data = np.array([+1.52300E+0, +1.53700E+0, +1.55200E+0, +1.56600E+0, +1.58100E+0, +1.59600E+0, +1.61000E+0, +1.62400E+0, +1.63900E+0, +1.65300E+0, +1.66800E+0, +1.68200E+0, +1.69600E+0, +1.71000E+0, +1.72400E+0, +1.73900E+0, +1.75300E+0, +1.76700E+0, +1.78100E+0, +1.79500E+0, +1.80900E+0, +1.82200E+0, +1.83600E+0, +1.85000E+0, +1.86400E+0, +1.87800E+0, +1.89100E+0, +1.90500E+0, +1.91900E+0, +1.93200E+0, +1.94600E+0, +1.95900E+0, +1.97300E+0, +1.98600E+0, +2.00000E+0, +2.01300E+0, +2.02700E+0, +2.04000E+0, +2.05400E+0, +2.06700E+0, +2.08000E+0, +2.09300E+0, +2.10700E+0, +2.12000E+0, +2.13300E+0, +2.14700E+0, +2.16000E+0, +2.17300E+0, +2.18600E+0, +2.19900E+0, +2.21300E+0, +2.22600E+0, +2.23900E+0, +2.25200E+0, +2.26600E+0, +2.27900E+0, +2.29300E+0, +2.30600E+0, +2.31900E+0, +2.33300E+0, +2.34700E+0, +2.36000E+0, +2.37400E+0, +2.38800E+0, +2.40200E+0, +2.41600E+0, +2.43100E+0, +2.44600E+0, +2.46000E+0, +2.47600E+0, +2.49100E+0, +2.50700E+0, +2.52300E+0, +2.54000E+0, +2.55800E+0, +2.57600E+0, +2.59500E+0, +2.61500E+0])*1000. # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.37000E-1, +1.36600E-1, +1.36100E-1, +1.35600E-1, +1.35200E-1, +1.34700E-1, +1.34200E-1, +1.33600E-1, +1.33100E-1, +1.32600E-1, +1.32000E-1, +1.31500E-1, +1.30900E-1, +1.30400E-1, +1.29800E-1, +1.29200E-1, +1.28600E-1, +1.28000E-1, +1.27400E-1, +1.26800E-1, +1.26200E-1, +1.25600E-1, +1.24900E-1, +1.24300E-1, +1.23600E-1, +1.22900E-1, +1.22300E-1, +1.21600E-1, +1.20900E-1, +1.20200E-1, +1.19500E-1, +1.18700E-1, +1.18000E-1, +1.17300E-1, +1.16500E-1, +1.15800E-1, +1.15000E-1, +1.14200E-1, +1.13500E-1, +1.12700E-1, +1.11900E-1, +1.11100E-1, +1.10300E-1, +1.09400E-1, +1.08600E-1, +1.07800E-1, +1.06900E-1, +1.06000E-1, +1.05200E-1, +1.04300E-1, +1.03400E-1, +1.02500E-1, +1.01600E-1, +1.00700E-1, +9.98000E-2, +9.89000E-2, +9.79000E-2, +9.70000E-2, +9.60000E-2, +9.51000E-2, +9.41000E-2, +9.31000E-2, +9.21000E-2, +9.11000E-2, +9.01000E-2, +8.91000E-2, +8.81000E-2, +8.71000E-2, +8.60000E-2, +8.50000E-2, +8.39000E-2, +8.29000E-2, +8.18000E-2, +8.07000E-2, +7.96000E-2, +7.85000E-2, +7.74000E-2, +7.63000E-2]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+5.48000E-3, +4.68000E-3, +4.05000E-3, +3.54000E-3, +3.12000E-3, +2.78000E-3, +2.49000E-3, +2.24000E-3, +2.04000E-3, +1.86000E-3, +1.70000E-3, +1.57000E-3, +1.45000E-3, +1.34000E-3, +1.25000E-3, +1.16000E-3, +1.09000E-3, +1.02000E-3, +9.62000E-4, +9.06000E-4, +8.56000E-4, +8.10000E-4, +7.68000E-4, +7.29000E-4, +6.93000E-4, +6.60000E-4, +6.30000E-4, +6.01000E-4, +5.75000E-4, +5.51000E-4, +5.28000E-4, +5.06000E-4, +4.86000E-4, +4.67000E-4, +4.50000E-4, +4.33000E-4, +4.18000E-4, +4.03000E-4, +3.89000E-4, +3.76000E-4, +3.64000E-4, +3.52000E-4, +3.41000E-4, +3.30000E-4, +3.20000E-4, +3.10000E-4, +3.01000E-4, +2.93000E-4, +2.84000E-4, +2.77000E-4, +2.69000E-4, +2.62000E-4, +2.55000E-4, +2.48000E-4, +2.42000E-4, +2.36000E-4, +2.30000E-4, +2.25000E-4, +2.19000E-4, +2.14000E-4, +2.09000E-4, +2.04000E-4, +2.00000E-4, +1.96000E-4, +1.91000E-4, +1.87000E-4, +1.83000E-4, +1.80000E-4, +1.76000E-4, +1.72000E-4, +1.69000E-4, +1.66000E-4, +1.62000E-4, +1.59000E-4, +1.56000E-4, +1.53000E-4, +1.51000E-4, +1.48000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+5.76000E-4, +9.86000E-4, +1.65000E-3, +2.68000E-3, +4.27000E-3, +6.67000E-3, +1.02000E-2, +1.53000E-2, +2.26000E-2, +3.29000E-2, +4.71000E-2, +6.65000E-2, +9.26000E-2, +1.27000E-1, +1.73000E-1, +2.32000E-1, +3.09000E-1, +4.07000E-1, +5.30000E-1, +6.85000E-1, +8.77000E-1, +1.11000E+0, +1.40000E+0, +1.76000E+0, +2.18000E+0, +2.70000E+0, +3.31000E+0, +4.03000E+0, +4.88000E+0, +5.88000E+0, +7.05000E+0, +8.40000E+0, +9.96000E+0, +1.18000E+1, +1.38000E+1, +1.62000E+1, +1.89000E+1, +2.19000E+1, +2.53000E+1, +2.92000E+1, +3.35000E+1, +3.84000E+1, +4.37000E+1, +4.97000E+1, +5.63000E+1, +6.37000E+1, +7.17000E+1, +8.06000E+1, +9.03000E+1, +1.01000E+2, +1.13000E+2, +1.25000E+2, +1.39000E+2, +1.54000E+2, +1.70000E+2, +1.87000E+2, +2.06000E+2, +2.26000E+2, +2.48000E+2, +2.71000E+2, +2.96000E+2, +3.23000E+2, +3.51000E+2, +3.82000E+2, +4.14000E+2, +4.48000E+2, +4.85000E+2, +5.24000E+2, +5.64000E+2, +6.08000E+2, +6.54000E+2, +7.02000E+2, +7.53000E+2, +8.06000E+2, +8.62000E+2, +9.21000E+2, +9.83000E+2, +1.05000E+3])*1000. # Pa
|
|
|
|
|
self.viscosity.data = np.array([+5.48000E-3, +4.68000E-3, +4.05000E-3, +3.54000E-3, +3.12000E-3, +2.78000E-3, +2.49000E-3, +2.24000E-3, +2.04000E-3, +1.86000E-3, +1.70000E-3, +1.57000E-3, +1.45000E-3, +1.34000E-3, +1.25000E-3, +1.16000E-3, +1.09000E-3, +1.02000E-3, +9.62000E-4, +9.06000E-4, +8.56000E-4, +8.10000E-4, +7.68000E-4, +7.29000E-4, +6.93000E-4, +6.60000E-4, +6.30000E-4, +6.01000E-4, +5.75000E-4, +5.51000E-4, +5.28000E-4, +5.06000E-4, +4.86000E-4, +4.67000E-4, +4.50000E-4, +4.33000E-4, +4.18000E-4, +4.03000E-4, +3.89000E-4, +3.76000E-4, +3.64000E-4, +3.52000E-4, +3.41000E-4, +3.30000E-4, +3.20000E-4, +3.10000E-4, +3.01000E-4, +2.93000E-4, +2.84000E-4, +2.77000E-4, +2.69000E-4, +2.62000E-4, +2.55000E-4, +2.48000E-4, +2.42000E-4, +2.36000E-4, +2.30000E-4, +2.25000E-4, +2.19000E-4, +2.14000E-4, +2.09000E-4, +2.04000E-4, +2.00000E-4, +1.96000E-4, +1.91000E-4, +1.87000E-4, +1.83000E-4, +1.80000E-4, +1.76000E-4, +1.72000E-4, +1.69000E-4, +1.66000E-4, +1.62000E-4, +1.59000E-4, +1.56000E-4, +1.53000E-4, +1.51000E-4, +1.48000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+5.76000E-4, +9.86000E-4, +1.65000E-3, +2.68000E-3, +4.27000E-3, +6.67000E-3, +1.02000E-2, +1.53000E-2, +2.26000E-2, +3.29000E-2, +4.71000E-2, +6.65000E-2, +9.26000E-2, +1.27000E-1, +1.73000E-1, +2.32000E-1, +3.09000E-1, +4.07000E-1, +5.30000E-1, +6.85000E-1, +8.77000E-1, +1.11000E+0, +1.40000E+0, +1.76000E+0, +2.18000E+0, +2.70000E+0, +3.31000E+0, +4.03000E+0, +4.88000E+0, +5.88000E+0, +7.05000E+0, +8.40000E+0, +9.96000E+0, +1.18000E+1, +1.38000E+1, +1.62000E+1, +1.89000E+1, +2.19000E+1, +2.53000E+1, +2.92000E+1, +3.35000E+1, +3.84000E+1, +4.37000E+1, +4.97000E+1, +5.63000E+1, +6.37000E+1, +7.17000E+1, +8.06000E+1, +9.03000E+1, +1.01000E+2, +1.13000E+2, +1.25000E+2, +1.39000E+2, +1.54000E+2, +1.70000E+2, +1.87000E+2, +2.06000E+2, +2.26000E+2, +2.48000E+2, +2.71000E+2, +2.96000E+2, +3.23000E+2, +3.51000E+2, +3.82000E+2, +4.14000E+2, +4.48000E+2, +4.85000E+2, +5.24000E+2, +5.64000E+2, +6.08000E+2, +6.54000E+2, +7.02000E+2, +7.53000E+2, +8.06000E+2, +8.62000E+2, +9.21000E+2, +9.83000E+2, +1.05000E+3])*1000. # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = self.Tmin
|
|
|
|
|
self.name = "TVP1"
|
|
|
|
|
self.TminPsat = self.Tmin
|
|
|
|
|
self.name = "TVP1"
|
|
|
|
|
self.description = "TherminolVP1"
|
|
|
|
|
self.reference = "Therminol Heat Transfer Reference Disk"
|
|
|
|
|
self.reference = "Therminol2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Therminol66(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Therminol 66 by Solutia
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -72,19 +72,19 @@ class Therminol66(PureData):
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, 1.0000E+01, 2.0000E+01, 3.0000E+01, 5.0000E+01, 8.0000E+01, 1.2000E+02, 1.8000E+02, 2.7000E+02, 4.0000E+02, 5.8000E+02, 8.3000E+02, 1.1700E+03, 1.6200E+03, 2.2300E+03, 3.0200E+03, 4.0600E+03, 5.3900E+03, 7.1000E+03, 9.2500E+03, 1.1950E+04, 1.5310E+04, 1.9460E+04, 2.4550E+04, 3.0730E+04, 3.8220E+04, 4.7200E+04, 5.7940E+04, 7.0680E+04, 8.5740E+04, 1.0342E+05, 1.2409E+05, 1.4813E+05])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 70+273.15
|
|
|
|
|
self.name = "T66"
|
|
|
|
|
self.TminPsat = 70+273.15
|
|
|
|
|
self.name = "T66"
|
|
|
|
|
self.description = "Therminol66"
|
|
|
|
|
self.reference = "Therminol Heat Transfer Reference Disk"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.reference = "Therminol2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Therminol72(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Therminol 72 by Solutia
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -94,24 +94,24 @@ class Therminol72(PureData):
|
|
|
|
|
self.density.data = np.array([+1.11000E+3, +1.10000E+3, +1.10000E+3, +1.09000E+3, +1.09000E+3, +1.08000E+3, +1.08000E+3, +1.07000E+3, +1.07000E+3, +1.07000E+3, +1.06000E+3, +1.06000E+3, +1.05000E+3, +1.05000E+3, +1.04000E+3, +1.04000E+3, +1.03000E+3, +1.03000E+3, +1.02000E+3, +1.02000E+3, +1.02000E+3, +1.01000E+3, +1.01000E+3, +1.00000E+3, +9.97000E+2, +9.93000E+2, +9.88000E+2, +9.84000E+2, +9.79000E+2, +9.74000E+2, +9.70000E+2, +9.65000E+2, +9.61000E+2, +9.56000E+2, +9.52000E+2, +9.47000E+2, +9.43000E+2, +9.38000E+2, +9.34000E+2, +9.29000E+2, +9.25000E+2, +9.20000E+2, +9.16000E+2, +9.11000E+2, +9.06000E+2, +9.02000E+2, +8.98000E+2, +8.93000E+2, +8.89000E+2, +8.84000E+2, +8.80000E+2, +8.75000E+2, +8.71000E+2, +8.66000E+2, +8.62000E+2, +8.57000E+2, +8.53000E+2, +8.48000E+2, +8.44000E+2, +8.39000E+2, +8.34000E+2, +8.30000E+2, +8.25000E+2, +8.21000E+2, +8.16000E+2, +8.12000E+2, +8.07000E+2, +8.03000E+2, +7.98000E+2, +7.94000E+2, +7.89000E+2, +7.85000E+2, +7.80000E+2, +7.76000E+2, +7.71000E+2, +7.66000E+2, +7.62000E+2, +7.57000E+2, +7.53000E+2]) # kg/m3
|
|
|
|
|
self.specific_heat.data = np.array([+1.47100E+0, +1.48400E+0, +1.49800E+0, +1.51200E+0, +1.52500E+0, +1.53900E+0, +1.55200E+0, +1.56600E+0, +1.57900E+0, +1.59300E+0, +1.60600E+0, +1.62000E+0, +1.63400E+0, +1.64700E+0, +1.66100E+0, +1.67400E+0, +1.68800E+0, +1.70100E+0, +1.71500E+0, +1.72800E+0, +1.74200E+0, +1.75500E+0, +1.76900E+0, +1.78300E+0, +1.79600E+0, +1.81000E+0, +1.82300E+0, +1.83700E+0, +1.85000E+0, +1.86400E+0, +1.87700E+0, +1.89100E+0, +1.90500E+0, +1.91800E+0, +1.93200E+0, +1.94500E+0, +1.95900E+0, +1.97200E+0, +1.98600E+0, +1.99900E+0, +2.01300E+0, +2.02600E+0, +2.04000E+0, +2.05400E+0, +2.06700E+0, +2.08100E+0, +2.09400E+0, +2.10800E+0, +2.12100E+0, +2.13500E+0, +2.14800E+0, +2.16200E+0, +2.17600E+0, +2.18900E+0, +2.20300E+0, +2.21600E+0, +2.23000E+0, +2.24300E+0, +2.25700E+0, +2.27000E+0, +2.28400E+0, +2.29700E+0, +2.31100E+0, +2.32500E+0, +2.33800E+0, +2.35200E+0, +2.36500E+0, +2.37900E+0, +2.39200E+0, +2.40600E+0, +2.41900E+0, +2.43300E+0, +2.44600E+0, +2.46000E+0, +2.47400E+0, +2.48700E+0, +2.50100E+0, +2.51400E+0, +2.52800E+0])*1000. # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.43200E-1, +1.42600E-1, +1.42000E-1, +1.41400E-1, +1.40800E-1, +1.40200E-1, +1.39600E-1, +1.39000E-1, +1.38400E-1, +1.37800E-1, +1.37100E-1, +1.36500E-1, +1.35900E-1, +1.35300E-1, +1.34700E-1, +1.34100E-1, +1.33500E-1, +1.32900E-1, +1.32300E-1, +1.31700E-1, +1.31100E-1, +1.30500E-1, +1.29900E-1, +1.29300E-1, +1.28700E-1, +1.28000E-1, +1.27400E-1, +1.26800E-1, +1.26200E-1, +1.25600E-1, +1.25000E-1, +1.24400E-1, +1.23800E-1, +1.23200E-1, +1.22600E-1, +1.22000E-1, +1.21400E-1, +1.20800E-1, +1.20200E-1, +1.19600E-1, +1.18900E-1, +1.18300E-1, +1.17700E-1, +1.17100E-1, +1.16500E-1, +1.15900E-1, +1.15300E-1, +1.14700E-1, +1.14100E-1, +1.13500E-1, +1.12900E-1, +1.12300E-1, +1.11700E-1, +1.11100E-1, +1.10500E-1, +1.09800E-1, +1.09200E-1, +1.08600E-1, +1.08000E-1, +1.07400E-1, +1.06800E-1, +1.06200E-1, +1.05600E-1, +1.05000E-1, +1.04400E-1, +1.03800E-1, +1.03200E-1, +1.02600E-1, +1.02000E-1, +1.01400E-1, +1.00700E-1, +1.00100E-1, +9.95000E-2, +9.89000E-2, +9.83000E-2, +9.77000E-2, +9.71000E-2, +9.65000E-2, +9.59000E-2]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+3.83000E-1, +1.19000E-1, +5.92000E-2, +3.60000E-2, +2.44000E-2, +1.77000E-2, +1.35000E-2, +1.07000E-2, +8.68000E-3, +7.21000E-3, +6.09000E-3, +5.21000E-3, +4.52000E-3, +3.96000E-3, +3.50000E-3, +3.12000E-3, +2.79000E-3, +2.52000E-3, +2.28000E-3, +2.08000E-3, +1.90000E-3, +1.75000E-3, +1.61000E-3, +1.49000E-3, +1.38000E-3, +1.29000E-3, +1.20000E-3, +1.12000E-3, +1.05000E-3, +9.86000E-4, +9.28000E-4, +8.74000E-4, +8.25000E-4, +7.79000E-4, +7.38000E-4, +6.99000E-4, +6.64000E-4, +6.31000E-4, +6.00000E-4, +5.72000E-4, +5.45000E-4, +5.20000E-4, +4.97000E-4, +4.75000E-4, +4.55000E-4, +4.36000E-4, +4.18000E-4, +4.01000E-4, +3.85000E-4, +3.70000E-4, +3.55000E-4, +3.42000E-4, +3.29000E-4, +3.17000E-4, +3.05000E-4, +2.95000E-4, +2.84000E-4, +2.74000E-4, +2.65000E-4, +2.56000E-4, +2.47000E-4, +2.39000E-4, +2.31000E-4, +2.24000E-4, +2.17000E-4, +2.10000E-4, +2.03000E-4, +1.97000E-4, +1.91000E-4, +1.85000E-4, +1.80000E-4, +1.75000E-4, +1.69000E-4, +1.65000E-4, +1.60000E-4, +1.55000E-4, +1.51000E-4, +1.47000E-4, +1.43000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+9.60000E-1, +1.05000E+0, +1.14000E+0, +1.24000E+0, +1.35000E+0, +1.47000E+0, +1.60000E+0, +1.74000E+0, +1.89000E+0, +2.06000E+0, +2.24000E+0, +2.44000E+0, +2.65000E+0, +2.88000E+0, +3.14000E+0, +3.41000E+0, +3.71000E+0, +4.03000E+0, +4.39000E+0, +4.77000E+0, +5.18000E+0, +5.63000E+0, +6.12000E+0, +6.66000E+0, +7.23000E+0, +7.86000E+0, +8.54000E+0, +9.27000E+0, +1.01000E+1, +1.10000E+1, +1.19000E+1, +1.29000E+1, +1.40000E+1, +1.52000E+1, +1.65000E+1, +1.80000E+1, +1.95000E+1, +2.12000E+1, +2.30000E+1, +2.49000E+1, +2.71000E+1, +2.94000E+1, +3.19000E+1, +3.46000E+1, +3.75000E+1, +4.07000E+1, +4.42000E+1, +4.79000E+1, +5.20000E+1, +5.64000E+1, +6.11000E+1, +6.63000E+1, +7.19000E+1, +7.79000E+1, +8.45000E+1, +9.15000E+1, +9.92000E+1, +1.08000E+2, +1.17000E+2, +1.26000E+2, +1.37000E+2, +1.48000E+2, +1.61000E+2, +1.74000E+2, +1.89000E+2, +2.04000E+2, +2.21000E+2, +2.40000E+2, +2.60000E+2, +2.81000E+2, +3.04000E+2, +3.30000E+2, +3.57000E+2, +3.86000E+2, +4.18000E+2, +4.53000E+2, +4.90000E+2, +5.30000E+2, +5.74000E+2])*1000. # Pa
|
|
|
|
|
self.viscosity.data = np.array([+3.83000E-1, +1.19000E-1, +5.92000E-2, +3.60000E-2, +2.44000E-2, +1.77000E-2, +1.35000E-2, +1.07000E-2, +8.68000E-3, +7.21000E-3, +6.09000E-3, +5.21000E-3, +4.52000E-3, +3.96000E-3, +3.50000E-3, +3.12000E-3, +2.79000E-3, +2.52000E-3, +2.28000E-3, +2.08000E-3, +1.90000E-3, +1.75000E-3, +1.61000E-3, +1.49000E-3, +1.38000E-3, +1.29000E-3, +1.20000E-3, +1.12000E-3, +1.05000E-3, +9.86000E-4, +9.28000E-4, +8.74000E-4, +8.25000E-4, +7.79000E-4, +7.38000E-4, +6.99000E-4, +6.64000E-4, +6.31000E-4, +6.00000E-4, +5.72000E-4, +5.45000E-4, +5.20000E-4, +4.97000E-4, +4.75000E-4, +4.55000E-4, +4.36000E-4, +4.18000E-4, +4.01000E-4, +3.85000E-4, +3.70000E-4, +3.55000E-4, +3.42000E-4, +3.29000E-4, +3.17000E-4, +3.05000E-4, +2.95000E-4, +2.84000E-4, +2.74000E-4, +2.65000E-4, +2.56000E-4, +2.47000E-4, +2.39000E-4, +2.31000E-4, +2.24000E-4, +2.17000E-4, +2.10000E-4, +2.03000E-4, +1.97000E-4, +1.91000E-4, +1.85000E-4, +1.80000E-4, +1.75000E-4, +1.69000E-4, +1.65000E-4, +1.60000E-4, +1.55000E-4, +1.51000E-4, +1.47000E-4, +1.43000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([+9.60000E-1, +1.05000E+0, +1.14000E+0, +1.24000E+0, +1.35000E+0, +1.47000E+0, +1.60000E+0, +1.74000E+0, +1.89000E+0, +2.06000E+0, +2.24000E+0, +2.44000E+0, +2.65000E+0, +2.88000E+0, +3.14000E+0, +3.41000E+0, +3.71000E+0, +4.03000E+0, +4.39000E+0, +4.77000E+0, +5.18000E+0, +5.63000E+0, +6.12000E+0, +6.66000E+0, +7.23000E+0, +7.86000E+0, +8.54000E+0, +9.27000E+0, +1.01000E+1, +1.10000E+1, +1.19000E+1, +1.29000E+1, +1.40000E+1, +1.52000E+1, +1.65000E+1, +1.80000E+1, +1.95000E+1, +2.12000E+1, +2.30000E+1, +2.49000E+1, +2.71000E+1, +2.94000E+1, +3.19000E+1, +3.46000E+1, +3.75000E+1, +4.07000E+1, +4.42000E+1, +4.79000E+1, +5.20000E+1, +5.64000E+1, +6.11000E+1, +6.63000E+1, +7.19000E+1, +7.79000E+1, +8.45000E+1, +9.15000E+1, +9.92000E+1, +1.08000E+2, +1.17000E+2, +1.26000E+2, +1.37000E+2, +1.48000E+2, +1.61000E+2, +1.74000E+2, +1.89000E+2, +2.04000E+2, +2.21000E+2, +2.40000E+2, +2.60000E+2, +2.81000E+2, +3.04000E+2, +3.30000E+2, +3.57000E+2, +3.86000E+2, +4.18000E+2, +4.53000E+2, +4.90000E+2, +5.30000E+2, +5.74000E+2])*1000. # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = self.Tmin
|
|
|
|
|
self.name = "T72"
|
|
|
|
|
self.TminPsat = self.Tmin
|
|
|
|
|
self.name = "T72"
|
|
|
|
|
self.description = "Therminol72"
|
|
|
|
|
self.reference = "Therminol Heat Transfer Reference Disk"
|
|
|
|
|
self.reference = "Therminol2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DowthermJ(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dowtherm J by Dow Chemicals
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -122,17 +122,17 @@ class DowthermJ(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+1.58400E+0, +1.59400E+0, +1.61600E+0, +1.63900E+0, +1.66300E+0, +1.68800E+0, +1.71400E+0, +1.74100E+0, +1.76900E+0, +1.79800E+0, +1.82800E+0, +1.85900E+0, +1.89000E+0, +1.92300E+0, +1.95500E+0, +1.98900E+0, +2.02300E+0, +2.05800E+0, +2.09300E+0, +2.12900E+0, +2.16500E+0, +2.20200E+0, +2.23900E+0, +2.27700E+0, +2.31500E+0, +2.35300E+0, +2.39200E+0, +2.39700E+0, +2.43200E+0, +2.47200E+0, +2.51200E+0, +2.55300E+0, +2.59400E+0, +2.63600E+0, +2.68000E+0, +2.72400E+0, +2.76900E+0, +2.81600E+0, +2.86600E+0, +2.91900E+0, +2.97600E+0, +3.04000E+0, +3.11500E+0, +3.20800E+0, +3.26500E+0])*1000. # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.48500E-1, +1.47500E-1, +1.45300E-1, +1.43200E-1, +1.41100E-1, +1.39000E-1, +1.36800E-1, +1.34700E-1, +1.32600E-1, +1.30500E-1, +1.28400E-1, +1.26200E-1, +1.24100E-1, +1.22000E-1, +1.19900E-1, +1.17700E-1, +1.15600E-1, +1.13500E-1, +1.11400E-1, +1.09300E-1, +1.07100E-1, +1.05000E-1, +1.02900E-1, +1.00800E-1, +9.87000E-2, +9.65000E-2, +9.44000E-2, +9.41000E-2, +9.23000E-2, +9.02000E-2, +8.80000E-2, +8.59000E-2, +8.38000E-2, +8.17000E-2, +7.96000E-2, +7.74000E-2, +7.53000E-2, +7.32000E-2, +7.11000E-2, +6.90000E-2, +6.68000E-2, +6.47000E-2, +6.26000E-2, +6.05000E-2, +5.94000E-2]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+8.43000E+0, +7.11000E+0, +5.12000E+0, +3.78000E+0, +2.88000E+0, +2.25000E+0, +1.80000E+0, +1.48000E+0, +1.23000E+0, +1.05000E+0, +9.10000E-1, +7.90000E-1, +7.00000E-1, +6.30000E-1, +5.60000E-1, +5.10000E-1, +4.70000E-1, +4.30000E-1, +4.00000E-1, +3.70000E-1, +3.50000E-1, +3.30000E-1, +3.10000E-1, +2.90000E-1, +2.80000E-1, +2.70000E-1, +2.50000E-1, +2.50000E-1, +2.40000E-1, +2.30000E-1, +2.30000E-1, +2.20000E-1, +2.10000E-1, +2.00000E-1, +2.00000E-1, +1.90000E-1, +1.80000E-1, +1.80000E-1, +1.70000E-1, +1.70000E-1, +1.70000E-1, +1.60000E-1, +1.60000E-1, +1.60000E-1, +1.50000E-1])/1000. # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +8.00000E-2, +1.10000E-1, +1.60000E-1, +2.30000E-1, +3.20000E-1, +4.30000E-1, +5.80000E-1, +7.60000E-1, +9.80000E-1, +1.01000E+0, +1.25000E+0, +1.58000E+0, +1.97000E+0, +2.43000E+0, +2.96000E+0, +3.59000E+0, +4.30000E+0, +5.13000E+0, +6.06000E+0, +7.12000E+0, +8.31000E+0, +9.64000E+0, +1.11300E+1, +1.27900E+1, +1.46400E+1, +1.66900E+1, +1.78000E+1])*1e5 # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +8.00000E-2, +1.10000E-1, +1.60000E-1, +2.30000E-1, +3.20000E-1, +4.30000E-1, +5.80000E-1, +7.60000E-1, +9.80000E-1, +1.01000E+0, +1.25000E+0, +1.58000E+0, +1.97000E+0, +2.43000E+0, +2.96000E+0, +3.59000E+0, +4.30000E+0, +5.13000E+0, +6.06000E+0, +7.12000E+0, +8.31000E+0, +9.64000E+0, +1.11300E+1, +1.27900E+1, +1.46400E+1, +1.66900E+1, +1.78000E+1])*1e5 # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 50 + 273.15
