Compare commits

..

43 Commits

Author SHA1 Message Date
psychedelicious
2b1762d8da feat: add 'project' workflow category 2023-12-05 18:39:53 +11:00
psychedelicious
b056a9c181 chore: bump ruff 2023-12-05 14:56:19 +11:00
psychedelicious
f56c47b550 fix(db): remove extraneous lock 2023-12-05 14:49:00 +11:00
psychedelicious
f8e35aec7b Merge remote-tracking branch 'origin/main' into feat/workflow-saving 2023-12-05 13:31:47 +11:00
psychedelicious
10cf10c16c fix(db): fix bug with releasing without lock in db.clean() 2023-12-05 06:48:53 +11:00
psychedelicious
7d4a78e470 fix(ui): fix circular dependency 2023-12-03 20:27:40 +11:00
psychedelicious
37c87affd0 fix(ui): fix save/save-as workflow naming 2023-12-03 20:21:47 +11:00
psychedelicious
3863bd9da3 fix(ui): fix workflow loading
- Different handling for loading from library vs external
- Fix bug where only nodes and edges loaded
2023-12-03 20:13:44 +11:00
psychedelicious
4b2e3aa54d fix(ui): remove commented out property 2023-12-03 19:56:15 +11:00
psychedelicious
d699efa5bc feat(ui): use custom hook in current image buttons
Already in use elsewhere, forgot to use it here.
2023-12-03 19:54:23 +11:00
psychedelicious
b9a1374b8f feat(backend): workflow_records.get_many arg "filter_text" -> "query" 2023-12-03 19:22:16 +11:00
psychedelicious
411ea75861 fix(backend): revert unrelated service organisational changes 2023-12-03 19:03:29 +11:00
psychedelicious
375c9a1c20 fix: tidy up unused files, unrelated changes 2023-12-03 19:00:01 +11:00
psychedelicious
907340b1e1 docs: update default workflows README 2023-12-03 18:54:42 +11:00
psychedelicious
0f32d260b7 feat(ui): split out workflow redux state
The `nodes` slice is a rather complicated slice. Removing `workflow` makes it a bit more reasonable.

Also helps to flatten state out a bit.
2023-12-02 23:06:34 +11:00
psychedelicious
92bc04dc87 feat(ui): tweak reset workflow editor translations 2023-12-02 21:49:50 +11:00
psychedelicious
929b1f4a41 fix(db): fix mis-ordered db cleanup step
It was happening before pruning queue items - should happen afterwards, else you have to restart the app again to free disk space made available by the pruning.
2023-12-02 21:40:01 +11:00
psychedelicious
6d7b4b8e8a feat(ui): clean up workflow library hooks 2023-12-02 21:01:18 +11:00
psychedelicious
4a14ee0e01 fix(tests): fix tests 2023-12-02 20:00:07 +11:00
psychedelicious
f268ea4e39 fix(workflow_records): typo 2023-12-02 19:54:15 +11:00
psychedelicious
78face3481 feat(ui): refine workflow list UI 2023-12-02 19:52:17 +11:00
psychedelicious
5a0e8261bf feat(workflows): update default workflows
- Update TextToImage_SD15
- Add TextToImage_SDXL
- Add README
2023-12-02 19:51:55 +11:00
psychedelicious
0447fa2dcb Merge remote-tracking branch 'origin/main' into feat/workflow-saving 2023-12-02 13:55:19 +11:00
psychedelicious
4fd163698c feat: simplify default workflows
- Rename "system" -> "default"
- Simplify syncing logic
- Update UI to match
2023-12-02 11:41:05 +11:00
psychedelicious
224438a108 fix: merge conflicts 2023-12-01 23:05:52 +11:00
psychedelicious
81d2d5abae Merge remote-tracking branch 'origin/main' into feat/workflow-saving 2023-12-01 23:03:01 +11:00
psychedelicious
734e871e8f feat(backend): sync system workflows to db 2023-12-01 22:45:17 +11:00
psychedelicious
b0350e9bc8 feat: workflow library - system graphs - wip 2023-12-01 19:36:38 +11:00
psychedelicious
0a25efd054 feat: workflow library WIP
- Save to library
- Duplicate
- Filter/sort
- UI/queries
2023-12-01 15:24:22 +11:00
psychedelicious
46905175a9 wip 2023-11-30 19:19:58 +11:00
psychedelicious
11085783ef feat(ui): workflow library pagination button styles 2023-11-30 16:13:41 +11:00
psychedelicious
3d57c14bb3 feat(ui): add workflow loading, deleting to workflow library UI 2023-11-29 23:39:10 +11:00
psychedelicious
18f3190857 chore(ui): typegen 2023-11-29 23:38:39 +11:00
psychedelicious
fcc056fe6a feat(backend): add WorkflowRecordListItemDTO
This is the id, name, description, created at and updated at workflow columns/attrs. Used to display lists of workflowsl
2023-11-29 23:37:11 +11:00
psychedelicious
c1bfc1f47b fix(nodes): fix get_workflow from queue item dict func 2023-11-29 15:36:28 +11:00
psychedelicious
14bf87e5e7 feat(nodes): restore WithWorkflow as no-op class
This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.
2023-11-29 13:32:24 +11:00
psychedelicious
715ce8538b feat(nodes): do not overwrite custom node module names
Use a different, simpler method to detect if a node is custom.
2023-11-29 13:30:52 +11:00
psychedelicious
1987bc9cc5 feat: revert SQLiteMigrator class
Will pursue this in a separate PR.
2023-11-29 13:29:19 +11:00
psychedelicious
0b079df4ae feat(ui): updated workflow handling (WIP)
Clientside updates for the backend workflow changes.

Includes roughed-out workflow library UI.
2023-11-29 12:42:10 +11:00
psychedelicious
a514c9e28b feat(backend): update workflows handling
Update workflows handling for Workflow Library.

**Updated Workflow Storage**

"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.

This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.

**Updated Workflow Handling in Nodes**

Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.

A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.

**Database Migrations**

Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.

The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.

**Other/Support Changes**

- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)
2023-11-29 12:42:10 +11:00
psychedelicious
8cf2806489 fix(workflow_records): fix SQLite workflow insertion to ignore duplicates 2023-11-29 12:42:10 +11:00
psychedelicious
eb446471cc fix(ui): exclude public/en.json from prettier config 2023-11-29 12:42:10 +11:00
psychedelicious
7392d07331 chore: bump pydantic to 2.5.2
This release fixes pydantic/pydantic#8175 and allows us to use `JsonValue`
2023-11-29 12:42:10 +11:00
1282 changed files with 253950 additions and 74694 deletions

8
.github/CODEOWNERS vendored
View File

@@ -1,5 +1,5 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
@@ -10,7 +10,7 @@
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
/docker/ @lstein @blessedcoolant @hipsterusername
/scripts/ @ebr @lstein @hipsterusername
/installer/ @lstein @ebr @hipsterusername
/invokeai/assets @lstein @ebr @hipsterusername
@@ -26,7 +26,9 @@
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername

View File

@@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
@@ -14,9 +18,10 @@ body:
- type: checkboxes
attributes:
label: Is there an existing issue for this problem?
label: Is there an existing issue for this?
description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
@@ -28,119 +33,80 @@ body:
- type: dropdown
id: os_dropdown
attributes:
label: Operating system
description: Your computer's operating system.
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
- 'other'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU vendor
description: Your GPU's vendor.
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'Nvidia (CUDA)'
- 'AMD (ROCm)'
- 'Apple Silicon (MPS)'
- 'None (CPU)'
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input
id: vram
attributes:
label: GPU VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: Version number
label: What version did you experience this issue on?
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
placeholder: ex. Firefox 123.0b3
validations:
required: true
- type: textarea
id: python-deps
attributes:
label: Python dependencies
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened
label: What happened?
description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
placeholder: I clicked button X and then Y happened.
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
id: what-you-expected
attributes:
label: What you expected to happen
description: Describe what you expected to happen.
placeholder: I expected Z to happen.
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Any other context that might help us to understand the problem.
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: discord-username
id: contact
attributes:
label: Discord username
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
placeholder: supercoolusername123
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

59
.github/pr_labels.yml vendored
View File

@@ -1,59 +0,0 @@
Root:
- changed-files:
- any-glob-to-any-file: '*'
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@@ -42,21 +42,6 @@ Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Merge Plan
<!--
A merge plan describes how this PR should be handled after it is approved.
Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is merged"
A merge plan is particularly important for large PRs or PRs that touch the
database in any way.
-->
## Added/updated tests?
- [ ] Yes

View File

@@ -40,14 +40,10 @@ jobs:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: Checkout
uses: actions/checkout@v3
@@ -95,7 +91,6 @@ jobs:
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v4
with:

View File

@@ -1,16 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

View File

@@ -22,22 +22,12 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v4
uses: actions/setup-node@v3
with:
node-version: '18'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:madge'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@@ -1,15 +1,13 @@
name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
inputs:
publish_package:
description: 'Publish build on PyPi? [true/false]'
required: true
default: 'false'
jobs:
build-and-release:
release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
@@ -17,43 +15,19 @@ jobs:
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: Checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
working-directory: invokeai/frontend/web
- name: Build frontend
run: pnpm run build
working-directory: invokeai/frontend/web
- name: Install python dependencies
- name: install deps
run: pip install --upgrade build twine
- name: Build python package
- name: build package
run: python3 -m build
- name: Upload build as workflow artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: dist
- name: Check distribution
- name: check distribution
run: twine check dist/*
- name: Check PyPI versions
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
@@ -62,6 +36,6 @@ jobs:
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: Publish build on PyPi
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
- name: upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

View File

@@ -58,7 +58,7 @@ jobs:
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
uses: tj-actions/changed-files@v37
with:
files_yaml: |
python:

3
.gitignore vendored
View File

@@ -16,7 +16,7 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
@@ -187,4 +187,3 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/

View File

@@ -1,20 +1,6 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
@@ -32,21 +18,4 @@ mypy:
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports

View File

@@ -1,10 +1,10 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
[![discord badge]][discord link]
@@ -56,9 +56,7 @@ the foundation for multiple commercial products.
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
</div>
@@ -127,8 +125,8 @@ and go to http://localhost:9090.
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
@@ -169,7 +167,7 @@ the command `npm install -g pnpm` if needed)
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
@@ -272,7 +270,7 @@ upgrade script.** See the next section for a Windows recipe.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and

View File

@@ -2,17 +2,14 @@
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
#HOST_INVOKEAI_ROOT=../../invokeai-data
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
# INVOKEAI_ROOT=~/invokeai
# This **must** be an absolute path.
INVOKEAI_ROOT=
# Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup.
# GPU_DRIVER=nvidia #| rocm
# GPU_DRIVER=cuda # or rocm
# CONTAINER_UID=1000

View File

@@ -59,16 +59,14 @@ RUN --mount=type=cache,target=/root/.cache/pip \
# #### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack enable
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
#### Runtime stage ---------------------------------------
@@ -102,8 +100,6 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
@@ -121,7 +117,7 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]

