mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-22 16:28:01 -05:00
Cleaned up and refactored new symmetry.
This commit is contained in:
@@ -407,33 +407,37 @@ class InvokeAIDiffuserComponent:
|
||||
if (v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0)):
|
||||
v_symmetry_time_pct = None
|
||||
|
||||
width = latents.shape[3]
|
||||
height = latents.shape[2]
|
||||
dev = latents.device.type
|
||||
dtype = latents.dtype
|
||||
symmetry_type = postprocessing_settings.symmetry_type or SymmetryType.FADE
|
||||
|
||||
latents.to(device='cpu')
|
||||
|
||||
def make_ramp(ease_in:int, total:int) -> torch.Tensor:
|
||||
ramp1 = torch.linspace(start=1.0, end=0.5, steps=ease_in, device=dev)
|
||||
ramp2 = torch.linspace(start=0.5, end=1.0, steps=total - ease_in, device=dev)
|
||||
ramp = torch.cat((ramp1, ramp2))
|
||||
return ramp
|
||||
|
||||
if (
|
||||
h_symmetry_time_pct != None and
|
||||
self.last_percent_through < h_symmetry_time_pct and
|
||||
percent_through >= h_symmetry_time_pct
|
||||
):
|
||||
# Horizontal symmetry occurs on the 3rd dimension of the latent
|
||||
x_flipped = torch.flip(latents, dims=[3])
|
||||
if symmetry_type is SymmetryType.MIRROR:
|
||||
# Horizontal symmetry occurs on the 3rd dimension of the latent
|
||||
width = latents.shape[3]
|
||||
x_flipped = torch.flip(latents, dims=[3])
|
||||
# Use the first half of latents and then the flipped one on this dimension
|
||||
latents = torch.cat([latents[:, :, :, 0:int(width/2)], x_flipped[:, :, :, int(width/2):int(width)]], dim=3)
|
||||
elif symmetry_type is SymmetryType.FADE:
|
||||
# Horizontal symmetry occurs on the 3rd dimension of the latent
|
||||
width = latents.shape[3]
|
||||
height = latents.shape[2]
|
||||
dtype = latents.dtype
|
||||
x_flipped = torch.flip(latents, dims=[3])
|
||||
apply_width = 2 * (width//4)
|
||||
ramp1 = torch.linspace(start=1.0, end=0.5, steps=apply_width, device=latents.device)
|
||||
ramp2 = torch.linspace(start=0.5, end=1.0, steps=width-(apply_width), device=latents.device)
|
||||
ramp = torch.cat((ramp1,ramp2))
|
||||
apply_width = width // 2
|
||||
# Create a linear ramp so the middle gets perfect symmetry but the edges retain their original latents
|
||||
ramp = make_ramp(ease_in=apply_width, total=width)
|
||||
fade1 = einops.repeat(tensor=ramp, pattern='m -> 1 4 k m', k=height).to(latents.device).type(dtype)
|
||||
fade0 = 1 - fade1
|
||||
# Multiply the crossover region to retain details and avoid a "muddy" appearance
|
||||
multiplier = (fade1 * fade0) * 1.25 + 1
|
||||
latents = ((latents * fade1) + (x_flipped * fade0)) * multiplier
|
||||
|
||||
@@ -442,23 +446,18 @@ class InvokeAIDiffuserComponent:
|
||||
self.last_percent_through < v_symmetry_time_pct and
|
||||
percent_through >= v_symmetry_time_pct
|
||||
):
|
||||
# Vertical symmetry occurs on the 3rd dimension of the latent
|
||||
y_flipped = torch.flip(latents, dims=[2])
|
||||
if symmetry_type is SymmetryType.MIRROR:
|
||||
# Vertical symmetry occurs on the 2nd dimension of the latent
|
||||
height = latents.shape[2]
|
||||
y_flipped = torch.flip(latents, dims=[2])
|
||||
latents = torch.cat([latents[:, :, 0:int(height / 2)], y_flipped[:, :, int(height / 2):int(height)]], dim=2)
|
||||
elif symmetry_type is SymmetryType.FADE:
|
||||
# Vertical symmetry occurs on the 2nd dimension of the latent
|
||||
width = latents.shape[3]
|
||||
height = latents.shape[2]
|
||||
dtype = latents.dtype
|
||||
y_flipped = torch.flip(latents, dims=[2])
|
||||
apply_height = 2 * (height // 4)
|
||||
ramp1 = torch.linspace(start=1.0, end=0.5, steps=apply_height, device=latents.device)
|
||||
ramp2 = torch.linspace(start=0.5, end=1.0, steps=height - (apply_height), device=latents.device)
|
||||
ramp = torch.cat((ramp1, ramp2))
|
||||
apply_height = height // 2
|
||||
# Create a linear ramp so the middle gets perfect symmetry but the edges retain their original latents
|
||||
ramp = make_ramp(ease_in=apply_height, total=height)
|
||||
fade1 = einops.repeat(tensor=ramp, pattern='m -> 1 4 m k', k=width).to(latents.device).type(dtype)
|
||||
fade0 = 1 - fade1
|
||||
# Multiply the crossover region to retain details and avoid a "muddy" appearance
|
||||
multiplier = (fade1 * fade0) * 1.25 + 1
|
||||
latents = ((latents * fade1) + (y_flipped * fade0)) * multiplier
|
||||
|
||||
|
||||
Reference in New Issue
Block a user