|
|
|
|
|
self.name = "DowJ"
|
|
|
|
|
self.TminPsat = 50 + 273.15
|
|
|
|
|
self.name = "DowJ"
|
|
|
|
|
self.description = "DowthermJ"
|
|
|
|
|
self.reference = "Dow Chemicals data sheet"
|
|
|
|
|
self.reference = "Dow1997"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DowthermQ(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dowtherm Q by Dow Chemicals
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
@@ -141,28 +141,28 @@ class DowthermQ(PureData):
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([-3.50000E+1, -3.00000E+1, -2.00000E+1, -1.00000E+1, +0.00000E+0, +1.00000E+1, +2.00000E+1, +3.00000E+1, +4.00000E+1, +5.00000E+1, +6.00000E+1, +7.00000E+1, +8.00000E+1, +9.00000E+1, +1.00000E+2, +1.10000E+2, +1.20000E+2, +1.30000E+2, +1.40000E+2, +1.50000E+2, +1.60000E+2, +1.70000E+2, +1.80000E+2, +1.90000E+2, +2.00000E+2, +2.10000E+2, +2.20000E+2, +2.30000E+2, +2.40000E+2, +2.50000E+2, +2.60000E+2, +2.70000E+2, +2.80000E+2, +2.90000E+2, +3.00000E+2, +3.10000E+2, +3.20000E+2, +3.30000E+2, +3.40000E+2, +3.50000E+2, +3.60000E+2])+273.15 # Kelvin
|
|
|
|
|
self.density.data = np.array([+1.01140E+3, +1.00320E+3, +9.95600E+2, +9.88000E+2, +9.80500E+2, +9.72900E+2, +9.65400E+2, +9.57800E+2, +9.50200E+2, +9.42700E+2, +9.35100E+2, +9.27600E+2, +9.20000E+2, +9.12400E+2, +9.04900E+2, +8.97300E+2, +8.89800E+2, +8.82200E+2, +8.74600E+2, +8.67100E+2, +8.59500E+2, +8.52000E+2, +8.44400E+2, +8.36800E+2, +8.29300E+2, +8.21700E+2, +8.14200E+2, +8.06600E+2, +7.99000E+2, +7.91500E+2, +7.83900E+2, +7.76400E+2, +7.68800E+2, +7.61200E+2, +7.53700E+2, +7.46100E+2, +7.38600E+2, +7.31000E+2, +7.23400E+2, +7.15900E+2, +7.08300E+2]) # kg/m3
|
|
|
|
|
self.specific_heat.data = np.array([+1.47800E+0, +1.49200E+0, +1.52500E+0, +1.55700E+0, +1.58900E+0, +1.62100E+0, +1.65300E+0, +1.68500E+0, +1.71600E+0, +1.74800E+0, +1.77900E+0, +1.81100E+0, +1.84200E+0, +1.87300E+0, +1.90400E+0, +1.93500E+0, +1.96600E+0, +1.99700E+0, +2.02700E+0, +2.05800E+0, +2.08800E+0, +2.11800E+0, +2.14800E+0, +2.17800E+0, +2.20800E+0, +2.23800E+0, +2.26800E+0, +2.29700E+0, +2.32700E+0, +2.35600E+0, +2.38600E+0, +2.41500E+0, +2.44400E+0, +2.47300E+0, +2.50200E+0, +2.53000E+0, +2.55900E+0, +2.58700E+0, +2.61600E+0, +2.64400E+0, +2.67200E+0])*1000. # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.28000E-1, +1.27700E-1, +1.26600E-1, +1.25500E-1, +1.24400E-1, +1.23200E-1, +1.22000E-1, +1.20800E-1, +1.19500E-1, +1.18300E-1, +1.17000E-1, +1.15600E-1, +1.14300E-1, +1.12900E-1, +1.11500E-1, +1.10100E-1, +1.08700E-1, +1.07200E-1, +1.05800E-1, +1.04300E-1, +1.02800E-1, +1.01300E-1, +9.98000E-2, +9.82000E-2, +9.67000E-2, +9.52000E-2, +9.36000E-2, +9.21000E-2, +9.05000E-2, +8.89000E-2, +8.74000E-2, +8.58000E-2, +8.43000E-2, +8.27000E-2, +8.11000E-2, +7.96000E-2, +7.80000E-2, +7.65000E-2, +7.49000E-2, +7.34000E-2, +7.19000E-2]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+4.66000E+1, +2.42000E+1, +1.61000E+1, +1.09000E+1, +7.56000E+0, +5.42000E+0, +4.00000E+0, +3.04000E+0, +2.37000E+0, +1.89000E+0, +1.54000E+0, +1.28000E+0, +1.07000E+0, +9.20000E-1, +8.00000E-1, +7.00000E-1, +6.20000E-1, +5.50000E-1, +5.00000E-1, +4.50000E-1, +4.10000E-1, +3.80000E-1, +3.50000E-1, +3.30000E-1, +3.10000E-1, +2.90000E-1, +2.70000E-1, +2.60000E-1, +2.40000E-1, +2.30000E-1, +2.20000E-1, +2.10000E-1, +2.00000E-1, +1.90000E-1, +1.90000E-1, +1.80000E-1, +1.70000E-1, +1.70000E-1, +1.60000E-1, +1.60000E-1, +1.50000E-1])/1000. # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +7.00000E-2, +9.00000E-2, +1.30000E-1, +1.70000E-1, +2.30000E-1, +3.10000E-1, +4.00000E-1, +5.10000E-1, +6.40000E-1, +8.10000E-1, +1.00000E+0, +1.24000E+0, +1.51000E+0, +1.82000E+0, +2.19000E+0, +2.61000E+0, +3.09000E+0, +3.64000E+0, +4.25000E+0, +4.95000E+0])*1e5 # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, +5.00000E-3, +1.00000E-2, +2.00000E-2, +3.00000E-2, +5.00000E-2, +7.00000E-2, +9.00000E-2, +1.30000E-1, +1.70000E-1, +2.30000E-1, +3.10000E-1, +4.00000E-1, +5.10000E-1, +6.40000E-1, +8.10000E-1, +1.00000E+0, +1.24000E+0, +1.51000E+0, +1.82000E+0, +2.19000E+0, +2.61000E+0, +3.09000E+0, +3.64000E+0, +4.25000E+0, +4.95000E+0])*1e5 # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 120 + 273.15
|
|
|
|
|
self.name = "DowQ"
|
|
|
|
|
self.TminPsat = 120 + 273.15
|
|
|
|
|
self.name = "DowQ"
|
|
|
|
|
self.description = "DowthermQ"
|
|
|
|
|
self.reference = "Dow Chemicals data sheet"
|
|
|
|
|
self.reference = "Dow1997"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Texatherm22(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Texatherm 22 by Texaco
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -173,20 +173,20 @@ class Texatherm22(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+1.81000E+0, +1.95000E+0, +1.99000E+0, +2.18000E+0, +2.36000E+0, +2.54000E+0, +2.72000E+0, +2.90000E+0, +3.08000E+0])*1e3 # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+1.35000E-1, +1.32000E-1, +1.32000E-1, +1.28000E-1, +1.25000E-1, +1.21000E-1, +1.17100E-1, +1.13000E-1, +1.10000E-1]) # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+4.19760E+2, np.NAN, +2.31688E+1, np.NAN, +2.09601E+0, +1.26072E+0, np.NAN, np.NAN, np.NAN])/1000. # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, +5.3300E-10, +4.00000E-8, +2.67000E-7, +2.27000E-5, +4.67000E-4, +6.67000E-3, +2.13000E-2, +5.33000E-2])*1e5 # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, +5.3300E-10, +4.00000E-8, +2.67000E-7, +2.27000E-5, +4.67000E-4, +6.67000E-3, +2.13000E-2, +5.33000E-2])*1e5 # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 40 + 273.15
|
|
|
|
|
self.name = "TX22"
|
|
|
|
|
self.TminPsat = 40 + 273.15
|
|
|
|
|
self.name = "TX22"
|
|
|
|
|
self.description = "Texatherm22"
|
|
|
|
|
self.reference = "Texaco data sheet"
|
|
|
|
|
self.reference = "Chevron2004"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SylthermXLT(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Syltherm XLT by Dow Chemicals
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
@@ -200,19 +200,19 @@ class SylthermXLT(PureData):
|
|
|
|
|
self.viscosity.data = np.array([+7.86100E+1, +5.01300E+1, +3.48600E+1, +2.58300E+1, +2.00400E+1, +1.60800E+1, +1.32200E+1, +1.10500E+1, +9.35600E+0, +7.99400E+0, +6.87900E+0, +5.95600E+0, +5.18400E+0, +4.53500E+0, +3.98600E+0, +3.52100E+0, +3.12600E+0, +2.78800E+0, +2.49900E+0, +2.25000E+0, +2.03500E+0, +1.84900E+0, +1.68700E+0, +1.54500E+0, +1.41900E+0, +1.30900E+0, +1.21000E+0, +1.12200E+0, +1.04300E+0, +9.72000E-1, +9.08000E-1, +8.49000E-1, +7.96000E-1, +7.48000E-1, +7.05000E-1, +6.65000E-1, +6.28000E-1, +5.95000E-1, +5.64000E-1, +5.36000E-1, +5.11000E-1, +4.87000E-1, +4.65000E-1, +4.45000E-1, +4.26000E-1, +4.09000E-1, +3.93000E-1, +3.77000E-1, +3.63000E-1, +3.50000E-1, +3.37000E-1, +3.25000E-1, +3.14000E-1, +3.03000E-1, +2.93000E-1, +2.84000E-1, +2.75000E-1, +2.66000E-1, +2.58000E-1, +2.51000E-1, +2.44000E-1, +2.38000E-1, +2.32000E-1, +2.26000E-1, +2.20000E-1, +2.15000E-1, +2.09000E-1, +2.04000E-1, +1.99000E-1, +1.94000E-1, +1.89000E-1, +1.85000E-1, +1.82000E-1])/1000. # Pa-s
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = self.Tmax
|
|
|
|
|
self.name = "XLT"
|
|
|
|
|
self.TminPsat = self.Tmax
|
|
|
|
|
self.name = "XLT"
|
|
|
|
|
self.description = "SylthermXLT"
|
|
|
|
|
self.reference = "Dow Chemicals data sheet"
|
|
|
|
|
self.reference = "Dow1997"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HC50(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dynalene HC-50
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -223,22 +223,22 @@ class HC50(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+2.56300E+3,+2.58300E+3,+2.60200E+3,+2.62200E+3,+2.64200E+3,+2.66100E+3,+2.68100E+3,+2.70100E+3,+2.72000E+3,+2.74000E+3,+2.76000E+3,+2.78000E+3,+2.79900E+3,+2.81900E+3,+2.83900E+3,+2.85800E+3,+2.87800E+3,+2.89800E+3,+2.91700E+3,+2.93700E+3,+2.95700E+3,+2.97700E+3,+2.99600E+3,+3.01600E+3,+3.03600E+3,+3.05500E+3,+3.07500E+3]) # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+4.35000E+2,+4.45000E+2,+4.55000E+2,+4.65000E+2,+4.75000E+2,+4.85000E+2,+4.95000E+2,+5.05000E+2,+5.15000E+2,+5.25000E+2,+5.35000E+2,+5.45000E+2,+5.55000E+2,+5.65000E+2,+5.75000E+2,+5.85000E+2,+5.95000E+2,+6.05000E+2,+6.15000E+2,+6.25000E+2,+6.35000E+2,+6.45000E+2,+6.55000E+2,+6.65000E+2,+6.75000E+2,+6.85000E+2,+6.94500E+2])/1e3 # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+3.84000E-2,+2.04000E-2,+1.25000E-2,+8.40000E-3,+5.99000E-3,+4.70000E-3,+3.80000E-3,+3.20000E-3,+2.70000E-3,+2.40000E-3,+2.10000E-3,+1.80000E-3,+1.60000E-3,+1.50000E-3,+1.30000E-3,+1.20000E-3,+1.10000E-3,+1.00000E-3,+9.40000E-4,+8.70000E-4,+8.10000E-4,+7.60000E-4,+7.10000E-4,+6.60000E-4,+6.20000E-4,+5.80000E-4,+5.50000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.58579E+3,+1.93053E+3,+3.10264E+3,+5.58475E+3,+9.85950E+3,+1.64785E+4,+2.60622E+4,+3.93691E+4,+5.72954E+4,+8.06687E+4,+1.11695E+5,+1.50995E+5,+2.00637E+5,+2.63380E+5,+3.41290E+5,+4.36438E+5,+5.53649E+5,+6.95681E+5,+8.67360E+5,+1.07282E+6]) # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.58579E+3,+1.93053E+3,+3.10264E+3,+5.58475E+3,+9.85950E+3,+1.64785E+4,+2.60622E+4,+3.93691E+4,+5.72954E+4,+8.06687E+4,+1.11695E+5,+1.50995E+5,+2.00637E+5,+2.63380E+5,+3.41290E+5,+4.36438E+5,+5.53649E+5,+6.95681E+5,+8.67360E+5,+1.07282E+6]) # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.name = "HC50"
