mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 07:28:06 -05:00
Compare commits
13 Commits
3.6.3
...
maryhipp/e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ea64649135 | ||
|
|
1dd07fb1eb | ||
|
|
e82c21b5ba | ||
|
|
50b93992cf | ||
|
|
f8e566d62a | ||
|
|
f588b95c7f | ||
|
|
67daf1751c | ||
|
|
7d80261d47 | ||
|
|
67cbfeb33d | ||
|
|
f7998b4be0 | ||
|
|
675c73c94f | ||
|
|
0a27b0379f | ||
|
|
0ef18b6477 |
@@ -94,6 +94,8 @@ A model that helps generate creative QR codes that still scan. Can also be used
|
||||
**Openpose**:
|
||||
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
|
||||
|
||||
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
|
||||
|
||||
**Mediapipe Face**:
|
||||
|
||||
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
|
||||
|
||||
@@ -81,7 +81,7 @@ their descriptions.
|
||||
| ONNX Text to Latents | Generates latents from conditionings. |
|
||||
| ONNX Model Loader | Loads a main model, outputting its submodels. |
|
||||
| OpenCV Inpaint | Simple inpaint using opencv. |
|
||||
| Openpose Processor | Applies Openpose processing to image |
|
||||
| DW Openpose Processor | Applies Openpose processing to image |
|
||||
| PIDI Processor | Applies PIDI processing to image |
|
||||
| Prompts from File | Loads prompts from a text file |
|
||||
| Random Integer | Outputs a single random integer. |
|
||||
|
||||
@@ -17,7 +17,6 @@ from controlnet_aux import (
|
||||
MidasDetector,
|
||||
MLSDdetector,
|
||||
NormalBaeDetector,
|
||||
OpenposeDetector,
|
||||
PidiNetDetector,
|
||||
SamDetector,
|
||||
ZoeDetector,
|
||||
@@ -31,6 +30,7 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
|
||||
from ...backend.model_management import BaseModelType
|
||||
from .baseinvocation import (
|
||||
@@ -276,31 +276,6 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"openpose_image_processor",
|
||||
title="Openpose Processor",
|
||||
tags=["controlnet", "openpose", "pose"],
|
||||
category="controlnet",
|
||||
version="1.2.0",
|
||||
)
|
||||
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Openpose processing to image"""
|
||||
|
||||
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = openpose_processor(
|
||||
image,
|
||||
detect_resolution=self.detect_resolution,
|
||||
image_resolution=self.image_resolution,
|
||||
hand_and_face=self.hand_and_face,
|
||||
)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"midas_depth_image_processor",
|
||||
title="Midas Depth Processor",
|
||||
@@ -624,7 +599,7 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
|
||||
offload: bool = InputField(default=False)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image):
|
||||
depth_anything_detector = DepthAnythingDetector()
|
||||
depth_anything_detector.load_model(model_size=self.model_size)
|
||||
|
||||
@@ -633,3 +608,30 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"dw_openpose_image_processor",
|
||||
title="DW Openpose Image Processor",
|
||||
tags=["controlnet", "dwpose", "openpose"],
|
||||
category="controlnet",
|
||||
version="1.0.0",
|
||||
)
|
||||
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Generates an openpose pose from an image using DWPose"""
|
||||
|
||||
draw_body: bool = InputField(default=True)
|
||||
draw_face: bool = InputField(default=False)
|
||||
draw_hands: bool = InputField(default=False)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
dw_openpose = DWOpenposeDetector()
|
||||
processed_image = dw_openpose(
|
||||
image,
|
||||
draw_face=self.draw_face,
|
||||
draw_hands=self.draw_hands,
|
||||
draw_body=self.draw_body,
|
||||
resolution=self.image_resolution,
|
||||
)
|
||||
return processed_image
|
||||
|
||||
81
invokeai/backend/image_util/dw_openpose/__init__.py
Normal file
81
invokeai/backend/image_util/dw_openpose/__init__.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from controlnet_aux.util import resize_image
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
|
||||
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
|
||||
|
||||
|
||||
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
|
||||
bodies = pose["bodies"]
|
||||
faces = pose["faces"]
|
||||
hands = pose["hands"]
|
||||
candidate = bodies["candidate"]
|
||||
subset = bodies["subset"]
|
||||
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
||||
|
||||
if draw_body:
|
||||
canvas = draw_bodypose(canvas, candidate, subset)
|
||||
|
||||
if draw_hands:
|
||||
canvas = draw_handpose(canvas, hands)
|
||||
|
||||
if draw_face:
|
||||
canvas = draw_facepose(canvas, faces)
|
||||
|
||||
dwpose_image = resize_image(
|
||||
canvas,
|
||||
resolution,
|
||||
)
|
||||
dwpose_image = Image.fromarray(dwpose_image)
|
||||
|
||||
return dwpose_image
|
||||
|
||||
|
||||
class DWOpenposeDetector:
|
||||
"""
|
||||
Code from the original implementation of the DW Openpose Detector.
|
||||
Credits: https://github.com/IDEA-Research/DWPose
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.pose_estimation = Wholebody()
|
||||
|
||||
def __call__(
|
||||
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
|
||||
) -> Image.Image:
|
||||
np_image = np.array(image)
|
||||
H, W, C = np_image.shape
|
||||
|
||||
with torch.no_grad():
|
||||
candidate, subset = self.pose_estimation(np_image)
|
||||
nums, keys, locs = candidate.shape
|
||||
candidate[..., 0] /= float(W)
|
||||
candidate[..., 1] /= float(H)
|
||||
body = candidate[:, :18].copy()
|
||||
body = body.reshape(nums * 18, locs)
|
||||
score = subset[:, :18]
|
||||
for i in range(len(score)):
|
||||
for j in range(len(score[i])):
|
||||
if score[i][j] > 0.3:
|
||||
score[i][j] = int(18 * i + j)
|
||||
else:
|
||||
score[i][j] = -1
|
||||
|
||||
un_visible = subset < 0.3
|
||||
candidate[un_visible] = -1
|
||||
|
||||
# foot = candidate[:, 18:24]
|
||||
|
||||
faces = candidate[:, 24:92]
|
||||
|
||||
hands = candidate[:, 92:113]
|
||||
hands = np.vstack([hands, candidate[:, 113:]])
|
||||
|
||||
bodies = {"candidate": body, "subset": score}
|
||||
pose = {"bodies": bodies, "hands": hands, "faces": faces}
|
||||
|
||||
return draw_pose(
|
||||
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
|
||||
)
|
||||
128
invokeai/backend/image_util/dw_openpose/onnxdet.py
Normal file
128
invokeai/backend/image_util/dw_openpose/onnxdet.py
Normal file
@@ -0,0 +1,128 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def nms(boxes, scores, nms_thr):
|
||||
"""Single class NMS implemented in Numpy."""
