feat: add cross-provider --thinking flag mapping to Anthropic/OpenAI

CHANGES
- Add --thinking flag to set reasoning level cross-vendors
- Map Anthropic thinking levels and token budgets appropriately
- Translate OpenAI reasoning effort from thinking levels
- Propagate Thinking through ChatOptions, server, and dry-run output
- Update zsh, bash, fish completions with thinking choices
- Expand suggest_pattern docs with categories, workflows, usage examples
- Remove outdated suggest_pattern user files to avoid duplication
- Add VSCode dictionary terms: Anki, DMARC, wireframes
- Extend tests to include Thinking defaults in ChatOptions
This commit is contained in:
Kayvan Sylvan
2025-08-13 19:50:36 -07:00
parent eae56e0038
commit f4dbafc638
19 changed files with 1123 additions and 1795 deletions

View File

@@ -4,6 +4,7 @@
"addextension",
"adduser",
"AIML",
"Anki",
"anthropics",
"Aoede",
"atotto",
@@ -28,6 +29,7 @@
"deepseek",
"Despina",
"direnv",
"DMARC",
"dryrun",
"dsrp",
"editability",
@@ -149,6 +151,7 @@
"WEBVTT",
"wipecontext",
"wipesession",
"wireframes",
"Worktree",
"writeups",
"xclip",

View File

@@ -576,6 +576,8 @@ Application Options:
--notification-command= Custom command to run for notifications (overrides built-in
notifications)
--yt-dlp-args= Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')
--thinking= Set reasoning/thinking level (e.g., off, low, medium,
high, or numeric tokens for Anthropic)
Help Options:
-h, --help Show this help message

View File

@@ -0,0 +1,7 @@
### PR [#1700](https://github.com/danielmiessler/Fabric/pull/1700) by [ksylvan](https://github.com/ksylvan): Introduce Thinking Config Across Anthropic and OpenAI Providers
- Add --thinking CLI flag for configurable reasoning levels across providers
- Implement Anthropic ThinkingConfig with standardized budgets and tokens
- Map OpenAI reasoning effort from thinking levels
- Show thinking level in dry-run formatted options
- Overhaul suggest_pattern docs with categories, workflows, usage examples

View File

@@ -100,6 +100,7 @@ _fabric() {
'(-u --scrape_url)'{-u,--scrape_url}'[Scrape website URL to markdown using Jina AI]:url:' \
'(-q --scrape_question)'{-q,--scrape_question}'[Search question using Jina AI]:question:' \
'(-e --seed)'{-e,--seed}'[Seed to be used for LMM generation]:seed:' \
'(--thinking)--thinking[Set reasoning/thinking level]:level:(off low medium high)' \
'(-w --wipecontext)'{-w,--wipecontext}'[Wipe context]:context:_fabric_contexts' \
'(-W --wipesession)'{-W,--wipesession}'[Wipe session]:session:_fabric_sessions' \
'(--printcontext)--printcontext[Print context]:context:_fabric_contexts' \

View File

@@ -13,7 +13,7 @@ _fabric() {
_get_comp_words_by_ref -n : cur prev words cword
# Define all possible options/flags
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --vendor -V --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --yt-dlp-args --language -g --scrape_url -u --scrape_question -q --seed -e --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --voice --list-gemini-voices --notification --notification-command --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
local opts="--pattern -p --variable -v --context -C --session --attachment -a --setup -S --temperature -t --topp -T --stream -s --presencepenalty -P --raw -r --frequencypenalty -F --listpatterns -l --listmodels -L --listcontexts -x --listsessions -X --updatepatterns -U --copy -c --model -m --vendor -V --modelContextLength --output -o --output-session --latest -n --changeDefaultModel -d --youtube -y --playlist --transcript --transcript-with-timestamps --comments --metadata --yt-dlp-args --language -g --scrape_url -u --scrape_question -q --seed -e --thinking --wipecontext -w --wipesession -W --printcontext --printsession --readability --input-has-vars --dry-run --serve --serveOllama --address --api-key --config --search --search-location --image-file --image-size --image-quality --image-compression --image-background --suppress-think --think-start-tag --think-end-tag --disable-responses-api --voice --list-gemini-voices --notification --notification-command --version --listextensions --addextension --rmextension --strategy --liststrategies --listvendors --shell-complete-list --help -h"
# Helper function for dynamic completions
_fabric_get_list() {
@@ -58,6 +58,10 @@ _fabric() {
COMPREPLY=($(compgen -W "$(_fabric_get_list --listsessions)" -- "${cur}"))
return 0
;;
--thinking)
COMPREPLY=($(compgen -W "off low medium high" -- "${cur}"))
return 0
;;
--rmextension)
COMPREPLY=($(compgen -W "$(_fabric_get_list --listextensions)" -- "${cur}"))
return 0

View File

@@ -72,6 +72,7 @@ function __fabric_register_completions
complete -c $cmd -s u -l scrape_url -d "Scrape website URL to markdown using Jina AI"
complete -c $cmd -s q -l scrape_question -d "Search question using Jina AI"
complete -c $cmd -s e -l seed -d "Seed to be used for LMM generation"
complete -c $cmd -l thinking -d "Set reasoning/thinking level" -a "off low medium high"
complete -c $cmd -s w -l wipecontext -d "Wipe context" -a "(__fabric_get_contexts)"
complete -c $cmd -s W -l wipesession -d "Wipe session" -a "(__fabric_get_sessions)"
complete -c $cmd -l printcontext -d "Print context" -a "(__fabric_get_contexts)"

View File

@@ -1,23 +1,128 @@
# IDENTITY and PURPOSE
You are an AI assistant tasked with creating a new feature for a fabric command-line tool. Your primary responsibility is to develop a pattern that suggests appropriate fabric patterns or commands based on user input. You are knowledgeable about fabric commands and understand the need to expand the tool's functionality. Your role involves analyzing user requests, determining the most suitable fabric commands or patterns, and providing helpful suggestions to users.
You are an expert AI assistant specialized in the Fabric framework - an open-source tool for augmenting human capabilities with AI. Your primary responsibility is to analyze user requests and suggest the most appropriate fabric patterns or commands to accomplish their goals. You have comprehensive knowledge of all available patterns, their categories, capabilities, and use cases.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Analyze the user's input to understand their specific needs and context
- Determine the appropriate fabric pattern or command based on the user's request
- Generate a response that suggests the relevant fabric command(s) or pattern(s)
- Provide explanations or multiple options when applicable
- If no specific command is found, suggest using `create_pattern`
## 1. ANALYZE USER INPUT
- Parse the user's request to understand their primary objective
- Identify the type of content they're working with (text, code, data, etc.)
- Determine the desired output format or outcome
- Consider the user's level of expertise with fabric
## 2. CATEGORIZE THE REQUEST
Match the request to one or more of these primary categories:
- **AI** - AI-related patterns for model guidance, art prompts, evaluation
- **ANALYSIS** - Analysis and evaluation of content, data, claims, debates
- **BILL** - Legislative bill analysis and implications
- **BUSINESS** - Business strategy, agreements, sales, presentations
- **CLASSIFICATION** - Content categorization and tagging
- **CONVERSION** - Format conversion between different data types
- **CR THINKING** - Critical thinking, logical analysis, bias detection
- **CREATIVITY** - Creative writing, essay generation, artistic content
- **DEVELOPMENT** - Software development, coding, project design
- **DEVOPS** - Infrastructure, deployment, pipeline management
- **EXTRACT** - Information extraction from various content types
- **GAMING** - RPG, D&D, gaming-related content creation
- **LEARNING** - Educational content, tutorials, explanations
- **OTHER** - Miscellaneous patterns that don't fit other categories
- **RESEARCH** - Academic research, paper analysis, investigation
- **REVIEW** - Evaluation and review of content, code, designs
- **SECURITY** - Cybersecurity analysis, threat modeling, vulnerability assessment
- **SELF** - Personal development, guidance, self-improvement
- **STRATEGY** - Strategic analysis, planning, decision-making
- **SUMMARIZE** - Content summarization at various levels of detail
- **VISUALIZE** - Data visualization, diagrams, charts, graphics
- **WISDOM** - Wisdom extraction, insights, life lessons
- **WRITING** - Writing assistance, improvement, formatting
## 3. SUGGEST APPROPRIATE PATTERNS
- Recommend 1-3 most suitable patterns based on the analysis
- Prioritize patterns that directly address the user's main objective
- Consider alternative patterns for different approaches to the same goal
- Include both primary and secondary pattern suggestions when relevant
## 4. PROVIDE CONTEXT AND USAGE
- Explain WHY each suggested pattern is appropriate
- Include the exact fabric command syntax
- Mention any important considerations or limitations
- Suggest complementary patterns if applicable
# OUTPUT INSTRUCTIONS
- Only output Markdown
- Provide suggestions for fabric commands or patterns based on the user's input
- Include explanations or multiple options when appropriate
- If suggesting `create_pattern`, include instructions for saving and using the new pattern
- Format the output to be clear and easy to understand for users new to fabric
- Ensure the response aligns with the goal of making fabric more accessible and user-friendly
- Ensure you follow ALL these instructions when creating your output
- Structure your response with clear headings and sections
- Provide specific fabric command examples: `fabric --pattern pattern_name`
- Include brief explanations of what each pattern does
- If multiple patterns could work, rank them by relevance
- For complex requests, suggest a workflow using multiple patterns
- If no existing pattern fits perfectly, suggest `create_pattern` with specific guidance
- Format the output to be actionable and easy to follow
- Ensure suggestions align with making fabric more accessible and powerful
# PATTERN MATCHING GUIDELINES
## Common Request Types and Best Patterns
**AI**: ai, create_art_prompt, create_pattern, extract_mcp_servers, extract_wisdom_agents, generate_code_rules, improve_prompt, judge_output, rate_ai_response, rate_ai_result, raw_query, solve_with_cot, suggest_pattern, summarize_prompt
**ANALYSIS**: ai, analyze_answers, analyze_bill, analyze_bill_short, analyze_candidates, analyze_cfp_submission, analyze_claims, analyze_comments, analyze_debate, analyze_email_headers, analyze_incident, analyze_interviewer_techniques, analyze_logs, analyze_malware, analyze_military_strategy, analyze_mistakes, analyze_paper, analyze_paper_simple, analyze_patent, analyze_personality, analyze_presentation, analyze_product_feedback, analyze_proposition, analyze_prose, analyze_prose_json, analyze_prose_pinker, analyze_risk, analyze_sales_call, analyze_spiritual_text, analyze_tech_impact, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, apply_ul_tags, check_agreement, compare_and_contrast, create_ai_jobs_analysis, create_idea_compass, create_investigation_visualization, create_prediction_block, create_recursive_outline, create_tags, dialog_with_socrates, extract_main_idea, extract_predictions, find_hidden_message, find_logical_fallacies, get_wow_per_minute, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, identify_job_stories, label_and_rate, prepare_7s_strategy, provide_guidance, rate_content, rate_value, recommend_artists, recommend_talkpanel_topics, review_design, summarize_board_meeting, t_analyze_challenge_handling, t_check_dunning_kruger, t_check_metrics, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_find_blindspots, t_find_negative_thinking, t_red_team_thinking, t_threat_model_plans, t_year_in_review, write_hackerone_report
**BILL**: analyze_bill, analyze_bill_short
**BUSINESS**: check_agreement, create_ai_jobs_analysis, create_formal_email, create_hormozi_offer, create_loe_document, create_logo, create_newsletter_entry, create_prd, explain_project, extract_business_ideas, extract_product_features, extract_skills, extract_sponsors, identify_job_stories, prepare_7s_strategy, rate_value, t_check_metrics, t_create_h3_career, t_visualize_mission_goals_projects, t_year_in_review, transcribe_minutes
**CLASSIFICATION**: apply_ul_tags
**CONVERSION**: clean_text, convert_to_markdown, create_graph_from_input, export_data_as_csv, extract_videoid, get_youtube_rss, humanize, md_callout, sanitize_broken_html_to_markdown, to_flashcards, transcribe_minutes, translate, tweet, write_latex
**CR THINKING**: capture_thinkers_work, create_idea_compass, create_markmap_visualization, dialog_with_socrates, extract_alpha, extract_controversial_ideas, extract_extraordinary_claims, extract_predictions, extract_primary_problem, extract_wisdom_nometa, find_hidden_message, find_logical_fallacies, solve_with_cot, summarize_debate, t_analyze_challenge_handling, t_check_dunning_kruger, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking
**CREATIVITY**: create_mnemonic_phrases, write_essay
**DEVELOPMENT**: agility_story, analyze_prose_json, answer_interview_question, ask_secure_by_design_questions, ask_uncle_duke, coding_master, create_coding_feature, create_coding_project, create_command, create_design_document, create_git_diff_commit, create_mermaid_visualization, create_mermaid_visualization_for_github, create_pattern, create_sigma_rules, create_user_story, explain_code, explain_docs, export_data_as_csv, extract_algorithm_update_recommendations, extract_mcp_servers, extract_poc, generate_code_rules, get_youtube_rss, improve_prompt, official_pattern_template, recommend_pipeline_upgrades, refine_design_document, review_code, review_design, sanitize_broken_html_to_markdown, show_fabric_options_markmap, suggest_pattern, summarize_git_changes, summarize_git_diff, summarize_pull-requests, write_nuclei_template_rule, write_pull-request, write_semgrep_rule
**DEVOPS**: analyze_terraform_plan
**EXTRACT**: analyze_comments, create_aphorisms, create_tags, create_video_chapters, extract_algorithm_update_recommendations, extract_alpha, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_business_ideas, extract_controversial_ideas, extract_core_message, extract_ctf_writeup, extract_domains, extract_extraordinary_claims, extract_ideas, extract_insights, extract_insights_dm, extract_instructions, extract_jokes, extract_latest_video, extract_main_activities, extract_main_idea, extract_mcp_servers, extract_most_redeeming_thing, extract_patterns, extract_poc, extract_predictions, extract_primary_problem, extract_primary_solution, extract_product_features, extract_questions, extract_recipe, extract_recommendations, extract_references, extract_skills, extract_song_meaning, extract_sponsors, extract_videoid, extract_wisdom, extract_wisdom_agents, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short, generate_code_rules, t_extract_intro_sentences, t_extract_panel_topics
**GAMING**: create_npc, create_rpg_summary, summarize_rpg_session
**LEARNING**: analyze_answers, ask_uncle_duke, coding_master, create_diy, create_flash_cards, create_quiz, create_reading_plan, create_story_explanation, dialog_with_socrates, explain_code, explain_docs, explain_math, explain_project, explain_terms, extract_references, improve_academic_writing, provide_guidance, solve_with_cot, summarize_lecture, summarize_paper, to_flashcards, write_essay_pg
**OTHER**: extract_jokes
**RESEARCH**: analyze_candidates, analyze_claims, analyze_paper, analyze_paper_simple, analyze_patent, analyze_proposition, analyze_spiritual_text, analyze_tech_impact, capture_thinkers_work, create_academic_paper, extract_extraordinary_claims, extract_references, find_hidden_message, find_logical_fallacies, identify_dsrp_distinctions, identify_dsrp_perspectives, identify_dsrp_relationships, identify_dsrp_systems, improve_academic_writing, recommend_artists, summarize_paper, write_essay_pg, write_latex, write_micro_essay
**REVIEW**: analyze_cfp_submission, analyze_presentation, analyze_prose, get_wow_per_minute, judge_output, label_and_rate, rate_ai_response, rate_ai_result, rate_content, rate_value, review_code, review_design
**SECURITY**: analyze_email_headers, analyze_incident, analyze_logs, analyze_malware, analyze_risk, analyze_terraform_plan, analyze_threat_report, analyze_threat_report_cmds, analyze_threat_report_trends, ask_secure_by_design_questions, create_command, create_cyber_summary, create_graph_from_input, create_investigation_visualization, create_network_threat_landscape, create_report_finding, create_security_update, create_sigma_rules, create_stride_threat_model, create_threat_scenarios, create_ttrc_graph, create_ttrc_narrative, extract_ctf_writeup, improve_report_finding, recommend_pipeline_upgrades, review_code, t_red_team_thinking, t_threat_model_plans, write_hackerone_report, write_nuclei_template_rule, write_semgrep_rule
**SELF**: create_better_frame, create_diy, create_reading_plan, dialog_with_socrates, extract_article_wisdom, extract_book_ideas, extract_book_recommendations, extract_insights, extract_insights_dm, extract_most_redeeming_thing, extract_recipe, extract_recommendations, extract_song_meaning, extract_wisdom, extract_wisdom_dm, extract_wisdom_short, find_female_life_partner, provide_guidance, t_check_dunning_kruger, t_create_h3_career, t_describe_life_outlook, t_find_neglected_goals, t_give_encouragement
**STRATEGY**: analyze_military_strategy, create_better_frame, prepare_7s_strategy, t_analyze_challenge_handling, t_find_blindspots, t_find_negative_thinking, t_find_neglected_goals, t_red_team_thinking, t_threat_model_plans, t_visualize_mission_goals_projects
**SUMMARIZE**: capture_thinkers_work, create_5_sentence_summary, create_micro_summary, create_newsletter_entry, create_show_intro, create_summary, extract_core_message, extract_latest_video, extract_main_idea, summarize, summarize_board_meeting, summarize_debate, summarize_git_changes, summarize_git_diff, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_pull-requests, summarize_rpg_session, youtube_summary
**VISUALIZE**: create_excalidraw_visualization, create_graph_from_input, create_idea_compass, create_investigation_visualization, create_keynote, create_logo, create_markmap_visualization, create_mermaid_visualization, create_mermaid_visualization_for_github, create_video_chapters, create_visualization, enrich_blog_post, show_fabric_options_markmap, t_visualize_mission_goals_projects
**WISDOM**: extract_alpha, extract_article_wisdom, extract_book_ideas, extract_insights, extract_most_redeeming_thing, extract_recommendations, extract_wisdom, extract_wisdom_dm, extract_wisdom_nometa, extract_wisdom_short
**WRITING**: analyze_prose_json, analyze_prose_pinker, apply_ul_tags, clean_text, compare_and_contrast, convert_to_markdown, create_5_sentence_summary, create_academic_paper, create_aphorisms, create_better_frame, create_design_document, create_diy, create_formal_email, create_hormozi_offer, create_keynote, create_micro_summary, create_newsletter_entry, create_prediction_block, create_prd, create_show_intro, create_story_explanation, create_summary, create_tags, create_user_story, enrich_blog_post, explain_docs, explain_terms, humanize, improve_academic_writing, improve_writing, label_and_rate, md_callout, official_pattern_template, recommend_talkpanel_topics, refine_design_document, summarize, summarize_debate, summarize_lecture, summarize_legislation, summarize_meeting, summarize_micro, summarize_newsletter, summarize_paper, summarize_rpg_session, t_create_opening_sentences, t_describe_life_outlook, t_extract_intro_sentences, t_extract_panel_topics, t_give_encouragement, t_year_in_review, transcribe_minutes, tweet, write_essay, write_essay_pg, write_hackerone_report, write_latex, write_micro_essay, write_pull-request
## Workflow Suggestions
- For complex analysis: First use an extract pattern, then an analyze pattern, finally a summarize pattern
- For content creation: Use relevant create_patterns followed by improve_ patterns for refinement
- For research projects: Combine extract_, analyze_, and summarize_ patterns in sequence
# INPUT
INPUT:
INPUT:

File diff suppressed because it is too large Load Diff

View File

@@ -1,919 +0,0 @@
# Suggest Pattern
## OVERVIEW
What It Does: Fabric is an open-source framework designed to augment human capabilities using AI, making it easier to integrate AI into daily tasks.
Why People Use It: Users leverage Fabric to seamlessly apply AI for solving everyday challenges, enhancing productivity, and fostering human creativity through technology.
## HOW TO USE IT
Most Common Syntax: The most common usage involves executing Fabric commands in the terminal, such as `fabric --pattern <PATTERN_NAME>`.
## COMMON USE CASES
For Summarizing Content: `fabric --pattern summarize`
For Analyzing Claims: `fabric --pattern analyze_claims`
For Extracting Wisdom from Videos: `fabric --pattern extract_wisdom`
For creating custom patterns: `fabric --pattern create_pattern`
- One possible place to store them is ~/.config/custom-fabric-patterns.
- Then when you want to use them, simply copy them into ~/.config/fabric/patterns.
`cp -a ~/.config/custom-fabric-patterns/* ~/.config/fabric/patterns/`
- Now you can run them with: `pbpaste | fabric -p your_custom_pattern`
## MOST IMPORTANT AND USED OPTIONS AND FEATURES
- **--pattern PATTERN, -p PATTERN**: Specifies the pattern (prompt) to use. Useful for applying specific AI prompts to your input.
- **--stream, -s**: Streams results in real-time. Ideal for getting immediate feedback from AI operations.
- **--update, -u**: Updates patterns. Ensures you're using the latest AI prompts for your tasks.
- **--model MODEL, -m MODEL**: Selects the AI model to use. Allows customization of the AI backend for different tasks.
- **--setup, -S**: Sets up your Fabric instance. Essential for first-time users to configure Fabric correctly.
- **--list, -l**: Lists available patterns. Helps users discover new AI prompts for various applications.
- **--context, -C**: Uses a Context file to add context to your pattern. Enhances the relevance of AI responses by providing additional background information.
## PATTERNS
**Key pattern to use: `suggest_pattern`** - suggests appropriate fabric patterns or commands based on user input.
### agility_story
Generate a user story and acceptance criteria in JSON format based on the given topic.
### ai
Interpret questions deeply and provide concise, insightful answers in Markdown bullet points.
### analyze_answers
Evaluate quiz answers for correctness based on learning objectives and generated quiz questions.
### analyze_bill
Analyzes legislation to identify overt and covert goals, examining bills for hidden agendas and true intentions.
### analyze_bill_short
Provides a concise analysis of legislation, identifying overt and covert goals in a brief, structured format.
### analyze_candidates
Compare and contrast two political candidates based on key issues and policies.
### analyze_cfp_submission
Review and evaluate conference speaking session submissions based on clarity, relevance, depth, and engagement potential.
### analyze_claims
Analyse and rate truth claims with evidence, counter-arguments, fallacies, and final recommendations.
### analyze_comments
Evaluate internet comments for content, categorize sentiment, and identify reasons for praise, criticism, and neutrality.
### analyze_debate
Rate debates on insight, emotionality, and present an unbiased, thorough analysis of arguments, agreements, and disagreements.
### analyze_email_headers
Provide cybersecurity analysis and actionable insights on SPF, DKIM, DMARC, and ARC email header results.
### analyze_incident
Efficiently extract and organize key details from cybersecurity breach articles, focusing on attack type, vulnerable components, attacker and target info, incident details, and remediation steps.
### analyze_interviewer_techniques
This exercise involves analyzing interviewer techniques, identifying their unique qualities, and succinctly articulating what makes them stand out in a clear, simple format.
### analyze_logs
Analyse server log files to identify patterns, anomalies, and issues, providing data-driven insights and recommendations for improving server reliability and performance.
### analyze_malware
Analyse malware details, extract key indicators, techniques, and potential detection strategies, and summarize findings concisely for a malware analyst's use in identifying and responding to threats.
### analyze_military_strategy
Analyse a historical battle, offering in-depth insights into strategic decisions, strengths, weaknesses, tactical approaches, logistical factors, pivotal moments, and consequences for a comprehensive military evaluation.
### analyze_mistakes
Analyse past mistakes in thinking patterns, map them to current beliefs, and offer recommendations to improve accuracy in predictions.
### analyze_paper
Analyses research papers by summarizing findings, evaluating rigor, and assessing quality to provide insights for documentation and review.
### analyze_paper_simple
Analyzes academic papers with a focus on primary findings, research quality, and study design evaluation.
### analyze_patent
Analyse a patent's field, problem, solution, novelty, inventive step, and advantages in detail while summarizing and extracting keywords.
### analyze_personality
Performs a deep psychological analysis of a person in the input, focusing on their behavior, language, and psychological traits.
### analyze_presentation
Reviews and critiques presentations by analyzing the content, speaker's underlying goals, self-focus, and entertainment value.
### analyze_product_feedback
A prompt for analyzing and organizing user feedback by identifying themes, consolidating similar comments, and prioritizing them based on usefulness.
### analyze_proposition
Analyzes a ballot proposition by identifying its purpose, impact, arguments for and against, and relevant background information.
### analyze_prose
Evaluates writing for novelty, clarity, and prose, providing ratings, improvement recommendations, and an overall score.
### analyze_prose_json
Evaluates writing for novelty, clarity, prose, and provides ratings, explanations, improvement suggestions, and an overall score in a JSON format.
### analyze_prose_pinker
Evaluates prose based on Steven Pinker's The Sense of Style, analyzing writing style, clarity, and bad writing elements.
### analyze_risk
Conducts a risk assessment of a third-party vendor, assigning a risk score and suggesting security controls based on analysis of provided documents and vendor website.
### analyze_sales_call
Rates sales call performance across multiple dimensions, providing scores and actionable feedback based on transcript analysis.
### analyze_spiritual_text
Compares and contrasts spiritual texts by analyzing claims and differences with the King James Bible.
### analyze_tech_impact
Analyzes the societal impact, ethical considerations, and sustainability of technology projects, evaluating their outcomes and benefits.
### analyze_terraform_plan
Analyzes Terraform plan outputs to assess infrastructure changes, security risks, cost implications, and compliance considerations.
### analyze_threat_report
Extracts surprising insights, trends, statistics, quotes, references, and recommendations from cybersecurity threat reports, summarizing key findings and providing actionable information.
### analyze_threat_report_cmds
Extract and synthesize actionable cybersecurity commands from provided materials, incorporating command-line arguments and expert insights for pentesters and non-experts.
### analyze_threat_report_trends
Extract up to 50 surprising, insightful, and interesting trends from a cybersecurity threat report in markdown format.
### answer_interview_question
Generates concise, tailored responses to technical interview questions, incorporating alternative approaches and evidence to demonstrate the candidate's expertise and experience.
### ask_secure_by_design_questions
Generates a set of security-focused questions to ensure a project is built securely by design, covering key components and considerations.
### ask_uncle_duke
Coordinates a team of AI agents to research and produce multiple software development solutions based on provided specifications, and conducts detailed code reviews to ensure adherence to best practices.
### capture_thinkers_work
Analyze philosophers or philosophies and provide detailed summaries about their teachings, background, works, advice, and related concepts in a structured template.
### check_agreement
Analyze contracts and agreements to identify important stipulations, issues, and potential gotchas, then summarize them in Markdown.
### clean_text
Fix broken or malformatted text by correcting line breaks, punctuation, capitalization, and paragraphs without altering content or spelling.
### coding_master
Explain a coding concept to a beginner, providing examples, and formatting code in markdown with specific output sections like ideas, recommendations, facts, and insights.
### compare_and_contrast
Compare and contrast a list of items in a markdown table, with items on the left and topics on top.
### convert_to_markdown
Convert content to clean, complete Markdown format, preserving all original structure, formatting, links, and code blocks without alterations.
### create_5_sentence_summary
Create concise summaries or answers to input at 5 different levels of depth, from 5 words to 1 word.
### create_academic_paper
Generate a high-quality academic paper in LaTeX format with clear concepts, structured content, and a professional layout.
### create_ai_jobs_analysis
Analyze job categories' susceptibility to automation, identify resilient roles, and provide strategies for personal adaptation to AI-driven changes in the workforce.
### create_aphorisms
Find and generate a list of brief, witty statements.
### create_art_prompt
Generates a detailed, compelling visual description of a concept, including stylistic references and direct AI instructions for creating art.
### create_better_frame
Identifies and analyzes different frames of interpreting reality, emphasizing the power of positive, productive lenses in shaping outcomes.
### create_coding_feature
Generates secure and composable code features using modern technology and best practices from project specifications.
### create_coding_project
Generate wireframes and starter code for any coding ideas that you have.
### create_command
Helps determine the correct parameters and switches for penetration testing tools based on a brief description of the objective.
### create_cyber_summary
Summarizes cybersecurity threats, vulnerabilities, incidents, and malware with a 25-word summary and categorized bullet points, after thoroughly analyzing and mapping the provided input.
### create_design_document
Creates a detailed design document for a system using the C4 model, addressing business and security postures, and including a system context diagram.
### create_diy
Creates structured "Do It Yourself" tutorial patterns by analyzing prompts, organizing requirements, and providing step-by-step instructions in Markdown format.
### create_excalidraw_visualization
Creates complex Excalidraw diagrams to visualize relationships between concepts and ideas in structured format.
### create_flash_cards
Creates flashcards for key concepts, definitions, and terms with question-answer format for educational purposes.
### create_formal_email
Crafts professional, clear, and respectful emails by analyzing context, tone, and purpose, ensuring proper structure and formatting.
### create_git_diff_commit
Generates Git commands and commit messages for reflecting changes in a repository, using conventional commits and providing concise shell commands for updates.
### create_graph_from_input
Generates a CSV file with progress-over-time data for a security program, focusing on relevant metrics and KPIs.
