Compare commits

..

803 Commits

Author SHA1 Message Date
psychedelicious
3707c3b034 fix(ui): do not bake opacity when rasterizing layer adjustments 2025-09-22 11:43:08 +10:00
Mary Hipp
5885db4ab5 ruff 2025-09-19 11:07:36 -04:00
Mary Hipp
36ed9b750d restore list_queue_items method 2025-09-19 11:07:36 -04:00
psychedelicious
3cec06f86e chore(ui): typegen 2025-09-19 22:13:12 +10:00
psychedelicious
28b5f7a1c5 feat(nodes): better deprecation handling for ui_type
- Move migration of model-specific ui_types into BaseInvocation. This
gives us access to the node and field names, so the warnings are more
useful to the end user.
- Ensure we serialize the fields' json_schema_extra with enum values.
This wasn't a problem until now, when it interferes with migrating
ui_type cleanly. It's a transparent change.
- Improve warnings when validating fields (which includes the ui_type
migration logic)
2025-09-19 22:13:12 +10:00
psychedelicious
22cbb23ae0 fix(ui): ref images for flux kontext & api models not parsed correctly 2025-09-19 21:40:17 +10:00
Riccardo Giovanetti
4d585e3eec translationBot(ui): update translation (Italian)
Currently translated at 98.4% (2130 of 2163 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (2127 of 2161 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-18 14:01:31 +10:00
psychedelicious
006b4356bb chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
da947866f2 fix(nodes): ensure SD2 models are pickable in loader/cnet nodes 2025-09-18 12:39:27 +10:00
psychedelicious
84a2cc6fc9 chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
b50534bb49 revert(nodes): do not deprecate ui_type for output fields! only deprecate the model ui types 2025-09-18 12:39:27 +10:00
psychedelicious
c305e79fee tests(ui): update tests to reflect new model parsing logic 2025-09-18 12:39:27 +10:00
psychedelicious
c32949d113 tidy(nodes): mark all UIType.*ModelField as deprecated 2025-09-18 12:39:27 +10:00
psychedelicious
87a98902da tidy(nodes): remove unused UIType.Video 2025-09-18 12:39:27 +10:00
psychedelicious
2857a446c9 docs(nodes): update docstrings for InputField 2025-09-18 12:39:27 +10:00
psychedelicious
035d9432bd feat(ui): support filtering on model format 2025-09-18 12:39:27 +10:00
psychedelicious
bdeb9fb1cf chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
dadff57061 feat(nodes): add ui_model_format filter for nodes 2025-09-18 12:39:27 +10:00
psychedelicious
480857ae4e fix(nodes): add base to SD1 model loader 2025-09-18 12:39:27 +10:00
psychedelicious
eaf0624004 feat(ui): remove explicit model type handling from workflow editor 2025-09-18 12:39:27 +10:00
psychedelicious
58bca1b9f4 feat(nodes): use new ui_model_[base|type|variant] on all core nodes 2025-09-18 12:39:27 +10:00
psychedelicious
54aa6908fa feat(ui): update invocation parsing to handle new ui_model_[base|type|variant] attrs 2025-09-18 12:39:27 +10:00
psychedelicious
e6d9daca96 chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
6e5a529cb7 feat(nodes): add ui_model_[base|type|variant] to InputField args for dynamic UI generation 2025-09-18 12:39:27 +10:00
Iq1pl
8c742a6e38 ruff format 2025-09-18 11:05:32 +10:00
Iq1pl
693373f1c1 Update ip_adapter.py
added support for NOOB-IPA-MARK1
2025-09-18 11:05:32 +10:00
Josh Corbett
4809080fd9 fix(ui): allow scrolling in ModelPane 2025-09-18 10:33:22 +10:00
psychedelicious
efcb1bea7f chore: bump version to v6.8.0rc1 2025-09-17 13:57:43 +10:00
psychedelicious
e0d7a401f3 feat(ui): make ref images croppable 2025-09-17 13:43:13 +10:00
psychedelicious
aac979e9a4 fix(ui): issue w/ setting initial aspect ratio in cropper 2025-09-17 13:43:13 +10:00
psychedelicious
3b0d7f076d tidy(ui): rename from "editor" to "cropper", minor cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
e1acbcdbd5 fix(ui): store floats for box 2025-09-17 13:43:13 +10:00
psychedelicious
7d9b81550b feat(ui): revert to original image when crop discarded 2025-09-17 13:43:13 +10:00
psychedelicious
6a447dd1fe refactor(ui): remove "apply", "start" and "cancel" concepts from editor 2025-09-17 13:43:13 +10:00
psychedelicious
c2dc63ddbc fix(ui): video graphs 2025-09-17 13:43:13 +10:00
psychedelicious
1bc689d531 docs(ui): add comments to startingframeimage 2025-09-17 13:43:13 +10:00
psychedelicious
4829975827 feat(ui): make the editor components not care about the image 2025-09-17 13:43:13 +10:00
psychedelicious
49da4e00c3 feat(ui): add concept for editable image state 2025-09-17 13:43:13 +10:00
psychedelicious
89dfe5e729 docs(ui): add comments to editor 2025-09-17 13:43:13 +10:00
psychedelicious
6816d366df tidy(ui): editor misc 2025-09-17 13:43:13 +10:00
psychedelicious
9d3d2a36c9 tidy(ui): editor listeners 2025-09-17 13:43:13 +10:00
psychedelicious
ed231044c8 refactor(ui): simplify crop constraints 2025-09-17 13:43:13 +10:00
psychedelicious
b51a232794 feat(ui): extract config to own obj 2025-09-17 13:43:13 +10:00
psychedelicious
4412143a6e feat(ui): clean up editor 2025-09-17 13:43:13 +10:00
psychedelicious
de11cafdb3 refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
4d9114aa7d refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
67e2da1ebf refactor(ui): editor (wip) 2025-09-17 13:43:13 +10:00
psychedelicious
33ecc591c3 refactor(ui): editor init 2025-09-17 13:43:13 +10:00
psychedelicious
b57459a226 chore(ui): lint 2025-09-17 13:43:13 +10:00
psychedelicious
01282b1c90 feat(ui): do not clear crop when canceling 2025-09-17 13:43:13 +10:00
psychedelicious
3f302906dc feat(ui): crop doesn't hide outside cropped region 2025-09-17 13:43:13 +10:00
psychedelicious
81d56596fb tidy(ui): cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
b536b0df0c feat(ui): misc iterate on editor 2025-09-17 13:43:13 +10:00
psychedelicious
692af1d93d feat(ui): type narrowing for editor output types 2025-09-17 13:43:13 +10:00
psychedelicious
bb7ef77b50 tidy(ui): lint/react conventions for editor component 2025-09-17 13:43:13 +10:00
psychedelicious
1862548573 feat(ui): image editor bg checkerboard pattern 2025-09-17 13:43:13 +10:00
psychedelicious
242c1b6350 feat(ui): tweak editor konva styles 2025-09-17 13:43:13 +10:00
psychedelicious
fc6e4bb04e tidy(ui): editor component cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
20841abca6 tidy(ui): editor cleanup 2025-09-17 13:43:13 +10:00
psychedelicious
e8b69d99a4 chore(ui): lint 2025-09-17 13:43:13 +10:00
Mary Hipp
d6eaff8237 create editImageModal that takes an imageDTO, loads blob onto canvas, and allows cropping. cropped blob is uploaded as new asset 2025-09-17 13:43:13 +10:00
Mary Hipp
068b095956 show warning state with tooltip if starting frame image aspect ratio does not match the video output aspect ratio' 2025-09-17 13:43:13 +10:00
psychedelicious
f795a47340 tidy(ui): remove unused translation string 2025-09-16 15:04:03 +10:00
psychedelicious
df47345eb0 feat(ui): add translation strings for prompt history 2025-09-16 15:04:03 +10:00
psychedelicious
def04095a4 feat(ui): tweak prompt history styling 2025-09-16 15:04:03 +10:00
psychedelicious
28be8f0911 refactor(ui): simplify prompt history shortcuts 2025-09-16 15:04:03 +10:00
Kent Keirsey
b50c44bac0 handle potential for invalid list item 2025-09-16 15:04:03 +10:00
Kent Keirsey
b4ce0e02fc lint 2025-09-16 15:04:03 +10:00
Kent Keirsey
d6442d9a34 Prompt history shortcuts 2025-09-16 15:04:03 +10:00
Josh Corbett
4528bcafaf feat(model manager): add ModelFooter component and reusable ModelDeleteButton 2025-09-16 12:29:57 +10:00
Josh Corbett
8b82b81ee2 fix(ModelImage): change MODEL_IMAGE_THUMBNAIL_SIZE to a local constant 2025-09-16 12:29:57 +10:00
Josh Corbett
757acdd49e feat(model manager): 💄 update model manager ui, initial commit 2025-09-16 12:29:57 +10:00
psychedelicious
94b7cc583a fix(ui): do not reset params state on studio init nav to generate tab 2025-09-16 12:25:25 +10:00
psychedelicious
b663a6bac4 chore: bump version to v6.7.0 2025-09-15 14:37:56 +10:00
psychedelicious
65d40153fb chore(ui): update whatsnew 2025-09-15 14:37:56 +10:00
Riccardo Giovanetti
c8b741a514 translationBot(ui): update translation (Italian)
Currently translated at 98.4% (2120 of 2153 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.3% (2097 of 2153 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-15 14:25:41 +10:00
psychedelicious
6d3aeffed9 fix(ui): dedupe prompt history 2025-09-15 14:22:44 +10:00
psychedelicious
203be96910 fix(ui): render popovers in portals to ensure they are on top of other ui elements 2025-09-15 14:19:54 +10:00
psychedelicious
b0aa48ddb8 feat(ui): simple prompt history 2025-09-12 10:19:48 -04:00
psychedelicious
867dbe51e5 fix(ui): extend lora weight schema to accept full range of weights
This could cause a failure to rehydrate LoRA state, or failure to recall
a LoRA.

Closes #8551
2025-09-12 11:50:10 +10:00
psychedelicious
ff8948b6f1 chore(ui): update whatsnew 2025-09-11 18:09:31 +10:00
psychedelicious
fa3a6425a6 tests(ui): update staging area test to reflect new behaviour 2025-09-11 18:09:31 +10:00
psychedelicious
c5992ece89 fix(ui): better logic in staging area when canceling the selected item 2025-09-11 18:09:31 +10:00
psychedelicious
12a6239929 chore: bump version to v6.7.0rc1 2025-09-11 18:09:31 +10:00
Riccardo Giovanetti
e9238c59f4 translationBot(ui): update translation (Italian)
Currently translated at 96.5% (2053 of 2127 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
Linos
c1cbbe51d6 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2127 of 2127 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
Hosted Weblate
4219b4a288 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-11 17:42:41 +10:00
psychedelicious
48c8a9c09d chore(ui): lint 2025-09-11 17:25:57 +10:00
psychedelicious
a67efdf4ad perf(ui): optimize curves graph component
Do not use whole layer as trigger for histo recalc; use the canvas cache
of the layer - it more reliably indicates when the layer pixel data has
changed, and fixes an issue where we can miss the first histo calc due
to race conditiong with async layer bbox calculation.
2025-09-11 17:25:57 +10:00
psychedelicious
d6ff9c2e49 tidy(ui): split curves graph into own component 2025-09-11 17:25:57 +10:00
psychedelicious
e768a3bc7b perf(ui): use narrow selectors in adjustments to reduce rerenders
dramatically improves the feel of the sliders
2025-09-11 17:25:57 +10:00
psychedelicious
7273700f61 fix(ui): sharpness range 2025-09-11 17:25:57 +10:00
psychedelicious
f909e81d91 feat(ui): better types & runtime guarantees for filter data stored in konva node attrs 2025-09-11 17:25:57 +10:00
psychedelicious
8c85f168f6 refactor(ui): make layer adjustments schemas/types composable 2025-09-11 17:25:57 +10:00
psychedelicious
263d86d46f fix(ui): points where x=255 sorted incorrectly 2025-09-11 17:25:57 +10:00
psychedelicious
0921805160 feat(ui): tweak adjustments panel styling 2025-09-11 17:25:57 +10:00
psychedelicious
517f4811e7 feat(ui): single action to reset adjustments 2025-09-11 17:25:57 +10:00
psychedelicious
0dc73c8803 tidy(ui): move some histogram drawing logic out of components and into calblacks 2025-09-11 17:25:57 +10:00
psychedelicious
26702b54c0 feat(ui): tweak layouts, use react conventions, disabled state 2025-09-11 17:25:57 +10:00
dunkeroni
2d65e4543f minor padding changes 2025-09-11 17:25:57 +10:00
dunkeroni
309113956b remove unknown type annotations 2025-09-11 17:25:57 +10:00
dunkeroni
0ac4099bc6 allow negative sharpness to soften 2025-09-11 17:25:57 +10:00
dunkeroni
899dc739fa defaultValue on adjusters 2025-09-11 17:25:57 +10:00
dunkeroni
4e2439fc8e remove extra edit comments 2025-09-11 17:25:57 +10:00
dunkeroni
00864c24e0 layout fixes 2025-09-11 17:25:57 +10:00
dunkeroni
b73aaa7d6f fix several points of curve editor jank 2025-09-11 17:25:57 +10:00
dunkeroni
85057ae704 splitup adjustment panel objects 2025-09-11 17:25:57 +10:00
dunkeroni
c3fb3a43a2 blue mode switch indicator 2025-09-11 17:25:57 +10:00
dunkeroni
51d0a15a1b use default factory on reset 2025-09-11 17:25:57 +10:00
dunkeroni
5991067fd9 simplify adjustments type to optional not null 2025-09-11 17:25:57 +10:00
dunkeroni
32c2d3f740 remove extra casts and types from filters.ts 2025-09-11 17:25:57 +10:00
dunkeroni
c661f86b34 fix: crop to bbox doubles adjustment filters 2025-09-11 17:25:57 +10:00
dunkeroni
cc72d8eab4 curves editor syntax and structure fixes 2025-09-11 17:25:57 +10:00
dunkeroni
e8550f9355 move constants in curves editor 2025-09-11 17:25:57 +10:00
dunkeroni
a1d0386ca4 move memoized slider to component 2025-09-11 17:25:57 +10:00
dunkeroni
495d089f85 clean up right click menu 2025-09-11 17:25:57 +10:00
dunkeroni
913b91e9dd remove redundant en.json colors 2025-09-11 17:25:57 +10:00
dunkeroni
3e907f4e14 remove extra title 2025-09-11 17:25:57 +10:00
dunkeroni
756df6ebe4 Finish button on adjustments 2025-09-11 17:25:57 +10:00
dunkeroni
2a6be99152 Fix tint not shifting green in negative direction 2025-09-11 17:25:57 +10:00
dunkeroni
3099e2bf9d fix disable toggle reverts to simple view 2025-09-11 17:25:57 +10:00
dunkeroni
6921f0412a log scale and panel width compatibility 2025-09-11 17:25:57 +10:00
dunkeroni
022d5a8863 curves editor 2025-09-11 17:25:57 +10:00
dunkeroni
af99beedc5 apply filters to operations 2025-09-11 17:25:57 +10:00
dunkeroni
f3d83dc6b7 visual adjustment filters 2025-09-11 17:25:57 +10:00
psychedelicious
ebc3f18a1a ai(ui): add CLAUDE.md to frontend 2025-09-11 13:26:39 +10:00
Mary Hipp
aeb512f8d9 ruff 2025-09-11 12:41:56 +10:00
Mary Hipp
a1810acb93 accidental commit 2025-09-11 12:41:56 +10:00
Mary Hipp
aa35a5083b remove completed_at from queue list so that created_at is only sort option, restore field values in UI 2025-09-11 12:41:56 +10:00
psychedelicious
4f17de0b32 fix(ui): ensure mask image is deleted when no more inputs to select object 2025-09-11 12:15:41 +10:00
psychedelicious
370c3cd59b feat(ui): update select object info tooltip 2025-09-11 12:15:41 +10:00
psychedelicious
67214e16c0 tidy(ui): organize select object components 2025-09-11 12:15:41 +10:00
psychedelicious
4880a1d946 feat(nodes): accept neg coords for bbox
This actually works fine for SAM.
2025-09-11 12:15:41 +10:00
psychedelicious
0f0988610f feat(ui): spruce up UI a bit 2025-09-11 12:15:41 +10:00
psychedelicious
6805d28b7a feat(ui): increase hit area for bbox anchors 2025-09-11 12:15:41 +10:00
psychedelicious
9b45a24136 fix(ui): respect selected point type 2025-09-11 12:15:41 +10:00
psychedelicious
4e9d66a64b tidy(ui): clean up CanvasSegmentAnythingModule 2025-09-11 12:15:41 +10:00
psychedelicious
8fec530b0f fix(ui): restore old tooltip for select object
need to add translation strigns for new functionality
2025-09-11 12:15:41 +10:00
psychedelicious
50c66f8671 fix(ui): select obj box moving on mmb pan 2025-09-11 12:15:41 +10:00
psychedelicious
f0aa39ea81 fix(ui): prevent bbox from following cursor after middle mouse pan
Added button checks to bbox rect and transformer mousedown/touchstart handlers to only process left clicks. Also added stage dragging check in onBboxDragMove to clear bbox drag state when middle mouse panning is active.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
faac814a3d fix(ui): prevent middle mouse from creating points in segmentation module
When middle mouse button is used for canvas panning, the pointerup event was still creating points in the segmentation module. Added button check to onBboxDragEnd handler to only process left clicks.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
fb9545bb90 fix(ui): bbox no shrinkies 2025-09-11 12:15:41 +10:00
psychedelicious
8ad2ee83b6 fix(ui): prevent bbox scale accumulation in SAM module
Fixed an issue where bounding boxes could grow exponentially when created at small sizes. The problem occurred because Konva Transformer modifies scaleX/scaleY rather than width/height directly, and the scale values weren't consistently reset after being applied to dimensions.

Changes:
- Ensure scale values are always reset to 1 after applying to dimensions
- Add minimum size constraints to prevent zero/negative dimensions
- Fix scale handling in transformend, dragend, and initial bbox creation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
f8ad62b5eb tidy(backend) cleanup sam pipelines 2025-09-11 12:15:41 +10:00
psychedelicious
03ae78bc7c tidy(nodes): clean up sam node 2025-09-11 12:15:41 +10:00
psychedelicious
ec1a058dbe fix(backend): issue w/ multiple bbox and sam1 2025-09-11 12:15:41 +10:00
psychedelicious
9e4d441e2e feat(ui): allow adding point inside bbox 2025-09-11 12:15:41 +10:00
psychedelicious
3770fd22f8 tidy(ui): ts issues 2025-09-11 12:15:41 +10:00
psychedelicious
a0232b0e63 feat(ui): combine points and bbox in visual mode for SAM
Revised the Select Object feature to support two input modes:
- Visual mode: Combined points and bounding box input for paired SAM inputs
- Prompt mode: Text-based object selection (unchanged)

Key changes:
- Replaced three input types (points, prompt, bbox) with two (visual, prompt)
- Visual mode supports both point and bbox inputs simultaneously
- Click to add include points, Shift+click for exclude points
- Click and drag to draw bounding box
- Fixed bbox visibility issues when adding points
- Fixed coordinate system issues for proper bbox positioning
- Added proper event handling and interaction controls

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-11 12:15:41 +10:00
psychedelicious
e1e964bf0e experiment(ui): support bboxes in select object 2025-09-11 12:15:41 +10:00
psychedelicious
1b1759cffc feat(ui): support prompt-based selection for object selection 2025-09-11 12:15:41 +10:00
psychedelicious
d828502bc8 refactor(backend): simplify segment anything APIs
There was a really confusing aspect of the SAM pipeline classes where
they accepted deeply nested lists of different dimensions (bbox, points,
and labels).

The lengths of the lists are related; each point must have a
corresponding label, and if bboxes are provided with points, they must
be same length.

I've refactored the backend API to take a single list of SAMInput
objects. This class has a bbox and/or a list of points, making it much
simpler to provide the right shape of inputs.

Internally, the pipeline classes take rejigger these input classes to
have the correct nesting.