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
|
||||
inds = np.where(ovr <= nms_thr)[0]
|
||||
order = order[inds + 1]
|
||||
|
||||
return keep
|
||||
|
||||
|
||||
def multiclass_nms(boxes, scores, nms_thr, score_thr):
|
||||
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
||||
final_dets = []
|
||||
num_classes = scores.shape[1]
|
||||
for cls_ind in range(num_classes):
|
||||
cls_scores = scores[:, cls_ind]
|
||||
valid_score_mask = cls_scores > score_thr
|
||||
if valid_score_mask.sum() == 0:
|
||||
continue
|
||||
else:
|
||||
valid_scores = cls_scores[valid_score_mask]
|
||||
valid_boxes = boxes[valid_score_mask]
|
||||
keep = nms(valid_boxes, valid_scores, nms_thr)
|
||||
if len(keep) > 0:
|
||||
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
||||
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
|
||||
final_dets.append(dets)
|
||||
if len(final_dets) == 0:
|
||||
return None
|
||||
return np.concatenate(final_dets, 0)
|
||||
|
||||
|
||||
def demo_postprocess(outputs, img_size, p6=False):
|
||||
grids = []
|
||||
expanded_strides = []
|
||||
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
||||
|
||||
hsizes = [img_size[0] // stride for stride in strides]
|
||||
wsizes = [img_size[1] // stride for stride in strides]
|
||||
|
||||
for hsize, wsize, stride in zip(hsizes, wsizes, strides, strict=False):
|
||||
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
||||
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
||||
grids.append(grid)
|
||||
shape = grid.shape[:2]
|
||||
expanded_strides.append(np.full((*shape, 1), stride))
|
||||
|
||||
grids = np.concatenate(grids, 1)
|
||||
expanded_strides = np.concatenate(expanded_strides, 1)
|
||||
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
||||
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def preprocess(img, input_size, swap=(2, 0, 1)):
|
||||
if len(img.shape) == 3:
|
||||
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
||||
else:
|
||||
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
||||
|
||||
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
||||
resized_img = cv2.resize(
|
||||
img,
|
||||
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
).astype(np.uint8)
|
||||
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
||||
|
||||
padded_img = padded_img.transpose(swap)
|
||||
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
||||
return padded_img, r
|
||||
|
||||
|
||||
def inference_detector(session, oriImg):
|
||||
input_shape = (640, 640)
|
||||
img, ratio = preprocess(oriImg, input_shape)
|
||||
|
||||
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
||||
output = session.run(None, ort_inputs)
|
||||
predictions = demo_postprocess(output[0], input_shape)[0]
|
||||
|
||||
boxes = predictions[:, :4]
|
||||
scores = predictions[:, 4:5] * predictions[:, 5:]
|
||||
|
||||
boxes_xyxy = np.ones_like(boxes)
|
||||
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
|
||||
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
|
||||
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
|
||||
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
|
||||
boxes_xyxy /= ratio
|
||||
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
||||
if dets is not None:
|
||||
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
||||
isscore = final_scores > 0.3
|
||||
iscat = final_cls_inds == 0
|
||||
isbbox = [i and j for (i, j) in zip(isscore, iscat, strict=False)]
|
||||
final_boxes = final_boxes[isbbox]
|
||||
else:
|
||||
final_boxes = np.array([])
|
||||
|
||||
return final_boxes
|
||||
361
invokeai/backend/image_util/dw_openpose/onnxpose.py
Normal file
361
invokeai/backend/image_util/dw_openpose/onnxpose.py
Normal file
@@ -0,0 +1,361 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
|
||||
def preprocess(
|
||||
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Do preprocessing for RTMPose model inference.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): Input image in shape.
|
||||
input_size (tuple): Input image size in shape (w, h).
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- resized_img (np.ndarray): Preprocessed image.
|
||||
- center (np.ndarray): Center of image.
|
||||
- scale (np.ndarray): Scale of image.
|
||||
"""
|
||||
# get shape of image
|
||||
img_shape = img.shape[:2]
|
||||
out_img, out_center, out_scale = [], [], []
|
||||
if len(out_bbox) == 0:
|
||||
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
|
||||
for i in range(len(out_bbox)):
|
||||
x0 = out_bbox[i][0]
|
||||
y0 = out_bbox[i][1]
|
||||
x1 = out_bbox[i][2]
|
||||
y1 = out_bbox[i][3]
|
||||
bbox = np.array([x0, y0, x1, y1])
|
||||
|
||||
# get center and scale
|
||||
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
|
||||
|
||||
# do affine transformation
|
||||
resized_img, scale = top_down_affine(input_size, scale, center, img)
|
||||
|
||||
# normalize image
|
||||
mean = np.array([123.675, 116.28, 103.53])
|
||||
std = np.array([58.395, 57.12, 57.375])
|
||||
resized_img = (resized_img - mean) / std
|
||||
|
||||
out_img.append(resized_img)
|
||||
out_center.append(center)
|
||||
out_scale.append(scale)
|
||||
|
||||
return out_img, out_center, out_scale
|
||||
|
||||
|
||||
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
|
||||
"""Inference RTMPose model.
|
||||
|
||||
Args:
|
||||
sess (ort.InferenceSession): ONNXRuntime session.
|
||||
img (np.ndarray): Input image in shape.
|
||||
|
||||
Returns:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
"""
|
||||
all_out = []
|
||||
# build input
|
||||
for i in range(len(img)):
|
||||
input = [img[i].transpose(2, 0, 1)]
|
||||
|
||||
# build output
|
||||
sess_input = {sess.get_inputs()[0].name: input}
|
||||
sess_output = []
|
||||
for out in sess.get_outputs():
|
||||
sess_output.append(out.name)
|
||||
|
||||
# run model
|
||||
outputs = sess.run(sess_output, sess_input)
|
||||
all_out.append(outputs)
|
||||
|
||||
return all_out
|
||||
|
||||
|
||||
def postprocess(
|
||||
outputs: List[np.ndarray],
|
||||
model_input_size: Tuple[int, int],
|
||||
center: Tuple[int, int],
|
||||
scale: Tuple[int, int],
|
||||
simcc_split_ratio: float = 2.0,
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Postprocess for RTMPose model output.
|
||||
|
||||
Args:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
model_input_size (tuple): RTMPose model Input image size.
|
||||
center (tuple): Center of bbox in shape (x, y).
|
||||
scale (tuple): Scale of bbox in shape (w, h).
|
||||
simcc_split_ratio (float): Split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- keypoints (np.ndarray): Rescaled keypoints.
|
||||
- scores (np.ndarray): Model predict scores.
|
||||
"""
|
||||
all_key = []
|
||||
all_score = []
|
||||
for i in range(len(outputs)):
|
||||
# use simcc to decode
|
||||
simcc_x, simcc_y = outputs[i]
|
||||
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
|
||||
|
||||
# rescale keypoints
|
||||
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
|
||||
all_key.append(keypoints[0])
|
||||
all_score.append(scores[0])
|
||||
|
||||
return np.array(all_key), np.array(all_score)
|
||||
|
||||
|
||||
def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Transform the bbox format from (x,y,w,h) into (center, scale)
|
||||
|
||||
Args:
|
||||
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
|
||||
as (left, top, right, bottom)
|
||||
padding (float): BBox padding factor that will be multilied to scale.
