Commit Graph

15270 Commits

Author SHA1 Message Date
psychedelicious
e09cf64779 feat: more updates to first run view 2025-01-09 11:20:05 +11:00
psychedelicious
fc8cf224ca docs: typo 2025-01-09 11:20:05 +11:00
psychedelicious
3e1ed18a1f Update docs/features/low-vram.md
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2025-01-09 11:20:05 +11:00
psychedelicious
9a84c85486 docs: add section about disabling the sysmem fallback 2025-01-09 11:20:05 +11:00
psychedelicious
e6deaa2d2f feat(ui): minor layout tweaks for first run screen 2025-01-09 11:20:05 +11:00
psychedelicious
5246b31347 feat(ui): add low vram link to first run page 2025-01-09 11:20:05 +11:00
psychedelicious
b15dd00840 docs: add docs for low vram mode 2025-01-09 11:20:05 +11:00
psychedelicious
8808c36028 docs: update example yaml file 2025-01-09 11:20:05 +11:00
psychedelicious
89b576f10d fix(ui): prevent canvas & main panel content from scrolling
Hopefully fixes issues where, when run via the launcher, the main panel kinda just scrolls out of bounds.
2025-01-09 09:14:22 +11:00
psychedelicious
d7893a52c3 tweak(ui): whats new copy 2025-01-08 15:26:26 +11:00
Mary Hipp
b9c45c3232 Whats new update 2025-01-08 15:26:26 +11:00
David Burnett
afc9d3b98f more ruff formating 2025-01-07 20:18:19 -05:00
David Burnett
7ddc757bdb ruff format changes 2025-01-07 20:18:19 -05:00
David Burnett
d8da9b45cc Fix for DEIS / DPM clash 2025-01-07 20:18:19 -05:00
Ryan Dick
607d19f4dd We should not trust the value of since the model could be partially-loaded. 2025-01-07 19:22:31 -05:00
psychedelicious
32286f321c docs: note that version is not req for editable install 2025-01-07 17:17:40 -05:00
psychedelicious
03f7bdc9f9 docs: fix manual install rocm pypi indices 2025-01-07 17:17:40 -05:00
Ryan Dick
4df3d0861b Deprecate ram/vram configs for smoother migration path to dynamic limits (#7526)
## Summary

Changes:
- Deprecate `ram` and `vram` configs. If these are set in invokeai.yaml,
they will be ignored.
- Create new `max_cache_ram_gb` and `max_cache_vram_gb` configs with the
same definitions as the old configs.

The main motivation of this change is to make the migration path
smoother for users who had previously added `ram` /`vram` to their
config files. Now, these users will be automatically migrated into the
new dynamic limit behavior (which is better in most cases). These users
will have to manually re-add `max_cache_ram_gb` and `max_cache_vram_gb`
to their configs if they wish to go back to specifying manual limits.

## Related Issues / Discussions

See the release notes for RC v5.6.0rc1 for the old migration behavior
that we are trying to improve:
https://github.com/invoke-ai/InvokeAI/releases/tag/v5.6.0rc1

## QA Instructions

- [x] Test that if `ram` or `vram` are present in a user's
`invokeai.yaml`, these values are ignored.
- [x] Test that `max_cache_ram_gb` and `max_cache_vram_gb` are applied,
if set.

## Merge Plan

- Don't forget to update the RC release notes accordingly.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 17:03:11 -05:00
Ryan Dick
974b4671b1 Deprecate the ram and vram configs to make the migration to dynamic
memory limits smoother for users who had previously overriden these
values.
2025-01-07 16:45:29 +00:00
Ryan Dick
6b18f270dd Bugfix: Offload of GGML-quantized model in torch.inference_mode() cm (#7525)
## Summary

This PR contains a bugfix for an edge case with model unloading (from
VRAM to RAM). Thanks to @JPPhoto for finding it.