|
|
|
|
|
self.description = "Dynalene "+ self.name
|
|
|
|
|
self.reference = "Dynalene data sheet"
|
|
|
|
|
self.reference = "Dynalene2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HC40(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dynalene HC-40
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -249,22 +249,22 @@ class HC40(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+2.80000E+3,+2.82000E+3,+2.84000E+3,+2.87000E+3,+2.89000E+3,+2.91000E+3,+2.93000E+3,+2.96000E+3,+2.98000E+3,+3.00000E+3,+3.03000E+3,+3.05000E+3,+3.07000E+3,+3.09000E+3,+3.12000E+3,+3.14000E+3,+3.16000E+3,+3.19000E+3,+3.21000E+3,+3.23000E+3,+3.25000E+3,+3.27000E+3,+3.28000E+3,+3.30000E+3,+3.32000E+3,+3.35000E+3]) # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+4.49000E+2,+4.59000E+2,+4.69000E+2,+4.79000E+2,+4.89000E+2,+4.99000E+2,+5.09000E+2,+5.19000E+2,+5.29000E+2,+5.39000E+2,+5.49000E+2,+5.59000E+2,+5.69000E+2,+5.79000E+2,+5.89000E+2,+5.99000E+2,+6.09000E+2,+6.19000E+2,+6.29000E+2,+6.39000E+2,+6.49000E+2,+6.54000E+2,+6.59000E+2,+6.69000E+2,+6.79000E+2,+6.89000E+2])/1e3 # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+1.49000E-2,+9.20000E-3,+6.50000E-3,+4.90000E-3,+3.90000E-3,+3.20000E-3,+2.70000E-3,+2.30000E-3,+1.96000E-3,+1.70000E-3,+1.50000E-3,+1.40000E-3,+1.20000E-3,+1.10000E-3,+9.90000E-4,+9.10000E-4,+8.30000E-4,+7.70000E-4,+7.10000E-4,+6.60000E-4,+6.10000E-4,+5.90000E-4,+5.70000E-4,+5.30000E-4,+5.00000E-4,+4.70000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.51685E+3,+2.20632E+3,+3.79212E+3,+6.68791E+3,+1.15142E+4,+1.87537E+4,+2.92338E+4,+4.37817E+4,+6.35007E+4,+8.96318E+4,+1.23416E+5,+1.66853E+5,+2.22701E+5,+2.92338E+5,+3.79212E+5,+4.85391E+5,+6.16391E+5,+7.74971E+5,+9.65955E+5,+1.19417E+6]) # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.51685E+3,+2.20632E+3,+3.79212E+3,+6.68791E+3,+1.15142E+4,+1.87537E+4,+2.92338E+4,+4.37817E+4,+6.35007E+4,+8.96318E+4,+1.23416E+5,+1.66853E+5,+2.22701E+5,+2.92338E+5,+3.79212E+5,+4.85391E+5,+6.16391E+5,+7.74971E+5,+9.65955E+5,+1.19417E+6]) # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.name = "HC40"
|
|
|
|
|
self.description = "Dynalene "+ self.name
|
|
|
|
|
self.reference = "Dynalene data sheet"
|
|
|
|
|
self.reference = "Dynalene2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HC30(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dynalene HC-30
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -275,22 +275,22 @@ class HC30(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+2.96100E+3,+2.98400E+3,+3.00700E+3,+3.03100E+3,+3.05400E+3,+3.07700E+3,+3.10000E+3,+3.12300E+3,+3.14600E+3,+3.16900E+3,+3.19200E+3,+3.21500E+3,+3.23800E+3,+3.26200E+3,+3.28500E+3,+3.30800E+3,+3.33100E+3,+3.35400E+3,+3.37700E+3,+3.40000E+3,+3.42300E+3,+3.44600E+3,+3.46900E+3,+3.49300E+3,+3.51600E+3]) # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+4.69000E+2,+4.79000E+2,+4.89000E+2,+4.99000E+2,+5.09000E+2,+5.19000E+2,+5.29000E+2,+5.39000E+2,+5.49000E+2,+5.59000E+2,+5.69000E+2,+5.79000E+2,+5.89000E+2,+5.99000E+2,+6.09000E+2,+6.19000E+2,+6.29000E+2,+6.39000E+2,+6.49000E+2,+6.59000E+2,+6.69000E+2,+6.79000E+2,+6.89000E+2,+6.99000E+2,+7.09000E+2])/1e3 # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+7.00000E-3,+5.50000E-3,+4.50000E-3,+3.70000E-3,+3.00000E-3,+2.50000E-3,+2.20000E-3,+1.90000E-3,+1.60000E-3,+1.40000E-3,+1.30000E-3,+1.10000E-3,+9.90000E-4,+8.90000E-4,+8.00000E-4,+7.30000E-4,+6.70000E-4,+6.10000E-4,+5.70000E-4,+5.20000E-4,+4.80000E-4,+4.50000E-4,+4.20000E-4,+3.90000E-4,+3.70000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.79264E+3,+2.41317E+3,+3.99896E+3,+7.17055E+3,+1.24795E+4,+2.06153E+4,+3.23364E+4,+4.86770E+4,+7.10160E+4,+9.99740E+4,+1.37895E+5,+1.86158E+5,+2.47522E+5,+3.24743E+5,+4.20580E+5,+5.39170E+5,+6.83960E+5,+8.59087E+5,+1.07145E+6,+1.32517E+6]) # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,+1.79264E+3,+2.41317E+3,+3.99896E+3,+7.17055E+3,+1.24795E+4,+2.06153E+4,+3.23364E+4,+4.86770E+4,+7.10160E+4,+9.99740E+4,+1.37895E+5,+1.86158E+5,+2.47522E+5,+3.24743E+5,+4.20580E+5,+5.39170E+5,+6.83960E+5,+8.59087E+5,+1.07145E+6,+1.32517E+6]) # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.name = "HC30"
|
|
|
|
|
self.description = "Dynalene "+ self.name
|
|
|
|
|
self.reference = "Dynalene data sheet"
|
|
|
|
|
self.reference = "Dynalene2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HC20(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dynalene HC-20
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -301,22 +301,22 @@ class HC20(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+3.11700E+3,+3.14100E+3,+3.16400E+3,+3.18800E+3,+3.21200E+3,+3.23500E+3,+3.25900E+3,+3.28200E+3,+3.30600E+3,+3.33000E+3,+3.35300E+3,+3.37700E+3,+3.40000E+3,+3.42400E+3,+3.44800E+3,+3.47100E+3,+3.49500E+3,+3.51800E+3,+3.54200E+3,+3.56600E+3,+3.58900E+3,+3.61300E+3,+3.63600E+3,+3.66000E+3]) # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+4.83000E+2,+4.93000E+2,+5.03000E+2,+5.13000E+2,+5.23000E+2,+5.33000E+2,+5.43000E+2,+5.53000E+2,+5.63000E+2,+5.73000E+2,+5.83000E+2,+5.93000E+2,+6.03000E+2,+6.13000E+2,+6.23000E+2,+6.33000E+2,+6.43000E+2,+6.53000E+2,+6.63000E+2,+6.73000E+2,+6.83000E+2,+6.93000E+2,+7.03000E+2,+7.13000E+2])/1e3 # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+4.50000E-3,+3.60000E-3,+3.00000E-3,+2.50000E-3,+2.10000E-3,+1.80000E-3,+1.60000E-3,+1.40000E-3,+1.20000E-3,+1.10000E-3,+9.50000E-4,+8.50000E-4,+7.70000E-4,+7.00000E-4,+6.30000E-4,+5.80000E-4,+5.40000E-4,+4.90000E-4,+4.60000E-4,+4.30000E-4,+4.00000E-4,+3.70000E-4,+3.50000E-4,+3.30000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN,+2.06843E+3,+2.75790E+3,+4.55054E+3,+7.99792E+3,+1.37206E+4,+2.24769E+4,+3.52322E+4,+5.29517E+4,+7.72213E+4,+1.08937E+5,+1.50306E+5,+2.04085E+5,+2.71653E+5,+3.57148E+5,+4.62638E+5,+5.93639E+5,+7.52907E+5,+9.46650E+5,+1.18038E+6,+1.45962E+6]) # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN,+2.06843E+3,+2.75790E+3,+4.55054E+3,+7.99792E+3,+1.37206E+4,+2.24769E+4,+3.52322E+4,+5.29517E+4,+7.72213E+4,+1.08937E+5,+1.50306E+5,+2.04085E+5,+2.71653E+5,+3.57148E+5,+4.62638E+5,+5.93639E+5,+7.52907E+5,+9.46650E+5,+1.18038E+6,+1.45962E+6]) # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.name = "HC20"
|
|
|
|
|
self.description = "Dynalene "+ self.name
|
|
|
|
|
self.reference = "Dynalene data sheet"
|
|
|
|
|
self.reference = "Dynalene2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HC10(PureData):
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Dynalene HC-10
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
@@ -327,13 +327,238 @@ class HC10(PureData):
|
|
|
|
|
self.specific_heat.data = np.array([+3.24600E+3,+3.27100E+3,+3.29600E+3,+3.32000E+3,+3.34500E+3,+3.37000E+3,+3.39500E+3,+3.42000E+3,+3.44400E+3,+3.46900E+3,+3.49400E+3,+3.51900E+3,+3.54400E+3,+3.56800E+3,+3.59300E+3,+3.61800E+3,+3.64300E+3,+3.66800E+3,+3.69200E+3,+3.71700E+3,+3.74200E+3,+3.76700E+3,+3.79200E+3,+3.81100E+3]) # J/kg-K
|
|
|
|
|
self.conductivity.data = np.array([+4.94000E+2,+5.04000E+2,+5.14000E+2,+5.24000E+2,+5.34000E+2,+5.44000E+2,+5.54000E+2,+5.64000E+2,+5.74000E+2,+5.84000E+2,+5.94000E+2,+6.04000E+2,+6.14000E+2,+6.24000E+2,+6.34000E+2,+6.44000E+2,+6.54000E+2,+6.64000E+2,+6.74000E+2,+6.84000E+2,+6.94000E+2,+7.04000E+2,+7.14000E+2,+7.22000E+2])/1e3 # W/m-K
|
|
|
|
|
self.viscosity.data = np.array([+3.00000E-3,+2.50000E-3,+2.10000E-3,+1.80000E-3,+1.50000E-3,+1.30000E-3,+1.20000E-3,+1.00000E-3,+9.10000E-4,+8.10000E-4,+7.30000E-4,+6.60000E-4,+6.00000E-4,+5.50000E-4,+5.10000E-4,+4.70000E-4,+4.30000E-4,+4.00000E-4,+3.70000E-4,+3.50000E-4,+3.30000E-4,+3.10000E-4,+2.90000E-4,+2.80000E-4]) # Pa-s
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN,+2.27527E+3,+2.89580E+3,+4.75738E+3,+8.54950E+3,+1.48927E+4,+2.46143E+4,+3.87485E+4,+5.83986E+4,+8.48055E+4,+1.19969E+5,+1.65474E+5,+2.23390E+5,+2.97164E+5,+3.90243E+5,+5.05386E+5,+6.47418E+5,+8.20476E+5,+1.03146E+6,+1.28587E+6,+1.58993E+6,+1.87468E+6]) # Pa
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN,+2.27527E+3,+2.89580E+3,+4.75738E+3,+8.54950E+3,+1.48927E+4,+2.46143E+4,+3.87485E+4,+5.83986E+4,+8.48055E+4,+1.19969E+5,+1.65474E+5,+2.23390E+5,+2.97164E+5,+3.90243E+5,+5.05386E+5,+6.47418E+5,+8.20476E+5,+1.03146E+6,+1.28587E+6,+1.58993E+6,+1.87468E+6]) # Pa
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.TminPsat = 20+273.15
|
|
|
|
|
self.name = "HC10"
|
|
|
|
|
self.description = "Dynalene "+ self.name
|
|
|
|
|
self.reference = "Dynalene data sheet"
|
|
|
|
|
self.reference = "Dynalene2014"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Paratherm, see http://paracalc.paratherm.com
|
|
|
|
|
class PCR(PureData):
|
|
|
|
|
"""
|
|
|
|
|
The Paratherm CR (Patent Pending) heat transfer fluid provides predictable,
|
|
|
|
|
repeatable performance in cryogenically-driven processes. Consistent
|
|
|
|
|
properties improve productivity, and eliminate runaway coil freeze-ups.