|
||||
Default: 1.0
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
"""
|
||||
# convert single bbox from (4, ) to (1, 4)
|
||||
dim = bbox.ndim
|
||||
if dim == 1:
|
||||
bbox = bbox[None, :]
|
||||
|
||||
# get bbox center and scale
|
||||
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
|
||||
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
|
||||
scale = np.hstack([x2 - x1, y2 - y1]) * padding
|
||||
|
||||
if dim == 1:
|
||||
center = center[0]
|
||||
scale = scale[0]
|
||||
|
||||
return center, scale
|
||||
|
||||
|
||||
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray:
|
||||
"""Extend the scale to match the given aspect ratio.
|
||||
|
||||
Args:
|
||||
scale (np.ndarray): The image scale (w, h) in shape (2, )
|
||||
aspect_ratio (float): The ratio of ``w/h``
|
||||
|
||||
Returns:
|
||||
np.ndarray: The reshaped image scale in (2, )
|
||||
"""
|
||||
w, h = np.hsplit(bbox_scale, [1])
|
||||
bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h]))
|
||||
return bbox_scale
|
||||
|
||||
|
||||
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
|
||||
"""Rotate a point by an angle.
|
||||
|
||||
Args:
|
||||
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
|
||||
angle_rad (float): rotation angle in radian
|
||||
|
||||
Returns:
|
||||
np.ndarray: Rotated point in shape (2, )
|
||||
"""
|
||||
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
||||
rot_mat = np.array([[cs, -sn], [sn, cs]])
|
||||
return rot_mat @ pt
|
||||
|
||||
|
||||
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
||||
"""To calculate the affine matrix, three pairs of points are required. This
|
||||
function is used to get the 3rd point, given 2D points a & b.
|
||||
|
||||
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
||||
anticlockwise, using b as the rotation center.
|
||||
|
||||
Args:
|
||||
a (np.ndarray): The 1st point (x,y) in shape (2, )
|
||||
b (np.ndarray): The 2nd point (x,y) in shape (2, )
|
||||
|
||||
Returns:
|
||||
np.ndarray: The 3rd point.
|
||||
"""
|
||||
direction = a - b
|
||||
c = b + np.r_[-direction[1], direction[0]]
|
||||
return c
|
||||
|
||||
|
||||
def get_warp_matrix(
|
||||
center: np.ndarray,
|
||||
scale: np.ndarray,
|
||||
rot: float,
|
||||
output_size: Tuple[int, int],
|
||||
shift: Tuple[float, float] = (0.0, 0.0),
|
||||
inv: bool = False,
|
||||
) -> np.ndarray:
|
||||
"""Calculate the affine transformation matrix that can warp the bbox area
|
||||
in the input image to the output size.
|
||||
|
||||
Args:
|
||||
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
||||
scale (np.ndarray[2, ]): Scale of the bounding box
|
||||
wrt [width, height].
|
||||
rot (float): Rotation angle (degree).
|
||||
output_size (np.ndarray[2, ] | list(2,)): Size of the
|
||||
destination heatmaps.
|
||||
shift (0-100%): Shift translation ratio wrt the width/height.
|
||||
Default (0., 0.).
|
||||
inv (bool): Option to inverse the affine transform direction.
|
||||
(inv=False: src->dst or inv=True: dst->src)
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2x3 transformation matrix
|
||||
"""
|
||||
shift = np.array(shift)
|
||||
src_w = scale[0]
|
||||
dst_w = output_size[0]
|
||||
dst_h = output_size[1]
|
||||
|
||||
# compute transformation matrix
|
||||
rot_rad = np.deg2rad(rot)
|
||||
src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad)
|
||||
dst_dir = np.array([0.0, dst_w * -0.5])
|
||||
|
||||
# get four corners of the src rectangle in the original image
|
||||
src = np.zeros((3, 2), dtype=np.float32)
|
||||
src[0, :] = center + scale * shift
|
||||
src[1, :] = center + src_dir + scale * shift
|
||||
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
||||
|
||||
# get four corners of the dst rectangle in the input image
|
||||
dst = np.zeros((3, 2), dtype=np.float32)
|
||||
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
||||
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
||||
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
||||
|
||||
if inv:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
||||
else:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
||||
|
||||
return warp_mat
|
||||
|
||||
|
||||
def top_down_affine(
|
||||
input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get the bbox image as the model input by affine transform.
|
||||
|
||||
Args:
|
||||
input_size (dict): The input size of the model.
|
||||
bbox_scale (dict): The bbox scale of the img.
|
||||
bbox_center (dict): The bbox center of the img.
|
||||
img (np.ndarray): The original image.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: img after affine transform.
|
||||
- np.ndarray[float32]: bbox scale after affine transform.
|
||||
"""
|
||||
w, h = input_size
|
||||
warp_size = (int(w), int(h))
|
||||
|
||||
# reshape bbox to fixed aspect ratio
|
||||
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
|
||||
|
||||
# get the affine matrix
|
||||
center = bbox_center
|
||||
scale = bbox_scale
|
||||
rot = 0
|
||||
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
|
||||
|
||||
# do affine transform
|
||||
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
|
||||
|
||||
return img, bbox_scale
|
||||
|
||||
|
||||
def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get maximum response location and value from simcc representations.
|
||||
|
||||
Note:
|
||||
instance number: N
|
||||
num_keypoints: K
|
||||
heatmap height: H
|
||||
heatmap width: W
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
|
||||
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- locs (np.ndarray): locations of maximum heatmap responses in shape
|
||||
(K, 2) or (N, K, 2)
|
||||
- vals (np.ndarray): values of maximum heatmap responses in shape
|
||||
(K,) or (N, K)
|
||||
"""
|
||||
N, K, Wx = simcc_x.shape
|
||||
simcc_x = simcc_x.reshape(N * K, -1)
|
||||
simcc_y = simcc_y.reshape(N * K, -1)
|
||||
|
||||
# get maximum value locations
|
||||
x_locs = np.argmax(simcc_x, axis=1)
|
||||
y_locs = np.argmax(simcc_y, axis=1)
|
||||
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
|
||||
max_val_x = np.amax(simcc_x, axis=1)
|
||||
max_val_y = np.amax(simcc_y, axis=1)
|
||||
|
||||
# get maximum value across x and y axis
|
||||
mask = max_val_x > max_val_y
|
||||
max_val_x[mask] = max_val_y[mask]
|
||||
vals = max_val_x
|
||||
locs[vals <= 0.0] = -1
|
||||
|
||||
# reshape
|
||||
locs = locs.reshape(N, K, 2)
|
||||
vals = vals.reshape(N, K)
|
||||
|
||||
return locs, vals
|
||||
|
||||
|
||||
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Modulate simcc distribution with Gaussian.
