Compare commits

..

3 Commits

Author SHA1 Message Date
Brandon Rising
62d0b8c42b Only kick off on merges to main 2024-01-22 10:00:39 -05:00
Brandon Rising
1869f34fba Fix repo_name 2024-01-22 09:59:57 -05:00
Brandon Rising
e225cf0613 Trigger for pushes to InvokeAI's main branch 2024-01-22 09:59:07 -05:00
793 changed files with 15353 additions and 18156 deletions

View File

@@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
@@ -14,9 +18,10 @@ body:
- type: checkboxes
attributes:
label: Is there an existing issue for this problem?
label: Is there an existing issue for this?
description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
@@ -28,119 +33,80 @@ body:
- type: dropdown
id: os_dropdown
attributes:
label: Operating system
description: Your computer's operating system.
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
- 'other'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU vendor
description: Your GPU's vendor.
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'Nvidia (CUDA)'
- 'AMD (ROCm)'
- 'Apple Silicon (MPS)'
- 'None (CPU)'
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input
id: vram
attributes:
label: GPU VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: Version number
label: What version did you experience this issue on?
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
placeholder: ex. Firefox 123.0b3
validations:
required: true
- type: textarea
id: python-deps
attributes:
label: Python dependencies
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened
label: What happened?
description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
placeholder: I clicked button X and then Y happened.
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
id: what-you-expected
attributes:
label: What you expected to happen
description: Describe what you expected to happen.
placeholder: I expected Z to happen.
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Any other context that might help us to understand the problem.
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: discord-username
id: contact
attributes:
label: Discord username
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
placeholder: supercoolusername123
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

59
.github/pr_labels.yml vendored
View File

@@ -1,59 +0,0 @@
Root:
- changed-files:
- any-glob-to-any-file: '*'
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

29
.github/workflows/change-monitor.yml vendored Normal file
View File

@@ -0,0 +1,29 @@
name: Trigger Target Workflow
on:
push:
branches:
- main
workflow_dispatch:
jobs:
trigger:
runs-on: ubuntu-latest
steps:
- name: Trigger Workflow in Another Repository
run: |
# Set the required variables
repo_owner="invoke-ai"
repo_name="Invoke"
event_type="invokeai-pr-merge"
service=${{ github.event.inputs.target_service }}"
version="${{ github.event.inputs.target_version }}"
curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.PAT }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/$repo_owner/$repo_name/dispatches \
-d "{\"event_type\": \"$event_type\", \"client_payload\": {\"service\": \"$service\", \"version\": \"$version\", \"unit\": false, \"integration\": true}}"

View File

@@ -1,16 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

View File

@@ -169,7 +169,7 @@ the command `npm install -g pnpm` if needed)
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_

View File

@@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.1.2
ARG TORCHVISION_VERSION=0.16.2
ARG TORCH_VERSION=2.1.0
ARG TORCHVISION_VERSION=0.16
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\
@@ -54,7 +54,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
else \
pip install $extra_index_url_arg -e "."; \
pip install -e "."; \
fi
# #### Build the Web UI ------------------------------------

View File

@@ -28,7 +28,7 @@ This is done via Docker Desktop preferences
### Configure Invoke environment
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`

View File

@@ -21,7 +21,7 @@ run() {
printf "%s\n" "$build_args"
fi
docker compose build $build_args $service_name
docker compose build $build_args
unset build_args
printf "%s\n" "starting service $service_name"

View File

@@ -0,0 +1,76 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [pnpm](https://pnpm.io/) and confirm it is installed by running this:
```bash
npm install --global pnpm
pnpm --version
```
From `invokeai/frontend/web/` run `pnpm install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `pnpm dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `pnpm build`.

View File

@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)

View File

@@ -94,8 +94,6 @@ A model that helps generate creative QR codes that still scan. Can also be used
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

View File

@@ -117,11 +117,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
## :octicons-gift-24: InvokeAI Features
### Installation
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
### The InvokeAI Web Interface
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)

View File

@@ -477,7 +477,7 @@ Then type the following commands:
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
### Corrupted configuration file

View File

@@ -154,7 +154,7 @@ manager, please follow these steps:
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -230,13 +230,13 @@ manager, please follow these steps:
=== "local Webserver"
```bash
invokeai-web
invokeai --web
```
=== "Public Webserver"
```bash
invokeai-web --host 0.0.0.0
invokeai --web --host 0.0.0.0
```
=== "CLI"
@@ -313,7 +313,7 @@ code for InvokeAI. For this to work, you will need to install the
on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md).
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
@@ -345,7 +345,7 @@ installation protocol (important!)
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -361,7 +361,7 @@ installation protocol (important!)
Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md) and do a production build of the UI as described.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files
@@ -402,4 +402,4 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939

View File

@@ -134,7 +134,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.6` as described in the [Manual
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer

View File

@@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.

View File

@@ -18,18 +18,13 @@ either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
## **[Automated Installer (Recommended)](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
## **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself.
🖥️ **Download the latest installer .zip file here** : https://github.com/invoke-ai/InvokeAI/releases/latest
- *Look for the file labelled "InvokeAI-installer-v3.X.X.zip" at the bottom of the page*
- If you experience issues, read through the full [installation instructions](010_INSTALL_AUTOMATED.md) to make sure you have met all of the installation requirements. If you need more help, join the [Discord](discord.gg/invoke-ai) or create an issue on [Github](https://github.com/invoke-ai/InvokeAI).
third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
give you to access experimental features.
## **[Manual Installation](020_INSTALL_MANUAL.md)**
This method is recommended for experienced users and developers.

View File

@@ -14,7 +14,6 @@ To use a community workflow, download the the `.json` node graph file and load i
- Community Nodes
+ [Adapters-Linked](#adapters-linked-nodes)
+ [Autostereogram](#autostereogram-nodes)
+ [Average Images](#average-images)
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
+ [Close Color Mask](#close-color-mask)
@@ -26,7 +25,7 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif)
+ [Halftone](#halftone)
+ [Hand Refiner with MeshGraphormer](#hand-refiner-with-meshgraphormer)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image Dominant Color](#image-dominant-color)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
@@ -42,7 +41,6 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Remote Image](#remote-image)
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
@@ -69,17 +67,6 @@ Note: These are inherited from the core nodes so any update to the core nodes sh
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
--------------------------------
### Autostereogram Nodes
**Description:** Generate autostereogram images from a depth map. This is not a very practically useful node but more a 90s nostalgic indulgence as I used to love these images as a kid.
**Node Link:** https://github.com/skunkworxdark/autostereogram_nodes
**Example Usage:**
</br>
<img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider-depth.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-dots.png" width="200" /> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-pattern.png" width="200" />
--------------------------------
### Average Images
@@ -210,18 +197,13 @@ CMYK Halftone Output:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
--------------------------------
### Ideal Size
### Hand Refiner with MeshGraphormer
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Description**: Hand Refiner takes in your image and automatically generates a fixed depth map for the hands along with a mask of the hands region that will conveniently allow you to use them along with ControlNet to fix the wonky hands generated by Stable Diffusion
**Node Link:** https://github.com/blessedcoolant/invoke_meshgraphormer
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_meshgraphormer/main/assets/preview.jpg" />
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Image and Mask Composition Pack
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
@@ -435,17 +417,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
--------------------------------
### BriaAI Remove Background
**Description**: Implements one click background removal with BriaAI's new version 1.4 model which seems to be be producing better results than any other previous background removal tool.
**Node Link:** https://github.com/blessedcoolant/invoke_bria_rmbg
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_bria_rmbg/main/assets/preview.jpg" />
--------------------------------
### Remove Background

View File

@@ -36,7 +36,6 @@ their descriptions.
| Integer Math | Perform basic math operations on two integers |
| Convert Image Mode | Converts an image to a different mode. |
| Crop Image | Crops an image to a specified box. The box can be outside of the image. |
| Ideal Size | Calculates an ideal image size for latents for a first pass of a multi-pass upscaling to avoid duplication and other artifacts |
| Image Hue Adjustment | Adjusts the Hue of an image. |
| Inverse Lerp Image | Inverse linear interpolation of all pixels of an image |
| Image Primitive | An image primitive value |
@@ -81,7 +80,7 @@ their descriptions.
| ONNX Text to Latents | Generates latents from conditionings. |
| ONNX Model Loader | Loads a main model, outputting its submodels. |
| OpenCV Inpaint | Simple inpaint using opencv. |
| DW Openpose Processor | Applies Openpose processing to image |
| Openpose Processor | Applies Openpose processing to image |
| PIDI Processor | Applies PIDI processing to image |
| Prompts from File | Loads prompts from a text file |
| Random Integer | Outputs a single random integer. |

View File

@@ -13,69 +13,46 @@ We thank them for all of their time and hard work.
- [Lincoln D. Stein](mailto:lincoln.stein@gmail.com)
## **Current Core Team**
## **Current core team**
* @lstein (Lincoln Stein) - Co-maintainer
* @blessedcoolant - Co-maintainer
* @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes
* @psychedelicious (Spencer Mabrito) - Web Team Leader
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @josh is toast (Josh Corbett) - Web Development
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @damian0815 - Attention Systems and Compel Maintainer
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
* @sunija - Standalone version
* @genomancer (Gregg Helt) - Controlnet support
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
* @ryanjdick (Ryan Dick) - Machine Learning & Training
* @JPPhoto - Core image generation nodes
* @dunkeroni - Image generation backend
* @SkunkWorxDark - Image generation backend
* @millu (Millun Atluri) - Community Manager, Documentation, Node-wrangler
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @keturn (Kevin Turner) - Diffusers
* @millu (Millun Atluri) - Community Wizard, Documentation, Node-wrangler,
* @glimmerleaf (Devon Hopkins) - Community Wizard
* @gogurt enjoyer - Discord moderator and end user support
* @whosawhatsis - Discord moderator and end user support
* @dwinrger - Discord moderator and end user support
* @526christian - Discord moderator and end user support
* @harvester62 - Discord moderator and end user support
## **Honored Team Alumni**
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @damian0815 - Attention Systems and Compel Maintainer
* @netsvetaev (Artur) - Localization support
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @tildebyte - Installation and configuration
* @mauwii (Matthias Wilde) - Installation, release, continuous integration
## **Full List of Contributors by Commit Name**
- 이승석
- AbdBarho
- ablattmann
- AdamOStark
- Adam Rice
- Airton Silva
- Aldo Hoeben
- Alexander Eichhorn
- Alexandre D. Roberge
- Alexandre Macabies
- Alfie John
- Andreas Rozek
- Andre LaBranche
- Andy Bearman
- Andy Luhrs
- Andy Pilate
- Anonymous
- Anthony Monthe
- Any-Winter-4079
- apolinario
- Ar7ific1al
- ArDiouscuros
- Armando C. Santisbon
- Arnold Cordewiner
- Arthur Holstvoogd
- artmen1516
- Artur
@@ -87,16 +64,13 @@ We thank them for all of their time and hard work.
- blhook
- BlueAmulet
- Bouncyknighter
- Brandon
- Brandon Rising
- Brent Ozar
- Brian Racer
- bsilvereagle
- c67e708d
- camenduru
- CapableWeb
- Carson Katri
- chainchompa
- Chloe
- Chris Dawson
- Chris Hayes
@@ -112,45 +86,30 @@ We thank them for all of their time and hard work.
- cpacker
- Cragin Godley
- creachec
- CrypticWit
- d8ahazard
- damian
- damian0815
- Damian at mba
- Damian Stewart
- Daniel Manzke
- Danny Beer
- Dan Sully
- Darren Ringer
- David Burnett
- David Ford
- David Regla
- David Sisco
- David Wager
- Daya Adianto
- db3000
- DekitaRPG
- Denis Olshin
- Dennis
- dependabot[bot]
- Dmitry Parnas
- Dobrynia100
- Dominic Letz
- DrGunnarMallon
- Drun555
- dunkeroni
- Edward Johan
- elliotsayes
- Elrik
- ElrikUnderlake
- Eric Khun
- Eric Wolf
- Eugene
- Eugene Brodsky
- ExperimentalCyborg
- Fabian Bahl
- Fabio 'MrWHO' Torchetti
- Fattire
- fattire
- Felipe Nogueira
- Félix Sanz
@@ -159,12 +118,8 @@ We thank them for all of their time and hard work.
- gabrielrotbart
- gallegonovato
- Gérald LONLAS
- Gille
- GitHub Actions Bot
- glibesyck
- gogurtenjoyer
- Gohsuke Shimada
- greatwolf
- greentext2
- Gregg Helt
- H4rk
@@ -176,7 +131,6 @@ We thank them for all of their time and hard work.
- Hosted Weblate
- Iman Karim
- ismail ihsan bülbül
- ItzAttila
- Ivan Efimov
- jakehl
- Jakub Kolčář
@@ -187,7 +141,6 @@ We thank them for all of their time and hard work.
- Jason Toffaletti
- Jaulustus
- Jeff Mahoney
- Jennifer Player
- jeremy
- Jeremy Clark
- JigenD
@@ -195,26 +148,19 @@ We thank them for all of their time and hard work.
- Johan Roxendal
- Johnathon Selstad
- Jonathan
- Jordan Hewitt
- Joseph Dries III
- Josh Corbett
- JPPhoto
- jspraul
- junzi
- Justin Wong
- Juuso V
- Kaspar Emanuel
- Katsuyuki-Karasawa
- Keerigan45
- Kent Keirsey
- Kevin Brack
- Kevin Coakley
- Kevin Gibbons
- Kevin Schaul
- Kevin Turner
- Kieran Klaassen
- krummrey
- Kyle
- Kyle Lacy
- Kyle Schouviller
- Lawrence Norton
@@ -225,15 +171,10 @@ We thank them for all of their time and hard work.
- Lynne Whitehorn
- majick
- Marco Labarile
- Marta Nahorniuk
- Martin Kristiansen
- Mary Hipp
- maryhipp
- Mary Hipp Rogers
- mastercaster
- mastercaster9000
- Matthias Wild
- mauwii
- michaelk71
- mickr777
- Mihai
@@ -241,15 +182,11 @@ We thank them for all of their time and hard work.
- Mikhail Tishin
- Millun Atluri
- Minjune Song
- Mitchell Allain
- mitien
- mofuzz
- Muhammad Usama
- Name
- _nderscore
- Neil Wang
- nekowaiz
- nemuruibai
- Netzer R
- Nicholas Koh
- Nicholas Körfer
@@ -260,11 +197,9 @@ We thank them for all of their time and hard work.
- ofirkris
- Olivier Louvignes
- owenvincent
- pand4z31
- Patrick Esser
- Patrick Tien
- Patrick von Platen
- Paul Curry
- Paul Sajna
- pejotr
- Peter Baylies
@@ -272,7 +207,6 @@ We thank them for all of their time and hard work.
- plucked
- prixt
- psychedelicious
- psychedelicious@windows
- Rainer Bernhardt
- Riccardo Giovanetti
- Rich Jones
@@ -281,22 +215,17 @@ We thank them for all of their time and hard work.
- Robert Bolender
- Robin Rombach
- Rohan Barar
- Rohinish
- rohinish404
- rpagliuca
- rromb
- Rupesh Sreeraman
- Ryan
- Ryan Cao
- Ryan Dick
- Saifeddine
- Saifeddine ALOUI
- Sam
- SammCheese
- Sam McLeod
- Sammy
- sammyf
- Samuel Husso
- Saurav Maheshkar
- Scott Lahteine
- Sean McLellan
- Sebastian Aigner
@@ -304,21 +233,16 @@ We thank them for all of their time and hard work.
- Sergey Krashevich
- Shapor Naghibzadeh
- Shawn Zhong
- Simona Liliac
- Simon Vans-Colina
- skunkworxdark
- slashtechno
- SoheilRezaei
- Song, Pengcheng
- spezialspezial
- ssantos
- StAlKeR7779
- Stefan Tobler
- Stephan Koglin-Fischer
- SteveCaruso
- Steve Martinelli
- Steven Frank
- Surisen
- System X - Files
- Taylor Kems
- techicode
@@ -337,34 +261,26 @@ We thank them for all of their time and hard work.
- tyler
- unknown
- user1
- vedant-3010
- Vedant Madane
- veprogames
- wa.code
- wfng92
- whjms
- whosawhatsis
- Will
- William Becher
- William Chong
- Wilson E. Alvarez
- woweenie
- Wubbbi
- xra
- Yeung Yiu Hung
- ymgenesis
- Yorzaren
- Yosuke Shinya
- yun saki
- ZachNagengast
- Zadagu
- zeptofine
- Zerdoumi
- Васянатор
- 冯不游
- 唐澤 克幸
## **Original CompVis (Stable Diffusion) Authors**
## **Original CompVis Authors**
- [Robin Rombach](https://github.com/rromb)
- [Patrick von Platen](https://github.com/patrickvonplaten)

File diff suppressed because it is too large Load Diff

View File

@@ -14,19 +14,11 @@ function is_bin_in_path {
}
function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat
git show -s --format='%h %s' $1
}
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
exit -1
fi
cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
@@ -40,6 +32,13 @@ if ! is_bin_in_path python && is_bin_in_path python3; then
}
fi
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
exit -1
fi
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
@@ -48,9 +47,38 @@ PATCH=""
VERSION="v${VERSION}${PATCH}"
echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD
git_show
echo
# ---------------------- FRONTEND ----------------------
pushd ../invokeai/frontend/web >/dev/null
echo
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
echo "Building frontend..."
echo
pnpm build
popd
# ---------------------- BACKEND ----------------------
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -rf ../build
python -m build --wheel --outdir dist/ ../.
# ----------------------
echo
@@ -69,13 +97,16 @@ done
mkdir InvokeAI-Installer/lib
cp lib/*.py InvokeAI-Installer/lib
# Move the wheel
mv dist/*.whl InvokeAI-Installer/lib/
# Install scripts
# Mac/Linux
cp install.sh.in InvokeAI-Installer/install.sh
chmod a+x InvokeAI-Installer/install.sh
# Windows
cp install.bat.in InvokeAI-Installer/install.bat
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up

View File

@@ -15,6 +15,7 @@ if "%1" == "use-cache" (
@rem Config
@rem The version in the next line is replaced by an up to date release number
@rem when create_installer.sh is run. Change the release number there.
set INVOKEAI_VERSION=latest
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
set PYTHON_URL=https://www.python.org/downloads/windows/

View File

@@ -11,7 +11,7 @@ import sys
import venv
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Tuple
from typing import Union
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
@@ -21,20 +21,40 @@ OS = platform.uname().system
ARCH = platform.uname().machine
VERSION = "latest"
### Feature flags
# Install the virtualenv into the runtime dir
FF_VENV_IN_RUNTIME = True
# Install the wheel packaged with the installer
FF_USE_LOCAL_WHEEL = True
class Installer:
"""
Deploys an InvokeAI installation into a given path
"""
reqs: list[str] = INSTALLER_REQS
def __init__(self) -> None:
self.reqs = INSTALLER_REQS
self.preflight()
if os.getenv("VIRTUAL_ENV") is not None:
print("A virtual environment is already activated. Please 'deactivate' before installation.")
sys.exit(-1)
self.bootstrap()
self.available_releases = get_github_releases()
def preflight(self) -> None:
"""
Preflight checks
"""
# TODO
# verify python version
# on macOS verify XCode tools are present
# verify libmesa, libglx on linux
# check that the system arch is not i386 (?)
# check that the system has a GPU, and the type of GPU
pass
def mktemp_venv(self) -> TemporaryDirectory:
"""
@@ -58,9 +78,12 @@ class Installer:
return venv_dir
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory | None:
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory:
"""
Bootstrap the installer venv with packages required at install time
:return: path to the virtual environment directory that was bootstrapped
:rtype: TemporaryDirectory
"""
print("Initializing the installer. This may take a minute - please wait...")
@@ -72,27 +95,39 @@ class Installer:
cmd.extend(self.reqs)
try:
# upgrade pip to the latest version to avoid a confusing message
res = upgrade_pip(Path(venv_dir.name))
if verbose:
print(res)
# run the install prerequisites installation
res = subprocess.check_output(cmd).decode()
if verbose:
print(res)
return venv_dir
except subprocess.CalledProcessError as e:
print(e)
def app_venv(self, venv_parent) -> Path:
def app_venv(self, path: str = None):
"""
Create a virtualenv for the InvokeAI installation
"""
venv_dir = venv_parent / ".venv"
# explicit venv location
# currently unused in normal operation
# useful for testing or special cases
if path is not None:
venv_dir = Path(path)
# experimental / testing
elif not FF_VENV_IN_RUNTIME:
if OS == "Windows":
venv_dir_parent = os.getenv("APPDATA", "~/AppData/Roaming")
elif OS == "Darwin":
# there is no environment variable on macOS to find this
# TODO: confirm this is working as expected
venv_dir_parent = "~/Library/Application Support"
elif OS == "Linux":
venv_dir_parent = os.getenv("XDG_DATA_DIR", "~/.local/share")
venv_dir = Path(venv_dir_parent).expanduser().resolve() / f"InvokeAI/{VERSION}/venv"
# stable / current
else:
venv_dir = self.dest / ".venv"
# Prefer to copy python executables
# so that updates to system python don't break InvokeAI
@@ -106,7 +141,7 @@ class Installer:
return venv_dir
def install(
self, version=None, root: str = "~/invokeai", yes_to_all=False, find_links: Optional[Path] = None
self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None:
"""
Install the InvokeAI application into the given runtime path
@@ -123,20 +158,15 @@ class Installer:
import messages
messages.welcome(self.available_releases)
messages.welcome()
version = messages.choose_version(self.available_releases)
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
destination = auto_dest if yes_to_all else messages.dest_path(root)
if destination is None:
print("Could not find or create the destination directory. Installation cancelled.")
sys.exit(0)
default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
self.dest = default_path if yes_to_all else messages.dest_path(root)
# create the venv for the app
self.venv = self.app_venv(venv_parent=destination)
self.venv = self.app_venv()
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version)
self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
# install dependencies and the InvokeAI application
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
@@ -160,7 +190,7 @@ class InvokeAiInstance:
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
"""
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None:
def __init__(self, runtime: Path, venv: Path, version: str) -> None:
self.runtime = runtime
self.venv = venv
self.pip = get_pip_from_venv(venv)
@@ -169,7 +199,6 @@ class InvokeAiInstance:
set_sys_path(venv)
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
upgrade_pip(venv)
def get(self) -> tuple[Path, Path]:
"""
@@ -183,7 +212,54 @@ class InvokeAiInstance:
def install(self, extra_index_url=None, optional_modules=None, find_links=None):
"""
Install the package from PyPi.
Install this instance, including dependencies and the app itself
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str
"""
import messages
# install torch first to ensure the correct version gets installed.
# works with either source or wheel install with negligible impact on installation times.
messages.simple_banner("Installing PyTorch :fire:")
self.install_torch(extra_index_url, find_links)
messages.simple_banner("Installing the InvokeAI Application :art:")
self.install_app(extra_index_url, optional_modules, find_links)
def install_torch(self, extra_index_url=None, find_links=None):
"""
Install PyTorch
"""
from plumbum import FG, local
pip = local[self.pip]
(
pip[
"install",
"--require-virtualenv",
"numpy==1.26.3", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch==2.1.2",
"torchmetrics==0.11.4",
"torchvision==0.16.2",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
]
& FG
)
def install_app(self, extra_index_url=None, optional_modules=None, find_links=None):
"""
Install the application with pip.
Supports installation from PyPi or from a local source directory.
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str
@@ -195,52 +271,53 @@ class InvokeAiInstance:
:type find_links: Path
"""
import messages
# not currently used, but may be useful for "install most recent version" option
if self.version == "prerelease":
## this only applies to pypi installs; TODO actually use this
if self.version == "pre":
version = None
pre_flag = "--pre"
elif self.version == "stable":
version = None
pre_flag = None
pre = "--pre"
else:
version = self.version
pre_flag = None
pre = None
src = "invokeai"
if optional_modules:
src += optional_modules
if version:
src += f"=={version}"
## TODO: only local wheel will be installed as of now; support for --version arg is TODO
if FF_USE_LOCAL_WHEEL:
# if no wheel, try to do a source install before giving up
try:
src = str(next(Path(__file__).parent.glob("InvokeAI-*.whl")))
except StopIteration:
try:
src = Path(__file__).parents[1].expanduser().resolve()
# if the above directory contains one of these files, we'll do a source install
next(src.glob("pyproject.toml"))
next(src.glob("invokeai"))
except StopIteration:
print("Unable to find a wheel or perform a source install. Giving up.")
messages.simple_banner("Installing the InvokeAI Application :art:")
elif version == "source":
# this makes an assumption about the location of the installer package in the source tree
src = Path(__file__).parents[1].expanduser().resolve()
else:
# will install from PyPi
src = f"invokeai=={version}" if version is not None else "invokeai"
from plumbum import FG, ProcessExecutionError, local # type: ignore
from plumbum import FG, local
pip = local[self.pip]
pipeline = pip[
"install",
"--require-virtualenv",
"--force-reinstall",
"--use-pep517",
str(src),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre_flag,
]
try:
_ = pipeline & FG
except ProcessExecutionError as e:
print(f"Error: {e}")
print(
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
)
sys.exit(1)
(
pip[
"install",
"--require-virtualenv",
"--use-pep517",
str(src) + (optional_modules if optional_modules else ""),
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
pre,
]
& FG
)
def configure(self):
"""
@@ -296,6 +373,7 @@ class InvokeAiInstance:
ext = "bat" if OS == "Windows" else "sh"
# scripts = ['invoke', 'update']
scripts = ["invoke"]
for script in scripts:
@@ -330,23 +408,6 @@ def get_pip_from_venv(venv_path: Path) -> str:
return str(venv_path.expanduser().resolve() / pip)
def upgrade_pip(venv_path: Path) -> str | None:
"""
Upgrade the pip executable in the given virtual environment
"""
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode()
except subprocess.CalledProcessError as e:
print(e)
result = None
return result
def set_sys_path(venv_path: Path) -> None:
"""
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
@@ -370,43 +431,7 @@ def set_sys_path(venv_path: Path) -> None:
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_github_releases() -> tuple[list, list] | None:
"""
Query Github for published (pre-)release versions.
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
Return None if the query fails for any reason.
"""
import requests
## get latest releases using github api
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
releases, pre_releases = [], []
try:
res = requests.get(url)
res.raise_for_status()
tag_info = res.json()
for tag in tag_info:
if not tag["prerelease"]:
releases.append(tag["tag_name"].lstrip("v"))
else:
pre_releases.append(tag["tag_name"].lstrip("v"))
except requests.HTTPError as e:
print(f"Error: {e}")
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
return
except Exception as e:
print(f"Error: {e}")
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
return
releases.sort(reverse=True)
pre_releases.sort(reverse=True)
return releases, pre_releases
def get_torch_source() -> Tuple[str | None, str | None]:
def get_torch_source() -> (Union[str, None], str):
"""
Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use.
@@ -421,26 +446,25 @@ def get_torch_source() -> Tuple[str | None, str | None]:
:rtype: list
"""
from messages import select_gpu
from messages import graphical_accelerator
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
device = select_gpu()
# device can be one of: "cuda", "rocm", "cpu", "idk"
device = graphical_accelerator()
url = None
optional_modules = "[onnx]"
if OS == "Linux":
if device.value == "rocm":
url = "https://download.pytorch.org/whl/rocm5.6"
elif device.value == "cpu":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.4.2"
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"
elif OS == "Windows":
if device.value == "cuda":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device.value == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
if device == "cuda":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -5,11 +5,10 @@ Installer user interaction
import os
import platform
from enum import Enum
from pathlib import Path
from prompt_toolkit import HTML, prompt
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter
from prompt_toolkit.completion import PathCompleter
from prompt_toolkit.validation import Validator
from rich import box, print
from rich.console import Console, Group, group
@@ -36,26 +35,16 @@ else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def welcome(available_releases: tuple | None = None) -> None:
def welcome():
@group()
def text():
if (platform_specific := _platform_specific_help()) is not None:
if (platform_specific := _platform_specific_help()) != "":
yield platform_specific
yield ""
yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center",
)
if available_releases is not None:
latest_stable = available_releases[0][0]
last_pre = available_releases[1][0]
yield ""
yield Text.from_markup(
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
)
yield Text.from_markup(
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
)
console.rule()
print(
@@ -72,30 +61,19 @@ def welcome(available_releases: tuple | None = None) -> None:
console.line()
def choose_version(available_releases: tuple | None = None) -> str:
"""
Prompt the user to choose an Invoke version to install
"""
# short circuit if we couldn't get a version list
# still try to install the latest stable version
if available_releases is None:
return "stable"
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
choices = available_releases[0] + available_releases[1]
response = prompt(
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":exclamation: Directory {dest} already exists :exclamation:")
dest_confirmed = Confirm.ask(
":stop_sign: (re)install in this location?",
default=False,
)
else:
print(f"InvokeAI will be installed in {dest}")
dest_confirmed = Confirm.ask("Use this location?", default=True)
console.line()
return "stable" if response == "" else response
return dest_confirmed
def user_wants_auto_configuration() -> bool:
@@ -131,23 +109,7 @@ def user_wants_auto_configuration() -> bool:
return choice.lower().startswith("a")
def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":stop_sign: Directory {dest} already exists!")
print(" Is this location correct?")
default = False
else:
print(f":file_folder: InvokeAI will be installed in {dest}")
default = True
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
console.line()
return dest_confirmed
def dest_path(dest=None) -> Path | None:
def dest_path(dest=None) -> Path:
"""
Prompt the user for the destination path and create the path
@@ -162,21 +124,25 @@ def dest_path(dest=None) -> Path | None:
else:
dest = Path.cwd().expanduser().resolve()
prev_dest = init_path = dest
dest_confirmed = False
dest_confirmed = confirm_install(dest)
while not dest_confirmed:
browse_start = (dest or Path.cwd()).expanduser().resolve()
# if the given destination already exists, the starting point for browsing is its parent directory.
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
# if the destination dir does NOT exist, then the user must have changed their mind about the selection.
# since we can't read their mind, start browsing at Path.cwd().
browse_start = (prev_dest.parent if prev_dest.exists() else Path.cwd()).expanduser().resolve()
path_completer = PathCompleter(
only_directories=True,
expanduser=True,
get_paths=lambda: [str(browse_start)], # noqa: B023
get_paths=lambda: [browse_start], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
)
console.line()
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
console.print(f"[orange3]Please select the destination directory for the installation:[/] \\[{browse_start}]: ")
selected = prompt(
">>> ",
complete_in_thread=True,
@@ -189,7 +155,6 @@ def dest_path(dest=None) -> Path | None:
)
prev_dest = dest
dest = Path(selected)
console.line()
dest_confirmed = confirm_install(dest.expanduser().resolve())
@@ -217,45 +182,41 @@ def dest_path(dest=None) -> Path | None:
console.rule("Goodbye!")
class GpuType(Enum):
CUDA = "cuda"
CUDA_AND_DML = "cuda_and_dml"
ROCM = "rocm"
CPU = "cpu"
AUTODETECT = "autodetect"
def select_gpu() -> GpuType:
def graphical_accelerator():
"""
Prompt the user to select the GPU driver
Prompt the user to select the graphical accelerator in their system
This does not validate user's choices (yet), but only offers choices
valid for the platform.
CUDA is the fallback.
We may be able to detect the GPU driver by shelling out to `modprobe` or `lspci`,
but this is not yet supported or reliable. Also, some users may have exotic preferences.
"""
if ARCH == "arm64" and OS != "Darwin":
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
return GpuType.CPU
return "cpu"
nvidia = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
GpuType.CUDA,
"cuda",
)
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
GpuType.CUDA_AND_DML,
"cuda_and_dml",
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
GpuType.ROCM,
"rocm",
)
cpu = (
"Do not install any GPU support, use CPU for generation (slow)",
GpuType.CPU,
"no compatible GPU, or specifically prefer to use the CPU",
"cpu",
)
autodetect = (
idk = (
"I'm not sure what to choose",
GpuType.AUTODETECT,
"idk",
)
options = []
if OS == "Windows":
options = [nvidia, nvidia_with_dml, cpu]
if OS == "Linux":
@@ -269,7 +230,7 @@ def select_gpu() -> GpuType:
return options[0][1]
# "I don't know" is always added the last option
options.append(autodetect) # type: ignore
options.append(idk)
options = {str(i): opt for i, opt in enumerate(options, 1)}
@@ -304,9 +265,9 @@ def select_gpu() -> GpuType:
),
)
if options[choice][1] is GpuType.AUTODETECT:
if options[choice][1] == "idk":
console.print(
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types."
"No problem. We will try to install a version that [i]should[/i] be compatible. :crossed_fingers:"
)
return options[choice][1]
@@ -330,7 +291,7 @@ def windows_long_paths_registry() -> None:
"""
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit")
syntax = Syntax(code.read(), line_numbers=True)
console.print(
Panel(
@@ -340,7 +301,7 @@ def windows_long_paths_registry() -> None:
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
"",
"This is the change that will be applied:",
str(syntax),
syntax,
]
)
),
@@ -379,7 +340,7 @@ def introduction() -> None:
console.line(2)
def _platform_specific_help() -> Text | None:
def _platform_specific_help() -> str:
if OS == "Darwin":
text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
@@ -393,5 +354,5 @@ def _platform_specific_help() -> Text | None:
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
)
else:
return
text = ""
return text

View File

@@ -15,7 +15,7 @@ echo 4. Download and install models
echo 5. Change InvokeAI startup options
echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 7. Open the developer console
echo 8. Update InvokeAI (DEPRECATED - please use the installer)
echo 8. Update InvokeAI
echo 9. Run the InvokeAI image database maintenance script
echo 10. Command-line help
echo Q - Quit
@@ -52,10 +52,8 @@ IF /I "%choice%" == "1" (
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%choice%" == "8" (
echo UPDATING FROM WITHIN THE APP IS BEING DEPRECATED.
echo Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.
timeout 4
python -m invokeai.frontend.install.invokeai_update
echo Running invokeai-update...
python -m invokeai.frontend.install.invokeai_update
) ELSE IF /I "%choice%" == "9" (
echo Running the db maintenance script...
python .venv\Scripts\invokeai-db-maintenance.exe
@@ -79,3 +77,4 @@ pause
:ending
exit /b

View File

@@ -90,9 +90,7 @@ do_choice() {
;;
8)
clear
printf "UPDATING FROM WITHIN THE APP IS BEING DEPRECATED\n"
printf "Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.\n"
sleep 4
printf "Update InvokeAI\n"
python -m invokeai.frontend.install.invokeai_update
;;
9)
@@ -124,7 +122,7 @@ do_dialog() {
5 "Change InvokeAI startup options"
6 "Re-run the configure script to fix a broken install or to complete a major upgrade"
7 "Open the developer console"
8 "Update InvokeAI (DEPRECATED - please use the installer)"
8 "Update InvokeAI"
9 "Run the InvokeAI image database maintenance script"
10 "Command-line help"
)

View File

@@ -0,0 +1,72 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
PUSHD "%~dp0"
set INVOKE_AI_VERSION=latest
set arg=%1
if "%arg%" neq "" (
if "%arg:~0,2%" equ "/?" (
echo Usage: update.bat ^<release name or branch^>
echo Updates InvokeAI to use the indicated version of the code base.
echo Find the version or branch for the release you want, and pass it as the argument.
echo For example '.\update.bat v2.2.5' for release 2.2.5.
echo '.\update.bat main' for the latest development version
echo.
echo If no argument provided then will install the most recent release, equivalent to
echo '.\update.bat latest'
exit /b
) else (
set INVOKE_AI_VERSION=%arg%
)
)
set INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/!INVOKE_AI_VERSION!.zip"
set INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/!INVOKE_AI_VERSION!/environments-and-requirements/requirements-base.txt
set INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
call curl -I "%INVOKE_AI_DEP%" -fs >.tmp.out
if %errorlevel% neq 0 (
echo '!INVOKE_AI_VERSION!' is not a known branch name or tag. Please check the version and try again.
echo "Press any key to continue"
pause
exit /b
)
del .tmp.out
echo This script will update InvokeAI and all its dependencies to !INVOKE_AI_SRC!.
echo If you do not want to do this, press control-C now!
pause
call curl -L "%INVOKE_AI_DEP%" > environments-and-requirements/requirements-base.txt
call curl -L "%INVOKE_AI_MODELS%" > configs/INITIAL_MODELS.yaml
call .venv\Scripts\activate.bat
call .venv\Scripts\python -mpip install -r requirements.txt
if %errorlevel% neq 0 (
echo Installation of requirements failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
call .venv\Scripts\python -mpip install !INVOKE_AI_SRC!
if %errorlevel% neq 0 (
echo Installation of InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
@rem call .venv\Scripts\invokeai-configure --root=.
@rem if %errorlevel% neq 0 (
@rem echo Configuration InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
@rem pause
@rem exit /b
@rem )
echo InvokeAI has been updated to '%INVOKE_AI_VERSION%'
echo "Press any key to continue"
pause
endlocal

View File

@@ -0,0 +1,58 @@
#!/usr/bin/env bash
set -eu
if [ $# -ge 1 ] && [ "${1:0:2}" == "-h" ]; then
echo "Usage: update.sh <release>"
echo "Updates InvokeAI to use the indicated version of the code base."
echo "Find the version or branch for the release you want, and pass it as the argument."
echo "For example: update.sh v2.2.5 for release 2.2.5."
echo " update.sh main for the current development version."
echo ""
echo "If no argument provided then will install the version tagged with 'latest', equivalent to"
echo "update.sh latest"
exit -1
fi
INVOKE_AI_VERSION=${1:-latest}
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/$INVOKE_AI_VERSION.zip"
INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/environments-and-requirements/requirements-base.txt
INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
function _err_exit {
if test "$1" -ne 0
then
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "Update cannot continue. Please report this error to https://github.com/invoke-ai/InvokeAI/issues"
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
if ! curl -I "$INVOKE_AI_DEP" -fs >/dev/null; then
echo \'$INVOKE_AI_VERSION\' is not a known branch name or tag. Please check the version and try again.
exit
fi
echo This script will update InvokeAI and all its dependencies to version \'$INVOKE_AI_VERSION\'.
echo If you do not want to do this, press control-C now!
read -p "Press any key to continue, or CTRL-C to exit..."
curl -L "$INVOKE_AI_DEP" > environments-and-requirements/requirements-base.txt
curl -L "$INVOKE_AI_MODELS" > configs/INITIAL_MODELS.yaml
. .venv/bin/activate
./.venv/bin/python -mpip install -r requirements.txt
_err_exit $? "The pip program failed to install InvokeAI's requirements."
./.venv/bin/python -mpip install $INVOKE_AI_SRC
_err_exit $? "The pip program failed to install InvokeAI."
echo InvokeAI updated to \'$INVOKE_AI_VERSION\'

View File

@@ -2,7 +2,6 @@
from logging import Logger
from invokeai.app.services.item_storage.item_storage_memory import ItemStorageMemory
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager.metadata import ModelMetadataStore
from invokeai.backend.util.logging import InvokeAILogger
@@ -23,6 +22,7 @@ from ..services.invocation_queue.invocation_queue_memory import MemoryInvocation
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
@@ -80,7 +80,7 @@ class ApiDependencies:
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = ItemStorageMemory[GraphExecutionState]()
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)

View File

@@ -1,7 +1,7 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import pathlib
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
@@ -27,7 +27,6 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..dependencies import ApiDependencies
@@ -416,57 +415,3 @@ async def sync_models_to_config() -> Response:
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)
@model_records_router.put(
"/merge",
operation_id="merge",
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models.
keys: List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name: Name for the merged model [Concat model names]
alpha: Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force: If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp: Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory: Specify a directory to store the merged model in [models directory]
"""
print(f"here i am, keys={keys}")
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@@ -14,7 +14,7 @@ class SocketIO:
def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
app.mount("/ws", self.__app)
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)

View File

@@ -17,6 +17,7 @@ from controlnet_aux import (
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
SamDetector,
ZoeDetector,
@@ -29,8 +30,6 @@ from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from ...backend.model_management import BaseModelType
from .baseinvocation import (
@@ -276,6 +275,31 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
return processed_image
@invocation(
"openpose_image_processor",
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
version="1.2.0",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
@invocation(
"midas_depth_image_processor",
title="Midas Depth Processor",
@@ -578,60 +602,3 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
color_map = Image.fromarray(color_map)
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
"depth_anything_image_processor",
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.0.0",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
offload: bool = InputField(default=False)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
if image.mode == "RGBA":
image = image.convert("RGB")
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
return processed_image
@invocation(
"dw_openpose_image_processor",
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.0.0",
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
dw_openpose = DWOpenposeDetector()
processed_image = dw_openpose(
image,
draw_face=self.draw_face,
draw_hands=self.draw_hands,
draw_body=self.draw_body,
resolution=self.image_resolution,
)
return processed_image

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import math
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import List, Literal, Optional, Union
@@ -1229,57 +1228,3 @@ class CropLatentsCoreInvocation(BaseInvocation):
context.services.latents.save(name, cropped_latents)
return build_latents_output(latents_name=name, latents=cropped_latents)
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image (in pixels)")
height: int = OutputField(description="The ideal height of the image (in pixels)")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.2",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR):
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
aspect = self.width / self.height
dimension = 512
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
dimension = 768
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)

View File

@@ -5,12 +5,12 @@ from typing import Literal
import cv2
import numpy as np
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device

View File

@@ -173,10 +173,10 @@ from __future__ import annotations
import os
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf
from pydantic import Field
from pydantic import Field, TypeAdapter
from pydantic.config import JsonDict
from pydantic_settings import SettingsConfigDict
@@ -251,11 +251,7 @@ class InvokeAIAppConfig(InvokeAISettings):
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
# Development
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
@@ -274,7 +270,7 @@ class InvokeAIAppConfig(InvokeAISettings):
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
@@ -284,9 +280,6 @@ class InvokeAIAppConfig(InvokeAISettings):
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# MODEL IMPORT
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
@@ -296,7 +289,6 @@ class InvokeAIAppConfig(InvokeAISettings):
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
# this is not referred to in the source code and can be removed entirely
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
@@ -336,9 +328,13 @@ class InvokeAIAppConfig(InvokeAISettings):
super().parse_args(argv)
if self.singleton_init and not clobber:
# When setting values in this way, set validate_assignment to true if you want to validate the value.
for k, v in self.singleton_init.items():
setattr(self, k, v)
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(
self,
k,
TypeAdapter(hints[k]).validate_python(self.singleton_init[k]),
)
@classmethod
def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig:
@@ -453,11 +449,6 @@ class InvokeAIAppConfig(InvokeAISettings):
disabled_in_config = not self.xformers_enabled
return disabled_in_config and self.attention_type != "xformers"
@property
def profiles_path(self) -> Path:
"""Path to the graph profiles directory."""
return self._resolve(self.profiles_dir)
@staticmethod
def find_root() -> Path:
"""Choose the runtime root directory when not specified on command line or init file."""

