Compare commits

...

13 Commits

Author SHA1 Message Date
Mary Hipp
ea64649135 playing around with saving values to exposed fields but not the graph 2024-02-12 14:02:32 -05:00
Millun Atluri
1dd07fb1eb Updated docs on OpenPose 2024-02-12 11:12:45 -05:00
blessedcoolant
e82c21b5ba chore: rename DWPose to DW Openpose 2024-02-12 11:12:45 -05:00
blessedcoolant
50b93992cf cleanup: Remove Openpose Image Processor 2024-02-12 11:12:45 -05:00
blessedcoolant
f8e566d62a cleanup: unused util functions 2024-02-12 11:12:45 -05:00
blessedcoolant
f588b95c7f cleanup: remove unused code from the DWPose implementation 2024-02-12 11:12:45 -05:00
blessedcoolant
67daf1751c fix: lint erros 2024-02-12 11:12:45 -05:00
blessedcoolant
7d80261d47 chore: Add code attribution for the DWPoseDetector 2024-02-12 11:12:45 -05:00
blessedcoolant
67cbfeb33d feat: Add output image resizing for DWPose 2024-02-12 11:12:45 -05:00
blessedcoolant
f7998b4be0 feat: Add DWPose to Linear UI 2024-02-12 11:12:45 -05:00
blessedcoolant
675c73c94f fix: ruff lint errors 2024-02-12 11:12:45 -05:00
blessedcoolant
0a27b0379f feat: Initial implementation of DWPoseDetector 2024-02-12 11:12:45 -05:00
psychedelicious
0ef18b6477 fix(ui): enable lora when recalling
Closes #5698
2024-02-12 16:47:46 +11:00
24 changed files with 2841 additions and 262 deletions

View File

@@ -94,6 +94,8 @@ A model that helps generate creative QR codes that still scan. Can also be used
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.

View File

@@ -81,7 +81,7 @@ their descriptions.
| ONNX Text to Latents | Generates latents from conditionings. |
| ONNX Model Loader | Loads a main model, outputting its submodels. |
| OpenCV Inpaint | Simple inpaint using opencv. |
| Openpose Processor | Applies Openpose processing to image |
| DW Openpose Processor | Applies Openpose processing to image |
| PIDI Processor | Applies PIDI processing to image |
| Prompts from File | Loads prompts from a text file |
| Random Integer | Outputs a single random integer. |

View File

@@ -17,7 +17,6 @@ from controlnet_aux import (
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
@@ -31,6 +30,7 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from ...backend.model_management import BaseModelType
from .baseinvocation import (
@@ -276,31 +276,6 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
return processed_image
@invocation(
"openpose_image_processor",
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
version="1.2.0",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
@invocation(
"midas_depth_image_processor",
title="Midas Depth Processor",
@@ -624,7 +599,7 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
offload: bool = InputField(default=False)
def run_processor(self, image):
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
@@ -633,3 +608,30 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
return processed_image
@invocation(
"dw_openpose_image_processor",
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.0.0",
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
dw_openpose = DWOpenposeDetector()
processed_image = dw_openpose(
image,
draw_face=self.draw_face,
draw_hands=self.draw_hands,
draw_body=self.draw_body,
resolution=self.image_resolution,
)
return processed_image

View File

@@ -0,0 +1,81 @@
import numpy as np
import torch
from controlnet_aux.util import resize_image
from PIL import Image
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
bodies = pose["bodies"]
faces = pose["faces"]
hands = pose["hands"]
candidate = bodies["candidate"]
subset = bodies["subset"]
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if draw_body:
canvas = draw_bodypose(canvas, candidate, subset)
if draw_hands:
canvas = draw_handpose(canvas, hands)
if draw_face:
canvas = draw_facepose(canvas, faces)
dwpose_image = resize_image(
canvas,
resolution,
)
dwpose_image = Image.fromarray(dwpose_image)
return dwpose_image
class DWOpenposeDetector:
"""
Code from the original implementation of the DW Openpose Detector.
Credits: https://github.com/IDEA-Research/DWPose
"""
def __init__(self) -> None:
self.pose_estimation = Wholebody()
def __call__(
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
) -> Image.Image:
np_image = np.array(image)
H, W, C = np_image.shape
with torch.no_grad():
candidate, subset = self.pose_estimation(np_image)
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:, :18].copy()
body = body.reshape(nums * 18, locs)
score = subset[:, :18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18 * i + j)
else:
score[i][j] = -1
un_visible = subset < 0.3
candidate[un_visible] = -1
# foot = candidate[:, 18:24]
faces = candidate[:, 24:92]
hands = candidate[:, 92:113]
hands = np.vstack([hands, candidate[:, 113:]])
bodies = {"candidate": body, "subset": score}
pose = {"bodies": bodies, "hands": hands, "faces": faces}
return draw_pose(
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
)

View File

@@ -0,0 +1,128 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
import cv2
import numpy as np
def nms(boxes, scores, nms_thr):
"""Single class NMS implemented in Numpy."""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= nms_thr)[0]
order = order[inds + 1]
return keep
def multiclass_nms(boxes, scores, nms_thr, score_thr):
"""Multiclass NMS implemented in Numpy. Class-aware version."""
final_dets = []
num_classes = scores.shape[1]
for cls_ind in range(num_classes):
cls_scores = scores[:, cls_ind]
valid_score_mask = cls_scores > score_thr
if valid_score_mask.sum() == 0:
continue
else:
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
keep = nms(valid_boxes, valid_scores, nms_thr)
if len(keep) > 0:
cls_inds = np.ones((len(keep), 1)) * cls_ind
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
final_dets.append(dets)
if len(final_dets) == 0:
return None
return np.concatenate(final_dets, 0)
def demo_postprocess(outputs, img_size, p6=False):
grids = []
expanded_strides = []
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
hsizes = [img_size[0] // stride for stride in strides]
wsizes = [img_size[1] // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides, strict=False):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
return outputs
def preprocess(img, input_size, swap=(2, 0, 1)):
if len(img.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
else:
padded_img = np.ones(input_size, dtype=np.uint8) * 114
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
def inference_detector(session, oriImg):
input_shape = (640, 640)
img, ratio = preprocess(oriImg, input_shape)
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
output = session.run(None, ort_inputs)
predictions = demo_postprocess(output[0], input_shape)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
isscore = final_scores > 0.3
iscat = final_cls_inds == 0
isbbox = [i and j for (i, j) in zip(isscore, iscat, strict=False)]
final_boxes = final_boxes[isbbox]
else:
final_boxes = np.array([])
return final_boxes

View File

@@ -0,0 +1,361 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
from typing import List, Tuple
import cv2
import numpy as np
import onnxruntime as ort
def preprocess(
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Do preprocessing for RTMPose model inference.
Args:
img (np.ndarray): Input image in shape.
input_size (tuple): Input image size in shape (w, h).
Returns:
tuple:
- resized_img (np.ndarray): Preprocessed image.
- center (np.ndarray): Center of image.
- scale (np.ndarray): Scale of image.
"""
# get shape of image
img_shape = img.shape[:2]
out_img, out_center, out_scale = [], [], []
if len(out_bbox) == 0:
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
for i in range(len(out_bbox)):
x0 = out_bbox[i][0]
y0 = out_bbox[i][1]
x1 = out_bbox[i][2]
y1 = out_bbox[i][3]
bbox = np.array([x0, y0, x1, y1])
# get center and scale
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
# do affine transformation
resized_img, scale = top_down_affine(input_size, scale, center, img)
# normalize image
mean = np.array([123.675, 116.28, 103.53])
std = np.array([58.395, 57.12, 57.375])
resized_img = (resized_img - mean) / std
out_img.append(resized_img)
out_center.append(center)
out_scale.append(scale)
return out_img, out_center, out_scale
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
"""Inference RTMPose model.
Args:
sess (ort.InferenceSession): ONNXRuntime session.
img (np.ndarray): Input image in shape.
Returns:
outputs (np.ndarray): Output of RTMPose model.
"""
all_out = []
# build input
for i in range(len(img)):
input = [img[i].transpose(2, 0, 1)]
# build output
sess_input = {sess.get_inputs()[0].name: input}
sess_output = []
for out in sess.get_outputs():
sess_output.append(out.name)
# run model
outputs = sess.run(sess_output, sess_input)
all_out.append(outputs)
return all_out
def postprocess(
outputs: List[np.ndarray],
model_input_size: Tuple[int, int],
center: Tuple[int, int],
scale: Tuple[int, int],
simcc_split_ratio: float = 2.0,
) -> Tuple[np.ndarray, np.ndarray]:
"""Postprocess for RTMPose model output.
Args:
outputs (np.ndarray): Output of RTMPose model.
model_input_size (tuple): RTMPose model Input image size.
center (tuple): Center of bbox in shape (x, y).
scale (tuple): Scale of bbox in shape (w, h).
simcc_split_ratio (float): Split ratio of simcc.
Returns:
tuple:
- keypoints (np.ndarray): Rescaled keypoints.
- scores (np.ndarray): Model predict scores.
"""
all_key = []
all_score = []
for i in range(len(outputs)):
# use simcc to decode
simcc_x, simcc_y = outputs[i]
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
# rescale keypoints
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
all_key.append(keypoints[0])
all_score.append(scores[0])
return np.array(all_key), np.array(all_score)
def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (left, top, right, bottom)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
# get bbox center and scale
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
scale = np.hstack([x2 - x1, y2 - y1]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray:
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = np.hsplit(bbox_scale, [1])
bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h]))
return bbox_scale
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
"""Rotate a point by an angle.
Args:
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
angle_rad (float): rotation angle in radian
Returns:
np.ndarray: Rotated point in shape (2, )
"""
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
rot_mat = np.array([[cs, -sn], [sn, cs]])
return rot_mat @ pt
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): The 1st point (x,y) in shape (2, )
b (np.ndarray): The 2nd point (x,y) in shape (2, )
Returns:
np.ndarray: The 3rd point.
"""
direction = a - b
c = b + np.r_[-direction[1], direction[0]]
return c
def get_warp_matrix(
center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
shift: Tuple[float, float] = (0.0, 0.0),
inv: bool = False,
) -> np.ndarray:
"""Calculate the affine transformation matrix that can warp the bbox area
in the input image to the output size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: A 2x3 transformation matrix
"""
shift = np.array(shift)
src_w = scale[0]
dst_w = output_size[0]
dst_h = output_size[1]
# compute transformation matrix
rot_rad = np.deg2rad(rot)
src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad)
dst_dir = np.array([0.0, dst_w * -0.5])
# get four corners of the src rectangle in the original image
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale * shift
src[1, :] = center + src_dir + scale * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
# get four corners of the dst rectangle in the input image
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return warp_mat
def top_down_affine(
input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
"""Get the bbox image as the model input by affine transform.
Args:
input_size (dict): The input size of the model.
bbox_scale (dict): The bbox scale of the img.
bbox_center (dict): The bbox center of the img.
img (np.ndarray): The original image.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: img after affine transform.
- np.ndarray[float32]: bbox scale after affine transform.
"""
w, h = input_size
warp_size = (int(w), int(h))
# reshape bbox to fixed aspect ratio
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
# get the affine matrix
center = bbox_center
scale = bbox_scale
rot = 0
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
# do affine transform
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
return img, bbox_scale
def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from simcc representations.
Note:
instance number: N
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (N, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (N, K)
"""
N, K, Wx = simcc_x.shape
simcc_x = simcc_x.reshape(N * K, -1)
simcc_y = simcc_y.reshape(N * K, -1)
# get maximum value locations
x_locs = np.argmax(simcc_x, axis=1)
y_locs = np.argmax(simcc_y, axis=1)
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
max_val_x = np.amax(simcc_x, axis=1)
max_val_y = np.amax(simcc_y, axis=1)
# get maximum value across x and y axis
mask = max_val_x > max_val_y
max_val_x[mask] = max_val_y[mask]
vals = max_val_x
locs[vals <= 0.0] = -1
# reshape
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
"""Modulate simcc distribution with Gaussian.
Args:
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
simcc_split_ratio (int): The split ratio of simcc.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
- np.ndarray[float32]: scores in shape (K,) or (n, K)
"""
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
keypoints /= simcc_split_ratio
return keypoints, scores
def inference_pose(session, out_bbox, oriImg):
h, w = session.get_inputs()[0].shape[2:]
model_input_size = (w, h)
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
outputs = inference(session, resized_img)
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
return keypoints, scores