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
|
||||
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
|
||||
simcc_split_ratio (int): The split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
|
||||
- np.ndarray[float32]: scores in shape (K,) or (n, K)
|
||||
"""
|
||||
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
|
||||
keypoints /= simcc_split_ratio
|
||||
|
||||
return keypoints, scores
|
||||
|
||||
|
||||
def inference_pose(session, out_bbox, oriImg):
|
||||
h, w = session.get_inputs()[0].shape[2:]
|
||||
model_input_size = (w, h)
|
||||
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
|
||||
outputs = inference(session, resized_img)
|
||||
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
|
||||
|
||||
return keypoints, scores
|
||||
155
invokeai/backend/image_util/dw_openpose/utils.py
Normal file
155
invokeai/backend/image_util/dw_openpose/utils.py
Normal file
@@ -0,0 +1,155 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
import math
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
eps = 0.01
|
||||
|
||||
|
||||
def draw_bodypose(canvas, candidate, subset):
|
||||
H, W, C = canvas.shape
|
||||
candidate = np.array(candidate)
|
||||
subset = np.array(subset)
|
||||
|
||||
stickwidth = 4
|
||||
|
||||
limbSeq = [
|
||||
[2, 3],
|
||||
[2, 6],
|
||||
[3, 4],
|
||||
[4, 5],
|
||||
[6, 7],
|
||||
[7, 8],
|
||||
[2, 9],
|
||||
[9, 10],
|
||||
[10, 11],
|
||||
[2, 12],
|
||||
[12, 13],
|
||||
[13, 14],
|
||||
[2, 1],
|
||||
[1, 15],
|
||||
[15, 17],
|
||||
[1, 16],
|
||||
[16, 18],
|
||||
[3, 17],
|
||||
[6, 18],
|
||||
]
|
||||
|
||||
colors = [
|
||||
[255, 0, 0],
|
||||
[255, 85, 0],
|
||||
[255, 170, 0],
|
||||
[255, 255, 0],
|
||||
[170, 255, 0],
|
||||
[85, 255, 0],
|
||||
[0, 255, 0],
|
||||
[0, 255, 85],
|
||||
[0, 255, 170],
|
||||
[0, 255, 255],
|
||||
[0, 170, 255],
|
||||
[0, 85, 255],
|
||||
[0, 0, 255],
|
||||
[85, 0, 255],
|
||||
[170, 0, 255],
|
||||
[255, 0, 255],
|
||||
[255, 0, 170],
|
||||
[255, 0, 85],
|
||||
]
|
||||
|
||||
for i in range(17):
|
||||
for n in range(len(subset)):
|
||||
index = subset[n][np.array(limbSeq[i]) - 1]
|
||||
if -1 in index:
|
||||
continue
|
||||
Y = candidate[index.astype(int), 0] * float(W)
|
||||
X = candidate[index.astype(int), 1] * float(H)
|
||||
mX = np.mean(X)
|
||||
mY = np.mean(Y)
|
||||
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
||||
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
||||
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
||||
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
||||
|
||||
canvas = (canvas * 0.6).astype(np.uint8)
|
||||
|
||||
for i in range(18):
|
||||
for n in range(len(subset)):
|
||||
index = int(subset[n][i])
|
||||
if index == -1:
|
||||
continue
|
||||
x, y = candidate[index][0:2]
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_handpose(canvas, all_hand_peaks):
|
||||
H, W, C = canvas.shape
|
||||
|
||||
edges = [
|
||||
[0, 1],
|
||||
[1, 2],
|
||||
[2, 3],
|
||||
[3, 4],
|
||||
[0, 5],
|
||||
[5, 6],
|
||||
[6, 7],
|
||||
[7, 8],
|
||||
[0, 9],
|
||||
[9, 10],
|
||||
[10, 11],
|
||||
[11, 12],
|
||||
[0, 13],
|
||||
[13, 14],
|
||||
[14, 15],
|
||||
[15, 16],
|
||||
[0, 17],
|
||||
[17, 18],
|
||||
[18, 19],
|
||||
[19, 20],
|
||||
]
|
||||
|
||||
for peaks in all_hand_peaks:
|
||||
peaks = np.array(peaks)
|
||||
|
||||
for ie, e in enumerate(edges):
|
||||
x1, y1 = peaks[e[0]]
|
||||
x2, y2 = peaks[e[1]]
|
||||
x1 = int(x1 * W)
|
||||
y1 = int(y1 * H)
|
||||
x2 = int(x2 * W)
|
||||
y2 = int(y2 * H)
|
||||
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
||||
cv2.line(
|
||||
canvas,
|
||||
(x1, y1),
|
||||
(x2, y2),
|
||||
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
|
||||
thickness=2,
|
||||
)
|
||||
|
||||
for _, keyponit in enumerate(peaks):
|
||||
x, y = keyponit
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_facepose(canvas, all_lmks):
|
||||
H, W, C = canvas.shape
|
||||
for lmks in all_lmks:
|
||||
lmks = np.array(lmks)
|
||||
for lmk in lmks:
|
||||
x, y = lmk
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
||||
return canvas
|
||||
67
invokeai/backend/image_util/dw_openpose/wholebody.py
Normal file
67
invokeai/backend/image_util/dw_openpose/wholebody.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
# Modified pathing to suit Invoke
|
||||
|
||||
import pathlib
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
from invokeai.backend.util.util import download_with_progress_bar
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
DWPOSE_MODELS = {
|
||||
"yolox_l.onnx": {
|
||||
"local": "any/annotators/dwpose/yolox_l.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
|
||||
},
|
||||
"dw-ll_ucoco_384.onnx": {
|
||||
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
|
||||
},
|
||||
}
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
|
||||
|
||||
class Wholebody:
|
||||
def __init__(self):
|
||||
device = choose_torch_device()
|
||||
|
||||
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]
|
||||
|
||||
DET_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"])
|
||||
if not DET_MODEL_PATH.exists():
|
||||
download_with_progress_bar(DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
|
||||
|
||||
POSE_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"])
|
||||
if not POSE_MODEL_PATH.exists():
|
||||
download_with_progress_bar(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH)
|
||||
|
||||
onnx_det = DET_MODEL_PATH
|
||||
onnx_pose = POSE_MODEL_PATH
|
||||
|
||||
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
||||
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
||||
|
||||
def __call__(self, oriImg):
|
||||
det_result = inference_detector(self.session_det, oriImg)
|
||||
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
||||
|
||||
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
|
||||
# compute neck joint
|
||||
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
||||
# neck score when visualizing pred
|
||||
neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
||||
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
|
||||
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
|
||||
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
|
||||
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
|
||||
keypoints_info = new_keypoints_info
|
||||
|
||||
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
|
||||
|
||||
return keypoints, scores
|
||||
@@ -235,6 +235,9 @@
|
||||
"fill": "Fill",
|
||||
"h": "H",
|
||||
"handAndFace": "Hand and Face",
|
||||
"face": "Face",
|
||||
"body": "Body",
|
||||
"hands": "Hands",
|
||||
"hed": "HED",
|
||||
"hedDescription": "Holistically-Nested Edge Detection",
|
||||
"hideAdvanced": "Hide Advanced",
|
||||
@@ -261,8 +264,8 @@
|
||||
"noneDescription": "No processing applied",
|
||||
"normalBae": "Normal BAE",
|
||||
"normalBaeDescription": "Normal BAE processing",
|
||||
