feat: add release updates section and Gemini thinking support

- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking
- Create documentation for README update automation
- Reorganize README navigation structure with changelog section
This commit is contained in:
Kayvan Sylvan
2025-08-14 16:38:43 -07:00
parent 7eed9c3c64
commit d8690c7cec
7 changed files with 496 additions and 6 deletions

View File

@@ -47,6 +47,52 @@ It's all really exciting and powerful, but _it's not easy to integrate this func
Fabric organizes prompts by real-world task, allowing people to create, collect, and organize their most important AI solutions in a single place for use in their favorite tools. And if you're command-line focused, you can use Fabric itself as the interface!
## Updates
Dear Users,
We've been doing so many exciting things here at Fabric, I wanted to give a quick summary here to give you a sense of our development velocity!
Below are the **new features and capabilities** we've added (newest first):
### Recent Major Features
- [v1.4.287](https://github.com/danielmiessler/fabric/releases/tag/v1.4.287) (Aug 16, 2025) — **AI Reasoning**: Add Thinking to Gemini models and introduce `readme_updates` python script
- [v1.4.286](https://github.com/danielmiessler/fabric/releases/tag/v1.4.286) (Aug 14, 2025) — **AI Reasoning**: Introduce Thinking Config Across Anthropic and OpenAI Providers
- [v1.4.285](https://github.com/danielmiessler/fabric/releases/tag/v1.4.285) (Aug 13, 2025) — **Extended Context**: Enable One Million Token Context Beta Feature for Sonnet-4
- [v1.4.284](https://github.com/danielmiessler/fabric/releases/tag/v1.4.284) (Aug 12, 2025) — **Easy Shell Completions Setup**: Introduce One-Liner Curl Install for Completions
- [v1.4.283](https://github.com/danielmiessler/fabric/releases/tag/v1.4.283) (Aug 12, 2025) — **Model Management**: Add Vendor Selection Support for Models
- [v1.4.282](https://github.com/danielmiessler/fabric/releases/tag/v1.4.282) (Aug 11, 2025) — **Enhanced Shell Completions**: Enhanced Shell Completions for Fabric CLI Binaries
- [v1.4.281](https://github.com/danielmiessler/fabric/releases/tag/v1.4.281) (Aug 11, 2025) — **Gemini Search Tool**: Add Web Search Tool Support for Gemini Models
- [v1.4.278](https://github.com/danielmiessler/fabric/releases/tag/v1.4.278) (Aug 9, 2025) — **Enhance YouTube Transcripts**: Enhance YouTube Support with Custom yt-dlp Arguments
- [v1.4.277](https://github.com/danielmiessler/fabric/releases/tag/v1.4.277) (Aug 8, 2025) — **Desktop Notifications**: Add cross-platform desktop notifications to Fabric CLI
- [v1.4.274](https://github.com/danielmiessler/fabric/releases/tag/v1.4.274) (Aug 7, 2025) — **Claude 4.1 Added**: Add Support for Claude Opus 4.1 Model
- [v1.4.271](https://github.com/danielmiessler/fabric/releases/tag/v1.4.271) (Jul 28, 2025) — **AI Summarized Release Notes**: Enable AI summary updates for GitHub releases
- [v1.4.268](https://github.com/danielmiessler/fabric/releases/tag/v1.4.268) (Jul 26, 2025) — **Gemmini TTS Voice Selection**: add Gemini TTS voice selection and listing functionality
- [v1.4.267](https://github.com/danielmiessler/fabric/releases/tag/v1.4.267) (Jul 26, 2025) — **Text-to-Speech**: Update Gemini Plugin to New SDK with TTS Support
- [v1.4.258](https://github.com/danielmiessler/fabric/releases/tag/v1.4.258) (Jul 17, 2025) — **Onboarding Improved**: Add startup check to initialize config and .env file automatically