View File

@@ -208,6 +208,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
job = self._queue.get(timeout=1)
except Empty:
continue
try:
job.job_started = get_iso_timestamp()
self._do_download(job)

View File

@@ -154,7 +154,7 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Image record not found")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image metadata")
self.__invoker.services.logger.error("Problem getting image DTO")
raise e
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:

View File

@@ -1,16 +1,11 @@
import time
import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Event, Thread
from typing import Optional
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
from invokeai.app.services.invocation_stats.invocation_stats_common import (
GESStatsNotFoundError,
)
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .invocation_processor_base import InvocationProcessorABC
@@ -23,7 +18,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker: Invoker) -> None:
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
@@ -44,27 +39,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
self.__threadLimit.acquire()
queue_item: Optional[InvocationQueueItem] = None
profiler = (
Profiler(
logger=self.__invoker.services.logger,
output_dir=self.__invoker.services.configuration.profiles_path,
prefix=self.__invoker.services.configuration.profile_prefix,
)
if self.__invoker.services.configuration.profile_graphs
else None
)
def stats_cleanup(graph_execution_state_id: str) -> None:
if profiler:
profile_path = profiler.stop()
stats_path = profile_path.with_suffix(".json")
self.__invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=graph_execution_state_id, output_path=stats_path
)
with suppress(GESStatsNotFoundError):
self.__invoker.services.performance_statistics.log_stats(graph_execution_state_id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state_id)
while not stop_event.is_set():
try:
queue_item = self.__invoker.services.queue.get()
@@ -75,10 +49,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# do not hammer the queue
time.sleep(0.5)
continue
if profiler and profiler.profile_id != queue_item.graph_execution_state_id:
profiler.start(profile_id=queue_item.graph_execution_state_id)
try:
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
@@ -167,7 +137,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
pass
except CanceledException:
stats_cleanup(graph_execution_state.id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
@@ -192,6 +162,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error_type=e.__class__.__name__,
error=error,
)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so
@@ -223,13 +194,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error=traceback.format_exc(),
)
elif is_complete:
self.__invoker.services.performance_statistics.log_stats(graph_execution_state.id)
self.__invoker.services.events.emit_graph_execution_complete(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
)
stats_cleanup(graph_execution_state.id)
except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor

View File

@@ -30,10 +30,8 @@ writes to the system log is stored in InvocationServices.performance_statistics.
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from pathlib import Path
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invocation_stats.invocation_stats_common import InvocationStatsSummary
class InvocationStatsServiceBase(ABC):
@@ -63,9 +61,8 @@ class InvocationStatsServiceBase(ABC):
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph.
:param graph_execution_state_id: The id of the session whose stats to reset.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@@ -73,26 +70,5 @@ class InvocationStatsServiceBase(ABC):
def log_stats(self, graph_execution_state_id: str):
"""
Write out the accumulated statistics to the log or somewhere else.
:param graph_execution_state_id: The id of the session whose stats to log.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
pass
@abstractmethod
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
"""
Gets the accumulated statistics for the indicated graph.
:param graph_execution_state_id: The id of the session whose stats to get.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
pass
@abstractmethod
def dump_stats(self, graph_execution_state_id: str, output_path: Path) -> None:
"""
Write out the accumulated statistics to the indicated path as JSON.
:param graph_execution_state_id: The id of the session whose stats to dump.
:param output_path: The file to write the stats to.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
pass

View File

@@ -1,91 +1,5 @@
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Any, Optional
class GESStatsNotFoundError(Exception):
"""Raised when execution stats are not found for a given Graph Execution State."""
@dataclass
class NodeExecutionStatsSummary:
"""The stats for a specific type of node."""
node_type: str
num_calls: int
time_used_seconds: float
peak_vram_gb: float
@dataclass
class ModelCacheStatsSummary:
"""The stats for the model cache."""
high_water_mark_gb: float
cache_size_gb: float
total_usage_gb: float
cache_hits: int
cache_misses: int
models_cached: int
models_cleared: int
@dataclass
class GraphExecutionStatsSummary:
"""The stats for the graph execution state."""
graph_execution_state_id: str
execution_time_seconds: float
# `wall_time_seconds`, `ram_usage_gb` and `ram_change_gb` are derived from the node execution stats.
# In some situations, there are no node stats, so these values are optional.
wall_time_seconds: Optional[float]
ram_usage_gb: Optional[float]
ram_change_gb: Optional[float]
@dataclass
class InvocationStatsSummary:
"""
The accumulated stats for a graph execution.
Its `__str__` method returns a human-readable stats summary.
"""
vram_usage_gb: Optional[float]
graph_stats: GraphExecutionStatsSummary
model_cache_stats: ModelCacheStatsSummary
node_stats: list[NodeExecutionStatsSummary]
def __str__(self) -> str:
_str = ""
_str = f"Graph stats: {self.graph_stats.graph_execution_state_id}\n"
_str += f"{'Node':>30} {'Calls':>7} {'Seconds':>9} {'VRAM Used':>10}\n"
for summary in self.node_stats:
_str += f"{summary.node_type:>30} {summary.num_calls:>7} {summary.time_used_seconds:>8.3f}s {summary.peak_vram_gb:>9.3f}G\n"
_str += f"TOTAL GRAPH EXECUTION TIME: {self.graph_stats.execution_time_seconds:7.3f}s\n"
if self.graph_stats.wall_time_seconds is not None:
_str += f"TOTAL GRAPH WALL TIME: {self.graph_stats.wall_time_seconds:7.3f}s\n"
if self.graph_stats.ram_usage_gb is not None and self.graph_stats.ram_change_gb is not None:
_str += f"RAM used by InvokeAI process: {self.graph_stats.ram_usage_gb:4.2f}G ({self.graph_stats.ram_change_gb:+5.3f}G)\n"
_str += f"RAM used to load models: {self.model_cache_stats.total_usage_gb:4.2f}G\n"
if self.vram_usage_gb:
_str += f"VRAM in use: {self.vram_usage_gb:4.3f}G\n"
_str += "RAM cache statistics:\n"
_str += f" Model cache hits: {self.model_cache_stats.cache_hits}\n"
_str += f" Model cache misses: {self.model_cache_stats.cache_misses}\n"
_str += f" Models cached: {self.model_cache_stats.models_cached}\n"
_str += f" Models cleared from cache: {self.model_cache_stats.models_cleared}\n"
_str += f" Cache high water mark: {self.model_cache_stats.high_water_mark_gb:4.2f}/{self.model_cache_stats.cache_size_gb:4.2f}G\n"
return _str
def as_dict(self) -> dict[str, Any]:
"""Returns the stats as a dictionary."""
return asdict(self)
from dataclasses import dataclass
@dataclass
@@ -141,33 +55,12 @@ class GraphExecutionStats:
return last_node
def get_graph_stats_summary(self, graph_execution_state_id: str) -> GraphExecutionStatsSummary:
"""Get a summary of the graph stats."""
first_node = self.get_first_node_stats()
last_node = self.get_last_node_stats()
def get_pretty_log(self, graph_execution_state_id: str) -> str:
log = f"Graph stats: {graph_execution_state_id}\n"
log += f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}\n"
wall_time_seconds: Optional[float] = None
ram_usage_gb: Optional[float] = None
ram_change_gb: Optional[float] = None
if last_node and first_node:
wall_time_seconds = last_node.end_time - first_node.start_time
ram_usage_gb = last_node.end_ram_gb
ram_change_gb = last_node.end_ram_gb - first_node.start_ram_gb
return GraphExecutionStatsSummary(
graph_execution_state_id=graph_execution_state_id,
execution_time_seconds=self.get_total_run_time(),
wall_time_seconds=wall_time_seconds,
ram_usage_gb=ram_usage_gb,
ram_change_gb=ram_change_gb,
)
def get_node_stats_summaries(self) -> list[NodeExecutionStatsSummary]:
"""Get a summary of the node stats."""
summaries: list[NodeExecutionStatsSummary] = []
# Log stats aggregated by node type.
node_stats_by_type: dict[str, list[NodeExecutionStats]] = defaultdict(list)
for node_stats in self._node_stats_list:
node_stats_by_type[node_stats.invocation_type].append(node_stats)
@@ -175,9 +68,17 @@ class GraphExecutionStats:
num_calls = len(node_type_stats_list)
time_used = sum([n.total_time() for n in node_type_stats_list])
peak_vram = max([n.peak_vram_gb for n in node_type_stats_list])
summary = NodeExecutionStatsSummary(
node_type=node_type, num_calls=num_calls, time_used_seconds=time_used, peak_vram_gb=peak_vram
)
summaries.append(summary)
log += f"{node_type:>30} {num_calls:>4} {time_used:7.3f}s {peak_vram:4.3f}G\n"
return summaries
# Log stats for the entire graph.
log += f"TOTAL GRAPH EXECUTION TIME: {self.get_total_run_time():7.3f}s\n"
first_node = self.get_first_node_stats()
last_node = self.get_last_node_stats()
if first_node is not None and last_node is not None:
total_wall_time = last_node.end_time - first_node.start_time
ram_change = last_node.end_ram_gb - first_node.start_ram_gb
log += f"TOTAL GRAPH WALL TIME: {total_wall_time:7.3f}s\n"
log += f"RAM used by InvokeAI process: {last_node.end_ram_gb:4.2f}G ({ram_change:+5.3f}G)\n"
return log

View File

@@ -1,7 +1,5 @@
import json
import time
from contextlib import contextmanager
from pathlib import Path
import psutil
import torch
@@ -9,19 +7,10 @@ import torch
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
from invokeai.backend.model_management.model_cache import CacheStats
from .invocation_stats_base import InvocationStatsServiceBase
from .invocation_stats_common import (
GESStatsNotFoundError,
GraphExecutionStats,
GraphExecutionStatsSummary,
InvocationStatsSummary,
ModelCacheStatsSummary,
NodeExecutionStats,
NodeExecutionStatsSummary,
)
from .invocation_stats_common import GraphExecutionStats, NodeExecutionStats
# Size of 1GB in bytes.
GB = 2**30
@@ -64,7 +53,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
finally:
# Record state after the invocation.
node_stats = NodeExecutionStats(
invocation_type=invocation.get_type(),
invocation_type=invocation.type,
start_time=start_time,
end_time=time.time(),
start_ram_gb=start_ram / GB,
@@ -79,11 +68,11 @@ class InvocationStatsService(InvocationStatsServiceBase):
This shouldn't be necessary, but we don't have totally robust upstream handling of graph completions/errors, so
for now we call this function periodically to prevent them from accumulating.
"""
to_prune: list[str] = []
to_prune = []
for graph_execution_state_id in self._stats:
try:
graph_execution_state = self._invoker.services.graph_execution_manager.get(graph_execution_state_id)
except ItemNotFoundError:
except Exception:
# TODO(ryand): What would cause this? Should this exception just be allowed to propagate?
logger.warning(f"Failed to get graph state for {graph_execution_state_id}.")
continue
@@ -106,66 +95,31 @@ class InvocationStatsService(InvocationStatsServiceBase):
del self._stats[graph_execution_state_id]
del self._cache_stats[graph_execution_state_id]
except KeyError as e:
raise GESStatsNotFoundError(
f"Attempted to clear statistics for unknown graph {graph_execution_state_id}: {e}."
) from e
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_state_id}: {e}.")
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)
node_stats_summaries = self._get_node_summaries(graph_execution_state_id)
model_cache_stats_summary = self._get_model_cache_summary(graph_execution_state_id)
vram_usage_gb = torch.cuda.memory_allocated() / GB if torch.cuda.is_available() else None
return InvocationStatsSummary(
graph_stats=graph_stats_summary,
model_cache_stats=model_cache_stats_summary,
node_stats=node_stats_summaries,
vram_usage_gb=vram_usage_gb,
)
def log_stats(self, graph_execution_state_id: str) -> None:
stats = self.get_stats(graph_execution_state_id)
logger.info(str(stats))
def dump_stats(self, graph_execution_state_id: str, output_path: Path) -> None:
stats = self.get_stats(graph_execution_state_id)
with open(output_path, "w") as f:
f.write(json.dumps(stats.as_dict(), indent=2))
def _get_model_cache_summary(self, graph_execution_state_id: str) -> ModelCacheStatsSummary:
def log_stats(self, graph_execution_state_id: str):
try:
graph_stats = self._stats[graph_execution_state_id]
cache_stats = self._cache_stats[graph_execution_state_id]
except KeyError as e:
raise GESStatsNotFoundError(
f"Attempted to get model cache statistics for unknown graph {graph_execution_state_id}: {e}."
) from e
logger.warning(f"Attempted to log statistics for unknown graph {graph_execution_state_id}: {e}.")
return
return ModelCacheStatsSummary(
cache_hits=cache_stats.hits,
cache_misses=cache_stats.misses,
high_water_mark_gb=cache_stats.high_watermark / GB,
cache_size_gb=cache_stats.cache_size / GB,
total_usage_gb=sum(list(cache_stats.loaded_model_sizes.values())) / GB,
models_cached=cache_stats.in_cache,
models_cleared=cache_stats.cleared,
)
log = graph_stats.get_pretty_log(graph_execution_state_id)
def _get_graph_summary(self, graph_execution_state_id: str) -> GraphExecutionStatsSummary:
try:
graph_stats = self._stats[graph_execution_state_id]
except KeyError as e:
raise GESStatsNotFoundError(
f"Attempted to get graph statistics for unknown graph {graph_execution_state_id}: {e}."
) from e
hwm = cache_stats.high_watermark / GB
tot = cache_stats.cache_size / GB
loaded = sum(list(cache_stats.loaded_model_sizes.values())) / GB
log += f"RAM used to load models: {loaded:4.2f}G\n"
if torch.cuda.is_available():
log += f"VRAM in use: {(torch.cuda.memory_allocated() / GB):4.3f}G\n"
log += "RAM cache statistics:\n"
log += f" Model cache hits: {cache_stats.hits}\n"
log += f" Model cache misses: {cache_stats.misses}\n"
log += f" Models cached: {cache_stats.in_cache}\n"
log += f" Models cleared from cache: {cache_stats.cleared}\n"
log += f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G\n"
logger.info(log)
return graph_stats.get_graph_stats_summary(graph_execution_state_id)
def _get_node_summaries(self, graph_execution_state_id: str) -> list[NodeExecutionStatsSummary]:
try:
graph_stats = self._stats[graph_execution_state_id]
except KeyError as e:
raise GESStatsNotFoundError(
f"Attempted to get node statistics for unknown graph {graph_execution_state_id}: {e}."
) from e
return graph_stats.get_node_stats_summaries()
del self._stats[graph_execution_state_id]
del self._cache_stats[graph_execution_state_id]

View File

@@ -1,8 +1,10 @@
from abc import ABC, abstractmethod
from typing import Callable, Generic, TypeVar
from typing import Callable, Generic, Optional, TypeVar
from pydantic import BaseModel
from invokeai.app.services.shared.pagination import PaginatedResults
T = TypeVar("T", bound=BaseModel)
@@ -20,26 +22,26 @@ class ItemStorageABC(ABC, Generic[T]):
@abstractmethod
def get(self, item_id: str) -> T:
"""
Gets the item.
:param item_id: the id of the item to get
:raises ItemNotFoundError: if the item is not found
"""
"""Gets the item, parsing it into a Pydantic model"""
pass
@abstractmethod
def get_raw(self, item_id: str) -> Optional[str]:
"""Gets the raw item as a string, skipping Pydantic parsing"""
pass
@abstractmethod
def set(self, item: T) -> None:
"""
Sets the item. The id will be extracted based on id_field.
:param item: the item to set
"""
"""Sets the item"""
pass
@abstractmethod
def delete(self, item_id: str) -> None:
"""
Deletes the item, if it exists.
"""
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
"""Gets a paginated list of items"""
pass
@abstractmethod
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
pass
def on_changed(self, on_changed: Callable[[T], None]) -> None:

View File

@@ -1,5 +0,0 @@
class ItemNotFoundError(KeyError):
"""Raised when an item is not found in storage"""
def __init__(self, item_id: str) -> None:
super().__init__(f"Item with id {item_id} not found")

View File

@@ -1,52 +0,0 @@
from collections import OrderedDict
from contextlib import suppress
from typing import Generic, TypeVar
from pydantic import BaseModel
from invokeai.app.services.item_storage.item_storage_base import ItemStorageABC
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
T = TypeVar("T", bound=BaseModel)
class ItemStorageMemory(ItemStorageABC[T], Generic[T]):
"""
Provides a simple in-memory storage for items, with a maximum number of items to store.
The storage uses the LRU strategy to evict items from storage when the max has been reached.
"""
def __init__(self, id_field: str = "id", max_items: int = 10) -> None:
super().__init__()
if max_items < 1:
raise ValueError("max_items must be at least 1")
if not id_field:
raise ValueError("id_field must not be empty")
self._id_field = id_field
self._items: OrderedDict[str, T] = OrderedDict()
self._max_items = max_items
def get(self, item_id: str) -> T:
# If the item exists, move it to the end of the OrderedDict.
item = self._items.pop(item_id, None)
if item is None:
raise ItemNotFoundError(item_id)
self._items[item_id] = item
return item
def set(self, item: T) -> None:
item_id = getattr(item, self._id_field)
if item_id in self._items:
# If item already exists, remove it and add it to the end
self._items.pop(item_id)
elif len(self._items) >= self._max_items:
# If cache is full, evict the least recently used item
self._items.popitem(last=False)
self._items[item_id] = item
self._on_changed(item)
def delete(self, item_id: str) -> None:
# This is a no-op if the item doesn't exist.
with suppress(KeyError):
del self._items[item_id]
self._on_deleted(item_id)

View File

@@ -0,0 +1,147 @@
import sqlite3
import threading
from typing import Generic, Optional, TypeVar, get_args
from pydantic import BaseModel, TypeAdapter
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .item_storage_base import ItemStorageABC
T = TypeVar("T", bound=BaseModel)
class SqliteItemStorage(ItemStorageABC, Generic[T]):
_table_name: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_id_field: str
_lock: threading.RLock
_validator: Optional[TypeAdapter[T]]
def __init__(self, db: SqliteDatabase, table_name: str, id_field: str = "id"):
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._table_name = table_name
self._id_field = id_field # TODO: validate that T has this field
self._cursor = self._conn.cursor()
self._validator: Optional[TypeAdapter[T]] = None
self._create_table()
def _create_table(self):
try:
self._lock.acquire()
self._cursor.execute(
f"""CREATE TABLE IF NOT EXISTS {self._table_name} (
item TEXT,
id TEXT GENERATED ALWAYS AS (json_extract(item, '$.{self._id_field}')) VIRTUAL NOT NULL);"""
)
self._cursor.execute(
f"""CREATE UNIQUE INDEX IF NOT EXISTS {self._table_name}_id ON {self._table_name}(id);"""
)
finally:
self._lock.release()
def _parse_item(self, item: str) -> T:
if self._validator is None:
"""
We don't get access to `__orig_class__` in `__init__()`, and we need this before start(), so
we can create it when it is first needed instead.
__orig_class__ is technically an implementation detail of the typing module, not a supported API
"""
self._validator = TypeAdapter(get_args(self.__orig_class__)[0]) # type: ignore [attr-defined]
return self._validator.validate_json(item)
def set(self, item: T):
try:
self._lock.acquire()
self._cursor.execute(
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.model_dump_json(warnings=False, exclude_none=True),),
)
self._conn.commit()
finally:
self._lock.release()
self._on_changed(item)
def get(self, id: str) -> Optional[T]:
try:
self._lock.acquire()
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
result = self._cursor.fetchone()
finally:
self._lock.release()
if not result:
return None
return self._parse_item(result[0])
def get_raw(self, id: str) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
result = self._cursor.fetchone()
finally:
self._lock.release()
if not result:
return None
return result[0]
def delete(self, id: str):
try:
self._lock.acquire()
self._cursor.execute(f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),))
self._conn.commit()
finally:
self._lock.release()
self._on_deleted(id)
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} LIMIT ? OFFSET ?;""",
(per_page, page * per_page),
)
result = self._cursor.fetchall()
items = [self._parse_item(r[0]) for r in result]
self._cursor.execute(f"""SELECT count(*) FROM {self._table_name};""")
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
pageCount = int(count / per_page) + 1
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE item LIKE ? LIMIT ? OFFSET ?;""",
(f"%{query}%", per_page, page * per_page),
)
result = self._cursor.fetchall()
items = [self._parse_item(r[0]) for r in result]
self._cursor.execute(
f"""SELECT count(*) FROM {self._table_name} WHERE item LIKE ?;""",
(f"%{query}%",),
)
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
pageCount = int(count / per_page) + 1
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)

View File

@@ -165,8 +165,8 @@ class ModelInstallJob(BaseModel):
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
bytes: int = Field(
default=0, description="For a remote model, the number of bytes downloaded so far (may not be available)"
bytes: Optional[int] = Field(
default=None, description="For a remote model, the number of bytes downloaded so far (may not be available)"
)
total_bytes: int = Field(default=0, description="Total size of the model to be installed")
source_metadata: Optional[AnyModelRepoMetadata] = Field(

View File

@@ -535,19 +535,19 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from Civitai or HuggingFace will be handled specially
url_patterns = {
r"^https?://civitai.com/": CivitaiMetadataFetch,
r"^https?://huggingface.co/[^/]+/[^/]+$": HuggingFaceMetadataFetch,
r"https?://civitai.com/": CivitaiMetadataFetch,
r"https?://huggingface.co/": HuggingFaceMetadataFetch,
}
metadata = None
for pattern, fetcher in url_patterns.items():
if re.match(pattern, str(source.url), re.IGNORECASE):
metadata = fetcher(self._session).from_url(source.url)
break
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
else:
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
return self._import_remote_model(
source=source,
config=config,
@@ -586,7 +586,6 @@ class ModelInstallService(ModelInstallServiceBase):
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
self._logger.info(f"Queuing {source} for downloading")
self._logger.debug(f"remote_files={remote_files}")
for model_file in remote_files:
url = model_file.url
path = model_file.path

View File

@@ -2,7 +2,7 @@
import copy
import itertools
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
import networkx as nx
from pydantic import BaseModel, ConfigDict, field_validator, model_validator
@@ -141,16 +141,6 @@ def are_connections_compatible(
return are_connection_types_compatible(from_node_field, to_node_field)
T = TypeVar("T")
def copydeep(obj: T) -> T:
"""Deep-copies an object. If it is a pydantic model, use the model's copy method."""
if isinstance(obj, BaseModel):
return obj.model_copy(deep=True)
return copy.deepcopy(obj)
class NodeAlreadyInGraphError(ValueError):
pass
@@ -540,7 +530,7 @@ class Graph(BaseModel):
except NodeNotFoundError:
return False
def get_node(self, node_path: str) -> BaseInvocation:
def get_node(self, node_path: str) -> InvocationsUnion:
"""Gets a node from the graph using a node path."""
# Materialized graphs may have nodes at the top level
graph, node_id = self._get_graph_and_node(node_path)
@@ -891,7 +881,7 @@ class GraphExecutionState(BaseModel):
# If next is still none, there's no next node, return None
return next_node
def complete(self, node_id: str, output: BaseInvocationOutput) -> None:
def complete(self, node_id: str, output: InvocationOutputsUnion):
"""Marks a node as complete"""
if node_id not in self.execution_graph.nodes:
@@ -1128,22 +1118,17 @@ class GraphExecutionState(BaseModel):
def _prepare_inputs(self, node: BaseInvocation):
input_edges = [e for e in self.execution_graph.edges if e.destination.node_id == node.id]
# Inputs must be deep-copied, else if a node mutates the object, other nodes that get the same input
# will see the mutation.
if isinstance(node, CollectInvocation):
output_collection = [
copydeep(getattr(self.results[edge.source.node_id], edge.source.field))
getattr(self.results[edge.source.node_id], edge.source.field)
for edge in input_edges
if edge.destination.field == "item"
]
node.collection = output_collection
else:
for edge in input_edges:
setattr(
node,
edge.destination.field,
copydeep(getattr(self.results[edge.source.node_id], edge.source.field)),
)
output_value = getattr(self.results[edge.source.node_id], edge.source.field)
setattr(node, edge.destination.field, output_value)
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:

View File

@@ -7,7 +7,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_1 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_2 import build_migration_2
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import build_migration_3
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_4 import build_migration_4
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import build_migration_5
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -32,7 +31,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_2(image_files=image_files, logger=logger))
migrator.register_migration(build_migration_3(app_config=config, logger=logger))
migrator.register_migration(build_migration_4())
migrator.register_migration(build_migration_5())
migrator.run_migrations()
return db