View File

@@ -1,14 +1,6 @@
# InvokeAI Containerized
All commands should be run within the `docker` directory: `cd docker`
## Quickstart :rocket:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
## Detailed setup
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
@@ -26,12 +18,12 @@ For more configuration options (using an AMD GPU, custom root directory location
This is done via Docker Desktop preferences
### Configure Invoke environment
## Quickstart
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`
1. `docker compose up`
The image will be built automatically if needed.
@@ -45,21 +37,19 @@ The runtime directory (holding models and outputs) will be created in the locati
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
```bash
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=nvidia
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.

11
docker/build.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker compose build args:"
echo $build_args
docker compose build $build_args

View File

@@ -2,8 +2,23 @@
version: '3.8'
x-invokeai: &invokeai
services:
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
# For AMD support, comment out the deploy section above and uncomment the devices section below:
#devices:
# - /dev/kfd:/dev/kfd
# - /dev/dri:/dev/dri
build:
context: ..
dockerfile: docker/Dockerfile
@@ -21,9 +36,7 @@ x-invokeai: &invokeai
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${INVOKEAI_ROOT:-/invokeai}
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
@@ -37,27 +50,3 @@ x-invokeai: &invokeai
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0
services:
invokeai-nvidia:
<<: *invokeai
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
invokeai-cpu:
<<: *invokeai
profiles:
- cpu
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
profiles:
- rocm

View File

@@ -1,32 +1,11 @@
#!/usr/bin/env bash
set -e -o pipefail
set -e
run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
cd "$scriptdir" || exit 1
# This script is provided for backwards compatibility with the old docker setup.
# it doesn't do much aside from wrapping the usual docker compose CLI.
local build_args=""
local profile=""
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
touch .env
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then
printf "%s\n" "docker compose build args:"
printf "%s\n" "$build_args"
fi
docker compose build $build_args
unset build_args
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
}
run
docker compose up -d
docker compose logs -f

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

View File

@@ -1,277 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,75 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `yarn build`.

View File

@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)

View File

@@ -1,53 +0,0 @@
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.

View File

@@ -154,16 +154,14 @@ groups in `invokeia.yaml`:
### Web Server
| Setting | Default Value | Description |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].

View File

@@ -229,28 +229,29 @@ clarity on the intent and common use cases we expect for utilizing them.
currently being rendered by your browser into a merged copy of the image. This
lowers the resource requirements and should improve performance.
### Compositing / Seam Correction
### Seam Correction
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is
by Stable Diffusion into your existing image. To do this, the area around the
`seam` at the boundary between your image and the new generation is
automatically blended to produce a seamless output. In a fully automatic
process, a mask is generated to cover the boundary, and then the area of the boundary is
process, a mask is generated to cover the seam, and then the area of the seam is
Inpainted.
Although the default options should work well most of the time, sometimes it can
help to alter the parameters that control the Compositing. A larger blur and
a blur setting have been noted as producing
consistently strong results . Strength of 0.7 is best for reducing hard seams.
- **Mode** - What part of the image will have the the Compositing applied to it.
- **Mask edge** will apply Compositing to the edge of the masked area
- **Mask** will apply Compositing to the entire masked area
- **Unmasked** will apply Compositing to the entire image
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
- **Blur Method** - The method of blur applied to the masked area.
help to alter the parameters that control the seam Inpainting. A wider seam and
a blur setting of about 1/3 of the seam have been noted as producing
consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
both sides). Seam strength of 0.7 is best for reducing hard seams.
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
mask around the seam.
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
masked area.
- **Seam Strength** - The Image To Image Strength parameter used for the
Inpainting generation that is applied to the seam area.
- **Seam Steps** - The number of generation steps that should be used to Inpaint
the seam.
### Infill & Scaling

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

View File

@@ -18,7 +18,7 @@ title: Home
width: 100%;
max-width: 100%;
height: 50px;
background-color: #35A4DB;
background-color: #448AFF;
color: #fff;
font-size: 16px;
border: none;
@@ -43,7 +43,7 @@ title: Home
<div align="center" markdown>
[![project logo](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)](https://github.com/invoke-ai/InvokeAI)
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@@ -117,11 +117,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
## :octicons-gift-24: InvokeAI Features
### Installation
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
### The InvokeAI Web Interface
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
@@ -150,6 +145,60 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting
Please check out our **[:material-frequently-asked-questions:

View File

@@ -477,7 +477,7 @@ Then type the following commands:
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
### Corrupted configuration file

View File

@@ -154,7 +154,7 @@ manager, please follow these steps:
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -293,19 +293,6 @@ manager, please follow these steps:
## Developer Install
!!! warning
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
PR introduces a schema change.
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
`use_memory_db: true` under `Path:` in your `invokeai.yaml` file.
If this is untenable, you should run the application via the official installer or a manual install of the
python package from pypi. These releases will not break your database.
If you have an interest in how InvokeAI works, or you would like to
add features or bugfixes, you are encouraged to install the source
code for InvokeAI. For this to work, you will need to install the
@@ -313,7 +300,7 @@ code for InvokeAI. For this to work, you will need to install the
on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md).
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
@@ -345,7 +332,7 @@ installation protocol (important!)
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -361,7 +348,7 @@ installation protocol (important!)
Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md) and do a production build of the UI as described.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files
@@ -401,5 +388,3 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939

View File

@@ -134,7 +134,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.6` as described in the [Manual
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer

View File

@@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.

View File

@@ -18,18 +18,13 @@ either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
## **[Automated Installer (Recommended)](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
## **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself.
🖥️ **Download the latest installer .zip file here** : https://github.com/invoke-ai/InvokeAI/releases/latest
- *Look for the file labelled "InvokeAI-installer-v3.X.X.zip" at the bottom of the page*
- If you experience issues, read through the full [installation instructions](010_INSTALL_AUTOMATED.md) to make sure you have met all of the installation requirements. If you need more help, join the [Discord](discord.gg/invoke-ai) or create an issue on [Github](https://github.com/invoke-ai/InvokeAI).
third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
give you to access experimental features.
## **[Manual Installation](020_INSTALL_MANUAL.md)**
This method is recommended for experienced users and developers.

View File

@@ -1,10 +0,0 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "b5973bb1-476b-451e-8cf4-98de86745a10");
script.setAttribute("data-project-name", "Invoke.AI");
script.setAttribute("data-project-color", "#11213C");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/113954515?s=280&v=4");
script.async = true;
document.head.appendChild(script);
});

View File

@@ -6,17 +6,10 @@ If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](
## Features
### Workflow Library
The Workflow Library enables you to save workflows to the Invoke database, allowing you to easily creating, modify and share workflows as needed.
A curated set of workflows are provided by default - these are designed to help explain important nodes' usage in the Workflow Editor.
![workflow_library](../assets/nodes/workflow_library.png)
### Linear View
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
To add an input to the Linear UI, right click on the **input label** and select "Add to Linear View".
To add an input to the Linear UI, right click on the input label and select "Add to Linear View".
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
@@ -37,7 +30,7 @@ Any node or input field can be renamed in the workflow editor. If the input fiel
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
## Important Nodes & Concepts
## Important Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
@@ -63,7 +56,7 @@ The ImageToLatents node takes in a pixel image and a VAE and outputs a latents.
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsnoise.png)
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### ControlNet

View File

@@ -13,40 +13,25 @@ If you'd prefer, you can also just download the whole node folder from the linke
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
- Community Nodes
+ [Adapters-Linked](#adapters-linked-nodes)
+ [Autostereogram](#autostereogram-nodes)
+ [Average Images](#average-images)
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
+ [Close Color Mask](#close-color-mask)
+ [Clothing Mask](#clothing-mask)
+ [Contrast Limited Adaptive Histogram Equalization](#contrast-limited-adaptive-histogram-equalization)
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Film Grain](#film-grain)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif)
+ [Halftone](#halftone)
+ [Hand Refiner with MeshGraphormer](#hand-refiner-with-meshgraphormer)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image Dominant Color](#image-dominant-color)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Image Resize Plus](#image-resize-plus)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations)
+ [Match Histogram](#match-histogram)
+ [Metadata-Linked](#metadata-linked-nodes)
+ [Negative Image](#negative-image)
+ [Nightmare Promptgen](#nightmare-promptgen)
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Remote Image](#remote-image)
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [Unsharp Mask](#unsharp-mask)
@@ -56,30 +41,6 @@ To use a community workflow, download the the `.json` node graph file and load i
- [Help](#help)
--------------------------------
### Adapters Linked Nodes
**Description:** A set of nodes for linked adapters (ControlNet, IP-Adaptor & T2I-Adapter). This allows multiple adapters to be chained together without using a `collect` node which means it can be used inside an `iterate` node without any collecting on every iteration issues.
- `ControlNet-Linked` - Collects ControlNet info to pass to other nodes.
- `IP-Adapter-Linked` - Collects IP-Adapter info to pass to other nodes.
- `T2I-Adapter-Linked` - Collects T2I-Adapter info to pass to other nodes.
Note: These are inherited from the core nodes so any update to the core nodes should be reflected in these.
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
--------------------------------
### Autostereogram Nodes
**Description:** Generate autostereogram images from a depth map. This is not a very practically useful node but more a 90s nostalgic indulgence as I used to love these images as a kid.
**Node Link:** https://github.com/skunkworxdark/autostereogram_nodes
**Example Usage:**
</br>
<img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider-depth.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-dots.png" width="200" /> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-pattern.png" width="200" />
--------------------------------
### Average Images
@@ -87,46 +48,6 @@ Note: These are inherited from the core nodes so any update to the core nodes sh
**Node Link:** https://github.com/JPPhoto/average-images-node
--------------------------------
### Clean Image Artifacts After Cut
Description: Removes residual artifacts after an image is separated from its background.
Node Link: https://github.com/VeyDlin/clean-artifact-after-cut-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clean-artifact-after-cut-node/master/.readme/node.png" width="500" />
--------------------------------
### Close Color Mask
Description: Generates a mask for images based on a closely matching color, useful for color-based selections.
Node Link: https://github.com/VeyDlin/close-color-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/close-color-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Clothing Mask
Description: Employs a U2NET neural network trained for the segmentation of clothing items in images.
Node Link: https://github.com/VeyDlin/clothing-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clothing-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Contrast Limited Adaptive Histogram Equalization
Description: Enhances local image contrast using adaptive histogram equalization with contrast limiting.
Node Link: https://github.com/VeyDlin/clahe-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clahe-node/master/.readme/node.png" width="500" />
--------------------------------
### Depth Map from Wavefront OBJ
@@ -210,18 +131,13 @@ CMYK Halftone Output:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
--------------------------------
### Ideal Size
### Hand Refiner with MeshGraphormer
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Description**: Hand Refiner takes in your image and automatically generates a fixed depth map for the hands along with a mask of the hands region that will conveniently allow you to use them along with ControlNet to fix the wonky hands generated by Stable Diffusion
**Node Link:** https://github.com/blessedcoolant/invoke_meshgraphormer
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_meshgraphormer/main/assets/preview.jpg" />
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Image and Mask Composition Pack
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
@@ -248,16 +164,6 @@ This includes 15 Nodes:
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
--------------------------------
### Image Dominant Color
Description: Identifies and extracts the dominant color from an image using k-means clustering.
Node Link: https://github.com/VeyDlin/image-dominant-color-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-dominant-color-node/master/.readme/node.png" width="500" />
--------------------------------
### Image to Character Art Image Nodes
@@ -279,17 +185,6 @@ View:
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Image Resize Plus
Description: Provides various image resizing options such as fill, stretch, fit, center, and crop.
Node Link: https://github.com/VeyDlin/image-resize-plus-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
--------------------------------
### Load Video Frame
@@ -314,16 +209,6 @@ View:
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
--------------------------------
### Mask Operations
Description: Offers logical operations (OR, SUB, AND) for combining and manipulating image masks.
Node Link: https://github.com/VeyDlin/mask-operations-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/mask-operations-node/master/.readme/node.png" width="500" />
--------------------------------
### Match Histogram
@@ -341,37 +226,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
--------------------------------
### Metadata Linked Nodes
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes
--------------------------------
### Negative Image
Description: Creates a negative version of an image, effective for visual effects and mask inversion.
Node Link: https://github.com/VeyDlin/negative-image-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
--------------------------------
### Nightmare Promptgen
**Description:** Nightmare Prompt Generator - Uses a local text generation model to create unique imaginative (but usually nightmarish) prompts for InvokeAI. By default, it allows you to choose from some gpt-neo models I finetuned on over 2500 of my own InvokeAI prompts in Compel format, but you're able to add your own, as well. Offers support for replacing any troublesome words with a random choice from list you can also define.
**Node Link:** [https://github.com/gogurtenjoyer/nightmare-promptgen](https://github.com/gogurtenjoyer/nightmare-promptgen)
--------------------------------
### Oobabooga
@@ -435,26 +289,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
--------------------------------
### BriaAI Remove Background
**Description**: Implements one click background removal with BriaAI's new version 1.4 model which seems to be be producing better results than any other previous background removal tool.
**Node Link:** https://github.com/blessedcoolant/invoke_bria_rmbg
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_bria_rmbg/main/assets/preview.jpg" />
--------------------------------
### Remove Background
Description: An integration of the rembg package to remove backgrounds from images using multiple U2NET models.
Node Link: https://github.com/VeyDlin/remove-background-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/remove-background-node/master/.readme/node.png" width="500" />
--------------------------------
### Retroize
@@ -467,17 +301,6 @@ View:
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Simple Skin Detection
Description: Detects skin in images based on predefined color thresholds.
Node Link: https://github.com/VeyDlin/simple-skin-detection-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/simple-skin-detection-node/master/.readme/node.png" width="500" />
--------------------------------
### Size Stepper Nodes
@@ -563,7 +386,6 @@ See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/READ