- [v1.4.257](https://github.com/danielmiessler/fabric/releases/tag/v1.4.257) (Jul 17, 2025) — **OpenAI Routing Control**: Introduce CLI Flag to Disable OpenAI Responses API
- [v1.4.252](https://github.com/danielmiessler/fabric/releases/tag/v1.4.252) (Jul 16, 2025) — **Hide Thinking Block**: Optional Hiding of Model Thinking Process with Configurable Tags
- [v1.4.246](https://github.com/danielmiessler/fabric/releases/tag/v1.4.246) (Jul 14, 2025) — **Automatic ChangeLog Updates**: Add AI-powered changelog generation with high-performance Go tool and comprehensive caching
- [v1.4.245](https://github.com/danielmiessler/fabric/releases/tag/v1.4.245) (Jul 11, 2025) — **Together AI**: Together AI Support with OpenAI Fallback Mechanism Added
- [v1.4.232](https://github.com/danielmiessler/fabric/releases/tag/v1.4.232) (Jul 6, 2025) — **Add Custom**: Add Custom Patterns Directory Support
- [v1.4.231](https://github.com/danielmiessler/fabric/releases/tag/v1.4.231) (Jul 5, 2025) — **OAuth Auto-Auth**: OAuth Authentication Support for Anthropic (Use your Max Subscription)
- [v1.4.230](https://github.com/danielmiessler/fabric/releases/tag/v1.4.230) (Jul 5, 2025) — **Model Management**: Add advanced image generation parameters for OpenAI models with four new CLI flags
- [v1.4.227](https://github.com/danielmiessler/fabric/releases/tag/v1.4.227) (Jul 4, 2025) — **Add Image**: Add Image Generation Support to Fabric
- [v1.4.226](https://github.com/danielmiessler/fabric/releases/tag/v1.4.226) (Jul 4, 2025) — **Web Search**: OpenAI Plugin Now Supports Web Search Functionality
- [v1.4.225](https://github.com/danielmiessler/fabric/releases/tag/v1.4.225) (Jul 4, 2025) — **Web Search**: Runtime Web Search Control via Command-Line `--search` Flag
- [v1.4.224](https://github.com/danielmiessler/fabric/releases/tag/v1.4.224) (Jul 1, 2025) — **Add code_review**: Add code_review pattern and updates in Pattern_Descriptions
- [v1.4.222](https://github.com/danielmiessler/fabric/releases/tag/v1.4.222) (Jul 1, 2025) — **OpenAI Plugin**: OpenAI Plugin Migrates to New Responses API
- [v1.4.218](https://github.com/danielmiessler/fabric/releases/tag/v1.4.218) (Jun 27, 2025) — **Model Management**: Add Support for OpenAI Search and Research Model Variants
- [v1.4.217](https://github.com/danielmiessler/fabric/releases/tag/v1.4.217) (Jun 26, 2025) — **New YouTube**: New YouTube Transcript Endpoint Added to REST API
- [v1.4.212](https://github.com/danielmiessler/fabric/releases/tag/v1.4.212) (Jun 23, 2025) — **Add Langdock**: Add Langdock AI and enhance generic OpenAI compatible support
- [v1.4.211](https://github.com/danielmiessler/fabric/releases/tag/v1.4.211) (Jun 19, 2025) — **REST API**: REST API and Web UI Now Support Dynamic Pattern Variables
- [v1.4.210](https://github.com/danielmiessler/fabric/releases/tag/v1.4.210) (Jun 18, 2025) — **Add Citations**: Add Citation Support to Perplexity Response
- [v1.4.208](https://github.com/danielmiessler/fabric/releases/tag/v1.4.208) (Jun 17, 2025) — **Add Perplexity**: Add Perplexity AI Provider with Token Limits Support
- [v1.4.203](https://github.com/danielmiessler/fabric/releases/tag/v1.4.203) (Jun 14, 2025) — **Add Amazon Bedrock**: Add support for Amazon Bedrock
These features represent our commitment to making Fabric the most powerful and flexible AI augmentation framework available!
## Intro videos
Keep in mind that many of these were recorded when Fabric was Python-based, so remember to use the current [install instructions](#installation) below.