The Nodes still have an awkward API where you can provide both bboxes
and points of different lengths, so I added a pydantic validator that
enforces correct lenghts.
2025-09-11 12:15:41 +10:00
psychedelicious
7a073b6de7 feat(ui): hold shift to add inverse point type 2025-09-11 12:15:41 +10:00
psychedelicious
338ff8d588 chore: typegen 2025-09-11 12:15:41 +10:00
psychedelicious
a3625efd3a chore: ruff 2025-09-11 12:15:41 +10:00
Kent Keirsey
5efb37fe63 consolidate into one node. 2025-09-11 12:15:41 +10:00
Kent Keirsey
aef0b81d5b fix models 2025-09-11 12:15:41 +10:00
Kent Keirsey
544edff507 update uv.lock 2025-09-11 12:15:41 +10:00
Kent Keirsey
42b1adab22 init Sam2 2025-09-11 12:15:41 +10:00
Attila Cseh
a2b9d12e88 prettier errors fixed 2025-09-10 11:28:50 +10:00
Attila Cseh
7a94fb6c04 maths enabled on numeric input fields in worklow editor 2025-09-10 11:28:50 +10:00
psychedelicious
efcd159704 fix(app): path traversal via bulk downloads paths 2025-09-10 11:18:12 +10:00
psychedelicious
997e619a9d feat(ui): address feedback 2025-09-09 14:42:30 +10:00
Attila Cseh
4bc184ff16 LoRA number input min/max restored 2025-09-09 14:42:30 +10:00
psychedelicious
0b605a745b fix(ui): route metadata to gemini node 2025-09-09 14:31:07 +10:00
Attila Cseh
22b038ce3b unused translations removed 2025-09-08 20:41:36 +10:00
psychedelicious
0bb5d647b5 tidy(app): method naming snake case 2025-09-08 20:41:36 +10:00
psychedelicious
4a3599929b fix(ui): do not pass scroll seek props to DOM in queue list 2025-09-08 20:41:36 +10:00
psychedelicious
f959ce8323 feat(ui): reduce overscan for queue
makes it a bit less sluggish
2025-09-08 20:41:36 +10:00
Attila Cseh
74e1047870 build errors fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
732881c51b createdAt column fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
107be8e166 queueSlice cleaned up 2025-09-08 20:41:36 +10:00
Attila Cseh
3c2f654da8 queue api listQueueItems removed 2025-09-08 20:41:36 +10:00
Attila Cseh
474fd44e50 status column not sortable 2025-09-08 20:41:36 +10:00
Attila Cseh
0dc5f8fd65 getQueueItemIds cache invalidation added 2025-09-08 20:41:36 +10:00
Attila Cseh
d4215fb460 isOpen refactored 2025-09-08 20:41:36 +10:00
Attila Cseh
0cd05ee9fd ListContext reverted with queryArgs 2025-09-08 20:41:36 +10:00
Attila Cseh
9fcb3af1d8 ListContext removed 2025-09-08 20:41:36 +10:00
Attila Cseh
c9da7e2172 typegen fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
9788735d6b code review fixes 2025-09-08 20:41:36 +10:00
Attila Cseh
d6139748e2 Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueList.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
602dfb1e5d Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueList.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
5bb3a78f56 Update invokeai/frontend/web/src/features/queue/components/QueueList/QueueItemComponent.tsx
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-09-08 20:41:36 +10:00
Attila Cseh
d58df1e17b schema re-generated 2025-09-08 20:41:36 +10:00
Attila Cseh
5d0e37eb2f lint errors fixed 2025-09-08 20:41:36 +10:00
Attila Cseh
486b333cef queue list virtualized 2025-09-08 20:41:36 +10:00
Attila Cseh
6fa437af03 get_queue_itemIds endpoint created 2025-09-08 20:41:36 +10:00
Attila Cseh
787ef6fa27 ColumnSortIcon refactored 2025-09-08 20:41:36 +10:00
Attila Cseh
7f0571c229 QueueListHeaderColumnProps.field turned into SortBy 2025-09-08 20:41:36 +10:00
Attila Cseh
f5a58c0ceb QueueListHeaderColumn created 2025-09-08 20:41:36 +10:00
psychedelicious
d16eef4e66 chore: bump version to v6.6.0 2025-09-08 14:01:02 +10:00
psychedelicious
681ff2b2b3 chore(ui): update whatsnew 2025-09-08 14:01:02 +10:00
psychedelicious
0d81b4ce98 tidy(ui): make names a bit clearer 2025-09-08 13:54:23 +10:00
psychedelicious
99f1667ced tidy(ui): remove unused dependency 2025-09-08 13:54:23 +10:00
psychedelicious
aa5597ab4d feat(ui): use resize observer directly in component 2025-09-08 13:54:23 +10:00
psychedelicious
9bbb8e8a5e feat(ui): simpler strategy to conditionally render slider brush width 2025-09-08 13:54:23 +10:00
psychedelicious
f284d282c1 feat(ui): color picker number input outline styling 2025-09-08 13:54:23 +10:00
Attila Cseh
4231488da6 number input height set 2025-09-08 13:54:23 +10:00
Attila Cseh
a014867e68 slider number input height set 2025-09-08 13:54:23 +10:00
Attila Cseh
22654fbc9c redundant translations removed 2025-09-08 13:54:23 +10:00
Attila Cseh
daa4fd751c ToolWidthPicker refactored 2025-09-08 13:54:23 +10:00
Attila Cseh
3fd265c333 slider for brush and eraser tool 2025-09-08 13:54:23 +10:00
psychedelicious
26a3a9130c Revert "build(ui): port clean translations script to js"
This reverts commit 8a00d855b4.
2025-09-08 11:20:55 +10:00
psychedelicious
3dfeaab4b2 Revert "build(ui): add package script to check and clean translatoins"
This reverts commit 9610f34dd4.
2025-09-08 11:20:55 +10:00
psychedelicious
a33707cc76 Revert "ci: add translation string check to frontend checks"
This reverts commit 98945a4560.
2025-09-08 11:20:55 +10:00
psychedelicious
21e13daf6e Revert "chore(ui): clean translations"
This reverts commit a0dceecab9.
2025-09-08 11:20:55 +10:00
psychedelicious
fa2614ee02 Revert "tidy(ui): remove python clean translations script"
This reverts commit 8a81c05caf.
2025-09-08 11:20:55 +10:00
Hosted Weblate
4be6ddb23d translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-05 12:28:33 +10:00
Riccardo Giovanetti
bba0e01926 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2093 of 2122 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-05 12:28:33 +10:00
psychedelicious
20d57d5ccf gh: update pr template 2025-09-05 11:27:02 +10:00
psychedelicious
d9121271a2 fix(ui): rehydration + redux migration design issue
Certain items in redux are ephemeral and omitted from persisted slices.
On rehydration, we need to inject these values back into the slice.

But there was an issue taht could prevent slice migrations from running
during rehydration.

The migrations look for the `_version` key in state and migrate the
slice accordingly.

The logic that merged in the ephemeral values accidentally _also_ merged
in the `_version` key if it didn't already exist. This happened _before_
migrations are run.

This causes problems for slices that didn't have a `_version` key and
then have one added via migration.

For example, the params slice didn't have a `_version` key until the
previous commit, which added `_version` and changed some other parts of
state in a migration.

On first load of the updated code, we have a catch-22 kinda situation:
- The persisted params slice is the old version. It needs to have both
`_version` and some other data added to it.
- We deserialize the state and then merge in ephemeral values. This
inadvertnetly also merged in the `_version` key.
- We run the slice migration. It sees there is a `_version` key and
thinks it doesn't need to run. The extra data isn't added to the slice.
The slice is parsed against its zod schema and fails because the new
data is missing.
- Because the parse failed, we treat the user's persisted data as
invalid and overwrite it with initial state, potentially causing data
loss.

The fix is to be more selective when merging in the ephemeral state
before migration - this is now done by checking which keys are on the
persist denylist and only adding those key.
2025-09-05 11:27:02 +10:00
psychedelicious
30b487c71c tidy(ui): remove unused x/y coords from params slice 2025-09-05 11:27:02 +10:00
psychedelicious
8a81c05caf tidy(ui): remove python clean translations script 2025-09-05 11:02:37 +10:00
psychedelicious
a0dceecab9 chore(ui): clean translations 2025-09-05 11:02:37 +10:00
psychedelicious
98945a4560 ci: add translation string check to frontend checks 2025-09-05 11:02:37 +10:00
psychedelicious
9610f34dd4 build(ui): add package script to check and clean translatoins 2025-09-05 11:02:37 +10:00
psychedelicious
8a00d855b4 build(ui): port clean translations script to js 2025-09-05 11:02:37 +10:00
psychedelicious
25430f04c5 chore: bump version to v6.6.0rc2 2025-09-04 16:43:41 +10:00
psychedelicious
b2b53c4481 fix(ui): set a react key on the current image viewer's components
This tells react that the component is a new instance each time we
change the image. Which, in turn, prevents a flash of the
previously-selected image during image switching and
progress-image-to-output-image-ing.
2025-09-04 16:35:40 +10:00
psychedelicious
c6696d7913 fix(ui): ensure origin is set correctly for generate tab batches
This prevents an issue in the image viewer's logic for simulating the
progress image "resolving" to a completed image
2025-09-04 16:35:40 +10:00
psychedelicious
8bcb6648f1 fix(ui): stop dragging when user clicks mmb once
This has been an issue for a long time. I suspect it wasn't noticed
until now because it's finicky to trigger - you have to click and
release very quickly, without moving the mouse at all.
2025-09-04 16:16:04 +10:00
psychedelicious
0ee360ba6c fix(ui): show fallback when no image is selected 2025-09-04 16:13:01 +10:00
psychedelicious
09bbe3eef9 fix(ui): clear gallery selection when switching boards and there are no items in the new board 2025-09-04 16:13:01 +10:00
psychedelicious
d14b7a48f5 fix(ui): clear gallery selection when last image on selected board is deleted 2025-09-04 16:13:01 +10:00
Mary Hipp
1db55b0ffa cleanup 2025-09-03 10:11:32 -04:00
Mary Hipp
3104a1baa6 remove crossOrigin for thumbnail loading 2025-09-03 10:11:32 -04:00
psychedelicious
0e523ca2c1 fix(ui): browser image caching cors race condition
Must set cross origin whenever we load an image from a URL to prevent
race conditions where browser caches an image with no CORS, then canvas
attempts to load it with CORS, resulting in browser rejecting the
request before it is made
2025-09-03 10:11:32 -04:00
psychedelicious
75daef2aba fix(ui): fix situation where progress images are super tiny
Missed a spot
2025-09-03 22:56:55 +10:00
psychedelicious
b036b18986 chore: bump version to v6.6.0rc1 2025-09-03 18:02:37 +10:00
Hosted Weblate
93535fa3c2 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-09-03 17:57:27 +10:00
Riccardo Giovanetti
dcafb44f8a translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2088 of 2117 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-03 17:57:27 +10:00
Mary Hipp
44b1d8d1fc remove video base models from image aspect/ratio logic 2025-09-03 10:22:14 +10:00
Attila Cseh
6f70a6bd10 prettier fix 2025-09-02 19:23:24 +10:00
Attila Cseh
0546aeed1d code review changes 2025-09-02 19:23:24 +10:00
Attila Cseh
8933f3f5dd LoRA weight default values turned into constant 2025-09-02 19:23:24 +10:00
Attila Cseh
29cdefe873 type conversion fixed 2025-09-02 19:23:24 +10:00
Attila Cseh
df299bb37f python source code reformatted 2025-09-02 19:23:24 +10:00
Attila Cseh
481fb42371 lint errors fixed 2025-09-02 19:23:24 +10:00
Attila Cseh
631a04b48c LoRA default weight 2025-09-02 19:23:24 +10:00
Attila Cseh
547e1941f4 code review changes 2025-09-02 19:16:26 +10:00
Attila Cseh
031d25ed63 switchable foreground/background colors 2025-09-02 19:16:26 +10:00
Riccardo Giovanetti
27f4af0eb4 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2087 of 2116 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-02 15:05:51 +10:00
psychedelicious
e0a0617093 chore(ui): bump dockview
This brings in a fix for Chrome that allowed you to drag tabs and split
the panels.

Closes #8449
2025-09-02 11:05:41 +10:00
psychedelicious
e6a763b887 fix(ui): move getItemsPerRow to frontend src dir
Not sure how but it was in repo root

Closes #8509
2025-09-02 11:02:56 +10:00
psychedelicious
3c9c49f7d9 feat(ui): add readiness checks for LoRAs
If incompatible LoRAs are added, prevent Invoking.

The logic to prevent adding incompatible LoRAs to graphs already
existed. This does not fix any generation bugs; just a visual
inconsistency where it looks like Invoke would use an incompatible LoRA.
2025-09-01 14:41:03 +10:00
Attila Cseh
26690d47b7 lint errors fixed 2025-09-01 14:34:35 +10:00
Attila Cseh
fcaff6ce09 remove LoRAs for recall use all 2025-09-01 14:34:35 +10:00
Damian
afd7296cb2 Add 'sd-2' to supported negative prompt base models
add back negative prompt support for sd2
2025-08-31 10:20:31 -04:00
psychedelicious
d6f42c76d5 fix(app): board count queries not getting categories as params 2025-08-29 11:07:52 +10:00
Mary Hipp
68f39fe907 cleanup 2025-08-28 16:38:48 -04:00
Mary Hipp
23a528545f match screen capture button to the others 2025-08-28 16:38:48 -04:00
Mary Hipp
c69d04a7f0 handle large videos 2025-08-28 15:29:47 -04:00
Mary Hipp
60f1e2d7ad do not show negative prompt for video 2025-08-28 12:59:23 -04:00
Mary Hipp
cb386bec28 do not show reference images on video tab 2025-08-28 12:59:23 -04:00
Mary Hipp
f29ceb3f12 add translations 2025-08-28 10:17:00 -04:00
Mary Hipp
4f51bc9421 add credit estimate for video generation 2025-08-28 10:17:00 -04:00
Mary Hipp
0c41abab79 add label for starting image field 2025-08-28 10:17:00 -04:00
Mary Hipp
cb457c3402 default resolution to 1080p 2025-08-28 10:17:00 -04:00
Mary Hipp
606ad73814 use first video model if none selected 2025-08-28 10:17:00 -04:00
psychedelicious
fe70bd538a fix(ui): hide unused queue actions menu item category 2025-08-28 10:17:00 -04:00
psychedelicious
b5c7316c0a chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
460aec03ea fix(ui): more video translations 2025-08-28 10:17:00 -04:00
psychedelicious
6730d86a13 fix(ui): make ctx menu star label not refer to iamges 2025-08-28 10:17:00 -04:00
psychedelicious
c4bc03cb1f fix(ui): make ctx menu download tooltip not refer to iamges 2025-08-28 10:17:00 -04:00
psychedelicious
136ee28199 feat(ui): remove unimplemented context menu items for video 2025-08-28 10:17:00 -04:00
psychedelicious
2c6d266c0a fix(ui): metadata viewer translations 2025-08-28 10:17:00 -04:00
psychedelicious
f779920eaa chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
01bef5d165 fix(ui): do not highlight starting frame image in red when it is not required 2025-08-28 10:17:00 -04:00
psychedelicious
72851d3e84 feat(ui): tweak video settings padding 2025-08-28 10:17:00 -04:00
psychedelicious
4ba85c62ca feat(ui): add border around starting frame image 2025-08-28 10:17:00 -04:00
psychedelicious
313aedb00a fix(ui): graph builder check for veo 2025-08-28 10:17:00 -04:00
psychedelicious
85bd324d74 tweak(ui): nav bar divider not so bright 2025-08-28 10:17:00 -04:00
psychedelicious
4a04411e74 fix(ui): tab hotkeys for video 2025-08-28 10:17:00 -04:00
psychedelicious
299a4db3bb chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
390faa592c chore: ruff 2025-08-28 10:17:00 -04:00
Mary Hipp
2463aeb84a studio init action for video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
ec8df163d1 launchpad cleanup 2025-08-28 10:17:00 -04:00
Mary Hipp
a198b7da78 fix view on large screens, restore auth for screen capture 2025-08-28 10:17:00 -04:00
Mary Hipp
fb11770852 rearrange image | video | asset for boards 2025-08-28 10:17:00 -04:00
Mary Hipp
6b6f3d56f7 add option for video upsell, rearrange navigation bar and gallery tabs 2025-08-28 10:17:00 -04:00
Mary Hipp
29d00eef9a hide video features if video is disabled 2025-08-28 10:17:00 -04:00
psychedelicious
6972cd708d feat(ui): delete confirmation for videos 2025-08-28 10:17:00 -04:00
psychedelicious
82893804ff feat(ui): metadata recall for videos 2025-08-28 10:17:00 -04:00
psychedelicious
47ffe365bc fix(ui): do not store whole model config in state 2025-08-28 10:17:00 -04:00
psychedelicious
f7b03b1e63 fix(ui): do not change canvas bbox on video model change 2025-08-28 10:17:00 -04:00
psychedelicious
356e38e82a feat(ui): use correct model config object in video graph builders 2025-08-28 10:17:00 -04:00
psychedelicious
5ea077bb8c feat(ui): add selector to get model config for current video model 2025-08-28 10:17:00 -04:00
psychedelicious
3c4b303555 feat(ui): simplify and consolidate video capture logic 2025-08-28 10:17:00 -04:00
psychedelicious
b8651cb1a2 fix(ui): rebase conflict 2025-08-28 10:17:00 -04:00
Mary Hipp
a6527c0ba1 lint again 2025-08-28 10:17:00 -04:00
Mary Hipp
6e40eca754 lint 2025-08-28 10:17:00 -04:00
Mary Hipp
53fab17c33 use context to track video ref so that toolbar can also save current frame 2025-08-28 10:17:00 -04:00
Mary Hipp
3876d88b3c add save frame functionality 2025-08-28 10:17:00 -04:00
Mary Hipp
82b4526691 add video_count and asset_count to boards UI 2025-08-28 10:17:00 -04:00
Mary Hipp
f56ba11394 add asset_count to BoardDTO and split it out from image count 2025-08-28 10:17:00 -04:00
Mary Hipp
32eb5190f2 add video_count to boardDTO 2025-08-28 10:17:00 -04:00
Mary Hipp
72e378789d video metadata support 2025-08-28 10:17:00 -04:00
Mary Hipp
f10ddb0cab split out video aspect/ratio into its own components 2025-08-28 10:17:00 -04:00
Mary Hipp
286127077d updates for new model type 2025-08-28 10:17:00 -04:00
Mary Hipp
36278bc044 add UI support for new model type Video 2025-08-28 10:17:00 -04:00
Mary Hipp
7a1c7ca43a add Video as new model type 2025-08-28 10:17:00 -04:00
psychedelicious
8303d567d5 docs(ui): add note about visual jank in gallery 2025-08-28 10:17:00 -04:00
psychedelicious
1fe19c1242 fix(ui): use correct placeholder for vidoes 2025-08-28 10:17:00 -04:00
psychedelicious
127a43865c fix(ui): locate in gallery, galleryview when selecting image/video 2025-08-28 10:17:00 -04:00
psychedelicious
24a48884cb chore(ui): lint 2025-08-28 10:17:00 -04:00
psychedelicious
47cee816fd chore(ui): dpdm 2025-08-28 10:17:00 -04:00
psychedelicious
90bacaddda feat(ui): video dnd 2025-08-28 10:17:00 -04:00
psychedelicious
c0cc9f421e fix(ui): generate tab graph builder 2025-08-28 10:17:00 -04:00
psychedelicious
dbb9032648 fix(ui): iterations works for video models 2025-08-28 10:17:00 -04:00
psychedelicious
b9e32e59a2 fix(ui): missing tranlsation 2025-08-28 10:17:00 -04:00
psychedelicious
545a1d8737 fix(ui): fetching imageDTO for video 2025-08-28 10:17:00 -04:00
psychedelicious
c4718403a2 tidy(ui): remove unused VideoAtPosition component 2025-08-28 10:17:00 -04:00
psychedelicious
eb308b1ff7 feat(ui): simpler layout for video player 2025-08-28 10:17:00 -04:00
Mary Hipp
a277bea804 fix video styling 2025-08-28 10:17:00 -04:00
Mary Hipp
30619c0420 add runway back as a model and allow runway and veo3 to live together in peace and harmony 2025-08-28 10:17:00 -04:00
Mary Hipp
504d8e32be add runway to backend 2025-08-28 10:17:00 -04:00
Mary Hipp
f21229cd14 update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected 2025-08-28 10:17:00 -04:00
Mary Hipp
640ec676c3 lint 2025-08-28 10:17:00 -04:00
Mary Hipp
6370412e9c tsc 2025-08-28 10:17:00 -04:00
Mary Hipp
edec2c2775 lint the dang thing 2025-08-28 10:17:00 -04:00
psychedelicious
bd38be31d8 gallery 2025-08-28 10:17:00 -04:00
psychedelicious
b938ae0a7e Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 12b70bca67.
2025-08-28 10:17:00 -04:00
Mary Hipp
6e5b1ed55f add videos to change board modal 2025-08-28 10:17:00 -04:00
Mary Hipp
5970bd38c2 add resolution as a generation setting 2025-08-28 10:17:00 -04:00
Mary Hipp
e046417cf5 replace runway with veo, build out veo3 model support 2025-08-28 10:17:00 -04:00
Mary Hipp
27a2cd19bd add Veo3 model support to backend 2025-08-28 10:17:00 -04:00
psychedelicious
0df631b802 feat(ui): consolidated gallery (wip) 2025-08-28 10:17:00 -04:00
psychedelicious
5bb7cd168d feat(ui): gallery optimistic updates for video 2025-08-28 10:17:00 -04:00
psychedelicious
b4ba84ad35 fix(ui): panel names on video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
d1628f51c9 stubbing out change board functionality 2025-08-28 10:17:00 -04:00
Mary Hipp
17c1304ce2 hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu 2025-08-28 10:17:00 -04:00
Mary Hipp
cc9a85f7d0 add readiness logic to video tab 2025-08-28 10:17:00 -04:00
psychedelicious
7e2999649a feat(ui): more video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
1473142f73 feat(ui): fiddle w/ video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
49343546e7 feat(ui): fiddle w/ video stuff 2025-08-28 10:17:00 -04:00
psychedelicious
39d5879405 chore: ruff 2025-08-28 10:17:00 -04:00
psychedelicious
4b4ec29a09 feat(nodes): update VideoField & VideoOutput 2025-08-28 10:17:00 -04:00
psychedelicious
dc6811076f feat(ui): add dnd target for video start frame 2025-08-28 10:17:00 -04:00
Mary Hipp
0568784ee9 add duration and aspect ratio to video settings 2025-08-28 10:17:00 -04:00
Mary Hipp
895eac6bcd integrating video into gallery - thinking maybe a new category of image would make more senes 2025-08-28 10:17:00 -04:00
Mary Hipp
fe0efa9bdf add noop video router 2025-08-28 10:17:00 -04:00
Mary Hipp
acabc8bd54 add video models 2025-08-28 10:17:00 -04:00
Mary Hipp
89f999af08 combine nodes that generate and save videos 2025-08-28 10:17:00 -04:00
Mary Hipp
9ae76bef51 build out adhoc video saving graph 2025-08-28 10:17:00 -04:00
Mary Hipp
0999b43616 push up updates for VideoField 2025-08-28 10:17:00 -04:00
Mary Hipp
e6e4f58163 update VideoField 2025-08-28 10:17:00 -04:00
Mary Hipp
b371930e02 split out RunwayVideoOutput from VideoOutput 2025-08-28 10:17:00 -04:00
Mary Hipp
9b50e2303b rough rough POC of video tab 2025-08-28 10:17:00 -04:00
Mary Hipp
49d1810991 video_output support 2025-08-28 10:17:00 -04:00
psychedelicious
b1b009f7b8 chore: bump version to v6.5.1 2025-08-28 22:57:14 +10:00
psychedelicious
3431e6385c chore: uv lock 2025-08-28 22:57:14 +10:00
psychedelicious
5db1027d32 Pin sentencepiece version in pyproject.toml
Pin sentencepiece version to 0.2.0 to avoid coredump issues.
2025-08-28 22:57:14 +10:00
Hosted Weblate
579f182fe9 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-08-28 22:51:40 +10:00
Riccardo Giovanetti
55bf41f63f translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2053 of 2082 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-28 22:51:40 +10:00
psychedelicious
fc32fd2d2e fix(ui): progress image renders at physical size 2025-08-28 22:47:52 +10:00
psychedelicious
a2b6536078 fix(ui): konva caching opt-out doesn't do what i thought it would 2025-08-28 22:45:03 +10:00
Mary Hipp Rogers
144c54a6c8 Revert "video_output support"
This reverts commit 453ef1a220.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ca40daeb97 Revert "rough rough POC of video tab"
This reverts commit e89266bfe3.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e600cdc826 Revert "split out RunwayVideoOutput from VideoOutput"
This reverts commit 97719b0aab.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b7c52f33dc Revert "update VideoField"
This reverts commit bd251f8cce.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e78157fcf0 Revert "push up updates for VideoField"
This reverts commit 94ba840948.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7d7b98249f Revert "build out adhoc video saving graph"
This reverts commit 07565d4015.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f5bf84f304 Revert "combine nodes that generate and save videos"
This reverts commit eff9c7b92f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c30d5bece2 Revert "add video models"
This reverts commit 295b5a20a8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
27845b2f1b Revert "add noop video router"
This reverts commit e9c4e12454.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
bad6eea077 Revert "integrating video into gallery - thinking maybe a new category of image would make more senes"
This reverts commit 5c93e53195.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9c26ac5ce3 Revert "add duration and aspect ratio to video settings"
This reverts commit 4d8bcad15b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b7306bb5c9 Revert "feat(ui): add dnd target for video start frame"
This reverts commit 530d20c1be.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0c115177b2 Revert "feat(nodes): update VideoField & VideoOutput"
This reverts commit 67de3f2d9b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5aae41b5bb Revert "chore: ruff"
This reverts commit 9380d8901c.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7ad09a2f79 Revert "feat(ui): fiddle w/ video stuff"
This reverts commit f98bbc32dd.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5a6d3639b7 Revert "feat(ui): fiddle w/ video stuff"
This reverts commit 79e8482b27.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
84617d3df2 Revert "feat(ui): more video stuff"
This reverts commit 963c2ec60c.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e05f30749e Revert "add readiness logic to video tab"
This reverts commit 288ac0a293.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
88a2e27338 Revert "hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu"
This reverts commit a918198d4f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
15a6fd76c8 Revert "stubbing out change board functionality"
This reverts commit 67042e6dec.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6adb46a86c Revert "fix(ui): panel names on video tab"
This reverts commit 64dfa125d2.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e8a74eb79d Revert "feat(ui): gallery optimistic updates for video"
This reverts commit 0ec6d33086.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
dcd716c384 Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 6ef1c2a5e1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
56697635dd Revert "add Veo3 model support to backend"
This reverts commit 49d569ec59.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5b5657e292 Revert "replace runway with veo, build out veo3 model support"
This reverts commit d95a698ebd.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ad3dfbe1ed Revert "add resolution as a generation setting"
This reverts commit b71829a827.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
59ddc4f7b0 Revert "add videos to change board modal"
This reverts commit 45b4432833.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4653b79f12 Revert "Revert "feat(ui): consolidated gallery (wip)""
This reverts commit 637d19c22b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
778d6f167f Revert "gallery"
This reverts commit aa4e3adadb.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
05c71f50f1 Revert "lint the dang thing"
This reverts commit 1b0d599dc2.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
406e0be39c Revert "tsc"
This reverts commit 7828102b67.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0d71234a12 Revert "lint"
This reverts commit b377b80446.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e38019bb70 Revert "update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected"
This reverts commit 8df3067599.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
a879880b42 Revert "add runway to backend"
This reverts commit f631b5178f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
71c8accbfe Revert "add runway back as a model and allow runway and veo3 to live together in peace and harmony"
This reverts commit b2026d9c00.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
154fb99daf Revert "fix video styling"
This reverts commit 3d9889e272.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0df476ce13 Revert "feat(ui): simpler layout for video player"
This reverts commit 3a1cedbced.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e7ad830fa9 Revert "tidy(ui): remove unused VideoAtPosition component"
This reverts commit e55d39a20b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e81e0a8286 Revert "fix(ui): fetching imageDTO for video"
This reverts commit fbf8aa17c8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
d0f7e72cbb Revert "fix(ui): missing tranlsation"
This reverts commit 89efe9c2b1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
fdead4fb8c Revert "fix(ui): iterations works for video models"
This reverts commit 24f22d539f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
31c9945b32 Revert "fix(ui): generate tab graph builder"
This reverts commit 84dc4e4ea9.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
22de8a4b12 Revert "feat(ui): video dnd"
This reverts commit f5fdba795a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
89cb3c3230 Revert "chore(ui): dpdm"
This reverts commit 6a7fe6668b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
7bb99ece4e Revert "chore(ui): lint"
This reverts commit 55139bb169.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
28f040123f Revert "fix(ui): locate in gallery, galleryview when selecting image/video"
This reverts commit 26fe937d97.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
1be3a4db64 Revert "fix(ui): use correct placeholder for vidoes"
This reverts commit 7e031e9c01.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
cb44c995d2 Revert "docs(ui): add note about visual jank in gallery"
This reverts commit 2d9c82da85.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9b9b35c315 Revert "add Video as new model type"
This reverts commit fb0a924918.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f6edab6032 Revert "add UI support for new model type Video"
This reverts commit c6f2d127ef.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f79665b023 Revert "updates for new model type"
This reverts commit 23cde86bc4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6b1bc7a87d Revert "split out video aspect/ratio into its own components"
This reverts commit 6c375b228e.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c6f2994c84 Revert "video metadata support"
This reverts commit b16d1a943d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0cff67ff23 Revert "add video_count to boardDTO"
This reverts commit 1cc6893d0d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
e957c11c9a Revert "add asset_count to BoardDTO and split it out from image count"
This reverts commit d4378d9f2a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4baa685c7a Revert "add video_count and asset_count to boards UI"
This reverts commit e36490c2ec.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
1bd5907a12 Revert "add save frame functionality"
This reverts commit 6a20271dba.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
2fd56e6029 Revert "use context to track video ref so that toolbar can also save current frame"
This reverts commit 1bf25fadb3.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b0548edc8c Revert "lint"
This reverts commit 378f33bc92.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
41d781176f Revert "lint again"
This reverts commit 41e1697e79.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
8709de0b33 Revert "fix(ui): rebase conflict"
This reverts commit bc6dd12083.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
af43fe2fd4 Revert "feat(ui): simplify and consolidate video capture logic"
This reverts commit c5a76806c1.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ebbb11c3b1 Revert "feat(ui): add selector to get model config for current video model"
This reverts commit 5cabc37a87.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0fc8c08da3 Revert "feat(ui): use correct model config object in video graph builders"
This reverts commit 9fcba3b876.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
bfadcffe3c Revert "fix(ui): do not change canvas bbox on video model change"
This reverts commit 8eb3f40e1b.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
49c2332c13 Revert "fix(ui): do not store whole model config in state"
This reverts commit b2ed3c99d4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
dacef158c4 Revert "feat(ui): metadata recall for videos"
This reverts commit 4c32b2a123.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0c34d8201e Revert "feat(ui): delete confirmation for videos"
This reverts commit 505c75a5ab.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
77132075ff Revert "hide video features if video is disabled"
This reverts commit 0de5097207.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
f008d3b0b2 Revert "add option for video upsell, rearrange navigation bar and gallery tabs"
This reverts commit 4845d31857.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4e66ccefe8 Revert "rearrange image | video | asset for boards"
This reverts commit 8a60def51f.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
5d0ed45326 Revert "fix view on large screens, restore auth for screen capture"
This reverts commit 1f526a1c27.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
379d633ac6 Revert "launchpad cleanup"
This reverts commit ab41f71a36.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
93bba1b692 Revert "studio init action for video tab"
This reverts commit 431fd83a43.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
667e175ab7 Revert "chore: ruff"
This reverts commit 3ae99df091.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
de146aa4aa Revert "chore(ui): lint"
This reverts commit 36c16d2781.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
ed9c2c8208 Revert "fix(ui): tab hotkeys for video"
This reverts commit 20813b5615.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
9d984878f3 Revert "tweak(ui): nav bar divider not so bright"
This reverts commit 269d4fe670.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
585eb8c69d Revert "fix(ui): graph builder check for veo"
This reverts commit 239fb86a46.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c105bae127 Revert "feat(ui): add border around starting frame image"
This reverts commit 8642e8881d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
c39f26266f Revert "feat(ui): tweak video settings padding"
This reverts commit 842d729ec8.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
47dffd123a Revert "fix(ui): do not highlight starting frame image in red when it is not required"
This reverts commit 0b05b24e9a.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
b946ec3172 Revert "chore(ui): lint"
This reverts commit 8c2e6a3988.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
024c02329d Revert "fix(ui): metadata viewer translations"
This reverts commit 2a6cfde488.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
4b43b59472 Revert "feat(ui): remove unimplemented context menu items for video"
This reverts commit a6b0581939.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
d11f115e1a Revert "fix(ui): make ctx menu download tooltip not refer to iamges"
This reverts commit e4f24c4dc4.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
92253ce854 Revert "fix(ui): make ctx menu star label not refer to iamges"
This reverts commit ec793cb636.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
0ebbfa90c9 Revert "fix(ui): more video translations"
This reverts commit 0d827d8306.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
fdfee11e37 Revert "chore(ui): lint"
This reverts commit 3971382a6d.
2025-08-28 08:32:47 -04:00
Mary Hipp Rogers
6091bf4f60 Revert "fix(ui): hide unused queue actions menu item category"
This reverts commit 07271ca468.
2025-08-28 08:32:47 -04:00
psychedelicious
07271ca468 fix(ui): hide unused queue actions menu item category 2025-08-28 08:23:58 -04:00
psychedelicious
3971382a6d chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
0d827d8306 fix(ui): more video translations 2025-08-28 08:23:58 -04:00
psychedelicious
ec793cb636 fix(ui): make ctx menu star label not refer to iamges 2025-08-28 08:23:58 -04:00
psychedelicious
e4f24c4dc4 fix(ui): make ctx menu download tooltip not refer to iamges 2025-08-28 08:23:58 -04:00
psychedelicious
a6b0581939 feat(ui): remove unimplemented context menu items for video 2025-08-28 08:23:58 -04:00
psychedelicious
2a6cfde488 fix(ui): metadata viewer translations 2025-08-28 08:23:58 -04:00
psychedelicious
8c2e6a3988 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
0b05b24e9a fix(ui): do not highlight starting frame image in red when it is not required 2025-08-28 08:23:58 -04:00
psychedelicious
842d729ec8 feat(ui): tweak video settings padding 2025-08-28 08:23:58 -04:00
psychedelicious
8642e8881d feat(ui): add border around starting frame image 2025-08-28 08:23:58 -04:00
psychedelicious
239fb86a46 fix(ui): graph builder check for veo 2025-08-28 08:23:58 -04:00
psychedelicious
269d4fe670 tweak(ui): nav bar divider not so bright 2025-08-28 08:23:58 -04:00
psychedelicious
20813b5615 fix(ui): tab hotkeys for video 2025-08-28 08:23:58 -04:00
psychedelicious
36c16d2781 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
3ae99df091 chore: ruff 2025-08-28 08:23:58 -04:00
Mary Hipp
431fd83a43 studio init action for video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
ab41f71a36 launchpad cleanup 2025-08-28 08:23:58 -04:00
Mary Hipp
1f526a1c27 fix view on large screens, restore auth for screen capture 2025-08-28 08:23:58 -04:00
Mary Hipp
8a60def51f rearrange image | video | asset for boards 2025-08-28 08:23:58 -04:00
Mary Hipp
4845d31857 add option for video upsell, rearrange navigation bar and gallery tabs 2025-08-28 08:23:58 -04:00
Mary Hipp
0de5097207 hide video features if video is disabled 2025-08-28 08:23:58 -04:00
psychedelicious
505c75a5ab feat(ui): delete confirmation for videos 2025-08-28 08:23:58 -04:00
psychedelicious
4c32b2a123 feat(ui): metadata recall for videos 2025-08-28 08:23:58 -04:00
psychedelicious
b2ed3c99d4 fix(ui): do not store whole model config in state 2025-08-28 08:23:58 -04:00
psychedelicious
8eb3f40e1b fix(ui): do not change canvas bbox on video model change 2025-08-28 08:23:58 -04:00
psychedelicious
9fcba3b876 feat(ui): use correct model config object in video graph builders 2025-08-28 08:23:58 -04:00
psychedelicious
5cabc37a87 feat(ui): add selector to get model config for current video model 2025-08-28 08:23:58 -04:00
psychedelicious
c5a76806c1 feat(ui): simplify and consolidate video capture logic 2025-08-28 08:23:58 -04:00
psychedelicious
bc6dd12083 fix(ui): rebase conflict 2025-08-28 08:23:58 -04:00
Mary Hipp
41e1697e79 lint again 2025-08-28 08:23:58 -04:00
Mary Hipp
378f33bc92 lint 2025-08-28 08:23:58 -04:00
Mary Hipp
1bf25fadb3 use context to track video ref so that toolbar can also save current frame 2025-08-28 08:23:58 -04:00
Mary Hipp
6a20271dba add save frame functionality 2025-08-28 08:23:58 -04:00
Mary Hipp
e36490c2ec add video_count and asset_count to boards UI 2025-08-28 08:23:58 -04:00
Mary Hipp
d4378d9f2a add asset_count to BoardDTO and split it out from image count 2025-08-28 08:23:58 -04:00
Mary Hipp
1cc6893d0d add video_count to boardDTO 2025-08-28 08:23:58 -04:00
Mary Hipp
b16d1a943d video metadata support 2025-08-28 08:23:58 -04:00
Mary Hipp
6c375b228e split out video aspect/ratio into its own components 2025-08-28 08:23:58 -04:00
Mary Hipp
23cde86bc4 updates for new model type 2025-08-28 08:23:58 -04:00
Mary Hipp
c6f2d127ef add UI support for new model type Video 2025-08-28 08:23:58 -04:00
Mary Hipp
fb0a924918 add Video as new model type 2025-08-28 08:23:58 -04:00
psychedelicious
2d9c82da85 docs(ui): add note about visual jank in gallery 2025-08-28 08:23:58 -04:00
psychedelicious
7e031e9c01 fix(ui): use correct placeholder for vidoes 2025-08-28 08:23:58 -04:00
psychedelicious
26fe937d97 fix(ui): locate in gallery, galleryview when selecting image/video 2025-08-28 08:23:58 -04:00
psychedelicious
55139bb169 chore(ui): lint 2025-08-28 08:23:58 -04:00
psychedelicious
6a7fe6668b chore(ui): dpdm 2025-08-28 08:23:58 -04:00
psychedelicious
f5fdba795a feat(ui): video dnd 2025-08-28 08:23:58 -04:00
psychedelicious
84dc4e4ea9 fix(ui): generate tab graph builder 2025-08-28 08:23:58 -04:00
psychedelicious
24f22d539f fix(ui): iterations works for video models 2025-08-28 08:23:58 -04:00
psychedelicious
89efe9c2b1 fix(ui): missing tranlsation 2025-08-28 08:23:58 -04:00
psychedelicious
fbf8aa17c8 fix(ui): fetching imageDTO for video 2025-08-28 08:23:58 -04:00
psychedelicious
e55d39a20b tidy(ui): remove unused VideoAtPosition component 2025-08-28 08:23:58 -04:00
psychedelicious
3a1cedbced feat(ui): simpler layout for video player 2025-08-28 08:23:58 -04:00
Mary Hipp
3d9889e272 fix video styling 2025-08-28 08:23:58 -04:00
Mary Hipp
b2026d9c00 add runway back as a model and allow runway and veo3 to live together in peace and harmony 2025-08-28 08:23:58 -04:00
Mary Hipp
f631b5178f add runway to backend 2025-08-28 08:23:58 -04:00
Mary Hipp
8df3067599 update redux selection to have a list of images and/or videos, update image viewer to show either image or video depending on what is selected 2025-08-28 08:23:58 -04:00
Mary Hipp
b377b80446 lint 2025-08-28 08:23:58 -04:00
Mary Hipp
7828102b67 tsc 2025-08-28 08:23:58 -04:00
Mary Hipp
1b0d599dc2 lint the dang thing 2025-08-28 08:23:58 -04:00
psychedelicious
aa4e3adadb gallery 2025-08-28 08:23:58 -04:00
psychedelicious
637d19c22b Revert "feat(ui): consolidated gallery (wip)"
This reverts commit 12b70bca67.
2025-08-28 08:23:58 -04:00
Mary Hipp
45b4432833 add videos to change board modal 2025-08-28 08:23:58 -04:00
Mary Hipp
b71829a827 add resolution as a generation setting 2025-08-28 08:23:58 -04:00
Mary Hipp
d95a698ebd replace runway with veo, build out veo3 model support 2025-08-28 08:23:58 -04:00
Mary Hipp
49d569ec59 add Veo3 model support to backend 2025-08-28 08:23:58 -04:00
psychedelicious
6ef1c2a5e1 feat(ui): consolidated gallery (wip) 2025-08-28 08:23:58 -04:00
psychedelicious
0ec6d33086 feat(ui): gallery optimistic updates for video 2025-08-28 08:23:58 -04:00
psychedelicious
64dfa125d2 fix(ui): panel names on video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
67042e6dec stubbing out change board functionality 2025-08-28 08:23:58 -04:00
Mary Hipp
a918198d4f hook up starring, unstarring, and deleting single videos (no multiselect yet), adapt context menus to work for both images and videos and start on video context menu 2025-08-28 08:23:58 -04:00
Mary Hipp
288ac0a293 add readiness logic to video tab 2025-08-28 08:23:58 -04:00
psychedelicious
963c2ec60c feat(ui): more video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
79e8482b27 feat(ui): fiddle w/ video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
f98bbc32dd feat(ui): fiddle w/ video stuff 2025-08-28 08:23:58 -04:00
psychedelicious
9380d8901c chore: ruff 2025-08-28 08:23:58 -04:00
psychedelicious
67de3f2d9b feat(nodes): update VideoField & VideoOutput 2025-08-28 08:23:58 -04:00
psychedelicious
530d20c1be feat(ui): add dnd target for video start frame 2025-08-28 08:23:58 -04:00
Mary Hipp
4d8bcad15b add duration and aspect ratio to video settings 2025-08-28 08:23:58 -04:00
Mary Hipp
5c93e53195 integrating video into gallery - thinking maybe a new category of image would make more senes 2025-08-28 08:23:58 -04:00
Mary Hipp
e9c4e12454 add noop video router 2025-08-28 08:23:58 -04:00
Mary Hipp
295b5a20a8 add video models 2025-08-28 08:23:58 -04:00
Mary Hipp
eff9c7b92f combine nodes that generate and save videos 2025-08-28 08:23:58 -04:00
Mary Hipp
07565d4015 build out adhoc video saving graph 2025-08-28 08:23:58 -04:00
Mary Hipp
94ba840948 push up updates for VideoField 2025-08-28 08:23:58 -04:00
Mary Hipp
bd251f8cce update VideoField 2025-08-28 08:23:58 -04:00
Mary Hipp
97719b0aab split out RunwayVideoOutput from VideoOutput 2025-08-28 08:23:58 -04:00
Mary Hipp
e89266bfe3 rough rough POC of video tab 2025-08-28 08:23:58 -04:00
Mary Hipp
453ef1a220 video_output support 2025-08-28 08:23:58 -04:00
psychedelicious
faf8f0f291 chore: bump version to v6.5.0 2025-08-28 13:32:37 +10:00
psychedelicious
5d36499982 chore: update whatsnew 2025-08-28 13:32:37 +10:00
Linos
151d67a0cc translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2082 of 2082 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-28 13:02:16 +10:00
Riccardo Giovanetti
72431ff197 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2053 of 2082 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-28 13:02:16 +10:00
psychedelicious
0de1feed76 chore(ui): lint 2025-08-28 12:59:35 +10:00
psychedelicious
7ffb626dbe feat(ui): add image load errors to logging 2025-08-28 12:59:35 +10:00
psychedelicious
79753289b1 feat(ui): log image failed to load errors at error level 2025-08-28 12:59:35 +10:00
psychedelicious
bac4c05fd9 feat(ui): log "destroying module" at debug level 2025-08-28 12:59:35 +10:00
psychedelicious
8a3b5d2c6f fix(ui): do not cache canvas entities when they have no w/h 2025-08-28 12:59:35 +10:00
psychedelicious
309578c19a fix(ui): progress image gets stuck on viewer when generating on canvas 2025-08-28 12:55:36 +10:00
Mary Hipp
fd58e1d0f2 update copy for API models without w/h controls 2025-08-27 09:24:22 -04:00
psychedelicious
04ffb979ce fix(ui): deny the pull of the square 2025-08-27 08:56:15 -04:00
psychedelicious
35c00d5a83 chore(ui): lint 2025-08-27 08:56:15 -04:00
psychedelicious
c2b49d58f5 fix(ui): gemini 2.5 unsupported gen mode error message 2025-08-27 08:56:15 -04:00
psychedelicious
6ff6b40a35 feat(ui): support unknown output image dimensions on canvas
Gemini 2.5 Flash makes no guarantees about output image sizes. Our
existing logic always rendered staged images on Canvas at the bbox dims
- not the image's physical dimensions. When Gemini returns an image that
doesn't match the bbox, it would get squished.

To rectify this, the canvas staging area renderer is updated to render
its images using their physical dimensions, as opposed to their
configured dimensions (i.e. bbox).

A flag on CanvasObjectImage enables this rendering behaviour.

Then, when saving the image as a layer from staging area, we use the
physical dimensions.

When the bbox and physical dimensions do not match, the bbox is not
touched, so it won't exactly encompass the staged image. No point in
resizing the bbox if the dimensions don't match - the next image could
be a different size, and the sizes might not be valid (it's an external
resource, after all).
2025-08-27 08:56:15 -04:00
psychedelicious
1f1beda567 fix(ui): remove gemini aspect ratio checking in graph builder 2025-08-27 08:56:15 -04:00
psychedelicious
91d62eb242 fix(ui): update ref image type when switching to gemini 2025-08-27 08:56:15 -04:00
psychedelicious
013e02d08b feat(ui): show w/h, scaled bbox settings only when relevant 2025-08-27 08:56:15 -04:00
psychedelicious
115053972c feat(ui): handle api model determination in a clearer way w/ list of base models; use it in dimensions component 2025-08-27 08:56:15 -04:00
psychedelicious
bcab754ac2 docs(ui): add note about reactflow types 2025-08-27 08:56:15 -04:00
psychedelicious
f1a542aca2 docs(ui): add note about extraneous coordiantes in paramsSlice 2025-08-27 08:56:15 -04:00
psychedelicious
0701cc63a1 feat(ui): hide width/height sliders for api models
These models only support aspect ratio inputs; not pixel dimensions
2025-08-27 08:56:15 -04:00
psychedelicious
9337710b45 chore(ui): lint 2025-08-27 08:56:15 -04:00
psychedelicious
592ef5a9ee feat(ui): improved support model handling when switching models
- Disable LoRAs instead of deleting them when base model changes
- Update toast message to indicate that we may have _updated_ a model
(prev just sayed cleared or disabled)
- Do not change ref image models if the new base model doesn't support
them. For example, changing from SDXL to Imagen does not update the ref
image model or alert the user, because Imagen does not support ref
images. Switching from Imagen to FLUX does update the ref image model
and alert the user. Just a bit less noisy.
2025-08-27 08:56:15 -04:00
psychedelicious
5fe39a3ae9 fix(ui): add gemini 2.5 to ref image supporting models 2025-08-27 08:56:15 -04:00
psychedelicious
1888c586ca feat(ui): do not prevent invoking when ref images are added but model does not support ref images 2025-08-27 08:56:15 -04:00
psychedelicious
88922a467e feat(ui): hide ref images UI when selected models does not support ref images 2025-08-27 08:56:15 -04:00
psychedelicious
84115e598c fix(ui): lock height slider when using api model 2025-08-27 08:56:15 -04:00
Mary Hipp
370fc67777 UI support for gemini 2.5 API model 2025-08-27 08:56:15 -04:00
Mary Hipp
fa810e1d02 add gemini 2.5 to base model 2025-08-27 08:56:15 -04:00
Attila Cseh
ec5043aa83 useNodeFieldElementExists turned private 2025-08-26 11:39:16 +10:00
Attila Cseh
9a2a0cef74 node field dnd logic updatedto prevent duplicates 2025-08-26 11:39:16 +10:00
Attila Cseh
c205c1d19e current board removed from options 2025-08-26 11:33:39 +10:00
Attila Cseh
ae1a815453 change board - sorting order of boards alphabetical 2025-08-26 11:33:39 +10:00
psychedelicious
687bc281e5 chore: prep for v6.5.0rc1 (#8479)
## Summary

Bump version

## Related Issues / Discussions

n/a

## QA Instructions

n/a

## Merge Plan

This is already released.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-08-26 11:25:01 +10:00
psychedelicious
567316d753 chore: bump version to v6.5.0rc1 2025-08-25 18:10:18 +10:00
psychedelicious
53ac7c9d2c feat(ui): bbox aspect ratio lock is always inverted by shift 2025-08-25 17:59:20 +10:00
Riccardo Giovanetti
90be2a0cdf translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2050 of 2079 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-25 17:57:54 +10:00
Attila Cseh
c7fb8f69ae code review fixes 2025-08-25 17:53:59 +10:00
Attila Cseh
7fecb8e88b formatting fixed 2025-08-25 17:53:59 +10:00
Attila Cseh
ee6a2a6603 respect direction of selection in Gallery 2025-08-25 17:53:59 +10:00
Attila Cseh
2496ac19c4 remove input field from form 2025-08-25 16:33:09 +10:00
psychedelicious
e34ed199c9 feat(ui): respect aspect ratio when resizing bbox on canvas 2025-08-25 15:30:01 +10:00
psychedelicious
569533ef80 fix(ui): toggle bbox visiblity translation 2025-08-25 14:51:34 +10:00
psychedelicious
dfac73f9f0 fix(ui): disable color picker while middle-mouse panning canvas 2025-08-25 14:47:42 +10:00
psychedelicious
f4219d5db3 chore: uv lock 2025-08-23 14:17:56 +10:00
psychedelicious
04d1958e93 feat(app): vendor in invisible-watermark
Fixes errors like `AttributeError: module 'cv2.ximgproc' has no
attribute 'thinning'` which occur because there is a conflict between
our own `opencv-contrib-python` dependency and the `invisible-watermark`
library's `opencv-python`.
2025-08-23 14:17:56 +10:00
psychedelicious
47d7d93e78 fix(ui): float input precision
Determine the "base" step for floats. If no `multipleOf` is provided,
the "base" step is `undefined`, meaning the float can have any number of
decimal places.