<img src="https://github.com/skunkworxdark/XYGrid_nodes/blob/main/images/collage.png" width="300" />
--------------------------------
### Example Node Template

View File

@@ -36,7 +36,6 @@ their descriptions.
| Integer Math | Perform basic math operations on two integers |
| Convert Image Mode | Converts an image to a different mode. |
| Crop Image | Crops an image to a specified box. The box can be outside of the image. |
| Ideal Size | Calculates an ideal image size for latents for a first pass of a multi-pass upscaling to avoid duplication and other artifacts |
| Image Hue Adjustment | Adjusts the Hue of an image. |
| Inverse Lerp Image | Inverse linear interpolation of all pixels of an image |
| Image Primitive | An image primitive value |

View File

@@ -1,6 +1,6 @@
# Example Workflows
We've curated some example workflows for you to get started with Workflows in InvokeAI! These can also be found in the Workflow Library, located in the Workflow Editor of Invoke.
We've curated some example workflows for you to get started with Workflows in InvokeAI
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!

View File

@@ -13,69 +13,46 @@ We thank them for all of their time and hard work.
- [Lincoln D. Stein](mailto:lincoln.stein@gmail.com)
## **Current Core Team**
## **Current core team**
* @lstein (Lincoln Stein) - Co-maintainer
* @blessedcoolant - Co-maintainer
* @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes
* @psychedelicious (Spencer Mabrito) - Web Team Leader
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @josh is toast (Josh Corbett) - Web Development
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @damian0815 - Attention Systems and Compel Maintainer
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
* @sunija - Standalone version
* @genomancer (Gregg Helt) - Controlnet support
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
* @ryanjdick (Ryan Dick) - Machine Learning & Training
* @JPPhoto - Core image generation nodes
* @dunkeroni - Image generation backend
* @SkunkWorxDark - Image generation backend
* @millu (Millun Atluri) - Community Manager, Documentation, Node-wrangler
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @keturn (Kevin Turner) - Diffusers
* @millu (Millun Atluri) - Community Wizard, Documentation, Node-wrangler,
* @glimmerleaf (Devon Hopkins) - Community Wizard
* @gogurt enjoyer - Discord moderator and end user support
* @whosawhatsis - Discord moderator and end user support
* @dwinrger - Discord moderator and end user support
* @526christian - Discord moderator and end user support
* @harvester62 - Discord moderator and end user support
## **Honored Team Alumni**
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @damian0815 - Attention Systems and Compel Maintainer
* @netsvetaev (Artur) - Localization support
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @tildebyte - Installation and configuration
* @mauwii (Matthias Wilde) - Installation, release, continuous integration
## **Full List of Contributors by Commit Name**
- 이승석
- AbdBarho
- ablattmann
- AdamOStark
- Adam Rice
- Airton Silva
- Aldo Hoeben
- Alexander Eichhorn
- Alexandre D. Roberge
- Alexandre Macabies
- Alfie John
- Andreas Rozek
- Andre LaBranche
- Andy Bearman
- Andy Luhrs
- Andy Pilate
- Anonymous
- Anthony Monthe
- Any-Winter-4079
- apolinario
- Ar7ific1al
- ArDiouscuros
- Armando C. Santisbon
- Arnold Cordewiner
- Arthur Holstvoogd
- artmen1516
- Artur
@@ -87,16 +64,13 @@ We thank them for all of their time and hard work.
- blhook
- BlueAmulet
- Bouncyknighter
- Brandon
- Brandon Rising
- Brent Ozar
- Brian Racer
- bsilvereagle
- c67e708d
- camenduru
- CapableWeb
- Carson Katri
- chainchompa
- Chloe
- Chris Dawson
- Chris Hayes
@@ -112,45 +86,30 @@ We thank them for all of their time and hard work.
- cpacker
- Cragin Godley
- creachec
- CrypticWit
- d8ahazard
- damian
- damian0815
- Damian at mba
- Damian Stewart
- Daniel Manzke
- Danny Beer
- Dan Sully
- Darren Ringer
- David Burnett
- David Ford
- David Regla
- David Sisco
- David Wager
- Daya Adianto
- db3000
- DekitaRPG
- Denis Olshin
- Dennis
- dependabot[bot]
- Dmitry Parnas
- Dobrynia100
- Dominic Letz
- DrGunnarMallon
- Drun555
- dunkeroni
- Edward Johan
- elliotsayes
- Elrik
- ElrikUnderlake
- Eric Khun
- Eric Wolf
- Eugene
- Eugene Brodsky
- ExperimentalCyborg
- Fabian Bahl
- Fabio 'MrWHO' Torchetti
- Fattire
- fattire
- Felipe Nogueira
- Félix Sanz
@@ -159,12 +118,8 @@ We thank them for all of their time and hard work.
- gabrielrotbart
- gallegonovato
- Gérald LONLAS
- Gille
- GitHub Actions Bot
- glibesyck
- gogurtenjoyer
- Gohsuke Shimada
- greatwolf
- greentext2
- Gregg Helt
- H4rk
@@ -176,7 +131,6 @@ We thank them for all of their time and hard work.
- Hosted Weblate
- Iman Karim
- ismail ihsan bülbül
- ItzAttila
- Ivan Efimov
- jakehl
- Jakub Kolčář
@@ -187,7 +141,6 @@ We thank them for all of their time and hard work.
- Jason Toffaletti
- Jaulustus
- Jeff Mahoney
- Jennifer Player
- jeremy
- Jeremy Clark
- JigenD
@@ -195,26 +148,19 @@ We thank them for all of their time and hard work.
- Johan Roxendal
- Johnathon Selstad
- Jonathan
- Jordan Hewitt
- Joseph Dries III
- Josh Corbett
- JPPhoto
- jspraul
- junzi
- Justin Wong
- Juuso V
- Kaspar Emanuel
- Katsuyuki-Karasawa
- Keerigan45
- Kent Keirsey
- Kevin Brack
- Kevin Coakley
- Kevin Gibbons
- Kevin Schaul
- Kevin Turner
- Kieran Klaassen
- krummrey
- Kyle
- Kyle Lacy
- Kyle Schouviller
- Lawrence Norton
@@ -225,15 +171,10 @@ We thank them for all of their time and hard work.
- Lynne Whitehorn
- majick
- Marco Labarile
- Marta Nahorniuk
- Martin Kristiansen
- Mary Hipp
- maryhipp
- Mary Hipp Rogers
- mastercaster
- mastercaster9000
- Matthias Wild
- mauwii
- michaelk71
- mickr777
- Mihai
@@ -241,15 +182,11 @@ We thank them for all of their time and hard work.
- Mikhail Tishin
- Millun Atluri
- Minjune Song
- Mitchell Allain
- mitien
- mofuzz
- Muhammad Usama
- Name
- _nderscore
- Neil Wang
- nekowaiz
- nemuruibai
- Netzer R
- Nicholas Koh
- Nicholas Körfer
@@ -260,11 +197,9 @@ We thank them for all of their time and hard work.
- ofirkris
- Olivier Louvignes
- owenvincent
- pand4z31
- Patrick Esser
- Patrick Tien
- Patrick von Platen
- Paul Curry
- Paul Sajna
- pejotr
- Peter Baylies
@@ -272,7 +207,6 @@ We thank them for all of their time and hard work.
- plucked
- prixt
- psychedelicious
- psychedelicious@windows
- Rainer Bernhardt
- Riccardo Giovanetti
- Rich Jones
@@ -281,22 +215,16 @@ We thank them for all of their time and hard work.
- Robert Bolender
- Robin Rombach
- Rohan Barar
- Rohinish
- rpagliuca
- rromb
- Rupesh Sreeraman
- Ryan
- Ryan Cao
- Ryan Dick
- Saifeddine
- Saifeddine ALOUI
- Sam
- SammCheese
- Sam McLeod
- Sammy
- sammyf
- Samuel Husso
- Saurav Maheshkar
- Scott Lahteine
- Sean McLellan
- Sebastian Aigner
@@ -304,21 +232,16 @@ We thank them for all of their time and hard work.
- Sergey Krashevich
- Shapor Naghibzadeh
- Shawn Zhong
- Simona Liliac
- Simon Vans-Colina
- skunkworxdark
- slashtechno
- SoheilRezaei
- Song, Pengcheng
- spezialspezial
- ssantos
- StAlKeR7779
- Stefan Tobler
- Stephan Koglin-Fischer
- SteveCaruso
- Steve Martinelli
- Steven Frank
- Surisen
- System X - Files
- Taylor Kems
- techicode
@@ -337,34 +260,26 @@ We thank them for all of their time and hard work.
- tyler
- unknown
- user1
- vedant-3010
- Vedant Madane
- veprogames
- wa.code
- wfng92
- whjms
- whosawhatsis
- Will
- William Becher
- William Chong
- Wilson E. Alvarez
- woweenie
- Wubbbi
- xra
- Yeung Yiu Hung
- ymgenesis
- Yorzaren
- Yosuke Shinya
- yun saki
- ZachNagengast
- Zadagu
- zeptofine
- Zerdoumi
- Васянатор
- 冯不游
- 唐澤 克幸
## **Original CompVis (Stable Diffusion) Authors**
## **Original CompVis Authors**
- [Robin Rombach](https://github.com/rromb)
- [Patrick von Platen](https://github.com/patrickvonplaten)

View File

@@ -1,5 +0,0 @@
:root {
--md-primary-fg-color: #35A4DB;
--md-primary-fg-color--light: #35A4DB;
--md-primary-fg-color--dark: #35A4DB;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,8 +1,8 @@
{
"name": "Text to Image - SD1.5",
"name": "Text to Image",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
"version": "1.1.0",
"version": "1.0.1",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD1.5, SD2, default",
"notes": "",
@@ -18,19 +18,10 @@
{
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"fieldName": "prompt"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "width"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "height"
}
],
"meta": {
"category": "default",
"version": "2.0.0"
"version": "1.0.0"
},
"nodes": [
{
@@ -39,56 +30,44 @@
"data": {
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "compel",
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Negative Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"type": "ConditioningField",
"fieldKind": "output"
}
}
},
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 259,
"height": 261,
"position": {
"x": 1000,
"y": 350
"x": 995.7263915923627,
"y": 239.67783573351227
}
},
{
@@ -97,60 +76,37 @@
"data": {
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"nodePack": "invokeai",
"inputs": {
"seed": {
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
"name": "seed",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"width": {
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
"name": "width",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"height": {
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
"name": "height",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"use_cpu": {
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
"name": "use_cpu",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
@@ -158,40 +114,35 @@
"noise": {
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
"name": "noise",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 388,
"height": 389,
"position": {
"x": 600,
"y": 325
"x": 993.4442117555518,
"y": 605.6757415334787
}
},
{
@@ -200,24 +151,13 @@
"data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "main_model_loader",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"model": {
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
"name": "model",
"type": "MainModelField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
@@ -229,40 +169,35 @@
"unet": {
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"type": "UNetField",
"fieldKind": "output"
},
"clip": {
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"type": "ClipField",
"fieldKind": "output"
},
"vae": {
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
"name": "vae",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"type": "VaeField",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 226,
"position": {
"x": 600,
"y": 25
"x": 163.04436745878343,
"y": 254.63156870373479
}
},
{
@@ -271,56 +206,44 @@
"data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "compel",
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Positive Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "Super cute tiger cub, national geographic award-winning photograph"
"value": ""
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"type": "ConditioningField",
"fieldKind": "output"
}
}
},
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 259,
"height": 261,
"position": {
"x": 1000,
"y": 25
"x": 595.7263915923627,
"y": 239.67783573351227
}
},
{
@@ -329,36 +252,21 @@
"data": {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int",
"label": "Random Seed",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"low": {
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
"name": "low",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"high": {
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
"name": "high",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647
}
},
@@ -366,20 +274,23 @@
"value": {
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
"name": "value",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "Random Seed",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": false,
"version": "1.0.0"
},
"width": 320,
"height": 32,
"height": 218,
"position": {
"x": 600,
"y": 275
"x": 541.094822888628,
"y": 694.5704476446829
}
},
{
@@ -388,224 +299,144 @@
"data": {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "denoise_latents",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.0",
"nodePack": "invokeai",
"inputs": {
"positive_conditioning": {
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"negative_conditioning": {
"id": "9393779e-796c-4f64-b740-902a1177bf53",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"noise": {
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
"name": "noise",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"steps": {
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
"name": "steps",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 50
"value": 10
},
"cfg_scale": {
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
"name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5
},
"denoising_start": {
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
"name": "denoising_start",
"type": "float",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"denoising_end": {
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
"name": "denoising_end",
"type": "float",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1
},
"scheduler": {
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
"name": "scheduler",
"type": "Scheduler",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "unipc"
"value": "euler"
},
"unet": {
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"control": {
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
"name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
"label": ""
},
"ip_adapter": {
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
"label": ""
},
"t2i_adapter": {
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
},
"cfg_rescale_multiplier": {
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
"label": ""
},
"latents": {
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"denoise_mask": {
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
"name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
"label": ""
}
},
"outputs": {
"latents": {
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
"name": "latents",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
},
"width": 320,
"height": 703,
"height": 646,
"position": {
"x": 1400,
"y": 25
"x": 1476.5794704734735,
"y": 256.80174342731783
}
},
{
@@ -614,185 +445,153 @@
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "l2i",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": false,
"useCache": true,
"version": "1.2.0",
"nodePack": "invokeai",
"inputs": {
"metadata": {
"id": "ab375f12-0042-4410-9182-29e30db82c85",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
"label": ""
},
"latents": {
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"vae": {
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"label": ""
},
"tiled": {
"id": "da52059a-0cee-4668-942f-519aa794d739",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
},
"fp32": {
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
"value": false
}
},
"outputs": {
"image": {
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
"name": "image",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 266,
"height": 267,
"position": {
"x": 1800,
"y": 25
"x": 2037.9648469717395,
"y": 426.10844427600136
}
}
],
"edges": [
{
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "default",
"sourceHandle": "value",
"targetHandle": "seed"
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"targetHandle": "seed",
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"type": "default"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "default",
"sourceHandle": "clip",
"targetHandle": "clip"
"targetHandle": "clip",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"type": "default"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "default",
"sourceHandle": "clip",
"targetHandle": "clip"
"targetHandle": "clip",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"type": "default"
},
{
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "noise",
"targetHandle": "noise"
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "noise",
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"type": "default"
},
{
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"type": "default"
},
{
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "unet",
"targetHandle": "unet"
"targetHandle": "negative_conditioning",
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"type": "default"
},
{
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "unet",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "unet",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"type": "default"
},
{
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"sourceHandle": "latents",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default",
"targetHandle": "latents",
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"type": "default"
},
{
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "vae",
"targetHandle": "vae"
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"targetHandle": "vae",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"type": "default"
}
]
}
}

View File

@@ -2,60 +2,56 @@
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat
}
cd "$(dirname "$0")"
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
echo "A virtual environment is activated. Please deactivate it before proceeding".
exit -1
fi
cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
PATCH=""
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v3-latest"
echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD
echo
echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
git push origin :refs/tags/$VERSION
if ! git tag -fa $VERSION ; then
echo "Existing/invalid tag"
exit -1
fi
git push origin :refs/tags/$LATEST_TAG
git tag -fa $LATEST_TAG
echo "remember to push --tags!"
fi
# ----------------------
echo
echo "Building installer zip files for InvokeAI ${VERSION}..."
echo
echo Building the wheel
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -r ../build
python -m build --wheel --outdir dist/ ../.
# ----------------------
echo Building installer zip fles for InvokeAI $VERSION
# get rid of any old ones
rm -f *.zip
@@ -63,11 +59,12 @@ rm -rf InvokeAI-Installer
# copy content
mkdir InvokeAI-Installer
for f in templates *.txt *.reg; do
for f in templates lib *.txt *.reg; do
cp -r ${f} InvokeAI-Installer/
done
mkdir InvokeAI-Installer/lib
cp lib/*.py InvokeAI-Installer/lib
# Move the wheel
mv dist/*.whl InvokeAI-Installer/lib/
# Install scripts
# Mac/Linux
@@ -75,13 +72,13 @@ cp install.sh.in InvokeAI-Installer/install.sh
chmod a+x InvokeAI-Installer/install.sh
# Windows
cp install.bat.in InvokeAI-Installer/install.bat
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in > InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
# clean up
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
rm -rf InvokeAI-Installer tmp dist
exit 0

View File

@@ -15,6 +15,7 @@ if "%1" == "use-cache" (
@rem Config
@rem The version in the next line is replaced by an up to date release number
@rem when create_installer.sh is run. Change the release number there.