View File

@@ -0,0 +1,155 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
import math
import cv2
import matplotlib
import numpy as np
eps = 0.01
def draw_bodypose(canvas, candidate, subset):
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
Y = candidate[index.astype(int), 0] * float(W)
X = candidate[index.astype(int), 1] * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, colors[i])
canvas = (canvas * 0.6).astype(np.uint8)
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
return canvas
def draw_handpose(canvas, all_hand_peaks):
H, W, C = canvas.shape
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for peaks in all_hand_peaks:
peaks = np.array(peaks)
for ie, e in enumerate(edges):
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
x1 = int(x1 * W)
y1 = int(y1 * H)
x2 = int(x2 * W)
y2 = int(y2 * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
thickness=2,
)
for _, keyponit in enumerate(peaks):
x, y = keyponit
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas, all_lmks):
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)
for lmk in lmks:
x, y = lmk
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas

View File

@@ -0,0 +1,67 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
# Modified pathing to suit Invoke
import pathlib
import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.util import download_with_progress_bar
from .onnxdet import inference_detector
from .onnxpose import inference_pose
DWPOSE_MODELS = {
"yolox_l.onnx": {
"local": "any/annotators/dwpose/yolox_l.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
},
"dw-ll_ucoco_384.onnx": {
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
},
}
config = InvokeAIAppConfig.get_config()
class Wholebody:
def __init__(self):
device = choose_torch_device()
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"])
if not DET_MODEL_PATH.exists():
download_with_progress_bar(DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
POSE_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"])
if not POSE_MODEL_PATH.exists():
download_with_progress_bar(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH)
onnx_det = DET_MODEL_PATH
onnx_pose = POSE_MODEL_PATH
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg):
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
return keypoints, scores