The UI library does its own step constrains though and is rounding to 3
decimal places. Probably need to update the logic in the UI library to
have truly arbitrary precision for float fields.
2025-08-22 13:35:59 +10:00
psychedelicious
0e17950949 fix(ui): race condition when setting hf token and downloading model
I ran into a race condition where I set a HF token and it was valid, but
somehow this error toast still appeared. The conditional feel through to
an assertion that we never expected to get to, which crashed the UI.

Handled the unexpected case gracefully now.
2025-08-22 13:30:38 +10:00
psychedelicious
b0cfdc94b5 feat(ui): do not sample alpha in Canvas color picker
Closes #7897
2025-08-21 21:38:03 +10:00
psychedelicious
bb153b55d3 docs: update quick start 2025-08-21 21:26:09 +10:00
psychedelicious
93ef637d59 docs: update latest release links 2025-08-21 21:26:09 +10:00
Attila Cseh
c5689ca1a7 code review changes 2025-08-21 19:42:38 +10:00
Attila Cseh
008e421ad4 shuffle button on workflows 2025-08-21 19:42:38 +10:00
psychedelicious
28a77ab06c Revert "experiment: add non-lfs-tracked file to lfs-tracked dir"
This reverts commit 4f4b7ddfb0.
2025-08-21 15:49:20 +10:00
psychedelicious
be48d3c12d ci: give workflow perms to label/comment on pr 2025-08-21 15:49:20 +10:00
psychedelicious
518b21a49a experiment: add non-lfs-tracked file to lfs-tracked dir 2025-08-21 15:49:20 +10:00
psychedelicious
68825ca9eb ci: add workflow to catch incorrect usage of git-lfs 2025-08-21 15:49:20 +10:00
psychedelicious
73c5f0b479 chore: bump version to v6.4.0 2025-08-19 12:19:02 +10:00
psychedelicious
7b4e04cd7c git: move test LoRA to LFS 2025-08-19 11:56:59 +10:00
Linos
ae4368fabe translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2073 of 2073 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-19 10:28:35 +10:00
psychedelicious
df8e39a9e1 chore: bump version to v6.4.0rc2 2025-08-19 00:01:48 +10:00
psychedelicious
45b43de571 fix(ui): prevent node drag when editing title
Closes #8435
2025-08-18 23:20:28 +10:00
psychedelicious
6d18a72a05 fix(ui): fit to bbox when bbox is not aligned to 64px grid 2025-08-18 23:17:45 +10:00
Kent Keirsey
af58a75e97 Support PEFT Loras with Base_Model.model prefix (#8433)
* Support PEFT Loras with Base_Model.model prefix

* update tests

* ruff

* fix python complaints

* update kes

* format keys

* remove unneeded test
2025-08-18 09:14:46 -04:00
psychedelicious
fd4c3bd27a refactor: estimate working vae memory during encode/decode
- Move the estimation logic to utility functions
- Estimate memory _within_ the encode and decode methods, ensuring we
_always_ estimate working memory when running a VAE
2025-08-18 21:43:14 +10:00
psychedelicious
1f8a60ded2 fix(ui): export NumericalParameterConfig type 2025-08-18 21:38:17 +10:00
psychedelicious
b1b677997d chore: bump version to v6.4.0rc1 2025-08-18 21:34:09 +10:00
psychedelicious
f17b43d736 chore(ui): update whatsnew 2025-08-18 21:34:09 +10:00
psychedelicious
c009a50489 feat(ui): reduce storage persist debounce to 300ms
matches pre-server-backed-state-persistence value
2025-08-18 21:34:09 +10:00
psychedelicious
97a16c455c fix(ui): update board totals when generation completes 2025-08-18 21:34:09 +10:00
psychedelicious
a8a07598c8 chore: ruff 2025-08-18 21:14:00 +10:00
psychedelicious
23206e22e8 tests: skip excessively flaky MPS-specific tests in CI 2025-08-18 21:14:00 +10:00
psychedelicious
f4aba52b90 feat(ui): use flushSync for locateInGallery to ensure panel api calls finish before selecting image 2025-08-18 19:55:06 +10:00
psychedelicious
d17c273939 feat(ui): add locate in gallery button to current image buttons toolbar 2025-08-18 19:55:06 +10:00
psychedelicious
aeb5e7d50a feat(ui): hide locate in gallery from context when unable to actually locate
e.g. when on a tab that doesn't have a gallery, or the image is
intermediate
2025-08-18 19:55:06 +10:00
psychedelicious
580ad30832 feat(ui): use bold icon for locate in gallery 2025-08-18 19:55:06 +10:00
psychedelicious
6390f7d734 fix(ui): more reliable scrollIntoView/"Locate in Gallery"
Three changes needed to make scrollIntoView and "Locate in Gallery" work
reliably.

1. Use setTimeout to work around race condition with scrollIntoView in
gallery.

It was possible to call scrollIntoView before react-virtuoso was ready.
I think react-virtuoso was initialized but hadn't rendered/measured its
items yet, so when we scroll to e.g. index 742, the items have a zero
height, so it doesn't actually scroll down. Then the items render.

Setting a timeout here defers the scroll until after the next event loop
cycle, by which time we expect react-virutoso to be ready.

2. Ensure the scollIntoView effect in gallery triggers any time the
selection is touched by making its dependency the array of selected
images, not just the last selected image name.

The "locate in gallery" functionality works by selecting an image.
There's a reactive effect in the gallery that runs when the last
selected image changes and scrolls it into view.

But if you already have an image selected, selecting it again will not
change the image name bc it is a string primitive. The useEffect ignores
the selection.

So, if you clicked "locate in gallery" on an image that was already
selected, it wouldn't be scrolled into view - even if you had already
scrolled away from it.

To work around this, the effect now uses the whole selection array as
its dependency. Whenever the selection changes, we get a new array,
which triggers the effect.

3. Gallery slice had some checks to avoid creating a new array of
selected image names in state when the selected images didn't change.

For example, if image "abc" was selected, and we selected "abc" again,
instead of creating a new array with the same "abc" image, we bailed
early. IIRC this optimization addressed a rerender issue long ago.

This optimization needs to be removed in order for fix #2 above to work.
We now _want_ a new array whenever selection is set - even if it didn't
actually change.
2025-08-18 19:55:06 +10:00
psychedelicious
5ddbfefb6a feat(ui): add trace logging to scrollIntoView 2025-08-18 19:55:06 +10:00
psychedelicious
bbf5ed7956 fix(ui): use is_intermediate to determine if image is gallery image 2025-08-18 19:55:06 +10:00
Attila Cseh
19cd6eed08 locate in gallery image context menu 2025-08-18 19:55:06 +10:00
Attila Cseh
9c1eb263a8 new entity added above the currently selected one 2025-08-18 18:46:40 +10:00
Attila Cseh
75755189a7 prettier fixes 2025-08-18 18:46:40 +10:00
Attila Cseh
a9ab72d27d new layers created on the top of the existing layers 2025-08-18 18:46:40 +10:00
Attila Cseh
678eb34995 duplicate layer appear above original one 2025-08-18 18:46:40 +10:00
Attila Cseh
ef7050f560 merged layers order retained 2025-08-18 18:46:40 +10:00
Attila Cseh
9787d9de74 prettier fix 2025-08-18 18:30:08 +10:00
Attila Cseh
bb4a50bab2 confirmation before downloading starter bundle 2025-08-18 18:30:08 +10:00
Attila Cseh
f3554b4e1b prettier fixed 2025-08-14 21:10:21 +10:00
Attila Cseh
9dcb025241 build error fixed 2025-08-14 21:10:21 +10:00
Attila Cseh
ecf646066a CLIP skip value clamped 2025-08-14 21:10:21 +10:00
Attila Cseh
3fd10b68cd recall CLIP skip 2025-08-14 21:10:21 +10:00
Attila Cseh
6e32c7993c CLIP Skip zod schema created 2025-08-14 21:10:21 +10:00
Riccardo Giovanetti
8329533848 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (2041 of 2071 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2039 of 2067 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-14 12:14:27 +10:00
psychedelicious
fc7157b029 fix(ui): do not add pos style prompt to metadata 2025-08-14 10:56:24 +10:00
psychedelicious
a1897f7490 chore(ui): lint 2025-08-14 10:56:24 +10:00
psychedelicious
a89b3efd14 feat(ui): remove SDXL style prompt from linear UI
This feature added a lot of unexpected complexity in graph building /
metadata recall and is unintuitive user experience. 99% of the time, the
style prompt should be exactly the main prompt.

You can still use style prompts in workflows, but in an effort to reduce
complexity in the linear UI, we are removing this rarely-used feature.
2025-08-14 10:56:24 +10:00
jiangmencity
5259693ed1 chore: fix some comments
Signed-off-by: jiangmencity <jiangmen@52it.net>
2025-08-14 09:32:54 +10:00
Tikal
d77c24206d Update NODES.md 2025-08-14 09:18:47 +10:00
psychedelicious
c5069557f3 fix(mm): fail when model exists at path instead of finding unused new path
When installing a model, the previous, graceful logic would increment a
suffix on the destination path until found a free path for the model.

But because model file installation and record creation are not in a
transaction, we could end up moving the file successfully and fail to
create the record:
- User attempts to install an already-installed model
- Attempt to move the downloaded model from download tempdir to
destination path
- The path already exists
- Add `_1` or similar to the path until we find a path that is free
- Move the model
- Create the model record
- FK constraint violation bc we already have a model w/ that name, but
the model file has already been moved into the invokeai dir.

Closes #8416
2025-08-13 10:40:06 +10:00
psychedelicious
9b220f61bd translations(ui): add translation for gallery settings 2025-08-12 23:34:24 +10:00
psychedelicious
7fc3af12cc translations(ui): add translation for select your model in launchpad 2025-08-12 23:34:24 +10:00
psychedelicious
e2721b46b6 translations(ui): add atranslations for add/remove negative promtp 2025-08-12 23:34:24 +10:00
psychedelicious
17118a04bd feat(ui): dynamic dockview tab title translations
Requires a ui slice migration and reset of users's layout settings to
get the right titles into dockview params state, which is persisted.
2025-08-12 23:34:24 +10:00
psychedelicious
24788e3c83 fix(ui): input field error styling specificity 2025-08-12 23:30:34 +10:00
psychedelicious
056387c981 feat(ui): allow recall of prompt and seed on upscaling tab 2025-08-12 16:21:51 +10:00
psychedelicious
8a43d90273 fix(ui): positive prompt in upscale metadata 2025-08-12 16:21:51 +10:00
psychedelicious
4f9b9760db feat(ui): debounce persistence instead of throttle 2025-08-12 16:16:11 +10:00
psychedelicious
fdaddafa56 fix(mm): only add suffix to model paths when path is file 2025-08-12 15:31:43 +10:00
psychedelicious
23d59abbd7 chore: ruff 2025-08-12 10:51:05 +10:00
psychedelicious
cf7fa5bce8 perf(backend): clear torch cache after encoding each image in kontext extension
Slightly reduces VRAM allocations.
2025-08-12 10:51:05 +10:00
psychedelicious
39e41998bb feat(ui): use latent-space kontext ref image concat in flux graph
Prevents a large spike in VRAM when preparing to denoise w/ multiple ref
images.

There doesn't appear to be any different in image quality / ref
adherence when concatenating in latent space vs image space, though
images _are_ different.
2025-08-12 10:51:05 +10:00
psychedelicious
c6eff71b74 fix(backend): bug in kontext canvas dimension tracking when concating in latent space
We weren't tracking the canvas dimensions properly which coudl result in
FLUX not "seeing" ref images after the first very well
2025-08-12 10:51:05 +10:00
psychedelicious
6ea4c47757 chore: ruff 2025-08-12 10:51:05 +10:00
psychedelicious
91f91aa835 feat(mm): prepare kontext latents before loading transformer
If the transformer fills up VRAM, then when we VAE encode kontext
latents, we'll need to first offload the transformer (partially, if
partial loading is enabled).

No need to do this - we can encode kontext latents before loading the
transformer to reduce model thrashing.
2025-08-12 10:51:05 +10:00
psychedelicious
ea7868d076 Revert "experiment(mm): investigate vae working memory calculations"
This reverts commit bc9ed57d5cd134dc7c9117395e91d22a3c4aa6de.
2025-08-12 10:51:05 +10:00
psychedelicious
7d86f00d82 feat(mm): implement working memory estimation for VAE encode for all models
Tell the model manager that we need some extra working memory for VAE
encoding operations to prevent OOMs.

See previous commit for investigation and determination of the magic
numbers used.

This safety measure is especially relevant now that we have FLUX Kontext
and may be encoding rather large ref images. Without the working memory
estimation we can OOM as we prepare for denoising.

See #8405 for an example of this issue on a very low VRAM system. It's
possible we can have the same issue on any GPU, though - just a matter
of hitting the right combination of models loaded.
2025-08-12 10:51:05 +10:00
psychedelicious
7785061e7d experiment(mm): investigate vae working memory calculations
This commit includes a task delegated to Claude to investigate our VAE
working memory calculations and investigation results.

See VAE_INVESTIGATION.md for motivation and detail. Everything else is
its output.

Result data includes empirical measurements for all supported model
architectures at a variety of resolutions and fp16/fp32 precision.
Testing conducted on a 4090.

The summarized conclusion is that our working memory estimations for
decoding are spot-on, but decoding also needs some extra working memory.
Empirical measurements suggest ~45% the amount needed for encoding.

A followup commit will implement working memory estimations for VAE
encoding with the goal of preventing unexpected OOMs during encode.
2025-08-12 10:51:05 +10:00
psychedelicious
3370052e54 fix(ui): restore deduping logic in node field element selectors
This is required for some publishing functionality
2025-08-11 22:50:05 +10:00
Attila Cseh
325dacd29c same field cannot be added to form multiple times in workflow editor 2025-08-11 22:50:05 +10:00
psychedelicious
f4981a6ba9 tidy(ui): minor cleanup 2025-08-11 22:37:46 +10:00
Attila Cseh
8c159942eb add to form icon included 2025-08-11 22:37:46 +10:00
Attila Cseh
deb4dc64af error nodes outlined in red 2025-08-11 22:37:46 +10:00
psychedelicious
1a11437b6f feat(ui): add hidden bbox hotkey to alert
If you accidentally hit the hotkey and hide the bbox it could be
difficult to figure out how to un-hide it without the hotkey called out
in the alert.
2025-08-11 22:30:45 +10:00
Attila Cseh
04572c94ad setting bbox visibility moved into render method 2025-08-11 22:30:45 +10:00
Attila Cseh
1e9e78089e Add toggle for bbox with hotkey 2025-08-11 22:30:45 +10:00
Heathen711
e65f93663d bugfix(container-builder) Use the mnt space instead of root space for docker images 2025-08-06 12:36:07 -04:00
psychedelicious
2a796fe25e chore: bump version to v6.3.0 2025-08-05 10:35:22 +10:00
psychedelicious
61ff9ee3a7 feat(ui): add button to ref image to recall size & optimize for model
This is useful for FLUX Kontext, where you typically want the generation
size to at least roughly match the first ref image size.
2025-08-05 10:28:44 +10:00
psychedelicious
111408c046 feat(mm): add flux krea to starter models 2025-08-05 10:25:14 +10:00
psychedelicious
d7619d465e feat(mm): change anime upscaling model to one that doesn't trigger picklescan 2025-08-05 10:25:14 +10:00
Kent Keirsey
8ad4f6e56d updates & fix 2025-08-05 10:10:52 +10:00
Cursor Agent
bf4899526f Add 'shift+s' hotkey for fitting bbox to canvas
Co-authored-by: kent <kent@invoke.ai>
2025-08-05 10:10:52 +10:00
psychedelicious
6435d265c6 fix(ui): overflow w/ long board names 2025-08-05 10:06:55 +10:00
Linos
3163ef454d translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2065 of 2065 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
Riccardo Giovanetti
7ea636df70 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2037 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2037 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (2036 of 2065 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2014 of 2042 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
Hosted Weblate
1869824803 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-08-05 10:04:20 +10:00
psychedelicious
66fc8af8a6 fix(ui): reset session button actions
- Do not reset dimensions when resetting generation settings (they are
model-dependent, and we don't change model-dependent settings w/ that
butotn)
- Do not reset bbox when resetting canvas layers
- Show reset canvas layers button only on canvas tab
- Show reset generation settings button only on canvas or generate tab
2025-08-05 10:01:22 +10:00
psychedelicious
48cb6b12f0 fix(ui): add style ref launchpad using wrong dnd config
I don't think this actually caused problems bc the two DND targets were
very similar, but it was wrong.
2025-08-05 09:57:11 +10:00
psychedelicious
68e30a9864 feat(ui): prevent creating new canvases while staging
Disable these items while staging:
- New Canvas From Image context menu
- Edit image hook & launchpad button
- Generate from Text launchpad button (only while on canvas tab)
- Use a Layout Image launchpad button
2025-08-05 09:57:11 +10:00
psychedelicious
f65dc2c081 chore(ui): typegen 2025-08-05 09:54:00 +10:00
psychedelicious
0cd77443a7 feat(app): add setting to disable picklescan
When unsafe_disable_picklescan is enabled, instead of erroring on
detections or scan failures, a warning is logged.

A warning is also logged on app startup when this setting is enabled.

The setting is disabled by default and there is no change in behaviour
when disabled.
2025-08-05 09:54:00 +10:00
Mary Hipp
185ed86424 fix graph building 2025-08-04 12:32:27 -04:00
Mary Hipp
fed817ab83 add image concatenation to flux kontext graph if more than one refernece image 2025-08-04 11:27:02 -04:00
Mary Hipp
e0b45db69a remove check in readiness for multiple reg images 2025-08-04 11:27:02 -04:00
psychedelicious
2beac1fb04 chore: bump version to v6.3.0rc2 2025-08-04 23:55:04 +10:00
psychedelicious
e522de33f8 refactor(nodes): roll back latent-space resizing of kontext images 2025-08-04 23:03:12 +10:00
psychedelicious
d591b50c25 feat(ui): use image-space concatenation in FLUX graphs 2025-08-04 23:03:12 +10:00
psychedelicious
b365aad6d8 chore(ui): typegen 2025-08-04 23:03:12 +10:00
psychedelicious
65ad392361 feat(nodes): add node to prep images for FLUX Kontext 2025-08-04 23:03:12 +10:00
psychedelicious
56d75e1c77 feat(backend): use VAE mean encoding for Kontext reference images
Use distribution mean without sampling noise for more stable and
consistent reference image encoding, matching ComfyUI implementation
2025-08-04 23:03:12 +10:00
psychedelicious
df77a12efe refactor(backend): use torchvision transforms for Kontext image preprocessing
Replace numpy-based normalization with torchvision transforms for
consistency with other image processing in the codebase
2025-08-04 23:03:12 +10:00
psychedelicious
faf662d12e refactor(backend): use BICUBIC resampling for Kontext images
Switch from LANCZOS to BICUBIC for smoother image resizing to reduce
artifacts in reference image processing
2025-08-04 23:03:12 +10:00
psychedelicious
44a7dfd486 fix(backend): use consistent idx_offset=1 for all Kontext images
Changes from per-image index offsets to a consistent value of 1 for
all reference images, matching the ComfyUI implementation
2025-08-04 23:03:12 +10:00
psychedelicious
bb15e5cf06 feat(backend): add spatial tiling for multiple Kontext reference images
Implements intelligent spatial tiling that arranges multiple reference
images in a virtual canvas, choosing between horizontal and vertical
placement to maintain a square-like aspect ratio
2025-08-04 23:03:12 +10:00
psychedelicious
1a1c846be3 feat(backend): include reference images in negative CFG pass for Kontext
Maintains consistency between positive and negative passes to prevent
CFG artifacts when using Kontext reference images
2025-08-04 23:03:12 +10:00
psychedelicious
93c896a370 fix(backend): use img_cond_seq to check for Kontext slicing
Was incorrectly checking img_input_ids instead of img_cond_seq
2025-08-04 23:03:12 +10:00
psychedelicious
053d7c8c8e feat(ui): support disabling roarr output styling via localstorage 2025-07-31 23:02:45 +10:00
psychedelicious
5296263954 feat(ui): add missing translations 2025-07-31 22:51:33 +10:00
psychedelicious
a36b70c01c fix(ui): add image name data attr to gallery placeholder image elements
This fixes an issue where gallery's auto-scroll-into-view for selected
images didn't work, and users instead saw a "Unable to find image..."
debug log message in JS console.
2025-07-31 22:48:42 +10:00
psychedelicious
854a2a5a7a chore: bump version to v6.3.0rc1 2025-07-31 14:17:18 +10:00
psychedelicious
f9c64b0609 chore(ui): update whats new 2025-07-31 14:17:18 +10:00
psychedelicious
5889fa536a feat(ui): add migration path for client state from IndexedDB to server-backed storage 2025-07-31 14:09:45 +10:00
Linos
0e71ba892f translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2044 of 2044 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-31 13:59:21 +10:00
Riccardo Giovanetti
d766a21223 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2016 of 2044 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-31 13:59:21 +10:00
psychedelicious
5c8c54eab8 chore: ruff 2025-07-31 06:38:48 +10:00
psychedelicious
f296f4525c tidy(ui): disable logging middleware 2025-07-31 06:38:48 +10:00
psychedelicious
7c9ba4cb52 refactor(ui): add persistence gate logic to prevent race conditions with slow rehydration 2025-07-31 06:38:48 +10:00
psychedelicious
6784fd5b43 refactor(ui): use new routes for _all_ client state persistence (no override/custom drivers) 2025-07-31 06:38:48 +10:00
psychedelicious
11d68cc646 chore(ui): typegen 2025-07-31 06:38:48 +10:00
psychedelicious
ea8c877025 refactor(app): move client state persistence to own route, add queue_id 2025-07-31 06:38:48 +10:00
psychedelicious
7a3c2332dd feat(ui): add visual indicator when input field is added to form 2025-07-31 06:33:22 +10:00
psychedelicious
3835fd2f72 feat(ui): zhoosh image comparison ui 2025-07-30 07:20:47 -04:00
psychedelicious
6f8746040c docs(ui): update comments in readiness re: flux kontext via bfl api 2025-07-30 12:26:48 +10:00
psychedelicious
35e3940a09 feat(ui): update warning when using multiple ref images on BFL API kontext
It only supports 1 image.
2025-07-30 12:26:48 +10:00
psychedelicious
415616d83f feat(ui): support multiple kontext ref images in studio 2025-07-30 12:26:48 +10:00
psychedelicious
afb67efef9 chore(ui): typegen 2025-07-30 12:26:48 +10:00
psychedelicious
1ed1fefa60 feat(nodes): support multiple kontext ref images
Images are concatenated in latent space.
2025-07-30 12:26:48 +10:00
Ar7ific1al
fa94a05c77 Update CanvasStateApiModule.ts
Add temporary grid snap with ctrl, optional small step with ctrl+shift, while grid snap is off
2025-07-30 12:16:42 +10:00
psychedelicious
7a23d8266f feat(ui): simpler storage driver impl 2025-07-30 05:53:20 +10:00
psychedelicious
a44de079dd perf(ui): instantiate logger for storage error handler once 2025-07-30 05:53:20 +10:00
psychedelicious
c3c1a3edd8 chore(ui): typegen 2025-07-30 05:53:20 +10:00
psychedelicious
ea26b5b147 feat(app): client state persistence endpoints accept stringified data 2025-07-30 05:53:20 +10:00
Eugene Brodsky
4226b741b1 fix(docker) rocm 6.3 based image (#8152)
1. Fix the run script to properly read the GPU_DRIVER
2. Cloned and adjusted the ROCM dockerbuild for docker
3. Adjust the docker-compose.yml to use the cloned dockerbuild
2025-07-29 10:16:42 -04:00
Eugene Brodsky
1424b7c254 Merge branch 'main' into bugfix/heathen711/rocm-docker 2025-07-29 10:12:13 -04:00
psychedelicious
933fb2294c fix(ui): zod rejects any board id besides "none"
Turns out the string autocomplete TS hack does not translate to zod.
Widen the zod schema to any string, but use the hack for the TS type.
2025-07-29 08:45:16 -04:00
psychedelicious
5a181ee0fd build(ui): export loading component 2025-07-29 08:43:03 -04:00
psychedelicious
3b0d59e459 tests(app): update mm tests to test updated behaviour 2025-07-29 16:08:15 +10:00
psychedelicious
fec296e41d fix(app): move (not copy) models from install tmpdir to destination
It's not clear why we were copying downloaded models to the destination
dir instead of moving them. I cannot find a reason for it, and I am able
to install single-file and diffusers models just fine with the change.

