First draft of DoRALayer. Not tested yet.

This commit is contained in:
Ryan Dick
2025-01-21 19:32:24 +00:00
parent faa4fa02c0
commit 4f369e3dfb
2 changed files with 96 additions and 2 deletions

View File

@@ -0,0 +1,92 @@
from typing import Dict, Optional
import torch
from invokeai.backend.patches.layers.lora_layer_base import LoRALayerBase
from invokeai.backend.util.calc_tensor_size import calc_tensors_size
class DoRALayer(LoRALayerBase):
"""A DoRA layer. As defined in https://arxiv.org/pdf/2402.09353."""
def __init__(
self,
up: torch.Tensor,
down: torch.Tensor,
dora_scale: torch.Tensor,
alpha: float | None,
bias: Optional[torch.Tensor],
):
super().__init__(alpha, bias)
self.up = up
self.down = down
self.dora_scale = dora_scale
@classmethod
def from_state_dict_values(cls, values: Dict[str, torch.Tensor]):
alpha = cls._parse_alpha(values.get("alpha", None))
bias = cls._parse_bias(
values.get("bias_indices", None), values.get("bias_values", None), values.get("bias_size", None)
)
layer = cls(
up=values["lora_up.weight"],
down=values["lora_down.weight"],
dora_scale=values["dora_scale"],
alpha=alpha,
bias=bias,
)
cls.warn_on_unhandled_keys(
values=values,
handled_keys={
# Default keys.
"alpha",
"bias_indices",
"bias_values",
"bias_size",
# Layer-specific keys.
"lora_up.weight",
"lora_down.weight",
"dora_scale",
},
)
return layer
def _rank(self) -> int:
return self.down.shape[0]
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
# Note: Variable names (e.g. delta_v) are based on the paper.
delta_v = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
delta_v = delta_v.reshape(orig_weight.shape)
# TODO(ryand): Should alpha be applied to delta_v here rather than the final diff?
# TODO(ryand): I expect this to fail if the original weight is BnB Quantized. This class shouldn't have to worry
# about that, but we should add a clear error message further up the stack.
# At this point, out_weight is the unnormalized direction matrix.
out_weight = orig_weight + delta_v
# TODO(ryand): Simplify this logic.
direction_norm = (
out_weight.transpose(0, 1)
.reshape(out_weight.shape[0], -1)
.norm(dim=1, keepdim=True)
.reshape(out_weight.shape[1], *[1] * (out_weight.dim() - 1))
.transpose(0, 1)
)
out_weight *= self.dora_scale / direction_norm
return out_weight - orig_weight
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
self.dora_scale = self.dora_scale.to(device=device, dtype=dtype)
def calc_size(self) -> int:
return super().calc_size() + calc_tensors_size([self.up, self.down, self.dora_scale])

View File

@@ -3,6 +3,7 @@ from typing import Dict
import torch
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
from invokeai.backend.patches.layers.dora_layer import DoRALayer
from invokeai.backend.patches.layers.full_layer import FullLayer
from invokeai.backend.patches.layers.ia3_layer import IA3Layer
from invokeai.backend.patches.layers.loha_layer import LoHALayer
@@ -14,8 +15,9 @@ from invokeai.backend.patches.layers.norm_layer import NormLayer
def any_lora_layer_from_state_dict(state_dict: Dict[str, torch.Tensor]) -> BaseLayerPatch:
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
if "lora_up.weight" in state_dict:
if "dora_scale" in state_dict:
return DoRALayer.from_state_dict_values(state_dict)
elif "lora_up.weight" in state_dict:
# LoRA a.k.a LoCon
return LoRALayer.from_state_dict_values(state_dict)
elif "hada_w1_a" in state_dict: