Commit Graph

15354 Commits

Author SHA1 Message Date
psychedelicious
c23a2abc82 feat(nodes): rename "link_id" -> "batch_group_id" 2025-01-17 12:34:54 +11:00
psychedelicious
803ec8e904 feat(ui): add zipped batch collection size validation 2025-01-17 12:34:54 +11:00
psychedelicious
0abc0be931 fix(ui): allow batch nodes without link id (i.e. product batch nodes) to have mismatched collection sizes 2025-01-17 12:34:54 +11:00
psychedelicious
edff16124f feat(ui): support zipped batch nodes 2025-01-17 12:34:54 +11:00
psychedelicious
2e4110a29a chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
7ee51f3e14 feat(nodes): add link_id field to batch nodes
This is used to link batch nodes into zipped batch data collections.
2025-01-17 12:34:54 +11:00
psychedelicious
8ae75dbc35 chore(ui): typegen 2025-01-17 12:34:54 +11:00
psychedelicious
9265716b07 chore(ui): lint 2025-01-17 12:19:04 +11:00
psychedelicious
27b9c07711 chore(ui): typegen 2025-01-17 12:19:04 +11:00
psychedelicious
9dcbe3cc8f tweak(ui): number collection styling 2025-01-17 12:19:04 +11:00
psychedelicious
30165f66c3 feat(ui): string collection batch items are input not textarea 2025-01-17 12:19:04 +11:00
psychedelicious
deb70edc75 fix(ui): translation key 2025-01-17 12:19:04 +11:00
psychedelicious
d82d990b23 feat(ui): add number range generators 2025-01-17 12:19:04 +11:00
psychedelicious
2c64b60d32 Revert "feat(ui): rough out number generators for number collection fields"
This reverts commit 41cc6f1f96bca2a51727f21bd727ca48eab669bc.
2025-01-17 12:19:04 +11:00
psychedelicious
4e8c6d931d Revert "feat(ui): number collection generator supports floats"
This reverts commit 9da3339b513de9575ffbf6ce880b3097217b199d.
2025-01-17 12:19:04 +11:00
psychedelicious
9049e6e0f3 Revert "feat(ui): more batch generator stuff"
This reverts commit 111a29c7b4fc6b5062a0a37ce704a6508ff58dd8.
2025-01-17 12:19:04 +11:00
psychedelicious
3cb5f8536b feat(ui): more batch generator stuff 2025-01-17 12:19:04 +11:00
psychedelicious
38e50cc7aa tidy(ui): abstract out batch detection logic 2025-01-17 12:19:04 +11:00
psychedelicious
5bff6123b9 feat(nodes): add default value for batch nodes 2025-01-17 12:19:04 +11:00
psychedelicious
d63ff560d6 feat(ui): number collection generator supports floats 2025-01-17 12:19:04 +11:00
psychedelicious
acceac8304 fix(ui): do not set number collection field to undefined when removing last item 2025-01-17 12:19:04 +11:00
psychedelicious
96671d12bd fix(ui): filter out batch nodes when checking readiness on workflows tab 2025-01-17 12:19:04 +11:00
psychedelicious
584601d03f perf(ui): memoize selector in workflows 2025-01-17 12:19:04 +11:00
psychedelicious
b1c4ec0888 feat(ui): rough out number generators for number collection fields 2025-01-17 12:19:04 +11:00
psychedelicious
db5f016826 fix(nodes): allow batch datum items to mix ints and floats
Unfortunately we cannot do strict floats or ints.

The batch data models don't specify the value types, it instead relies on pydantic parsing. JSON doesn't differentiate between float and int, so a float `1.0` gets parsed as `1` in python.

As a result, we _must_ accept mixed floats and ints for BatchDatum.items.

Tests and validation updated to handle this.