This fixes an issue where model installation requires 2x the model's
size (bc we were copying the model over).
2025-07-29 16:08:15 +10:00
Heathen711
ae4e38c6d0 Merge branch 'main' into bugfix/heathen711/rocm-docker 2025-07-28 21:24:34 -07:00
psychedelicious
a9f3f1a4b2 fix(app): handle model files with periods in their name
Previously, we used pathlib's `with_suffix()` method to change add a
suffix (e.g. ".safetensors") to a model when installing it.

The intention is to add a suffix to the model's name - but that method
actually replaces everything after the first period.

This can cause different models to be installed under the same name!

For example, the FLUX models all end up with the same name:
- "FLUX.1 schnell.safetensors" -> "FLUX.safetensors"
- "FLUX.1 dev.safetensors" -> "FLUX.safetensors"

The fix is easy - append the suffix using string formatting instead of
using pathlib.

This issue has existed for a long time, but was exacerbated in
075345bffd in which I updated the names of
our starter models, adding ".1" to the FLUX model names. Whoops!
2025-07-29 14:15:59 +10:00
psychedelicious
8a73df4fe1 fix(ui): progress image does not hide on viewer with autoswitch disabled 2025-07-29 12:53:45 +10:00
psychedelicious
ea2e1ea8f0 fix(ui): queue count badge renders when left panel collapsed 2025-07-29 12:51:23 +10:00
psychedelicious
e8aa91931d fix(ui): connect metadata to output node for ext api nodes 2025-07-29 06:46:17 +10:00
psychedelicious
8d22a314a6 docs(ui): add some comments for race condition handling 2025-07-29 06:34:08 +10:00
psychedelicious
57ce2b8aa7 chore(ui): lint 2025-07-29 06:34:08 +10:00
psychedelicious
6b810cb3fb fix(ui): race condition w/ queue counts 2025-07-29 06:34:08 +10:00
psychedelicious
4f3a5dcc43 tidy(ui): remove unused progress related logic and components 2025-07-29 06:34:08 +10:00
psychedelicious
c3ae14cf73 fix(ui): ignore events for already-completed queue items 2025-07-29 06:34:08 +10:00
psychedelicious
b9c44b92d5 fix(ui): clear progress images from viewer at the right time 2025-07-29 06:34:08 +10:00
psychedelicious
5a68b4ddbc build(ui): skip logging ctx plugin when running tests 2025-07-29 06:31:30 +10:00
psychedelicious
18a722839b chore(ui): update knip conifg 2025-07-29 06:31:30 +10:00
psychedelicious
7370cb9be6 build(ui): add vite plugin to add relative file path to logger context 2025-07-29 06:31:30 +10:00
Kent Keirsey
cc4df52f82 feat: server-side client state persistence (#8314)
## Summary

Move client state persistence from browser to server.

- Add new client state persistence service to handle reading and writing
client state to db & associated router. The API mirrors that of
LocalStorage/IndexedDB where the set/get methods both operate on _keys_.
For example, when we persist the canvas state, we send only the new
canvas state to the backend - not the whole app state.
- The data is very flexibly-typed as a pydantic `JsonValue`. The client
is expected to handle all data parsing/validation (it must do this
anyways, and does this today).
- Change persistence from debounced to throttled at 2 seconds. Maybe
less is OK? Trying to not hammer the server.
- Add new persistence storage driver in client and use it in
redux-remember. It does its best to avoid extraneous persist requests,
caching the last data it persisted and noop-ing if there are no changes.
- Storage driver tracks pending persist actions using ref counts (bc
each slice is persisted independently). If there user navigates away
from the page during a persist request, it will give them the "you may
lose something if you navigate away" alert.
- This "lose something" alert message is not customizable (browser
security reasons).
- The alert is triggered only when the user closes the tape while a
persist network request is mid-flight. It's possible that the user makes
a change and closes the page before we start persisting. In this case,
they will lose the last 2 seconds of data.
- I tried making triggering the alert when a persist was waiting to
start, and it felt off.
- Maybe the alert isn't even necessary. Again you'd lose 2s of data at
most, probably a non issue. IMO after trying it, a subtle indicator
somewhere on the page is probably less confusing/intrusive.
- Fix an issue where the `redux-remember` enhancer was added _last_ in
the enhancer chain, which prevented us detecting when a persist has
succeeded. This required a small change to the `unserialze` utility
(used during rehydration) to ensure slices enhanced with `redux-undo`
are set up correctly as they are rehydrated.
- Restructure the redux store code to avoid circular dependencies. I
couldn't figure out how to do this without just smooshing it all into
the main `store.ts` file. Oh well.

Implications:
- Because client state is now on the server, different browsers will
have the same studio state. For example, if I start working on something
in Firefox, if I switch to Chrome, I have the same client state.
- Incognito windows won't do anything bc client state is server-side.
- It takes a bit longer for persistence to happen thanks to the
debounce, but there's now an indicator that tells you your stuff isn't
saved yet.
- Resetting the browser won't fix an issue with your studio state. You
must use `Reset Web UI` to fix it (or otherwise hit the appropriate
endpoint). It may be possible to end up in a Catch-22 where you can't
click the button and get stuck w/ a borked studio - I think to think
through this a bit more, might not be an issue.
- It probably takes a bit longer to start up, since we need to retrieve
client state over network instead of directly with browser APIs.

Other notes:
- We could explore adding an "incognito" mode, enabled via
`invokeai.yaml` setting or maybe in the UI. This would temporarily
disable persistence. Actually, I don't think this really makes sense, bc
all the images would be saved to disk.
- The studio state is stored in a single row in the DB. Currently, a
static row ID is used to force the studio state to be a singleton. It is
_possible_ to support multiple saved states. Might be a solve for app
workspaces.

## Related Issues / Discussions

n/a

## QA Instructions

Try it out. It's pretty straightforward. Error states are the main
things to test - for example, network blips. The new server-side
persistence driver is the only real functional change - everything else
is just kinda shuffling things around to support it.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-07-25 12:08:47 -04:00
Kent Keirsey
1cb4ef05a4 add newline 2025-07-25 11:08:54 -04:00
Kent Keirsey
7da141101c Merge branch 'main' into psyche/feat/app/client-state-persistence 2025-07-25 11:07:17 -04:00
psychedelicious
2571e199c5 tidy(ui): remove unused props 2025-07-25 11:06:18 -04:00
psychedelicious
79e93f905e fix(ui): add separate wrapper components for notes and current image nodes that do not need invocation node context 2025-07-25 11:06:18 -04:00
psychedelicious
f562e4f835 fix(ui): ensure all node context provider wraps all calls to useInvocationNodeContext 2025-07-25 11:06:18 -04:00
psychedelicious
47e220aaf3 perf(ui): imperatively get nodes and edges in autolayout hook 2025-07-25 11:06:18 -04:00
psychedelicious
9365154bfe chore: bump version to v6.2.0 2025-07-25 11:06:18 -04:00
psychedelicious
afc6911c96 chore: bump version to v6.3.0a1 2025-07-25 19:07:08 +10:00
psychedelicious
afa1ee7ffd tidy(ui): enable devmode redux checks 2025-07-25 19:04:21 +10:00
psychedelicious
5a102f6b53 chore(ui): lint 2025-07-25 19:04:21 +10:00
psychedelicious
af345a33f3 fix(ui): infinite loop when setting tile controlnet model 2025-07-25 19:04:21 +10:00
psychedelicious
038b110a82 fix(ui): do not store whole model configs in state 2025-07-25 19:04:21 +10:00
psychedelicious
f3cd49d46e refactor(ui): just manually validate async stuff 2025-07-25 19:04:21 +10:00
psychedelicious
ca7d7c9d93 refactor(ui): work around zod async validation issue 2025-07-25 19:04:21 +10:00
psychedelicious
1addeb4b59 fix(ui): check initial retrieval and set as last persisted 2025-07-25 19:04:21 +10:00
psychedelicious
6ea4884b0c chore(ui): bump zod to latest
Checking if it fixes an issue w/ async validators
2025-07-25 19:04:21 +10:00
psychedelicious
aed9b1013e refactor(ui): use zod for all redux state 2025-07-25 19:04:21 +10:00
psychedelicious
6962536b4a refactor(ui): use zod for all redux state (wip)
needed for confidence w/ state rehydration logic
2025-07-25 19:04:21 +10:00
psychedelicious
7e59d040aa feat(ui): iterate on storage api 2025-07-25 19:04:20 +10:00
psychedelicious
e7c67da2c2 refactor(ui): restructure persistence driver creation to support custom drivers 2025-07-25 19:04:20 +10:00
psychedelicious
c44571bc36 revert(ui): temp changes to main.tsx for testing 2025-07-25 19:04:20 +10:00
psychedelicious
ca257650d4 revert(ui): temp disable eslint rule 2025-07-25 19:04:20 +10:00
psychedelicious
6a9962d2bb git: update gitignore 2025-07-25 19:04:20 +10:00
psychedelicious
9492569a2c wip 2025-07-25 19:04:20 +10:00
psychedelicious
61e711620d chore: ruff 2025-07-25 19:04:20 +10:00
psychedelicious
3cf82505bb tests(app): service mocks 2025-07-25 19:04:20 +10:00
psychedelicious
53bcbc58f5 chore(ui): lint 2025-07-25 19:04:20 +10:00
psychedelicious
42f3990f7a refactor(ui): iterate on persistence 2025-07-25 19:04:20 +10:00
psychedelicious
456205da17 refactor(ui): iterate on persistence 2025-07-25 19:04:20 +10:00
psychedelicious
ca0684700e refactor(ui): alternate approach to slice configs 2025-07-25 19:04:19 +10:00
psychedelicious
6a702821ef chore(ui): typegen 2025-07-25 19:04:19 +10:00
psychedelicious
682d271f6f feat(api): make client state key query not body 2025-07-25 19:04:19 +10:00
psychedelicious
e872c253b1 refactor(ui): cleaner slice definitions 2025-07-25 19:04:19 +10:00
psychedelicious
28633c9983 feat: server-side client state persistence 2025-07-25 19:04:19 +10:00
psychedelicious
70ac58e64a tidy(ui): remove unused props 2025-07-25 18:51:21 +10:00
psychedelicious
e653837236 fix(ui): add separate wrapper components for notes and current image nodes that do not need invocation node context 2025-07-25 18:51:21 +10:00
psychedelicious
2bbfcc2f13 fix(ui): ensure all node context provider wraps all calls to useInvocationNodeContext 2025-07-25 18:51:21 +10:00
psychedelicious
d6e0e439c5 perf(ui): imperatively get nodes and edges in autolayout hook 2025-07-25 18:50:59 +10:00
psychedelicious
26aab60f81 chore: bump version to v6.2.0 2025-07-25 18:41:00 +10:00
Riccardo Giovanetti
7bea2fa11f translationBot(ui): update translation (Italian)
Currently translated at 98.6% (2016 of 2044 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (2015 of 2043 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-25 17:15:01 +10:00
Heathen711
1cdd4b5980 bugfix(docs) link syntax 2025-07-17 04:26:06 +00:00
Heathen711
89ceecc870 bugfix(docker) Ensure the correct extra install. 2025-07-17 04:19:22 +00:00
Heathen711
687cccdb99 cleanup(docker) 2025-07-17 04:00:42 +00:00
Heathen711
c84f8465b8 bugfix(pyproject) Convert from dependency groups to extras and update docks to use UV's built in torch support 2025-07-17 03:58:26 +00:00
Heathen711
4b5c481b7a Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-17 01:03:03 +00:00
Heathen711
2caa1b166d Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-13 00:55:39 +00:00
Heathen711
1b6ebede7b Revert "cleanup(github actions)"
This reverts commit 017d38eee2.
2025-07-10 21:10:56 +00:00
Heathen711
017d38eee2 cleanup(github actions) 2025-07-10 21:04:48 +00:00
Heathen711
78eb6b0338 cleanup(docker) 2025-07-10 21:03:57 +00:00
Heathen711
3e8e0f6ddf Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-10 20:14:27 +00:00
Heathen711
8213f62d3b bugfix(docker) render group controls the devices, but it needs to match the host's render group ID 2025-07-09 20:20:59 +00:00
Heathen711
233740a40e Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-09 03:27:42 +00:00
Heathen711
8c5fcfd0fd cleanup(docker) remove no cache argument 2025-07-05 15:25:26 +00:00
Heathen711
6d7b231196 Merge remote-tracking branch 'origin' into bugfix/heathen711/rocm-docker 2025-07-05 15:22:35 +00:00
Heathen711
31ca314b02 Missed files 2025-07-05 15:21:46 +00:00
Heathen711
0db304f1ee bugfix(uv) Lock torchvision and ensure the docker uses the same rocm version 2025-07-05 03:35:11 +00:00
Heathen711
a3cb3e03f4 bugfix(ci) Clean up more space for typegen check 2025-07-03 21:22:11 +00:00
Heathen711
641a6cfdb7 bugfix(docker) Remove the need for UV index as that is now baked into the uv.lock 2025-07-03 21:15:03 +00:00
Heathen711
f27471cea7 bugfix(docker): Use uv.lock for docker, and update to newer index urls. 2025-07-03 20:08:28 +00:00
Heathen711
47508b8d6c bugfix(docker) combined the dockerfiles and reduced image size 2025-07-03 06:01:51 +00:00
Heathen711
28e0242907 Fix tagging & remove force reinstall 2025-07-03 01:56:46 +00:00
Heathen711
96523ca01f fix(docker) Add cloned dockerbuild 2025-06-29 22:07:11 +00:00
Heathen711
c10a6fdab1 fix(docker) rocm 2.4.6 based image 2025-06-29 22:02:40 +00:00
657 changed files with 25559 additions and 16775 deletions

View File

@@ -18,5 +18,6 @@
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _❗Changes to a redux slice have a corresponding migration_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -45,6 +45,9 @@ jobs:
steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
# the /mnt dir has 70GBs of free space
# /dev/sda1 74G 28K 70G 1% /mnt
# According to some online posts the /mnt is not always there, so checking before setting docker to use it
run: |
echo "----- Free space before cleanup"
df -h
@@ -52,6 +55,11 @@ jobs:
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
if [ -d /mnt ]; then
sudo chmod -R 777 /mnt
echo '{"data-root": "/mnt/docker-root"}' | sudo tee /etc/docker/daemon.json
sudo systemctl restart docker
fi
echo "----- Free space after cleanup"
df -h

30
.github/workflows/lfs-checks.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
# Checks that large files and LFS-tracked files are properly checked in with pointer format.
# Uses https://github.com/ppremk/lfs-warning to detect LFS issues.
name: 'lfs checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
jobs:
lfs-check:
runs-on: ubuntu-latest
timeout-minutes: 5
permissions:
# Required to label and comment on the PRs
pull-requests: write
steps:
- name: checkout
uses: actions/checkout@v4
- name: check lfs files
uses: ppremk/lfs-warning@v3.3

View File

@@ -39,6 +39,18 @@ jobs:
- name: checkout
uses: actions/checkout@v4
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files

View File

@@ -22,6 +22,10 @@
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=cuda #| rocm
## If you are using ROCM, you will need to ensure that the render group within the container and the host system use the same group ID.
## To obtain the group ID of the render group on the host system, run `getent group render` and grab the number.
# RENDER_GROUP_ID=
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
# CONTAINER_UID=1000

View File

@@ -43,7 +43,6 @@ ENV \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
UV_INDEX="https://download.pytorch.org/whl/cu124" \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
@@ -74,19 +73,17 @@ RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then UV_INDEX="https://download.pytorch.org/whl/rocm6.2"; \
fi && \
uv sync --frozen
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids" && groupadd render
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
@@ -105,8 +102,6 @@ COPY invokeai ${INVOKEAI_SRC}/invokeai
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then UV_INDEX="https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then UV_INDEX="https://download.pytorch.org/whl/rocm6.2"; \
fi && \
uv pip install -e .
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]

136
docker/Dockerfile-rocm-full Normal file
View File

@@ -0,0 +1,136 @@
# syntax=docker/dockerfile:1.4
#### Web UI ------------------------------------
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
FROM library/ubuntu:24.04
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev \
wget
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ARG GPU_DRIVER=cuda
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
if [ "$GPU_DRIVER" = "rocm" ]; then \
wget -O /tmp/amdgpu-install.deb \
https://repo.radeon.com/amdgpu-install/6.3.4/ubuntu/noble/amdgpu-install_6.3.60304-1_all.deb && \
apt install -y /tmp/amdgpu-install.deb && \
apt update && \
amdgpu-install --usecase=rocm -y && \
apt-get autoclean && \
apt clean && \
rm -rf /tmp/* /var/tmp/* && \
usermod -a -G render ubuntu && \
usermod -a -G video ubuntu && \
echo "\\n/opt/rocm/lib\\n/opt/rocm/lib64" >> /etc/ld.so.conf.d/rocm.conf && \
ldconfig && \
update-alternatives --auto rocm; \
fi
## Heathen711: Leaving this for review input, will remove before merge
# RUN --mount=type=cache,target=/var/cache/apt \
# --mount=type=cache,target=/var/lib/apt \
# if [ "$GPU_DRIVER" = "rocm" ]; then \
# groupadd render && \
# usermod -a -G render ubuntu && \
# usermod -a -G video ubuntu; \
# fi
## Link amdgpu.ids for ROCm builds
## contributed by https://github.com/Rubonnek
# RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
# ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]

View File

@@ -47,8 +47,9 @@ services:
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
environment:
- AMD_VISIBLE_DEVICES=all
- RENDER_GROUP_ID=${RENDER_GROUP_ID}
runtime: amd
profiles:
- rocm

View File

@@ -21,6 +21,17 @@ _=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
# ensure the UID is correct
usermod -u ${USER_ID} ${USER} 1>/dev/null
## ROCM specific configuration
# render group within the container must match the host render group
# otherwise the container will not be able to access the host GPU.
if [[ -v "RENDER_GROUP_ID" ]] && [[ ! -z "${RENDER_GROUP_ID}" ]]; then
# ensure the render group exists
groupmod -g ${RENDER_GROUP_ID} render
usermod -a -G render ${USER}
usermod -a -G video ${USER}
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.

View File

@@ -13,7 +13,7 @@ run() {
# parse .env file for build args
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
profile="$(awk -F '=' '/GPU_DRIVER=/ {print $2}' .env)"
# default to 'cuda' profile
[[ -z "$profile" ]] && profile="cuda"
@@ -30,7 +30,7 @@ run() {
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
docker compose --profile "$profile" logs -f
}
run

View File

@@ -265,7 +265,7 @@ If the key is unrecognized, this call raises an
#### exists(key) -> AnyModelConfig
Returns True if a model with the given key exists in the databsae.
Returns True if a model with the given key exists in the database.
#### search_by_path(path) -> AnyModelConfig
@@ -718,7 +718,7 @@ When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
retrieved from the HuggingFace and Civitai model repositories.
The probed values can be overriden by providing a dictionary in the
The probed values can be overridden by providing a dictionary in the
optional `config` argument passed to `import_model()`. You may provide
overriding values for any of the model's configuration
attributes. Here is an example of setting the
@@ -841,7 +841,7 @@ variable.
#### installer.start(invoker)
The `start` method is called by the API intialization routines when
The `start` method is called by the API initialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.