View File

@@ -1,34 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration5Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._drop_graph_executions(cursor)
def _drop_graph_executions(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `graph_executions` table."""
cursor.execute(
"""--sql
DROP TABLE IF EXISTS graph_executions;
"""
)
def build_migration_5() -> Migration:
"""
Build the migration from database version 4 to 5.
Introduced in v3.6.3, this migration:
- Drops the `graph_executions` table. We are able to do this because we are moving the graph storage
to be purely in-memory.
"""
migration_5 = Migration(
from_version=4,
to_version=5,
callback=Migration5Callback(),
)
return migration_5

View File

@@ -72,12 +72,7 @@ class MigrateModelYamlToDb1:
continue
base_type, model_type, model_name = str(model_key).split("/")
try:
hash = FastModelHash.hash(self.config.models_path / stanza.path)
except OSError:
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
continue
hash = FastModelHash.hash(self.config.models_path / stanza.path)
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()

View File

@@ -31,7 +31,6 @@ class WorkflowRecordOrderBy(str, Enum, metaclass=MetaEnum):
class WorkflowCategory(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class WorkflowMeta(BaseModel):

View File

@@ -1,67 +0,0 @@
import cProfile
from logging import Logger
from pathlib import Path
from typing import Optional
class Profiler:
"""
Simple wrapper around cProfile.
Usage
```
# Create a profiler
profiler = Profiler(logger, output_dir, "sql_query_perf")
# Start a new profile
profiler.start("my_profile")
# Do stuff
profiler.stop()
```
Visualize a profile as a flamegraph with [snakeviz](https://jiffyclub.github.io/snakeviz/)
```sh
snakeviz my_profile.prof
```
Visualize a profile as directed graph with [graphviz](https://graphviz.org/download/) & [gprof2dot](https://github.com/jrfonseca/gprof2dot)
```sh
gprof2dot -f pstats my_profile.prof | dot -Tpng -o my_profile.png
# SVG or PDF may be nicer - you can search for function names
gprof2dot -f pstats my_profile.prof | dot -Tsvg -o my_profile.svg
gprof2dot -f pstats my_profile.prof | dot -Tpdf -o my_profile.pdf
```
"""
def __init__(self, logger: Logger, output_dir: Path, prefix: Optional[str] = None) -> None:
self._logger = logger.getChild(f"profiler.{prefix}" if prefix else "profiler")
self._output_dir = output_dir
self._output_dir.mkdir(parents=True, exist_ok=True)
self._profiler: Optional[cProfile.Profile] = None
self._prefix = prefix
self.profile_id: Optional[str] = None
def start(self, profile_id: str) -> None:
if self._profiler:
self.stop()
self.profile_id = profile_id
self._profiler = cProfile.Profile()
self._profiler.enable()
self._logger.info(f"Started profiling {self.profile_id}.")
def stop(self) -> Path:
if not self._profiler:
raise RuntimeError("Profiler not initialized. Call start() first.")
self._profiler.disable()
filename = f"{self._prefix}_{self.profile_id}.prof" if self._prefix else f"{self.profile_id}.prof"
path = Path(self._output_dir, filename)
self._profiler.dump_stats(path)
self._logger.info(f"Stopped profiling, profile dumped to {path}.")
self._profiler = None
self.profile_id = None
return path

View File

@@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2022 BasicSR Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -1,18 +0,0 @@
"""
Adapted from https://github.com/XPixelGroup/BasicSR
License: Apache-2.0
As of Feb 2024, `basicsr` appears to be unmaintained. It imports a function from `torchvision` that is removed in
`torchvision` 0.17. Here is the deprecation warning:
UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in
0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in
torchvision.transforms.v2.functional.
As a result, a dependency on `basicsr` means we cannot keep our `torchvision` dependency up to date.
Because we only rely on a single class `RRDBNet` from `basicsr`, we've copied the relevant code here and removed the
dependency on `basicsr`.
The code is almost unchanged, only a few type annotations have been added. The license is also copied.
"""

View File

@@ -1,75 +0,0 @@
from typing import Type
import torch
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
@torch.no_grad()
def default_init_weights(
module_list: list[nn.Module] | nn.Module, scale: float = 1, bias_fill: float = 0, **kwargs
) -> None:
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
def make_layer(basic_block: Type[nn.Module], num_basic_block: int, **kwarg) -> nn.Sequential:
"""Make layers by stacking the same blocks.
Args:
basic_block (Type[nn.Module]): nn.Module class for basic block.
num_basic_block (int): number of blocks.
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
# TODO: may write a cpp file
def pixel_unshuffle(x: torch.Tensor, scale: int) -> torch.Tensor:
"""Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)

View File

@@ -1,125 +0,0 @@
import torch
from torch import nn as nn
from torch.nn import functional as F
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
# Empirically, we use 0.2 to scale the residual for better performance
return x5 * 0.2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
# Empirically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
We extend ESRGAN for scale x2 and scale x1.
Note: This is one option for scale 1, scale 2 in RRDBNet.
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_feat (int): Channel number of intermediate features.
Default: 64
num_block (int): Block number in the trunk network. Defaults: 23
num_grow_ch (int): Channels for each growth. Default: 32.
"""
def __init__(
self,
num_in_ch: int,
num_out_ch: int,
scale: int = 4,
num_feat: int = 64,
num_block: int = 23,
num_grow_ch: int = 32,
) -> None:
super(RRDBNet, self).__init__()
self.scale = scale
if scale == 2:
num_in_ch = num_in_ch * 4
elif scale == 1:
num_in_ch = num_in_ch * 16
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.scale == 2:
feat = pixel_unshuffle(x, scale=2)
elif self.scale == 1:
feat = pixel_unshuffle(x, scale=4)
else:
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
# upsample
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out

View File

@@ -1,109 +0,0 @@
import pathlib
from typing import Literal, Union
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.util import download_with_progress_bar
config = InvokeAIAppConfig.get_config()
DEPTH_ANYTHING_MODELS = {
"large": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitl14.pth",
},
"base": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitb14.pth",
},
"small": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vits14.pth",
},
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
def load_model(self, model_size=Literal["large", "base", "small"]):
DEPTH_ANYTHING_MODEL_PATH = pathlib.Path(config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"])
if not DEPTH_ANYTHING_MODEL_PATH.exists():
download_with_progress_bar(DEPTH_ANYTHING_MODELS[model_size]["url"], DEPTH_ANYTHING_MODEL_PATH)
if not self.model or model_size != self.model_size:
del self.model
self.model_size = model_size
match self.model_size:
case "small":
self.model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
case _:
raise TypeError("Not a supported model")
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
self.model.to(choose_torch_device())
return self.model
def to(self, device):
self.model.to(device)
return self
def __call__(self, image, resolution=512, offload=False):
image = np.array(image, dtype=np.uint8)
image = image[:, :, ::-1] / 255.0
image_height, image_width = image.shape[:2]
image = transform({"image": image})["image"]
image = torch.from_numpy(image).unsqueeze(0).to(choose_torch_device())
with torch.no_grad():
depth = self.model(image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
if offload:
del self.model
return depth_map

View File

@@ -1,145 +0,0 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -1,183 +0,0 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from .blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -1,227 +0,0 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -1,81 +0,0 @@
import numpy as np
import torch
from controlnet_aux.util import resize_image
from PIL import Image
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
bodies = pose["bodies"]
faces = pose["faces"]
hands = pose["hands"]
candidate = bodies["candidate"]
subset = bodies["subset"]
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if draw_body:
canvas = draw_bodypose(canvas, candidate, subset)
if draw_hands:
canvas = draw_handpose(canvas, hands)
if draw_face:
canvas = draw_facepose(canvas, faces)
dwpose_image = resize_image(
canvas,
resolution,
)
dwpose_image = Image.fromarray(dwpose_image)
return dwpose_image
class DWOpenposeDetector:
"""
Code from the original implementation of the DW Openpose Detector.
Credits: https://github.com/IDEA-Research/DWPose
"""
def __init__(self) -> None:
self.pose_estimation = Wholebody()
def __call__(
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
) -> Image.Image:
np_image = np.array(image)
H, W, C = np_image.shape
with torch.no_grad():
candidate, subset = self.pose_estimation(np_image)
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:, :18].copy()
body = body.reshape(nums * 18, locs)
score = subset[:, :18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18 * i + j)
else:
score[i][j] = -1
un_visible = subset < 0.3
candidate[un_visible] = -1
# foot = candidate[:, 18:24]
faces = candidate[:, 24:92]
hands = candidate[:, 92:113]
hands = np.vstack([hands, candidate[:, 113:]])
bodies = {"candidate": body, "subset": score}
pose = {"bodies": bodies, "hands": hands, "faces": faces}
return draw_pose(
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
)

View File

@@ -1,128 +0,0 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
import cv2
import numpy as np
def nms(boxes, scores, nms_thr):
"""Single class NMS implemented in Numpy."""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= nms_thr)[0]
order = order[inds + 1]
return keep
def multiclass_nms(boxes, scores, nms_thr, score_thr):
"""Multiclass NMS implemented in Numpy. Class-aware version."""
final_dets = []
num_classes = scores.shape[1]
for cls_ind in range(num_classes):
cls_scores = scores[:, cls_ind]
valid_score_mask = cls_scores > score_thr
if valid_score_mask.sum() == 0:
continue
else:
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
keep = nms(valid_boxes, valid_scores, nms_thr)
if len(keep) > 0:
cls_inds = np.ones((len(keep), 1)) * cls_ind
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
final_dets.append(dets)
if len(final_dets) == 0:
return None
return np.concatenate(final_dets, 0)
def demo_postprocess(outputs, img_size, p6=False):
grids = []
expanded_strides = []
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
hsizes = [img_size[0] // stride for stride in strides]
wsizes = [img_size[1] // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides, strict=False):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
return outputs
def preprocess(img, input_size, swap=(2, 0, 1)):
if len(img.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
else:
padded_img = np.ones(input_size, dtype=np.uint8) * 114
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
def inference_detector(session, oriImg):
input_shape = (640, 640)
img, ratio = preprocess(oriImg, input_shape)
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
output = session.run(None, ort_inputs)
predictions = demo_postprocess(output[0], input_shape)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
isscore = final_scores > 0.3
iscat = final_cls_inds == 0
isbbox = [i and j for (i, j) in zip(isscore, iscat, strict=False)]
final_boxes = final_boxes[isbbox]
else:
final_boxes = np.array([])
return final_boxes

View File

@@ -1,361 +0,0 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
from typing import List, Tuple
import cv2
import numpy as np
import onnxruntime as ort
def preprocess(
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Do preprocessing for RTMPose model inference.
Args:
img (np.ndarray): Input image in shape.
input_size (tuple): Input image size in shape (w, h).
Returns:
tuple:
- resized_img (np.ndarray): Preprocessed image.
- center (np.ndarray): Center of image.
- scale (np.ndarray): Scale of image.
"""
# get shape of image
img_shape = img.shape[:2]
out_img, out_center, out_scale = [], [], []
if len(out_bbox) == 0:
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
for i in range(len(out_bbox)):
x0 = out_bbox[i][0]
y0 = out_bbox[i][1]
x1 = out_bbox[i][2]
y1 = out_bbox[i][3]
bbox = np.array([x0, y0, x1, y1])
# get center and scale
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
# do affine transformation
resized_img, scale = top_down_affine(input_size, scale, center, img)
# normalize image
mean = np.array([123.675, 116.28, 103.53])
std = np.array([58.395, 57.12, 57.375])
resized_img = (resized_img - mean) / std
out_img.append(resized_img)
out_center.append(center)
out_scale.append(scale)
return out_img, out_center, out_scale
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
"""Inference RTMPose model.
Args:
sess (ort.InferenceSession): ONNXRuntime session.
img (np.ndarray): Input image in shape.
Returns:
outputs (np.ndarray): Output of RTMPose model.
"""
all_out = []
# build input
for i in range(len(img)):
input = [img[i].transpose(2, 0, 1)]
# build output
sess_input = {sess.get_inputs()[0].name: input}
sess_output = []
for out in sess.get_outputs():
sess_output.append(out.name)
# run model
outputs = sess.run(sess_output, sess_input)
all_out.append(outputs)
return all_out
def postprocess(
outputs: List[np.ndarray],
model_input_size: Tuple[int, int],
center: Tuple[int, int],
scale: Tuple[int, int],
simcc_split_ratio: float = 2.0,
) -> Tuple[np.ndarray, np.ndarray]:
"""Postprocess for RTMPose model output.
Args:
outputs (np.ndarray): Output of RTMPose model.
model_input_size (tuple): RTMPose model Input image size.
center (tuple): Center of bbox in shape (x, y).
scale (tuple): Scale of bbox in shape (w, h).
simcc_split_ratio (float): Split ratio of simcc.
Returns:
tuple:
- keypoints (np.ndarray): Rescaled keypoints.
- scores (np.ndarray): Model predict scores.
"""
all_key = []
all_score = []
for i in range(len(outputs)):
# use simcc to decode
simcc_x, simcc_y = outputs[i]
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
# rescale keypoints
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
all_key.append(keypoints[0])
all_score.append(scores[0])
return np.array(all_key), np.array(all_score)
def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (left, top, right, bottom)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
# get bbox center and scale
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
scale = np.hstack([x2 - x1, y2 - y1]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray:
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = np.hsplit(bbox_scale, [1])
bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h]))
return bbox_scale
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
"""Rotate a point by an angle.
Args:
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
angle_rad (float): rotation angle in radian
Returns:
np.ndarray: Rotated point in shape (2, )
"""
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
rot_mat = np.array([[cs, -sn], [sn, cs]])
return rot_mat @ pt
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): The 1st point (x,y) in shape (2, )
b (np.ndarray): The 2nd point (x,y) in shape (2, )
Returns:
np.ndarray: The 3rd point.
"""
direction = a - b
c = b + np.r_[-direction[1], direction[0]]
return c
def get_warp_matrix(
center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
shift: Tuple[float, float] = (0.0, 0.0),
inv: bool = False,
) -> np.ndarray:
"""Calculate the affine transformation matrix that can warp the bbox area
in the input image to the output size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: A 2x3 transformation matrix
"""
shift = np.array(shift)
src_w = scale[0]
dst_w = output_size[0]
dst_h = output_size[1]
# compute transformation matrix
rot_rad = np.deg2rad(rot)
src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad)
dst_dir = np.array([0.0, dst_w * -0.5])
# get four corners of the src rectangle in the original image
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale * shift
src[1, :] = center + src_dir + scale * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
# get four corners of the dst rectangle in the input image
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return warp_mat
def top_down_affine(
input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
"""Get the bbox image as the model input by affine transform.
Args:
input_size (dict): The input size of the model.
bbox_scale (dict): The bbox scale of the img.
bbox_center (dict): The bbox center of the img.
img (np.ndarray): The original image.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: img after affine transform.
- np.ndarray[float32]: bbox scale after affine transform.
"""
w, h = input_size
warp_size = (int(w), int(h))
# reshape bbox to fixed aspect ratio
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
# get the affine matrix
center = bbox_center
scale = bbox_scale
rot = 0
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
# do affine transform
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
return img, bbox_scale
def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from simcc representations.
Note:
instance number: N
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (N, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (N, K)
"""
N, K, Wx = simcc_x.shape
simcc_x = simcc_x.reshape(N * K, -1)
simcc_y = simcc_y.reshape(N * K, -1)
# get maximum value locations
x_locs = np.argmax(simcc_x, axis=1)
y_locs = np.argmax(simcc_y, axis=1)
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
max_val_x = np.amax(simcc_x, axis=1)
max_val_y = np.amax(simcc_y, axis=1)
# get maximum value across x and y axis
mask = max_val_x > max_val_y
max_val_x[mask] = max_val_y[mask]
vals = max_val_x
locs[vals <= 0.0] = -1
# reshape
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
"""Modulate simcc distribution with Gaussian.
Args:
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
simcc_split_ratio (int): The split ratio of simcc.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
- np.ndarray[float32]: scores in shape (K,) or (n, K)
"""
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
keypoints /= simcc_split_ratio
return keypoints, scores
def inference_pose(session, out_bbox, oriImg):
h, w = session.get_inputs()[0].shape[2:]
model_input_size = (w, h)
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
outputs = inference(session, resized_img)
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
return keypoints, scores

View File

@@ -1,155 +0,0 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
import math
import cv2
import matplotlib
import numpy as np
eps = 0.01
def draw_bodypose(canvas, candidate, subset):
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
Y = candidate[index.astype(int), 0] * float(W)
X = candidate[index.astype(int), 1] * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, colors[i])
canvas = (canvas * 0.6).astype(np.uint8)
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
return canvas
def draw_handpose(canvas, all_hand_peaks):
H, W, C = canvas.shape
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for peaks in all_hand_peaks:
peaks = np.array(peaks)
for ie, e in enumerate(edges):
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
x1 = int(x1 * W)
y1 = int(y1 * H)
x2 = int(x2 * W)
y2 = int(y2 * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
thickness=2,
)
for _, keyponit in enumerate(peaks):
x, y = keyponit
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas, all_lmks):
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)
for lmk in lmks:
x, y = lmk
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas

View File

@@ -1,67 +0,0 @@
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
# Modified pathing to suit Invoke
import pathlib
import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend.util.util import download_with_progress_bar
from .onnxdet import inference_detector
from .onnxpose import inference_pose
DWPOSE_MODELS = {
"yolox_l.onnx": {
"local": "any/annotators/dwpose/yolox_l.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
},
"dw-ll_ucoco_384.onnx": {
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
},
}
config = InvokeAIAppConfig.get_config()
class Wholebody:
def __init__(self):
device = choose_torch_device()
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"])
if not DET_MODEL_PATH.exists():
download_with_progress_bar(DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
POSE_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"])
if not POSE_MODEL_PATH.exists():
download_with_progress_bar(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH)
onnx_det = DET_MODEL_PATH
onnx_pose = POSE_MODEL_PATH
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg):
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
return keypoints, scores

View File

@@ -7,10 +7,10 @@ import cv2
import numpy as np
import numpy.typing as npt
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.util.devices import choose_torch_device
"""

View File

@@ -1,281 +0,0 @@
"""Utility (backend) functions used by model_install.py"""
import re
from logging import Logger
from pathlib import Path
from typing import Any, Dict, List, Optional
import omegaconf
from huggingface_hub import HfFolder
from pydantic import BaseModel, Field
from pydantic.dataclasses import dataclass
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
import invokeai.configs as configs
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
from invokeai.app.services.model_install import (
HFModelSource,
LocalModelSource,
ModelInstallService,
ModelInstallServiceBase,
ModelSource,
URLModelSource,
)
from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager import (
BaseModelType,
InvalidModelConfigException,
ModelType,
)
from invokeai.backend.model_manager.metadata import UnknownMetadataException
from invokeai.backend.util.logging import InvokeAILogger
# name of the starter models file
INITIAL_MODELS = "INITIAL_MODELS2.yaml"
def initialize_record_store(app_config: InvokeAIAppConfig) -> ModelRecordServiceBase:
"""Return an initialized ModelConfigRecordServiceBase object."""
logger = InvokeAILogger.get_logger(config=app_config)
image_files = DiskImageFileStorage(f"{app_config.output_path}/images")
db = init_db(config=app_config, logger=logger, image_files=image_files)
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db)
return obj
def initialize_installer(
app_config: InvokeAIAppConfig, event_bus: Optional[EventServiceBase] = None
) -> ModelInstallServiceBase:
"""Return an initialized ModelInstallService object."""
record_store = initialize_record_store(app_config)
metadata_store = record_store.metadata_store
download_queue = DownloadQueueService()
installer = ModelInstallService(
app_config=app_config,
record_store=record_store,
metadata_store=metadata_store,
download_queue=download_queue,
event_bus=event_bus,
)
download_queue.start()
installer.start()
return installer
class UnifiedModelInfo(BaseModel):
"""Catchall class for information in INITIAL_MODELS2.yaml."""
name: Optional[str] = None
base: Optional[BaseModelType] = None
type: Optional[ModelType] = None
source: Optional[str] = None
subfolder: Optional[str] = None
description: Optional[str] = None
recommended: bool = False
installed: bool = False
default: bool = False
requires: List[str] = Field(default_factory=list)
@dataclass
class InstallSelections:
"""Lists of models to install and remove."""
install_models: List[UnifiedModelInfo] = Field(default_factory=list)
remove_models: List[str] = Field(default_factory=list)
class TqdmEventService(EventServiceBase):
"""An event service to track downloads."""
def __init__(self) -> None:
"""Create a new TqdmEventService object."""
super().__init__()
self._bars: Dict[str, tqdm] = {}
self._last: Dict[str, int] = {}
def dispatch(self, event_name: str, payload: Any) -> None:
"""Dispatch an event by appending it to self.events."""
if payload["event"] == "model_install_downloading":
data = payload["data"]
dest = data["local_path"]
total_bytes = data["total_bytes"]
bytes = data["bytes"]
if dest not in self._bars:
self._bars[dest] = tqdm(desc=Path(dest).name, initial=0, total=total_bytes, unit="iB", unit_scale=True)
self._last[dest] = 0
self._bars[dest].update(bytes - self._last[dest])
self._last[dest] = bytes
class InstallHelper(object):
"""Capture information stored jointly in INITIAL_MODELS.yaml and the installed models db."""
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger):
"""Create new InstallHelper object."""
self._app_config = app_config
self.all_models: Dict[str, UnifiedModelInfo] = {}
omega = omegaconf.OmegaConf.load(Path(configs.__path__[0]) / INITIAL_MODELS)
assert isinstance(omega, omegaconf.dictconfig.DictConfig)
self._installer = initialize_installer(app_config, TqdmEventService())
self._initial_models = omega
self._installed_models: List[str] = []
self._starter_models: List[str] = []
self._default_model: Optional[str] = None
self._logger = logger
self._initialize_model_lists()
@property
def installer(self) -> ModelInstallServiceBase:
"""Return the installer object used internally."""
return self._installer
def _initialize_model_lists(self) -> None:
"""
Initialize our model slots.
Set up the following:
installed_models -- list of installed model keys
starter_models -- list of starter model keys from INITIAL_MODELS
all_models -- dict of key => UnifiedModelInfo
default_model -- key to default model
"""
# previously-installed models
for model in self._installer.record_store.all_models():
info = UnifiedModelInfo.parse_obj(model.dict())
info.installed = True
model_key = f"{model.base.value}/{model.type.value}/{model.name}"
self.all_models[model_key] = info
self._installed_models.append(model_key)
for key in self._initial_models.keys():
assert isinstance(key, str)
if key in self.all_models:
# we want to preserve the description
description = self.all_models[key].description or self._initial_models[key].get("description")
self.all_models[key].description = description
else:
base_model, model_type, model_name = key.split("/")
info = UnifiedModelInfo(
name=model_name,
type=ModelType(model_type),
base=BaseModelType(base_model),
source=self._initial_models[key].source,
description=self._initial_models[key].get("description"),
recommended=self._initial_models[key].get("recommended", False),
default=self._initial_models[key].get("default", False),
subfolder=self._initial_models[key].get("subfolder"),
requires=list(self._initial_models[key].get("requires", [])),
)
self.all_models[key] = info
if not self.default_model():
self._default_model = key
elif self._initial_models[key].get("default", False):
self._default_model = key
self._starter_models.append(key)
# previously-installed models
for model in self._installer.record_store.all_models():
info = UnifiedModelInfo.parse_obj(model.dict())
info.installed = True
model_key = f"{model.base.value}/{model.type.value}/{model.name}"
self.all_models[model_key] = info
self._installed_models.append(model_key)
def recommended_models(self) -> List[UnifiedModelInfo]:
"""List of the models recommended in INITIAL_MODELS.yaml."""
return [self._to_model(x) for x in self._starter_models if self._to_model(x).recommended]
def installed_models(self) -> List[UnifiedModelInfo]:
"""List of models already installed."""
return [self._to_model(x) for x in self._installed_models]
def starter_models(self) -> List[UnifiedModelInfo]:
"""List of starter models."""
return [self._to_model(x) for x in self._starter_models]
def default_model(self) -> Optional[UnifiedModelInfo]:
"""Return the default model."""
return self._to_model(self._default_model) if self._default_model else None
def _to_model(self, key: str) -> UnifiedModelInfo:
return self.all_models[key]
def _add_required_models(self, model_list: List[UnifiedModelInfo]) -> None:
installed = {x.source for x in self.installed_models()}
reverse_source = {x.source: x for x in self.all_models.values()}
additional_models: List[UnifiedModelInfo] = []
for model_info in model_list:
for requirement in model_info.requires:
if requirement not in installed and reverse_source.get(requirement):
additional_models.append(reverse_source[requirement])
model_list.extend(additional_models)
def _make_install_source(self, model_info: UnifiedModelInfo) -> ModelSource:
assert model_info.source
model_path_id_or_url = model_info.source.strip("\"' ")
model_path = Path(model_path_id_or_url)
if model_path.exists(): # local file on disk
return LocalModelSource(path=model_path.absolute(), inplace=True)
if re.match(r"^[^/]+/[^/]+$", model_path_id_or_url): # hugging face repo_id
return HFModelSource(
repo_id=model_path_id_or_url,
access_token=HfFolder.get_token(),
subfolder=model_info.subfolder,
)
if re.match(r"^(http|https):", model_path_id_or_url):
return URLModelSource(url=AnyHttpUrl(model_path_id_or_url))
raise ValueError(f"Unsupported model source: {model_path_id_or_url}")
def add_or_delete(self, selections: InstallSelections) -> None:
"""Add or delete selected models."""
installer = self._installer
self._add_required_models(selections.install_models)
for model in selections.install_models:
source = self._make_install_source(model)
config = (
{
"description": model.description,
"name": model.name,
}
if model.name
else None
)
try:
installer.import_model(
source=source,
config=config,
)
except (UnknownMetadataException, InvalidModelConfigException, HTTPError, OSError) as e:
self._logger.warning(f"{source}: {e}")
for model_to_remove in selections.remove_models:
parts = model_to_remove.split("/")
if len(parts) == 1:
base_model, model_type, model_name = (None, None, model_to_remove)
else:
base_model, model_type, model_name = parts
matches = installer.record_store.search_by_attr(
base_model=BaseModelType(base_model) if base_model else None,
model_type=ModelType(model_type) if model_type else None,
model_name=model_name,
)
if len(matches) > 1:
print(f"{model} is ambiguous. Please use model_type:model_name (e.g. main:my_model) to disambiguate.")
elif not matches:
print(f"{model}: unknown model")
else:
for m in matches:
print(f"Deleting {m.type}:{m.name}")
installer.delete(m.key)
installer.wait_for_installs()