Maybe we should update the BatchDatum model to have a `type` field? Then we could parse as float or int, depending on the inputs...
2025-01-17 12:19:04 +11:00
psychedelicious
c1fd28472d fix(ui): float batch data creation 2025-01-17 12:19:04 +11:00
psychedelicious
0c5958675a chore(ui): lint 2025-01-17 12:19:04 +11:00
psychedelicious
912e07f2c8 tidy(ui): use zod typeguard builder util for fields 2025-01-17 12:19:04 +11:00
psychedelicious
f853b24868 chore(ui): typegen 2025-01-17 12:19:04 +11:00
psychedelicious
4f900b22dc feat(ui): validate number item multipleOf 2025-01-17 12:19:04 +11:00
psychedelicious
5823532941 feat(ui): validate string item lengths 2025-01-17 12:19:04 +11:00
psychedelicious
bfe6d98cba feat(ui): support float batches 2025-01-17 12:19:04 +11:00
psychedelicious
c26b3cd54f refactor(ui): abstract out helper to add batch data 2025-01-17 12:19:04 +11:00
psychedelicious
c012d832d2 fix(ui): typo 2025-01-17 12:19:04 +11:00
psychedelicious
9d11d2aabd refactor(ui): abstract out field validators 2025-01-17 12:19:04 +11:00
psychedelicious
a5f1587ce7 feat(ui): add template validation for integer collection items 2025-01-17 12:19:04 +11:00
psychedelicious
0b26bb1ca3 feat(ui): add template validation for string collection items 2025-01-17 12:19:04 +11:00
psychedelicious
0f1e632117 feat(nodes): add float batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b212332b3e feat(ui): support integer batches 2025-01-17 12:19:04 +11:00
psychedelicious
90a91ff438 feat(nodes): add integer batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b52b271dc4 feat(ui): support string batches 2025-01-17 12:19:04 +11:00
psychedelicious
e077fe8046 refactor(ui): streamline image field collection input logic, support multiple images w/ same name in collection 2025-01-17 12:19:04 +11:00
psychedelicious
368957b208 tweak(ui): image field collection input component styling 2025-01-17 12:19:04 +11:00
psychedelicious
27277e1fd6 docs(ui): improved comments for image batch node special handling 2025-01-17 12:19:04 +11:00
psychedelicious
236c0d89e7 feat(nodes): add string batch node 2025-01-17 12:19:04 +11:00
psychedelicious
b807170701 fix(ui): typo in error message for image collection fields 2025-01-17 12:19:04 +11:00
Ryan Dick
c5d2de3169 Revise the default logic for the model cache RAM limit (#7566)
## Summary

This PR revises the logic for calculating the model cache RAM limit. See
the code for thorough documentation of the change.

The updated logic is more conservative in the amount of RAM that it will
use. This will likely be a better default for more users. Of course,
users can still choose to set a more aggressive limit by overriding the
logic with `max_cache_ram_gb`.

## Related Issues / Discussions

- Should help with https://github.com/invoke-ai/InvokeAI/issues/7563

## QA Instructions

Exercise all heuristics:
- [x] Heuristic 1
- [x] Heuristic 2
- [x] Heuristic 3
- [x] Heuristic 4

## Merge Plan

- [x] Merge https://github.com/invoke-ai/InvokeAI/pull/7565 first and
update the target branch

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 19:59:14 -05:00
Ryan Dick
f7511bfd94 Add keep_ram_copy_of_weights config option (#7565)
## Summary

This PR adds a `keep_ram_copy_of_weights` config option the default (and
legacy) behavior is `true`. The tradeoffs for this setting are as
follows:
- `keep_ram_copy_of_weights: true`: Faster model switching and LoRA
patching.
- `keep_ram_copy_of_weights: false`: Lower average RAM load (may not
help significantly with peak RAM).

## Related Issues / Discussions

- Helps with https://github.com/invoke-ai/InvokeAI/issues/7563
- The Low-VRAM docs are updated to include this feature in
https://github.com/invoke-ai/InvokeAI/pull/7566

## QA Instructions

- Test with `enable_partial_load: false` and `keep_ram_copy_of_weights:
false`.
  - [x] RAM usage when model is loaded is reduced.
  - [x] Model loading / unloading works as expected.
  - [x] LoRA patching still works.
- Test with `enable_partial_load: false` and `keep_ram_copy_of_weights:
true`.
  - [x] Behavior should be unchanged.
- Test with `enable_partial_load: true` and `keep_ram_copy_of_weights:
false`.
  - [x] RAM usage when model is loaded is reduced.
  - [x] Model loading / unloading works as expected.
  - [x] LoRA patching still works.
- Test with `enable_partial_load: true` and `keep_ram_copy_of_weights:
true`.
  - [x] Behavior should be unchanged.

- [x] Smoke test CPU-only and MPS with default configs.

## Merge Plan

- [x] Merge https://github.com/invoke-ai/InvokeAI/pull/7564 first and
change target branch.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 19:57:02 -05:00
Ryan Dick
0abb5ea114 Reduce peak memory during FLUX model load (#7564)
## Summary

Prior to this change, there were several cases where we initialized the
weights of a FLUX model before loading its state dict (and, to make
things worse, in some cases the weights were in float32). This PR fixes
a handful of these cases. (I think I found all instances for the FLUX
family of models.)

## Related Issues / Discussions

- Helps with https://github.com/invoke-ai/InvokeAI/issues/7563

## QA Instructions

I tested that that model loading still works and that there is no
virtual memory reservation on model initialization for the following
models:
- [x] FLUX VAE
- [x] Full T5 Encoder
- [x] Full FLUX checkpoint
- [x] GGUF FLUX checkpoint

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-16 18:47:17 -05:00
Ryan Dick
ce57c4ed2e Update the Low-VRAM docs. 2025-01-16 23:46:07 +00:00