View File

@@ -16,7 +16,7 @@ We thank [all contributors](https://github.com/invoke-ai/InvokeAI/graphs/contrib
- @psychedelicious (Spencer Mabrito) - Web Team Leader
- @joshistoast (Josh Corbett) - Web Development
- @cheerio (Mary Rogers) - Lead Engineer & Web App Development
- @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
- @ebr (Eugene Brodsky) - Cloud/DevOps/Software engineer; your friendly neighbourhood cluster-autoscaler
- @sunija - Standalone version
- @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
- @ryanjdick (Ryan Dick) - Machine Learning & Training

View File

@@ -69,34 +69,34 @@ The following commands vary depending on the version of Invoke being installed a
- If you have an Nvidia 20xx series GPU or older, use `invokeai[xformers]`.
- If you have an Nvidia 30xx series GPU or newer, or do not have an Nvidia GPU, use `invokeai`.
7. Determine the `PyPI` index URL to use for installation, if any. This is necessary to get the right version of torch installed.
7. Determine the torch backend to use for installation, if any. This is necessary to get the right version of torch installed. This is acheived by using [UV's built in torch support.](https://docs.astral.sh/uv/guides/integration/pytorch/#automatic-backend-selection)
=== "Invoke v5.12 and later"
- If you are on Windows or Linux with an Nvidia GPU, use `https://download.pytorch.org/whl/cu128`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.2.4`.
- **In all other cases, do not use an index.**
- If you are on Windows or Linux with an Nvidia GPU, use `--torch-backend=cu128`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.3`.
- **In all other cases, do not use a torch backend.**
=== "Invoke v5.10.0 to v5.11.0"
- If you are on Windows or Linux with an Nvidia GPU, use `https://download.pytorch.org/whl/cu126`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.2.4`.
- If you are on Windows or Linux with an Nvidia GPU, use `--torch-backend=cu126`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.2.4`.
- **In all other cases, do not use an index.**
=== "Invoke v5.0.0 to v5.9.1"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm6.1`.
- If you are on Windows with an Nvidia GPU, use `--torch-backend=cu124`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm6.1`.
- **In all other cases, do not use an index.**
=== "Invoke v4"
- If you are on Windows with an Nvidia GPU, use `https://download.pytorch.org/whl/cu124`.
- If you are on Linux with no GPU, use `https://download.pytorch.org/whl/cpu`.
- If you are on Linux with an AMD GPU, use `https://download.pytorch.org/whl/rocm5.2`.
- If you are on Windows with an Nvidia GPU, use `--torch-backend=cu124`.
- If you are on Linux with no GPU, use `--torch-backend=cpu`.
- If you are on Linux with an AMD GPU, use `--torch-backend=rocm5.2`.
- **In all other cases, do not use an index.**
8. Install the `invokeai` package. Substitute the package specifier and version.
@@ -105,10 +105,10 @@ The following commands vary depending on the version of Invoke being installed a
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --force-reinstall
```
If you determined you needed to use a `PyPI` index URL in the previous step, you'll need to add `--index=<INDEX_URL>` like this:
If you determined you needed to use a torch backend in the previous step, you'll need to set the backend like this:
```sh
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --index=<INDEX_URL> --force-reinstall
uv pip install <PACKAGE_SPECIFIER>==<VERSION> --python 3.12 --python-preference only-managed --torch-backend=<VERSION> --force-reinstall
```
9. Deactivate and reactivate your venv so that the invokeai-specific commands become available in the environment:

View File

@@ -33,30 +33,45 @@ Hardware requirements vary significantly depending on model and image output siz
More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
## Step 2: Download and Set Up the Launcher
Download the most recent launcher for your operating system:
The Launcher manages your Invoke install. Follow these instructions to download and set up the Launcher.
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
!!! info "Instructions for each OS"
## Step 3: Install or Update
=== "Windows"
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
- [Download for Windows](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition.Setup.latest.exe)
- Run the `EXE` to install the Launcher and start it.
- A desktop shortcut will be created; use this to run the Launcher in the future.
- You can delete the `EXE` file you downloaded.
=== "macOS"
- [Download for macOS](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest-arm64.dmg)
- Open the `DMG` and drag the app into `Applications`.
- Run the Launcher using its entry in `Applications`.
- You can delete the `DMG` file you downloaded.
=== "Linux"
- [Download for Linux](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest.AppImage)
- You may need to edit the `AppImage` file properties and make it executable.
- Optionally move the file to a location that does not require admin privileges and add a desktop shortcut for it.
- Run the Launcher by double-clicking the `AppImage` or the shortcut you made.
## Step 3: Install Invoke
Run the Launcher you just set up if you haven't already. Click **Install** and follow the instructions to install (or update) Invoke.
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
!!! warning "Problem running the launcher on macOS"
!!! tip "Updating"
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can manually flag the launcher as safe:
The Launcher will check for updates for itself _and_ Invoke.
- Open the **Invoke Community Edition.dmg** file.
- Drag the launcher to **Applications**.
- Open a terminal.
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
You should now be able to run the launcher.
- When the Launcher detects an update is available for itself, you'll get a small popup window. Click through this and the Launcher will update itself.
- When the Launcher detects an update for Invoke, you'll see a small green alert in the Launcher. Click that and follow the instructions to update Invoke.
## Step 4: Launch

View File

@@ -41,7 +41,7 @@ Nodes have a "Use Cache" option in their footer. This allows for performance imp
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
### Create Latent Noise
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.board_images.board_images_default import BoardImagesS
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from invokeai.app.services.boards.boards_default import BoardService
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
from invokeai.app.services.client_state_persistence.client_state_persistence_sqlite import ClientStatePersistenceSqlite
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_default import DownloadQueueService
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
@@ -151,6 +152,7 @@ class ApiDependencies:
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
workflow_thumbnails = WorkflowThumbnailFileStorageDisk(workflow_thumbnails_folder)
client_state_persistence = ClientStatePersistenceSqlite(db=db)
services = InvocationServices(
board_image_records=board_image_records,
@@ -181,6 +183,7 @@ class ApiDependencies:
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
workflow_thumbnails=workflow_thumbnails,
client_state_persistence=client_state_persistence,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -0,0 +1,39 @@
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from invokeai.app.services.videos_common import AddVideosToBoardResult, RemoveVideosFromBoardResult
board_videos_router = APIRouter(prefix="/v1/board_videos", tags=["boards"])
@board_videos_router.post(
"/batch",
operation_id="add_videos_to_board",
responses={
201: {"description": "Videos were added to board successfully"},
},
status_code=201,
response_model=AddVideosToBoardResult,
)
async def add_videos_to_board(
board_id: str = Body(description="The id of the board to add to"),
video_ids: list[str] = Body(description="The ids of the videos to add", embed=True),
) -> AddVideosToBoardResult:
"""Adds a list of videos to a board"""
raise HTTPException(status_code=501, detail="Not implemented")
@board_videos_router.post(
"/batch/delete",
operation_id="remove_videos_from_board",
responses={
201: {"description": "Videos were removed from board successfully"},
},
status_code=201,
response_model=RemoveVideosFromBoardResult,
)
async def remove_videos_from_board(
video_ids: list[str] = Body(description="The ids of the videos to remove", embed=True),
) -> RemoveVideosFromBoardResult:
"""Removes a list of videos from their board, if they had one"""
raise HTTPException(status_code=501, detail="Not implemented")

View File

@@ -0,0 +1,58 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.backend.util.logging import logging
client_state_router = APIRouter(prefix="/v1/client_state", tags=["client_state"])
@client_state_router.get(
"/{queue_id}/get_by_key",
operation_id="get_client_state_by_key",
response_model=str | None,
)
async def get_client_state_by_key(
queue_id: str = Path(description="The queue id to perform this operation on"),
key: str = Query(..., description="Key to get"),
) -> str | None:
"""Gets the client state"""
try:
return ApiDependencies.invoker.services.client_state_persistence.get_by_key(queue_id, key)
except Exception as e:
logging.error(f"Error getting client state: {e}")
raise HTTPException(status_code=500, detail="Error setting client state")
@client_state_router.post(
"/{queue_id}/set_by_key",
operation_id="set_client_state",
response_model=str,
)
async def set_client_state(
queue_id: str = Path(description="The queue id to perform this operation on"),
key: str = Query(..., description="Key to set"),
value: str = Body(..., description="Stringified value to set"),
) -> str:
"""Sets the client state"""
try:
return ApiDependencies.invoker.services.client_state_persistence.set_by_key(queue_id, key, value)
except Exception as e:
logging.error(f"Error setting client state: {e}")
raise HTTPException(status_code=500, detail="Error setting client state")
@client_state_router.post(
"/{queue_id}/delete",
operation_id="delete_client_state",
responses={204: {"description": "Client state deleted"}},
)
async def delete_client_state(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> None:
"""Deletes the client state"""
try:
ApiDependencies.invoker.services.client_state_persistence.delete(queue_id)
except Exception as e:
logging.error(f"Error deleting client state: {e}")
raise HTTPException(status_code=500, detail="Error deleting client state")

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
Batch,
BatchStatus,
CancelAllExceptCurrentResult,
@@ -18,6 +17,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
DeleteByDestinationResult,
EnqueueBatchResult,
FieldIdentifier,
ItemIdsResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
@@ -25,7 +25,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItemNotFoundError,
SessionQueueStatus,
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
@@ -68,36 +68,6 @@ async def enqueue_batch(
raise HTTPException(status_code=500, detail=f"Unexpected error while enqueuing batch: {e}")
@session_queue_router.get(
"/{queue_id}/list",
operation_id="list_queue_items",
responses={
200: {"model": CursorPaginatedResults[SessionQueueItem]},
},
)
async def list_queue_items(
queue_id: str = Path(description="The queue id to perform this operation on"),
limit: int = Query(default=50, description="The number of items to fetch"),
status: Optional[QUEUE_ITEM_STATUS] = Query(default=None, description="The status of items to fetch"),
cursor: Optional[int] = Query(default=None, description="The pagination cursor"),
priority: int = Query(default=0, description="The pagination cursor priority"),
destination: Optional[str] = Query(default=None, description="The destination of queue items to fetch"),
) -> CursorPaginatedResults[SessionQueueItem]:
"""Gets cursor-paginated queue items"""
try:
return ApiDependencies.invoker.services.session_queue.list_queue_items(
queue_id=queue_id,
limit=limit,
status=status,
cursor=cursor,
priority=priority,
destination=destination,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all items: {e}")
@session_queue_router.get(
"/{queue_id}/list_all",
operation_id="list_all_queue_items",
@@ -119,6 +89,56 @@ async def list_all_queue_items(
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue items: {e}")
@session_queue_router.get(
"/{queue_id}/item_ids",
operation_id="get_queue_item_ids",
responses={
200: {"model": ItemIdsResult},
},
)
async def get_queue_item_ids(
queue_id: str = Path(description="The queue id to perform this operation on"),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
) -> ItemIdsResult:
"""Gets all queue item ids that match the given parameters"""
try:
return ApiDependencies.invoker.services.session_queue.get_queue_item_ids(queue_id=queue_id, order_dir=order_dir)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue item ids: {e}")
@session_queue_router.post(
"/{queue_id}/items_by_ids",
operation_id="get_queue_items_by_item_ids",
responses={200: {"model": list[SessionQueueItem]}},
)
async def get_queue_items_by_item_ids(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_ids: list[int] = Body(
embed=True, description="Object containing list of queue item ids to fetch queue items for"
),
) -> list[SessionQueueItem]:
"""Gets queue items for the specified queue item ids. Maintains order of item ids."""
try:
session_queue_service = ApiDependencies.invoker.services.session_queue
# Fetch queue items preserving the order of requested item ids
queue_items: list[SessionQueueItem] = []
for item_id in item_ids:
try:
queue_item = session_queue_service.get_queue_item(item_id=item_id)
if queue_item.queue_id != queue_id: # Auth protection for items from other queues
continue
queue_items.append(queue_item)
except Exception:
# Skip missing queue items - they may have been deleted between item id fetch and queue item fetch
continue
return queue_items
except Exception:
raise HTTPException(status_code=500, detail="Failed to get queue items")
@session_queue_router.put(
"/{queue_id}/processor/resume",
operation_id="resume",
@@ -354,7 +374,10 @@ async def get_queue_item(
) -> SessionQueueItem:
"""Gets a queue item"""
try:
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
queue_item = ApiDependencies.invoker.services.session_queue.get_queue_item(item_id=item_id)
if queue_item.queue_id != queue_id:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
return queue_item
except SessionQueueItemNotFoundError:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
except Exception as e:

View File

@@ -0,0 +1,119 @@
from typing import Optional
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.videos_common import (
DeleteVideosResult,
StarredVideosResult,
UnstarredVideosResult,
VideoDTO,
VideoIdsResult,
VideoRecordChanges,
)
videos_router = APIRouter(prefix="/v1/videos", tags=["videos"])
@videos_router.patch(
"/i/{video_id}",
operation_id="update_video",
response_model=VideoDTO,
)
async def update_video(
video_id: str = Path(description="The id of the video to update"),
video_changes: VideoRecordChanges = Body(description="The changes to apply to the video"),
) -> VideoDTO:
"""Updates a video"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get(
"/i/{video_id}",
operation_id="get_video_dto",
response_model=VideoDTO,
)
async def get_video_dto(
video_id: str = Path(description="The id of the video to get"),
) -> VideoDTO:
"""Gets a video's DTO"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/delete", operation_id="delete_videos_from_list", response_model=DeleteVideosResult)
async def delete_videos_from_list(
video_ids: list[str] = Body(description="The list of ids of videos to delete", embed=True),
) -> DeleteVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/star", operation_id="star_videos_in_list", response_model=StarredVideosResult)
async def star_videos_in_list(
video_ids: list[str] = Body(description="The list of ids of videos to star", embed=True),
) -> StarredVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post("/unstar", operation_id="unstar_videos_in_list", response_model=UnstarredVideosResult)
async def unstar_videos_in_list(
video_ids: list[str] = Body(description="The list of ids of videos to unstar", embed=True),
) -> UnstarredVideosResult:
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.delete("/uncategorized", operation_id="delete_uncategorized_videos", response_model=DeleteVideosResult)
async def delete_uncategorized_videos() -> DeleteVideosResult:
"""Deletes all videos that are uncategorized"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get("/", operation_id="list_video_dtos", response_model=OffsetPaginatedResults[VideoDTO])
async def list_video_dtos(
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate videos."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find videos without a board.",
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of videos per page"),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred videos first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> OffsetPaginatedResults[VideoDTO]:
"""Lists video DTOs"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.get("/ids", operation_id="get_video_ids")
async def get_video_ids(
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate videos."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find videos without a board.",
),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred videos first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> VideoIdsResult:
"""Gets ordered list of video ids with metadata for optimistic updates"""
raise HTTPException(status_code=501, detail="Not implemented")
@videos_router.post(
"/videos_by_ids",
operation_id="get_videos_by_ids",
responses={200: {"model": list[VideoDTO]}},
)
async def get_videos_by_ids(
video_ids: list[str] = Body(embed=True, description="Object containing list of video ids to fetch DTOs for"),
) -> list[VideoDTO]:
"""Gets video DTOs for the specified video ids. Maintains order of input ids."""
raise HTTPException(status_code=501, detail="Not implemented")

View File

@@ -18,7 +18,9 @@ from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.api.routers import (
app_info,
board_images,
board_videos,
boards,
client_state,
download_queue,
images,
model_manager,
@@ -26,6 +28,7 @@ from invokeai.app.api.routers import (
session_queue,
style_presets,
utilities,
videos,
workflows,
)
from invokeai.app.api.sockets import SocketIO
@@ -124,13 +127,16 @@ app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(model_manager.model_manager_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(videos.videos_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(board_videos.board_videos_router, prefix="/api")
app.include_router(model_relationships.model_relationships_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.include_router(client_state.client_state_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -155,6 +161,12 @@ def overridden_redoc() -> HTMLResponse:
web_root_path = Path(list(web_dir.__path__)[0])
if app_config.unsafe_disable_picklescan:
logger.warning(
"The unsafe_disable_picklescan option is enabled. This disables malware scanning while installing and"
"loading models, which may allow malicious code to be executed. Use at your own risk."
)
try:
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
except RuntimeError:

View File

@@ -36,6 +36,9 @@ from pydantic_core import PydanticUndefined
from invokeai.app.invocations.fields import (
FieldKind,
Input,
InputFieldJSONSchemaExtra,
UIType,
migrate_model_ui_type,
)
from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -256,7 +259,9 @@ class BaseInvocation(ABC, BaseModel):
is_intermediate: bool = Field(
default=False,
description="Whether or not this is an intermediate invocation.",
json_schema_extra={"ui_type": "IsIntermediate", "field_kind": FieldKind.NodeAttribute},
json_schema_extra=InputFieldJSONSchemaExtra(
input=Input.Direct, field_kind=FieldKind.NodeAttribute, ui_type=UIType._IsIntermediate
).model_dump(exclude_none=True),
)
use_cache: bool = Field(
default=True,
@@ -445,6 +450,15 @@ with warnings.catch_warnings():
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
def is_enum_member(value: Any, enum_class: type[Enum]) -> bool:
"""Checks if a value is a member of an enum class."""
try:
enum_class(value)
return True
except ValueError:
return False
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
"""
Validates the fields of an invocation or invocation output:
@@ -456,51 +470,99 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
"""
for name, field in model_fields.items():
if name in RESERVED_PYDANTIC_FIELD_NAMES:
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved by pydantic)')
raise InvalidFieldError(f"{model_type}.{name}: Invalid field name (reserved by pydantic)")
if not field.annotation:
raise InvalidFieldError(f'Invalid field type "{name}" on "{model_type}" (missing annotation)')
raise InvalidFieldError(f"{model_type}.{name}: Invalid field type (missing annotation)")
if not isinstance(field.json_schema_extra, dict):
raise InvalidFieldError(
f'Invalid field definition for "{name}" on "{model_type}" (missing json_schema_extra dict)'
)
raise InvalidFieldError(f"{model_type}.{name}: Invalid field definition (missing json_schema_extra dict)")
field_kind = field.json_schema_extra.get("field_kind", None)
# must have a field_kind
if not isinstance(field_kind, FieldKind):
if not is_enum_member(field_kind, FieldKind):
raise InvalidFieldError(
f'Invalid field definition for "{name}" on "{model_type}" (maybe it\'s not an InputField or OutputField?)'
f"{model_type}.{name}: Invalid field definition for (maybe it's not an InputField or OutputField?)"
)
if field_kind is FieldKind.Input and (
if field_kind == FieldKind.Input.value and (
name in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES or name in RESERVED_INPUT_FIELD_NAMES
):
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved input field name)')
raise InvalidFieldError(f"{model_type}.{name}: Invalid field name (reserved input field name)")
if field_kind is FieldKind.Output and name in RESERVED_OUTPUT_FIELD_NAMES:
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved output field name)')
if field_kind == FieldKind.Output.value and name in RESERVED_OUTPUT_FIELD_NAMES:
raise InvalidFieldError(f"{model_type}.{name}: Invalid field name (reserved output field name)")
if (field_kind is FieldKind.Internal) and name not in RESERVED_INPUT_FIELD_NAMES:
raise InvalidFieldError(
f'Invalid field name "{name}" on "{model_type}" (internal field without reserved name)'
)
if field_kind == FieldKind.Internal.value and name not in RESERVED_INPUT_FIELD_NAMES:
raise InvalidFieldError(f"{model_type}.{name}: Invalid field name (internal field without reserved name)")
# node attribute fields *must* be in the reserved list
if (
field_kind is FieldKind.NodeAttribute
field_kind == FieldKind.NodeAttribute.value
and name not in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES
and name not in RESERVED_OUTPUT_FIELD_NAMES
):
raise InvalidFieldError(
f'Invalid field name "{name}" on "{model_type}" (node attribute field without reserved name)'
f"{model_type}.{name}: Invalid field name (node attribute field without reserved name)"
)
ui_type = field.json_schema_extra.get("ui_type", None)
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
logger.warning(f'"UIType.{ui_type.split("_")[-1]}" is deprecated, ignoring')
field.json_schema_extra.pop("ui_type")
ui_model_base = field.json_schema_extra.get("ui_model_base", None)
ui_model_type = field.json_schema_extra.get("ui_model_type", None)
ui_model_variant = field.json_schema_extra.get("ui_model_variant", None)
ui_model_format = field.json_schema_extra.get("ui_model_format", None)
if ui_type is not None:
# There are 3 cases where we may need to take action:
#
# 1. The ui_type is a migratable, deprecated value. For example, ui_type=UIType.MainModel value is
# deprecated and should be migrated to:
# - ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]
# - ui_model_type=[ModelType.Main]
#
# 2. ui_type was set in conjunction with any of the new ui_model_[base|type|variant|format] fields, which
# is not allowed (they are mutually exclusive). In this case, we ignore ui_type and log a warning.
#
# 3. ui_type is a deprecated value that is not migratable. For example, ui_type=UIType.Image is deprecated;
# Image fields are now automatically detected based on the field's type annotation. In this case, we
# ignore ui_type and log a warning.
#
# The cases must be checked in this order to ensure proper handling.
# Easier to work with as an enum
ui_type = UIType(ui_type)
# The enum member values are not always the same as their names - we want to log the name so the user can
# easily review their code and see where the deprecated enum member is used.
human_readable_name = f"UIType.{ui_type.name}"
# Case 1: migratable deprecated value
did_migrate = migrate_model_ui_type(ui_type, field.json_schema_extra)
if did_migrate:
logger.warning(
f'{model_type}.{name}: Migrated deprecated "ui_type" "{human_readable_name}" to new ui_model_[base|type|variant|format] fields'
)
field.json_schema_extra.pop("ui_type")
# Case 2: mutually exclusive with new fields
elif (
ui_model_base is not None
or ui_model_type is not None
or ui_model_variant is not None
or ui_model_format is not None
):
logger.warning(
f'{model_type}.{name}: "ui_type" is mutually exclusive with "ui_model_[base|type|format|variant]", ignoring "ui_type"'
)
field.json_schema_extra.pop("ui_type")
# Case 3: deprecated value that is not migratable
elif ui_type.startswith("DEPRECATED_"):
logger.warning(f'{model_type}.{name}: Deprecated "ui_type" "{human_readable_name}", ignoring')
field.json_schema_extra.pop("ui_type")
return None

View File

@@ -1,158 +0,0 @@
import cv2
import numpy as np
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_aux.open_pose import Body, Face, Hand, OpenposeDetector
from invokeai.backend.bria.controlnet_bria import BRIA_CONTROL_MODES
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.invocation_api import Classification, ImageOutput
DEPTH_SMALL_V2_URL = "depth-anything/Depth-Anything-V2-Small-hf"
HF_LLLYASVIEL = "https://huggingface.co/lllyasviel/Annotators/resolve/main/"
class BriaControlNetField(BaseModel):
image: ImageField = Field(description="The control image")
model: ModelIdentifierField = Field(description="The ControlNet model to use")
mode: BRIA_CONTROL_MODES = Field(description="The mode of the ControlNet")
conditioning_scale: float = Field(description="The weight given to the ControlNet")
@invocation_output("bria_controlnet_output")
class BriaControlNetOutput(BaseInvocationOutput):
"""Bria ControlNet info"""
control: BriaControlNetField = OutputField(description=FieldDescriptions.control)
preprocessed_images: ImageField = OutputField(description="The preprocessed control image")
@invocation(