"openPose": "Openpose",
|
||||
"openPoseDescription": "Human pose estimation using Openpose",
|
||||
"dwOpenpose": "DW Openpose",
|
||||
"dwOpenposeDescription": "Human pose estimation using DW Openpose",
|
||||
"pidi": "PIDI",
|
||||
"pidiDescription": "PIDI image processing",
|
||||
"processor": "Processor",
|
||||
|
||||
@@ -6,6 +6,7 @@ import CannyProcessor from './processors/CannyProcessor';
|
||||
import ColorMapProcessor from './processors/ColorMapProcessor';
|
||||
import ContentShuffleProcessor from './processors/ContentShuffleProcessor';
|
||||
import DepthAnyThingProcessor from './processors/DepthAnyThingProcessor';
|
||||
import DWOpenposeProcessor from './processors/DWOpenposeProcessor';
|
||||
import HedProcessor from './processors/HedProcessor';
|
||||
import LineartAnimeProcessor from './processors/LineartAnimeProcessor';
|
||||
import LineartProcessor from './processors/LineartProcessor';
|
||||
@@ -13,7 +14,6 @@ import MediapipeFaceProcessor from './processors/MediapipeFaceProcessor';
|
||||
import MidasDepthProcessor from './processors/MidasDepthProcessor';
|
||||
import MlsdImageProcessor from './processors/MlsdImageProcessor';
|
||||
import NormalBaeProcessor from './processors/NormalBaeProcessor';
|
||||
import OpenposeProcessor from './processors/OpenposeProcessor';
|
||||
import PidiProcessor from './processors/PidiProcessor';
|
||||
import ZoeDepthProcessor from './processors/ZoeDepthProcessor';
|
||||
|
||||
@@ -73,8 +73,8 @@ const ControlAdapterProcessorComponent = ({ id }: Props) => {
|
||||
return <NormalBaeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
|
||||
}
|
||||
|
||||
if (processorNode.type === 'openpose_image_processor') {
|
||||
return <OpenposeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
|
||||
if (processorNode.type === 'dw_openpose_image_processor') {
|
||||
return <DWOpenposeProcessor controlNetId={id} processorNode={processorNode} isEnabled={isEnabled} />;
|
||||
}
|
||||
|
||||
if (processorNode.type === 'pidi_image_processor') {
|
||||
|
||||
@@ -0,0 +1,92 @@
|
||||
import { CompositeNumberInput, CompositeSlider, Flex, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import { useProcessorNodeChanged } from 'features/controlAdapters/components/hooks/useProcessorNodeChanged';
|
||||
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
|
||||
import type { RequiredDWOpenposeImageProcessorInvocation } from 'features/controlAdapters/store/types';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import ProcessorWrapper from './common/ProcessorWrapper';
|
||||
|
||||
const DEFAULTS = CONTROLNET_PROCESSORS.dw_openpose_image_processor
|
||||
.default as RequiredDWOpenposeImageProcessorInvocation;
|
||||
|
||||
type Props = {
|
||||
controlNetId: string;
|
||||
processorNode: RequiredDWOpenposeImageProcessorInvocation;
|
||||
isEnabled: boolean;
|
||||
};
|
||||
|
||||
const DWOpenposeProcessor = (props: Props) => {
|
||||
const { controlNetId, processorNode, isEnabled } = props;
|
||||
const { image_resolution, draw_body, draw_face, draw_hands } = processorNode;
|
||||
const processorChanged = useProcessorNodeChanged();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleDrawBodyChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
processorChanged(controlNetId, { draw_body: e.target.checked });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
const handleDrawFaceChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
processorChanged(controlNetId, { draw_face: e.target.checked });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
const handleDrawHandsChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
processorChanged(controlNetId, { draw_hands: e.target.checked });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
const handleImageResolutionChanged = useCallback(
|
||||
(v: number) => {
|
||||
processorChanged(controlNetId, { image_resolution: v });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
return (
|
||||
<ProcessorWrapper>
|
||||
<Flex sx={{ flexDir: 'row', gap: 6 }}>
|
||||
<FormControl isDisabled={!isEnabled} w="max-content">
|
||||
<FormLabel>{t('controlnet.body')}</FormLabel>
|
||||
<Switch defaultChecked={DEFAULTS.draw_body} isChecked={draw_body} onChange={handleDrawBodyChanged} />
|
||||
</FormControl>
|
||||
<FormControl isDisabled={!isEnabled} w="max-content">
|
||||
<FormLabel>{t('controlnet.face')}</FormLabel>
|
||||
<Switch defaultChecked={DEFAULTS.draw_face} isChecked={draw_face} onChange={handleDrawFaceChanged} />
|
||||
</FormControl>
|
||||
<FormControl isDisabled={!isEnabled} w="max-content">
|
||||
<FormLabel>{t('controlnet.hands')}</FormLabel>
|
||||
<Switch defaultChecked={DEFAULTS.draw_hands} isChecked={draw_hands} onChange={handleDrawHandsChanged} />
|
||||
</FormControl>
|
||||
</Flex>
|
||||
<FormControl isDisabled={!isEnabled}>
|
||||
<FormLabel>{t('controlnet.imageResolution')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={image_resolution}
|
||||
onChange={handleImageResolutionChanged}
|
||||
defaultValue={DEFAULTS.image_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={image_resolution}
|
||||
onChange={handleImageResolutionChanged}
|
||||
defaultValue={DEFAULTS.image_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
/>
|
||||
</FormControl>
|
||||
</ProcessorWrapper>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(DWOpenposeProcessor);
|
||||
@@ -1,92 +0,0 @@
|
||||
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
|
||||
import { useProcessorNodeChanged } from 'features/controlAdapters/components/hooks/useProcessorNodeChanged';
|
||||
import { CONTROLNET_PROCESSORS } from 'features/controlAdapters/store/constants';
|
||||
import type { RequiredOpenposeImageProcessorInvocation } from 'features/controlAdapters/store/types';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import ProcessorWrapper from './common/ProcessorWrapper';
|
||||
|
||||
const DEFAULTS = CONTROLNET_PROCESSORS.openpose_image_processor.default as RequiredOpenposeImageProcessorInvocation;
|
||||
|
||||
type Props = {
|
||||
controlNetId: string;
|
||||
processorNode: RequiredOpenposeImageProcessorInvocation;
|
||||
isEnabled: boolean;
|
||||
};
|
||||
|
||||
const OpenposeProcessor = (props: Props) => {
|
||||
const { controlNetId, processorNode, isEnabled } = props;
|
||||
const { image_resolution, detect_resolution, hand_and_face } = processorNode;
|
||||
const processorChanged = useProcessorNodeChanged();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleDetectResolutionChanged = useCallback(
|
||||
(v: number) => {
|
||||
processorChanged(controlNetId, { detect_resolution: v });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
const handleImageResolutionChanged = useCallback(
|
||||
(v: number) => {
|
||||
processorChanged(controlNetId, { image_resolution: v });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
const handleHandAndFaceChanged = useCallback(
|
||||