View File

@@ -235,6 +235,9 @@
"fill": "Fill",
"h": "H",
"handAndFace": "Hand and Face",
"face": "Face",
"body": "Body",
"hands": "Hands",
"hed": "HED",
"hedDescription": "Holistically-Nested Edge Detection",
"hideAdvanced": "Hide Advanced",
@@ -261,8 +264,8 @@
"noneDescription": "No processing applied",
"normalBae": "Normal BAE",
"normalBaeDescription": "Normal BAE processing",
"openPose": "Openpose",
"openPoseDescription": "Human pose estimation using Openpose",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Human pose estimation using DW Openpose",
"pidi": "PIDI",
"pidiDescription": "PIDI image processing",
"processor": "Processor",

View File

@@ -6,6 +6,7 @@ import CannyProcessor from './processors/CannyProcessor';
import ColorMapProcessor from './processors/ColorMapProcessor';
import ContentShuffleProcessor from './processors/ContentShuffleProcessor';
import DepthAnyThingProcessor from './processors/DepthAnyThingProcessor';
import DWOpenposeProcessor from './processors/DWOpenposeProcessor';
import HedProcessor from './processors/HedProcessor';
import LineartAnimeProcessor from './processors/LineartAnimeProcessor';
import LineartProcessor from './processors/LineartProcessor';
@@ -13,7 +14,6 @@ import MediapipeFaceProcessor from './processors/MediapipeFaceProcessor';
import MidasDepthProcessor from './processors/MidasDepthProcessor';
import MlsdImageProcessor from './processors/MlsdImageProcessor';
import NormalBaeProcessor from './processors/NormalBaeProcessor';
import OpenposeProcessor from './processors/OpenposeProcessor';
import PidiProcessor from './processors/PidiProcessor';
import ZoeDepthProcessor from './processors/ZoeDepthProcessor';
@@ -73,8 +73,8 @@ const ControlAdapterProcessorComponent = ({ id }: Props) => {
return <NormalBaeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
}
if (processorNode.type === 'openpose_image_processor') {
return <OpenposeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
if (processorNode.type === 'dw_openpose_image_processor') {
return <DWOpenposeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
}
if (processorNode.type === 'pidi_image_processor') {

View File

@@ -0,0 +1,92 @@
import { CompositeNumberInput, CompositeSlider, Flex, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import { useProcessorNodeChanged } from 'features/controlAdapters/components/hooks/useProcessorNodeChanged';
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import type { RequiredDWOpenposeImageProcessorInvocation } from 'features/controlAdapters/store/types';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './common/ProcessorWrapper';
const DEFAULTS = CONTROLNET_PROCESSORS.dw_openpose_image_processor
.default as RequiredDWOpenposeImageProcessorInvocation;
type Props = {
controlNetId: string;
processorNode: RequiredDWOpenposeImageProcessorInvocation;
isEnabled: boolean;
};
const DWOpenposeProcessor = (props: Props) => {
const { controlNetId, processorNode, isEnabled } = props;
const { image_resolution, draw_body, draw_face, draw_hands } = processorNode;
const processorChanged = useProcessorNodeChanged();
const { t } = useTranslation();
const handleDrawBodyChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
processorChanged(controlNetId, { draw_body: e.target.checked });
},
[controlNetId, processorChanged]
);
const handleDrawFaceChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
processorChanged(controlNetId, { draw_face: e.target.checked });
},
[controlNetId, processorChanged]
);
const handleDrawHandsChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
processorChanged(controlNetId, { draw_hands: e.target.checked });
},
[controlNetId, processorChanged]
);
const handleImageResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { image_resolution: v });
},
[controlNetId, processorChanged]
);
return (
<ProcessorWrapper>
<Flex sx={{ flexDir: 'row', gap: 6 }}>
<FormControl isDisabled={!isEnabled} w="max-content">
<FormLabel>{t('controlnet.body')}</FormLabel>
<Switch defaultChecked={DEFAULTS.draw_body} isChecked={draw_body} onChange={handleDrawBodyChanged} />
</FormControl>
<FormControl isDisabled={!isEnabled} w="max-content">
<FormLabel>{t('controlnet.face')}</FormLabel>
<Switch defaultChecked={DEFAULTS.draw_face} isChecked={draw_face} onChange={handleDrawFaceChanged} />
</FormControl>
<FormControl isDisabled={!isEnabled} w="max-content">
<FormLabel>{t('controlnet.hands')}</FormLabel>
<Switch defaultChecked={DEFAULTS.draw_hands} isChecked={draw_hands} onChange={handleDrawHandsChanged} />
</FormControl>
</Flex>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.imageResolution')}</FormLabel>
<CompositeSlider
value={image_resolution}
onChange={handleImageResolutionChanged}
defaultValue={DEFAULTS.image_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={image_resolution}
onChange={handleImageResolutionChanged}
defaultValue={DEFAULTS.image_resolution}
min={0}
max={4096}
/>
</FormControl>
</ProcessorWrapper>
);
};
export default memo(DWOpenposeProcessor);