View File

@@ -849,7 +849,7 @@ def migrate_if_needed(opt: Namespace, root: Path) -> bool:
# -------------------------------------
def main() -> None:
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--skip-sd-weights",

View File

@@ -104,14 +104,12 @@ class ModelInstall(object):
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
model_manager: Optional[ModelManager] = None,
access_token: Optional[str] = None,
civitai_api_key: Optional[str] = None,
):
self.config = config
self.mgr = model_manager or ModelManager(config.model_conf_path)
self.datasets = OmegaConf.load(Dataset_path)
self.prediction_helper = prediction_type_helper
self.access_token = access_token or HfFolder.get_token()
self.civitai_api_key = civitai_api_key or config.civitai_api_key
self.reverse_paths = self._reverse_paths(self.datasets)
def all_models(self) -> Dict[str, ModelLoadInfo]:
@@ -328,11 +326,7 @@ class ModelInstall(object):
def _install_url(self, url: str) -> AddModelResult:
with TemporaryDirectory(dir=self.config.models_path) as staging:
CIVITAI_RE = r".*civitai.com.*"
civit_url = re.match(CIVITAI_RE, url, re.IGNORECASE)
location = download_with_resume(
url, Path(staging), access_token=self.civitai_api_key if civit_url else None
)
location = download_with_resume(url, Path(staging))
if not location:
logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location, self.prediction_helper)

View File

@@ -42,7 +42,8 @@ from diffusers.schedulers import (
PNDMScheduler,
UnCLIPScheduler,
)
from diffusers.utils import is_accelerate_available
from diffusers.utils import is_accelerate_available, is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
from picklescan.scanner import scan_file_path
from transformers import (
AutoFeatureExtractor,
@@ -1210,6 +1211,9 @@ def download_from_original_stable_diffusion_ckpt(
if prediction_type == "v-prediction":
prediction_type = "v_prediction"
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
if from_safetensors:
from safetensors.torch import load_file as safe_load
@@ -1643,6 +1647,11 @@ def download_controlnet_from_original_ckpt(
cross_attention_dim: Optional[bool] = None,
scan_needed: bool = False,
) -> DiffusionPipeline:
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open

View File

@@ -141,7 +141,7 @@ class StableDiffusionXLModel(DiffusersModel):
version=base_model,
model_config=config,
output_path=output_path,
use_safetensors=True,
use_safetensors=False, # corrupts sdxl models for some reason
**kwargs,
)
else:

View File

@@ -1,11 +1,10 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, List, Union
from typing import List, Union
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.models import AutoencoderKL, UNet2DConditionModel
def _conv_forward_asymmetric(self, input, weight, bias):
@@ -27,51 +26,70 @@ def _conv_forward_asymmetric(self, input, weight, bias):
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
try:
# Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence
skipped_layers = 1
to_restore = []
for m_name, m in model.named_modules():
if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
continue
if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name:
# down_blocks.1.resnets.1.conv1
_, block_num, _, resnet_num, submodule_name = m_name.split(".")
block_num = int(block_num)
resnet_num = int(resnet_num)
if block_num >= len(model.down_blocks) - skipped_layers:
if isinstance(model, UNet2DConditionModel):
if ".attentions." in m_name:
continue
# Skip the second resnet (could be configurable)
if resnet_num > 0:
if ".resnets." in m_name:
if ".conv2" in m_name:
continue
if ".conv_shortcut" in m_name:
continue
"""
if isinstance(model, UNet2DConditionModel):
if False and ".upsamplers." in m_name:
continue
# Skip Conv2d layers (could be configurable)
if submodule_name == "conv2":
if False and ".downsamplers." in m_name:
continue
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
if True and ".resnets." in m_name:
if True and ".conv1" in m_name:
if False and "down_blocks" in m_name:
continue
if False and "mid_block" in m_name:
continue
if False and "up_blocks" in m_name:
continue
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
if True and ".conv2" in m_name:
continue
if True and ".conv_shortcut" in m_name:
continue
if True and ".attentions." in m_name:
continue
if False and m_name in ["conv_in", "conv_out"]:
continue
"""
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
yield

View File

@@ -1,177 +0,0 @@
"""
invokeai.backend.model_manager.merge exports:
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import warnings
from enum import Enum
from pathlib import Path
from typing import Any, List, Optional, Set
import torch
from diffusers import AutoPipelineForText2Image
from diffusers import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from . import (
AnyModelConfig,
BaseModelType,
ModelType,
ModelVariantType,
)
from .config import MainDiffusersConfig
class MergeInterpolationMethod(str, Enum):
WeightedSum = "weighted_sum"
Sigmoid = "sigmoid"
InvSigmoid = "inv_sigmoid"
AddDifference = "add_difference"
class ModelMerger(object):
"""Wrapper class for model merge function."""
def __init__(self, installer: ModelInstallServiceBase):
"""
Initialize a ModelMerger object.
:param store: Underlying storage manager for the running process.
:param config: InvokeAIAppConfig object (if not provided, default will be selected).
"""
self._installer = installer
def merge_diffusion_models(
self,
model_paths: List[Path],
alpha: float = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
variant: Optional[str] = None,
**kwargs: Any,
) -> Any: # pipe.merge is an untyped function.
"""
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
pipe = AutoPipelineForText2Image.from_pretrained(
model_paths[0],
custom_pipeline="checkpoint_merger",
torch_dtype=dtype,
variant=variant,
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_paths,
alpha=alpha,
interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
force=force,
torch_dtype=dtype,
variant=variant,
**kwargs,
)
dlogging.set_verbosity(verbosity)
return merged_pipe
def merge_diffusion_models_and_save(
self,
model_keys: List[str],
merged_model_name: str,
alpha: float = 0.5,
force: bool = False,
interp: Optional[MergeInterpolationMethod] = None,
merge_dest_directory: Optional[Path] = None,
variant: Optional[str] = None,
**kwargs: Any,
) -> AnyModelConfig:
"""
:param models: up to three models, designated by their InvokeAI models.yaml model name
:param merged_model_name: name for new model
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
model_paths: List[Path] = []
model_names: List[str] = []
config = self._installer.app_config
store = self._installer.record_store
base_models: Set[BaseModelType] = set()
vae = None
variant = None if self._installer.app_config.full_precision else "fp16"
assert (
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
), "When merging three models, only the 'add_difference' merge method is supported"
for key in model_keys:
info = store.get_model(key)
model_names.append(info.name)
assert isinstance(
info, MainDiffusersConfig
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
assert info.variant == ModelVariantType(
"normal"
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
# pick up the first model's vae
if key == model_keys[0]:
vae = info.vae
# tally base models used
base_models.add(info.base)
model_paths.extend([config.models_path / info.path])
assert len(base_models) == 1, f"All models to merge must have same base model, but found bases {base_models}"
base_model = base_models.pop()
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, variant=variant, **kwargs)
dump_path = (
Path(merge_dest_directory)
if merge_dest_directory
else config.models_path / base_model.value / ModelType.Main.value
)
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
# register model and get its unique key
key = self._installer.register_path(dump_path)
# update model's config
model_config = self._installer.record_store.get_model(key)
model_config.update(
{
"name": merged_model_name,
"description": f"Merge of models {', '.join(model_names)}",
"vae": vae,
}
)
self._installer.record_store.update_model(key, model_config)
return model_config

View File

@@ -170,8 +170,6 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
if model_id is None:
version_url = CIVITAI_VERSION_ENDPOINT + str(version_id)
version = self._requests.get(version_url).json()
if error := version.get("error"):
raise UnknownMetadataException(error)
model_id = version["modelId"]
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)

View File

@@ -12,7 +12,7 @@ import psutil
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, SlicedAttnProcessor
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from torch import nn
import invokeai.backend.util.logging as logger

View File

@@ -11,7 +11,6 @@ import logging
import math
import os
import random
from argparse import Namespace
from pathlib import Path
from typing import Optional
@@ -31,6 +30,8 @@ from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
@@ -40,8 +41,8 @@ from transformers import CLIPTextModel, CLIPTokenizer
# invokeai stuff
from invokeai.app.services.config import InvokeAIAppConfig, PagingArgumentParser
from invokeai.backend.install.install_helper import initialize_record_store
from invokeai.backend.model_manager import BaseModelType, ModelType
from invokeai.app.services.model_manager import ModelManagerService
from invokeai.backend.model_management.models import SubModelType
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
@@ -76,7 +77,7 @@ def save_progress(text_encoder, placeholder_token_id, accelerator, placeholder_t
torch.save(learned_embeds_dict, save_path)
def parse_args() -> Namespace:
def parse_args():
config = InvokeAIAppConfig.get_config()
parser = PagingArgumentParser(description="Textual inversion training")
general_group = parser.add_argument_group("General")
@@ -443,7 +444,7 @@ class TextualInversionDataset(Dataset):
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self) -> int:
def __len__(self):
return self._length
def __getitem__(self, i):
@@ -508,10 +509,11 @@ def do_textual_inversion_training(
initializer_token: str,
save_steps: int = 500,
only_save_embeds: bool = False,
tokenizer_name: Optional[str] = None,
revision: str = None,
tokenizer_name: str = None,
learnable_property: str = "object",
repeats: int = 100,
seed: Optional[int] = None,
seed: int = None,
resolution: int = 512,
center_crop: bool = False,
train_batch_size: int = 16,
@@ -528,18 +530,18 @@ def do_textual_inversion_training(
adam_weight_decay: float = 1e-02,
adam_epsilon: float = 1e-08,
push_to_hub: bool = False,
hub_token: Optional[str] = None,
hub_token: str = None,
logging_dir: Path = Path("logs"),
mixed_precision: str = "fp16",
allow_tf32: bool = False,
report_to: str = "tensorboard",
local_rank: int = -1,
checkpointing_steps: int = 500,
resume_from_checkpoint: Optional[Path] = None,
resume_from_checkpoint: Path = None,
enable_xformers_memory_efficient_attention: bool = False,
hub_model_id: Optional[str] = None,
hub_model_id: str = None,
**kwargs,
) -> None:
):
assert model, "Please specify a base model with --model"
assert train_data_dir, "Please specify a directory containing the training images using --train_data_dir"
assert placeholder_token, "Please specify a trigger term using --placeholder_token"
@@ -562,6 +564,8 @@ def do_textual_inversion_training(
project_config=accelerator_config,
)
model_manager = ModelManagerService(config, logger)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
@@ -599,37 +603,44 @@ def do_textual_inversion_training(
elif output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
model_records = initialize_record_store(config)
base, type, name = model.split("/") # note frontend still returns old-style keys
try:
model_config = model_records.search_by_attr(
model_name=name, model_type=ModelType(type), base_model=BaseModelType(base)
)[0]
except IndexError:
raise Exception(f"Unknown model {model}")
model_path = config.models_path / model_config.path
known_models = model_manager.model_names()
model_name = model.split("/")[-1]
model_meta = next((mm for mm in known_models if mm[0].endswith(model_name)), None)
assert model_meta is not None, f"Unknown model: {model}"
model_info = model_manager.model_info(*model_meta)
assert model_info["model_format"] == "diffusers", "This script only works with models of type 'diffusers'"
tokenizer_info = model_manager.get_model(*model_meta, submodel=SubModelType.Tokenizer)
noise_scheduler_info = model_manager.get_model(*model_meta, submodel=SubModelType.Scheduler)
text_encoder_info = model_manager.get_model(*model_meta, submodel=SubModelType.TextEncoder)
vae_info = model_manager.get_model(*model_meta, submodel=SubModelType.Vae)
unet_info = model_manager.get_model(*model_meta, submodel=SubModelType.UNet)
pipeline_args = {"local_files_only": True}
if tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_name, **pipeline_args)
else:
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", **pipeline_args)
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_info.location, subfolder="tokenizer", **pipeline_args)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(model_path, subfolder="scheduler", **pipeline_args)
noise_scheduler = DDPMScheduler.from_pretrained(
noise_scheduler_info.location, subfolder="scheduler", **pipeline_args
)
text_encoder = CLIPTextModel.from_pretrained(
model_path,
text_encoder_info.location,
subfolder="text_encoder",
revision=revision,
**pipeline_args,
)
vae = AutoencoderKL.from_pretrained(
model_path,
vae_info.location,
subfolder="vae",
revision=revision,
**pipeline_args,
)
unet = UNet2DConditionModel.from_pretrained(
model_path,
unet_info.location,
subfolder="unet",
revision=revision,
**pipeline_args,
)
@@ -717,7 +728,7 @@ def do_textual_inversion_training(
max_train_steps = num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
scheduler = get_scheduler(
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
@@ -726,7 +737,7 @@ def do_textual_inversion_training(
# Prepare everything with our `accelerator`.
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, scheduler
text_encoder, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the unet and vae weights to half-precision
@@ -852,7 +863,7 @@ def do_textual_inversion_training(
accelerator.backward(loss)
optimizer.step()
scheduler.step()
lr_scheduler.step()
optimizer.zero_grad()
# Let's make sure we don't update any embedding weights besides the newly added token
@@ -882,7 +893,7 @@ def do_textual_inversion_training(
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": scheduler.get_last_lr()[0]}
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
@@ -899,7 +910,7 @@ def do_textual_inversion_training(
save_full_model = not only_save_embeds
if save_full_model:
pipeline = StableDiffusionPipeline.from_pretrained(
model_path,
unet_info.location,
text_encoder=accelerator.unwrap_model(text_encoder),
vae=vae,
unet=unet,

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders import FromOriginalControlnetMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -14,13 +14,8 @@ from diffusers.models.embeddings import (
Timesteps,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
DownBlock2D,
UNetMidBlock2DCrossAttn,
get_down_block,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, get_down_block
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from torch import nn
from invokeai.backend.util.logging import InvokeAILogger
@@ -32,7 +27,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
"""
A ControlNet model.

View File

@@ -286,7 +286,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
open_mode = "wb"
exist_size = 0
resp = requests.get(url, headers=header, stream=True, allow_redirects=True)
resp = requests.get(url, header, stream=True)
content_length = int(resp.headers.get("content-length", 0))
if dest.is_dir():

View File

@@ -1,157 +0,0 @@
# This file predefines a few models that the user may want to install.
sd-1/main/stable-diffusion-v1-5:
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
source: runwayml/stable-diffusion-v1-5
recommended: True
default: True
sd-1/main/stable-diffusion-v1-5-inpainting:
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
source: runwayml/stable-diffusion-inpainting
recommended: True
sd-2/main/stable-diffusion-2-1:
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
source: stabilityai/stable-diffusion-2-1
recommended: False
sd-2/main/stable-diffusion-2-inpainting:
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
source: stabilityai/stable-diffusion-2-inpainting
recommended: False
sdxl/main/stable-diffusion-xl-base-1-0:
description: Stable Diffusion XL base model (12 GB)
source: stabilityai/stable-diffusion-xl-base-1.0
recommended: True
sdxl-refiner/main/stable-diffusion-xl-refiner-1-0:
description: Stable Diffusion XL refiner model (12 GB)
source: stabilityai/stable-diffusion-xl-refiner-1.0
recommended: False
sdxl/vae/sdxl-vae-fp16-fix:
description: Version of the SDXL-1.0 VAE that works in half precision mode
source: madebyollin/sdxl-vae-fp16-fix
recommended: True
sd-1/main/Analog-Diffusion:
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
source: wavymulder/Analog-Diffusion
recommended: False
sd-1/main/Deliberate:
description: Versatile model that produces detailed images up to 768px (4.27 GB)
source: XpucT/Deliberate
recommended: False
sd-1/main/Dungeons-and-Diffusion:
description: Dungeons & Dragons characters (2.13 GB)
source: 0xJustin/Dungeons-and-Diffusion
recommended: False
sd-1/main/dreamlike-photoreal-2:
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
source: dreamlike-art/dreamlike-photoreal-2.0
recommended: False
sd-1/main/Inkpunk-Diffusion:
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
source: Envvi/Inkpunk-Diffusion
recommended: False
sd-1/main/openjourney:
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
source: prompthero/openjourney
recommended: False
sd-1/main/seek.art_MEGA:
source: coreco/seek.art_MEGA
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
recommended: False
sd-1/main/trinart_stable_diffusion_v2:
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
source: naclbit/trinart_stable_diffusion_v2
recommended: False
sd-1/controlnet/qrcode_monster:
source: monster-labs/control_v1p_sd15_qrcode_monster
subfolder: v2
sd-1/controlnet/canny:
source: lllyasviel/control_v11p_sd15_canny
recommended: True
sd-1/controlnet/inpaint:
source: lllyasviel/control_v11p_sd15_inpaint
sd-1/controlnet/mlsd:
source: lllyasviel/control_v11p_sd15_mlsd
sd-1/controlnet/depth:
source: lllyasviel/control_v11f1p_sd15_depth
recommended: True
sd-1/controlnet/normal_bae:
source: lllyasviel/control_v11p_sd15_normalbae
sd-1/controlnet/seg:
source: lllyasviel/control_v11p_sd15_seg
sd-1/controlnet/lineart:
source: lllyasviel/control_v11p_sd15_lineart
recommended: True
sd-1/controlnet/lineart_anime:
source: lllyasviel/control_v11p_sd15s2_lineart_anime
sd-1/controlnet/openpose:
source: lllyasviel/control_v11p_sd15_openpose
recommended: True
sd-1/controlnet/scribble:
source: lllyasviel/control_v11p_sd15_scribble
recommended: False
sd-1/controlnet/softedge:
source: lllyasviel/control_v11p_sd15_softedge
sd-1/controlnet/shuffle:
source: lllyasviel/control_v11e_sd15_shuffle
sd-1/controlnet/tile:
source: lllyasviel/control_v11f1e_sd15_tile
sd-1/controlnet/ip2p:
source: lllyasviel/control_v11e_sd15_ip2p
sd-1/t2i_adapter/canny-sd15:
source: TencentARC/t2iadapter_canny_sd15v2
sd-1/t2i_adapter/sketch-sd15:
source: TencentARC/t2iadapter_sketch_sd15v2
sd-1/t2i_adapter/depth-sd15:
source: TencentARC/t2iadapter_depth_sd15v2
sd-1/t2i_adapter/zoedepth-sd15:
source: TencentARC/t2iadapter_zoedepth_sd15v1
sdxl/t2i_adapter/canny-sdxl:
source: TencentARC/t2i-adapter-canny-sdxl-1.0
sdxl/t2i_adapter/zoedepth-sdxl:
source: TencentARC/t2i-adapter-depth-zoe-sdxl-1.0
sdxl/t2i_adapter/lineart-sdxl:
source: TencentARC/t2i-adapter-lineart-sdxl-1.0
sdxl/t2i_adapter/sketch-sdxl:
source: TencentARC/t2i-adapter-sketch-sdxl-1.0
sd-1/embedding/EasyNegative:
source: https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors
recommended: True
description: A textual inversion to use in the negative prompt to reduce bad anatomy
sd-1/lora/FlatColor:
source: https://civitai.com/models/6433/loraflatcolor
recommended: True
description: A LoRA that generates scenery using solid blocks of color
sd-1/lora/Ink scenery:
source: https://civitai.com/api/download/models/83390
description: Generate india ink-like landscapes
sd-1/ip_adapter/ip_adapter_sd15:
source: InvokeAI/ip_adapter_sd15
recommended: True
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: IP-Adapter for SD 1.5 models
sd-1/ip_adapter/ip_adapter_plus_sd15:
source: InvokeAI/ip_adapter_plus_sd15
recommended: False
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: Refined IP-Adapter for SD 1.5 models
sd-1/ip_adapter/ip_adapter_plus_face_sd15:
source: InvokeAI/ip_adapter_plus_face_sd15
recommended: False
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: Refined IP-Adapter for SD 1.5 models, adapted for faces
sdxl/ip_adapter/ip_adapter_sdxl:
source: InvokeAI/ip_adapter_sdxl
recommended: False
requires:
- InvokeAI/ip_adapter_sdxl_image_encoder
description: IP-Adapter for SDXL models
any/clip_vision/ip_adapter_sd_image_encoder:
source: InvokeAI/ip_adapter_sd_image_encoder
recommended: False
description: Required model for using IP-Adapters with SD-1/2 models
any/clip_vision/ip_adapter_sdxl_image_encoder:
source: InvokeAI/ip_adapter_sdxl_image_encoder
recommended: False
description: Required model for using IP-Adapters with SDXL models