(e: ChangeEvent<HTMLInputElement>) => {
|
||||
processorChanged(controlNetId, { hand_and_face: e.target.checked });
|
||||
},
|
||||
[controlNetId, processorChanged]
|
||||
);
|
||||
|
||||
return (
|
||||
<ProcessorWrapper>
|
||||
<FormControl isDisabled={!isEnabled}>
|
||||
<FormLabel>{t('controlnet.detectResolution')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={detect_resolution}
|
||||
onChange={handleDetectResolutionChanged}
|
||||
defaultValue={DEFAULTS.detect_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={detect_resolution}
|
||||
onChange={handleDetectResolutionChanged}
|
||||
defaultValue={DEFAULTS.detect_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl isDisabled={!isEnabled}>
|
||||
<FormLabel>{t('controlnet.imageResolution')}</FormLabel>
|
||||
<CompositeSlider
|
||||
value={image_resolution}
|
||||
onChange={handleImageResolutionChanged}
|
||||
defaultValue={DEFAULTS.image_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
value={image_resolution}
|
||||
onChange={handleImageResolutionChanged}
|
||||
defaultValue={DEFAULTS.image_resolution}
|
||||
min={0}
|
||||
max={4096}
|
||||
/>
|
||||
</FormControl>
|
||||
<FormControl isDisabled={!isEnabled}>
|
||||
<FormLabel>{t('controlnet.handAndFace')}</FormLabel>
|
||||
<Switch isChecked={hand_and_face} onChange={handleHandAndFaceChanged} />
|
||||
</FormControl>
|
||||
</ProcessorWrapper>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(OpenposeProcessor);
|
||||
@@ -205,20 +205,21 @@ export const CONTROLNET_PROCESSORS: ControlNetProcessorsDict = {
|
||||
image_resolution: 512,
|
||||
},
|
||||
},
|
||||
openpose_image_processor: {
|
||||
type: 'openpose_image_processor',
|
||||
dw_openpose_image_processor: {
|
||||
type: 'dw_openpose_image_processor',
|
||||
get label() {
|
||||
return i18n.t('controlnet.openPose');
|
||||
return i18n.t('controlnet.dwOpenpose');
|
||||
},
|
||||
get description() {
|
||||
return i18n.t('controlnet.openPoseDescription');
|
||||
return i18n.t('controlnet.dwOpenposeDescription');
|
||||
},
|
||||
default: {
|
||||
id: 'openpose_image_processor',
|
||||
type: 'openpose_image_processor',
|
||||
detect_resolution: 512,
|
||||
id: 'dw_openpose_image_processor',
|
||||
type: 'dw_openpose_image_processor',
|
||||
image_resolution: 512,
|
||||
hand_and_face: false,
|
||||
draw_body: true,
|
||||
draw_face: false,
|
||||
draw_hands: false,
|
||||
},
|
||||
},
|
||||
pidi_image_processor: {
|
||||
@@ -266,7 +267,7 @@ export const CONTROLNET_MODEL_DEFAULT_PROCESSORS: {
|
||||
lineart_anime: 'lineart_anime_image_processor',
|
||||
softedge: 'hed_image_processor',
|
||||
shuffle: 'content_shuffle_image_processor',
|
||||
openpose: 'openpose_image_processor',
|
||||
openpose: 'dw_openpose_image_processor',
|
||||
mediapipe: 'mediapipe_face_processor',
|
||||
pidi: 'pidi_image_processor',
|
||||
zoe: 'zoe_depth_image_processor',
|
||||
|
||||
@@ -11,6 +11,7 @@ import type {
|
||||
ColorMapImageProcessorInvocation,
|
||||
ContentShuffleImageProcessorInvocation,
|
||||
DepthAnythingImageProcessorInvocation,
|
||||
DWOpenposeImageProcessorInvocation,
|
||||
HedImageProcessorInvocation,
|
||||
LineartAnimeImageProcessorInvocation,
|
||||
LineartImageProcessorInvocation,
|
||||
@@ -18,7 +19,6 @@ import type {
|
||||
MidasDepthImageProcessorInvocation,
|
||||
MlsdImageProcessorInvocation,
|
||||
NormalbaeImageProcessorInvocation,
|
||||
OpenposeImageProcessorInvocation,
|
||||
PidiImageProcessorInvocation,
|
||||
ZoeDepthImageProcessorInvocation,
|
||||
} from 'services/api/types';
|
||||
@@ -40,7 +40,7 @@ export type ControlAdapterProcessorNode =
|
||||
| MidasDepthImageProcessorInvocation
|
||||
| MlsdImageProcessorInvocation
|
||||
| NormalbaeImageProcessorInvocation
|
||||
| OpenposeImageProcessorInvocation
|
||||
| DWOpenposeImageProcessorInvocation
|
||||
| PidiImageProcessorInvocation
|
||||
| ZoeDepthImageProcessorInvocation;
|
||||
|
||||
@@ -143,11 +143,11 @@ export type RequiredNormalbaeImageProcessorInvocation = O.Required<
|
||||
>;
|
||||
|
||||
/**
|
||||
* The Openpose processor node, with parameters flagged as required
|
||||
* The DW Openpose processor node, with parameters flagged as required
|
||||
*/
|
||||
export type RequiredOpenposeImageProcessorInvocation = O.Required<
|
||||
OpenposeImageProcessorInvocation,
|
||||
'type' | 'detect_resolution' | 'image_resolution' | 'hand_and_face'
|
||||
export type RequiredDWOpenposeImageProcessorInvocation = O.Required<
|
||||
DWOpenposeImageProcessorInvocation,
|
||||
'type' | 'image_resolution' | 'draw_body' | 'draw_face' | 'draw_hands'
|
||||
>;
|
||||
|
||||
/**
|
||||
@@ -179,7 +179,7 @@ export type RequiredControlAdapterProcessorNode =
|
||||
| RequiredMidasDepthImageProcessorInvocation
|
||||
| RequiredMlsdImageProcessorInvocation
|
||||
| RequiredNormalbaeImageProcessorInvocation
|
||||
| RequiredOpenposeImageProcessorInvocation
|
||||
| RequiredDWOpenposeImageProcessorInvocation
|
||||
| RequiredPidiImageProcessorInvocation
|
||||
| RequiredZoeDepthImageProcessorInvocation,
|
||||
'id'
|
||||
@@ -299,10 +299,10 @@ export const isNormalbaeImageProcessorInvocation = (obj: unknown): obj is Normal
|
||||
};
|
||||
|
||||
/**
|
||||
* Type guard for OpenposeImageProcessorInvocation
|
||||
* Type guard for DWOpenposeImageProcessorInvocation
|
||||
*/
|
||||
export const isOpenposeImageProcessorInvocation = (obj: unknown): obj is OpenposeImageProcessorInvocation => {
|
||||
if (isObject(obj) && 'type' in obj && obj.type === 'openpose_image_processor') {
|
||||
export const isDWOpenposeImageProcessorInvocation = (obj: unknown): obj is DWOpenposeImageProcessorInvocation => {
|
||||
if (isObject(obj) && 'type' in obj && obj.type === 'dw_openpose_image_processor') {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
@@ -35,7 +35,7 @@ export const loraSlice = createSlice({
|
||||
},
|
||||
loraRecalled: (state, action: PayloadAction<LoRAModelConfigEntity & { weight: number }>) => {
|
||||
const { model_name, id, base_model, weight } = action.payload;
|
||||
state.loras[id] = { id, model_name, base_model, weight };
|
||||
state.loras[id] = { id, model_name, base_model, weight, isEnabled: true };
|
||||
},
|
||||
loraRemoved: (state, action: PayloadAction<string>) => {
|
||||
const id = action.payload;
|
||||
|
||||
@@ -60,9 +60,10 @@ import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
|
||||
type InputFieldProps = {
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
saveToGraph?: boolean;
|
||||
};
|
||||
|
||||
const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
const InputFieldRenderer = ({ nodeId, fieldName, saveToGraph = true }: InputFieldProps) => {
|
||||
const { t } = useTranslation();
|
||||
const fieldInstance = useFieldInstance(nodeId, fieldName);
|
||||
const fieldTemplate = useFieldTemplate(nodeId, fieldName, 'input');
|
||||
@@ -76,69 +77,181 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
}
|
||||
|