View File

@@ -1,92 +0,0 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import { useProcessorNodeChanged } from 'features/controlAdapters/components/hooks/useProcessorNodeChanged';
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
import type { RequiredOpenposeImageProcessorInvocation } from 'features/controlAdapters/store/types';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './common/ProcessorWrapper';
const DEFAULTS = CONTROLNET_PROCESSORS.openpose_image_processor.default as RequiredOpenposeImageProcessorInvocation;
type Props = {
controlNetId: string;
processorNode: RequiredOpenposeImageProcessorInvocation;
isEnabled: boolean;
};
const OpenposeProcessor = (props: Props) => {
const { controlNetId, processorNode, isEnabled } = props;
const { image_resolution, detect_resolution, hand_and_face } = processorNode;
const processorChanged = useProcessorNodeChanged();
const { t } = useTranslation();
const handleDetectResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { detect_resolution: v });
},
[controlNetId, processorChanged]
);
const handleImageResolutionChanged = useCallback(
(v: number) => {
processorChanged(controlNetId, { image_resolution: v });
},
[controlNetId, processorChanged]
);
const handleHandAndFaceChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
processorChanged(controlNetId, { hand_and_face: e.target.checked });
},
[controlNetId, processorChanged]
);
return (
<ProcessorWrapper>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.detectResolution')}</FormLabel>
<CompositeSlider
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={DEFAULTS.detect_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={detect_resolution}
onChange={handleDetectResolutionChanged}
defaultValue={DEFAULTS.detect_resolution}
min={0}
max={4096}
/>
</FormControl>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.imageResolution')}</FormLabel>
<CompositeSlider
value={image_resolution}
onChange={handleImageResolutionChanged}
defaultValue={DEFAULTS.image_resolution}
min={0}
max={4096}
marks
/>
<CompositeNumberInput
value={image_resolution}
onChange={handleImageResolutionChanged}
defaultValue={DEFAULTS.image_resolution}
min={0}
max={4096}
/>
</FormControl>
<FormControl isDisabled={!isEnabled}>
<FormLabel>{t('controlnet.handAndFace')}</FormLabel>
<Switch isChecked={hand_and_face} onChange={handleHandAndFaceChanged} />
</FormControl>
</ProcessorWrapper>
);
};
export default memo(OpenposeProcessor);

View File

@@ -205,20 +205,21 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
image_resolution: 512,
},
},
openpose_image_processor: {
type: 'openpose_image_processor',
dw_openpose_image_processor: {
type: 'dw_openpose_image_processor',
get label() {
return i18n.t('controlnet.openPose');
return i18n.t('controlnet.dwOpenpose');
},
get description() {
return i18n.t('controlnet.openPoseDescription');
return i18n.t('controlnet.dwOpenposeDescription');
},
default: {
id: 'openpose_image_processor',
type: 'openpose_image_processor',
detect_resolution: 512,
id: 'dw_openpose_image_processor',
type: 'dw_openpose_image_processor',
image_resolution: 512,
hand_and_face: false,
draw_body: true,
draw_face: false,
draw_hands: false,
},
},
pidi_image_processor: {
@@ -266,7 +267,7 @@ export const CONTROLNET_MODEL_DEFAULT_PROCESSORS: {
lineart_anime: 'lineart_anime_image_processor',
softedge: 'hed_image_processor',
shuffle: 'content_shuffle_image_processor',
openpose: 'openpose_image_processor',
openpose: 'dw_openpose_image_processor',
mediapipe: 'mediapipe_face_processor',
pidi: 'pidi_image_processor',
zoe: 'zoe_depth_image_processor',

