intermediate version

This commit is contained in:
thorade
2015-11-20 16:56:23 +01:00
parent 914c5af69a
commit da1d56b883

View File

@@ -1,7 +1,7 @@
{
"metadata": {
"name": "",
"signature": "sha256:3907d9f849aaf145d23d7b00182e65dfa230555da7df51c4a2b3ef8b2f0b3a2e"
"signature": "sha256:7e5fb7d44068c577c6639c507162e5bd0d34809bc445e672bb55c26472df5e9a"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -16,6 +16,11 @@
"$d$ means a derivative ALONG the saturation line, \n",
"$\\partial$ means a partial derivative AT the saturation line (or anywhere in the single phase region).\n",
"\n",
"### References: \n",
"Krafcik and Velasco, DOI 10.1119/1.4858403 \n",
"Thorade and Saadat, DOI 10.1007/s12665-013-2394-z\n",
"\n",
"### Clausius-Clapeyron\n",
"Clausius-Clapeyron p/T\n",
"\n",
"\\begin{equation}\n",
@@ -57,18 +62,14 @@
"\\frac{dv}{dp} &= \\left(\\frac{\\partial v}{\\partial p}\\right)_T + \\left(\\frac{\\partial v}{\\partial T}\\right)_p \\frac{dT}{dp}\\\\\n",
"\\frac{ds}{dp} &= \\left(\\frac{\\partial s}{\\partial p}\\right)_T + \\left(\\frac{\\partial s}{\\partial T}\\right)_p \\frac{dT}{dp}\n",
"\\end{split}\n",
"\\end{equation}\n",
"\n",
"### References: \n",
"Krafcik and Velasco, DOI 10.1119/1.4858403 \n",
"Thorade and Saadat, DOI 10.1007/s12665-013-2394-z"
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following goes beyond the two cited papers.\n",
"### Temporary Names\n",
"\n",
"Introduce temporary names for some of the partial derivatives wrt $p$ and $T$:\n",
"\\begin{equation}\n",
@@ -98,9 +99,14 @@
"M &= \\frac{d \\rho}{d h} = \\frac{{d \\rho}/{dT}}{{dh}/{dT}} \\\\\n",
"N &= \\frac{d s}{d h} = \\frac{{ds}/{dT}}{{dh}/{dT}}\n",
"\\end{split}\n",
"\\end{equation}\n",
"\n",
"Now the rest is just a lot of writing and simple math.\n",
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the rest is not too hard, but with intermediate steps it is quite long.\n",
"\n",
"### First example: $d^2 \\rho / dT^2$ \n",
"The corresponding first derivative can be written in two ways:\n",
@@ -142,12 +148,19 @@
"\\begin{equation}\n",
"\\begin{split}\n",
"\\frac{ds}{dT} \n",
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_p + \\left(\\frac{\\partial s}{\\partial p}\\right)_T \\frac{dp}{dT} \\\\\n",
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_p + \\left(\\frac{\\partial s}{\\partial p}\\right)_T \\frac{dp}{dT} \n",
" = C + E\\frac{dp}{dT}\\\\\n",
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_{\\rho} + \\left(\\frac{\\partial s}{\\partial \\rho}\\right)_T \\frac{d \\rho}{dT}\n",
" = Y + Z\\frac{d \\rho}{dT}\n",
"\\end{split}\n",
"\\end{equation}\n",
"Both can be used as starting point for the second derivatives.\n",
"\n"
"\\begin{split}\n",
"\\frac{d^2 s}{dT^2} \n",
" &= \\frac{dC}{dT} + \\frac{dE}{dT}\\frac{dp}{dT} + E\\frac{d^2p}{dT^2}\\\\\n",
" &= \\frac{dY}{dT} + \\frac{dZ}{dT}\\frac{dp}{dT} + Z\\frac{d^2 \\rho}{dT^2}\n",
"\\end{split}\n",
"Now, which one is nicer to work with? Unusre here"
]
},
{