||||
if (isStringFieldInputInstance(fieldInstance) && isStringFieldInputTemplate(fieldTemplate)) {
|
||||
return <StringFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<StringFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isBooleanFieldInputInstance(fieldInstance) && isBooleanFieldInputTemplate(fieldTemplate)) {
|
||||
return <BooleanFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<BooleanFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (
|
||||
(isIntegerFieldInputInstance(fieldInstance) && isIntegerFieldInputTemplate(fieldTemplate)) ||
|
||||
(isFloatFieldInputInstance(fieldInstance) && isFloatFieldInputTemplate(fieldTemplate))
|
||||
) {
|
||||
return <NumberFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<NumberFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isEnumFieldInputInstance(fieldInstance) && isEnumFieldInputTemplate(fieldTemplate)) {
|
||||
return <EnumFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<EnumFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isImageFieldInputInstance(fieldInstance) && isImageFieldInputTemplate(fieldTemplate)) {
|
||||
return <ImageFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<ImageFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isBoardFieldInputInstance(fieldInstance) && isBoardFieldInputTemplate(fieldTemplate)) {
|
||||
return <BoardFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<BoardFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isMainModelFieldInputInstance(fieldInstance) && isMainModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <MainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<MainModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isSDXLRefinerModelFieldInputInstance(fieldInstance) && isSDXLRefinerModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <RefinerModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<RefinerModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isVAEModelFieldInputInstance(fieldInstance) && isVAEModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <VAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<VAEModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isLoRAModelFieldInputInstance(fieldInstance) && isLoRAModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <LoRAModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<LoRAModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isControlNetModelFieldInputInstance(fieldInstance) && isControlNetModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <ControlNetModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<ControlNetModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isIPAdapterModelFieldInputInstance(fieldInstance) && isIPAdapterModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <IPAdapterModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<IPAdapterModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isT2IAdapterModelFieldInputInstance(fieldInstance) && isT2IAdapterModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <T2IAdapterModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<T2IAdapterModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
if (isColorFieldInputInstance(fieldInstance) && isColorFieldInputTemplate(fieldTemplate)) {
|
||||
return <ColorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<ColorFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isSDXLMainModelFieldInputInstance(fieldInstance) && isSDXLMainModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<SDXLMainModelFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (isSchedulerFieldInputInstance(fieldInstance) && isSchedulerFieldInputTemplate(fieldTemplate)) {
|
||||
return <SchedulerFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
return (
|
||||
<SchedulerFieldInputComponent
|
||||
nodeId={nodeId}
|
||||
field={fieldInstance}
|
||||
fieldTemplate={fieldTemplate}
|
||||
saveToGraph={saveToGraph}
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
||||
if (fieldInstance && fieldTemplate) {
|
||||
|
||||
@@ -57,7 +57,7 @@ const LinearViewField = ({ nodeId, fieldName }: Props) => {
|
||||
icon={<PiTrashSimpleBold />}
|
||||
/>
|
||||
</Flex>
|
||||
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
|
||||
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} saveToGraph={false} />
|
||||
<NodeSelectionOverlay isSelected={false} isHovered={isMouseOverNode} />
|
||||
</Flex>
|
||||
);
|
||||
|
||||
@@ -8,7 +8,7 @@ import { memo, useCallback } from 'react';
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
const StringFieldInputComponent = (props: FieldComponentProps<StringFieldInputInstance, StringFieldInputTemplate>) => {
|
||||
const { nodeId, field, fieldTemplate } = props;
|
||||
const { nodeId, field, fieldTemplate, saveToGraph } = props;
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleValueChanged = useCallback(
|
||||
@@ -18,10 +18,11 @@ const StringFieldInputComponent = (props: FieldComponentProps<StringFieldInputIn
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value: e.target.value,
|
||||
saveToGraph,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
[dispatch, field.name, nodeId, saveToGraph]
|
||||
);
|
||||
|
||||
if (fieldTemplate.ui_component === 'textarea') {
|
||||
|
||||
@@ -4,4 +4,5 @@ export type FieldComponentProps<V extends FieldInputInstance, T extends FieldInp
|
||||
nodeId: string;
|
||||
field: V;
|
||||
fieldTemplate: T;
|
||||
saveToGraph: boolean;
|
||||
};
|
||||
|
||||
@@ -118,6 +118,7 @@ type FieldValueAction<T extends FieldValue> = PayloadAction<{
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
value: T;
|
||||
saveToGraph: boolean;
|
||||
}>;
|
||||
|
||||
const fieldValueReducer = <T extends FieldValue>(
|
||||
@@ -482,49 +483,51 @@ export const nodesSlice = createSlice({
|
||||
state.selectedEdges = action.payload;
|
||||
},
|
||||
fieldStringValueChanged: (state, action: FieldValueAction<StringFieldValue>) => {
|
||||
fieldValueReducer(state, action, zStringFieldValue);
|
||||
if (action.payload.saveToGraph) {
|
||||
fieldValueReducer(state, action, zStringFieldValue);
|
||||
}
|
||||
},
|
||||
fieldNumberValueChanged: (state, action: FieldValueAction<IntegerFieldValue | FloatFieldValue>) => {
|
||||
fieldValueReducer(state, action, zIntegerFieldValue.or(zFloatFieldValue));
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zIntegerFieldValue.or(zFloatFieldValue)) };
|
||||
},
|
||||
fieldBooleanValueChanged: (state, action: FieldValueAction<BooleanFieldValue>) => {
|
||||
fieldValueReducer(state, action, zBooleanFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zBooleanFieldValue) }
|
||||
},
|
||||
fieldBoardValueChanged: (state, action: FieldValueAction<BoardFieldValue>) => {
|
||||
fieldValueReducer(state, action, zBoardFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zBoardFieldValue) }
|
||||
},
|
||||
fieldImageValueChanged: (state, action: FieldValueAction<ImageFieldValue>) => {