View File

@@ -11,6 +11,7 @@ import type {
ColorMapImageProcessorInvocation,
ContentShuffleImageProcessorInvocation,
DepthAnythingImageProcessorInvocation,
DWOpenposeImageProcessorInvocation,
HedImageProcessorInvocation,
LineartAnimeImageProcessorInvocation,
LineartImageProcessorInvocation,
@@ -18,7 +19,6 @@ import type {
MidasDepthImageProcessorInvocation,
MlsdImageProcessorInvocation,
NormalbaeImageProcessorInvocation,
OpenposeImageProcessorInvocation,
PidiImageProcessorInvocation,
ZoeDepthImageProcessorInvocation,
} from 'services/api/types';
@@ -40,7 +40,7 @@ export type ControlAdapterProcessorNode =
| MidasDepthImageProcessorInvocation
| MlsdImageProcessorInvocation
| NormalbaeImageProcessorInvocation
| OpenposeImageProcessorInvocation
| DWOpenposeImageProcessorInvocation
| PidiImageProcessorInvocation
| ZoeDepthImageProcessorInvocation;
@@ -143,11 +143,11 @@ export type RequiredNormalbaeImageProcessorInvocation = O.Required<
>;
/**
* The Openpose processor node, with parameters flagged as required
* The DW Openpose processor node, with parameters flagged as required
*/
export type RequiredOpenposeImageProcessorInvocation = O.Required<
OpenposeImageProcessorInvocation,
'type' | 'detect_resolution' | 'image_resolution' | 'hand_and_face'
export type RequiredDWOpenposeImageProcessorInvocation = O.Required<
DWOpenposeImageProcessorInvocation,
'type' | 'image_resolution' | 'draw_body' | 'draw_face' | 'draw_hands'
>;
/**
@@ -179,7 +179,7 @@ export type RequiredControlAdapterProcessorNode =
| RequiredMidasDepthImageProcessorInvocation
| RequiredMlsdImageProcessorInvocation
| RequiredNormalbaeImageProcessorInvocation
| RequiredOpenposeImageProcessorInvocation
| RequiredDWOpenposeImageProcessorInvocation
| RequiredPidiImageProcessorInvocation
| RequiredZoeDepthImageProcessorInvocation,
'id'
@@ -299,10 +299,10 @@ export const isNormalbaeImageProcessorInvocation = (obj: unknown): obj is Normal
};
/**
* Type guard for OpenposeImageProcessorInvocation
* Type guard for DWOpenposeImageProcessorInvocation
*/
export const isOpenposeImageProcessorInvocation = (obj: unknown): obj is OpenposeImageProcessorInvocation => {
if (isObject(obj) && 'type' in obj && obj.type === 'openpose_image_processor') {
export const isDWOpenposeImageProcessorInvocation = (obj: unknown): obj is DWOpenposeImageProcessorInvocation => {
if (isObject(obj) && 'type' in obj && obj.type === 'dw_openpose_image_processor') {
return true;
}
return false;

View File

@@ -35,7 +35,7 @@ export const loraSlice = createSlice({
},
loraRecalled: (state, action: PayloadAction<LoRAModelConfigEntity & { weight: number }>) => {
const { model_name, id, base_model, weight } = action.payload;
state.loras[id] = { id, model_name, base_model, weight };
state.loras[id] = { id, model_name, base_model, weight, isEnabled: true };
},
loraRemoved: (state, action: PayloadAction<string>) => {
const id = action.payload;

View File

@@ -60,9 +60,10 @@ import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
type InputFieldProps = {
nodeId: string;
fieldName: string;
saveToGraph?: boolean;
};
const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
const InputFieldRenderer = ({ nodeId, fieldName, saveToGraph = true }: InputFieldProps) => {
const { t } = useTranslation();
const fieldInstance = useFieldInstance(nodeId, fieldName);
const fieldTemplate = useFieldTemplate(nodeId, fieldName, 'input');
@@ -76,69 +77,181 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
}
if (isStringFieldInputInstance(fieldInstance) && isStringFieldInputTemplate(fieldTemplate)) {
return <StringFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<StringFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isBooleanFieldInputInstance(fieldInstance) && isBooleanFieldInputTemplate(fieldTemplate)) {
return <BooleanFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<BooleanFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (
(isIntegerFieldInputInstance(fieldInstance) && isIntegerFieldInputTemplate(fieldTemplate)) ||
(isFloatFieldInputInstance(fieldInstance) && isFloatFieldInputTemplate(fieldTemplate))
) {
return <NumberFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<NumberFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isEnumFieldInputInstance(fieldInstance) && isEnumFieldInputTemplate(fieldTemplate)) {
return <EnumFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<EnumFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isImageFieldInputInstance(fieldInstance) && isImageFieldInputTemplate(fieldTemplate)) {
return <ImageFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<ImageFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isBoardFieldInputInstance(fieldInstance) && isBoardFieldInputTemplate(fieldTemplate)) {
return <BoardFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<BoardFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isMainModelFieldInputInstance(fieldInstance) && isMainModelFieldInputTemplate(fieldTemplate)) {
return <MainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<MainModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isSDXLRefinerModelFieldInputInstance(fieldInstance) && isSDXLRefinerModelFieldInputTemplate(fieldTemplate)) {
return <RefinerModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<RefinerModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isVAEModelFieldInputInstance(fieldInstance) && isVAEModelFieldInputTemplate(fieldTemplate)) {
return <VAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<VAEModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isLoRAModelFieldInputInstance(fieldInstance) && isLoRAModelFieldInputTemplate(fieldTemplate)) {
return <LoRAModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<LoRAModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isControlNetModelFieldInputInstance(fieldInstance) && isControlNetModelFieldInputTemplate(fieldTemplate)) {
return <ControlNetModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<ControlNetModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isIPAdapterModelFieldInputInstance(fieldInstance) && isIPAdapterModelFieldInputTemplate(fieldTemplate)) {
return <IPAdapterModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<IPAdapterModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isT2IAdapterModelFieldInputInstance(fieldInstance) && isT2IAdapterModelFieldInputTemplate(fieldTemplate)) {
return <T2IAdapterModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<T2IAdapterModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isColorFieldInputInstance(fieldInstance) && isColorFieldInputTemplate(fieldTemplate)) {
return <ColorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<ColorFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isSDXLMainModelFieldInputInstance(fieldInstance) && isSDXLMainModelFieldInputTemplate(fieldTemplate)) {
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<SDXLMainModelFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (isSchedulerFieldInputInstance(fieldInstance) && isSchedulerFieldInputTemplate(fieldTemplate)) {
return <SchedulerFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
return (
<SchedulerFieldInputComponent
nodeId={nodeId}
field={fieldInstance}
fieldTemplate={fieldTemplate}
saveToGraph={saveToGraph}
/>
);
}
if (fieldInstance && fieldTemplate) {