### create_hormozi_offer
Creates a customized business offer based on principles from Alex Hormozi's book, "$100M Offers."
### create_idea_compass
Organizes and structures ideas by exploring their definition, evidence, sources, and related themes or consequences.
### create_investigation_visualization
Creates detailed Graphviz visualizations of complex input, highlighting key aspects and providing clear, well-annotated diagrams for investigative analysis and conclusions.
### create_keynote
Creates TED-style keynote presentations with a clear narrative, structured slides, and speaker notes, emphasizing impactful takeaways and cohesive flow.
### create_loe_document
Creates detailed Level of Effort documents for estimating work effort, resources, and costs for tasks or projects.
### create_logo
Creates simple, minimalist company logos without text, generating AI prompts for vector graphic logos based on input.
### create_markmap_visualization
Transforms complex ideas into clear visualizations using MarkMap syntax, simplifying concepts into diagrams with relationships, boxes, arrows, and labels.
### create_mermaid_visualization
Creates detailed, standalone visualizations of concepts using Mermaid (Markdown) syntax, ensuring clarity and coherence in diagrams.
### create_mermaid_visualization_for_github
Creates standalone, detailed visualizations using Mermaid (Markdown) syntax to effectively explain complex concepts, ensuring clarity and precision.
### create_micro_summary
Summarizes content into a concise, 20-word summary with main points and takeaways, formatted in Markdown.
### create_mnemonic_phrases
Creates memorable mnemonic sentences from given words to aid in memory retention and learning.
### create_network_threat_landscape
Analyzes open ports and services from a network scan and generates a comprehensive, insightful, and detailed security threat report in Markdown.
### create_newsletter_entry
Condenses provided article text into a concise, objective, newsletter-style summary with a title in the style of Frontend Weekly.
### create_npc
Generates a detailed D&D 5E NPC, including background, flaws, stats, appearance, personality, goals, and more in Markdown format.
### create_pattern
Extracts, organizes, and formats LLM/AI prompts into structured sections, detailing the AI's role, instructions, output format, and any provided examples for clarity and accuracy.
### create_prd
Creates a precise Product Requirements Document (PRD) in Markdown based on input.
### create_prediction_block
Extracts and formats predictions from input into a structured Markdown block for a blog post.
### create_quiz
Generates review questions based on learning objectives from the input, adapted to the specified student level, and outputs them in a clear markdown format.
### create_reading_plan
Creates a three-phase reading plan based on an author or topic to help the user become significantly knowledgeable, including core, extended, and supplementary readings.
### create_recursive_outline
Breaks down complex tasks or projects into manageable, hierarchical components with recursive outlining for clarity and simplicity.
### create_report_finding
Creates a detailed, structured security finding report in markdown, including sections on Description, Risk, Recommendations, References, One-Sentence-Summary, and Quotes.
### create_rpg_summary
Summarizes an in-person RPG session with key events, combat details, player stats, and role-playing highlights in a structured format.
### create_security_update
Creates concise security updates for newsletters, covering stories, threats, advisories, vulnerabilities, and a summary of key issues.
### create_show_intro
Creates compelling short intros for podcasts, summarizing key topics and themes discussed in the episode.
### create_sigma_rules
Extracts Tactics, Techniques, and Procedures (TTPs) from security news and converts them into Sigma detection rules for host-based detections.
### create_story_explanation
Summarizes complex content in a clear, approachable story format that makes the concepts easy to understand.
### create_stride_threat_model
Create a STRIDE-based threat model for a system design, identifying assets, trust boundaries, data flows, and prioritizing threats with mitigations.
### create_summary
Summarizes content into a 20-word sentence, 10 main points (16 words max), and 5 key takeaways in Markdown format.
### create_tags
Identifies at least 5 tags from text content for mind mapping tools, including authors and existing tags if present.
### create_threat_scenarios
Identifies likely attack methods for any system by providing a narrative-based threat model, balancing risk and opportunity.
### create_ttrc_graph
Creates a CSV file showing the progress of Time to Remediate Critical Vulnerabilities over time using given data.
### create_ttrc_narrative
Creates a persuasive narrative highlighting progress in reducing the Time to Remediate Critical Vulnerabilities metric over time.
### create_upgrade_pack
Extracts world model and task algorithm updates from content, providing beliefs about how the world works and task performance.
### create_user_story
Writes concise and clear technical user stories for new features in complex software programs, formatted for all stakeholders.
### create_video_chapters
Extracts interesting topics and timestamps from a transcript, providing concise summaries of key moments.
### create_visualization
Transforms complex ideas into visualizations using intricate ASCII art, simplifying concepts where necessary.
### dialog_with_socrates
Engages in deep, meaningful dialogues to explore and challenge beliefs using the Socratic method.
### enrich_blog_post
Enhances Markdown blog files by applying instructions to improve structure, visuals, and readability for HTML rendering.
### explain_code
Explains code, security tool output, configuration text, and answers questions based on the provided input.
### explain_docs
Improves and restructures tool documentation into clear, concise instructions, including overviews, usage, use cases, and key features.
### explain_math
Helps you understand mathematical concepts in a clear and engaging way.
### explain_project
Summarizes project documentation into clear, concise sections covering the project, problem, solution, installation, usage, and examples.
### explain_terms
Produces a glossary of advanced terms from content, providing a definition, analogy, and explanation of why each term matters.
### export_data_as_csv
Extracts and outputs all data structures from the input in properly formatted CSV data.
### extract_algorithm_update_recommendations
Extracts concise, practical algorithm update recommendations from the input and outputs them in a bulleted list.
### extract_article_wisdom
Extracts surprising, insightful, and interesting information from content, categorizing it into sections like summary, ideas, quotes, facts, references, and recommendations.
### extract_book_ideas
Extracts and outputs 50 to 100 of the most surprising, insightful, and interesting ideas from a book's content.
### extract_book_recommendations
Extracts and outputs 50 to 100 practical, actionable recommendations from a book's content.
### extract_business_ideas
Extracts top business ideas from content and elaborates on the best 10 with unique differentiators.
### extract_controversial_ideas
Extracts and outputs controversial statements and supporting quotes from the input in a structured Markdown list.
### extract_core_message
Extracts and outputs a clear, concise sentence that articulates the core message of a given text or body of work.
### extract_ctf_writeup
Extracts a short writeup from a warstory-like text about a cyber security engagement.
### extract_domains
Extracts domains and URLs from content to identify sources used for articles, newsletters, and other publications.
### extract_extraordinary_claims
Extracts and outputs a list of extraordinary claims from conversations, focusing on scientifically disputed or false statements.
### extract_ideas
Extracts and outputs all the key ideas from input, presented as 15-word bullet points in Markdown.
### extract_insights
Extracts and outputs the most powerful and insightful ideas from text, formatted as 16-word bullet points in the INSIGHTS section, also IDEAS section.
### extract_insights_dm
Extracts and outputs all valuable insights and a concise summary of the content, including key points and topics discussed.
### extract_instructions
Extracts clear, actionable step-by-step instructions and main objectives from instructional video transcripts, organizing them into a concise list.
### extract_jokes
Extracts jokes from text content, presenting each joke with its punchline in separate bullet points.
### extract_latest_video
Extracts the latest video URL from a YouTube RSS feed and outputs the URL only.
### extract_main_activities
Extracts key events and activities from transcripts or logs, providing a summary of what happened.
### extract_main_idea
Extracts the main idea and key recommendation from the input, summarizing them in 15-word sentences.
### extract_most_redeeming_thing
Extracts the most redeeming aspect from an input, summarizing it in a single 15-word sentence.
### extract_patterns
Extracts and analyzes recurring, surprising, and insightful patterns from input, providing detailed analysis and advice for builders.
### extract_poc
Extracts proof of concept URLs and validation methods from security reports, providing the URL and command to run.
### extract_predictions
Extracts predictions from input, including specific details such as date, confidence level, and verification method.
### extract_primary_problem
Extracts the primary problem with the world as presented in a given text or body of work.
### extract_primary_solution
Extracts the primary solution for the world as presented in a given text or body of work.
### extract_product_features
Extracts and outputs a list of product features from the provided input in a bulleted format.
### extract_questions
Extracts and outputs all questions asked by the interviewer in a conversation or interview.
### extract_recipe
Extracts and outputs a recipe with a short meal description, ingredients with measurements, and preparation steps.
### extract_recommendations
Extracts and outputs concise, practical recommendations from a given piece of content in a bulleted list.
### extract_references
Extracts and outputs a bulleted list of references to art, stories, books, literature, and other sources from content.
### extract_skills
Extracts and classifies skills from a job description into a table, separating each skill and classifying it as either hard or soft.
### extract_song_meaning
Analyzes a song to provide a summary of its meaning, supported by detailed evidence from lyrics, artist commentary, and fan analysis.
### extract_sponsors
Extracts and lists official sponsors and potential sponsors from a provided transcript.
### extract_videoid
Extracts and outputs the video ID from any given URL.
### extract_wisdom
Extracts surprising, insightful, and interesting information from text on topics like human flourishing, AI, learning, and more.
### extract_wisdom_agents
Extracts valuable insights, ideas, quotes, and references from content, emphasizing topics like human flourishing, AI, learning, and technology.
### extract_wisdom_dm
Extracts all valuable, insightful, and thought-provoking information from content, focusing on topics like human flourishing, AI, learning, and technology.
### extract_wisdom_nometa
Extracts insights, ideas, quotes, habits, facts, references, and recommendations from content, focusing on human flourishing, AI, technology, and related topics.
### find_female_life_partner
Analyzes criteria for finding a female life partner and provides clear, direct, and poetic descriptions.