"bria_controlnet",
title="ControlNet - Bria",
tags=["controlnet", "bria"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaControlNetInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Collect Bria ControlNet info to pass to denoiser node."""
control_image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.BriaControlNetModel
)
control_mode: BRIA_CONTROL_MODES = InputField(default="depth", description="The mode of the ControlNet")
control_weight: float = InputField(default=1.0, ge=-1, le=2, description="The weight given to the ControlNet")
def invoke(self, context: InvocationContext) -> BriaControlNetOutput:
image_in = resize_img(context.images.get_pil(self.control_image.image_name))
if self.control_mode == "canny":
control_image = extract_canny(image_in)
elif self.control_mode == "depth":
control_image = extract_depth(image_in, context)
elif self.control_mode == "pose":
control_image = extract_openpose(image_in, context)
elif self.control_mode == "colorgrid":
control_image = tile(64, image_in)
elif self.control_mode == "recolor":
control_image = convert_to_grayscale(image_in)
elif self.control_mode == "tile":
control_image = tile(16, image_in)
control_image = resize_img(control_image)
image_dto = context.images.save(image=control_image)
image_output = ImageOutput.build(image_dto)
return BriaControlNetOutput(
preprocessed_images=image_output.image,
control=BriaControlNetField(
image=ImageField(image_name=image_dto.image_name),
model=self.control_model,
mode=self.control_mode,
conditioning_scale=self.control_weight,
),
)
RATIO_CONFIGS_1024 = {
0.6666666666666666: {"width": 832, "height": 1248},
0.7432432432432432: {"width": 880, "height": 1184},
0.8028169014084507: {"width": 912, "height": 1136},
1.0: {"width": 1024, "height": 1024},
1.2456140350877194: {"width": 1136, "height": 912},
1.3454545454545455: {"width": 1184, "height": 880},
1.4339622641509433: {"width": 1216, "height": 848},
1.5: {"width": 1248, "height": 832},
1.5490196078431373: {"width": 1264, "height": 816},
1.62: {"width": 1296, "height": 800},
1.7708333333333333: {"width": 1360, "height": 768},
}
def extract_depth(image: Image.Image, context: InvocationContext):
loaded_model = context.models.load_remote_model(DEPTH_SMALL_V2_URL, DepthAnythingPipeline.load_model)
with loaded_model as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
return depth_map
def extract_openpose(image: Image.Image, context: InvocationContext):
body_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}body_pose_model.pth", Body)
hand_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}hand_pose_model.pth", Hand)
face_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}facenet.pth", Face)
with body_model as body_model, hand_model as hand_model, face_model as face_model:
open_pose_model = OpenposeDetector(body_model, hand_model, face_model)
processed_image_open_pose = open_pose_model(image, hand_and_face=True)
processed_image_open_pose = processed_image_open_pose.resize(image.size)
return processed_image_open_pose
def extract_canny(input_image):
image = np.array(input_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def convert_to_grayscale(image):
gray_image = image.convert("L").convert("RGB")
return gray_image
def tile(downscale_factor, input_image):
control_image = input_image.resize(
(input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)
).resize(input_image.size, Image.Resampling.NEAREST)
return control_image
def resize_img(control_image):
image_ratio = control_image.width / control_image.height
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
to_height = RATIO_CONFIGS_1024[ratio]["height"]
to_width = RATIO_CONFIGS_1024[ratio]["width"]
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
return resized_image

View File

@@ -1,46 +0,0 @@
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from PIL import Image
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.invocation_api import BaseInvocation, Classification, ImageOutput, invocation
@invocation(
"bria_decoder",
title="Decoder - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDecoderInvocation(BaseInvocation):
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
latents = latents.view(1, 64, 64, 4, 2, 2).permute(0, 3, 1, 4, 2, 5).reshape(1, 4, 128, 128)
with context.models.load(self.vae.vae) as vae:
assert isinstance(vae, AutoencoderKL)
latents = latents / vae.config.scaling_factor
latents = latents.to(device=vae.device, dtype=vae.dtype)
decoded_output = vae.decode(latents)
image = decoded_output.sample
# Convert to numpy with proper gradient handling
image = ((image.clamp(-1, 1) + 1) / 2 * 255).cpu().detach().permute(0, 2, 3, 1).numpy().astype("uint8")[0]
img = Image.fromarray(image)
image_dto = context.images.save(image=img)
return ImageOutput.build(image_dto)

View File

@@ -1,180 +0,0 @@
from typing import List, Tuple
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from invokeai.app.invocations.bria_controlnet import BriaControlNetField
from invokeai.app.invocations.fields import Input, InputField, LatentsField, OutputField
from invokeai.app.invocations.model import SubModelType, T5EncoderField, TransformerField, VAEField
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_bria import BriaControlModes, BriaMultiControlNetModel
from invokeai.backend.bria.controlnet_utils import prepare_control_images
from invokeai.backend.bria.pipeline_bria_controlnet import BriaControlNetPipeline
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
from invokeai.invocation_api import BaseInvocation, Classification, invocation, invocation_output
@invocation_output("bria_denoise_output")
class BriaDenoiseInvocationOutput(BaseInvocationOutput):
latents: LatentsField = OutputField(description=FieldDescriptions.latents)
@invocation(
"bria_denoise",
title="Denoise - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDenoiseInvocation(BaseInvocation):
num_steps: int = InputField(
default=30, title="Number of Steps", description="The number of steps to use for the denoiser"
)
guidance_scale: float = InputField(
default=5.0, title="Guidance Scale", description="The guidance scale to use for the denoiser"
)
transformer: TransformerField = InputField(
description="Bria model (Transformer) to load",
input=Input.Connection,
title="Transformer",
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
title="VAE",
)
latents: LatentsField = InputField(
description="Latents to denoise",
input=Input.Connection,
title="Latents",
)
latent_image_ids: LatentsField = InputField(
description="Latent Image IDs to denoise",
input=Input.Connection,
title="Latent Image IDs",
)
pos_embeds: LatentsField = InputField(
description="Positive Prompt Embeds",
input=Input.Connection,
title="Positive Prompt Embeds",
)
neg_embeds: LatentsField = InputField(
description="Negative Prompt Embeds",
input=Input.Connection,
title="Negative Prompt Embeds",
)
text_ids: LatentsField = InputField(
description="Text IDs",
input=Input.Connection,
title="Text IDs",
)
control: BriaControlNetField | list[BriaControlNetField] | None = InputField(
description="ControlNet",
input=Input.Connection,
title="ControlNet",
default=None,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaDenoiseInvocationOutput:
latents = context.tensors.load(self.latents.latents_name)
pos_embeds = context.tensors.load(self.pos_embeds.latents_name)
neg_embeds = context.tensors.load(self.neg_embeds.latents_name)
text_ids = context.tensors.load(self.text_ids.latents_name)
latent_image_ids = context.tensors.load(self.latent_image_ids.latents_name)
scheduler_identifier = self.transformer.transformer.model_copy(update={"submodel_type": SubModelType.Scheduler})
device = None
dtype = None
with (
context.models.load(self.transformer.transformer) as transformer,
context.models.load(scheduler_identifier) as scheduler,
context.models.load(self.vae.vae) as vae,
context.models.load(self.t5_encoder.text_encoder) as t5_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
assert isinstance(transformer, BriaTransformer2DModel)
assert isinstance(scheduler, FlowMatchEulerDiscreteScheduler)
assert isinstance(vae, AutoencoderKL)
dtype = transformer.dtype
device = transformer.device
latents, pos_embeds, neg_embeds = (x.to(device, dtype) for x in (latents, pos_embeds, neg_embeds))
control_model, control_images, control_modes, control_scales = None, None, None, None
if self.control is not None:
control_model, control_images, control_modes, control_scales = self._prepare_multi_control(
context=context,
vae=vae,
width=1024,
height=1024,
device=vae.device,
)
pipeline = BriaControlNetPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=t5_encoder,
tokenizer=t5_tokenizer,
controlnet=control_model,
)
pipeline.to(device=transformer.device, dtype=transformer.dtype)
latents = pipeline(
control_image=control_images,
control_mode=control_modes,
width=1024,
height=1024,
controlnet_conditioning_scale=control_scales,
num_inference_steps=self.num_steps,
max_sequence_length=128,
guidance_scale=self.guidance_scale,
latents=latents,
latent_image_ids=latent_image_ids,
text_ids=text_ids,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
output_type="latent",
)[0]
assert isinstance(latents, torch.Tensor)
saved_input_latents_tensor = context.tensors.save(latents)
latents_output = LatentsField(latents_name=saved_input_latents_tensor)
return BriaDenoiseInvocationOutput(latents=latents_output)
def _prepare_multi_control(
self, context: InvocationContext, vae: AutoencoderKL, width: int, height: int, device: torch.device
) -> Tuple[BriaMultiControlNetModel, List[torch.Tensor], List[torch.Tensor], List[float]]:
control = self.control if isinstance(self.control, list) else [self.control]
control_images, control_models, control_modes, control_scales = [], [], [], []
for controlnet in control:
if controlnet is not None:
control_models.append(context.models.load(controlnet.model).model)
control_modes.append(BriaControlModes[controlnet.mode].value)
control_scales.append(controlnet.conditioning_scale)
try:
control_images.append(context.images.get_pil(controlnet.image.image_name))
except Exception:
raise FileNotFoundError(
f"Control image {controlnet.image.image_name} not found. Make sure not to delete the preprocessed image before finishing the pipeline."
)
control_model = BriaMultiControlNetModel(control_models).to(device)
tensored_control_images, tensored_control_modes = prepare_control_images(
vae=vae,
control_images=control_images,
control_modes=control_modes,
width=width,
height=height,
device=device,
)
return control_model, tensored_control_images, tensored_control_modes, control_scales

View File

@@ -1,76 +0,0 @@
import torch
from invokeai.app.invocations.fields import Input, InputField, OutputField
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import (
BaseInvocationOutput,
FieldDescriptions,
LatentsField,
)
from invokeai.backend.bria.pipeline_bria_controlnet import prepare_latents
from invokeai.invocation_api import (
BaseInvocation,
Classification,
InvocationContext,
invocation,
invocation_output,
)
@invocation_output("bria_latent_sampler_output")
class BriaLatentSamplerInvocationOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
latents: LatentsField = OutputField(description=FieldDescriptions.cond)
latent_image_ids: LatentsField = OutputField(description=FieldDescriptions.cond)
@invocation(
"bria_latent_sampler",
title="Latent Sampler - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaLatentSamplerInvocation(BaseInvocation):
seed: int = InputField(
default=42,
title="Seed",
description="The seed to use for the latent sampler",
)
transformer: TransformerField = InputField(
description="Bria model (Transformer) to load",
input=Input.Connection,
title="Transformer",
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaLatentSamplerInvocationOutput:
with context.models.load(self.transformer.transformer) as transformer:
device = transformer.device
dtype = transformer.dtype
height, width = 1024, 1024
generator = torch.Generator(device=device).manual_seed(self.seed)
num_channels_latents = 4
latents, latent_image_ids = prepare_latents(
batch_size=1,
num_channels_latents=num_channels_latents,
height=height,
width=width,
dtype=dtype,
device=device,
generator=generator,
)
saved_latents_tensor = context.tensors.save(latents)
saved_latent_image_ids_tensor = context.tensors.save(latent_image_ids)
latents_output = LatentsField(latents_name=saved_latents_tensor)
latent_image_ids_output = LatentsField(latents_name=saved_latent_image_ids_tensor)
return BriaLatentSamplerInvocationOutput(
latents=latents_output,
latent_image_ids=latent_image_ids_output,
)

View File

@@ -1,58 +0,0 @@
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import (
ModelIdentifierField,
SubModelType,
T5EncoderField,
TransformerField,
VAEField,
)
from invokeai.invocation_api import (
BaseInvocation,
BaseInvocationOutput,
Classification,
InvocationContext,
invocation,
invocation_output,
)
@invocation_output("bria_model_loader_output")
class BriaModelLoaderOutput(BaseInvocationOutput):
"""Bria base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"bria_model_loader",
title="Main Model - Bria",
tags=["model", "bria"],
version="1.0.0",
classification=Classification.Prototype,
)
class BriaModelLoaderInvocation(BaseInvocation):
"""Loads a bria base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description="Bria model (Transformer) to load",
ui_type=UIType.BriaMainModel,
input=Input.Direct,
)
def invoke(self, context: InvocationContext) -> BriaModelLoaderOutput:
for key in [self.model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return BriaModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
t5_encoder=T5EncoderField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[]),
vae=VAEField(vae=vae),
)

View File

@@ -1,93 +0,0 @@
from typing import Optional
import torch
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.app.invocations.model import T5EncoderField
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions, Input, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.pipeline_bria_controlnet import encode_prompt
from invokeai.invocation_api import (
BaseInvocation,
Classification,
InputField,
LatentsField,
invocation,
invocation_output,
)
@invocation_output("bria_text_encoder_output")
class BriaTextEncoderInvocationOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
pos_embeds: LatentsField = OutputField(description=FieldDescriptions.cond)
neg_embeds: LatentsField = OutputField(description=FieldDescriptions.cond)
text_ids: LatentsField = OutputField(description=FieldDescriptions.cond)
@invocation(
"bria_text_encoder",
title="Prompt - Bria",
tags=["prompt", "conditioning", "bria"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaTextEncoderInvocation(BaseInvocation):
prompt: str = InputField(
title="Prompt",
description="The prompt to encode",
)
negative_prompt: Optional[str] = InputField(
title="Negative Prompt",
description="The negative prompt to encode",
default="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate",
)
max_length: int = InputField(
default=128,
title="Max Length",
description="The maximum length of the prompt",
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaTextEncoderInvocationOutput:
t5_encoder_info = context.models.load(self.t5_encoder.text_encoder)
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
with (
t5_encoder_info as text_encoder,
t5_tokenizer_info as tokenizer,
):
assert isinstance(tokenizer, T5TokenizerFast)
assert isinstance(text_encoder, T5EncoderModel)
(prompt_embeds, negative_prompt_embeds, text_ids) = encode_prompt(
prompt=self.prompt,
tokenizer=tokenizer,
text_encoder=text_encoder,
negative_prompt=self.negative_prompt,
device=text_encoder.device,
num_images_per_prompt=1,
max_sequence_length=self.max_length,
lora_scale=1.0,
)
saved_pos_tensor = context.tensors.save(prompt_embeds)
saved_neg_tensor = context.tensors.save(negative_prompt_embeds)
saved_text_ids_tensor = context.tensors.save(text_ids)
pos_embeds_output = LatentsField(latents_name=saved_pos_tensor)
neg_embeds_output = LatentsField(latents_name=saved_neg_tensor)
text_ids_output = LatentsField(latents_name=saved_text_ids_tensor)
return BriaTextEncoderInvocationOutput(
pos_embeds=pos_embeds_output,
neg_embeds=neg_embeds_output,
text_ids=text_ids_output,
)

View File

@@ -17,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3ImageToLatentsInvocation and a subset of ImageToLatentsInvocation. We
# should refactor to avoid this duplication.
@@ -38,7 +39,11 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
@@ -62,6 +67,8 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -6,7 +6,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -20,6 +19,7 @@ from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3LatentsToImageInvocation and a subset of LatentsToImageInvocation. We
# should refactor to avoid this duplication.
@@ -39,22 +39,15 @@ class CogView4LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
latents: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -5,7 +5,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import (
GlmEncoderField,
ModelIdentifierField,
@@ -14,6 +14,7 @@ from invokeai.app.invocations.model import (
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("cogview4_model_loader_output")
@@ -38,8 +39,9 @@ class CogView4ModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.cogview4_model,
ui_type=UIType.CogView4MainModel,
input=Input.Direct,
ui_model_base=BaseModelType.CogView4,
ui_model_type=ModelType.Main,
)
def invoke(self, context: InvocationContext) -> CogView4ModelLoaderOutput:

View File

@@ -16,7 +16,6 @@ from invokeai.app.invocations.fields import (
ImageField,
InputField,
OutputField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
@@ -28,6 +27,7 @@ from invokeai.app.util.controlnet_utils import (
heuristic_resize_fast,
)
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class ControlField(BaseModel):
@@ -63,13 +63,17 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
@invocation(
"controlnet", title="ControlNet - SD1.5, SD2, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3"
)
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
description=FieldDescriptions.controlnet_model,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.ControlNet,
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"

View File

@@ -1,11 +1,19 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.util.metaenum import MetaEnum
from invokeai.backend.image_util.segment_anything.shared import BoundingBox
from invokeai.backend.model_manager.taxonomy import (
BaseModelType,
ClipVariantType,
ModelFormat,
ModelType,
ModelVariantType,
)
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
@@ -38,37 +46,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
MainModel = "MainModelField"
CogView4MainModel = "CogView4MainModelField"
FluxMainModel = "FluxMainModelField"
BriaMainModel = "BriaMainModelField"
BriaControlNetModel = "BriaControlNetModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
FluxVAEModel = "FluxVAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
Imagen3Model = "Imagen3ModelField"
Imagen4Model = "Imagen4ModelField"
ChatGPT4oModel = "ChatGPT4oModelField"
FluxKontextModel = "FluxKontextModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
@@ -77,6 +54,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Internal Field Types
_Collection = "CollectionField"
_CollectionItem = "CollectionItemField"
_IsIntermediate = "IsIntermediate"
# endregion
# region DEPRECATED
@@ -114,13 +92,44 @@ class UIType(str, Enum, metaclass=MetaEnum):
CollectionItem = "DEPRECATED_CollectionItem"
Enum = "DEPRECATED_Enum"
WorkflowField = "DEPRECATED_WorkflowField"
IsIntermediate = "DEPRECATED_IsIntermediate"
BoardField = "DEPRECATED_BoardField"
MetadataItem = "DEPRECATED_MetadataItem"
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
# Deprecated Model Field Types - use ui_model_[base|type|variant|format] instead
MainModel = "DEPRECATED_MainModelField"
CogView4MainModel = "DEPRECATED_CogView4MainModelField"
FluxMainModel = "DEPRECATED_FluxMainModelField"
SD3MainModel = "DEPRECATED_SD3MainModelField"
SDXLMainModel = "DEPRECATED_SDXLMainModelField"
SDXLRefinerModel = "DEPRECATED_SDXLRefinerModelField"
ONNXModel = "DEPRECATED_ONNXModelField"
VAEModel = "DEPRECATED_VAEModelField"
FluxVAEModel = "DEPRECATED_FluxVAEModelField"
LoRAModel = "DEPRECATED_LoRAModelField"
ControlNetModel = "DEPRECATED_ControlNetModelField"
IPAdapterModel = "DEPRECATED_IPAdapterModelField"
T2IAdapterModel = "DEPRECATED_T2IAdapterModelField"
T5EncoderModel = "DEPRECATED_T5EncoderModelField"
CLIPEmbedModel = "DEPRECATED_CLIPEmbedModelField"
CLIPLEmbedModel = "DEPRECATED_CLIPLEmbedModelField"
CLIPGEmbedModel = "DEPRECATED_CLIPGEmbedModelField"
SpandrelImageToImageModel = "DEPRECATED_SpandrelImageToImageModelField"
ControlLoRAModel = "DEPRECATED_ControlLoRAModelField"
SigLipModel = "DEPRECATED_SigLipModelField"
FluxReduxModel = "DEPRECATED_FluxReduxModelField"
LlavaOnevisionModel = "DEPRECATED_LLaVAModelField"
Imagen3Model = "DEPRECATED_Imagen3ModelField"
Imagen4Model = "DEPRECATED_Imagen4ModelField"
ChatGPT4oModel = "DEPRECATED_ChatGPT4oModelField"
Gemini2_5Model = "DEPRECATED_Gemini2_5ModelField"
FluxKontextModel = "DEPRECATED_FluxKontextModelField"
Veo3Model = "DEPRECATED_Veo3ModelField"
RunwayModel = "DEPRECATED_RunwayModelField"
# endregion
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
@@ -226,6 +235,12 @@ class ImageField(BaseModel):
image_name: str = Field(description="The name of the image")
class VideoField(BaseModel):
"""A video primitive field"""
video_id: str = Field(description="The id of the video")
class BoardField(BaseModel):
"""A board primitive field"""
@@ -323,14 +338,9 @@ class ConditioningField(BaseModel):
)
class BoundingBoxField(BaseModel):
class BoundingBoxField(BoundingBox):
"""A bounding box primitive value."""
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
score: Optional[float] = Field(
default=None,
ge=0.0,
@@ -339,21 +349,6 @@ class BoundingBoxField(BaseModel):
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
def tuple(self) -> Tuple[int, int, int, int]:
"""
Returns the bounding box as a tuple suitable for use with PIL's `Image.crop()` method.
This method returns a tuple of the form (left, upper, right, lower) == (x_min, y_min, x_max, y_max).
"""
return (self.x_min, self.y_min, self.x_max, self.y_max)
class MetadataField(RootModel[dict[str, Any]]):
"""
@@ -420,10 +415,15 @@ class InputFieldJSONSchemaExtra(BaseModel):
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
ui_model_base: Optional[list[BaseModelType]] = None
ui_model_type: Optional[list[ModelType]] = None
ui_model_variant: Optional[list[ClipVariantType | ModelVariantType]] = None
ui_model_format: Optional[list[ModelFormat]] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
use_enum_values=True,
)
@@ -476,16 +476,121 @@ class OutputFieldJSONSchemaExtra(BaseModel):
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
ui_hidden: bool = False
ui_order: Optional[int] = None
ui_type: Optional[UIType] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
use_enum_values=True,
)
def migrate_model_ui_type(ui_type: UIType | str, json_schema_extra: dict[str, Any]) -> bool:
"""Migrate deprecated model-specifier ui_type values to new-style ui_model_[base|type|variant|format] in json_schema_extra."""
if not isinstance(ui_type, UIType):
ui_type = UIType(ui_type)
ui_model_type: list[ModelType] | None = None
ui_model_base: list[BaseModelType] | None = None
ui_model_format: list[ModelFormat] | None = None
ui_model_variant: list[ClipVariantType | ModelVariantType] | None = None
match ui_type:
case UIType.MainModel:
ui_model_base = [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]
ui_model_type = [ModelType.Main]
case UIType.CogView4MainModel:
ui_model_base = [BaseModelType.CogView4]
ui_model_type = [ModelType.Main]
case UIType.FluxMainModel:
ui_model_base = [BaseModelType.Flux]
ui_model_type = [ModelType.Main]
case UIType.SD3MainModel:
ui_model_base = [BaseModelType.StableDiffusion3]
ui_model_type = [ModelType.Main]
case UIType.SDXLMainModel:
ui_model_base = [BaseModelType.StableDiffusionXL]
ui_model_type = [ModelType.Main]
case UIType.SDXLRefinerModel:
ui_model_base = [BaseModelType.StableDiffusionXLRefiner]
ui_model_type = [ModelType.Main]
case UIType.VAEModel:
ui_model_type = [ModelType.VAE]
case UIType.FluxVAEModel:
ui_model_base = [BaseModelType.Flux]
ui_model_type = [ModelType.VAE]
case UIType.LoRAModel:
ui_model_type = [ModelType.LoRA]
case UIType.ControlNetModel:
ui_model_type = [ModelType.ControlNet]
case UIType.IPAdapterModel:
ui_model_type = [ModelType.IPAdapter]
case UIType.T2IAdapterModel:
ui_model_type = [ModelType.T2IAdapter]
case UIType.T5EncoderModel:
ui_model_type = [ModelType.T5Encoder]
case UIType.CLIPEmbedModel:
ui_model_type = [ModelType.CLIPEmbed]
case UIType.CLIPLEmbedModel:
ui_model_type = [ModelType.CLIPEmbed]
ui_model_variant = [ClipVariantType.L]
case UIType.CLIPGEmbedModel:
ui_model_type = [ModelType.CLIPEmbed]
ui_model_variant = [ClipVariantType.G]
case UIType.SpandrelImageToImageModel:
ui_model_type = [ModelType.SpandrelImageToImage]
case UIType.ControlLoRAModel:
ui_model_type = [ModelType.ControlLoRa]
case UIType.SigLipModel:
ui_model_type = [ModelType.SigLIP]
case UIType.FluxReduxModel:
ui_model_type = [ModelType.FluxRedux]
case UIType.LlavaOnevisionModel:
ui_model_type = [ModelType.LlavaOnevision]
case UIType.Imagen3Model:
ui_model_base = [BaseModelType.Imagen3]
ui_model_type = [ModelType.Main]
case UIType.Imagen4Model:
ui_model_base = [BaseModelType.Imagen4]
ui_model_type = [ModelType.Main]
case UIType.ChatGPT4oModel:
ui_model_base = [BaseModelType.ChatGPT4o]
ui_model_type = [ModelType.Main]
case UIType.Gemini2_5Model:
ui_model_base = [BaseModelType.Gemini2_5]
ui_model_type = [ModelType.Main]
case UIType.FluxKontextModel:
ui_model_base = [BaseModelType.FluxKontext]
ui_model_type = [ModelType.Main]
case UIType.Veo3Model:
ui_model_base = [BaseModelType.Veo3]
ui_model_type = [ModelType.Video]
case UIType.RunwayModel:
ui_model_base = [BaseModelType.Runway]
ui_model_type = [ModelType.Video]
case _:
pass
did_migrate = False
if ui_model_type is not None:
json_schema_extra["ui_model_type"] = [m.value for m in ui_model_type]
did_migrate = True
if ui_model_base is not None:
json_schema_extra["ui_model_base"] = [m.value for m in ui_model_base]
did_migrate = True
if ui_model_format is not None:
json_schema_extra["ui_model_format"] = [m.value for m in ui_model_format]
did_migrate = True
if ui_model_variant is not None:
json_schema_extra["ui_model_variant"] = [m.value for m in ui_model_variant]
did_migrate = True
return did_migrate
def InputField(
# copied from pydantic's Field
# TODO: Can we support default_factory?
@@ -512,35 +617,63 @@ def InputField(
ui_hidden: Optional[bool] = None,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
ui_model_base: Optional[BaseModelType | list[BaseModelType]] = None,
ui_model_type: Optional[ModelType | list[ModelType]] = None,