set INVOKEAI_VERSION=latest
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
set PYTHON_URL=https://www.python.org/downloads/windows/

View File

@@ -11,7 +11,7 @@ import sys
import venv
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Tuple
from typing import Union
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
@@ -21,20 +21,40 @@ OS = platform.uname().system
ARCH = platform.uname().machine
VERSION = "latest"
### Feature flags
# Install the virtualenv into the runtime dir
FF_VENV_IN_RUNTIME = True
# Install the wheel packaged with the installer
FF_USE_LOCAL_WHEEL = True
class Installer:
"""
Deploys an InvokeAI installation into a given path
"""
reqs: list[str] = INSTALLER_REQS
def __init__(self) -> None:
self.reqs = INSTALLER_REQS
self.preflight()
if os.getenv("VIRTUAL_ENV") is not None:
print("A virtual environment is already activated. Please 'deactivate' before installation.")
sys.exit(-1)
self.bootstrap()
self.available_releases = get_github_releases()
def preflight(self) -> None:
"""
Preflight checks
"""
# TODO
# verify python version
# on macOS verify XCode tools are present
# verify libmesa, libglx on linux
# check that the system arch is not i386 (?)
# check that the system has a GPU, and the type of GPU
pass
def mktemp_venv(self) -> TemporaryDirectory:
"""
@@ -58,9 +78,12 @@ class Installer:
return venv_dir
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory | None:
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory:
"""
Bootstrap the installer venv with packages required at install time
:return: path to the virtual environment directory that was bootstrapped
:rtype: TemporaryDirectory
"""
print("Initializing the installer. This may take a minute - please wait...")
@@ -72,27 +95,39 @@ class Installer:
cmd.extend(self.reqs)
try:
# upgrade pip to the latest version to avoid a confusing message
res = upgrade_pip(Path(venv_dir.name))
if verbose:
print(res)
# run the install prerequisites installation
res = subprocess.check_output(cmd).decode()
if verbose:
print(res)
return venv_dir
except subprocess.CalledProcessError as e:
print(e)
def app_venv(self, venv_parent) -> Path:
def app_venv(self, path: str = None):
"""
Create a virtualenv for the InvokeAI installation
"""
venv_dir = venv_parent / ".venv"
# explicit venv location
# currently unused in normal operation
# useful for testing or special cases
if path is not None:
venv_dir = Path(path)
# experimental / testing
elif not FF_VENV_IN_RUNTIME:
if OS == "Windows":
venv_dir_parent = os.getenv("APPDATA", "~/AppData/Roaming")
elif OS == "Darwin":
# there is no environment variable on macOS to find this
# TODO: confirm this is working as expected
venv_dir_parent = "~/Library/Application Support"
elif OS == "Linux":
venv_dir_parent = os.getenv("XDG_DATA_DIR", "~/.local/share")
venv_dir = Path(venv_dir_parent).expanduser().resolve() / f"InvokeAI/{VERSION}/venv"
# stable / current
else:
venv_dir = self.dest / ".venv"
# Prefer to copy python executables
# so that updates to system python don't break InvokeAI
@@ -106,7 +141,7 @@ class Installer:
return venv_dir
def install(
self, version=None, root: str = "~/invokeai", yes_to_all=False, find_links: Optional[Path] = None
self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None:
"""
Install the InvokeAI application into the given runtime path
@@ -123,20 +158,15 @@ class Installer:
import messages
messages.welcome(self.available_releases)
messages.welcome()
version = messages.choose_version(self.available_releases)
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
destination = auto_dest if yes_to_all else messages.dest_path(root)
if destination is None:
print("Could not find or create the destination directory. Installation cancelled.")
sys.exit(0)
default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
self.dest = default_path if yes_to_all else messages.dest_path(root)
# create the venv for the app
self.venv = self.app_venv(venv_parent=destination)
self.venv = self.app_venv()
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version)
self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
# install dependencies and the InvokeAI application
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
@@ -160,7 +190,7 @@ class InvokeAiInstance:
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
"""
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None:
def __init__(self, runtime: Path, venv: Path, version: str) -> None:
self.runtime = runtime
self.venv = venv
self.pip = get_pip_from_venv(venv)
@@ -169,7 +199,6 @@ class InvokeAiInstance:
set_sys_path(venv)
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
upgrade_pip(venv)
def get(self) -> tuple[Path, Path]:
"""
@@ -183,7 +212,54 @@ class InvokeAiInstance:
def install(self, extra_index_url=None, optional_modules=None, find_links=None):
"""
Install the package from PyPi.
Install this instance, including dependencies and the app itself
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str
"""
import messages
# install torch first to ensure the correct version gets installed.
# works with either source or wheel install with negligible impact on installation times.
messages.simple_banner("Installing PyTorch :fire:")
self.install_torch(extra_index_url, find_links)
messages.simple_banner("Installing the InvokeAI Application :art:")
self.install_app(extra_index_url, optional_modules, find_links)
def install_torch(self, extra_index_url=None, find_links=None):
"""
Install PyTorch
"""
from plumbum import FG, local
pip = local[self.pip]
(
pip[
"install",
"--require-virtualenv",
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch==2.1.0",
"torchmetrics==0.11.4",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
]
& FG
)
def install_app(self, extra_index_url=None, optional_modules=None, find_links=None):
"""
Install the application with pip.
Supports installation from PyPi or from a local source directory.
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str
@@ -195,52 +271,53 @@ class InvokeAiInstance:
:type find_links: Path
"""
import messages
# not currently used, but may be useful for "install most recent version" option
if self.version == "prerelease":
## this only applies to pypi installs; TODO actually use this
if self.version == "pre":
version = None
pre_flag = "--pre"
elif self.version == "stable":
version = None
pre_flag = None
pre = "--pre"
else:
version = self.version
pre_flag = None
pre = None
src = "invokeai"
if optional_modules:
src += optional_modules
if version:
src += f"=={version}"
## TODO: only local wheel will be installed as of now; support for --version arg is TODO
if FF_USE_LOCAL_WHEEL:
# if no wheel, try to do a source install before giving up
try:
src = str(next(Path(__file__).parent.glob("InvokeAI-*.whl")))
except StopIteration:
try:
src = Path(__file__).parents[1].expanduser().resolve()
# if the above directory contains one of these files, we'll do a source install
next(src.glob("pyproject.toml"))
next(src.glob("invokeai"))
except StopIteration:
print("Unable to find a wheel or perform a source install. Giving up.")
messages.simple_banner("Installing the InvokeAI Application :art:")
elif version == "source":
# this makes an assumption about the location of the installer package in the source tree
src = Path(__file__).parents[1].expanduser().resolve()
else:
# will install from PyPi
src = f"invokeai=={version}" if version is not None else "invokeai"
from plumbum import FG, ProcessExecutionError, local # type: ignore
from plumbum import FG, local
pip = local[self.pip]
pipeline = pip[
"install",
"--require-virtualenv",
"--force-reinstall",
"--use-pep517",
str(src),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre_flag,
]
try:
_ = pipeline & FG
except ProcessExecutionError as e:
print(f"Error: {e}")
print(
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
)
sys.exit(1)
(
pip[
"install",
"--require-virtualenv",
"--use-pep517",
str(src) + (optional_modules if optional_modules else ""),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre,
]
& FG
)
def configure(self):
"""
@@ -296,6 +373,7 @@ class InvokeAiInstance:
ext = "bat" if OS == "Windows" else "sh"
# scripts = ['invoke', 'update']
scripts = ["invoke"]
for script in scripts:
@@ -330,23 +408,6 @@ def get_pip_from_venv(venv_path: Path) -> str:
return str(venv_path.expanduser().resolve() / pip)
def upgrade_pip(venv_path: Path) -> str | None:
"""
Upgrade the pip executable in the given virtual environment
"""
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode()
except subprocess.CalledProcessError as e:
print(e)
result = None
return result
def set_sys_path(venv_path: Path) -> None:
"""
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
@@ -370,43 +431,7 @@ def set_sys_path(venv_path: Path) -> None:
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_github_releases() -> tuple[list, list] | None:
"""
Query Github for published (pre-)release versions.
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
Return None if the query fails for any reason.
"""
import requests
## get latest releases using github api
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
releases, pre_releases = [], []
try:
res = requests.get(url)
res.raise_for_status()
tag_info = res.json()
for tag in tag_info:
if not tag["prerelease"]:
releases.append(tag["tag_name"].lstrip("v"))
else:
pre_releases.append(tag["tag_name"].lstrip("v"))
except requests.HTTPError as e:
print(f"Error: {e}")
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
return
except Exception as e:
print(f"Error: {e}")
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
return
releases.sort(reverse=True)
pre_releases.sort(reverse=True)
return releases, pre_releases
def get_torch_source() -> Tuple[str | None, str | None]:
def get_torch_source() -> (Union[str, None], str):
"""
Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use.
@@ -421,26 +446,25 @@ def get_torch_source() -> Tuple[str | None, str | None]:
:rtype: list
"""
from messages import select_gpu
from messages import graphical_accelerator
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
# device can be one of: "cuda", "rocm", "cpu", "idk"
device = graphical_accelerator()
url = None
optional_modules = "[onnx]"
if OS == "Linux":
if device.value == "rocm":
url = "https://download.pytorch.org/whl/rocm5.6"
elif device.value == "cpu":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.4.2"
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"
elif OS == "Windows":
if device.value == "cuda":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device.value == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
if device == "cuda":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -5,11 +5,10 @@ Installer user interaction
import os
import platform
from enum import Enum
from pathlib import Path
from prompt_toolkit import HTML, prompt
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter
from prompt_toolkit.completion import PathCompleter
from prompt_toolkit.validation import Validator
from rich import box, print
from rich.console import Console, Group, group
@@ -36,26 +35,16 @@ else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def welcome(available_releases: tuple | None = None) -> None:
def welcome():
@group()
def text():
if (platform_specific := _platform_specific_help()) is not None:
if (platform_specific := _platform_specific_help()) != "":
yield platform_specific
yield ""
yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
if available_releases is not None:
latest_stable = available_releases[0][0]
last_pre = available_releases[1][0]
yield ""
yield Text.from_markup(
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
)
yield Text.from_markup(
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
)
console.rule()
print(
@@ -72,30 +61,19 @@ def welcome(available_releases: tuple | None = None) -> None:
console.line()
def choose_version(available_releases: tuple | None = None) -> str:
"""
Prompt the user to choose an Invoke version to install
"""
# short circuit if we couldn't get a version list
# still try to install the latest stable version
if available_releases is None:
return "stable"
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
choices = available_releases[0] + available_releases[1]
response = prompt(
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":exclamation: Directory {dest} already exists :exclamation:")
dest_confirmed = Confirm.ask(
":stop_sign: (re)install in this location?",
default=False,
)
else:
print(f"InvokeAI will be installed in {dest}")
dest_confirmed = Confirm.ask("Use this location?", default=True)
console.line()
return "stable" if response == "" else response
return dest_confirmed
def user_wants_auto_configuration() -> bool:
@@ -131,23 +109,7 @@ def user_wants_auto_configuration() -> bool:
return choice.lower().startswith("a")
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":stop_sign: Directory {dest} already exists!")
print(" Is this location correct?")
default = False
else:
print(f":file_folder: InvokeAI will be installed in {dest}")
default = True
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
console.line()
return dest_confirmed
def dest_path(dest=None) -> Path | None:
def dest_path(dest=None) -> Path:
"""
Prompt the user for the destination path and create the path
@@ -162,21 +124,25 @@ def dest_path(dest=None) -> Path | None:
else:
dest = Path.cwd().expanduser().resolve()
prev_dest = init_path = dest
dest_confirmed = False
dest_confirmed = confirm_install(dest)
while not dest_confirmed:
browse_start = (dest or Path.cwd()).expanduser().resolve()
# if the given destination already exists, the starting point for browsing is its parent directory.
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
# if the destination dir does NOT exist, then the user must have changed their mind about the selection.
# since we can't read their mind, start browsing at Path.cwd().
browse_start = (prev_dest.parent if prev_dest.exists() else Path.cwd()).expanduser().resolve()
path_completer = PathCompleter(
only_directories=True,
expanduser=True,
get_paths=lambda: [str(browse_start)], # noqa: B023
get_paths=lambda: [browse_start], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
)
console.line()
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
console.print(f"[orange3]Please select the destination directory for the installation:[/] \\[{browse_start}]: ")
selected = prompt(
">>> ",
complete_in_thread=True,
@@ -189,7 +155,6 @@ def dest_path(dest=None) -> Path | None:
)
prev_dest = dest
dest = Path(selected)
console.line()
dest_confirmed = confirm_install(dest.expanduser().resolve())
@@ -217,45 +182,41 @@ def dest_path(dest=None) -> Path | None:
console.rule("Goodbye!")
class GpuType(Enum):
CUDA = "cuda"
CUDA_AND_DML = "cuda_and_dml"
ROCM = "rocm"
CPU = "cpu"
AUTODETECT = "autodetect"
def select_gpu() -> GpuType:
def graphical_accelerator():
"""
Prompt the user to select the GPU driver
Prompt the user to select the graphical accelerator in their system
This does not validate user's choices (yet), but only offers choices
valid for the platform.
CUDA is the fallback.
We may be able to detect the GPU driver by shelling out to `modprobe` or `lspci`,
but this is not yet supported or reliable. Also, some users may have exotic preferences.
"""
if ARCH == "arm64" and OS != "Darwin":
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
return GpuType.CPU
return "cpu"
nvidia = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
GpuType.CUDA,
"cuda",
)
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
GpuType.CUDA_AND_DML,
"cuda_and_dml",
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
GpuType.ROCM,
"rocm",
)
cpu = (
"Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU,
"no compatible GPU, or specifically prefer to use the CPU",
"cpu",
)
autodetect = (
idk = (
"I'm not sure what to choose",
GpuType.AUTODETECT,
"idk",
)
options = []
if OS == "Windows":
options = [nvidia, nvidia_with_dml, cpu]
if OS == "Linux":
@@ -269,7 +230,7 @@ def select_gpu() -> GpuType:
return options[0][1]
# "I don't know" is always added the last option
options.append(autodetect) # type: ignore
options.append(idk)
options = {str(i): opt for i, opt in enumerate(options, 1)}
@@ -304,9 +265,9 @@ def select_gpu() -> GpuType:
),
)
if options[choice][1] is GpuType.AUTODETECT:
if options[choice][1] == "idk":
console.print(
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types."
"No problem. We will try to install a version that [i]should[/i] be compatible. :crossed_fingers:"
)
return options[choice][1]
@@ -330,7 +291,7 @@ def windows_long_paths_registry() -> None:
"""
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit")
syntax = Syntax(code.read(), line_numbers=True)
console.print(
Panel(
@@ -340,7 +301,7 @@ def windows_long_paths_registry() -> None:
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
"",
"This is the change that will be applied:",
str(syntax),
syntax,
]
)
),
@@ -379,7 +340,7 @@ def introduction() -> None:
console.line(2)
def _platform_specific_help() -> Text | None:
def _platform_specific_help() -> str:
if OS == "Darwin":
text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
@@ -393,5 +354,5 @@ def _platform_specific_help() -> Text | None:
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else:
return
text = ""
return text

View File

@@ -1,71 +0,0 @@
#!/bin/bash
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
}
function git_show_ref {
git show-ref --dereference $1 --abbrev 7
}
function git_show {
git show -s --format='%h %s' $1
}
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
git push origin --tags
fi
exit 0

View File

@@ -15,7 +15,7 @@ echo 4. Download and install models
echo 5. Change InvokeAI startup options
echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 7. Open the developer console
echo 8. Update InvokeAI (DEPRECATED - please use the installer)
echo 8. Update InvokeAI
echo 9. Run the InvokeAI image database maintenance script
echo 10. Command-line help
echo Q - Quit
@@ -52,10 +52,8 @@ IF /I "%choice%" == "1" (
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%choice%" == "8" (
echo UPDATING FROM WITHIN THE APP IS BEING DEPRECATED.
echo Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.
timeout 4
python -m invokeai.frontend.install.invokeai_update
echo Running invokeai-update...
python -m invokeai.frontend.install.invokeai_update
) ELSE IF /I "%choice%" == "9" (
echo Running the db maintenance script...
python .venv\Scripts\invokeai-db-maintenance.exe
@@ -79,3 +77,4 @@ pause
:ending
exit /b

View File

@@ -90,9 +90,7 @@ do_choice() {
;;
8)
clear
printf "UPDATING FROM WITHIN THE APP IS BEING DEPRECATED\n"
printf "Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.\n"
sleep 4
printf "Update InvokeAI\n"
python -m invokeai.frontend.install.invokeai_update
;;
9)
@@ -124,7 +122,7 @@ do_dialog() {
5 "Change InvokeAI startup options"
6 "Re-run the configure script to fix a broken install or to complete a major upgrade"
7 "Open the developer console"
8 "Update InvokeAI (DEPRECATED - please use the installer)"
8 "Update InvokeAI"
9 "Run the InvokeAI image database maintenance script"
10 "Command-line help"
)

View File

@@ -0,0 +1,72 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