View File

@@ -2,5 +2,3 @@
Wrapper for invokeai.backend.configure.invokeai_configure
"""
from ...backend.install.invokeai_configure import main as invokeai_configure # noqa: F401
__all__ = ["invokeai_configure"]

View File

@@ -5,14 +5,14 @@ pip install <path_to_git_source>.
import os
import platform
from distutils.version import LooseVersion
from importlib.metadata import PackageNotFoundError, distribution, distributions
import pkg_resources
import psutil
import requests
from rich import box, print
from rich.console import Console, group
from rich.panel import Panel
from rich.prompt import Confirm, Prompt
from rich.prompt import Prompt
from rich.style import Style
from invokeai.version import __version__
@@ -61,65 +61,6 @@ def get_pypi_versions():
return latest_version, latest_release_candidate, versions
def get_torch_extra_index_url() -> str | None:
"""
Determine torch wheel source URL and optional modules based on the user's OS.
"""
resolved_url = None
# In all other cases (like MacOS (MPS) or Linux+CUDA), there is no need to specify the extra index URL.
torch_package_urls = {
"windows_cuda": "https://download.pytorch.org/whl/cu121",
"linux_rocm": "https://download.pytorch.org/whl/rocm5.6",
"linux_cpu": "https://download.pytorch.org/whl/cpu",
}
nvidia_packages_present = (
len([d.metadata["Name"] for d in distributions() if d.metadata["Name"].startswith("nvidia")]) > 0
)
device = "cuda" if nvidia_packages_present else None
manual_gpu_selection_prompt = (
"[bold]We tried and failed to guess your GPU capabilities[/] :thinking_face:. Please select the GPU type:"
)
if OS == "Linux":
if not device:
# do we even need to offer a CPU-only install option?
print(manual_gpu_selection_prompt)
print("1: NVIDIA (CUDA)")
print("2: AMD (ROCm)")
print("3: No GPU - CPU only")
answer = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
match answer:
case "1":
device = "cuda"
case "2":
device = "rocm"
case "3":
device = "cpu"
if device != "cuda":
resolved_url = torch_package_urls[f"linux_{device}"]
if OS == "Windows":
if not device:
print(manual_gpu_selection_prompt)
print("1: NVIDIA (CUDA)")
print("2: No GPU - CPU only")
answer = Prompt.ask("Your choice:", choices=["1", "2"], default="1")
match answer:
case "1":
device = "cuda"
case "2":
device = "cpu"
if device == "cuda":
resolved_url = torch_package_urls[f"windows_{device}"]
return resolved_url
def welcome(latest_release: str, latest_prerelease: str):
@group()
def text():
@@ -148,11 +89,12 @@ def welcome(latest_release: str, latest_prerelease: str):
def get_extras():
extras = ""
try:
distribution("xformers")
_ = pkg_resources.get_distribution("xformers")
extras = "[xformers]"
except PackageNotFoundError:
extras = ""
except pkg_resources.DistributionNotFound:
pass
return extras
@@ -183,22 +125,8 @@ def main():
extras = get_extras()
console.line()
force_reinstall = Confirm.ask(
"[bold]Force reinstallation of all dependencies?[/] This [i]may[/] help fix a broken upgrade, but is usually not necessary.",
default=False,
)
console.line()
flags = []
if (index_url := get_torch_extra_index_url()) is not None:
flags.append(f"--extra-index-url {index_url}")
if force_reinstall:
flags.append("--force-reinstall")
flags = " ".join(flags)
print(f":crossed_fingers: Upgrading to [yellow]{release}[/yellow]")
cmd = f'pip install "invokeai{extras}=={release}" --use-pep517 --upgrade {flags}'
cmd = f'pip install "invokeai{extras}=={release}" --use-pep517 --upgrade'
print("")
print("")

View File

@@ -1,645 +0,0 @@
#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
"""
This is the npyscreen frontend to the model installation application.
It is currently named model_install2.py, but will ultimately replace model_install.py.
"""
import argparse
import curses
import sys
import traceback
import warnings
from argparse import Namespace
from shutil import get_terminal_size
from typing import Any, Dict, List, Optional, Set
import npyscreen
import torch
from npyscreen import widget
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_install import ModelInstallService
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections, UnifiedModelInfo
from invokeai.backend.model_manager import ModelType
from invokeai.backend.util import choose_precision, choose_torch_device
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.widgets import (
MIN_COLS,
MIN_LINES,
CenteredTitleText,
CyclingForm,
MultiSelectColumns,
SingleSelectColumns,
TextBox,
WindowTooSmallException,
set_min_terminal_size,
)
warnings.filterwarnings("ignore", category=UserWarning) # noqa: E402
config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.get_logger("ModelInstallService")
logger.setLevel("WARNING")
# logger.setLevel('DEBUG')
# build a table mapping all non-printable characters to None
# for stripping control characters
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
NOPRINT_TRANS_TABLE = {i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()}
# maximum number of installed models we can display before overflowing vertically
MAX_OTHER_MODELS = 72
def make_printable(s: str) -> str:
"""Replace non-printable characters in a string."""
return s.translate(NOPRINT_TRANS_TABLE)
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
"""Main form for interactive TUI."""
# for responsive resizing set to False, but this seems to cause a crash!
FIX_MINIMUM_SIZE_WHEN_CREATED = True
# for persistence
current_tab = 0
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, multipage: bool = False, **keywords: Any):
self.multipage = multipage
self.subprocess = None
super().__init__(parentApp=parentApp, name=name, **keywords)
def create(self) -> None:
self.installer = self.parentApp.install_helper.installer
self.model_labels = self._get_model_labels()
self.keypress_timeout = 10
self.counter = 0
self.subprocess_connection = None
window_width, window_height = get_terminal_size()
# npyscreen has no typing hints
self.nextrely -= 1 # type: ignore
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields. Cursor keys navigate, and <space> selects.",
editable=False,
color="CAUTION",
)
self.nextrely += 1 # type: ignore
self.tabs = self.add_widget_intelligent(
SingleSelectColumns,
values=[
"STARTERS",
"MAINS",
"CONTROLNETS",
"T2I-ADAPTERS",
"IP-ADAPTERS",
"LORAS",
"TI EMBEDDINGS",
],
value=[self.current_tab],
columns=7,
max_height=2,
relx=8,
scroll_exit=True,
)
self.tabs.on_changed = self._toggle_tables
top_of_table = self.nextrely # type: ignore
self.starter_pipelines = self.add_starter_pipelines()
bottom_of_table = self.nextrely # type: ignore
self.nextrely = top_of_table
self.pipeline_models = self.add_pipeline_widgets(
model_type=ModelType.Main, window_width=window_width, exclude=self.starter_models
)
# self.pipeline_models['autoload_pending'] = True
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.controlnet_models = self.add_model_widgets(
model_type=ModelType.ControlNet,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.t2i_models = self.add_model_widgets(
model_type=ModelType.T2IAdapter,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.ipadapter_models = self.add_model_widgets(
model_type=ModelType.IPAdapter,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.lora_models = self.add_model_widgets(
model_type=ModelType.Lora,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.ti_models = self.add_model_widgets(
model_type=ModelType.TextualInversion,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = bottom_of_table + 1
self.nextrely += 1
back_label = "BACK"
cancel_label = "CANCEL"
current_position = self.nextrely
if self.multipage:
self.back_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=back_label,
when_pressed_function=self.on_back,
)
else:
self.nextrely = current_position
self.cancel_button = self.add_widget_intelligent(
npyscreen.ButtonPress, name=cancel_label, when_pressed_function=self.on_cancel
)
self.nextrely = current_position
label = "APPLY CHANGES"
self.nextrely = current_position
self.done = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=label,
relx=window_width - len(label) - 15,
when_pressed_function=self.on_done,
)
# This restores the selected page on return from an installation
for _i in range(1, self.current_tab + 1):
self.tabs.h_cursor_line_down(1)
self._toggle_tables([self.current_tab])
############# diffusers tab ##########
def add_starter_pipelines(self) -> dict[str, npyscreen.widget]:
"""Add widgets responsible for selecting diffusers models"""
widgets: Dict[str, npyscreen.widget] = {}
all_models = self.all_models # master dict of all models, indexed by key
model_list = [x for x in self.starter_models if all_models[x].type in ["main", "vae"]]
model_labels = [self.model_labels[x] for x in model_list]
widgets.update(
label1=self.add_widget_intelligent(
CenteredTitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace and Civitae.",
editable=False,
labelColor="CAUTION",
)
)
self.nextrely -= 1
# if user has already installed some initial models, then don't patronize them
# by showing more recommendations
show_recommended = len(self.installed_models) == 0
checked = [
model_list.index(x)
for x in model_list
if (show_recommended and all_models[x].recommended) or all_models[x].installed
]
widgets.update(
models_selected=self.add_widget_intelligent(
MultiSelectColumns,
columns=1,
name="Install Starter Models",
values=model_labels,
value=checked,
max_height=len(model_list) + 1,
relx=4,
scroll_exit=True,
),
models=model_list,
)
self.nextrely += 1
return widgets
############# Add a set of model install widgets ########
def add_model_widgets(
self,
model_type: ModelType,
window_width: int = 120,
install_prompt: Optional[str] = None,
exclude: Optional[Set[str]] = None,
) -> dict[str, npyscreen.widget]:
"""Generic code to create model selection widgets"""
if exclude is None:
exclude = set()
widgets: Dict[str, npyscreen.widget] = {}
all_models = self.all_models
model_list = sorted(
[x for x in all_models if all_models[x].type == model_type and x not in exclude],
key=lambda x: all_models[x].name or "",
)
model_labels = [self.model_labels[x] for x in model_list]
show_recommended = len(self.installed_models) == 0
truncated = False
if len(model_list) > 0:
max_width = max([len(x) for x in model_labels])
columns = window_width // (max_width + 8) # 8 characters for "[x] " and padding
columns = min(len(model_list), columns) or 1
prompt = (
install_prompt
or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk."
)
widgets.update(
label1=self.add_widget_intelligent(
CenteredTitleText,
name=prompt,
editable=False,
labelColor="CAUTION",
)
)
if len(model_labels) > MAX_OTHER_MODELS:
model_labels = model_labels[0:MAX_OTHER_MODELS]
truncated = True
widgets.update(
models_selected=self.add_widget_intelligent(
MultiSelectColumns,
columns=columns,
name=f"Install {model_type} Models",
values=model_labels,
value=[
model_list.index(x)
for x in model_list
if (show_recommended and all_models[x].recommended) or all_models[x].installed
],
max_height=len(model_list) // columns + 1,
relx=4,
scroll_exit=True,
),
models=model_list,
)
if truncated:
widgets.update(
warning_message=self.add_widget_intelligent(
npyscreen.FixedText,
value=f"Too many models to display (max={MAX_OTHER_MODELS}). Some are not displayed.",
editable=False,
color="CAUTION",
)
)
self.nextrely += 1
widgets.update(
download_ids=self.add_widget_intelligent(
TextBox,
name="Additional URLs, or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
max_height=6,
scroll_exit=True,
editable=True,
)
)
return widgets
### Tab for arbitrary diffusers widgets ###
def add_pipeline_widgets(
self,
model_type: ModelType = ModelType.Main,
window_width: int = 120,
**kwargs,
) -> dict[str, npyscreen.widget]:
"""Similar to add_model_widgets() but adds some additional widgets at the bottom
to support the autoload directory"""
widgets = self.add_model_widgets(
model_type=model_type,
window_width=window_width,
install_prompt=f"Installed {model_type.value.title()} models. Unchecked models in the InvokeAI root directory will be deleted. Enter URLs, paths or repo_ids to import.",
**kwargs,
)
return widgets
def resize(self) -> None:
super().resize()
if s := self.starter_pipelines.get("models_selected"):
if model_list := self.starter_pipelines.get("models"):
s.values = [self.model_labels[x] for x in model_list]
def _toggle_tables(self, value: List[int]) -> None:
selected_tab = value[0]
widgets = [
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.t2i_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,
]
for group in widgets:
for _k, v in group.items():
try:
v.hidden = True
v.editable = False
except Exception:
pass
for _k, v in widgets[selected_tab].items():
try:
v.hidden = False
if not isinstance(v, (npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
v.editable = True
except Exception:
pass
self.__class__.current_tab = selected_tab # for persistence
self.display()
def _get_model_labels(self) -> dict[str, str]:
"""Return a list of trimmed labels for all models."""
window_width, window_height = get_terminal_size()
checkbox_width = 4
spacing_width = 2
result = {}
models = self.all_models
label_width = max([len(models[x].name or "") for x in self.starter_models])
description_width = window_width - label_width - checkbox_width - spacing_width
for key in self.all_models:
description = models[key].description
description = (
description[0 : description_width - 3] + "..."
if description and len(description) > description_width
else description
if description
else ""
)
result[key] = f"%-{label_width}s %s" % (models[key].name, description)
return result
def _get_columns(self) -> int:
window_width, window_height = get_terminal_size()
cols = 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1
return min(cols, len(self.installed_models))
def confirm_deletions(self, selections: InstallSelections) -> bool:
remove_models = selections.remove_models
if remove_models:
model_names = [self.all_models[x].name or "" for x in remove_models]
mods = "\n".join(model_names)
is_ok = npyscreen.notify_ok_cancel(
f"These unchecked models will be deleted from disk. Continue?\n---------\n{mods}"
)
assert isinstance(is_ok, bool) # npyscreen doesn't have return type annotations
return is_ok
else:
return True
@property
def all_models(self) -> Dict[str, UnifiedModelInfo]:
# npyscreen doesn't having typing hints
return self.parentApp.install_helper.all_models # type: ignore
@property
def starter_models(self) -> List[str]:
return self.parentApp.install_helper._starter_models # type: ignore
@property
def installed_models(self) -> List[str]:
return self.parentApp.install_helper._installed_models # type: ignore
def on_back(self) -> None:
self.parentApp.switchFormPrevious()
self.editing = False
def on_cancel(self) -> None:
self.parentApp.setNextForm(None)
self.parentApp.user_cancelled = True
self.editing = False
def on_done(self) -> None:
self.marshall_arguments()
if not self.confirm_deletions(self.parentApp.install_selections):
return
self.parentApp.setNextForm(None)
self.parentApp.user_cancelled = False
self.editing = False
def marshall_arguments(self) -> None:
"""
Assemble arguments and store as attributes of the application:
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
True => Install
False => Remove
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
"""
selections = self.parentApp.install_selections
all_models = self.all_models
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
ui_sections = [
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.t2i_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,
]
for section in ui_sections:
if "models_selected" not in section:
continue
selected = {section["models"][x] for x in section["models_selected"].value}
models_to_install = [x for x in selected if not self.all_models[x].installed]
models_to_remove = [x for x in section["models"] if x not in selected and self.all_models[x].installed]
selections.remove_models.extend(models_to_remove)
selections.install_models.extend([all_models[x] for x in models_to_install])
# models located in the 'download_ids" section
for section in ui_sections:
if downloads := section.get("download_ids"):
models = [UnifiedModelInfo(source=x) for x in downloads.value.split()]
selections.install_models.extend(models)
class AddModelApplication(npyscreen.NPSAppManaged): # type: ignore
def __init__(self, opt: Namespace, install_helper: InstallHelper):
super().__init__()
self.program_opts = opt
self.user_cancelled = False
self.install_selections = InstallSelections()
self.install_helper = install_helper
def onStart(self) -> None:
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main_form = self.addForm(
"MAIN",
addModelsForm,
name="Install Stable Diffusion Models",
cycle_widgets=False,
)
def list_models(installer: ModelInstallService, model_type: ModelType):
"""Print out all models of type model_type."""
models = installer.record_store.search_by_attr(model_type=model_type)
print(f"Installed models of type `{model_type}`:")
for model in models:
path = (config.models_path / model.path).resolve()
print(f"{model.name:40}{model.base.value:14}{path}")
# --------------------------------------------------------
def select_and_download_models(opt: Namespace) -> None:
"""Prompt user for install/delete selections and execute."""
precision = "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device()))
# unsure how to avoid a typing complaint in the next line: config.precision is an enumerated Literal
config.precision = precision # type: ignore
install_helper = InstallHelper(config, logger)
installer = install_helper.installer
if opt.list_models:
list_models(installer, opt.list_models)
elif opt.add or opt.delete:
selections = InstallSelections(
install_models=[UnifiedModelInfo(source=x) for x in (opt.add or [])], remove_models=opt.delete or []
)
install_helper.add_or_delete(selections)
elif opt.default_only:
selections = InstallSelections(install_models=[install_helper.default_model()])
install_helper.add_or_delete(selections)
elif opt.yes_to_all:
selections = InstallSelections(install_models=install_helper.recommended_models())
install_helper.add_or_delete(selections)
# this is where the TUI is called
else:
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
raise WindowTooSmallException(
"Could not increase terminal size. Try running again with a larger window or smaller font size."
)
installApp = AddModelApplication(opt, install_helper)
try:
installApp.run()
except KeyboardInterrupt:
print("Aborted...")
sys.exit(-1)
install_helper.add_or_delete(installApp.install_selections)
# -------------------------------------
def main() -> None:
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--add",
nargs="*",
help="List of URLs, local paths or repo_ids of models to install",
)
parser.add_argument(
"--delete",
nargs="*",
help="List of names of models to delete. Use type:name to disambiguate, as in `controlnet:my_model`",
)
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="Only install the default model",
)
parser.add_argument(
"--list-models",
choices=[x.value for x in ModelType],
help="list installed models",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
invoke_args = []
if opt.root:
invoke_args.extend(["--root", opt.root])
if opt.full_precision:
invoke_args.extend(["--precision", "float32"])
config.parse_args(invoke_args)
logger = InvokeAILogger().get_logger(config=config)
if not config.model_conf_path.exists():
logger.info("Your InvokeAI root directory is not set up. Calling invokeai-configure.")
from invokeai.frontend.install.invokeai_configure import invokeai_configure
invokeai_configure()
sys.exit(0)
try:
select_and_download_models(opt)
except AssertionError as e:
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
curses.nocbreak()
curses.echo()
curses.endwin()
logger.info("Goodbye! Come back soon.")
except WindowTooSmallException as e:
logger.error(str(e))
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
logger.error("Insufficient vertical space for the interface. Please make your window taller and try again")
input("Press any key to continue...")
except Exception as e:
if str(e).startswith("addwstr"):
logger.error(
"Insufficient horizontal space for the interface. Please make your window wider and try again."
)
else:
print(f"An exception has occurred: {str(e)} Details:")
print(traceback.format_exc(), file=sys.stderr)
input("Press any key to continue...")
# -------------------------------------
if __name__ == "__main__":
main()