|
|
|
|
|
10-cP viscosity @ -88 C (20-cP @ -96 C) brings higher efficiency at lower
|
|
|
|
|
temperatures. Ease of containment and handling allow greater latitude in
|
|
|
|
|
system design and component specification, and eliminate contamination and
|
|
|
|
|
costly clean-up.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([1.731500E+2,1.741500E+2,1.751500E+2,1.761500E+2,1.771500E+2,1.781500E+2,1.791500E+2,1.801500E+2,1.811500E+2,1.821500E+2,1.831500E+2,1.841500E+2,1.851500E+2,1.861500E+2,1.871500E+2,1.881500E+2,1.891500E+2,1.901500E+2,1.911500E+2,1.921500E+2,1.931500E+2,1.941500E+2,1.951500E+2,1.961500E+2,1.971500E+2,1.981500E+2,1.991500E+2,2.001500E+2,2.011500E+2,2.021500E+2,2.031500E+2,2.041500E+2,2.051500E+2,2.061500E+2,2.071500E+2,2.081500E+2,2.091500E+2,2.101500E+2,2.111500E+2,2.121500E+2,2.131500E+2,2.141500E+2,2.151500E+2,2.161500E+2,2.171500E+2,2.181500E+2,2.191500E+2,2.201500E+2,2.211500E+2,2.221500E+2,2.231500E+2,2.241500E+2,2.251500E+2,2.261500E+2,2.271500E+2,2.281500E+2,2.291500E+2,2.301500E+2,2.311500E+2,2.321500E+2,2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2])
|
|
|
|
|
self.density.data = np.array([9.490000E+2,9.480000E+2,9.470000E+2,9.460000E+2,9.450000E+2,9.440000E+2,9.430000E+2,9.420000E+2,9.410000E+2,9.400000E+2,9.390000E+2,9.380000E+2,9.370000E+2,9.360000E+2,9.350000E+2,9.340000E+2,9.330000E+2,9.320000E+2,9.310000E+2,9.300000E+2,9.290000E+2,9.280000E+2,9.270000E+2,9.260000E+2,9.250000E+2,9.240000E+2,9.230000E+2,9.220000E+2,9.210000E+2,9.200000E+2,9.190000E+2,9.180000E+2,9.170000E+2,9.160000E+2,9.150000E+2,9.140000E+2,9.130000E+2,9.120000E+2,9.110000E+2,9.100000E+2,9.090000E+2,9.080000E+2,9.070000E+2,9.060000E+2,9.050000E+2,9.040000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.710000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.640000E+2,6.630000E+2,6.620000E+2,6.610000E+2,6.600000E+2,6.590000E+2,6.580000E+2,6.570000E+2,6.560000E+2,6.550000E+2,6.540000E+2,6.530000E+2,6.520000E+2,6.510000E+2,6.500000E+2,6.490000E+2,6.480000E+2,6.470000E+2,6.460000E+2,6.450000E+2,6.440000E+2,6.430000E+2,6.420000E+2,6.410000E+2,6.400000E+2,6.390000E+2,6.380000E+2,6.370000E+2,6.360000E+2,6.350000E+2,6.340000E+2,6.330000E+2,6.320000E+2,6.310000E+2,6.300000E+2,6.290000E+2,6.280000E+2,6.270000E+2])
|
|
|
|
|
self.viscosity.data = np.array([3.400000E-5,3.300000E-5,3.100000E-5,3.000000E-5,2.800000E-5,2.700000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.100000E-5,9.900000E-6,9.100000E-6,8.300000E-6,7.500000E-6,6.800000E-6,6.100000E-6,5.500000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.700000E-7,9.600000E-7,9.400000E-7,9.300000E-7,9.100000E-7,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.700000E-7,9.400000E-7,9.200000E-7,9.000000E-7,8.800000E-7,8.600000E-7,8.400000E-7,8.200000E-7,8.000000E-7,7.900000E-7,7.700000E-7,7.500000E-7,7.300000E-7,7.200000E-7,7.000000E-7,6.800000E-7,6.700000E-7,6.500000E-7,6.400000E-7,6.200000E-7,6.100000E-7,5.900000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.100000E-7,5.000000E-7,4.900000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.900000E-7,3.900000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.500000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.500000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.100000E+4,1.200000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.600000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.000000E+4,5.100000E+4,5.200000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.600000E+4,5.700000E+4,5.800000E+4,5.900000E+4,6.000000E+4,6.100000E+4,6.200000E+4,6.300000E+4,6.400000E+4,6.600000E+4,6.700000E+4,6.800000E+4,6.900000E+4,7.000000E+4,7.100000E+4,7.200000E+4,7.300000E+4,7.500000E+4,7.600000E+4,7.700000E+4,7.800000E+4,7.900000E+4,8.000000E+4,8.200000E+4,8.300000E+4,8.400000E+4,8.500000E+4,8.600000E+4,8.800000E+4,8.900000E+4,9.000000E+4,9.100000E+4,9.200000E+4,9.400000E+4,9.500000E+4,9.600000E+4,9.700000E+4,9.900000E+4,1.000000E+5,1.010000E+5,1.030000E+5,1.040000E+5,1.050000E+5,1.060000E+5,1.080000E+5,1.090000E+5,1.100000E+5,1.120000E+5,1.130000E+5,1.140000E+5,1.160000E+5,1.170000E+5,1.180000E+5,1.200000E+5,1.210000E+5,1.220000E+5,1.240000E+5,1.250000E+5,1.270000E+5,1.280000E+5,1.290000E+5,1.310000E+5,1.320000E+5,1.340000E+5,1.350000E+5,1.370000E+5,1.380000E+5,1.390000E+5,1.410000E+5,1.420000E+5,1.440000E+5,1.450000E+5,1.470000E+5,1.480000E+5,1.500000E+5,1.510000E+5])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PCR"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PGLT(PureData):
|
|
|
|
|
"""
|
|
|
|
|
Heat transfer fluid Paratherm GLT The Paratherm GLT heat transfer fluid is
|
|
|
|
|
an alkylated-aromatic based heat transfer fluid formulated for closed-loop
|
|
|
|
|
liquid-phase heating systems to 550 F using fired heaters and to 575 F in
|
|
|
|
|
waste-heat recovery systems.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
|
|
|
|
|
self.density.data = np.array([9.020000E+2,9.010000E+2,9.000000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.860000E+2,8.850000E+2,8.840000E+2,8.840000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.790000E+2,8.780000E+2,8.770000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.550000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.250000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.720000E+2])
|
|
|
|
|
self.viscosity.data = np.array([5.620000E-4,5.120000E-4,4.660000E-4,4.240000E-4,3.860000E-4,3.500000E-4,3.180000E-4,2.890000E-4,2.620000E-4,2.380000E-4,2.170000E-4,1.980000E-4,1.810000E-4,1.660000E-4,1.530000E-4,1.380000E-4,1.300000E-4,1.230000E-4,1.160000E-4,1.090000E-4,1.020000E-4,9.600000E-5,9.100000E-5,8.500000E-5,8.000000E-5,7.600000E-5,7.100000E-5,6.700000E-5,6.300000E-5,5.900000E-5,5.600000E-5,5.300000E-5,5.000000E-5,4.700000E-5,4.400000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.600000E-5,3.400000E-5,3.200000E-5,3.100000E-5,2.900000E-5,2.800000E-5,2.700000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.900000E-6,9.600000E-6,9.200000E-6,8.900000E-6,8.600000E-6,8.300000E-6,8.100000E-6,7.800000E-6,7.600000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.700000E-6,6.500000E-6,6.300000E-6,6.100000E-6,5.900000E-6,5.800000E-6,5.600000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.300000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.400000E+4,2.500000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.700000E+4,2.800000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.600000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PGLT"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PHE(PureData):
|
|
|
|
|
"""
|
|
|
|
|
The Paratherm HE high flash and fire point heat transfer fluid is rated for
|
|
|
|
|
an optimal service range of 150 F to 600 F (66 C to 316 C). Engineered for
|
|
|
|
|
higher thermal and oxidative stability, it is efficient and cost effective.
|
|
|
|
|
Its greater purity allows it to strongly resist degradation while holding
|
|
|
|
|
thermal properties and maintaining efficiency. This provides for low
|
|
|
|
|
maintenance and solid performance over an extended operating life.