View File

@@ -57,7 +57,7 @@ const LinearViewField = ({ nodeId, fieldName }: Props) => {
icon={<PiTrashSimpleBold />}
/>
</Flex>
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} saveToGraph={false} />
<NodeSelectionOverlay isSelected={false} isHovered={isMouseOverNode} />
</Flex>
);

View File

@@ -8,7 +8,7 @@ import { memo, useCallback } from 'react';
import type { FieldComponentProps } from './types';
const StringFieldInputComponent = (props: FieldComponentProps<StringFieldInputInstance, StringFieldInputTemplate>) => {
const { nodeId, field, fieldTemplate } = props;
const { nodeId, field, fieldTemplate, saveToGraph } = props;
const dispatch = useAppDispatch();
const handleValueChanged = useCallback(
@@ -18,10 +18,11 @@ const StringFieldInputComponent = (props: FieldComponentProps<StringFieldInputIn
nodeId,
fieldName: field.name,
value: e.target.value,
saveToGraph,
})
);
},
[dispatch, field.name, nodeId]
[dispatch, field.name, nodeId, saveToGraph]
);
if (fieldTemplate.ui_component === 'textarea') {

View File

@@ -4,4 +4,5 @@ export type FieldComponentProps<V extends FieldInputInstance, T extends FieldInp
nodeId: string;
field: V;
fieldTemplate: T;
saveToGraph: boolean;
};

View File

@@ -118,6 +118,7 @@ type FieldValueAction<T extends FieldValue> = PayloadAction<{
nodeId: string;
fieldName: string;
value: T;
saveToGraph: boolean;
}>;
const fieldValueReducer = <T extends FieldValue>(
@@ -482,49 +483,51 @@ export const nodesSlice = createSlice({
state.selectedEdges = action.payload;
},
fieldStringValueChanged: (state, action: FieldValueAction<StringFieldValue>) => {
fieldValueReducer(state, action, zStringFieldValue);
if (action.payload.saveToGraph) {
fieldValueReducer(state, action, zStringFieldValue);
}
},
fieldNumberValueChanged: (state, action: FieldValueAction<IntegerFieldValue | FloatFieldValue>) => {
fieldValueReducer(state, action, zIntegerFieldValue.or(zFloatFieldValue));
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zIntegerFieldValue.or(zFloatFieldValue)) };
},
fieldBooleanValueChanged: (state, action: FieldValueAction<BooleanFieldValue>) => {
fieldValueReducer(state, action, zBooleanFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zBooleanFieldValue) }
},
fieldBoardValueChanged: (state, action: FieldValueAction<BoardFieldValue>) => {
fieldValueReducer(state, action, zBoardFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zBoardFieldValue) }
},
fieldImageValueChanged: (state, action: FieldValueAction<ImageFieldValue>) => {
fieldValueReducer(state, action, zImageFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zImageFieldValue) }
},
fieldColorValueChanged: (state, action: FieldValueAction<ColorFieldValue>) => {
fieldValueReducer(state, action, zColorFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zColorFieldValue) }
},
fieldMainModelValueChanged: (state, action: FieldValueAction<MainModelFieldValue>) => {
fieldValueReducer(state, action, zMainModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zMainModelFieldValue) }
},
fieldRefinerModelValueChanged: (state, action: FieldValueAction<SDXLRefinerModelFieldValue>) => {
fieldValueReducer(state, action, zSDXLRefinerModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zSDXLRefinerModelFieldValue) }
},
fieldVaeModelValueChanged: (state, action: FieldValueAction<VAEModelFieldValue>) => {
fieldValueReducer(state, action, zVAEModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zVAEModelFieldValue) }
},
fieldLoRAModelValueChanged: (state, action: FieldValueAction<LoRAModelFieldValue>) => {
fieldValueReducer(state, action, zLoRAModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zLoRAModelFieldValue) }
},
fieldControlNetModelValueChanged: (state, action: FieldValueAction<ControlNetModelFieldValue>) => {
fieldValueReducer(state, action, zControlNetModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zControlNetModelFieldValue) }
},
fieldIPAdapterModelValueChanged: (state, action: FieldValueAction<IPAdapterModelFieldValue>) => {
fieldValueReducer(state, action, zIPAdapterModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zIPAdapterModelFieldValue) }
},
fieldT2IAdapterModelValueChanged: (state, action: FieldValueAction<T2IAdapterModelFieldValue>) => {
fieldValueReducer(state, action, zT2IAdapterModelFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zT2IAdapterModelFieldValue) }
},
fieldEnumModelValueChanged: (state, action: FieldValueAction<EnumFieldValue>) => {
fieldValueReducer(state, action, zEnumFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zEnumFieldValue) }
},
fieldSchedulerValueChanged: (state, action: FieldValueAction<SchedulerFieldValue>) => {
fieldValueReducer(state, action, zSchedulerFieldValue);
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zSchedulerFieldValue) }
},
notesNodeValueChanged: (state, action: PayloadAction<{ nodeId: string; value: string }>) => {
const { nodeId, value } = action.payload;