View File

@@ -1,438 +0,0 @@
"""
invokeai.frontend.merge exports a single function called merge_diffusion_models().
It merges 2-3 models together and create a new InvokeAI-registered diffusion model.
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
"""
import argparse
import curses
import re
import sys
from argparse import Namespace
from pathlib import Path
from typing import List, Optional, Tuple
import npyscreen
from npyscreen import widget
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.install.install_helper import initialize_installer
from invokeai.backend.model_manager import (
BaseModelType,
ModelFormat,
ModelType,
ModelVariantType,
)
from invokeai.backend.model_manager.merge import ModelMerger
from invokeai.frontend.install.widgets import FloatTitleSlider, SingleSelectColumns, TextBox
config = InvokeAIAppConfig.get_config()
BASE_TYPES = [
(BaseModelType.StableDiffusion1, "Models Built on SD-1.x"),
(BaseModelType.StableDiffusion2, "Models Built on SD-2.x"),
(BaseModelType.StableDiffusionXL, "Models Built on SDXL"),
]
def _parse_args() -> Namespace:
parser = argparse.ArgumentParser(description="InvokeAI model merging")
parser.add_argument(
"--root_dir",
type=Path,
default=config.root,
help="Path to the invokeai runtime directory",
)
parser.add_argument(
"--front_end",
"--gui",
dest="front_end",
action="store_true",
default=False,
help="Activate the text-based graphical front end for collecting parameters. Aside from --root_dir, other parameters will be ignored.",
)
parser.add_argument(
"--models",
dest="model_names",
type=str,
nargs="+",
help="Two to three model names to be merged",
)
parser.add_argument(
"--base_model",
type=str,
choices=[x[0].value for x in BASE_TYPES],
help="The base model shared by the models to be merged",
)
parser.add_argument(
"--merged_model_name",
"--destination",
dest="merged_model_name",
type=str,
help="Name of the output model. If not specified, will be the concatenation of the input model names.",
)
parser.add_argument(
"--alpha",
type=float,
default=0.5,
help="The interpolation parameter, ranging from 0 to 1. It affects the ratio in which the checkpoints are merged. Higher values give more weight to the 2d and 3d models",
)
parser.add_argument(
"--interpolation",
dest="interp",
type=str,
choices=["weighted_sum", "sigmoid", "inv_sigmoid", "add_difference"],
default="weighted_sum",
help='Interpolation method to use. If three models are present, only "add_difference" will work.',
)
parser.add_argument(
"--force",
action="store_true",
help="Try to merge models even if they are incompatible with each other",
)
parser.add_argument(
"--clobber",
"--overwrite",
dest="clobber",
action="store_true",
help="Overwrite the merged model if --merged_model_name already exists",
)
return parser.parse_args()
# ------------------------- GUI HERE -------------------------
class mergeModelsForm(npyscreen.FormMultiPageAction):
interpolations = ["weighted_sum", "sigmoid", "inv_sigmoid"]
def __init__(self, parentApp, name):
self.parentApp = parentApp
self.ALLOW_RESIZE = True
self.FIX_MINIMUM_SIZE_WHEN_CREATED = False
super().__init__(parentApp, name)
@property
def model_record_store(self) -> ModelRecordServiceBase:
installer: ModelInstallServiceBase = self.parentApp.installer
return installer.record_store
def afterEditing(self) -> None:
self.parentApp.setNextForm(None)
def create(self) -> None:
window_height, window_width = curses.initscr().getmaxyx()
self.current_base = 0
self.models = self.get_models(BASE_TYPES[self.current_base][0])
self.model_names = [x[1] for x in self.models]
max_width = max([len(x) for x in self.model_names])
max_width += 6
horizontal_layout = max_width * 3 < window_width
self.add_widget_intelligent(
npyscreen.FixedText,
color="CONTROL",
value="Select two models to merge and optionally a third.",
editable=False,
)
self.add_widget_intelligent(
npyscreen.FixedText,
color="CONTROL",
value="Use up and down arrows to move, <space> to select an item, <tab> and <shift-tab> to move from one field to the next.",
editable=False,
)
self.nextrely += 1
self.base_select = self.add_widget_intelligent(
SingleSelectColumns,
values=[x[1] for x in BASE_TYPES],
value=[self.current_base],
columns=4,
max_height=2,
relx=8,
scroll_exit=True,
)
self.base_select.on_changed = self._populate_models
self.add_widget_intelligent(
npyscreen.FixedText,
value="MODEL 1",
color="GOOD",
editable=False,
rely=6 if horizontal_layout else None,
)
self.model1 = self.add_widget_intelligent(
npyscreen.SelectOne,
values=self.model_names,
value=0,
max_height=len(self.model_names),
max_width=max_width,
scroll_exit=True,
rely=7,
)
self.add_widget_intelligent(
npyscreen.FixedText,
value="MODEL 2",
color="GOOD",
editable=False,
relx=max_width + 3 if horizontal_layout else None,
rely=6 if horizontal_layout else None,
)
self.model2 = self.add_widget_intelligent(
npyscreen.SelectOne,
name="(2)",
values=self.model_names,
value=1,
max_height=len(self.model_names),
max_width=max_width,
relx=max_width + 3 if horizontal_layout else None,
rely=7 if horizontal_layout else None,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.FixedText,
value="MODEL 3",
color="GOOD",
editable=False,
relx=max_width * 2 + 3 if horizontal_layout else None,
rely=6 if horizontal_layout else None,
)
models_plus_none = self.model_names.copy()
models_plus_none.insert(0, "None")
self.model3 = self.add_widget_intelligent(
npyscreen.SelectOne,
name="(3)",
values=models_plus_none,
value=0,
max_height=len(self.model_names) + 1,
max_width=max_width,
scroll_exit=True,
relx=max_width * 2 + 3 if horizontal_layout else None,
rely=7 if horizontal_layout else None,
)
for m in [self.model1, self.model2, self.model3]:
m.when_value_edited = self.models_changed
self.merged_model_name = self.add_widget_intelligent(
TextBox,
name="Name for merged model:",
labelColor="CONTROL",
max_height=3,
value="",
scroll_exit=True,
)
self.force = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force merge of models created by different diffusers library versions",
labelColor="CONTROL",
value=True,
scroll_exit=True,
)
self.nextrely += 1
self.merge_method = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Merge Method:",
values=self.interpolations,
value=0,
labelColor="CONTROL",
max_height=len(self.interpolations) + 1,
scroll_exit=True,
)
self.alpha = self.add_widget_intelligent(
FloatTitleSlider,
name="Weight (alpha) to assign to second and third models:",
out_of=1.0,
step=0.01,
lowest=0,
value=0.5,
labelColor="CONTROL",
scroll_exit=True,
)
self.model1.editing = True
def models_changed(self) -> None:
models = self.model1.values
selected_model1 = self.model1.value[0]
selected_model2 = self.model2.value[0]
selected_model3 = self.model3.value[0]
merged_model_name = f"{models[selected_model1]}+{models[selected_model2]}"
self.merged_model_name.value = merged_model_name
if selected_model3 > 0:
self.merge_method.values = ["add_difference ( A+(B-C) )"]
self.merged_model_name.value += f"+{models[selected_model3 -1]}" # In model3 there is one more element in the list (None). So we have to subtract one.
else:
self.merge_method.values = self.interpolations
self.merge_method.value = 0
def on_ok(self) -> None:
if self.validate_field_values() and self.check_for_overwrite():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.merge_arguments = self.marshall_arguments()
npyscreen.notify("Starting the merge...")
else:
self.editing = True
def on_cancel(self) -> None:
sys.exit(0)
def marshall_arguments(self) -> dict:
model_keys = [x[0] for x in self.models]
models = [
model_keys[self.model1.value[0]],
model_keys[self.model2.value[0]],
]
if self.model3.value[0] > 0:
models.append(model_keys[self.model3.value[0] - 1])
interp = "add_difference"
else:
interp = self.interpolations[self.merge_method.value[0]]
args = {
"model_keys": models,
"alpha": self.alpha.value,
"interp": interp,
"force": self.force.value,
"merged_model_name": self.merged_model_name.value,
}
return args
def check_for_overwrite(self) -> bool:
model_out = self.merged_model_name.value
if model_out not in self.model_names:
return True
else:
result: bool = npyscreen.notify_yes_no(
f"The chosen merged model destination, {model_out}, is already in use. Overwrite?"
)
return result
def validate_field_values(self) -> bool:
bad_fields = []
model_names = self.model_names
selected_models = {model_names[self.model1.value[0]], model_names[self.model2.value[0]]}
if self.model3.value[0] > 0:
selected_models.add(model_names[self.model3.value[0] - 1])
if len(selected_models) < 2:
bad_fields.append(f"Please select two or three DIFFERENT models to compare. You selected {selected_models}")
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:"
for problem in bad_fields:
message += f"\n* {problem}"
npyscreen.notify_confirm(message)
return False
else:
return True
def get_models(self, base_model: Optional[BaseModelType] = None) -> List[Tuple[str, str]]: # key to name
models = [
(x.key, x.name)
for x in self.model_record_store.search_by_attr(model_type=ModelType.Main, base_model=base_model)
if x.format == ModelFormat("diffusers")
and hasattr(x, "variant")
and x.variant == ModelVariantType("normal")
]
return sorted(models, key=lambda x: x[1])
def _populate_models(self, value: List[int]) -> None:
base_model = BASE_TYPES[value[0]][0]
self.models = self.get_models(base_model)
self.model_names = [x[1] for x in self.models]
models_plus_none = self.model_names.copy()
models_plus_none.insert(0, "None")
self.model1.values = self.model_names
self.model2.values = self.model_names
self.model3.values = models_plus_none
self.display()
# npyscreen is untyped and causes mypy to get naggy
class Mergeapp(npyscreen.NPSAppManaged): # type: ignore
def __init__(self, installer: ModelInstallServiceBase):
"""Initialize the npyscreen application."""
super().__init__()
self.installer = installer
def onStart(self) -> None:
npyscreen.setTheme(npyscreen.Themes.ElegantTheme)
self.main = self.addForm("MAIN", mergeModelsForm, name="Merge Models Settings")
def run_gui(args: Namespace) -> None:
installer = initialize_installer(config)
mergeapp = Mergeapp(installer)
mergeapp.run()
merge_args = mergeapp.merge_arguments
merger = ModelMerger(installer)
merger.merge_diffusion_models_and_save(**merge_args)
logger.info(f'Models merged into new model: "{merge_args.merged_model_name}".')
def run_cli(args: Namespace) -> None:
assert args.alpha >= 0 and args.alpha <= 1.0, "alpha must be between 0 and 1"
assert (
args.model_names and len(args.model_names) >= 1 and len(args.model_names) <= 3
), "Please provide the --models argument to list 2 to 3 models to merge. Use --help for full usage."
if not args.merged_model_name:
args.merged_model_name = "+".join(args.model_names)
logger.info(f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"')
installer = initialize_installer(config)
store = installer.record_store
assert (
len(store.search_by_attr(args.merged_model_name, args.base_model, ModelType.Main)) == 0 or args.clobber
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
merger = ModelMerger(installer)
model_keys = []
for name in args.model_names:
if len(name) == 32 and re.match(r"^[0-9a-f]$", name):
model_keys.append(name)
else:
models = store.search_by_attr(
model_name=name, model_type=ModelType.Main, base_model=BaseModelType(args.base_model)
)
assert len(models) > 0, f"{name}: Unknown model"
assert len(models) < 2, f"{name}: More than one model by this name. Please specify the model key instead."
model_keys.append(models[0].key)
merger.merge_diffusion_models_and_save(
alpha=args.alpha,
model_keys=model_keys,
merged_model_name=args.merged_model_name,
interp=args.interp,
force=args.force,
)
logger.info(f'Models merged into new model: "{args.merged_model_name}".')
def main() -> None:
args = _parse_args()
if args.root_dir:
config.parse_args(["--root", str(args.root_dir)])
else:
config.parse_args([])
try:
if args.front_end:
run_gui(args)
else:
run_cli(args)
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
logger.error("You need to have at least two diffusers models defined in models.yaml in order to merge")
else:
logger.error("Not enough room for the user interface. Try making this window larger.")
sys.exit(-1)
except Exception as e:
logger.error(str(e))
sys.exit(-1)
except KeyboardInterrupt:
sys.exit(-1)
if __name__ == "__main__":
main()

View File

@@ -3,7 +3,7 @@
"""
This is the frontend to "textual_inversion_training.py".
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
@@ -14,7 +14,7 @@ import sys
import traceback
from argparse import Namespace
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from typing import List, Tuple
import npyscreen
from npyscreen import widget
@@ -22,9 +22,8 @@ from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.install.install_helper import initialize_installer
from invokeai.backend.model_manager import ModelType
from invokeai.backend.training import do_textual_inversion_training, parse_args
from ...backend.training import do_textual_inversion_training, parse_args
TRAINING_DATA = "text-inversion-training-data"
TRAINING_DIR = "text-inversion-output"
@@ -45,21 +44,19 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
precisions = ["no", "fp16", "bf16"]
learnable_properties = ["object", "style"]
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, saved_args: Optional[Dict[str, str]] = None):
def __init__(self, parentApp, name, saved_args=None):
self.saved_args = saved_args or {}
super().__init__(parentApp, name)
def afterEditing(self) -> None:
def afterEditing(self):
self.parentApp.setNextForm(None)
def create(self) -> None:
def create(self):
self.model_names, default = self.get_model_names()
default_initializer_token = ""
default_placeholder_token = ""
saved_args = self.saved_args
assert config is not None
try:
default = self.model_names.index(saved_args["model"])
except Exception:
@@ -74,7 +71,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
self.model = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Model Name:",
values=sorted(self.model_names),
values=self.model_names,
value=default,
max_height=len(self.model_names) + 1,
scroll_exit=True,
@@ -239,7 +236,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
)
self.model.editing = True
def initializer_changed(self) -> None:
def initializer_changed(self):
placeholder = self.placeholder_token.value
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
self.train_data_dir.value = str(config.root_dir / TRAINING_DATA / placeholder)
@@ -278,13 +275,10 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
return True
def get_model_names(self) -> Tuple[List[str], int]:
global config
assert config is not None
installer = initialize_installer(config)
store = installer.record_store
main_models = store.search_by_attr(model_type=ModelType.Main)
model_names = [f"{x.base.value}/{x.type.value}/{x.name}" for x in main_models if x.format == "diffusers"]
default = 0
conf = OmegaConf.load(config.root_dir / "configs/models.yaml")
model_names = [idx for idx in sorted(conf.keys()) if conf[idx].get("format", None) == "diffusers"]
defaults = [idx for idx in range(len(model_names)) if "default" in conf[model_names[idx]]]
default = defaults[0] if len(defaults) > 0 else 0
return (model_names, default)
def marshall_arguments(self) -> dict:
@@ -332,7 +326,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
class MyApplication(npyscreen.NPSAppManaged):
def __init__(self, saved_args: Optional[Dict[str, str]] = None):
def __init__(self, saved_args=None):
super().__init__()
self.ti_arguments = None
self.saved_args = saved_args
@@ -347,12 +341,11 @@ class MyApplication(npyscreen.NPSAppManaged):
)
def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
def copy_to_embeddings_folder(args: dict):
"""
Copy learned_embeds.bin into the embeddings folder, and offer to
delete the full model and checkpoints.
"""
assert config is not None
source = Path(args["output_dir"], "learned_embeds.bin")
dest_dir_name = args["placeholder_token"].strip("<>")
destination = config.root_dir / "embeddings" / dest_dir_name
@@ -365,11 +358,10 @@ def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
logger.info(f'Keeping {args["output_dir"]}')
def save_args(args: dict) -> None:
def save_args(args: dict):
"""
Save the current argument values to an omegaconf file
"""
assert config is not None
dest_dir = config.root_dir / TRAINING_DIR
os.makedirs(dest_dir, exist_ok=True)
conf_file = dest_dir / CONF_FILE
@@ -381,7 +373,6 @@ def previous_args() -> dict:
"""
Get the previous arguments used.
"""
assert config is not None
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
try:
conf = OmegaConf.load(conf_file)
@@ -392,26 +383,24 @@ def previous_args() -> dict:
return conf
def do_front_end() -> None:
global config
def do_front_end(args: Namespace):
saved_args = previous_args()
myapplication = MyApplication(saved_args=saved_args)
myapplication.run()
if my_args := myapplication.ti_arguments:
os.makedirs(my_args["output_dir"], exist_ok=True)
if args := myapplication.ti_arguments:
os.makedirs(args["output_dir"], exist_ok=True)
# Automatically add angle brackets around the trigger
if not re.match("^<.+>$", my_args["placeholder_token"]):
my_args["placeholder_token"] = f"<{my_args['placeholder_token']}>"
if not re.match("^<.+>$", args["placeholder_token"]):
args["placeholder_token"] = f"<{args['placeholder_token']}>"
my_args["only_save_embeds"] = True
save_args(my_args)
args["only_save_embeds"] = True
save_args(args)
try:
print(my_args)
do_textual_inversion_training(config, **my_args)
copy_to_embeddings_folder(my_args)
do_textual_inversion_training(InvokeAIAppConfig.get_config(), **args)
copy_to_embeddings_folder(args)
except Exception as e:
logger.error("An exception occurred during training. The exception was:")
logger.error(str(e))
@@ -419,12 +408,11 @@ def do_front_end() -> None:
logger.error(traceback.format_exc())
def main() -> None:
def main():
global config
args: Namespace = parse_args()
args = parse_args()
config = InvokeAIAppConfig.get_config()
config.parse_args([])
# change root if needed
if args.root_dir:
@@ -432,7 +420,7 @@ def main() -> None:
try:
if args.front_end:
do_front_end()
do_front_end(args)
else:
do_textual_inversion_training(config, **vars(args))
except AssertionError as e:

View File

@@ -1,454 +0,0 @@
#!/usr/bin/env python
"""
This is the frontend to "textual_inversion_training.py".
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
"""
import os
import re
import shutil
import sys
import traceback
from argparse import Namespace
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import npyscreen
from npyscreen import widget
from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.install.install_helper import initialize_installer
from invokeai.backend.model_manager import ModelType
from invokeai.backend.training import do_textual_inversion_training, parse_args
TRAINING_DATA = "text-inversion-training-data"
TRAINING_DIR = "text-inversion-output"
CONF_FILE = "preferences.conf"
config = None
class textualInversionForm(npyscreen.FormMultiPageAction):
resolutions = [512, 768, 1024]
lr_schedulers = [
"linear",
"cosine",
"cosine_with_restarts",
"polynomial",
"constant",
"constant_with_warmup",
]
precisions = ["no", "fp16", "bf16"]
learnable_properties = ["object", "style"]
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, saved_args: Optional[Dict[str, str]] = None):
self.saved_args = saved_args or {}
super().__init__(parentApp, name)
def afterEditing(self) -> None:
self.parentApp.setNextForm(None)
def create(self) -> None:
self.model_names, default = self.get_model_names()
default_initializer_token = ""
default_placeholder_token = ""
saved_args = self.saved_args
assert config is not None
try:
default = self.model_names.index(saved_args["model"])
except Exception:
pass
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.",
editable=False,
)
self.model = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Model Name:",
values=sorted(self.model_names),
value=default,
max_height=len(self.model_names) + 1,
scroll_exit=True,
)
self.placeholder_token = self.add_widget_intelligent(
npyscreen.TitleText,
name="Trigger Term:",
value="", # saved_args.get('placeholder_token',''), # to restore previous term
scroll_exit=True,
)
self.placeholder_token.when_value_edited = self.initializer_changed
self.nextrely -= 1
self.nextrelx += 30
self.prompt_token = self.add_widget_intelligent(
npyscreen.FixedText,
name="Trigger term for use in prompt",
value="",
editable=False,
scroll_exit=True,
)
self.nextrelx -= 30
self.initializer_token = self.add_widget_intelligent(
npyscreen.TitleText,
name="Initializer:",
value=saved_args.get("initializer_token", default_initializer_token),
scroll_exit=True,
)
self.resume_from_checkpoint = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Resume from last saved checkpoint",
value=False,
scroll_exit=True,
)
self.learnable_property = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Learnable property:",
values=self.learnable_properties,
value=self.learnable_properties.index(saved_args.get("learnable_property", "object")),
max_height=4,
scroll_exit=True,
)
self.train_data_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="Data Training Directory:",
select_dir=True,
must_exist=False,
value=str(
saved_args.get(
"train_data_dir",
config.root_dir / TRAINING_DATA / default_placeholder_token,
)
),
scroll_exit=True,
)
self.output_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="Output Destination Directory:",
select_dir=True,
must_exist=False,
value=str(
saved_args.get(
"output_dir",
config.root_dir / TRAINING_DIR / default_placeholder_token,
)
),
scroll_exit=True,
)
self.resolution = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Image resolution (pixels):",
values=self.resolutions,
value=self.resolutions.index(saved_args.get("resolution", 512)),
max_height=4,
scroll_exit=True,
)
self.center_crop = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Center crop images before resizing to resolution",
value=saved_args.get("center_crop", False),
scroll_exit=True,
)
self.mixed_precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Mixed Precision:",
values=self.precisions,
value=self.precisions.index(saved_args.get("mixed_precision", "fp16")),
max_height=4,
scroll_exit=True,
)
self.num_train_epochs = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Number of training epochs:",
out_of=1000,
step=50,
lowest=1,
value=saved_args.get("num_train_epochs", 100),
scroll_exit=True,
)
self.max_train_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Max Training Steps:",
out_of=10000,
step=500,
lowest=1,
value=saved_args.get("max_train_steps", 3000),
scroll_exit=True,
)
self.train_batch_size = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Batch Size (reduce if you run out of memory):",
out_of=50,
step=1,
lowest=1,
value=saved_args.get("train_batch_size", 8),
scroll_exit=True,
)
self.gradient_accumulation_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):",
out_of=10,
step=1,
lowest=1,
value=saved_args.get("gradient_accumulation_steps", 4),
scroll_exit=True,
)
self.lr_warmup_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name="Warmup Steps:",
out_of=100,
step=1,
lowest=0,
value=saved_args.get("lr_warmup_steps", 0),
scroll_exit=True,
)
self.learning_rate = self.add_widget_intelligent(
npyscreen.TitleText,
name="Learning Rate:",
value=str(
saved_args.get("learning_rate", "5.0e-04"),
),
scroll_exit=True,
)
self.scale_lr = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Scale learning rate by number GPUs, steps and batch size",
value=saved_args.get("scale_lr", True),
scroll_exit=True,
)
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Use xformers acceleration",
value=saved_args.get("enable_xformers_memory_efficient_attention", False),
scroll_exit=True,
)
self.lr_scheduler = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Learning rate scheduler:",
values=self.lr_schedulers,
max_height=7,
value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")),
scroll_exit=True,
)
self.model.editing = True
def initializer_changed(self) -> None:
placeholder = self.placeholder_token.value
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
self.train_data_dir.value = str(config.root_dir / TRAINING_DATA / placeholder)
self.output_dir.value = str(config.root_dir / TRAINING_DIR / placeholder)
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
def on_ok(self):
if self.validate_field_values():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.ti_arguments = self.marshall_arguments()
npyscreen.notify("Launching textual inversion training. This will take a while...")
else:
self.editing = True
def ok_cancel(self):
sys.exit(0)
def validate_field_values(self) -> bool:
bad_fields = []
if self.model.value is None:
bad_fields.append("Model Name must correspond to a known model in models.yaml")
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
bad_fields.append("Trigger term must only contain alphanumeric characters, the dot and hyphen")
if self.train_data_dir.value is None:
bad_fields.append("Data Training Directory cannot be empty")
if self.output_dir.value is None:
bad_fields.append("The Output Destination Directory cannot be empty")
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:"
for problem in bad_fields:
message += f"\n* {problem}"
npyscreen.notify_confirm(message)
return False
else:
return True
def get_model_names(self) -> Tuple[List[str], int]:
global config
assert config is not None
installer = initialize_installer(config)
store = installer.record_store
main_models = store.search_by_attr(model_type=ModelType.Main)
model_names = [f"{x.base.value}/{x.type.value}/{x.name}" for x in main_models if x.format == "diffusers"]
default = 0
return (model_names, default)
def marshall_arguments(self) -> dict:
args = {}
# the choices
args.update(
model=self.model_names[self.model.value[0]],
resolution=self.resolutions[self.resolution.value[0]],
lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]],
mixed_precision=self.precisions[self.mixed_precision.value[0]],
learnable_property=self.learnable_properties[self.learnable_property.value[0]],
)
# all the strings and booleans
for attr in (
"initializer_token",
"placeholder_token",
"train_data_dir",
"output_dir",
"scale_lr",
"center_crop",
"enable_xformers_memory_efficient_attention",
):
args[attr] = getattr(self, attr).value
# all the integers
for attr in (
"train_batch_size",
"gradient_accumulation_steps",
"num_train_epochs",
"max_train_steps",
"lr_warmup_steps",
):
args[attr] = int(getattr(self, attr).value)
# the floats (just one)
args.update(learning_rate=float(self.learning_rate.value))
# a special case
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
args["resume_from_checkpoint"] = "latest"
return args
class MyApplication(npyscreen.NPSAppManaged):
def __init__(self, saved_args: Optional[Dict[str, str]] = None):
super().__init__()
self.ti_arguments = None
self.saved_args = saved_args
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main = self.addForm(
"MAIN",
textualInversionForm,
name="Textual Inversion Settings",
saved_args=self.saved_args,
)
def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
"""
Copy learned_embeds.bin into the embeddings folder, and offer to
delete the full model and checkpoints.
"""
assert config is not None
source = Path(args["output_dir"], "learned_embeds.bin")
dest_dir_name = args["placeholder_token"].strip("<>")
destination = config.root_dir / "embeddings" / dest_dir_name
os.makedirs(destination, exist_ok=True)
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
shutil.copy(source, destination)
if (input("Delete training logs and intermediate checkpoints? [y] ") or "y").startswith(("y", "Y")):
shutil.rmtree(Path(args["output_dir"]))
else:
logger.info(f'Keeping {args["output_dir"]}')
def save_args(args: dict) -> None:
"""
Save the current argument values to an omegaconf file
"""
assert config is not None
dest_dir = config.root_dir / TRAINING_DIR
os.makedirs(dest_dir, exist_ok=True)
conf_file = dest_dir / CONF_FILE
conf = OmegaConf.create(args)
OmegaConf.save(config=conf, f=conf_file)
def previous_args() -> dict:
"""
Get the previous arguments used.
"""
assert config is not None
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
try:
conf = OmegaConf.load(conf_file)
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
except Exception:
conf = None
return conf
def do_front_end() -> None:
global config
saved_args = previous_args()
myapplication = MyApplication(saved_args=saved_args)
myapplication.run()
if my_args := myapplication.ti_arguments:
os.makedirs(my_args["output_dir"], exist_ok=True)
# Automatically add angle brackets around the trigger
if not re.match("^<.+>$", my_args["placeholder_token"]):
my_args["placeholder_token"] = f"<{my_args['placeholder_token']}>"
my_args["only_save_embeds"] = True
save_args(my_args)
try:
print(my_args)
do_textual_inversion_training(config, **my_args)
copy_to_embeddings_folder(my_args)
except Exception as e:
logger.error("An exception occurred during training. The exception was:")
logger.error(str(e))
logger.error("DETAILS:")
logger.error(traceback.format_exc())
def main() -> None:
global config
args: Namespace = parse_args()
config = InvokeAIAppConfig.get_config()
config.parse_args([])
# change root if needed
if args.root_dir:
config.root = args.root_dir
try:
if args.front_end:
do_front_end()
else:
do_textual_inversion_training(config, **vars(args))
except AssertionError as e:
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
pass
except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"):
logger.error("You need to have at least one diffusers models defined in models.yaml in order to train")
elif str(e).startswith("addwstr"):
logger.error("Not enough window space for the interface. Please make your window larger and try again.")
else:
logger.error(e)
sys.exit(-1)
if __name__ == "__main__":
main()