The bug was triggered under the following conditions:
- A GGML-quantized model is loaded in VRAM
- We run a Spandrel image-to-image invocation (which is wrapped in a
`torch.inference_mode()` context manager.
- The model cache attempts to unload the GGML-quantized model from VRAM
to RAM.
- Doing this inside of the `torch.inference_mode()` cm results in the
following error:
```
 [2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Error while invoking session 98a07259-0c03-4111-a8d8-107041cb86f9, invocation d8daa90b-7e4c-4fc4-807c-50ba9be1a4ed (spandrel_image_to_image): Cannot set version_counter for inference tensor
[2025-01-07 15:48:17,744]::[InvokeAI]::ERROR --> Traceback (most recent call last):
  File "/home/ryan/src/InvokeAI/invokeai/app/services/session_processor/session_processor_default.py", line 129, in run_node
    output = invocation.invoke_internal(context=context, services=self._services)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/baseinvocation.py", line 300, in invoke_internal
    output = self.invoke(context)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/app/invocations/spandrel_image_to_image.py", line 167, in invoke
    with context.models.load(self.image_to_image_model) as spandrel_model:
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/load_base.py", line 60, in __enter__
    self._cache.lock(self._cache_record, None)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 224, in lock
    self._load_locked_model(cache_entry, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 272, in _load_locked_model
    vram_bytes_freed = self._offload_unlocked_models(model_vram_needed, working_mem_bytes)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 458, in _offload_unlocked_models
    cache_entry_bytes_freed = self._move_model_to_ram(cache_entry, vram_bytes_to_free)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/model_cache.py", line 330, in _move_model_to_ram
    return cache_entry.cached_model.partial_unload_from_vram(
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/home/ryan/src/InvokeAI/invokeai/backend/model_manager/load/model_cache/cached_model/cached_model_with_partial_load.py", line 182, in partial_unload_from_vram
    cur_state_dict = self._model.state_dict()
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1939, in state_dict
    module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1936, in state_dict
    self._save_to_state_dict(destination, prefix, keep_vars)
  File "/home/ryan/.pyenv/versions/3.10.14/envs/InvokeAI_3.10.14/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1843, in _save_to_state_dict
    destination[prefix + name] = param if keep_vars else param.detach()
RuntimeError: Cannot set version_counter for inference tensor
```

### Explanation

From the `torch.inference_mode()` docs:
> Code run under this mode gets better performance by disabling view
tracking and version counter bumps.

Disabling version counter bumps results in the aforementioned error when
saving `GGMLTensor`s to a state_dict.

This incompatibility between `GGMLTensors` and `torch.inference_mode()`
is likely caused by the custom tensor type implementation. There may
very well be a way to get these to cooperate, but for now it is much
simpler to remove the `torch.inference_mode()` contexts.

Note that there are several other uses of `torch.inference_mode()` in
the Invoke codebase, but they are all tight wrappers around the
inference forward pass and do not contain the model load/unload process.

## Related Issues / Discussions

Original discussion:
https://discord.com/channels/1020123559063990373/1149506274971631688/1326180753159094303

## QA Instructions

Find a sequence of operations that triggers the condition. For me, this
was:
- Reserve VRAM in a separate process so that there was ~12GB left.
- Fresh start of Invoke
- Run FLUX inference with a GGML 8K model
- Run Spandrel upscaling

Tests:
- [x] Confirmed that I can reproduce the error and that it is no longer
hit after the change
- [x] Confirm that there is no speed regression from switching from
`torch.inference_mode()` to `torch.no_grad()`.
    - Before: `50.354s`, After: `51.536s`


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 11:31:20 -05:00
Ryan Dick
85eb4f0312 Fix an edge case with model offloading from VRAM to RAM. If a GGML-quantized model is offloaded from VRAM inside of a torch.inference_mode() context manager, this will cause the following error: 'RuntimeError: Cannot set version_counter for inference tensor'. 2025-01-07 15:59:50 +00:00
psychedelicious
67e948b50d chore: bump version to v5.6.0rc1 v5.6.0rc1 2025-01-07 19:41:56 +11:00
Riccardo Giovanetti
d9a20f319f translationBot(ui): update translation (Italian)
Currently translated at 99.3% (1639 of 1649 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Riku
38d4863e09 translationBot(ui): update translation (German)
Currently translated at 71.7% (1181 of 1645 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Nik Nikovsky
cd7ba14adc translationBot(ui): update translation (Polish)
Currently translated at 16.5% (273 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 15.4% (254 of 1645 strings)

translationBot(ui): update translation (Polish)

Currently translated at 10.8% (178 of 1645 strings)

Co-authored-by: Nik Nikovsky <zejdzztegomaila@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Linos
e5b6beb24d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (1649 of 1649 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1645 of 1645 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-01-07 19:32:50 +11:00
Ryan Dick
0258b6a04f Partial Loading PR5: Dynamic cache ram/vram limits (#7509)
## Summary

This PR enables RAM/VRAM cache size limits to be determined dynamically
based on availability.