PUSHD "%~dp0"
set INVOKE_AI_VERSION=latest
set arg=%1
if "%arg%" neq "" (
if "%arg:~0,2%" equ "/?" (
echo Usage: update.bat ^<release name or branch^>
echo Updates InvokeAI to use the indicated version of the code base.
echo Find the version or branch for the release you want, and pass it as the argument.
echo For example '.\update.bat v2.2.5' for release 2.2.5.
echo '.\update.bat main' for the latest development version
echo.
echo If no argument provided then will install the most recent release, equivalent to
echo '.\update.bat latest'
exit /b
) else (
set INVOKE_AI_VERSION=%arg%
)
)
set INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/!INVOKE_AI_VERSION!.zip"
set INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/!INVOKE_AI_VERSION!/environments-and-requirements/requirements-base.txt
set INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
call curl -I "%INVOKE_AI_DEP%" -fs >.tmp.out
if %errorlevel% neq 0 (
echo '!INVOKE_AI_VERSION!' is not a known branch name or tag. Please check the version and try again.
echo "Press any key to continue"
pause
exit /b
)
del .tmp.out
echo This script will update InvokeAI and all its dependencies to !INVOKE_AI_SRC!.
echo If you do not want to do this, press control-C now!
pause
call curl -L "%INVOKE_AI_DEP%" > environments-and-requirements/requirements-base.txt
call curl -L "%INVOKE_AI_MODELS%" > configs/INITIAL_MODELS.yaml
call .venv\Scripts\activate.bat
call .venv\Scripts\python -mpip install -r requirements.txt
if %errorlevel% neq 0 (
echo Installation of requirements failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
call .venv\Scripts\python -mpip install !INVOKE_AI_SRC!
if %errorlevel% neq 0 (
echo Installation of InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
@rem call .venv\Scripts\invokeai-configure --root=.
@rem if %errorlevel% neq 0 (
@rem echo Configuration InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
@rem pause
@rem exit /b
@rem )
echo InvokeAI has been updated to '%INVOKE_AI_VERSION%'
echo "Press any key to continue"
pause
endlocal

View File

@@ -0,0 +1,58 @@
#!/usr/bin/env bash
set -eu
if [ $# -ge 1 ] && [ "${1:0:2}" == "-h" ]; then
echo "Usage: update.sh <release>"
echo "Updates InvokeAI to use the indicated version of the code base."
echo "Find the version or branch for the release you want, and pass it as the argument."
echo "For example: update.sh v2.2.5 for release 2.2.5."
echo " update.sh main for the current development version."
echo ""
echo "If no argument provided then will install the version tagged with 'latest', equivalent to"
echo "update.sh latest"
exit -1
fi
INVOKE_AI_VERSION=${1:-latest}
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/$INVOKE_AI_VERSION.zip"
INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/environments-and-requirements/requirements-base.txt
INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
function _err_exit {
if test "$1" -ne 0
then
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "Update cannot continue. Please report this error to https://github.com/invoke-ai/InvokeAI/issues"
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
if ! curl -I "$INVOKE_AI_DEP" -fs >/dev/null; then
echo \'$INVOKE_AI_VERSION\' is not a known branch name or tag. Please check the version and try again.
exit
fi
echo This script will update InvokeAI and all its dependencies to version \'$INVOKE_AI_VERSION\'.
echo If you do not want to do this, press control-C now!
read -p "Press any key to continue, or CTRL-C to exit..."
curl -L "$INVOKE_AI_DEP" > environments-and-requirements/requirements-base.txt
curl -L "$INVOKE_AI_MODELS" > configs/INITIAL_MODELS.yaml
. .venv/bin/activate
./.venv/bin/python -mpip install -r requirements.txt
_err_exit $? "The pip program failed to install InvokeAI's requirements."
./.venv/bin/python -mpip install $INVOKE_AI_SRC
_err_exit $? "The pip program failed to install InvokeAI."
echo InvokeAI updated to \'$INVOKE_AI_VERSION\'

View File

@@ -2,9 +2,6 @@
from logging import Logger
from invokeai.app.services.item_storage.item_storage_memory import ItemStorageMemory
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager.metadata import ModelMetadataStore
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -13,7 +10,6 @@ from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
@@ -23,15 +19,17 @@ from ..services.invocation_queue.invocation_queue_memory import MemoryInvocation
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.graph import GraphExecutionState
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite.sqlite_database import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService
@@ -62,15 +60,14 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
logger.debug(f"Internet connectivity is {config.internet_available}")
output_folder = config.output_path
image_files = DiskImageFileStorage(f"{output_folder}/images")
db = init_db(config=config, logger=logger, image_files=image_files)
db = SqliteDatabase(config, logger)
configuration = config
logger = logger
@@ -80,22 +77,15 @@ class ApiDependencies:
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = ItemStorageMemory[GraphExecutionState]()
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_files = DiskImageFileStorage(f"{output_folder}/images")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
download_queue_service = DownloadQueueService(event_bus=events)
metadata_store = ModelMetadataStore(db=db)
model_install_service = ModelInstallService(
app_config=config,
record_store=model_record_service,
download_queue=download_queue_service,
metadata_store=metadata_store,
event_bus=events,
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
@@ -113,6 +103,7 @@ class ApiDependencies:
configuration=configuration,
events=events,
graph_execution_manager=graph_execution_manager,
graph_library=graph_library,
image_files=image_files,
image_records=image_records,
images=images,
@@ -121,8 +112,6 @@ class ApiDependencies:
logger=logger,
model_manager=model_manager,
model_records=model_record_service,
download_queue=download_queue_service,
model_install=model_install_service,
names=names,
performance_statistics=performance_statistics,
processor=processor,
@@ -133,10 +122,12 @@ class ApiDependencies:
workflow_records=workflow_records,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
db.clean()
@staticmethod
def shutdown() -> None:
def shutdown():
if ApiDependencies.invoker:
ApiDependencies.invoker.stop()

View File

@@ -1,28 +0,0 @@
from typing import Any
from starlette.responses import Response
from starlette.staticfiles import StaticFiles
class NoCacheStaticFiles(StaticFiles):
"""
This class is used to override the default caching behavior of starlette for static files,
ensuring we *never* cache static files. It modifies the file response headers to strictly
never cache the files.
Static files include the javascript bundles, fonts, locales, and some images. Generated
images are not included, as they are served by a router.
"""
def __init__(self, *args: Any, **kwargs: Any):
self.cachecontrol = "max-age=0, no-cache, no-store, , must-revalidate"
self.pragma = "no-cache"
self.expires = "0"
super().__init__(*args, **kwargs)
def file_response(self, *args: Any, **kwargs: Any) -> Response:
resp = super().file_response(*args, **kwargs)
resp.headers.setdefault("Cache-Control", self.cachecontrol)
resp.headers.setdefault("Pragma", self.pragma)
resp.headers.setdefault("Expires", self.expires)
return resp

View File

@@ -1,111 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for the download queue."""
from typing import List, Optional
from fastapi import Body, Path, Response
from fastapi.routing import APIRouter
from pydantic.networks import AnyHttpUrl
from starlette.exceptions import HTTPException
from invokeai.app.services.download import (
DownloadJob,
UnknownJobIDException,
)
from ..dependencies import ApiDependencies
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
@download_queue_router.get(
"/",
operation_id="list_downloads",
)
async def list_downloads() -> List[DownloadJob]:
"""Get a list of active and inactive jobs."""
queue = ApiDependencies.invoker.services.download_queue
return queue.list_jobs()
@download_queue_router.patch(
"/",
operation_id="prune_downloads",
responses={
204: {"description": "All completed jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_downloads():
"""Prune completed and errored jobs."""
queue = ApiDependencies.invoker.services.download_queue
queue.prune_jobs()
return Response(status_code=204)
@download_queue_router.post(
"/i/",
operation_id="download",
)
async def download(
source: AnyHttpUrl = Body(description="download source"),
dest: str = Body(description="download destination"),
priority: int = Body(default=10, description="queue priority"),
access_token: Optional[str] = Body(default=None, description="token for authorization to download"),
) -> DownloadJob:
"""Download the source URL to the file or directory indicted in dest."""
queue = ApiDependencies.invoker.services.download_queue
return queue.download(source, dest, priority, access_token)
@download_queue_router.get(
"/i/{id}",
operation_id="get_download_job",
responses={
200: {"description": "Success"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def get_download_job(
id: int = Path(description="ID of the download job to fetch."),
) -> DownloadJob:
"""Get a download job using its ID."""
try:
job = ApiDependencies.invoker.services.download_queue.id_to_job(id)
return job
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i/{id}",
operation_id="cancel_download_job",
responses={
204: {"description": "Job has been cancelled"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def cancel_download_job(
id: int = Path(description="ID of the download job to cancel."),
):
"""Cancel a download job using its ID."""
try:
queue = ApiDependencies.invoker.services.download_queue
job = queue.id_to_job(id)
queue.cancel_job(job)
return Response(status_code=204)
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i",
operation_id="cancel_all_download_jobs",
responses={
204: {"description": "Download jobs have been cancelled"},
},
)
async def cancel_all_download_jobs():
"""Cancel all download jobs."""
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
return Response(status_code=204)

View File

@@ -1,10 +1,10 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import pathlib
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
from typing import List, Optional
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
@@ -12,46 +12,30 @@ from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordOrderBy,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
model_records_router = APIRouter(prefix="/v1/model/record", tags=["models"])
class ModelsList(BaseModel):
"""Return list of configs."""
models: List[AnyModelConfig]
models: list[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
class ModelTagSet(BaseModel):
"""Return tags for a set of models."""
key: str
name: str
author: str
tags: Set[str]
@model_records_router.get(
"/",
operation_id="list_model_records",
@@ -59,25 +43,15 @@ class ModelTagSet(BaseModel):
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[ModelFormat] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type))
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
found_models.extend(record_store.search_by_attr(model_type=model_type))
return ModelsList(models=found_models)
@@ -101,59 +75,6 @@ async def get_model_record(
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.get("/meta", operation_id="list_model_summary")
async def list_model_summary(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of models per page"),
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
) -> PaginatedResults[ModelSummary]:
"""Gets a page of model summary data."""
return ApiDependencies.invoker.services.model_records.list_models(page=page, per_page=per_page, order_by=order_by)
@model_records_router.get(
"/meta/i/{key}",
operation_id="get_model_metadata",
responses={
200: {"description": "Success"},
400: {"description": "Bad request"},
404: {"description": "No metadata available"},
},
)
async def get_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
) -> Optional[AnyModelRepoMetadata]:
"""Get a model metadata object."""
record_store = ApiDependencies.invoker.services.model_records
result = record_store.get_metadata(key)
if not result:
raise HTTPException(status_code=404, detail="No metadata for a model with this key")
return result
@model_records_router.get(
"/tags",
operation_id="list_tags",
)
async def list_tags() -> Set[str]:
"""Get a unique set of all the model tags."""
record_store = ApiDependencies.invoker.services.model_records
return record_store.list_tags()
@model_records_router.get(
"/tags/search",
operation_id="search_by_metadata_tags",
)
async def search_by_metadata_tags(
tags: Set[str] = Query(default=None, description="Tags to search for"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
results = record_store.search_by_metadata_tag(tags)
return ModelsList(models=results)
@model_records_router.patch(
"/i/{key}",
operation_id="update_model_record",
@@ -196,17 +117,12 @@ async def update_model_record(
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
installer.delete(key)
record_store = ApiDependencies.invoker.services.model_records
record_store.del_model(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
@@ -227,7 +143,9 @@ async def del_model_record(
async def add_model_record(
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""Add a model using the configuration information appropriate for its type."""
"""
Add a model using the configuration information appropriate for its type.
"""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
if config.key == "<NOKEY>":
@@ -244,229 +162,3 @@ async def add_model_record(
# now fetch it out
return record_store.get_model(config.key)
@model_records_router.post(
"/import",
operation_id="import_model_record",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def import_model(
source: ModelSource,
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
The source object is a discriminated Union of LocalModelSource,
HFModelSource and URLModelSource. Set the "type" field to the
appropriate value:
* To install a local path using LocalModelSource, pass a source of form:
`{
"type": "local",
"path": "/path/to/model",
"inplace": false
}`
The "inplace" flag, if true, will register the model in place in its
current filesystem location. Otherwise, the model will be copied
into the InvokeAI models directory.
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
`{
"type": "hf",
"repo_id": "stabilityai/stable-diffusion-2.0",
"variant": "fp16",
"subfolder": "vae",
"access_token": "f5820a918aaf01"
}`
The `variant`, `subfolder` and `access_token` fields are optional.
* To install a remote model using an arbitrary URL, pass:
`{
"type": "url",
"url": "http://www.civitai.com/models/123456",
"access_token": "f5820a918aaf01"
}`
The `access_token` field is optonal
The model's configuration record will be probed and filled in
automatically. To override the default guesses, pass "metadata"
with a Dict containing the attributes you wish to override.
Installation occurs in the background. Either use list_model_install_jobs()
to poll for completion, or listen on the event bus for the following events:
"model_install_running"
"model_install_completed"
"model_install_error"
On successful completion, the event's payload will contain the field "key"
containing the installed ID of the model. On an error, the event's payload
will contain the fields "error_type" and "error" describing the nature of the
error and its traceback, respectively.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
result: ModelInstallJob = installer.import_model(
source=source,
config=config,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""Return list of model install jobs."""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
return jobs
@model_records_router.get(
"/import/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
404: {"description": "No such job"},
},
)
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
"""Return model install job corresponding to the given source."""
try:
return ApiDependencies.invoker.services.model_install.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.delete(
"/import/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
415: {"description": "No such job"},
},
status_code=201,
)
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
"""Cancel the model install job(s) corresponding to the given job ID."""
installer = ApiDependencies.invoker.services.model_install
try:
job = installer.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=415, detail=str(e))
installer.cancel_job(job)
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""Prune all completed and errored jobs from the install job list."""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories.
Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)
@model_records_router.put(
"/merge",
operation_id="merge",
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models.
keys: List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name: Name for the merged model [Concat model names]
alpha: Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force: If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp: Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory: Specify a directory to store the merged model in [models directory]
"""
print(f"here i am, keys={keys}")
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@@ -23,11 +23,10 @@ class DynamicPromptsResponse(BaseModel):
)
async def parse_dynamicprompts(
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse:
"""Creates a batch process"""
max_prompts = min(max_prompts, 10000)
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try:
error: Optional[str] = None

View File

@@ -14,13 +14,12 @@ class SocketIO:
def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
app.mount("/ws", self.__app)
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
async def _handle_queue_event(self, event: Event):
await self.__sio.emit(
@@ -29,13 +28,10 @@ class SocketIO:
room=event[1]["data"]["queue_id"],
)
async def _handle_sub_queue(self, sid, data, *args, **kwargs) -> None:
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid, data, *args, **kwargs) -> None:
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.leave_room(sid, data["queue_id"])
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])

View File

@@ -3,7 +3,6 @@
# values from the command line or config file.
import sys
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.version.invokeai_version import __version__
from .services.config import InvokeAIAppConfig
@@ -28,7 +27,8 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
from fastapi.openapi.utils import get_openapi
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.json_schema import models_json_schema
@@ -45,7 +45,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
app_info,
board_images,
boards,
download_queue,
images,
model_records,
models,
@@ -76,7 +75,7 @@ mimetypes.add_type("text/css", ".css")
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
# Add event handler
event_handler_id: int = id(app)