### find_hidden_message
Extracts overt and hidden political messages, justifications, audience actions, and a cynical analysis from content.
### find_logical_fallacies
Identifies and analyzes fallacies in arguments, classifying them as formal or informal with detailed reasoning.
### get_wow_per_minute
Determines the wow-factor of content per minute based on surprise, novelty, insight, value, and wisdom, measuring how rewarding the content is for the viewer.
### get_youtube_rss
Returns the RSS URL for a given YouTube channel based on the channel ID or URL.
### humanize
Rewrites AI-generated text to sound natural, conversational, and easy to understand, maintaining clarity and simplicity.
### identify_dsrp_distinctions
Encourages creative, systems-based thinking by exploring distinctions, boundaries, and their implications, drawing on insights from prominent systems thinkers.
### identify_dsrp_perspectives
Explores the concept of distinctions in systems thinking, focusing on how boundaries define ideas, influence understanding, and reveal or obscure insights.
### identify_dsrp_relationships
Encourages exploration of connections, distinctions, and boundaries between ideas, inspired by systems thinkers to reveal new insights and patterns in complex systems.
### identify_dsrp_systems
Encourages organizing ideas into systems of parts and wholes, inspired by systems thinkers to explore relationships and how changes in organization impact meaning and understanding.
### identify_job_stories
Identifies key job stories or requirements for roles.
### improve_academic_writing
Refines text into clear, concise academic language while improving grammar, coherence, and clarity, with a list of changes.
### improve_prompt
Improves an LLM/AI prompt by applying expert prompt writing strategies for better results and clarity.
### improve_report_finding
Improves a penetration test security finding by providing detailed descriptions, risks, recommendations, references, quotes, and a concise summary in markdown format.
### improve_writing
Refines text by correcting grammar, enhancing style, improving clarity, and maintaining the original meaning.
### judge_output
Evaluates Honeycomb queries by judging their effectiveness, providing critiques and outcomes based on language nuances and analytics relevance.
### label_and_rate
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### md_callout
Classifies content and generates a markdown callout based on the provided text, selecting the most appropriate type.
### official_pattern_template
Template to use if you want to create new fabric patterns.
### prepare_7s_strategy
Prepares a comprehensive briefing document from 7S's strategy capturing organizational profile, strategic elements, and market dynamics with clear, concise, and organized content.
### provide_guidance
Provides psychological and life coaching advice, including analysis, recommendations, and potential diagnoses, with a compassionate and honest tone.
### rate_ai_response
Rates the quality of AI responses by comparing them to top human expert performance, assigning a letter grade, reasoning, and providing a 1-100 score based on the evaluation.
### rate_ai_result
Assesses the quality of AI/ML/LLM work by deeply analyzing content, instructions, and output, then rates performance based on multiple dimensions, including coverage, creativity, and interdisciplinary thinking.
### rate_content
Labels content with up to 20 single-word tags and rates it based on idea count and relevance to human meaning, AI, and other related themes, assigning a tier (S, A, B, C, D) and a quality score.
### rate_value
Produces the best possible output by deeply analyzing and understanding the input and its intended purpose.
### raw_query
Fully digests and contemplates the input to produce the best possible result based on understanding the sender's intent.
### recommend_artists
Recommends a personalized festival schedule with artists aligned to your favorite styles and interests, including rationale.
### recommend_pipeline_upgrades
Optimizes vulnerability-checking pipelines by incorporating new information and improving their efficiency, with detailed explanations of changes.
### recommend_talkpanel_topics
Produces a clean set of proposed talks or panel talking points for a person based on their interests and goals, formatted for submission to a conference organizer.
### refine_design_document
Refines a design document based on a design review by analyzing, mapping concepts, and implementing changes using valid Markdown.
### review_design
Reviews and analyzes architecture design, focusing on clarity, component design, system integrations, security, performance, scalability, and data management.
### sanitize_broken_html_to_markdown
Converts messy HTML into clean, properly formatted Markdown, applying custom styling and ensuring compatibility with Vite.
### show_fabric_options_markmap
Visualizes the functionality of the Fabric framework by representing its components, commands, and features based on the provided input.
### solve_with_cot
Provides detailed, step-by-step responses with chain of thought reasoning, using structured thinking, reflection, and output sections.
### suggest_pattern
Suggests appropriate fabric patterns or commands based on user input, providing clear explanations and options for users.
### summarize
Summarizes content into a 20-word sentence, main points, and takeaways, formatted with numbered lists in Markdown.
### summarize_board_meeting
Creates formal meeting notes from board meeting transcripts for corporate governance documentation.
### summarize_debate
Summarizes debates, identifies primary disagreement, extracts arguments, and provides analysis of evidence and argument strength to predict outcomes.
### summarize_git_changes
Summarizes recent project updates from the last 7 days, focusing on key changes with enthusiasm.
### summarize_git_diff
Summarizes and organizes Git diff changes with clear, succinct commit messages and bullet points.
### summarize_lecture
Extracts relevant topics, definitions, and tools from lecture transcripts, providing structured summaries with timestamps and key takeaways.
### summarize_legislation
Summarizes complex political proposals and legislation by analyzing key points, proposed changes, and providing balanced, positive, and cynical characterizations.
### summarize_meeting
Analyzes meeting transcripts to extract a structured summary, including an overview, key points, tasks, decisions, challenges, timeline, references, and next steps.
### summarize_micro
Summarizes content into a 20-word sentence, 3 main points, and 3 takeaways, formatted in clear, concise Markdown.
### summarize_newsletter
Extracts the most meaningful, interesting, and useful content from a newsletter, summarizing key sections such as content, opinions, tools, companies, and follow-up items in clear, structured Markdown.
### summarize_paper
Summarizes an academic paper by detailing its title, authors, technical approach, distinctive features, experimental setup, results, advantages, limitations, and conclusion in a clear, structured format using human-readable Markdown.
### summarize_prompt
Summarizes AI chat prompts by describing the primary function, unique approach, and expected output in a concise paragraph. The summary is focused on the prompt's purpose without unnecessary details or formatting.
### summarize_pull-requests
Summarizes pull requests for a coding project by providing a summary and listing the top PRs with human-readable descriptions.
### summarize_rpg_session
Summarizes a role-playing game session by extracting key events, combat stats, character changes, quotes, and more.
### t_analyze_challenge_handling
Provides 8-16 word bullet points evaluating how well challenges are being addressed, calling out any lack of effort.
### t_check_metrics
Analyzes deep context from the TELOS file and input instruction, then provides a wisdom-based output while considering metrics and KPIs to assess recent improvements.
### t_create_h3_career
Summarizes context and produces wisdom-based output by deeply analyzing both the TELOS File and the input instruction, considering the relationship between the two.
### t_create_opening_sentences
Describes from TELOS file the person's identity, goals, and actions in 4 concise, 32-word bullet points, humbly.
### t_describe_life_outlook
Describes from TELOS file a person's life outlook in 5 concise, 16-word bullet points.
### t_extract_intro_sentences
Summarizes from TELOS file a person's identity, work, and current projects in 5 concise and grounded bullet points.
### t_extract_panel_topics
Creates 5 panel ideas with titles and descriptions based on deep context from a TELOS file and input.
### t_find_blindspots
Identify potential blindspots in thinking, frames, or models that may expose the individual to error or risk.
### t_find_negative_thinking
Analyze a TELOS file and input to identify negative thinking in documents or journals, followed by tough love encouragement.
### t_find_neglected_goals
Analyze a TELOS file and input instructions to identify goals or projects that have not been worked on recently.
### t_give_encouragement
Analyze a TELOS file and input instructions to evaluate progress, provide encouragement, and offer recommendations for continued effort.
### t_red_team_thinking
Analyze a TELOS file and input instructions to red-team thinking, models, and frames, then provide recommendations for improvement.
### t_threat_model_plans
Analyze a TELOS file and input instructions to create threat models for a life plan and recommend improvements.
### t_visualize_mission_goals_projects
Analyze a TELOS file and input instructions to create an ASCII art diagram illustrating the relationship of missions, goals, and projects.
### t_year_in_review
Analyze a TELOS file to create insights about a person or entity, then summarize accomplishments and visualizations in bullet points.
### to_flashcards
Create Anki flashcards from a given text, focusing on concise, optimized questions and answers without external context.
### transcribe_minutes
Extracts (from meeting transcription) meeting minutes, identifying actionables, insightful ideas, decisions, challenges, and next steps in a structured format.
### translate
Translates sentences or documentation into the specified language code while maintaining the original formatting and tone.
### tweet
Provides a step-by-step guide on crafting engaging tweets with emojis, covering Twitter basics, account creation, features, and audience targeting.
### write_essay
Writes essays in the style of a specified author, embodying their unique voice, vocabulary, and approach. Uses `author_name` variable.
### write_essay_pg
Writes concise, clear essays in the style of Paul Graham, focusing on simplicity, clarity, and illumination of the provided topic.
### write_hackerone_report
Generates concise, clear, and reproducible bug bounty reports, detailing vulnerability impact, steps to reproduce, and exploit details for triagers.
### write_latex
Generates syntactically correct LaTeX code for a new.tex document, ensuring proper formatting and compatibility with pdflatex.
### write_micro_essay
Writes concise, clear, and illuminating essays on the given topic in the style of Paul Graham.
### write_nuclei_template_rule
Generates Nuclei YAML templates for detecting vulnerabilities using HTTP requests, matchers, extractors, and dynamic data extraction.
### write_pull-request
Drafts detailed pull request descriptions, explaining changes, providing reasoning, and identifying potential bugs from the git diff command output.
### write_semgrep_rule
Creates accurate and working Semgrep rules based on input, following syntax guidelines and specific language considerations.
### youtube_summary
Create concise, timestamped Youtube video summaries that highlight key points.