**Config Changes**

This PR modifies the app configs in the following ways:
- A new `device_working_mem_gb` config was added. This is the amount of
non-model working memory to keep available on the execution device (i.e.
GPU) when using dynamic cache limits. It default to 3GB.
- The `ram` and `vram` configs now default to `None`. If these configs
are set, they will take precedence over the dynamic limits. **Note: Some
users may have previously overriden the `ram` and `vram` values in their
`invokeai.yaml`. They will need to remove these configs to enable the
new dynamic limit feature.**

**Working Memory**

In addition to the new `device_working_mem_gb` config described above,
memory-intensive operations can estimate the amount of working memory
that they will need and request it from the model cache. This is
currently applied to the VAE decoding step for all models. In the
future, we may apply this to other operations as we work out which ops
tend to exceed the default working memory reservation.

**Mitigations for https://github.com/invoke-ai/InvokeAI/issues/7513**

This PR includes some mitigations for the issue described in
https://github.com/invoke-ai/InvokeAI/issues/7513. Without these
mitigations, it would occur with higher frequency when dynamic RAM
limits are used and the RAM is close to maxed-out.

## Limitations / Future Work

- Only _models_ can be offloaded to RAM to conserve VRAM. I.e. if VAE
decoding requires more working VRAM than available, the best we can do
is keep the full model on the CPU, but we will still hit an OOM error.
In the future, we could detect this ahead of time and switch to running
inference on the CPU for those ops.
- There is often a non-negligible amount of VRAM 'reserved' by the torch
CUDA allocator, but not used by any allocated tensors. We may be able to
tune the torch CUDA allocator to work better for our use case.
Reference:
https://pytorch.org/docs/stable/notes/cuda.html#optimizing-memory-usage-with-pytorch-cuda-alloc-conf
- There may be some ops that require high working memory that haven't
been updated to request extra memory yet. We will update these as we
uncover them.
- If a model is 'locked' in VRAM, it won't be partially unloaded if a
later model load requests extra working memory. This should be uncommon,
but I can think of cases where it would matter.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500 
- #7505 

## QA Instructions

Run a variety of models near the cache limits to ensure that model
switching works properly for the following configurations:
- [x] CUDA, `enable_partial_loading=true`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=true`, CPU and CUDA memory reserved
in another process so there is limited RAM/VRAM remaining, all other
configs default (i.e. dynamic memory limits)
- [x] CUDA, `enable_partial_loading=false`, all other configs default
(i.e. dynamic memory limits)
- [x] CUDA, ram/vram limits set (these should take precedence over the
dynamic limits)
- [x] MPS, all other default (i.e. dynamic memory limits)
- [x] CPU, all other default (i.e. dynamic memory limits) 

## Merge Plan

- [x] Merge #7505 first and change target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-07 00:35:39 -05:00
Ryan Dick
87fdcb7f6f Partial Loading PR4: Enable partial loading (behind config flag) (#7505)
## Summary

This PR adds support for partial loading of models onto the GPU. This
enables models to run with much lower peak VRAM requirements (e.g. full
FLUX dev with 8GB of VRAM).

The partial loading feature is enabled behind a new config flag:
`enable_partial_loading=True`. This flag defaults to `False`.

**Note about performance:**
The `ram` and `vram` config limits are still applied when
`enable_partial_loading=True` is set. This can result in significant
slowdowns compared to the 'old' behaviour. Consider the case where the
VRAM limit is set to `vram=0.75` (GB) and we are trying to run an 8GB
model. When `enable_partial_loading=False`, we attempt to load the
entire model into VRAM, and if it fits (no OOM error) then it will run
at full speed. When `enable_partial_loading=True`, since we have the
option to partially load the model we will only load 0.75 GB into VRAM
and leave the remaining 7.25 GB in RAM. This will cause inference to be
much slower than before. To workaround this, it is important that your
`ram` and `vram` configs are carefully tuned. In a future PR, we will
add the ability to dynamically set the RAM/VRAM limits based on the
available memory / VRAM.

