mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-10 06:28:03 -05:00
intermediate version
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:3907d9f849aaf145d23d7b00182e65dfa230555da7df51c4a2b3ef8b2f0b3a2e"
|
||||
"signature": "sha256:7e5fb7d44068c577c6639c507162e5bd0d34809bc445e672bb55c26472df5e9a"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
@@ -16,6 +16,11 @@
|
||||
"$d$ means a derivative ALONG the saturation line, \n",
|
||||
"$\\partial$ means a partial derivative AT the saturation line (or anywhere in the single phase region).\n",
|
||||
"\n",
|
||||
"### References: \n",
|
||||
"Krafcik and Velasco, DOI 10.1119/1.4858403 \n",
|
||||
"Thorade and Saadat, DOI 10.1007/s12665-013-2394-z\n",
|
||||
"\n",
|
||||
"### Clausius-Clapeyron\n",
|
||||
"Clausius-Clapeyron p/T\n",
|
||||
"\n",
|
||||
"\\begin{equation}\n",
|
||||
@@ -57,18 +62,14 @@
|
||||
"\\frac{dv}{dp} &= \\left(\\frac{\\partial v}{\\partial p}\\right)_T + \\left(\\frac{\\partial v}{\\partial T}\\right)_p \\frac{dT}{dp}\\\\\n",
|
||||
"\\frac{ds}{dp} &= \\left(\\frac{\\partial s}{\\partial p}\\right)_T + \\left(\\frac{\\partial s}{\\partial T}\\right)_p \\frac{dT}{dp}\n",
|
||||
"\\end{split}\n",
|
||||
"\\end{equation}\n",
|
||||
"\n",
|
||||
"### References: \n",
|
||||
"Krafcik and Velasco, DOI 10.1119/1.4858403 \n",
|
||||
"Thorade and Saadat, DOI 10.1007/s12665-013-2394-z"
|
||||
"\\end{equation}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following goes beyond the two cited papers.\n",
|
||||
"### Temporary Names\n",
|
||||
"\n",
|
||||
"Introduce temporary names for some of the partial derivatives wrt $p$ and $T$:\n",
|
||||
"\\begin{equation}\n",
|
||||
@@ -98,9 +99,14 @@
|
||||
"M &= \\frac{d \\rho}{d h} = \\frac{{d \\rho}/{dT}}{{dh}/{dT}} \\\\\n",
|
||||
"N &= \\frac{d s}{d h} = \\frac{{ds}/{dT}}{{dh}/{dT}}\n",
|
||||
"\\end{split}\n",
|
||||
"\\end{equation}\n",
|
||||
"\n",
|
||||
"Now the rest is just a lot of writing and simple math.\n",
|
||||
"\\end{equation}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now the rest is not too hard, but with intermediate steps it is quite long.\n",
|
||||
"\n",
|
||||
"### First example: $d^2 \\rho / dT^2$ \n",
|
||||
"The corresponding first derivative can be written in two ways:\n",
|
||||
@@ -142,12 +148,19 @@
|
||||
"\\begin{equation}\n",
|
||||
"\\begin{split}\n",
|
||||
"\\frac{ds}{dT} \n",
|
||||
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_p + \\left(\\frac{\\partial s}{\\partial p}\\right)_T \\frac{dp}{dT} \\\\\n",
|
||||
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_p + \\left(\\frac{\\partial s}{\\partial p}\\right)_T \\frac{dp}{dT} \n",
|
||||
" = C + E\\frac{dp}{dT}\\\\\n",
|
||||
" &= \\left(\\frac{\\partial s}{\\partial T}\\right)_{\\rho} + \\left(\\frac{\\partial s}{\\partial \\rho}\\right)_T \\frac{d \\rho}{dT}\n",
|
||||
" = Y + Z\\frac{d \\rho}{dT}\n",
|
||||
"\\end{split}\n",
|
||||
"\\end{equation}\n",
|
||||
"Both can be used as starting point for the second derivatives.\n",
|
||||
"\n"
|
||||
"\\begin{split}\n",
|
||||
"\\frac{d^2 s}{dT^2} \n",
|
||||
" &= \\frac{dC}{dT} + \\frac{dE}{dT}\\frac{dp}{dT} + E\\frac{d^2p}{dT^2}\\\\\n",
|
||||
" &= \\frac{dY}{dT} + \\frac{dZ}{dT}\\frac{dp}{dT} + Z\\frac{d^2 \\rho}{dT^2}\n",
|
||||
"\\end{split}\n",
|
||||
"Now, which one is nicer to work with? Unusre here"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user