View File

@@ -2,11 +2,12 @@ import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { PersistConfig, RootState } from 'app/store/store';
import { workflowLoaded } from 'features/nodes/store/actions';
import { isAnyNodeOrEdgeMutation, nodeEditorReset, nodesDeleted } from 'features/nodes/store/nodesSlice';
import type { WorkflowsState as WorkflowState } from 'features/nodes/store/types';
import type { FieldIdentifier } from 'features/nodes/types/field';
import { fieldStringValueChanged, isAnyNodeOrEdgeMutation, nodeEditorReset, nodesDeleted } from 'features/nodes/store/nodesSlice';
import type { NodesState, WorkflowsState as WorkflowState } from 'features/nodes/store/types';
import { zStringFieldValue, type FieldIdentifier, type FieldValue } from 'features/nodes/types/field';
import type { WorkflowCategory, WorkflowV2 } from 'features/nodes/types/workflow';
import { cloneDeep, isEqual, uniqBy } from 'lodash-es';
import { z } from 'zod';
export const blankWorkflow: Omit<WorkflowV2, 'nodes' | 'edges'> = {
name: '',
@@ -27,6 +28,29 @@ export const initialWorkflowState: WorkflowState = {
...blankWorkflow,
};
type FieldValueAction<T extends FieldValue> = PayloadAction<{
nodeId: string;
fieldName: string;
value: T;
saveToGraph: boolean;
}>;
const exposedFieldValueReducer = <T extends FieldValue>(
state: WorkflowState,
action: FieldValueAction<T>,
schema: z.ZodTypeAny
) => {
const { nodeId, fieldName, value } = action.payload;
const exposedField = state.exposedFields.find(field => field.nodeId === nodeId)
const result = schema.safeParse(value);
if (!result || !exposedField || !result.success) {
return;
}
exposedField.value = schema.safeParse(value);
};
export const workflowSlice = createSlice({
name: 'workflow',
initialState: initialWorkflowState,
@@ -42,6 +66,7 @@ export const workflowSlice = createSlice({
state.exposedFields = state.exposedFields.filter((field) => !isEqual(field, action.payload));
state.isTouched = true;
},
workflowNameChanged: (state, action: PayloadAction<string>) => {
state.name = action.payload;
state.isTouched = true;
@@ -97,9 +122,17 @@ export const workflowSlice = createSlice({
builder.addCase(nodeEditorReset, () => cloneDeep(initialWorkflowState));
builder.addCase(fieldStringValueChanged, (state, action) => {
if (!action.payload.saveToGraph) {
exposedFieldValueReducer(state, action, zStringFieldValue);
}
})
builder.addMatcher(isAnyNodeOrEdgeMutation, (state) => {
state.isTouched = true;
});
},
});

View File

@@ -91,6 +91,7 @@ export const zFieldTypeBase = z.object({
export const zFieldIdentifier = z.object({
nodeId: z.string().trim().min(1),
fieldName: z.string().trim().min(1),
value: z.any().optional()
});
export type FieldIdentifier = z.infer<typeof zFieldIdentifier>;
export const isFieldIdentifier = (val: unknown): val is FieldIdentifier => zFieldIdentifier.safeParse(val).success;

File diff suppressed because one or more lines are too long

View File

@@ -156,7 +156,7 @@ export type MediapipeFaceProcessorInvocation = s['MediapipeFaceProcessorInvocati
export type MidasDepthImageProcessorInvocation = s['MidasDepthImageProcessorInvocation'];
export type MlsdImageProcessorInvocation = s['MlsdImageProcessorInvocation'];
export type NormalbaeImageProcessorInvocation = s['NormalbaeImageProcessorInvocation'];
export type OpenposeImageProcessorInvocation = s['OpenposeImageProcessorInvocation'];
export type DWOpenposeImageProcessorInvocation = s['DWOpenposeImageProcessorInvocation'];
export type PidiImageProcessorInvocation = s['PidiImageProcessorInvocation'];
export type ZoeDepthImageProcessorInvocation = s['ZoeDepthImageProcessorInvocation'];