## Related Issues / Discussions

- #7492 
- #7494 
- #7500

## QA Instructions

Tests with `enable_partial_loading=True`, `vram=2`, on CUDA device:
For all tests, we expect model memory to stay below 2 GB. Peak working
memory will be higher.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=True`, and hack to force all models
to load 10%, on CUDA device:
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Tests with `enable_partial_loading=False`, `vram=30`:
We expect no change in behaviour when  `enable_partial_loading=False`.
- [x] SD1 inference
- [x] SDXL inference
- [x] FLUX non-quantized inference
- [x] FLUX GGML-quantized inference
- [x] FLUX BnB quantized inference
- [x] Variety of ControlNet / IP-Adapter / LoRA smoke tests

Other platforms:
- [x] No change in behavior on MPS, even if
`enable_partial_loading=True`.
- [x] No change in behavior on CPU-only systems, even if
`enable_partial_loading=True`.

## Merge Plan

- [x] Merge #7500 first, and change the target branch to main

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-01-06 23:18:31 -05:00
Ryan Dick
d7ab464176 Offload the current model when locking if it is already partially loaded and we have insufficient VRAM. 2025-01-07 02:53:44 +00:00
Ryan Dick
5eafe1ec7a Fix ModelCache execution device selection in unit tests. 2025-01-07 01:20:15 +00:00
Ryan Dick
548b3eddb8 pnpm typegen 2025-01-07 01:20:15 +00:00
Ryan Dick
5b42b7bd45 Add a utility to help with determining the working memory required for expensive operations. 2025-01-07 01:20:15 +00:00
Ryan Dick
71b97ce7be Reduce the likelihood of encountering https://github.com/invoke-ai/InvokeAI/issues/7513 by elminating places where the door was left open for this to happen. 2025-01-07 01:20:15 +00:00
Ryan Dick
b343f81644 Use torch.cuda.memory_allocated() rather than torch.cuda.memory_reserved() to be more conservative in setting dynamic VRAM cache limits. 2025-01-07 01:20:15 +00:00
Ryan Dick
4abfb35321 Tune SD3 VAE decode working memory estimate. 2025-01-07 01:20:15 +00:00
Ryan Dick
cba6528ea7 Add a 20% buffer to all VAE decode working memory estimates. 2025-01-07 01:20:15 +00:00
Ryan Dick
6a5cee61be Tune the working memory estimate for FLUX VAE decoding. 2025-01-07 01:20:15 +00:00
Ryan Dick
bd8017ecd5 Update working memory estimate for VAE decoding when tiling is being applied. 2025-01-07 01:20:15 +00:00
Ryan Dick
299eb94a05 Estimate the working memory required for VAE decoding, since this operations tends to be memory intensive. 2025-01-07 01:20:15 +00:00
Ryan Dick
fc4a22fe78 Allow expensive operations to request more working memory. 2025-01-07 01:20:13 +00:00
Ryan Dick
a167632f09 Calculate model cache size limits dynamically based on the available RAM / VRAM. 2025-01-07 01:14:20 +00:00
Ryan Dick
1321fac8f2 Remove get_cache_size() and set_cache_size() endpoints. These were unused by the frontend and refer to cache fields that are no longer accessible. 2025-01-07 01:06:20 +00:00
Ryan Dick
6a9de1fcf3 Change definition of VRAM in use for the ModelCache from sum of model weights to the total torch.cuda.memory_allocated(). 2025-01-07 00:31:53 +00:00
Ryan Dick
e5180c4e6b Add get_effective_device(...) utility to aid in determining the effective device of models that are partially loaded. 2025-01-07 00:31:00 +00:00
Ryan Dick
2619ef53ca Handle device casting in ia2_layer.py. 2025-01-07 00:31:00 +00:00
Ryan Dick
bcd29c5d74 Remove all cases where we check the 'model.device'. This is no longer trustworthy now that partial loading is permitted. 2025-01-07 00:31:00 +00:00
Ryan Dick
1b7bb70bde Improve handling of cases when application code modifies the size of a model after registering it with the model cache. 2025-01-07 00:31:00 +00:00
Ryan Dick
402dd840a1 Add seed to flaky unit test. 2025-01-07 00:31:00 +00:00
Ryan Dick
7127040c3a Remove unused function set_nested_attr(...). 2025-01-07 00:31:00 +00:00
Ryan Dick
ceb2498a67 Add log prefix to model cache logs. 2025-01-07 00:31:00 +00:00