@@ -117,7 +116,6 @@ app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(model_records.model_records_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
@@ -205,8 +203,8 @@ app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid a
def overridden_swagger() -> HTMLResponse:
return get_swagger_ui_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
title=f"{app.title} - Swagger UI",
swagger_favicon_url="static/docs/invoke-favicon-docs.svg",
title=app.title,
swagger_favicon_url="/static/docs/favicon.ico",
)
@@ -214,20 +212,25 @@ def overridden_swagger() -> HTMLResponse:
def overridden_redoc() -> HTMLResponse:
return get_redoc_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
title=f"{app.title} - Redoc",
redoc_favicon_url="static/docs/invoke-favicon-docs.svg",
title=app.title,
redoc_favicon_url="/static/docs/favicon.ico",
)
web_root_path = Path(list(web_dir.__path__)[0])
try:
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
except RuntimeError:
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount")
app.mount(
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
) # docs favicon is in here
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
@app.get("/", include_in_schema=False, name="ui_root")
def get_index() -> FileResponse:
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# # Must mount *after* the other routes else it borks em
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
def invoke_api() -> None:
@@ -268,8 +271,6 @@ def invoke_api() -> None:
port=port,
loop="asyncio",
log_level=app_config.log_level,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)

View File

@@ -4,7 +4,6 @@ from __future__ import annotations
import inspect
import re
import warnings
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
@@ -39,19 +38,6 @@ class InvalidFieldError(TypeError):
pass
class Classification(str, Enum, metaclass=MetaEnum):
"""
The classification of an Invocation.
- `Stable`: The invocation, including its inputs/outputs and internal logic, is stable. You may build workflows with it, having confidence that they will not break because of a change in this invocation.
- `Beta`: The invocation is not yet stable, but is planned to be stable in the future. Workflows built around this invocation may break, but we are committed to supporting this invocation long-term.
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
"""
Stable = "stable"
Beta = "beta"
Prototype = "prototype"
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
@@ -452,7 +438,6 @@ class UIConfigBase(BaseModel):
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
model_config = ConfigDict(
validate_assignment=True,
@@ -621,7 +606,6 @@ class BaseInvocation(ABC, BaseModel):
schema["category"] = uiconfig.category
if uiconfig.node_pack is not None:
schema["node_pack"] = uiconfig.node_pack
schema["classification"] = uiconfig.classification
schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
@@ -725,10 +709,8 @@ class _Model(BaseModel):
pass
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=DeprecationWarning)
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
@@ -797,7 +779,6 @@ def invocation(
category: Optional[str] = None,
version: Optional[str] = None,
use_cache: Optional[bool] = True,
classification: Classification = Classification.Stable,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
"""
Registers an invocation.
@@ -808,7 +789,6 @@ def invocation(
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
"""
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
@@ -829,7 +809,6 @@ def invocation(
cls.UIConfig.title = title
cls.UIConfig.tags = tags
cls.UIConfig.category = category
cls.UIConfig.classification = classification
# Grab the node pack's name from the module name, if it's a custom node
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"

View File

@@ -1,3 +1,4 @@
import re
from dataclasses import dataclass
from typing import List, Optional, Union
@@ -16,7 +17,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import ModelNotFoundException, ModelType
from ...backend.util.devices import torch_dtype
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -87,7 +87,7 @@ class CompelInvocation(BaseInvocation):
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
@@ -210,7 +210,7 @@ class SDXLPromptInvocationBase:
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
name = trigger[1:-1]
try:
ti_list.append(

View File

@@ -24,13 +24,11 @@ from controlnet_aux import (
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from ...backend.model_management import BaseModelType
from .baseinvocation import (
@@ -77,16 +75,17 @@ class ControlField(BaseModel):
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
"""Validate that all control weights in the valid range"""
if isinstance(v, list):
for i in v:
if i < -1 or i > 2:
raise ValueError("Control weights must be within -1 to 2 range")
else:
if v < -1 or v > 2:
raise ValueError("Control weights must be within -1 to 2 range")
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
@@ -96,17 +95,17 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1")
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.0")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
default=1.0, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
@@ -114,17 +113,6 @@ class ControlNetInvocation(BaseInvocation):
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
@@ -603,33 +591,3 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
color_map = Image.fromarray(color_map)
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
"depth_anything_image_processor",
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.0.0",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
offload: bool = InputField(default=False)
def run_processor(self, image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
if image.mode == "RGBA":
image = image.convert("RGB")
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
return processed_image

View File

@@ -13,15 +13,7 @@ from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import (
BaseInvocation,
Classification,
Input,
InputField,
InvocationContext,
WithMetadata,
invocation,
)
from .baseinvocation import BaseInvocation, Input, InputField, InvocationContext, WithMetadata, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@@ -121,11 +113,11 @@ class ImageCropInvocation(BaseInvocation, WithMetadata):
@invocation(
invocation_type="img_pad_crop",
title="Center Pad or Crop Image",
"img_paste",
title="Paste Image",
tags=["image", "paste"],
category="image",
tags=["image", "pad", "crop"],
version="1.0.0",
version="1.2.0",
)
class CenterPadCropInvocation(BaseInvocation):
"""Pad or crop an image's sides from the center by specified pixels. Positive values are outside of the image."""
@@ -176,11 +168,11 @@ class CenterPadCropInvocation(BaseInvocation):
@invocation(
"img_paste",
title="Paste Image",
tags=["image", "paste"],
invocation_type="img_pad_crop",
title="Center Pad or Crop Image",
category="image",
version="1.2.0",
tags=["image", "pad", "crop"],
version="1.0.0",
)
class ImagePasteInvocation(BaseInvocation, WithMetadata):
"""Pastes an image into another image."""
@@ -429,64 +421,6 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"unsharp_mask",
title="Unsharp Mask",
tags=["image", "unsharp_mask"],
category="image",
version="1.2.0",
classification=Classification.Beta,
)
class UnsharpMaskInvocation(BaseInvocation, WithMetadata):
"""Applies an unsharp mask filter to an image"""
image: ImageField = InputField(description="The image to use")
radius: float = InputField(gt=0, description="Unsharp mask radius", default=2)
strength: float = InputField(ge=0, description="Unsharp mask strength", default=50)
def pil_from_array(self, arr):
return Image.fromarray((arr * 255).astype("uint8"))
def array_from_pil(self, img):
return numpy.array(img) / 255
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mode = image.mode
alpha_channel = image.getchannel("A") if mode == "RGBA" else None
image = image.convert("RGB")
image_blurred = self.array_from_pil(image.filter(ImageFilter.GaussianBlur(radius=self.radius)))
image = self.array_from_pil(image)
image += (image - image_blurred) * (self.strength / 100.0)
image = numpy.clip(image, 0, 1)
image = self.pil_from_array(image)
image = image.convert(mode)
# Make the image RGBA if we had a source alpha channel
if alpha_channel is not None:
image.putalpha(alpha_channel)
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image.width,
height=image.height,
)
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",

View File

@@ -2,7 +2,7 @@ import os
from builtins import float
from typing import List, Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -15,7 +15,6 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
@@ -40,6 +39,7 @@ class IPAdapterField(BaseModel):
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@@ -47,17 +47,6 @@ class IPAdapterField(BaseModel):
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("ip_adapter_output")
class IPAdapterOutput(BaseInvocationOutput):
@@ -65,7 +54,7 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
@@ -75,27 +64,18 @@ class IPAdapterInvocation(BaseInvocation):
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
)
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
default=1, ge=-1, description="The weight given to the IP-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.services.model_manager.model_info(

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import math
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import List, Literal, Optional, Union
@@ -221,7 +220,7 @@ def get_scheduler(
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.1",
version="1.5.0",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@@ -280,7 +279,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
ui_order=7,
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
latents: Optional[LatentsField] = InputField(
default=None,
@@ -1229,57 +1228,3 @@ class CropLatentsCoreInvocation(BaseInvocation):
context.services.latents.save(name, cropped_latents)
return build_latents_output(latents_name=name, latents=cropped_latents)
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image (in pixels)")
height: int = OutputField(description="The ideal height of the image (in pixels)")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.2",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
aspect = self.width / self.height
dimension = 512
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
dimension = 768
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
import inspect
import re
# from contextlib import ExitStack
from typing import List, Literal, Union
@@ -20,7 +21,6 @@ from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -78,7 +78,7 @@ class ONNXPromptInvocation(BaseInvocation):
]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(

View File

@@ -1,6 +1,6 @@
from typing import Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -14,7 +14,6 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType
@@ -38,17 +37,6 @@ class T2IAdapterField(BaseModel):
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("t2i_adapter_output")
class T2IAdapterOutput(BaseInvocationOutput):
@@ -56,7 +44,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1"
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.0"
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""
@@ -73,7 +61,7 @@ class T2IAdapterInvocation(BaseInvocation):
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
@@ -83,17 +71,6 @@ class T2IAdapterInvocation(BaseInvocation):
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
return T2IAdapterOutput(
t2i_adapter=T2IAdapterField(

View File

@@ -1,5 +1,3 @@
from typing import Literal
import numpy as np
from PIL import Image
from pydantic import BaseModel
@@ -7,8 +5,6 @@ from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
Input,
InputField,
InvocationContext,
OutputField,
@@ -18,13 +14,7 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.tiles.tiles import (
calc_tiles_even_split,
calc_tiles_min_overlap,
calc_tiles_with_overlap,
merge_tiles_with_linear_blending,
merge_tiles_with_seam_blending,
)
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.utils import Tile
@@ -38,14 +28,7 @@ class CalculateImageTilesOutput(BaseInvocationOutput):
tiles: list[Tile] = OutputField(description="The tiles coordinates that cover a particular image shape.")
@invocation(
"calculate_image_tiles",
title="Calculate Image Tiles",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
@invocation("calculate_image_tiles", title="Calculate Image Tiles", tags=["tiles"], category="tiles", version="1.0.0")
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@@ -72,79 +55,6 @@ class CalculateImageTilesInvocation(BaseInvocation):
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_even_split",
title="Calculate Image Tiles Even Split",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
num_tiles_x: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the x axis",
)
num_tiles_y: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the y axis",
)
overlap: int = InputField(
default=128,
ge=0,
multiple_of=8,
description="The overlap, in pixels, between adjacent tiles.",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_even_split(
image_height=self.image_height,
image_width=self.image_width,
num_tiles_x=self.num_tiles_x,
num_tiles_y=self.num_tiles_y,
overlap=self.overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_min_overlap",
title="Calculate Image Tiles Minimum Overlap",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
min_overlap: int = InputField(default=128, ge=0, description="Minimum overlap between adjacent tiles, in pixels.")
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_min_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.min_overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation_output("tile_to_properties_output")
class TileToPropertiesOutput(BaseInvocationOutput):
coords_left: int = OutputField(description="Left coordinate of the tile relative to its parent image.")
@@ -166,14 +76,7 @@ class TileToPropertiesOutput(BaseInvocationOutput):
overlap_right: int = OutputField(description="Overlap between this tile and its right neighbor.")
@invocation(
"tile_to_properties",
title="Tile to Properties",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
@invocation("tile_to_properties", title="Tile to Properties", tags=["tiles"], category="tiles", version="1.0.0")
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
@@ -199,14 +102,7 @@ class PairTileImageOutput(BaseInvocationOutput):
tile_with_image: TileWithImage = OutputField(description="A tile description with its corresponding image.")
@invocation(
"pair_tile_image",
title="Pair Tile with Image",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
@invocation("pair_tile_image", title="Pair Tile with Image", tags=["tiles"], category="tiles", version="1.0.0")
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
@@ -225,29 +121,13 @@ class PairTileImageInvocation(BaseInvocation):
)
BLEND_MODES = Literal["Linear", "Seam"]
@invocation(
"merge_tiles_to_image",
title="Merge Tiles to Image",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
@invocation("merge_tiles_to_image", title="Merge Tiles to Image", tags=["tiles"], category="tiles", version="1.1.0")
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
"""Merge multiple tile images into a single image."""
# Inputs
tiles_with_images: list[TileWithImage] = InputField(description="A list of tile images with tile properties.")
blend_mode: BLEND_MODES = InputField(
default="Seam",
description="blending type Linear or Seam",
input=Input.Direct,
)
blend_amount: int = InputField(
default=32,
ge=0,
description="The amount to blend adjacent tiles in pixels. Must be <= the amount of overlap between adjacent tiles.",
)
@@ -277,18 +157,10 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
channels = tile_np_images[0].shape[-1]
dtype = tile_np_images[0].dtype
np_image = np.zeros(shape=(height, width, channels), dtype=dtype)
if self.blend_mode == "Linear":
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
elif self.blend_mode == "Seam":
merge_tiles_with_seam_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
raise ValueError(f"Unsupported blend mode: '{self.blend_mode}'.")
# Convert into a PIL image and save
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
pil_image = Image.fromarray(np_image)
image_dto = context.services.images.create(

View File

@@ -5,12 +5,12 @@ from typing import Literal
import cv2
import numpy as np
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device

View File

@@ -1,14 +0,0 @@
from typing import Union
def validate_weights(weights: Union[float, list[float]]) -> None:
"""Validate that all control weights in the valid range"""
to_validate = weights if isinstance(weights, list) else [weights]
if any(i < -1 or i > 2 for i in to_validate):
raise ValueError("Control weights must be within -1 to 2 range")
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
"""Validate that begin_step_percent is less than end_step_percent"""
if begin_step_percent >= end_step_percent:
raise ValueError("Begin step percent must be less than or equal to end step percent")

View File

@@ -20,6 +20,63 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,

View File

@@ -28,6 +28,52 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()

View File

@@ -1,7 +1,6 @@
"""Init file for InvokeAI configure package."""
"""
Init file for InvokeAI configure package
"""
from invokeai.app.services.config.config_common import PagingArgumentParser
from .config_default import InvokeAIAppConfig, get_invokeai_config
__all__ = ["InvokeAIAppConfig", "get_invokeai_config", "PagingArgumentParser"]
from .config_base import PagingArgumentParser # noqa F401
from .config_default import InvokeAIAppConfig, get_invokeai_config # noqa F401

View File

@@ -173,10 +173,10 @@ from __future__ import annotations
import os
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf
from pydantic import Field
from pydantic import Field, TypeAdapter
from pydantic.config import JsonDict
from pydantic_settings import SettingsConfigDict
@@ -209,7 +209,7 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Configuration object for InvokeAI App."""
singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None
singleton_init: ClassVar[Optional[Dict[str, Any]]] = None
singleton_init: ClassVar[Optional[Dict]] = None
# fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
@@ -221,9 +221,6 @@ class InvokeAIAppConfig(InvokeAISettings):
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# SSL options correspond to https://www.uvicorn.org/settings/#https
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
@@ -251,11 +248,7 @@ class InvokeAIAppConfig(InvokeAISettings):
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
# Development
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
@@ -267,14 +260,14 @@ class InvokeAIAppConfig(InvokeAISettings):
# DEVICE
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
@@ -284,9 +277,6 @@ class InvokeAIAppConfig(InvokeAISettings):
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# MODEL IMPORT