|
|
|
|
|
Non-toxic, the HE fluid is safe to use and easy to dispose. It can be
|
|
|
|
|
safely combined with spent lubricating oils and recycled locally.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2,5.891500E+2,5.901500E+2,5.911500E+2,5.921500E+2,5.931500E+2,5.941500E+2,5.951500E+2,5.961500E+2,5.971500E+2,5.981500E+2,5.991500E+2,6.001500E+2,6.011500E+2,6.021500E+2,6.031500E+2])
|
|
|
|
|
self.density.data = np.array([8.750000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.500000E+2,8.490000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.450000E+2,8.440000E+2,8.430000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.020000E+2,8.010000E+2,8.000000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.840000E+2,7.830000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.860000E+2,6.850000E+2,6.840000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.720000E+2,6.710000E+2,6.700000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.650000E+2,6.640000E+2])
|
|
|
|
|
self.viscosity.data = np.array([4.070000E-4,3.770000E-4,3.490000E-4,3.230000E-4,2.990000E-4,2.760000E-4,2.560000E-4,2.370000E-4,2.190000E-4,2.030000E-4,1.880000E-4,1.740000E-4,1.610000E-4,1.490000E-4,1.380000E-4,1.270000E-4,1.180000E-4,1.140000E-4,1.050000E-4,9.700000E-5,9.000000E-5,8.400000E-5,7.800000E-5,7.400000E-5,6.900000E-5,6.500000E-5,6.200000E-5,5.800000E-5,5.500000E-5,5.300000E-5,5.000000E-5,4.800000E-5,4.600000E-5,4.400000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.700000E-5,3.500000E-5,3.400000E-5,3.300000E-5,3.200000E-5,3.100000E-5,3.000000E-5,2.900000E-5,2.800000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.800000E-6,9.500000E-6,9.300000E-6,9.000000E-6,8.800000E-6,8.500000E-6,8.300000E-6,8.100000E-6,7.900000E-6,7.700000E-6,7.500000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.800000E-6,6.600000E-6,6.500000E-6,6.300000E-6,6.200000E-6,6.000000E-6,5.900000E-6,5.800000E-6,5.600000E-6,5.500000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.100000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.600000E-6,3.500000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PHE"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PHR(PureData):
|
|
|
|
|
"""
|
|
|
|
|
The Paratherm HR Heat Transfer Fluid is an alkylated-aromatic based heat
|
|
|
|
|
transfer fluid formulated for closed loop liquid phase heating to 650 F in
|
|
|
|
|
fired heaters and 675 F in waste heat recovery and full convection heaters.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2,5.891500E+2,5.901500E+2,5.911500E+2,5.921500E+2,5.931500E+2,5.941500E+2,5.951500E+2,5.961500E+2,5.971500E+2,5.981500E+2,5.991500E+2,6.001500E+2,6.011500E+2,6.021500E+2,6.031500E+2,6.041500E+2,6.051500E+2,6.061500E+2,6.071500E+2,6.081500E+2,6.091500E+2,6.101500E+2,6.111500E+2,6.121500E+2,6.131500E+2,6.141500E+2,6.151500E+2,6.161500E+2,6.171500E+2,6.181500E+2,6.191500E+2,6.201500E+2,6.211500E+2,6.221500E+2,6.231500E+2,6.241500E+2,6.251500E+2,6.261500E+2,6.271500E+2,6.281500E+2,6.291500E+2,6.301500E+2,6.311500E+2,6.321500E+2,6.331500E+2,6.341500E+2,6.351500E+2,6.361500E+2,6.371500E+2,6.381500E+2,6.391500E+2,6.401500E+2,6.411500E+2,6.421500E+2,6.431500E+2])
|
|
|
|
|
self.density.data = np.array([9.870000E+2,9.860000E+2,9.850000E+2,9.850000E+2,9.840000E+2,9.830000E+2,9.820000E+2,9.810000E+2,9.810000E+2,9.800000E+2,9.790000E+2,9.780000E+2,9.780000E+2,9.770000E+2,9.760000E+2,9.750000E+2,9.750000E+2,9.740000E+2,9.730000E+2,9.720000E+2,9.710000E+2,9.710000E+2,9.700000E+2,9.690000E+2,9.680000E+2,9.680000E+2,9.670000E+2,9.660000E+2,9.650000E+2,9.650000E+2,9.640000E+2,9.630000E+2,9.620000E+2,9.610000E+2,9.610000E+2,9.600000E+2,9.590000E+2,9.580000E+2,9.580000E+2,9.570000E+2,9.560000E+2,9.550000E+2,9.550000E+2,9.540000E+2,9.530000E+2,9.520000E+2,9.510000E+2,9.510000E+2,9.500000E+2,9.490000E+2,9.480000E+2,9.480000E+2,9.470000E+2,9.460000E+2,9.450000E+2,9.450000E+2,9.440000E+2,9.430000E+2,9.420000E+2,9.410000E+2,9.410000E+2,9.400000E+2,9.390000E+2,9.380000E+2,9.380000E+2,9.370000E+2,9.360000E+2,9.350000E+2,9.350000E+2,9.340000E+2,9.330000E+2,9.320000E+2,9.310000E+2,9.310000E+2,9.300000E+2,9.290000E+2,9.280000E+2,9.280000E+2,9.270000E+2,9.260000E+2,9.250000E+2,9.250000E+2,9.240000E+2,9.230000E+2,9.220000E+2,9.210000E+2,9.210000E+2,9.200000E+2,9.190000E+2,9.180000E+2,9.180000E+2,9.170000E+2,9.160000E+2,9.150000E+2,9.150000E+2,9.140000E+2,9.130000E+2,9.120000E+2,9.110000E+2,9.110000E+2,9.100000E+2,9.090000E+2,9.080000E+2,9.080000E+2,9.070000E+2,9.060000E+2,9.050000E+2,9.050000E+2,9.040000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.980000E+2,8.980000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.880000E+2,8.880000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.850000E+2,8.840000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.780000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.750000E+2,8.750000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.710000E+2,8.710000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.650000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.610000E+2,8.610000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.510000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.310000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.180000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.510000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.940000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.910000E+2])
|
|
|
|
|
self.viscosity.data = np.array([4.180000E-4,3.800000E-4,3.440000E-4,3.120000E-4,2.810000E-4,2.530000E-4,2.280000E-4,2.040000E-4,1.830000E-4,1.640000E-4,1.470000E-4,1.320000E-4,1.180000E-4,1.060000E-4,9.600000E-5,8.600000E-5,7.900000E-5,7.500000E-5,7.100000E-5,6.800000E-5,6.500000E-5,6.200000E-5,5.900000E-5,5.600000E-5,5.300000E-5,5.000000E-5,4.700000E-5,4.500000E-5,4.200000E-5,4.000000E-5,3.800000E-5,3.500000E-5,3.300000E-5,3.100000E-5,2.900000E-5,2.800000E-5,2.600000E-5,2.400000E-5,2.300000E-5,2.100000E-5,2.000000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.900000E-6,9.500000E-6,9.200000E-6,8.800000E-6,8.500000E-6,8.300000E-6,8.000000E-6,7.800000E-6,7.600000E-6,7.300000E-6,7.100000E-6,6.800000E-6,6.600000E-6,6.400000E-6,6.200000E-6,6.000000E-6,5.800000E-6,5.700000E-6,5.500000E-6,5.300000E-6,5.200000E-6,5.000000E-6,4.900000E-6,4.800000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.600000E-7,7.500000E-7,7.400000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.900000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.800000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.700000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.600000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.500000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.400000E-2,8.300000E-2])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.500000E+4,2.600000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,2.900000E+4,3.000000E+4,3.100000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.000000E+4,5.100000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.600000E+4,5.800000E+4,5.900000E+4,6.000000E+4,6.100000E+4,6.300000E+4,6.400000E+4,6.600000E+4,6.700000E+4,6.900000E+4,7.000000E+4,7.200000E+4,7.300000E+4,7.500000E+4,7.600000E+4,7.800000E+4,8.000000E+4,8.100000E+4,8.300000E+4,8.500000E+4,8.700000E+4,8.900000E+4,9.000000E+4,9.200000E+4,9.400000E+4,9.600000E+4,9.800000E+4,1.000000E+5,1.020000E+5,1.050000E+5,1.070000E+5,1.090000E+5,1.110000E+5,1.130000E+5,1.160000E+5,1.180000E+5,1.200000E+5,1.230000E+5,1.250000E+5,1.280000E+5,1.300000E+5,1.330000E+5,1.360000E+5,1.380000E+5,1.410000E+5,1.440000E+5,1.470000E+5,1.500000E+5,1.520000E+5,1.550000E+5,1.580000E+5,1.610000E+5,1.650000E+5,1.680000E+5,1.710000E+5,1.740000E+5,1.780000E+5,1.810000E+5,1.840000E+5,1.880000E+5,1.920000E+5,1.950000E+5])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PHR"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PLR(PureData):
|
|
|
|
|
"""
|
|
|
|
|
The Paratherm LR low-range heat transfer fluid is rated for service from
|
|
|
|
|
-40 F to 400 F (-40 C to 204 C). Non-aromatic, this non-toxic liquid is safe
|
|
|
|
|
to use and is easy to dispose. Tough and durable, the Paratherm LR fluid is
|
|
|
|
|
designed for a broad variety of cooling and heating applications. It is
|
|
|
|
|
engineered to provide extended performance under rugged operating
|
|
|
|
|
conditions, yet is easy and safe to handle.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([1.881500E+2,1.891500E+2,1.901500E+2,1.911500E+2,1.921500E+2,1.931500E+2,1.941500E+2,1.951500E+2,1.961500E+2,1.971500E+2,1.981500E+2,1.991500E+2,2.001500E+2,2.011500E+2,2.021500E+2,2.031500E+2,2.041500E+2,2.051500E+2,2.061500E+2,2.071500E+2,2.081500E+2,2.091500E+2,2.101500E+2,2.111500E+2,2.121500E+2,2.131500E+2,2.141500E+2,2.151500E+2,2.161500E+2,2.171500E+2,2.181500E+2,2.191500E+2,2.201500E+2,2.211500E+2,2.221500E+2,2.231500E+2,2.241500E+2,2.251500E+2,2.261500E+2,2.271500E+2,2.281500E+2,2.291500E+2,2.301500E+2,2.311500E+2,2.321500E+2,2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2])
|
|
|
|
|
self.density.data = np.array([8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.350000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.270000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.210000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.020000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.570000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.430000E+2,7.420000E+2,7.410000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.350000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.270000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.150000E+2,7.150000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.070000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.970000E+2,6.960000E+2,6.960000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.830000E+2,6.820000E+2,6.820000E+2,6.810000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.720000E+2,6.710000E+2,6.710000E+2,6.700000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.660000E+2,6.650000E+2,6.650000E+2,6.640000E+2,6.630000E+2,6.620000E+2,6.620000E+2,6.610000E+2,6.600000E+2,6.600000E+2,6.590000E+2,6.580000E+2,6.570000E+2,6.570000E+2,6.560000E+2,6.550000E+2,6.540000E+2,6.540000E+2,6.530000E+2,6.520000E+2,6.510000E+2,6.510000E+2,6.500000E+2,6.490000E+2,6.490000E+2,6.480000E+2,6.470000E+2,6.460000E+2,6.460000E+2,6.450000E+2,6.440000E+2,6.430000E+2,6.430000E+2,6.420000E+2,6.410000E+2,6.400000E+2,6.400000E+2,6.390000E+2,6.380000E+2,6.370000E+2,6.370000E+2,6.360000E+2,6.350000E+2,6.350000E+2,6.340000E+2,6.330000E+2,6.320000E+2,6.320000E+2,6.310000E+2,6.300000E+2,6.290000E+2,6.290000E+2,6.280000E+2,6.270000E+2,6.260000E+2,6.260000E+2,6.250000E+2,6.240000E+2,6.230000E+2,6.230000E+2,6.220000E+2,6.210000E+2,6.210000E+2,6.200000E+2,6.190000E+2,6.180000E+2,6.180000E+2,6.170000E+2,6.160000E+2,6.150000E+2,6.150000E+2,6.140000E+2,6.130000E+2,6.120000E+2,6.120000E+2,6.110000E+2,6.100000E+2,6.090000E+2,6.090000E+2,6.080000E+2,6.070000E+2])
|
|
|
|
|
self.viscosity.data = np.array([5.020000E-4,4.540000E-4,4.100000E-4,3.700000E-4,3.350000E-4,3.020000E-4,2.730000E-4,2.470000E-4,2.230000E-4,2.010000E-4,1.820000E-4,1.640000E-4,1.490000E-4,1.340000E-4,1.210000E-4,1.100000E-4,9.900000E-5,8.900000E-5,8.100000E-5,7.300000E-5,6.600000E-5,6.000000E-5,5.400000E-5,4.900000E-5,4.400000E-5,4.000000E-5,3.600000E-5,3.200000E-5,2.900000E-5,2.600000E-5,2.400000E-5,2.200000E-5,2.000000E-5,1.800000E-5,2.200000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,9.600000E-6,9.200000E-6,8.800000E-6,8.400000E-6,8.000000E-6,7.700000E-6,7.400000E-6,7.100000E-6,6.800000E-6,6.500000E-6,6.300000E-6,6.000000E-6,5.800000E-6,5.600000E-6,5.400000E-6,5.200000E-6,5.000000E-6,4.800000E-6,4.700000E-6,4.500000E-6,4.400000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.100000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.800000E-7,9.700000E-7,9.600000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.100000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.200000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.000000E-7,4.900000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,2.000000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.800000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.600000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.600000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.590000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.580000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.570000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.560000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.550000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.540000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.530000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.520000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.510000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.500000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.490000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.480000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.470000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.460000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.450000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.440000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.430000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.420000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.410000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.400000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.390000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.380000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.370000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.360000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1,1.350000E-1])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.300000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.700000E+4,4.800000E+4,5.000000E+4,5.100000E+4,5.300000E+4,5.500000E+4,5.700000E+4,6.000000E+4,6.200000E+4,6.400000E+4,6.600000E+4,6.800000E+4,7.000000E+4,7.200000E+4,7.400000E+4,7.600000E+4,7.800000E+4,8.000000E+4,8.200000E+4,8.400000E+4,8.600000E+4,8.800000E+4,8.900000E+4,9.100000E+4,9.300000E+4,9.500000E+4,9.700000E+4,9.800000E+4,1.000000E+5,1.020000E+5,1.030000E+5,1.050000E+5,1.070000E+5,1.080000E+5,1.100000E+5,1.110000E+5,1.130000E+5,1.150000E+5,1.160000E+5,1.180000E+5,1.190000E+5,1.210000E+5,1.220000E+5,1.230000E+5,1.250000E+5,1.260000E+5,1.270000E+5,1.290000E+5,1.300000E+5,1.310000E+5,1.330000E+5,1.340000E+5,1.350000E+5,1.360000E+5,1.380000E+5,1.390000E+5,1.400000E+5])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PLR"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PMR(PureData):
|
|
|
|
|
"""
|
|
|
|
|
Paratherm MR is a food grade (NSF Certified) single fluid heating and
|
|
|
|
|
cooling from 36 F to 550 F. Eliminates design and maintenance problems
|
|
|
|
|
caused by steam/chilled water temperature control systems. Quick low-
|
|
|
|
|
temperature start-ups.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([2.331500E+2,2.341500E+2,2.351500E+2,2.361500E+2,2.371500E+2,2.381500E+2,2.391500E+2,2.401500E+2,2.411500E+2,2.421500E+2,2.431500E+2,2.441500E+2,2.451500E+2,2.461500E+2,2.471500E+2,2.481500E+2,2.491500E+2,2.501500E+2,2.511500E+2,2.521500E+2,2.531500E+2,2.541500E+2,2.551500E+2,2.561500E+2,2.571500E+2,2.581500E+2,2.591500E+2,2.601500E+2,2.611500E+2,2.621500E+2,2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
|
|
|
|
|
self.density.data = np.array([8.680000E+2,8.670000E+2,8.650000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.570000E+2,8.550000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.510000E+2,8.490000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.450000E+2,8.430000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.180000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.040000E+2,8.020000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.860000E+2,7.860000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.720000E+2,7.720000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.640000E+2,7.640000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.530000E+2,7.530000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.490000E+2,7.490000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.450000E+2,7.450000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.390000E+2,7.390000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.330000E+2,7.330000E+2,7.320000E+2,7.310000E+2,7.310000E+2,7.300000E+2,7.290000E+2,7.290000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.210000E+2,7.200000E+2,7.190000E+2,7.190000E+2,7.180000E+2,7.170000E+2,7.170000E+2,7.160000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.130000E+2,7.120000E+2,7.110000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.090000E+2,7.080000E+2,7.070000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.010000E+2,7.000000E+2,7.000000E+2,6.990000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.940000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.920000E+2,6.910000E+2,6.910000E+2,6.910000E+2,6.900000E+2,6.900000E+2,6.890000E+2,6.890000E+2,6.890000E+2,6.880000E+2,6.880000E+2,6.870000E+2,6.870000E+2,6.870000E+2,6.860000E+2,6.860000E+2,6.860000E+2,6.850000E+2,6.850000E+2,6.840000E+2,6.840000E+2,6.840000E+2,6.830000E+2,6.830000E+2,6.830000E+2,6.820000E+2,6.820000E+2,6.820000E+2,6.820000E+2,6.810000E+2,6.810000E+2,6.810000E+2,6.800000E+2,6.800000E+2,6.800000E+2,6.790000E+2,6.790000E+2,6.790000E+2,6.790000E+2,6.780000E+2,6.780000E+2,6.780000E+2,6.780000E+2,6.770000E+2,6.770000E+2,6.770000E+2,6.770000E+2,6.760000E+2,6.760000E+2,6.760000E+2,6.760000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.750000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.740000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.730000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.720000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.710000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.700000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.690000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.680000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2,6.670000E+2])
|
|
|
|
|
self.viscosity.data = np.array([3.860000E-4,3.150000E-4,2.730000E-4,2.440000E-4,2.210000E-4,2.030000E-4,1.870000E-4,1.730000E-4,1.610000E-4,1.500000E-4,1.410000E-4,1.320000E-4,1.240000E-4,1.160000E-4,1.090000E-4,1.020000E-4,9.600000E-5,9.000000E-5,8.500000E-5,8.000000E-5,7.500000E-5,7.000000E-5,6.500000E-5,6.100000E-5,5.700000E-5,5.300000E-5,4.900000E-5,4.500000E-5,4.200000E-5,3.800000E-5,3.500000E-5,3.200000E-5,2.800000E-5,2.500000E-5,2.800000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.300000E-5,2.200000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.900000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.600000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.600000E-6,9.200000E-6,8.900000E-6,8.500000E-6,8.200000E-6,8.000000E-6,7.700000E-6,7.500000E-6,7.300000E-6,7.100000E-6,7.000000E-6,6.800000E-6,6.600000E-6,6.400000E-6,6.200000E-6,6.000000E-6,5.800000E-6,5.700000E-6,5.500000E-6,5.300000E-6,5.200000E-6,5.100000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.800000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.800000E-7,9.700000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.700000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.200000E-7,8.200000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.800000E-7,7.700000E-7,7.600000E-7,7.500000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.200000E-7,7.100000E-7,7.000000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.800000E-7,6.700000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.500000E-7,6.400000E-7,6.400000E-7,6.300000E-7,6.300000E-7,6.200000E-7,6.200000E-7,6.100000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.900000E-7,5.900000E-7,5.800000E-7,5.800000E-7,5.700000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.500000E-7,5.400000E-7,5.400000E-7,5.400000E-7,5.300000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.100000E-7,5.000000E-7,5.000000E-7,5.000000E-7,4.900000E-7,4.900000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.700000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.300000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.100000E-7,4.000000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.600000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.340000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.330000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.320000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.310000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.300000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.290000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.280000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.270000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.260000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.250000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.240000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.230000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.220000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.210000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.200000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.190000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.180000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.170000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.160000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.150000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.140000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.130000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.120000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.110000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.100000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.090000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.080000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.500000E+4,1.500000E+4,1.500000E+4,1.600000E+4,1.600000E+4,1.700000E+4,1.700000E+4,1.800000E+4,1.800000E+4,1.900000E+4,1.900000E+4,2.000000E+4,2.000000E+4,2.100000E+4,2.100000E+4,2.200000E+4,2.200000E+4,2.300000E+4,2.400000E+4,2.400000E+4,2.500000E+4,2.600000E+4,2.600000E+4,2.700000E+4,2.800000E+4,2.800000E+4,2.900000E+4,3.000000E+4,3.000000E+4,3.100000E+4,3.200000E+4,3.300000E+4,3.400000E+4,3.500000E+4,3.500000E+4,3.600000E+4,3.700000E+4,3.800000E+4,3.900000E+4,4.000000E+4,4.100000E+4,4.200000E+4,4.300000E+4,4.400000E+4,4.500000E+4,4.600000E+4,4.700000E+4,4.800000E+4,4.900000E+4,5.100000E+4,5.200000E+4,5.300000E+4,5.400000E+4,5.500000E+4,5.700000E+4,5.800000E+4,5.900000E+4,6.100000E+4,6.200000E+4,6.400000E+4,6.500000E+4,6.700000E+4,6.800000E+4,7.000000E+4,7.100000E+4,7.300000E+4,7.400000E+4,7.600000E+4,7.800000E+4])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PMR"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PNF(PureData):
|
|
|
|
|
"""
|
|
|
|
|
The Paratherm NF heat transfer fluid is highly efficient, thermally stable
|
|
|
|
|
and cost-effective. Completely non-toxic, it is exceptionally safe to use
|
|
|
|
|
and is easy to dispose. Used fluid can be safely combined with spent
|
|
|
|
|
lubricating oils and recycled locally (EPA, citation 57FR21524). The NF
|
|
|
|
|
fluid is specified in a broad variety of applications, world wide. It is
|
|
|
|
|
tough and durable with a proven record of success under demanding
|
|
|
|
|
conditions, yet is easy and safe to handle.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self):
|
|
|
|
|
PureData.__init__(self)
|
|
|
|
|
self.density.source = self.density.SOURCE_DATA
|
|
|
|
|
self.viscosity.source = self.viscosity.SOURCE_DATA
|
|
|
|
|
self.specific_heat.source = self.specific_heat.SOURCE_DATA
|
|
|
|
|
self.conductivity.source = self.conductivity.SOURCE_DATA
|
|
|
|
|
self.saturation_pressure.source = self.saturation_pressure.SOURCE_DATA
|
|
|
|
|
self.temperature.data = np.array([2.631500E+2,2.641500E+2,2.651500E+2,2.661500E+2,2.671500E+2,2.681500E+2,2.691500E+2,2.701500E+2,2.711500E+2,2.721500E+2,2.731500E+2,2.741500E+2,2.751500E+2,2.761500E+2,2.771500E+2,2.781500E+2,2.791500E+2,2.801500E+2,2.811500E+2,2.821500E+2,2.831500E+2,2.841500E+2,2.851500E+2,2.861500E+2,2.871500E+2,2.881500E+2,2.891500E+2,2.901500E+2,2.911500E+2,2.921500E+2,2.931500E+2,2.941500E+2,2.951500E+2,2.961500E+2,2.971500E+2,2.981500E+2,2.991500E+2,3.001500E+2,3.011500E+2,3.021500E+2,3.031500E+2,3.041500E+2,3.051500E+2,3.061500E+2,3.071500E+2,3.081500E+2,3.091500E+2,3.101500E+2,3.111500E+2,3.121500E+2,3.131500E+2,3.141500E+2,3.151500E+2,3.161500E+2,3.171500E+2,3.181500E+2,3.191500E+2,3.201500E+2,3.211500E+2,3.221500E+2,3.231500E+2,3.241500E+2,3.251500E+2,3.261500E+2,3.271500E+2,3.281500E+2,3.291500E+2,3.301500E+2,3.311500E+2,3.321500E+2,3.331500E+2,3.341500E+2,3.351500E+2,3.361500E+2,3.371500E+2,3.381500E+2,3.391500E+2,3.401500E+2,3.411500E+2,3.421500E+2,3.431500E+2,3.441500E+2,3.451500E+2,3.461500E+2,3.471500E+2,3.481500E+2,3.491500E+2,3.501500E+2,3.511500E+2,3.521500E+2,3.531500E+2,3.541500E+2,3.551500E+2,3.561500E+2,3.571500E+2,3.581500E+2,3.591500E+2,3.601500E+2,3.611500E+2,3.621500E+2,3.631500E+2,3.641500E+2,3.651500E+2,3.661500E+2,3.671500E+2,3.681500E+2,3.691500E+2,3.701500E+2,3.711500E+2,3.721500E+2,3.731500E+2,3.741500E+2,3.751500E+2,3.761500E+2,3.771500E+2,3.781500E+2,3.791500E+2,3.801500E+2,3.811500E+2,3.821500E+2,3.831500E+2,3.841500E+2,3.851500E+2,3.861500E+2,3.871500E+2,3.881500E+2,3.891500E+2,3.901500E+2,3.911500E+2,3.921500E+2,3.931500E+2,3.941500E+2,3.951500E+2,3.961500E+2,3.971500E+2,3.981500E+2,3.991500E+2,4.001500E+2,4.011500E+2,4.021500E+2,4.031500E+2,4.041500E+2,4.051500E+2,4.061500E+2,4.071500E+2,4.081500E+2,4.091500E+2,4.101500E+2,4.111500E+2,4.121500E+2,4.131500E+2,4.141500E+2,4.151500E+2,4.161500E+2,4.171500E+2,4.181500E+2,4.191500E+2,4.201500E+2,4.211500E+2,4.221500E+2,4.231500E+2,4.241500E+2,4.251500E+2,4.261500E+2,4.271500E+2,4.281500E+2,4.291500E+2,4.301500E+2,4.311500E+2,4.321500E+2,4.331500E+2,4.341500E+2,4.351500E+2,4.361500E+2,4.371500E+2,4.381500E+2,4.391500E+2,4.401500E+2,4.411500E+2,4.421500E+2,4.431500E+2,4.441500E+2,4.451500E+2,4.461500E+2,4.471500E+2,4.481500E+2,4.491500E+2,4.501500E+2,4.511500E+2,4.521500E+2,4.531500E+2,4.541500E+2,4.551500E+2,4.561500E+2,4.571500E+2,4.581500E+2,4.591500E+2,4.601500E+2,4.611500E+2,4.621500E+2,4.631500E+2,4.641500E+2,4.651500E+2,4.661500E+2,4.671500E+2,4.681500E+2,4.691500E+2,4.701500E+2,4.711500E+2,4.721500E+2,4.731500E+2,4.741500E+2,4.751500E+2,4.761500E+2,4.771500E+2,4.781500E+2,4.791500E+2,4.801500E+2,4.811500E+2,4.821500E+2,4.831500E+2,4.841500E+2,4.851500E+2,4.861500E+2,4.871500E+2,4.881500E+2,4.891500E+2,4.901500E+2,4.911500E+2,4.921500E+2,4.931500E+2,4.941500E+2,4.951500E+2,4.961500E+2,4.971500E+2,4.981500E+2,4.991500E+2,5.001500E+2,5.011500E+2,5.021500E+2,5.031500E+2,5.041500E+2,5.051500E+2,5.061500E+2,5.071500E+2,5.081500E+2,5.091500E+2,5.101500E+2,5.111500E+2,5.121500E+2,5.131500E+2,5.141500E+2,5.151500E+2,5.161500E+2,5.171500E+2,5.181500E+2,5.191500E+2,5.201500E+2,5.211500E+2,5.221500E+2,5.231500E+2,5.241500E+2,5.251500E+2,5.261500E+2,5.271500E+2,5.281500E+2,5.291500E+2,5.301500E+2,5.311500E+2,5.321500E+2,5.331500E+2,5.341500E+2,5.351500E+2,5.361500E+2,5.371500E+2,5.381500E+2,5.391500E+2,5.401500E+2,5.411500E+2,5.421500E+2,5.431500E+2,5.441500E+2,5.451500E+2,5.461500E+2,5.471500E+2,5.481500E+2,5.491500E+2,5.501500E+2,5.511500E+2,5.521500E+2,5.531500E+2,5.541500E+2,5.551500E+2,5.561500E+2,5.571500E+2,5.581500E+2,5.591500E+2,5.601500E+2,5.611500E+2,5.621500E+2,5.631500E+2,5.641500E+2,5.651500E+2,5.661500E+2,5.671500E+2,5.681500E+2,5.691500E+2,5.701500E+2,5.711500E+2,5.721500E+2,5.731500E+2,5.741500E+2,5.751500E+2,5.761500E+2,5.771500E+2,5.781500E+2,5.791500E+2,5.801500E+2,5.811500E+2,5.821500E+2,5.831500E+2,5.841500E+2,5.851500E+2,5.861500E+2,5.871500E+2,5.881500E+2])
|
|
|
|
|
self.density.data = np.array([9.040000E+2,9.030000E+2,9.030000E+2,9.020000E+2,9.010000E+2,9.010000E+2,9.000000E+2,8.990000E+2,8.990000E+2,8.980000E+2,8.970000E+2,8.970000E+2,8.960000E+2,8.950000E+2,8.950000E+2,8.940000E+2,8.930000E+2,8.930000E+2,8.920000E+2,8.910000E+2,8.910000E+2,8.900000E+2,8.890000E+2,8.890000E+2,8.880000E+2,8.870000E+2,8.870000E+2,8.860000E+2,8.850000E+2,8.850000E+2,8.840000E+2,8.830000E+2,8.830000E+2,8.820000E+2,8.810000E+2,8.810000E+2,8.800000E+2,8.790000E+2,8.790000E+2,8.780000E+2,8.780000E+2,8.770000E+2,8.760000E+2,8.760000E+2,8.750000E+2,8.740000E+2,8.740000E+2,8.730000E+2,8.720000E+2,8.720000E+2,8.710000E+2,8.700000E+2,8.700000E+2,8.690000E+2,8.680000E+2,8.680000E+2,8.670000E+2,8.660000E+2,8.660000E+2,8.650000E+2,8.640000E+2,8.640000E+2,8.630000E+2,8.620000E+2,8.620000E+2,8.610000E+2,8.600000E+2,8.600000E+2,8.590000E+2,8.580000E+2,8.580000E+2,8.570000E+2,8.560000E+2,8.560000E+2,8.550000E+2,8.540000E+2,8.540000E+2,8.530000E+2,8.520000E+2,8.520000E+2,8.510000E+2,8.500000E+2,8.500000E+2,8.490000E+2,8.480000E+2,8.480000E+2,8.470000E+2,8.460000E+2,8.460000E+2,8.450000E+2,8.440000E+2,8.440000E+2,8.430000E+2,8.420000E+2,8.420000E+2,8.410000E+2,8.400000E+2,8.400000E+2,8.390000E+2,8.380000E+2,8.380000E+2,8.370000E+2,8.360000E+2,8.360000E+2,8.350000E+2,8.340000E+2,8.340000E+2,8.330000E+2,8.320000E+2,8.320000E+2,8.310000E+2,8.300000E+2,8.300000E+2,8.290000E+2,8.280000E+2,8.280000E+2,8.270000E+2,8.260000E+2,8.260000E+2,8.250000E+2,8.240000E+2,8.240000E+2,8.230000E+2,8.220000E+2,8.220000E+2,8.210000E+2,8.200000E+2,8.200000E+2,8.190000E+2,8.190000E+2,8.180000E+2,8.170000E+2,8.170000E+2,8.160000E+2,8.150000E+2,8.150000E+2,8.140000E+2,8.130000E+2,8.130000E+2,8.120000E+2,8.110000E+2,8.110000E+2,8.100000E+2,8.090000E+2,8.090000E+2,8.080000E+2,8.070000E+2,8.070000E+2,8.060000E+2,8.050000E+2,8.050000E+2,8.040000E+2,8.030000E+2,8.030000E+2,8.020000E+2,8.010000E+2,8.010000E+2,8.000000E+2,7.990000E+2,7.990000E+2,7.980000E+2,7.970000E+2,7.970000E+2,7.960000E+2,7.950000E+2,7.950000E+2,7.940000E+2,7.930000E+2,7.930000E+2,7.920000E+2,7.910000E+2,7.910000E+2,7.900000E+2,7.890000E+2,7.890000E+2,7.880000E+2,7.870000E+2,7.870000E+2,7.860000E+2,7.850000E+2,7.850000E+2,7.840000E+2,7.830000E+2,7.830000E+2,7.820000E+2,7.810000E+2,7.810000E+2,7.800000E+2,7.790000E+2,7.790000E+2,7.780000E+2,7.770000E+2,7.770000E+2,7.760000E+2,7.750000E+2,7.750000E+2,7.740000E+2,7.730000E+2,7.730000E+2,7.720000E+2,7.710000E+2,7.710000E+2,7.700000E+2,7.690000E+2,7.690000E+2,7.680000E+2,7.670000E+2,7.670000E+2,7.660000E+2,7.650000E+2,7.650000E+2,7.640000E+2,7.630000E+2,7.630000E+2,7.620000E+2,7.610000E+2,7.610000E+2,7.600000E+2,7.590000E+2,7.590000E+2,7.580000E+2,7.580000E+2,7.570000E+2,7.560000E+2,7.560000E+2,7.550000E+2,7.540000E+2,7.540000E+2,7.530000E+2,7.520000E+2,7.520000E+2,7.510000E+2,7.500000E+2,7.500000E+2,7.490000E+2,7.480000E+2,7.480000E+2,7.470000E+2,7.460000E+2,7.460000E+2,7.450000E+2,7.440000E+2,7.440000E+2,7.430000E+2,7.420000E+2,7.420000E+2,7.410000E+2,7.400000E+2,7.400000E+2,7.390000E+2,7.380000E+2,7.380000E+2,7.370000E+2,7.360000E+2,7.360000E+2,7.350000E+2,7.340000E+2,7.340000E+2,7.330000E+2,7.320000E+2,7.320000E+2,7.310000E+2,7.300000E+2,7.300000E+2,7.290000E+2,7.280000E+2,7.280000E+2,7.270000E+2,7.260000E+2,7.260000E+2,7.250000E+2,7.240000E+2,7.240000E+2,7.230000E+2,7.220000E+2,7.220000E+2,7.210000E+2,7.200000E+2,7.200000E+2,7.190000E+2,7.180000E+2,7.180000E+2,7.170000E+2,7.160000E+2,7.160000E+2,7.150000E+2,7.140000E+2,7.140000E+2,7.130000E+2,7.120000E+2,7.120000E+2,7.110000E+2,7.100000E+2,7.100000E+2,7.090000E+2,7.080000E+2,7.080000E+2,7.070000E+2,7.060000E+2,7.060000E+2,7.050000E+2,7.040000E+2,7.040000E+2,7.030000E+2,7.020000E+2,7.020000E+2,7.010000E+2,7.000000E+2,7.000000E+2,6.990000E+2,6.980000E+2,6.980000E+2,6.970000E+2,6.970000E+2,6.960000E+2,6.950000E+2,6.950000E+2,6.940000E+2,6.930000E+2,6.930000E+2,6.920000E+2,6.910000E+2,6.910000E+2,6.900000E+2,6.890000E+2,6.890000E+2])
|
|
|
|
|
self.viscosity.data = np.array([4.760000E-4,4.380000E-4,4.040000E-4,3.720000E-4,3.430000E-4,3.160000E-4,2.910000E-4,2.680000E-4,2.470000E-4,2.280000E-4,2.100000E-4,1.940000E-4,1.780000E-4,1.640000E-4,1.510000E-4,1.400000E-4,1.290000E-4,1.180000E-4,1.090000E-4,1.010000E-4,9.300000E-5,8.600000E-5,8.000000E-5,7.400000E-5,6.900000E-5,6.400000E-5,5.900000E-5,5.500000E-5,5.100000E-5,4.800000E-5,4.500000E-5,4.200000E-5,3.900000E-5,3.700000E-5,3.400000E-5,3.200000E-5,3.100000E-5,2.900000E-5,2.700000E-5,2.600000E-5,2.500000E-5,2.400000E-5,2.200000E-5,2.100000E-5,2.100000E-5,2.000000E-5,1.900000E-5,1.800000E-5,1.800000E-5,1.700000E-5,1.600000E-5,1.500000E-5,1.500000E-5,1.400000E-5,1.400000E-5,1.300000E-5,1.300000E-5,1.200000E-5,1.200000E-5,1.100000E-5,1.100000E-5,1.000000E-5,1.000000E-5,9.700000E-6,9.400000E-6,9.100000E-6,8.800000E-6,8.500000E-6,8.200000E-6,8.000000E-6,7.800000E-6,7.500000E-6,7.300000E-6,7.100000E-6,6.900000E-6,6.700000E-6,6.500000E-6,6.300000E-6,6.200000E-6,6.000000E-6,5.900000E-6,5.700000E-6,5.600000E-6,5.400000E-6,5.300000E-6,5.200000E-6,5.100000E-6,4.900000E-6,4.800000E-6,4.700000E-6,4.600000E-6,4.500000E-6,4.400000E-6,4.300000E-6,4.200000E-6,4.100000E-6,4.000000E-6,3.900000E-6,3.900000E-6,3.800000E-6,3.700000E-6,3.600000E-6,3.600000E-6,3.500000E-6,3.400000E-6,3.400000E-6,3.300000E-6,3.200000E-6,3.200000E-6,3.100000E-6,3.100000E-6,3.000000E-6,3.000000E-6,2.900000E-6,2.800000E-6,2.800000E-6,2.800000E-6,2.700000E-6,2.700000E-6,2.600000E-6,2.600000E-6,2.500000E-6,2.500000E-6,2.500000E-6,2.400000E-6,2.400000E-6,2.300000E-6,2.300000E-6,2.300000E-6,2.200000E-6,2.200000E-6,2.200000E-6,2.100000E-6,2.100000E-6,2.100000E-6,2.000000E-6,2.000000E-6,2.000000E-6,2.000000E-6,1.900000E-6,1.900000E-6,1.900000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.800000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.700000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.600000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.500000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.400000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.300000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.200000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.100000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,1.000000E-6,9.900000E-7,9.800000E-7,9.700000E-7,9.600000E-7,9.600000E-7,9.500000E-7,9.400000E-7,9.300000E-7,9.200000E-7,9.100000E-7,9.000000E-7,8.900000E-7,8.800000E-7,8.600000E-7,8.500000E-7,8.400000E-7,8.300000E-7,8.100000E-7,8.000000E-7,7.900000E-7,7.800000E-7,7.700000E-7,7.500000E-7,7.400000E-7,7.300000E-7,7.200000E-7,7.100000E-7,7.000000E-7,6.900000E-7,6.800000E-7,6.700000E-7,6.600000E-7,6.500000E-7,6.400000E-7,6.300000E-7,6.200000E-7,6.100000E-7,6.000000E-7,5.900000E-7,5.800000E-7,5.700000E-7,5.600000E-7,5.600000E-7,5.500000E-7,5.400000E-7,5.300000E-7,5.200000E-7,5.200000E-7,5.100000E-7,5.000000E-7,4.900000E-7,4.800000E-7,4.800000E-7,4.700000E-7,4.600000E-7,4.600000E-7,4.500000E-7,4.400000E-7,4.400000E-7,4.300000E-7,4.200000E-7,4.200000E-7,4.100000E-7,4.000000E-7,4.000000E-7,3.900000E-7,3.900000E-7,3.800000E-7,3.700000E-7,3.700000E-7,3.600000E-7,3.600000E-7,3.500000E-7,3.500000E-7,3.400000E-7,3.400000E-7,3.300000E-7,3.300000E-7,3.200000E-7,3.200000E-7,3.100000E-7,3.100000E-7,3.000000E-7,3.000000E-7,2.900000E-7,2.900000E-7,2.800000E-7,2.800000E-7,2.800000E-7,2.700000E-7,2.700000E-7,2.600000E-7,2.600000E-7,2.600000E-7,2.500000E-7,2.500000E-7,2.400000E-7,2.400000E-7,2.400000E-7,2.300000E-7,2.300000E-7,2.300000E-7,2.200000E-7,2.200000E-7,2.200000E-7,2.100000E-7,2.100000E-7,2.100000E-7,2.000000E-7,2.000000E-7,2.000000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.900000E-7,1.800000E-7,1.800000E-7,1.800000E-7,1.800000E-7,1.700000E-7,1.700000E-7,1.700000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.600000E-7,1.500000E-7,1.500000E-7,1.500000E-7,1.500000E-7])
|
|
|
|
|
self.specific_heat.data = np.array([1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.700000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.800000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,1.900000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.000000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.100000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.200000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.300000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.400000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.500000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.600000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.700000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.800000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,2.900000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.100000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.200000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3,3.300000E+3])
|
|
|
|
|
self.conductivity.data = np.array([1.070000E-1,1.070000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.060000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.050000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.040000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.030000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.020000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.010000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,1.000000E-1,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.900000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.800000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.700000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.600000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.500000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.400000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.300000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.200000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.100000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2,9.000000E-2])
|
|
|
|
|
self.saturation_pressure.data = np.array([ np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,3.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,4.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,5.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,6.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,7.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,8.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,9.000000E+3,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.000000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.100000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.200000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.300000E+4,1.400000E+4,1.400000E+4,1.400000E+4,1.400000E+4])
|
|
|
|
|
self.Tmin = np.min(self.temperature.data)
|
|
|
|
|
self.Tmax = np.max(self.temperature.data)
|
|
|
|
|
self.TminPsat = np.min(self.temperature.data[~np.isnan(self.saturation_pressure.data)])
|
|
|
|
|
self.name = "PNF"
|
|
|
|
|
self.description = "Paratherm "+ self.name[1:]
|
|
|
|
|
self.reference = "Paratherm2013"
|
|
|
|
|
self.reshapeAll()
|
|
|
|
|
|
|
|
|
|
|