View File

@@ -23,78 +23,79 @@ import (
// Chat parameter defaults set in the struct tags must match domain.Default* constants
type Flags struct {
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
Vendor string `short:"V" long:"vendor" yaml:"vendor" description:"Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
YtDlpArgs string `long:"yt-dlp-args" yaml:"ytDlpArgs" description:"Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
Notification bool `long:"notification" yaml:"notification" description:"Send desktop notification when command completes"`
NotificationCommand string `long:"notification-command" yaml:"notificationCommand" description:"Custom command to run for notifications (overrides built-in notifications)"`
Pattern string `short:"p" long:"pattern" yaml:"pattern" description:"Choose a pattern from the available patterns" default:""`
PatternVariables map[string]string `short:"v" long:"variable" description:"Values for pattern variables, e.g. -v=#role:expert -v=#points:30"`
Context string `short:"C" long:"context" description:"Choose a context from the available contexts" default:""`
Session string `long:"session" description:"Choose a session from the available sessions"`
Attachments []string `short:"a" long:"attachment" description:"Attachment path or URL (e.g. for OpenAI image recognition messages)"`
Setup bool `short:"S" long:"setup" description:"Run setup for all reconfigurable parts of fabric"`
Temperature float64 `short:"t" long:"temperature" yaml:"temperature" description:"Set temperature" default:"0.7"`
TopP float64 `short:"T" long:"topp" yaml:"topp" description:"Set top P" default:"0.9"`
Stream bool `short:"s" long:"stream" yaml:"stream" description:"Stream"`
PresencePenalty float64 `short:"P" long:"presencepenalty" yaml:"presencepenalty" description:"Set presence penalty" default:"0.0"`
Raw bool `short:"r" long:"raw" yaml:"raw" description:"Use the defaults of the model without sending chat options (like temperature etc.) and use the user role instead of the system role for patterns."`
FrequencyPenalty float64 `short:"F" long:"frequencypenalty" yaml:"frequencypenalty" description:"Set frequency penalty" default:"0.0"`
ListPatterns bool `short:"l" long:"listpatterns" description:"List all patterns"`
ListAllModels bool `short:"L" long:"listmodels" description:"List all available models"`
ListAllContexts bool `short:"x" long:"listcontexts" description:"List all contexts"`
ListAllSessions bool `short:"X" long:"listsessions" description:"List all sessions"`
UpdatePatterns bool `short:"U" long:"updatepatterns" description:"Update patterns"`
Message string `hidden:"true" description:"Messages to send to chat"`
Copy bool `short:"c" long:"copy" description:"Copy to clipboard"`
Model string `short:"m" long:"model" yaml:"model" description:"Choose model"`
Vendor string `short:"V" long:"vendor" yaml:"vendor" description:"Specify vendor for the selected model (e.g., -V \"LM Studio\" -m openai/gpt-oss-20b)"`
ModelContextLength int `long:"modelContextLength" yaml:"modelContextLength" description:"Model context length (only affects ollama)"`
Output string `short:"o" long:"output" description:"Output to file" default:""`
OutputSession bool `long:"output-session" description:"Output the entire session (also a temporary one) to the output file"`
LatestPatterns string `short:"n" long:"latest" description:"Number of latest patterns to list" default:"0"`
ChangeDefaultModel bool `short:"d" long:"changeDefaultModel" description:"Change default model"`
YouTube string `short:"y" long:"youtube" description:"YouTube video or play list \"URL\" to grab transcript, comments from it and send to chat or print it put to the console and store it in the output file"`
YouTubePlaylist bool `long:"playlist" description:"Prefer playlist over video if both ids are present in the URL"`
YouTubeTranscript bool `long:"transcript" description:"Grab transcript from YouTube video and send to chat (it is used per default)."`
YouTubeTranscriptWithTimestamps bool `long:"transcript-with-timestamps" description:"Grab transcript from YouTube video with timestamps and send to chat"`
YouTubeComments bool `long:"comments" description:"Grab comments from YouTube video and send to chat"`
YouTubeMetadata bool `long:"metadata" description:"Output video metadata"`
YtDlpArgs string `long:"yt-dlp-args" yaml:"ytDlpArgs" description:"Additional arguments to pass to yt-dlp (e.g. '--cookies-from-browser brave')"`
Language string `short:"g" long:"language" description:"Specify the Language Code for the chat, e.g. -g=en -g=zh" default:""`
ScrapeURL string `short:"u" long:"scrape_url" description:"Scrape website URL to markdown using Jina AI"`
ScrapeQuestion string `short:"q" long:"scrape_question" description:"Search question using Jina AI"`
Seed int `short:"e" long:"seed" yaml:"seed" description:"Seed to be used for LMM generation"`
WipeContext string `short:"w" long:"wipecontext" description:"Wipe context"`
WipeSession string `short:"W" long:"wipesession" description:"Wipe session"`
PrintContext string `long:"printcontext" description:"Print context"`
PrintSession string `long:"printsession" description:"Print session"`
HtmlReadability bool `long:"readability" description:"Convert HTML input into a clean, readable view"`
InputHasVars bool `long:"input-has-vars" description:"Apply variables to user input"`
DryRun bool `long:"dry-run" description:"Show what would be sent to the model without actually sending it"`
Serve bool `long:"serve" description:"Serve the Fabric Rest API"`
ServeOllama bool `long:"serveOllama" description:"Serve the Fabric Rest API with ollama endpoints"`
ServeAddress string `long:"address" description:"The address to bind the REST API" default:":8080"`
ServeAPIKey string `long:"api-key" description:"API key used to secure server routes" default:""`
Config string `long:"config" description:"Path to YAML config file"`
Version bool `long:"version" description:"Print current version"`
ListExtensions bool `long:"listextensions" description:"List all registered extensions"`
AddExtension string `long:"addextension" description:"Register a new extension from config file path"`
RemoveExtension string `long:"rmextension" description:"Remove a registered extension by name"`
Strategy string `long:"strategy" description:"Choose a strategy from the available strategies" default:""`
ListStrategies bool `long:"liststrategies" description:"List all strategies"`
ListVendors bool `long:"listvendors" description:"List all vendors"`
ShellCompleteOutput bool `long:"shell-complete-list" description:"Output raw list without headers/formatting (for shell completion)"`
Search bool `long:"search" description:"Enable web search tool for supported models (Anthropic, OpenAI, Gemini)"`
SearchLocation string `long:"search-location" description:"Set location for web search results (e.g., 'America/Los_Angeles')"`
ImageFile string `long:"image-file" description:"Save generated image to specified file path (e.g., 'output.png')"`
ImageSize string `long:"image-size" description:"Image dimensions: 1024x1024, 1536x1024, 1024x1536, auto (default: auto)"`
ImageQuality string `long:"image-quality" description:"Image quality: low, medium, high, auto (default: auto)"`
ImageCompression int `long:"image-compression" description:"Compression level 0-100 for JPEG/WebP formats (default: not set)"`
ImageBackground string `long:"image-background" description:"Background type: opaque, transparent (default: opaque, only for PNG/WebP)"`
SuppressThink bool `long:"suppress-think" yaml:"suppressThink" description:"Suppress text enclosed in thinking tags"`
ThinkStartTag string `long:"think-start-tag" yaml:"thinkStartTag" description:"Start tag for thinking sections" default:"<think>"`
ThinkEndTag string `long:"think-end-tag" yaml:"thinkEndTag" description:"End tag for thinking sections" default:"</think>"`
DisableResponsesAPI bool `long:"disable-responses-api" yaml:"disableResponsesAPI" description:"Disable OpenAI Responses API (default: false)"`
Voice string `long:"voice" yaml:"voice" description:"TTS voice name for supported models (e.g., Kore, Charon, Puck)" default:"Kore"`
ListGeminiVoices bool `long:"list-gemini-voices" description:"List all available Gemini TTS voices"`
Notification bool `long:"notification" yaml:"notification" description:"Send desktop notification when command completes"`
NotificationCommand string `long:"notification-command" yaml:"notificationCommand" description:"Custom command to run for notifications (overrides built-in notifications)"`
Thinking domain.ThinkingLevel `long:"thinking" yaml:"thinking" description:"Set reasoning/thinking level (e.g., off, low, medium, high, or numeric tokens for Anthropic)"`
}
var debug = false
@@ -438,6 +439,7 @@ func (o *Flags) BuildChatOptions() (ret *domain.ChatOptions, err error) {
FrequencyPenalty: o.FrequencyPenalty,
Raw: o.Raw,
Seed: o.Seed,
Thinking: o.Thinking,
ModelContextLength: o.ModelContextLength,
Search: o.Search,
SearchLocation: o.SearchLocation,