|
||||
fieldValueReducer(state, action, zImageFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zImageFieldValue) }
|
||||
},
|
||||
fieldColorValueChanged: (state, action: FieldValueAction<ColorFieldValue>) => {
|
||||
fieldValueReducer(state, action, zColorFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zColorFieldValue) }
|
||||
},
|
||||
fieldMainModelValueChanged: (state, action: FieldValueAction<MainModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zMainModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zMainModelFieldValue) }
|
||||
},
|
||||
fieldRefinerModelValueChanged: (state, action: FieldValueAction<SDXLRefinerModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zSDXLRefinerModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zSDXLRefinerModelFieldValue) }
|
||||
},
|
||||
fieldVaeModelValueChanged: (state, action: FieldValueAction<VAEModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zVAEModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zVAEModelFieldValue) }
|
||||
},
|
||||
fieldLoRAModelValueChanged: (state, action: FieldValueAction<LoRAModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zLoRAModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zLoRAModelFieldValue) }
|
||||
},
|
||||
fieldControlNetModelValueChanged: (state, action: FieldValueAction<ControlNetModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zControlNetModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zControlNetModelFieldValue) }
|
||||
},
|
||||
fieldIPAdapterModelValueChanged: (state, action: FieldValueAction<IPAdapterModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zIPAdapterModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zIPAdapterModelFieldValue) }
|
||||
},
|
||||
fieldT2IAdapterModelValueChanged: (state, action: FieldValueAction<T2IAdapterModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zT2IAdapterModelFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zT2IAdapterModelFieldValue) }
|
||||
},
|
||||
fieldEnumModelValueChanged: (state, action: FieldValueAction<EnumFieldValue>) => {
|
||||
fieldValueReducer(state, action, zEnumFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zEnumFieldValue) }
|
||||
},
|
||||
fieldSchedulerValueChanged: (state, action: FieldValueAction<SchedulerFieldValue>) => {
|
||||
fieldValueReducer(state, action, zSchedulerFieldValue);
|
||||
if (action.payload.saveToGraph) { fieldValueReducer(state, action, zSchedulerFieldValue) }
|
||||
},
|
||||
notesNodeValueChanged: (state, action: PayloadAction<{ nodeId: string; value: string }>) => {
|
||||
const { nodeId, value } = action.payload;
|
||||
|
||||
@@ -2,11 +2,12 @@ import type { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import type { PersistConfig, RootState } from 'app/store/store';
|
||||
import { workflowLoaded } from 'features/nodes/store/actions';
|
||||
import { isAnyNodeOrEdgeMutation, nodeEditorReset, nodesDeleted } from 'features/nodes/store/nodesSlice';
|
||||
import type { WorkflowsState as WorkflowState } from 'features/nodes/store/types';
|
||||
import type { FieldIdentifier } from 'features/nodes/types/field';
|
||||
import { fieldStringValueChanged, isAnyNodeOrEdgeMutation, nodeEditorReset, nodesDeleted } from 'features/nodes/store/nodesSlice';
|
||||
import type { NodesState, WorkflowsState as WorkflowState } from 'features/nodes/store/types';
|
||||
import { zStringFieldValue, type FieldIdentifier, type FieldValue } from 'features/nodes/types/field';
|
||||
import type { WorkflowCategory, WorkflowV2 } from 'features/nodes/types/workflow';
|
||||
import { cloneDeep, isEqual, uniqBy } from 'lodash-es';
|
||||
import { z } from 'zod';
|
||||
|
||||
export const blankWorkflow: Omit<WorkflowV2, 'nodes' | 'edges'> = {
|
||||
name: '',
|
||||
@@ -27,6 +28,29 @@ export const initialWorkflowState: WorkflowState = {
|
||||
...blankWorkflow,
|
||||
};
|
||||
|
||||
type FieldValueAction<T extends FieldValue> = PayloadAction<{
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
value: T;
|
||||
saveToGraph: boolean;
|
||||
}>;
|
||||
|
||||
const exposedFieldValueReducer = <T extends FieldValue>(
|
||||
state: WorkflowState,
|
||||
action: FieldValueAction<T>,
|
||||
schema: z.ZodTypeAny
|
||||
) => {
|
||||
const { nodeId, fieldName, value } = action.payload;
|
||||
const exposedField = state.exposedFields.find(field => field.nodeId === nodeId)
|
||||
|
||||
const result = schema.safeParse(value);
|
||||
if (!result || !exposedField || !result.success) {
|
||||
return;
|
||||
}
|
||||
exposedField.value = schema.safeParse(value);
|
||||
|
||||
};
|
||||
|
||||
export const workflowSlice = createSlice({
|
||||
name: 'workflow',
|
||||
initialState: initialWorkflowState,
|
||||
@@ -42,6 +66,7 @@ export const workflowSlice = createSlice({
|
||||
state.exposedFields = state.exposedFields.filter((field) => !isEqual(field, action.payload));
|
||||
state.isTouched = true;
|
||||
},
|
||||
|
||||
workflowNameChanged: (state, action: PayloadAction<string>) => {
|
||||
state.name = action.payload;
|
||||
state.isTouched = true;
|
||||
@@ -97,9 +122,17 @@ export const workflowSlice = createSlice({
|
||||
|
||||
builder.addCase(nodeEditorReset, () => cloneDeep(initialWorkflowState));
|
||||
|
||||
builder.addCase(fieldStringValueChanged, (state, action) => {
|
||||
if (!action.payload.saveToGraph) {
|
||||
exposedFieldValueReducer(state, action, zStringFieldValue);
|
||||
}
|
||||
})
|
||||
|
||||
builder.addMatcher(isAnyNodeOrEdgeMutation, (state) => {
|
||||
state.isTouched = true;
|
||||
});
|
||||
|
||||
|
||||
},
|
||||
});
|
||||
|
||||
|
||||
@@ -91,6 +91,7 @@ export const zFieldTypeBase = z.object({
|
||||
export const zFieldIdentifier = z.object({
|
||||
nodeId: z.string().trim().min(1),
|
||||
fieldName: z.string().trim().min(1),
|
||||
value: z.any().optional()
|
||||
});
|
||||
export type FieldIdentifier = z.infer<typeof zFieldIdentifier>;
|
||||
export const isFieldIdentifier = (val: unknown): val is FieldIdentifier => zFieldIdentifier.safeParse(val).success;
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -156,7 +156,7 @@ export type MediapipeFaceProcessorInvocation = s['MediapipeFaceProcessorInvocati
|
||||
export type MidasDepthImageProcessorInvocation = s['MidasDepthImageProcessorInvocation'];
|
||||
export type MlsdImageProcessorInvocation = s['MlsdImageProcessorInvocation'];
|
||||
export type NormalbaeImageProcessorInvocation = s['NormalbaeImageProcessorInvocation'];
|
||||
export type OpenposeImageProcessorInvocation = s['OpenposeImageProcessorInvocation'];
|
||||
export type DWOpenposeImageProcessorInvocation = s['DWOpenposeImageProcessorInvocation'];
|
||||
export type PidiImageProcessorInvocation = s['PidiImageProcessorInvocation'];
|
||||
export type ZoeDepthImageProcessorInvocation = s['ZoeDepthImageProcessorInvocation'];
|
||||
|
||||
|
||||
Reference in New Issue
Block a user