@@ -60,9 +106,11 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
- [`fabric`](#fabric)
- [What and why](#what-and-why)
- [Updates](#updates)
- [Recent Major Features](#recent-major-features)
- [Intro videos](#intro-videos)
- [Navigation](#navigation)
- [Updates](#updates)
- [Changelog](#changelog)
- [Philosophy](#philosophy)
- [Breaking problems into components](#breaking-problems-into-components)
- [Too many prompts](#too-many-prompts)
@@ -112,7 +160,7 @@ Keep in mind that many of these were recorded when Fabric was Python-based, so r
<br />
## Updates
## Changelog
Fabric is evolving rapidly.
@@ -576,9 +624,8 @@ Application Options:
--notification-command= Custom command to run for notifications (overrides built-in
notifications)
--yt-dlp-args= Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')
--thinking= Set reasoning/thinking level (e.g., off, low, medium,
high, or numeric tokens for Anthropic)
--thinking= Set reasoning/thinking level (e.g., off, low, medium, high, or
numeric tokens for Anthropic or Google Gemini)
Help Options:
-h, --help Show this help message
```

View File

@@ -0,0 +1,7 @@
### PR [#1706](https://github.com/danielmiessler/Fabric/pull/1706) by [ksylvan](https://github.com/ksylvan): Gemini Thinking Support and README (New Features) automation
- Add comprehensive "Recent Major Features" section to README
- Introduce new readme_updates Python script for automation
- Enable Gemini thinking configuration with token budgets
- Update CLI help text for Gemini thinking support
- Add comprehensive test coverage for Gemini thinking

View File

@@ -95,7 +95,7 @@ type Flags struct {
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
Notification bool `long:"notification" yaml:"notification" description:"Send desktop notification when command completes"`
NotificationCommand string `long:"notification-command" yaml:"notificationCommand" description:"Custom command to run for notifications (overrides built-in notifications)"`
Thinking domain.ThinkingLevel `long:"thinking" yaml:"thinking" description:"Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic)"`
Thinking domain.ThinkingLevel `long:"thinking" yaml:"thinking" description:"Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic or Google Gemini)"`
}
var debug = false

View File

@@ -6,6 +6,7 @@ import (
"encoding/binary"
"fmt"
"regexp"
"strconv"
"strings"
"github.com/danielmiessler/fabric/internal/chat"
@@ -170,6 +171,25 @@ func (o *Client) NeedsRawMode(modelName string) bool {
return false
}
func parseThinkingConfig(level domain.ThinkingLevel) (*genai.ThinkingConfig, bool) {
lower := strings.ToLower(strings.TrimSpace(string(level)))
switch domain.ThinkingLevel(lower) {
case "", domain.ThinkingOff:
return nil, false
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
b := int32(budget)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &b}, true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 32); err == nil && tokens > 0 {
t := int32(tokens)
return &genai.ThinkingConfig{IncludeThoughts: true, ThinkingBudget: &t}, true
}
}
return nil, false
}
// buildGenerateContentConfig constructs the generation config with optional tools.