View File

@@ -1,26 +1,131 @@
module.exports = {
extends: ['@invoke-ai/eslint-config-react'],
plugins: ['path', 'i18next'],
env: {
browser: true,
es6: true,
node: true,
},
extends: [
'eslint:recommended',
'plugin:@typescript-eslint/recommended',
'plugin:react/recommended',
'plugin:react-hooks/recommended',
'plugin:react/jsx-runtime',
'prettier',
'plugin:storybook/recommended',
],
parser: '@typescript-eslint/parser',
parserOptions: {
ecmaFeatures: {
jsx: true,
},
ecmaVersion: 2018,
sourceType: 'module',
},
plugins: [
'react',
'@typescript-eslint',
'eslint-plugin-react-hooks',
'i18next',
'path',
'unused-imports',
'simple-import-sort',
'eslint-plugin-import',
// These rules are too strict for normal usage, but are useful for optimizing rerenders
// '@arthurgeron/react-usememo',
],
root: true,
rules: {
// TODO(psyche): Enable this rule. Requires no default exports in components - many changes.
'react-refresh/only-export-components': 'off',
// TODO(psyche): Enable this rule. Requires a lot of eslint-disable-next-line comments.
'@typescript-eslint/consistent-type-assertions': 'off',
// https://github.com/qdanik/eslint-plugin-path
'path/no-relative-imports': ['error', { maxDepth: 0 }],
// https://github.com/edvardchen/eslint-plugin-i18next/blob/HEAD/docs/rules/no-literal-string.md
'i18next/no-literal-string': 'error',
curly: 'error',
'i18next/no-literal-string': 'warn',
'react/jsx-no-bind': ['error', { allowBind: true }],
'react/jsx-curly-brace-presence': [
'error',
{ props: 'never', children: 'never' },
],
'react-hooks/exhaustive-deps': 'error',
'no-var': 'error',
'brace-style': 'error',
'prefer-template': 'error',
'import/no-duplicates': 'error',
radix: 'error',
'space-before-blocks': 'error',
'import/prefer-default-export': 'off',
'@typescript-eslint/no-unused-vars': 'off',
'unused-imports/no-unused-imports': 'error',
'unused-imports/no-unused-vars': [
'warn',
{
vars: 'all',
varsIgnorePattern: '^_',
args: 'after-used',
argsIgnorePattern: '^_',
},
],
// These rules are too strict for normal usage, but are useful for optimizing rerenders
// '@arthurgeron/react-usememo/require-usememo': [
// 'warn',
// {
// strict: false,
// checkHookReturnObject: false,
// fix: { addImports: true },
// checkHookCalls: false,
// },
// ],
// '@arthurgeron/react-usememo/require-memo': 'warn',
'@typescript-eslint/ban-ts-comment': 'warn',
'@typescript-eslint/no-explicit-any': 'warn',
'@typescript-eslint/no-empty-interface': [
'error',
{
allowSingleExtends: true,
},
],
'@typescript-eslint/consistent-type-imports': [
'error',
{
prefer: 'type-imports',
fixStyle: 'separate-type-imports',
disallowTypeAnnotations: true,
},
],
'@typescript-eslint/no-import-type-side-effects': 'error',
'simple-import-sort/imports': 'error',
'simple-import-sort/exports': 'error',
// Prefer @invoke-ai/ui components over chakra
'no-restricted-imports': 'off',
'@typescript-eslint/no-restricted-imports': [
'warn',
{
paths: [
{
name: '@chakra-ui/react',
message: "Please import from '@invoke-ai/ui' instead.",
},
{
name: '@chakra-ui/layout',
message: "Please import from '@invoke-ai/ui' instead.",
},
{
name: '@chakra-ui/portal',
message: "Please import from '@invoke-ai/ui' instead.",
},
],
},
],
},
overrides: [
/**
* Overrides for stories
*/
{
files: ['*.stories.tsx'],
rules: {
// We may not have i18n available in stories.
'i18next/no-literal-string': 'off',
},
},
],
settings: {
react: {
version: 'detect',
},
},
};

View File

@@ -1,5 +1,9 @@
module.exports = {
...require('@invoke-ai/prettier-config-react'),
trailingComma: 'es5',
tabWidth: 2,
semi: true,
singleQuote: true,
endOfLine: 'auto',
overrides: [
{
files: ['public/locales/*.json'],

View File

@@ -1,7 +1,7 @@
import { PropsWithChildren, memo, useEffect } from 'react';
import { modelChanged } from '../src/features/parameters/store/generationSlice';
import { useAppDispatch } from '../src/app/store/storeHooks';
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
import { useGlobalModifiersInit } from '@invoke-ai/ui';
/**
* Initializes some state for storybook. Must be in a different component
* so that it is run inside the redux context.

View File

@@ -6,6 +6,7 @@ import { Provider } from 'react-redux';
import ThemeLocaleProvider from '../src/app/components/ThemeLocaleProvider';
import { $baseUrl } from '../src/app/store/nanostores/baseUrl';
import { createStore } from '../src/app/store/store';
import { Container } from '@chakra-ui/react';
// TODO: Disabled for IDE performance issues with our translation JSON
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
// @ts-ignore

View File

@@ -1,7 +1,13 @@
{
"entry": ["src/main.tsx"],
"extensions": [".ts", ".tsx"],
"ignorePatterns": ["**/node_modules/**", "dist/**", "public/**", "**/*.stories.tsx", "config/**"],
"ignorePatterns": [
"**/node_modules/**",
"dist/**",
"public/**",
"**/*.stories.tsx",
"config/**"
],
"ignoreUnresolved": [],
"ignoreUnimported": ["src/i18.d.ts", "vite.config.ts", "src/vite-env.d.ts"],
"respectGitignore": true,

View File

@@ -1,150 +0,0 @@
# Invoke UI
<!-- @import "[TOC]" {cmd="toc" depthFrom=2 depthTo=3 orderedList=false} -->
<!-- code_chunk_output -->
- [Dev environment](#dev-environment)
- [Setup](#setup)
- [Package scripts](#package-scripts)
- [Type generation](#type-generation)
- [Localization](#localization)
- [VSCode](#vscode)
- [Contributing](#contributing)
- [Check in before investing your time](#check-in-before-investing-your-time)
- [Commit format](#commit-format)
- [Submitting a PR](#submitting-a-pr)
- [Other docs](#other-docs)
<!-- /code_chunk_output -->
Invoke's UI is made possible by many contributors and open-source libraries. Thank you!
## Dev environment
### Setup
1. Install [node] and [pnpm].
1. Run `pnpm i` to install all packages.
#### Run in dev mode
1. From `invokeai/frontend/web/`, run `pnpm dev`.
1. From repo root, run `python scripts/invokeai-web.py`.
1. Point your browser to the dev server address, e.g. <http://localhost:5173/>
### Package scripts
- `dev`: run the frontend in dev mode, enabling hot reloading
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
- `typegen`: generate types from the OpenAPI schema (see [Type generation])
- `lint:madge`: check frontend for circular dependencies
- `lint:eslint`: check frontend for code quality
- `lint:prettier`: check frontend for code formatting
- `lint:tsc`: check frontend for type issues
- `lint`: run all checks concurrently
- `fix`: run `eslint` and `prettier`, fixing fixable issues
### Type generation
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
The generated types are committed to the repo in [schema.ts].
```sh
# from the repo root, start the server
python scripts/invokeai-web.py
# from invokeai/frontend/web/, run the script
pnpm typegen
```
### Localization
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
Only the English source strings should be changed on this repo.
### VSCode
#### Example debugger config
```jsonc
{
"version": "0.2.0",
"configurations": [
{
"type": "chrome",
"request": "launch",
"name": "Invoke UI",
"url": "http://localhost:5173",
"webRoot": "${workspaceFolder}/invokeai/frontend/web",
},
],
}
```
#### Remote dev
We've noticed an intermittent timeout issue with the VSCode remote dev port forwarding.
We suggest disabling the editor's port forwarding feature and doing it manually via SSH:
```sh
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
```
## Contributing Guidelines
Thanks for your interest in contributing to the Invoke Web UI!
Please follow these guidelines when contributing.
### Check in before investing your time
Please check in before you invest your time on anything besides a trivial fix, in case it conflicts with ongoing work or isn't aligned with the vision for the app.
If a feature request or issue doesn't already exist for the thing you want to work on, please create one.
Ping `@psychedelicious` on [discord] in the `#frontend-dev` channel or in the feature request / issue you want to work on - we're happy chat.
### Code conventions
- This is a fairly complex app with a deep component tree. Please use memoization (`useCallback`, `useMemo`, `memo`) with enthusiasm.
- If you need to add some global, ephemeral state, please use [nanostores] if possible.
- Be careful with your redux selectors. If they need to be parameterized, consider creating them inside a `useMemo`.
- Feel free to use `lodash` (via `lodash-es`) to make the intent of your code clear.
- Please add comments describing the "why", not the "how" (unless it is really arcane).
### Commit format
Please use the [conventional commits] spec for the web UI, with a scope of "ui":
- `chore(ui): bump deps`
- `chore(ui): lint`
- `feat(ui): add some cool new feature`
- `fix(ui): fix some bug`
### Submitting a PR
- Ensure your branch is tidy. Use an interactive rebase to clean up the commit history and reword the commit messages if they are not descriptive.
- Run `pnpm lint`. Some issues are auto-fixable with `pnpm fix`.
- Fill out the PR form when creating the PR.
- It doesn't need to be super detailed, but a screenshot or video is nice if you changed something visually.
- If a section isn't relevant, delete it. There are no UI tests at this time.
## Other docs
- [Workflows - Design and Implementation]
- [State Management]
[node]: https://nodejs.org/en/download/
[pnpm]: https://github.com/pnpm/pnpm
[discord]: https://discord.gg/ZmtBAhwWhy
[i18next]: https://github.com/i18next/react-i18next
[Weblate]: https://hosted.weblate.org/engage/invokeai/
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
[Type generation]: #type-generation
[schema.ts]: ../src/services/api/schema.ts
[conventional commits]: https://www.conventionalcommits.org/en/v1.0.0/
[Workflows - Design and Implementation]: ./docs/WORKFLOWS_DESIGN_IMPLEMENTATION.md
[State Management]: ./docs/STATE_MGMT.md

View File

@@ -22,13 +22,12 @@ export const packageConfig: UserConfig = {
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react', '@invoke-ai/ui-library'],
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react'],
output: {
globals: {
react: 'React',
'react-dom': 'ReactDOM',
'@emotion/react': 'EmotionReact',
'@invoke-ai/ui-library': 'UiLibrary',
},
},
},

View File

@@ -0,0 +1,154 @@
# InvokeAI Web UI
<!-- @import "[TOC]" {cmd="toc" depthFrom=1 depthTo=6 orderedList=false} -->
<!-- code_chunk_output -->
- [InvokeAI Web UI](#invokeai-web-ui)
- [Core Libraries](#core-libraries)
- [Redux Toolkit](#redux-toolkit)
- [Socket\.IO](#socketio)
- [Chakra UI](#chakra-ui)
- [KonvaJS](#konvajs)
- [Vite](#vite)
- [i18next & Weblate](#i18next--weblate)
- [openapi-typescript](#openapi-typescript)
- [reactflow](#reactflow)
- [zod](#zod)
- [Client Types Generation](#client-types-generation)
- [Package Scripts](#package-scripts)
- [Contributing](#contributing)
- [Dev Environment](#dev-environment)
- [VSCode Remote Dev](#vscode-remote-dev)
- [Production builds](#production-builds)
<!-- /code_chunk_output -->
The UI is a fairly straightforward Typescript React app.
## Core Libraries
InvokeAI's UI is made possible by a number of excellent open-source libraries. The most heavily-used are listed below, but there are many others.
### Redux Toolkit
[Redux Toolkit] is used for state management and fetching/caching:
- `RTK-Query` for data fetching and caching
- `createAsyncThunk` for a couple other HTTP requests
- `createEntityAdapter` to normalize things like images and models
- `createListenerMiddleware` for async workflows
We use [redux-remember] for persistence.
### Socket\.IO
[Socket.IO] is used for server-to-client events, like generation process and queue state changes.
### Chakra UI
[Chakra UI] is our primary UI library, but we also use a few components from [Mantine v6].
### KonvaJS
[KonvaJS] powers the canvas. In the future, we'd like to explore [PixiJS] or WebGPU.
### Vite
[Vite] is our bundler.
### i18next & Weblate
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project. **Only the English source strings should be changed on this repo.**
### openapi-typescript
[openapi-typescript] is used to generate types from the server's OpenAPI schema. See TYPES_CODEGEN.md.
### reactflow
[reactflow] powers the Workflow Editor.
### zod
[zod] schemas are used to model data structures and provide runtime validation.
## Client Types Generation
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
The generated types are written to `invokeai/frontend/web/src/services/api/schema.d.ts`. This file is committed to the repo.
The server must be started and available at <http://127.0.0.1:9090>.
```sh
# from the repo root, start the server
python scripts/invokeai-web.py
# from invokeai/frontend/web/, run the script
pnpm typegen
```
## Package Scripts
See `package.json` for all scripts.
Run with `pnpm <script name>`.
- `dev`: run the frontend in dev mode, enabling hot reloading
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
- `typegen`: generate types from the OpenAPI schema (see [Client Types Generation](#client-types-generation))
- `lint:madge`: check frontend for circular dependencies
- `lint:eslint`: check frontend for code quality
- `lint:prettier`: check frontend for code formatting
- `lint:tsc`: check frontend for type issues
- `lint`: run all checks concurrently
- `fix`: run `eslint` and `prettier`, fixing fixable issues
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [discord] if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
Install [node] and [pnpm].
From `invokeai/frontend/web/` run `pnpm i` to get everything set up.
Start everything in dev mode:
1. Start the dev server: `pnpm dev`
2. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
#### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `pnpm build`.
[node]: https://nodejs.org/en/download/
[pnpm]: https://github.com/pnpm/pnpm
[discord]: https://discord.gg/ZmtBAhwWhy
[Redux Toolkit]: https://github.com/reduxjs/redux-toolkit
[redux-remember]: https://github.com/zewish/redux-remember
[Socket.IO]: https://github.com/socketio/socket.io
[Chakra UI]: https://github.com/chakra-ui/chakra-ui
[Mantine v6]: https://v6.mantine.dev/
[KonvaJS]: https://github.com/konvajs/react-konva
[PixiJS]: https://github.com/pixijs/pixijs
[Vite]: https://github.com/vitejs/vite
[i18next]: https://github.com/i18next/react-i18next
[Weblate]: https://hosted.weblate.org/engage/invokeai/
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
[reactflow]: https://github.com/xyflow/xyflow
[zod]: https://github.com/colinhacks/zod

View File

@@ -1,38 +0,0 @@
# State Management
The app makes heavy use of Redux Toolkit, its Query library, and `nanostores`.
## Redux
TODO
## `nanostores`
[nanostores] is a tiny state management library. It provides both imperative and declarative APIs.
### Example
```ts
export const $myStringOption = atom<string | null>(null);
// Outside a component, or within a callback for performance-critical logic
$myStringOption.get();
$myStringOption.set('new value');
// Inside a component
const myStringOption = useStore($myStringOption);
```
### Where to put nanostores
- For global application state, export your stores from `invokeai/frontend/web/src/app/store/nanostores/`.
- For feature state, create a file for the stores next to the redux slice definition (e.g. `invokeai/frontend/web/src/features/myFeature/myFeatureNanostores.ts`).
- For hooks with global state, export the store from the same file the hook is in, or put it next to the hook.
### When to use nanostores
- For non-serializable data that needs to be available throughout the app, use `nanostores` instead of a global.
- For ephemeral global state (i.e. state that does not need to be persisted), use `nanostores` instead of redux.
- For performance-critical code and in callbacks, redux selectors can be problematic due to the declarative reactivity system. Consider refactoring to use `nanostores` if there's a **measurable** performance issue.
[nanostores]: https://github.com/nanostores/nanostores/

View File

@@ -23,7 +23,7 @@
- [Primitive Types](#primitive-types)
- [Complex Types](#complex-types)
- [Collection Types](#collection-types)
- [Collection or Scalar Types](#collection-or-scalar-types)
- [Polymorphic Types](#polymorphic-types)
- [Optional Fields](#optional-fields)
- [Building Field Input Templates](#building-field-input-templates)
- [Building Field Output Templates](#building-field-output-templates)

View File

@@ -19,8 +19,8 @@
"dist"
],
"scripts": {
"dev": "vite dev",
"dev:host": "vite dev --host",
"dev": "concurrently \"vite dev\" \"pnpm run theme:watch\"",
"dev:host": "concurrently \"vite dev --host\" \"pnpm run theme:watch\"",
"build": "pnpm run lint && vite build",
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
@@ -31,6 +31,9 @@
"lint": "concurrently -g -n eslint,prettier,tsc,madge -c cyan,green,magenta,yellow \"pnpm run lint:eslint\" \"pnpm run lint:prettier\" \"pnpm run lint:tsc\" \"pnpm run lint:madge\"",
"fix": "eslint --fix . && prettier --log-level warn --write .",
"preinstall": "npx only-allow pnpm",
"postinstall": "pnpm run theme",
"theme": "chakra-cli tokens node_modules/@invoke-ai/ui",
"theme:watch": "chakra-cli tokens node_modules/@invoke-ai/ui --watch",
"storybook": "storybook dev -p 6006",
"build-storybook": "storybook build",
"unimported": "npx unimported"
@@ -49,13 +52,21 @@
}
},
"dependencies": {
"@chakra-ui/anatomy": "^2.2.2",
"@chakra-ui/icons": "^2.1.1",
"@chakra-ui/layout": "^2.3.1",
"@chakra-ui/portal": "^2.1.0",
"@chakra-ui/react": "^2.8.2",
"@chakra-ui/react-use-size": "^2.1.0",
"@chakra-ui/styled-system": "^2.9.2",
"@chakra-ui/theme-tools": "^2.1.2",
"@dagrejs/graphlib": "^2.1.13",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@emotion/react": "^11.11.3",
"@emotion/styled": "^11.11.0",
"@fontsource-variable/inter": "^5.0.16",
"@invoke-ai/ui-library": "^0.0.18",
"@invoke-ai/ui": "0.0.10",
"@mantine/form": "6.0.21",
"@nanostores/react": "^0.7.1",
"@reduxjs/toolkit": "2.0.1",
@@ -105,6 +116,7 @@
"zod-validation-error": "^3.0.0"
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.1",
"@chakra-ui/react": "^2.8.2",
"react": "^18.2.0",
"react-dom": "^18.2.0",
@@ -112,8 +124,7 @@
},
"devDependencies": {
"@arthurgeron/eslint-plugin-react-usememo": "^2.2.3",
"@invoke-ai/eslint-config-react": "^0.0.13",
"@invoke-ai/prettier-config-react": "^0.0.6",
"@chakra-ui/cli": "^2.4.1",
"@storybook/addon-docs": "^7.6.10",
"@storybook/addon-essentials": "^7.6.10",
"@storybook/addon-interactions": "^7.6.10",
@@ -153,7 +164,7 @@
"storybook": "^7.6.10",
"ts-toolbelt": "^9.6.0",
"typescript": "^5.3.3",
"vite": "^5.0.12",
"vite": "^5.0.11",
"vite-plugin-css-injected-by-js": "^3.3.1",
"vite-plugin-dts": "^3.7.1",
"vite-plugin-eslint": "^1.8.1",

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More