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
@@ -296,7 +286,6 @@ class InvokeAIAppConfig(InvokeAISettings):
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
# this is not referred to in the source code and can be removed entirely
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
@@ -309,8 +298,8 @@ class InvokeAIAppConfig(InvokeAISettings):
self,
argv: Optional[list[str]] = None,
conf: Optional[DictConfig] = None,
clobber: Optional[bool] = False,
) -> None:
clobber=False,
):
"""
Update settings with contents of init file, environment, and command-line settings.
@@ -336,12 +325,16 @@ class InvokeAIAppConfig(InvokeAISettings):
super().parse_args(argv)
if self.singleton_init and not clobber:
# When setting values in this way, set validate_assignment to true if you want to validate the value.
for k, v in self.singleton_init.items():
setattr(self, k, v)
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(
self,
k,
TypeAdapter(hints[k]).validate_python(self.singleton_init[k]),
)
@classmethod
def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig:
def get_config(cls, **kwargs) -> InvokeAIAppConfig:
"""Return a singleton InvokeAIAppConfig configuration object."""
if (
cls.singleton_config is None
@@ -360,7 +353,7 @@ class InvokeAIAppConfig(InvokeAISettings):
else:
root = self.find_root().expanduser().absolute()
self.root = root # insulate ourselves from relative paths that may change
return root.resolve()
return root
@property
def root_dir(self) -> Path:
@@ -390,17 +383,17 @@ class InvokeAIAppConfig(InvokeAISettings):
return db_dir / DB_FILE
@property
def model_conf_path(self) -> Path:
def model_conf_path(self) -> Optional[Path]:
"""Path to models configuration file."""
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self) -> Path:
def legacy_conf_path(self) -> Optional[Path]:
"""Path to directory of legacy configuration files (e.g. v1-inference.yaml)."""
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self) -> Path:
def models_path(self) -> Optional[Path]:
"""Path to the models directory."""
return self._resolve(self.models_dir)
@@ -453,18 +446,13 @@ class InvokeAIAppConfig(InvokeAISettings):
disabled_in_config = not self.xformers_enabled
return disabled_in_config and self.attention_type != "xformers"
@property
def profiles_path(self) -> Path:
"""Path to the graph profiles directory."""
return self._resolve(self.profiles_dir)
@staticmethod
def find_root() -> Path:
"""Choose the runtime root directory when not specified on command line or init file."""
return _find_root()
def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig:
def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
"""Legacy function which returns InvokeAIAppConfig.get_config()."""
return InvokeAIAppConfig.get_config(**kwargs)

View File

@@ -1,12 +0,0 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",
"DownloadQueueServiceBase",
"DownloadQueueService",
"TqdmProgress",
"DownloadJobStatus",
"UnknownJobIDException",
]

View File

@@ -1,262 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""Model download service."""
from abc import ABC, abstractmethod
from enum import Enum
from functools import total_ordering
from pathlib import Path
from typing import Any, Callable, List, Optional
from pydantic import BaseModel, Field, PrivateAttr
from pydantic.networks import AnyHttpUrl
class DownloadJobStatus(str, Enum):
"""State of a download job."""
WAITING = "waiting" # not enqueued, will not run
RUNNING = "running" # actively downloading
COMPLETED = "completed" # finished running
CANCELLED = "cancelled" # user cancelled
ERROR = "error" # terminated with an error message
class DownloadJobCancelledException(Exception):
"""This exception is raised when a download job is cancelled."""
class UnknownJobIDException(Exception):
"""This exception is raised when an invalid job id is referened."""
class ServiceInactiveException(Exception):
"""This exception is raised when user attempts to initiate a download before the service is started."""
DownloadEventHandler = Callable[["DownloadJob"], None]
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
@total_ordering
class DownloadJob(BaseModel):
"""Class to monitor and control a model download request."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
# automatically assigned on creation
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
bytes: int = Field(default=0, description="Bytes downloaded so far")
total_bytes: int = Field(default=0, description="Total file size (bytes)")
# set when an error occurs
error_type: Optional[str] = Field(default=None, description="Name of exception that caused an error")
error: Optional[str] = Field(default=None, description="Traceback of the exception that caused an error")
# internal flag
_cancelled: bool = PrivateAttr(default=False)
# optional event handlers passed in on creation
_on_start: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_progress: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_complete: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
def cancel(self) -> None:
"""Call to cancel the job."""
self._cancelled = True
# cancelled and the callbacks are private attributes in order to prevent
# them from being serialized and/or used in the Json Schema
@property
def cancelled(self) -> bool:
"""Call to cancel the job."""
return self._cancelled
@property
def complete(self) -> bool:
"""Return true if job completed without errors."""
return self.status == DownloadJobStatus.COMPLETED
@property
def running(self) -> bool:
"""Return true if the job is running."""
return self.status == DownloadJobStatus.RUNNING
@property
def errored(self) -> bool:
"""Return true if the job is errored."""
return self.status == DownloadJobStatus.ERROR
@property
def in_terminal_state(self) -> bool:
"""Return true if job has finished, one way or another."""
return self.status not in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]
@property
def on_start(self) -> Optional[DownloadEventHandler]:
"""Return the on_start event handler."""
return self._on_start
@property
def on_progress(self) -> Optional[DownloadEventHandler]:
"""Return the on_progress event handler."""
return self._on_progress
@property
def on_complete(self) -> Optional[DownloadEventHandler]:
"""Return the on_complete event handler."""
return self._on_complete
@property
def on_error(self) -> Optional[DownloadExceptionHandler]:
"""Return the on_error event handler."""
return self._on_error
@property
def on_cancelled(self) -> Optional[DownloadEventHandler]:
"""Return the on_cancelled event handler."""
return self._on_cancelled
def set_callbacks(
self,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> None:
"""Set the callbacks for download events."""
self._on_start = on_start
self._on_progress = on_progress
self._on_complete = on_complete
self._on_error = on_error
self._on_cancelled = on_cancelled
class DownloadQueueServiceBase(ABC):
"""Multithreaded queue for downloading models via URL."""
@abstractmethod
def start(self, *args: Any, **kwargs: Any) -> None:
"""Start the download worker threads."""
@abstractmethod
def stop(self, *args: Any, **kwargs: Any) -> None:
"""Stop the download worker threads."""
@abstractmethod
def download(
self,
source: AnyHttpUrl,
dest: Path,
priority: int = 10,
access_token: Optional[str] = None,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> DownloadJob:
"""
Create and enqueue download job.
:param source: Source of the download as a URL.
:param dest: Path to download to. See below.
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
:returns: A DownloadJob object for monitoring the state of the download.
The `dest` argument is a Path object. Its behavior is:
1. If the path exists and is a directory, then the URL contents will be downloaded
into that directory using the filename indicated in the response's `Content-Disposition` field.
If no content-disposition is present, then the last component of the URL will be used (similar to
wget's behavior).
2. If the path does not exist, then it is taken as the name of a new file to create with the downloaded
content.
3. If the path exists and is an existing file, then the downloader will try to resume the download from
the end of the existing file.
"""
pass
@abstractmethod
def submit_download_job(
self,
job: DownloadJob,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> None:
"""
Enqueue a download job.
:param job: The DownloadJob
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
"""
pass
@abstractmethod
def list_jobs(self) -> List[DownloadJob]:
"""
List active download jobs.
:returns List[DownloadJob]: List of download jobs whose state is not "completed."
"""
pass
@abstractmethod
def id_to_job(self, id: int) -> DownloadJob:
"""
Return the DownloadJob corresponding to the integer ID.
:param id: ID of the DownloadJob.
Exceptions:
* UnknownJobIDException
"""
pass
@abstractmethod
def cancel_all_jobs(self) -> None:
"""Cancel all active and enquedjobs."""
pass
@abstractmethod
def prune_jobs(self) -> None:
"""Prune completed and errored queue items from the job list."""
pass
@abstractmethod
def cancel_job(self, job: DownloadJob) -> None:
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
pass
@abstractmethod
def join(self) -> None:
"""Wait until all jobs are off the queue."""
pass

View File

@@ -1,436 +0,0 @@
# Copyright (c) 2023, Lincoln D. Stein
"""Implementation of multithreaded download queue for invokeai."""
import os
import re
import threading
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Optional
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
DownloadEventHandler,
DownloadExceptionHandler,
DownloadJob,
DownloadJobCancelledException,
DownloadJobStatus,
DownloadQueueServiceBase,
ServiceInactiveException,
UnknownJobIDException,
)
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
class DownloadQueueService(DownloadQueueServiceBase):
"""Class for queued download of models."""
def __init__(
self,
max_parallel_dl: int = 5,
event_bus: Optional[EventServiceBase] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
Initialize DownloadQueue.
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._jobs = {}
self._next_job_id = 0
self._queue = PriorityQueue()
self._stop_event = threading.Event()
self._worker_pool = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
self._event_bus = event_bus
self._requests = requests_session or requests.Session()
self._accept_download_requests = False
self._max_parallel_dl = max_parallel_dl
def start(self, *args: Any, **kwargs: Any) -> None:
"""Start the download worker threads."""
with self._lock:
if self._worker_pool:
raise Exception("Attempt to start the download service twice")
self._stop_event.clear()
self._start_workers(self._max_parallel_dl)
self._accept_download_requests = True
def stop(self, *args: Any, **kwargs: Any) -> None:
"""Stop the download worker threads."""
with self._lock:
if not self._worker_pool:
raise Exception("Attempt to stop the download service before it was started")
self._accept_download_requests = False # reject attempts to add new jobs to queue
queued_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.WAITING]
active_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.RUNNING]
if queued_jobs:
self._logger.warning(f"Cancelling {len(queued_jobs)} queued downloads")
if active_jobs:
self._logger.info(f"Waiting for {len(active_jobs)} active download jobs to complete")
with self._queue.mutex:
self._queue.queue.clear()
self.join() # wait for all active jobs to finish
self._stop_event.set()
self._worker_pool.clear()
def submit_download_job(
self,
job: DownloadJob,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> None:
"""Enqueue a download job."""
if not self._accept_download_requests:
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
with self._lock:
job.id = self._next_job_id
self._next_job_id += 1
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
def download(
self,
source: AnyHttpUrl,
dest: Path,
priority: int = 10,
access_token: Optional[str] = None,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> DownloadJob:
"""Create and enqueue a download job and return it."""
if not self._accept_download_requests:
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
job = DownloadJob(
source=source,
dest=dest,
priority=priority,
access_token=access_token,
)
self.submit_download_job(
job,
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
return job
def join(self) -> None:
"""Wait for all jobs to complete."""
self._queue.join()
def list_jobs(self) -> List[DownloadJob]:
"""List all the jobs."""
return list(self._jobs.values())
def prune_jobs(self) -> None:
"""Prune completed and errored queue items from the job list."""
with self._lock:
to_delete = set()
for job_id, job in self._jobs.items():
if job.in_terminal_state:
to_delete.add(job_id)
for job_id in to_delete:
del self._jobs[job_id]
def id_to_job(self, id: int) -> DownloadJob:
"""Translate a job ID into a DownloadJob object."""
try:
return self._jobs[id]
except KeyError as excp:
raise UnknownJobIDException("Unrecognized job") from excp
def cancel_job(self, job: DownloadJob) -> None:
"""
Cancel the indicated job.
If it is running it will be stopped.
job.status will be set to DownloadJobStatus.CANCELLED
"""
with self._lock:
job.cancel()
def cancel_all_jobs(self) -> None:
"""Cancel all jobs (those not in enqueued, running or paused state)."""
for job in self._jobs.values():
if not job.in_terminal_state:
self.cancel_job(job)
def _start_workers(self, max_workers: int) -> None:
"""Start the requested number of worker threads."""
self._stop_event.clear()
for i in range(0, max_workers): # noqa B007
worker = threading.Thread(target=self._download_next_item, daemon=True)
self._logger.debug(f"Download queue worker thread {worker.name} starting.")
worker.start()
self._worker_pool.add(worker)
def _download_next_item(self) -> None:
"""Worker thread gets next job on priority queue."""
done = False
while not done:
if self._stop_event.is_set():
done = True
continue
try:
job = self._queue.get(timeout=1)
except Empty:
continue
try:
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
except DownloadJobCancelledException:
self._signal_job_cancelled(job)
self._cleanup_cancelled_job(job)
finally:
job.job_ended = get_iso_timestamp()
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
def _do_download(self, job: DownloadJob) -> None:
"""Do the actual download."""
url = job.source
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
open_mode = "wb"
# Make a streaming request. This will retrieve headers including
# content-length and content-disposition, but not fetch any content itself
resp = self._requests.get(str(url), headers=header, stream=True)
if not resp.ok:
raise HTTPError(resp.reason)
job.content_type = resp.headers.get("Content-Type")
content_length = int(resp.headers.get("content-length", 0))
job.total_bytes = content_length
if job.dest.is_dir():
file_name = os.path.basename(str(url.path)) # default is to use the last bit of the URL
if match := re.search('filename="(.+)"', resp.headers.get("Content-Disposition", "")):
remote_name = match.group(1)
if self._validate_filename(job.dest.as_posix(), remote_name):
file_name = remote_name
job.download_path = job.dest / file_name
else:
job.dest.parent.mkdir(parents=True, exist_ok=True)
job.download_path = job.dest
assert job.download_path
# Don't clobber an existing file. See commit 82c2c85202f88c6d24ff84710f297cfc6ae174af
# for code that instead resumes an interrupted download.
if job.download_path.exists():
raise OSError(f"[Errno 17] File {job.download_path} exists")
# append ".downloading" to the path
in_progress_path = self._in_progress_path(job.download_path)
# signal caller that the download is starting. At this point, key fields such as
# download_path and total_bytes will be populated. We call it here because the might
# discover that the local file is already complete and generate a COMPLETED status.
self._signal_job_started(job)
# "range not satisfiable" - local file is at least as large as the remote file
if resp.status_code == 416 or (content_length > 0 and job.bytes >= content_length):
self._logger.warning(f"{job.download_path}: complete file found. Skipping.")
return
# "partial content" - local file is smaller than remote file
elif resp.status_code == 206 or job.bytes > 0:
self._logger.warning(f"{job.download_path}: partial file found. Resuming")
# some other error
elif resp.status_code != 200:
raise HTTPError(resp.reason)
self._logger.debug(f"{job.source}: Downloading {job.download_path}")
report_delta = job.total_bytes / 100 # report every 1% change
last_report_bytes = 0
# DOWNLOAD LOOP
with open(in_progress_path, open_mode) as file:
for data in resp.iter_content(chunk_size=DOWNLOAD_CHUNK_SIZE):
if job.cancelled:
raise DownloadJobCancelledException("Job was cancelled at caller's request")
job.bytes += file.write(data)
if (job.bytes - last_report_bytes >= report_delta) or (job.bytes >= job.total_bytes):
last_report_bytes = job.bytes
self._signal_job_progress(job)
# if we get here we are done and can rename the file to the original dest
self._logger.debug(f"{job.source}: saved to {job.download_path} (bytes={job.bytes})")
in_progress_path.rename(job.download_path)
def _validate_filename(self, directory: str, filename: str) -> bool:
pc_name_max = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 260 # hardcoded for windows
pc_path_max = (
os.pathconf(directory, "PC_PATH_MAX") if hasattr(os, "pathconf") else 32767
) # hardcoded for windows with long names enabled
if "/" in filename:
return False
if filename.startswith(".."):
return False
if len(filename) > pc_name_max:
return False
if len(os.path.join(directory, filename)) > pc_path_max:
return False
return True
def _in_progress_path(self, path: Path) -> Path:
return path.with_name(path.name + ".downloading")
def _signal_job_started(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.RUNNING
if job.on_start:
try:
job.on_start(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_started(str(job.source), job.download_path.as_posix())
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
try:
job.on_progress(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_progress(
str(job.source),
download_path=job.download_path.as_posix(),
current_bytes=job.bytes,
total_bytes=job.total_bytes,
)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
if job.on_complete:
try:
job.on_complete(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_complete(
str(job.source), download_path=job.download_path.as_posix(), total_bytes=job.total_bytes
)
def _signal_job_cancelled(self, job: DownloadJob) -> None:
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
return
job.status = DownloadJobStatus.CANCELLED
if job.on_cancelled:
try:
job.on_cancelled(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
)
if self._event_bus:
self._event_bus.emit_download_cancelled(str(job.source))
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
job.status = DownloadJobStatus.ERROR
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
if job.on_error:
try:
job.on_error(job, excp)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.error_type
assert job.error
self._event_bus.emit_download_error(str(job.source), error_type=job.error_type, error=job.error)