// When search is enabled it injects the Google Search tool. The optional search
// location accepts either:
@@ -201,6 +221,10 @@ func (o *Client) buildGenerateContentConfig(opts *domain.ChatOptions) (*genai.Ge
}
}
if tc, ok := parseThinkingConfig(opts.Thinking); ok {
cfg.ThinkingConfig = tc
}
return cfg, nil
}

View File

@@ -129,6 +129,38 @@ func TestBuildGenerateContentConfig_LanguageCodeNormalization(t *testing.T) {
}
}
func TestBuildGenerateContentConfig_Thinking(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLow}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || !cfg.ThinkingConfig.IncludeThoughts {
t.Fatalf("expected thinking config with thoughts included")
}
if cfg.ThinkingConfig.ThinkingBudget == nil || *cfg.ThinkingConfig.ThinkingBudget != int32(domain.TokenBudgetLow) {
t.Errorf("expected thinking budget %d, got %+v", domain.TokenBudgetLow, cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestBuildGenerateContentConfig_ThinkingTokens(t *testing.T) {
client := &Client{}
opts := &domain.ChatOptions{Thinking: domain.ThinkingLevel("123")}
cfg, err := client.buildGenerateContentConfig(opts)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if cfg.ThinkingConfig == nil || cfg.ThinkingConfig.ThinkingBudget == nil {
t.Fatalf("expected thinking config with budget")
}
if *cfg.ThinkingConfig.ThinkingBudget != 123 {
t.Errorf("expected thinking budget 123, got %d", *cfg.ThinkingConfig.ThinkingBudget)
}
}
func TestCitationFormatting(t *testing.T) {
client := &Client{}
response := &genai.GenerateContentResponse{

View File

@@ -0,0 +1,99 @@
# README Update Scripts
This directory contains automation scripts for updating the main README.md file with release information from the changelog database.
## `update_readme_features.py`
A Python script that generates the "Recent Major Features" section for the README by extracting and filtering release information from the changelog SQLite database.
### Usage
```bash
# Generate the Recent Major Features section with default limit (20 releases)
python scripts/readme_updates/update_readme_features.py
# Specify a custom limit
python scripts/readme_updates/update_readme_features.py --limit 15
# Use a custom database path
python scripts/readme_updates/update_readme_features.py --db /path/to/changelog.db
```
### How It Works
1. **Database Connection**: Connects to `cmd/generate_changelog/changelog.db` (or custom path)
2. **Data Extraction**: Queries the `versions` table for release information
3. **Feature Filtering**: Uses heuristics to identify feature/improvement releases
4. **Markdown Generation**: Formats output to match README style
### Feature Detection Heuristics
The script uses keyword-based heuristics to filter releases:
#### Include Keywords (Features/Improvements)
- new, feature, feat, add, introduce, enable, support
- improve, enhance, performance, speed
- option, flag, argument, parameter
- integration, provider, search, tts, audio, model
- cli, ui, web, oauth, sync, database
- notifications, desktop, reasoning, thinking
#### Exclude Keywords (Non-Features)
- fix, bug, hotfix
- ci, cd, pipeline, chore
- docs, readme, refactor, style, typo
- test, bump, deps, dependency
- merge, revert, format, lint, build
- release, prepare, coverage, security
### Integration with README
To update the README with new release features:
```bash
# Generate the features and save to a temporary file
python scripts/readme_updates/update_readme_features.py --limit 20 > /tmp/recent_features.md
# Manually replace the "### Recent Major Features" section in README.md
# with the generated content
```
### Database Schema
The script expects the following SQLite table structure:
```sql
CREATE TABLE versions (
name TEXT PRIMARY KEY,
date DATETIME,
commit_sha TEXT,
pr_numbers TEXT,
ai_summary TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
);
```
### Date Format Support
The script can parse various date formats:
- ISO 8601 with timezone: `2025-08-14 14:11:04+00:00`
- ISO 8601 basic: `2025-08-14T14:11:04`
- Date only: `2025-08-14`
- US format: `08/14/2025`
Output format is standardized to: `Aug 14, 2025`
### Maintenance Notes
- **AI Summary Format Changes**: If the format of AI summaries changes, update the `extract_title_desc()` and `split_summary()` functions
- **Keyword Tuning**: Adjust `INCLUDE_RE` and `EXCLUDE_RE` patterns as needed
- **Title Extraction**: The script attempts to extract concise titles from feature descriptions
- **Description Length**: Descriptions are limited to 200 characters for readability
### Future Enhancements
Potential improvements for automated README updates:
- Add section delimiter markers in README for automated replacement
- Create a GitHub Action to run on new releases
- Add support for categorizing features by type
- Implement confidence scoring for feature detection

View File

@@ -0,0 +1,281 @@
#!/usr/bin/env python3
"""
Generate the '### Recent Major Features' markdown section for README from the changelog SQLite DB.
- Connects to cmd/generate_changelog/changelog.db
- Extracts version, date, and AI summaries from the 'versions' table
- Heuristically filters for feature/improvement items (excludes CI/CD/docs/bug fixes)
- Formats output to match README style:
- [vX.Y.Z](https://github.com/danielmiessler/fabric/releases/tag/vX.Y.Z) (Aug 14, 2025) — **Feature Name**: Short description
Usage:
python scripts/readme_updates/update_readme_features.py --limit 20
"""
import argparse
import sqlite3
from pathlib import Path
from datetime import datetime
import re
import sys
from typing import List, Optional, Tuple
# Heuristics for filtering feature-related lines
EXCLUDE_RE = re.compile(
r"(?i)\b(fix|bug|hotfix|ci|cd|pipeline|chore|docs|doc|readme|refactor|style|typo|"
"test|tests|bump|deps|dependency|merge|revert|format|lint|build|release\b|prepare|"
"codeowners|coverage|security)\b"
)
INCLUDE_RE = re.compile(
r"(?i)\b(new|feature|feat|add|added|introduce|enable|support|improve|enhance|"
"performance|speed|option|flag|argument|parameter|integration|provider|search|tts|"
"audio|model|cli|ui|web|oauth|sync|database|notifications|desktop|reasoning|thinking)\b"
)
def parse_args():
"""Parse command-line arguments."""
p = argparse.ArgumentParser(
description="Generate README 'Recent Major Features' markdown from changelog DB."
)
p.add_argument(
"--limit", type=int, default=20, help="Maximum number of releases to include."
)
p.add_argument(
"--db",
type=str,
default=None,
help="Optional path to changelog.db (defaults to repo cmd/generate_changelog/changelog.db)",
)
return p.parse_args()
def repo_root() -> Path:
"""Get the repository root directory."""
# scripts/readme_updates/update_readme_features.py -> repo root is parent.parent.parent
return Path(__file__).resolve().parent.parent.parent
def db_path(args) -> Path:
"""Determine the database path."""
if args.db:
return Path(args.db).expanduser().resolve()
return repo_root() / "cmd" / "generate_changelog" / "changelog.db"
def connect(dbfile: Path):
"""Connect to the SQLite database."""
if not dbfile.exists():
print(f"ERROR: changelog database not found: {dbfile}", file=sys.stderr)
sys.exit(1)
return sqlite3.connect(str(dbfile))
def normalize_version(name: str) -> str:
"""Ensure version string starts with 'v'."""
n = str(name).strip()
return n if n.startswith("v") else f"v{n}"
def parse_date(value) -> str:
"""Parse various date formats and return formatted string."""
if value is None:
return "(Unknown date)"
# Handle the ISO format with timezone from the database
s = str(value).strip()
# Try to parse the ISO format with timezone
if "+" in s or "T" in s:
# Remove timezone info and microseconds for simpler parsing
s_clean = s.split("+")[0].split(".")[0]
try:
dt = datetime.strptime(s_clean, "%Y-%m-%d %H:%M:%S")
return dt.strftime("%b %d, %Y").replace(" 0", " ")
except ValueError:
pass
# Fallback formats
fmts = [
"%Y-%m-%d",
"%Y-%m-%d %H:%M:%S",
"%Y-%m-%dT%H:%M:%S",
"%Y/%m/%d",
"%m/%d/%Y",
]
for fmt in fmts:
try:
dt = datetime.strptime(s, fmt)
return dt.strftime("%b %d, %Y").replace(" 0", " ")
except ValueError:
continue
# Return original if we can't parse it
return f"({s})"
def split_summary(text: str) -> List[str]:
"""Split AI summary into individual lines/bullets."""