View File

@@ -64,6 +64,7 @@ func TestBuildChatOptions(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 1,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",
@@ -88,6 +89,7 @@ func TestBuildChatOptionsDefaultSeed(t *testing.T) {
FrequencyPenalty: 0.2,
Raw: false,
Seed: 0,
Thinking: domain.ThinkingLevel(""),
SuppressThink: false,
ThinkStartTag: "<think>",
ThinkEndTag: "</think>",

View File

@@ -32,6 +32,7 @@ type ChatOptions struct {
FrequencyPenalty float64
Raw bool
Seed int
Thinking ThinkingLevel
ModelContextLength int
MaxTokens int
Search bool

View File

@@ -0,0 +1,18 @@
package domain
// ThinkingLevel represents reasoning/thinking levels supported across providers.
type ThinkingLevel string
const (
ThinkingOff ThinkingLevel = "off"
ThinkingLow ThinkingLevel = "low"
ThinkingMedium ThinkingLevel = "medium"
ThinkingHigh ThinkingLevel = "high"
)
// ThinkingBudgets defines standardized token budgets for reasoning-enabled models.
var ThinkingBudgets = map[ThinkingLevel]int64{
ThinkingLow: 1024,
ThinkingMedium: 2048,
ThinkingHigh: 4096,
}

View File

@@ -5,6 +5,7 @@ import (
"fmt"
"net/http"
"os"
"strconv"
"strings"
"github.com/anthropics/anthropic-sdk-go"
@@ -154,6 +155,24 @@ func (an *Client) ListModels() (ret []string, err error) {
return an.models, nil
}
func parseThinking(level domain.ThinkingLevel) (anthropic.ThinkingConfigParamUnion, bool) {
lower := strings.ToLower(string(level))
switch domain.ThinkingLevel(lower) {
case domain.ThinkingOff:
disabled := anthropic.NewThinkingConfigDisabledParam()
return anthropic.ThinkingConfigParamUnion{OfDisabled: &disabled}, true
case domain.ThinkingLow, domain.ThinkingMedium, domain.ThinkingHigh:
if budget, ok := domain.ThinkingBudgets[domain.ThinkingLevel(lower)]; ok {
return anthropic.ThinkingConfigParamOfEnabled(budget), true
}
default:
if tokens, err := strconv.ParseInt(lower, 10, 64); err == nil {
return anthropic.ThinkingConfigParamOfEnabled(tokens), true
}
}
return anthropic.ThinkingConfigParamUnion{}, false
}
func (an *Client) SendStream(
msgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions, channel chan string,
) (err error) {
@@ -243,6 +262,10 @@ func (an *Client) buildMessageParams(msgs []anthropic.MessageParam, opts *domain
}
}
if t, ok := parseThinking(opts.Thinking); ok {
params.Thinking = t
}
return
}

View File

@@ -87,6 +87,9 @@ func (c *Client) formatOptions(opts *domain.ChatOptions) string {
if opts.ImageFile != "" {
builder.WriteString(fmt.Sprintf("ImageFile: %s\n", opts.ImageFile))
}
if opts.Thinking != "" {
builder.WriteString(fmt.Sprintf("Thinking: %s\n", string(opts.Thinking)))
}
if opts.SuppressThink {
builder.WriteString("SuppressThink: enabled\n")
builder.WriteString(fmt.Sprintf("Thinking Start Tag: %s\n", opts.ThinkStartTag))

View File

@@ -85,6 +85,9 @@ func (o *Client) buildChatCompletionParams(
ret.Seed = openai.Int(int64(opts.Seed))
}
}
if eff, ok := parseReasoningEffort(opts.Thinking); ok {
ret.ReasoningEffort = eff
}
return
}

View File

@@ -184,6 +184,19 @@ func (o *Client) NeedsRawMode(modelName string) bool {
return slices.Contains(openAIModelsNeedingRaw, modelName)
}
func parseReasoningEffort(level domain.ThinkingLevel) (shared.ReasoningEffort, bool) {
switch domain.ThinkingLevel(strings.ToLower(string(level))) {
case domain.ThinkingLow:
return shared.ReasoningEffortLow, true
case domain.ThinkingMedium:
return shared.ReasoningEffortMedium, true
case domain.ThinkingHigh:
return shared.ReasoningEffortHigh, true
default:
return "", false
}
}
func (o *Client) buildResponseParams(
inputMsgs []*chat.ChatCompletionMessage, opts *domain.ChatOptions,
) (ret responses.ResponseNewParams) {
@@ -229,6 +242,10 @@ func (o *Client) buildResponseParams(
ret.Tools = tools
}
if eff, ok := parseReasoningEffort(opts.Thinking); ok {
ret.Reasoning = shared.ReasoningParam{Effort: eff}
}
if !opts.Raw {
ret.Temperature = openai.Float(opts.Temperature)
if opts.TopP != 0 {

View File

@@ -130,6 +130,7 @@ func (h *ChatHandler) HandleChat(c *gin.Context) {
TopP: request.TopP,
FrequencyPenalty: request.FrequencyPenalty,
PresencePenalty: request.PresencePenalty,
Thinking: request.Thinking,
}
session, err := chatter.Send(chatReq, opts)