def _cleanup_cancelled_job(self, job: DownloadJob) -> None:
self._logger.debug(f"Cleaning up leftover files from cancelled download job {job.download_path}")
try:
if job.download_path:
partial_file = self._in_progress_path(job.download_path)
partial_file.unlink()
except OSError as excp:
self._logger.warning(excp)
# Example on_progress event handler to display a TQDM status bar
# Activate with:
# download_service.download('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().job_update
class TqdmProgress(object):
"""TQDM-based progress bar object to use in on_progress handlers."""
_bars: Dict[int, tqdm] # the tqdm object
_last: Dict[int, int] # last bytes downloaded
def __init__(self) -> None: # noqa D107
self._bars = {}
self._last = {}
def update(self, job: DownloadJob) -> None: # noqa D102
job_id = job.id
# new job
if job_id not in self._bars:
assert job.download_path
dest = Path(job.download_path).name
self._bars[job_id] = tqdm(
desc=dest,
initial=0,
total=job.total_bytes,
unit="iB",
unit_scale=True,
)
self._last[job_id] = 0
self._bars[job_id].update(job.bytes - self._last[job_id])
self._last[job_id] = job.bytes

View File

@@ -1 +0,0 @@
from .events_base import EventServiceBase # noqa F401

View File

@@ -1,7 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, List, Optional, Union
from typing import Any, Optional
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
@@ -17,8 +16,6 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
class EventServiceBase:
queue_event: str = "queue_event"
download_event: str = "download_event"
model_event: str = "model_event"
"""Basic event bus, to have an empty stand-in when not needed"""
@@ -33,20 +30,6 @@ class EventServiceBase:
payload={"event": event_name, "data": payload},
)
def __emit_download_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.download_event,
payload={"event": event_name, "data": payload},
)
def __emit_model_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.model_event,
payload={"event": event_name, "data": payload},
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
@@ -330,166 +313,3 @@ class EventServiceBase:
event_name="queue_cleared",
payload={"queue_id": queue_id},
)
def emit_download_started(self, source: str, download_path: str) -> None:
"""
Emit when a download job is started.
:param url: The downloaded url
"""
self.__emit_download_event(
event_name="download_started",
payload={"source": source, "download_path": download_path},
)
def emit_download_progress(self, source: str, download_path: str, current_bytes: int, total_bytes: int) -> None:
"""
Emit "download_progress" events at regular intervals during a download job.
:param source: The downloaded source
:param download_path: The local downloaded file
:param current_bytes: Number of bytes downloaded so far
:param total_bytes: The size of the file being downloaded (if known)
"""
self.__emit_download_event(
event_name="download_progress",
payload={
"source": source,
"download_path": download_path,
"current_bytes": current_bytes,
"total_bytes": total_bytes,
},
)
def emit_download_complete(self, source: str, download_path: str, total_bytes: int) -> None:
"""
Emit a "download_complete" event at the end of a successful download.
:param source: Source URL
:param download_path: Path to the locally downloaded file
:param total_bytes: The size of the downloaded file
"""
self.__emit_download_event(
event_name="download_complete",
payload={
"source": source,
"download_path": download_path,
"total_bytes": total_bytes,
},
)
def emit_download_cancelled(self, source: str) -> None:
"""Emit a "download_cancelled" event in the event that the download was cancelled by user."""
self.__emit_download_event(
event_name="download_cancelled",
payload={
"source": source,
},
)
def emit_download_error(self, source: str, error_type: str, error: str) -> None:
"""
Emit a "download_error" event when an download job encounters an exception.
:param source: Source URL
:param error_type: The name of the exception that raised the error
:param error: The traceback from this error
"""
self.__emit_download_event(
event_name="download_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)
def emit_model_install_downloading(
self,
source: str,
local_path: str,
bytes: int,
total_bytes: int,
parts: List[Dict[str, Union[str, int]]],
) -> None:
"""
Emit at intervals while the install job is in progress (remote models only).
:param source: Source of the model
:param local_path: Where model is downloading to
:param parts: Progress of downloading URLs that comprise the model, if any.
:param bytes: Number of bytes downloaded so far.
:param total_bytes: Total size of download, including all files.
This emits a Dict with keys "source", "local_path", "bytes" and "total_bytes".
"""
self.__emit_model_event(
event_name="model_install_downloading",
payload={
"source": source,
"local_path": local_path,
"bytes": bytes,
"total_bytes": total_bytes,
"parts": parts,
},
)
def emit_model_install_running(self, source: str) -> None:
"""
Emit once when an install job becomes active.
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_running",
payload={"source": source},
)
def emit_model_install_completed(self, source: str, key: str, total_bytes: Optional[int] = None) -> None:
"""
Emit when an install job is completed successfully.
:param source: Source of the model; local path, repo_id or url
:param key: Model config record key
:param total_bytes: Size of the model (may be None for installation of a local path)
"""
self.__emit_model_event(
event_name="model_install_completed",
payload={
"source": source,
"total_bytes": total_bytes,
"key": key,
},
)
def emit_model_install_cancelled(self, source: str) -> None:
"""
Emit when an install job is cancelled.
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_cancelled",
payload={"source": source},
)
def emit_model_install_error(
self,
source: str,
error_type: str,
error: str,
) -> None:
"""
Emit when an install job encounters an exception.
:param source: Source of the model
:param error_type: The name of the exception
:param error: A text description of the exception
"""
self.__emit_model_event(
event_name="model_install_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)

View File

@@ -32,6 +32,101 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `images` table."""
# Create the `images` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "starred" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "has_workflow" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images
ADD COLUMN has_workflow BOOLEAN DEFAULT FALSE;
"""
)
def get(self, image_name: str) -> ImageRecord:
try:
self._lock.acquire()

View File

@@ -1,16 +1,11 @@
import time
import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Event, Thread
from typing import Optional
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
from invokeai.app.services.invocation_stats.invocation_stats_common import (
GESStatsNotFoundError,
)
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .invocation_processor_base import InvocationProcessorABC
@@ -23,7 +18,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker: Invoker) -> None:
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
@@ -44,27 +39,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
self.__threadLimit.acquire()
queue_item: Optional[InvocationQueueItem] = None
profiler = (
Profiler(
logger=self.__invoker.services.logger,
output_dir=self.__invoker.services.configuration.profiles_path,
prefix=self.__invoker.services.configuration.profile_prefix,
)
if self.__invoker.services.configuration.profile_graphs
else None
)
def stats_cleanup(graph_execution_state_id: str) -> None:
if profiler:
profile_path = profiler.stop()
stats_path = profile_path.with_suffix(".json")
self.__invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=graph_execution_state_id, output_path=stats_path
)
with suppress(GESStatsNotFoundError):
self.__invoker.services.performance_statistics.log_stats(graph_execution_state_id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state_id)
while not stop_event.is_set():
try:
queue_item = self.__invoker.services.queue.get()
@@ -75,10 +49,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# do not hammer the queue
time.sleep(0.5)
continue
if profiler and profiler.profile_id != queue_item.graph_execution_state_id:
profiler.start(profile_id=queue_item.graph_execution_state_id)
try:
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
@@ -162,12 +132,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
source_node_id=source_node_id,
result=outputs.model_dump(),
)
self.__invoker.services.performance_statistics.log_stats()
except KeyboardInterrupt:
pass
except CanceledException:
stats_cleanup(graph_execution_state.id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
@@ -192,6 +163,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error_type=e.__class__.__name__,
error=error,
)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so
@@ -229,7 +201,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
)
stats_cleanup(graph_execution_state.id)
except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor

View File

@@ -11,7 +11,6 @@ if TYPE_CHECKING:
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .config import InvokeAIAppConfig
from .download import DownloadQueueServiceBase
from .events.events_base import EventServiceBase
from .image_files.image_files_base import ImageFileStorageBase
from .image_records.image_records_base import ImageRecordStorageBase
@@ -22,13 +21,12 @@ if TYPE_CHECKING:
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_install import ModelInstallServiceBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .model_records import ModelRecordServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .shared.graph import GraphExecutionState
from .shared.graph import GraphExecutionState, LibraryGraph
from .urls.urls_base import UrlServiceBase
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
@@ -44,6 +42,7 @@ class InvocationServices:
configuration: "InvokeAIAppConfig"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
graph_library: "ItemStorageABC[LibraryGraph]"
images: "ImageServiceABC"
image_records: "ImageRecordStorageBase"
image_files: "ImageFileStorageBase"
@@ -51,8 +50,6 @@ class InvocationServices:
logger: "Logger"
model_manager: "ModelManagerServiceBase"
model_records: "ModelRecordServiceBase"
download_queue: "DownloadQueueServiceBase"
model_install: "ModelInstallServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
@@ -72,6 +69,7 @@ class InvocationServices:
configuration: "InvokeAIAppConfig",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
graph_library: "ItemStorageABC[LibraryGraph]",
images: "ImageServiceABC",
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
@@ -79,8 +77,6 @@ class InvocationServices:
logger: "Logger",
model_manager: "ModelManagerServiceBase",
model_records: "ModelRecordServiceBase",
download_queue: "DownloadQueueServiceBase",
model_install: "ModelInstallServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
@@ -98,6 +94,7 @@ class InvocationServices:
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.image_files = image_files
self.image_records = image_records
@@ -105,8 +102,6 @@ class InvocationServices:
self.logger = logger
self.model_manager = model_manager
self.model_records = model_records
self.download_queue = download_queue
self.model_install = model_install
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue

View File

@@ -30,15 +30,23 @@ writes to the system log is stored in InvocationServices.performance_statistics.
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from pathlib import Path
from typing import Dict
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invocation_stats.invocation_stats_common import InvocationStatsSummary
from invokeai.backend.model_management.model_cache import CacheStats
from .invocation_stats_common import NodeLog
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self):
"""
@@ -63,36 +71,51 @@ class InvocationStatsServiceBase(ABC):
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph.
:param graph_execution_state_id: The id of the session whose stats to reset.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def log_stats(self, graph_execution_state_id: str):
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
:param graph_execution_state_id: The id of the session whose stats to log.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
pass
@abstractmethod
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Gets the accumulated statistics for the indicated graph.
:param graph_execution_state_id: The id of the session whose stats to get.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
pass
Update the collector with RAM memory usage info.
@abstractmethod
def dump_stats(self, graph_execution_state_id: str, output_path: Path) -> None:
"""
Write out the accumulated statistics to the indicated path as JSON.
:param graph_execution_state_id: The id of the session whose stats to dump.
:param output_path: The file to write the stats to.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass

View File

@@ -1,183 +1,25 @@
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Any, Optional
from dataclasses import dataclass, field
from typing import Dict
class GESStatsNotFoundError(Exception):
"""Raised when execution stats are not found for a given Graph Execution State."""
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeExecutionStatsSummary:
"""The stats for a specific type of node."""
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
node_type: str
num_calls: int
time_used_seconds: float
peak_vram_gb: float
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class ModelCacheStatsSummary:
"""The stats for the model cache."""
class NodeLog:
"""Class for tracking node usage"""
high_water_mark_gb: float
cache_size_gb: float
total_usage_gb: float
cache_hits: int
cache_misses: int
models_cached: int
models_cleared: int
@dataclass
class GraphExecutionStatsSummary:
"""The stats for the graph execution state."""
graph_execution_state_id: str
execution_time_seconds: float
# `wall_time_seconds`, `ram_usage_gb` and `ram_change_gb` are derived from the node execution stats.
# In some situations, there are no node stats, so these values are optional.
wall_time_seconds: Optional[float]
ram_usage_gb: Optional[float]
ram_change_gb: Optional[float]
@dataclass
class InvocationStatsSummary:
"""
The accumulated stats for a graph execution.
Its `__str__` method returns a human-readable stats summary.
"""
vram_usage_gb: Optional[float]
graph_stats: GraphExecutionStatsSummary
model_cache_stats: ModelCacheStatsSummary
node_stats: list[NodeExecutionStatsSummary]
def __str__(self) -> str:
_str = ""
_str = f"Graph stats: {self.graph_stats.graph_execution_state_id}\n"
_str += f"{'Node':>30} {'Calls':>7} {'Seconds':>9} {'VRAM Used':>10}\n"
for summary in self.node_stats:
_str += f"{summary.node_type:>30} {summary.num_calls:>7} {summary.time_used_seconds:>8.3f}s {summary.peak_vram_gb:>9.3f}G\n"
_str += f"TOTAL GRAPH EXECUTION TIME: {self.graph_stats.execution_time_seconds:7.3f}s\n"
if self.graph_stats.wall_time_seconds is not None:
_str += f"TOTAL GRAPH WALL TIME: {self.graph_stats.wall_time_seconds:7.3f}s\n"
if self.graph_stats.ram_usage_gb is not None and self.graph_stats.ram_change_gb is not None:
_str += f"RAM used by InvokeAI process: {self.graph_stats.ram_usage_gb:4.2f}G ({self.graph_stats.ram_change_gb:+5.3f}G)\n"
_str += f"RAM used to load models: {self.model_cache_stats.total_usage_gb:4.2f}G\n"
if self.vram_usage_gb:
_str += f"VRAM in use: {self.vram_usage_gb:4.3f}G\n"
_str += "RAM cache statistics:\n"
_str += f" Model cache hits: {self.model_cache_stats.cache_hits}\n"
_str += f" Model cache misses: {self.model_cache_stats.cache_misses}\n"
_str += f" Models cached: {self.model_cache_stats.models_cached}\n"
_str += f" Models cleared from cache: {self.model_cache_stats.models_cleared}\n"
_str += f" Cache high water mark: {self.model_cache_stats.high_water_mark_gb:4.2f}/{self.model_cache_stats.cache_size_gb:4.2f}G\n"
return _str
def as_dict(self) -> dict[str, Any]:
"""Returns the stats as a dictionary."""
return asdict(self)
@dataclass
class NodeExecutionStats:
"""Class for tracking execution stats of an invocation node."""
invocation_type: str
start_time: float # Seconds since the epoch.
end_time: float # Seconds since the epoch.
start_ram_gb: float # GB
end_ram_gb: float # GB
peak_vram_gb: float # GB
def total_time(self) -> float:
return self.end_time - self.start_time
class GraphExecutionStats:
"""Class for tracking execution stats of a graph."""
def __init__(self):
self._node_stats_list: list[NodeExecutionStats] = []
def add_node_execution_stats(self, node_stats: NodeExecutionStats):
self._node_stats_list.append(node_stats)
def get_total_run_time(self) -> float:
"""Get the total time spent executing nodes in the graph."""
total = 0.0
for node_stats in self._node_stats_list:
total += node_stats.total_time()
return total
def get_first_node_stats(self) -> NodeExecutionStats | None:
"""Get the stats of the first node in the graph (by start_time)."""
first_node = None
for node_stats in self._node_stats_list:
if first_node is None or node_stats.start_time < first_node.start_time:
first_node = node_stats
assert first_node is not None
return first_node
def get_last_node_stats(self) -> NodeExecutionStats | None:
"""Get the stats of the last node in the graph (by end_time)."""
last_node = None
for node_stats in self._node_stats_list:
if last_node is None or node_stats.end_time > last_node.end_time:
last_node = node_stats
return last_node
def get_graph_stats_summary(self, graph_execution_state_id: str) -> GraphExecutionStatsSummary:
"""Get a summary of the graph stats."""
first_node = self.get_first_node_stats()
last_node = self.get_last_node_stats()
wall_time_seconds: Optional[float] = None
ram_usage_gb: Optional[float] = None
ram_change_gb: Optional[float] = None
if last_node and first_node:
wall_time_seconds = last_node.end_time - first_node.start_time
ram_usage_gb = last_node.end_ram_gb
ram_change_gb = last_node.end_ram_gb - first_node.start_ram_gb
return GraphExecutionStatsSummary(
graph_execution_state_id=graph_execution_state_id,
execution_time_seconds=self.get_total_run_time(),
wall_time_seconds=wall_time_seconds,
ram_usage_gb=ram_usage_gb,
ram_change_gb=ram_change_gb,
)
def get_node_stats_summaries(self) -> list[NodeExecutionStatsSummary]:
"""Get a summary of the node stats."""
summaries: list[NodeExecutionStatsSummary] = []
node_stats_by_type: dict[str, list[NodeExecutionStats]] = defaultdict(list)
for node_stats in self._node_stats_list:
node_stats_by_type[node_stats.invocation_type].append(node_stats)
for node_type, node_type_stats_list in node_stats_by_type.items():
num_calls = len(node_type_stats_list)
time_used = sum([n.total_time() for n in node_type_stats_list])
peak_vram = max([n.peak_vram_gb for n in node_type_stats_list])
summary = NodeExecutionStatsSummary(
node_type=node_type, num_calls=num_calls, time_used_seconds=time_used, peak_vram_gb=peak_vram
)
summaries.append(summary)
return summaries
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)

Some files were not shown because too many files have changed in this diff Show More