if not text:
return []
lines = []
# Split by newlines first
for line in text.split("\n"):
line = line.strip()
if not line:
continue
# Remove markdown headers
line = re.sub(r"^#+\s+", "", line)
# Remove PR links and author info
line = re.sub(
r"^PR\s+\[#\d+\]\([^)]+\)\s+by\s+\[[^\]]+\]\([^)]+\):\s*", "", line
)
# Remove bullet points
line = re.sub(r"^[-*•]\s+", "", line)
if line:
lines.append(line)
return lines
def is_feature_line(line: str) -> bool:
"""Check if a line describes a feature/improvement (not a bug fix or CI/CD)."""
line_lower = line.lower()
# Strong exclusions first
if any(
word in line_lower
for word in ["chore:", "fix:", "docs:", "test:", "ci:", "build:", "refactor:"]
):
return False
if EXCLUDE_RE.search(line):
return False
return bool(INCLUDE_RE.search(line))
def extract_title_desc(line: str) -> Tuple[str, str]:
"""Extract title and description from a feature line."""
# Remove any markdown formatting
line = re.sub(r"\*\*([^*]+)\*\*", r"\1", line)
# Look for colon separator first
if ":" in line:
parts = line.split(":", 1)
if len(parts) == 2:
title = parts[0].strip()
desc = parts[1].strip()
# Clean up the title
title = (
title.replace("Introduce ", "")
.replace("Enable ", "")
.replace("Add ", "")
)
title = title.replace("Implement ", "").replace("Support ", "")
# Make title more concise
if len(title) > 30:
# Try to extract key words
key_words = []
for word in title.split():
if word[0].isupper() or "-" in word or "_" in word:
key_words.append(word)
if key_words:
title = " ".join(key_words[:3])
return (title, desc)
# Fallback: use first sentence as description
sentences = re.split(r"[.!?]\s+", line)
if sentences:
desc = sentences[0].strip()
# Extract a title from the description
if "thinking" in desc.lower():
return ("AI Reasoning", desc)
elif "token" in desc.lower() and "context" in desc.lower():
return ("Extended Context", desc)
elif "curl" in desc.lower() or "install" in desc.lower():
return ("Easy Setup", desc)
elif "vendor" in desc.lower() or "model" in desc.lower():
return ("Model Management", desc)
elif "notification" in desc.lower():
return ("Desktop Notifications", desc)
elif "tts" in desc.lower() or "speech" in desc.lower():
return ("Text-to-Speech", desc)
elif "oauth" in desc.lower() or "auth" in desc.lower():
return ("OAuth Auto-Auth", desc)
elif "search" in desc.lower() and "web" in desc.lower():
return ("Web Search", desc)
else:
# Generic title from first significant words
words = desc.split()[:2]
title = " ".join(words)
return (title, desc)
return ("Feature", line)
def pick_feature(ai_summary: str) -> Optional[Tuple[str, str]]:
"""Pick the best feature line from the AI summary."""
lines = split_summary(ai_summary)
# Look for the first feature line
for line in lines:
if is_feature_line(line):
title, desc = extract_title_desc(line)
# Clean up description - remove redundant info
desc = desc[:200] if len(desc) > 200 else desc # Limit length
return (title, desc)
return None
def build_item(
version: str, date_str: str, feature_title: str, feature_desc: str
) -> str:
"""Build a markdown list item for a release."""
url = f"https://github.com/danielmiessler/fabric/releases/tag/{version}"
return f"- [{version}]({url}) ({date_str}) — **{feature_title}**: {feature_desc}"
def main():
"""Main function."""
args = parse_args()
dbfile = db_path(args)
conn = connect(dbfile)
cur = conn.cursor()
# Query the database
cur.execute("SELECT name, date, ai_summary FROM versions ORDER BY date DESC")
rows = cur.fetchall()
items = []
for name, date, summary in rows:
version = normalize_version(name)
date_fmt = parse_date(date)
feat = pick_feature(summary or "")
if not feat:
continue
title, desc = feat
items.append(build_item(version, date_fmt, title, desc))
if len(items) >= args.limit:
break
conn.close()
# Output the markdown
print("### Recent Major Features")
print()
for item in items:
print(item)
if __name__ == "__main__":
main()