ui_model_variant: Optional[ClipVariantType | ModelVariantType | list[ClipVariantType | ModelVariantType]] = None,
ui_model_format: Optional[ModelFormat | list[ModelFormat]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field)
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
If the field is a `ModelIdentifierField`, use the `ui_model_[base|type|variant|format]` args to filter the model list
in the Workflow Editor. Otherwise, use `ui_type` to provide extra type hints for the UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
Don't use both `ui_type` and `ui_model_[base|type|variant|format]` - if both are provided, a warning will be
logged and `ui_type` will be ignored.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
Args:
input: The kind of input this field requires.
- `Input.Direct` means a value must be provided on instantiation.
- `Input.Connection` means the value must be provided by a connection.
- `Input.Any` means either will do.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
ui_type: Optionally provides an extra type hint for the UI. In some situations, the field's type is not enough
to infer the correct UI type. For example, Scheduler fields are enums, but we want to render a special scheduler
dropdown in the UI. Use `UIType.Scheduler` to indicate this.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
ui_component: Optionally specifies a specific component to use in the UI. The UI will always render a suitable
component, but sometimes you want something different than the default. For example, a `string` field will
default to a single-line input, but you may want a multi-line textarea instead. In this case, you could use
`UIComponent.Textarea`.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
ui_hidden: Specifies whether or not this field should be hidden in the UI.
ui_order: Specifies the order in which this field should be rendered in the UI. If omitted, the field will be
rendered after all fields with an explicit order, in the order they are defined in the Invocation class.
ui_model_base: Specifies the base model architectures to filter the model list by in the Workflow Editor. For
example, `ui_model_base=BaseModelType.StableDiffusionXL` will show only SDXL architecture models. This arg is
only valid if this Input field is annotated as a `ModelIdentifierField`.
ui_model_type: Specifies the model type(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_type=ModelType.VAE` will show only VAE models. This arg is only valid if this Input field is
annotated as a `ModelIdentifierField`.
ui_model_variant: Specifies the model variant(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_variant=ModelVariantType.Inpainting` will show only inpainting models. This arg is only valid if this
Input field is annotated as a `ModelIdentifierField`.
ui_model_format: Specifies the model format(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_format=ModelFormat.Diffusers` will show only models in the diffusers format. This arg is only valid
if this Input field is annotated as a `ModelIdentifierField`.
ui_choice_labels: Specifies the labels to use for the choices in an enum field. If omitted, the enum values
will be used. This arg is only valid if the field is annotated with as a `Literal`. For example,
`Literal["choice1", "choice2", "choice3"]` with `ui_choice_labels={"choice1": "Choice 1", "choice2": "Choice 2",
"choice3": "Choice 3"}` will render a dropdown with the labels "Choice 1", "Choice 2" and "Choice 3".
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
@@ -548,8 +681,6 @@ def InputField(
field_kind=FieldKind.Input,
)
if ui_type is not None:
json_schema_extra_.ui_type = ui_type
if ui_component is not None:
json_schema_extra_.ui_component = ui_component
if ui_hidden is not None:
@@ -558,6 +689,28 @@ def InputField(
json_schema_extra_.ui_order = ui_order
if ui_choice_labels is not None:
json_schema_extra_.ui_choice_labels = ui_choice_labels
if ui_model_base is not None:
if isinstance(ui_model_base, list):
json_schema_extra_.ui_model_base = ui_model_base
else:
json_schema_extra_.ui_model_base = [ui_model_base]
if ui_model_type is not None:
if isinstance(ui_model_type, list):
json_schema_extra_.ui_model_type = ui_model_type
else:
json_schema_extra_.ui_model_type = [ui_model_type]
if ui_model_variant is not None:
if isinstance(ui_model_variant, list):
json_schema_extra_.ui_model_variant = ui_model_variant
else:
json_schema_extra_.ui_model_variant = [ui_model_variant]
if ui_model_format is not None:
if isinstance(ui_model_format, list):
json_schema_extra_.ui_model_format = ui_model_format
else:
json_schema_extra_.ui_model_format = [ui_model_format]
if ui_type is not None:
json_schema_extra_.ui_type = ui_type
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
@@ -659,20 +812,20 @@ def OutputField(
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization)
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
Args:
ui_type: Optionally provides an extra type hint for the UI. In some situations, the field's type is not enough
to infer the correct UI type. For example, Scheduler fields are enums, but we want to render a special scheduler
dropdown in the UI. Use `UIType.Scheduler` to indicate this.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
ui_hidden: Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
ui_order: Specifies the order in which this field should be rendered in the UI. If omitted, the field will be
rendered after all fields with an explicit order, in the order they are defined in the Invocation class.
"""
return Field(
default=default,
title=title,
@@ -690,9 +843,9 @@ def OutputField(
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_type=ui_type,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)

View File

@@ -4,9 +4,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ControlLoRAField, ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("flux_control_lora_loader_output")
@@ -29,7 +30,10 @@ class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.control_lora_model, title="Control LoRA", ui_type=UIType.ControlLoRAModel
description=FieldDescriptions.control_lora_model,
title="Control LoRA",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.ControlLoRa,
)
image: ImageField = InputField(description="The image to encode.")
weight: float = InputField(description="The weight of the LoRA.", default=1.0)

View File

@@ -6,11 +6,12 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class FluxControlNetField(BaseModel):
@@ -57,7 +58,9 @@ class FluxControlNetInvocation(BaseInvocation):
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
description=FieldDescriptions.controlnet_model,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.ControlNet,
)
control_weight: float | list[float] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"

View File

@@ -63,7 +63,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="4.0.0",
version="4.1.0",
)
class FluxDenoiseInvocation(BaseInvocation):
"""Run denoising process with a FLUX transformer model."""
@@ -153,7 +153,7 @@ class FluxDenoiseInvocation(BaseInvocation):
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
kontext_conditioning: Optional[FluxKontextConditioningField] = InputField(
kontext_conditioning: FluxKontextConditioningField | list[FluxKontextConditioningField] | None = InputField(
default=None,
description="FLUX Kontext conditioning (reference image).",
input=Input.Connection,
@@ -328,6 +328,21 @@ class FluxDenoiseInvocation(BaseInvocation):
cfg_scale_end_step=self.cfg_scale_end_step,
)
kontext_extension = None
if self.kontext_conditioning:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning
if isinstance(self.kontext_conditioning, list)
else [self.kontext_conditioning],
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
@@ -385,19 +400,6 @@ class FluxDenoiseInvocation(BaseInvocation):
dtype=inference_dtype,
)
kontext_extension = None
if self.kontext_conditioning is not None:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning,
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
# Prepare Kontext conditioning if provided
img_cond_seq = None
img_cond_seq_ids = None

View File

@@ -5,7 +5,7 @@ from pydantic import field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, UIType
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.ip_adapter import (
CLIP_VISION_MODEL_MAP,
IPAdapterField,
@@ -20,6 +20,7 @@ from invokeai.backend.model_manager.config import (
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation(
@@ -36,7 +37,10 @@ class FluxIPAdapterInvocation(BaseInvocation):
image: ImageField = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", ui_type=UIType.IPAdapterModel
description="The IP-Adapter model.",
title="IP-Adapter Model",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.IPAdapter,
)
# Currently, the only known ViT model used by FLUX IP-Adapters is ViT-L.
clip_vision_model: Literal["ViT-L"] = InputField(description="CLIP Vision model to use.", default="ViT-L")

View File

@@ -6,10 +6,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("flux_lora_loader_output")
@@ -36,7 +36,10 @@ class FluxLoRALoaderInvocation(BaseInvocation):
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
transformer: TransformerField | None = InputField(

View File

@@ -6,7 +6,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
@@ -17,7 +17,7 @@ from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
@invocation_output("flux_model_loader_output")
@@ -46,23 +46,30 @@ class FluxModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.Main,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
description=FieldDescriptions.t5_encoder,
input=Input.Direct,
title="T5 Encoder",
ui_model_type=ModelType.T5Encoder,
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
ui_model_type=ModelType.CLIPEmbed,
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
description=FieldDescriptions.vae_model,
title="VAE",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:

View File

@@ -18,7 +18,6 @@ from invokeai.app.invocations.fields import (
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
@@ -64,7 +63,8 @@ class FluxReduxInvocation(BaseInvocation):
redux_model: ModelIdentifierField = InputField(
description="The FLUX Redux model to use.",
title="FLUX Redux Model",
ui_type=UIType.FluxReduxModel,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.FluxRedux,
)
downsampling_factor: int = InputField(
ge=1,

View File

@@ -3,7 +3,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -18,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -39,17 +39,11 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype

View File

@@ -15,6 +15,7 @@ from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -41,8 +42,12 @@ class FluxVaeEncodeInvocation(BaseInvocation):
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
# should be used for VAE encode sampling.
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)

View File

@@ -1347,3 +1347,96 @@ class PasteImageIntoBoundingBoxInvocation(BaseInvocation, WithMetadata, WithBoar
image_dto = context.images.save(image=target_image)
return ImageOutput.build(image_dto)
@invocation(
"flux_kontext_image_prep",
title="FLUX Kontext Image Prep",
tags=["image", "concatenate", "flux", "kontext"],
category="image",
version="1.0.0",
)
class FluxKontextConcatenateImagesInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Prepares an image or images for use with FLUX Kontext. The first/single image is resized to the nearest
preferred Kontext resolution. All other images are concatenated horizontally, maintaining their aspect ratio."""
images: list[ImageField] = InputField(
description="The images to concatenate",
min_length=1,
max_length=10,
)
use_preferred_resolution: bool = InputField(
default=True, description="Use FLUX preferred resolutions for the first image"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
# Step 1: Load all images
pil_images = []
for image_field in self.images:
image = context.images.get_pil(image_field.image_name, mode="RGBA")
pil_images.append(image)
# Step 2: Determine target resolution for the first image
first_image = pil_images[0]
width, height = first_image.size
if self.use_preferred_resolution:
aspect_ratio = width / height
# Find the closest preferred resolution for the first image
_, target_width, target_height = min(
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS), key=lambda x: x[0]
)
# Apply BFL's scaling formula
scaled_height = 2 * int(target_height / 16)
final_height = 8 * scaled_height # This will be consistent for all images
scaled_width = 2 * int(target_width / 16)
first_width = 8 * scaled_width
else:
# Use original dimensions of first image, ensuring divisibility by 16
final_height = 16 * (height // 16)
first_width = 16 * (width // 16)
# Ensure minimum dimensions
if final_height < 16:
final_height = 16
if first_width < 16:
first_width = 16
# Step 3: Process and resize all images with consistent height
processed_images = []
total_width = 0
for i, image in enumerate(pil_images):
if i == 0:
# First image uses the calculated dimensions
final_width = first_width
else:
# Subsequent images maintain aspect ratio with the same height
img_aspect_ratio = image.width / image.height
# Calculate width that maintains aspect ratio at the target height
calculated_width = int(final_height * img_aspect_ratio)
# Ensure width is divisible by 16 for proper VAE encoding
final_width = 16 * (calculated_width // 16)
# Ensure minimum width
if final_width < 16:
final_width = 16
# Resize image to calculated dimensions
resized_image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
processed_images.append(resized_image)
total_width += final_width
# Step 4: Concatenate images horizontally
concatenated_image = Image.new("RGB", (total_width, final_height))
x_offset = 0
for img in processed_images:
concatenated_image.paste(img, (x_offset, 0))
x_offset += img.width
# Save the concatenated image
image_dto = context.images.save(image=concatenated_image)
return ImageOutput.build(image_dto)

View File

@@ -27,6 +27,7 @@ from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -52,11 +53,24 @@ class ImageToLatentsInvocation(BaseInvocation):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
@staticmethod
@classmethod
def vae_encode(
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
cls,
vae_info: LoadedModel,
upcast: bool,
tiled: bool,
image_tensor: torch.Tensor,
tile_size: int = 0,
) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="encode",
image_tensor=image_tensor,
vae=vae_info.model,
tile_size=tile_size if tiled else None,
fp32=upcast,
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
orig_dtype = vae.dtype
if upcast:
@@ -113,6 +127,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
@@ -120,7 +135,11 @@ class ImageToLatentsInvocation(BaseInvocation):
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
vae_info=vae_info,
upcast=self.fp32,
tiled=self.tiled or context.config.get().force_tiled_decode,
image_tensor=image_tensor,
tile_size=self.tile_size,
)
latents = latents.to("cpu")

View File

@@ -5,7 +5,7 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, TensorField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
@@ -85,7 +85,8 @@ class IPAdapterInvocation(BaseInvocation):
description="The IP-Adapter model.",
title="IP-Adapter Model",
ui_order=-1,
ui_type=UIType.IPAdapterModel,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.IPAdapter,
)
clip_vision_model: Literal["ViT-H", "ViT-G", "ViT-L"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",

View File

@@ -27,6 +27,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -53,39 +54,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 2200 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
@@ -94,8 +62,13 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="decode",
image_tensor=latents,
vae=vae_info.model,
tile_size=self.tile_size if use_tiling else None,
fp32=self.fp32,
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -6,11 +6,12 @@ from pydantic import field_validator
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_pipeline import LlavaOnevisionPipeline
from invokeai.backend.model_manager.taxonomy import ModelType
from invokeai.backend.util.devices import TorchDevice
@@ -34,7 +35,7 @@ class LlavaOnevisionVllmInvocation(BaseInvocation):
vllm_model: ModelIdentifierField = InputField(
title="LLaVA Model Type",
description=FieldDescriptions.vllm_model,
ui_type=UIType.LlavaOnevisionModel,
ui_model_type=ModelType.LlavaOnevision,
)
@field_validator("images", mode="before")

View File

@@ -53,7 +53,7 @@ from invokeai.app.invocations.primitives import (
from invokeai.app.invocations.scheduler import SchedulerOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField, T2IAdapterInvocation
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import ModelType, SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.version import __version__
@@ -473,7 +473,6 @@ class MetadataToModelOutput(BaseInvocationOutput):
model: ModelIdentifierField = OutputField(
description=FieldDescriptions.main_model,
title="Model",
ui_type=UIType.MainModel,
)
name: str = OutputField(description="Model Name", title="Name")
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@@ -488,7 +487,6 @@ class MetadataToSDXLModelOutput(BaseInvocationOutput):
model: ModelIdentifierField = OutputField(
description=FieldDescriptions.main_model,
title="Model",
ui_type=UIType.SDXLMainModel,
)
name: str = OutputField(description="Model Name", title="Name")
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@@ -519,8 +517,7 @@ class MetadataToModelInvocation(BaseInvocation, WithMetadata):
input=Input.Direct,
)
default_value: ModelIdentifierField = InputField(
description="The default model to use if not found in the metadata",
ui_type=UIType.MainModel,
description="The default model to use if not found in the metadata", ui_model_type=ModelType.Main
)
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
@@ -575,7 +572,8 @@ class MetadataToSDXLModelInvocation(BaseInvocation, WithMetadata):
)
default_value: ModelIdentifierField = InputField(
description="The default SDXL Model to use if not found in the metadata",
ui_type=UIType.SDXLMainModel,
ui_model_type=ModelType.Main,
ui_model_base=BaseModelType.StableDiffusionXL,
)
_validate_custom_label = model_validator(mode="after")(validate_custom_label)

View File

@@ -9,7 +9,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
@@ -145,7 +145,7 @@ class ModelIdentifierInvocation(BaseInvocation):
@invocation(
"main_model_loader",
title="Main Model - SD1.5",
title="Main Model - SD1.5, SD2",
tags=["model"],
category="model",
version="1.0.4",
@@ -153,7 +153,11 @@ class ModelIdentifierInvocation(BaseInvocation):
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: ModelIdentifierField = InputField(description=FieldDescriptions.main_model, ui_type=UIType.MainModel)
model: ModelIdentifierField = InputField(
description=FieldDescriptions.main_model,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2],
ui_model_type=ModelType.Main,
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
@@ -187,7 +191,10 @@ class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.StableDiffusion1,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@@ -250,7 +257,9 @@ class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
@@ -332,7 +341,10 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.StableDiffusionXL,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@@ -473,13 +485,26 @@ class SDXLLoRACollectionLoader(BaseInvocation):
@invocation(
"vae_loader", title="VAE Model - SD1.5, SDXL, SD3, FLUX", tags=["vae", "model"], category="model", version="1.0.4"
"vae_loader",
title="VAE Model - SD1.5, SD2, SDXL, SD3, FLUX",
tags=["vae", "model"],
category="model",
version="1.0.4",
)
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, title="VAE", ui_type=UIType.VAEModel
description=FieldDescriptions.vae_model,
title="VAE",
ui_model_base=[
BaseModelType.StableDiffusion1,
BaseModelType.StableDiffusion2,
BaseModelType.StableDiffusionXL,
BaseModelType.StableDiffusion3,
BaseModelType.Flux,
],
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> VAEOutput:

View File

@@ -27,6 +27,7 @@ from invokeai.app.invocations.fields import (
SD3ConditioningField,
TensorField,
UIComponent,
VideoField,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -287,6 +288,30 @@ class ImageCollectionInvocation(BaseInvocation):
return ImageCollectionOutput(collection=self.collection)
# endregion
# region Video
@invocation_output("video_output")
class VideoOutput(BaseInvocationOutput):
"""Base class for nodes that output a video"""
video: VideoField = OutputField(description="The output video")
width: int = OutputField(description="The width of the video in pixels")
height: int = OutputField(description="The height of the video in pixels")
duration_seconds: float = OutputField(description="The duration of the video in seconds")
@classmethod
def build(cls, video_id: str, width: int, height: int, duration_seconds: float) -> "VideoOutput":
return cls(
video=VideoField(video_id=video_id),
width=width,
height=height,
duration_seconds=duration_seconds,
)
# endregion
# region DenoiseMask

View File

@@ -17,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -34,7 +35,11 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
@@ -58,6 +63,8 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -6,7 +6,6 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -20,6 +19,7 @@ from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -41,22 +41,15 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="decode", image_tensor=latents, vae=vae_info.model
)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -6,14 +6,14 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ClipVariantType, ModelType, SubModelType
@invocation_output("sd3_model_loader_output")
@@ -39,36 +39,43 @@ class Sd3ModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.SD3MainModel,
input=Input.Direct,
ui_model_base=BaseModelType.StableDiffusion3,
ui_model_type=ModelType.Main,
)
t5_encoder_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
title="T5 Encoder",
default=None,
ui_model_type=ModelType.T5Encoder,
)
clip_l_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPLEmbedModel,
input=Input.Direct,
title="CLIP L Encoder",
default=None,
ui_model_type=ModelType.CLIPEmbed,
ui_model_variant=ClipVariantType.L,
)
clip_g_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_g_model,
ui_type=UIType.CLIPGEmbedModel,
input=Input.Direct,
title="CLIP G Encoder",
default=None,
ui_model_type=ModelType.CLIPEmbed,
ui_model_variant=ClipVariantType.G,
)
vae_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE", default=None
description=FieldDescriptions.vae_model,
title="VAE",
default=None,
ui_model_base=BaseModelType.StableDiffusion3,
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:

View File

@@ -1,8 +1,8 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
@invocation_output("sdxl_model_loader_output")
@@ -29,7 +29,9 @@ class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_main_model, ui_type=UIType.SDXLMainModel
description=FieldDescriptions.sdxl_main_model,
ui_model_base=BaseModelType.StableDiffusionXL,
ui_model_type=ModelType.Main,
)
# TODO: precision?
@@ -67,7 +69,9 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_refiner_model, ui_type=UIType.SDXLRefinerModel
description=FieldDescriptions.sdxl_refiner_model,
ui_model_base=BaseModelType.StableDiffusionXLRefiner,
ui_model_type=ModelType.Main,
)
# TODO: precision?

View File

@@ -1,72 +1,75 @@
from enum import Enum
from itertools import zip_longest
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field
from transformers import AutoProcessor
from pydantic import BaseModel, Field, model_validator
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from transformers.models.sam2 import Sam2Model
from transformers.models.sam2.processing_sam2 import Sam2Processor
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_2_pipeline import SegmentAnything2Pipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.image_util.segment_anything.shared import SAMInput, SAMPoint
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SegmentAnythingModelKey = Literal[
"segment-anything-base",
"segment-anything-large",
"segment-anything-huge",
"segment-anything-2-tiny",
"segment-anything-2-small",
"segment-anything-2-base",
"segment-anything-2-large",
]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
"segment-anything-2-tiny": "facebook/sam2.1-hiera-tiny",
"segment-anything-2-small": "facebook/sam2.1-hiera-small",
"segment-anything-2-base": "facebook/sam2.1-hiera-base-plus",
"segment-anything-2-large": "facebook/sam2.1-hiera-large",
}
class SAMPointLabel(Enum):
negative = -1
neutral = 0
positive = 1
class SAMPoint(BaseModel):
x: int = Field(..., description="The x-coordinate of the point")
y: int = Field(..., description="The y-coordinate of the point")
label: SAMPointLabel = Field(..., description="The label of the point")
class SAMPointsField(BaseModel):
points: list[SAMPoint] = Field(..., description="The points of the object")
points: list[SAMPoint] = Field(..., description="The points of the object", min_length=1)
def to_list(self) -> list[list[int]]:
def to_list(self) -> list[list[float]]:
return [[point.x, point.y, point.label.value] for point in self.points]
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
tags=["prompt", "segmentation", "sam", "sam2"],
category="segmentation",
version="1.2.0",
version="1.3.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
"""Runs a Segment Anything Model (SAM or SAM2)."""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use (SAM or SAM2).")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] | None = InputField(
default=None, description="The bounding boxes to prompt the SAM model with."
default=None, description="The bounding boxes to prompt the model with."
)
point_lists: list[SAMPointsField] | None = InputField(
default=None,
description="The list of point lists to prompt the SAM model with. Each list of points represents a single object.",
description="The list of point lists to prompt the model with. Each list of points represents a single object.",
)
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
@@ -77,14 +80,18 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def validate_points_and_boxes_len(self):
if self.point_lists is not None and self.bounding_boxes is not None:
if len(self.point_lists) != len(self.bounding_boxes):
raise ValueError("If both point_lists and bounding_boxes are provided, they must have the same length.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):
@@ -111,26 +118,38 @@ class SegmentAnythingInvocation(BaseInvocation):
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
sam_processor = SamProcessor.from_pretrained(model_path, local_files_only=True)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(self, context: InvocationContext, image: Image.Image) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = (
[[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes] if self.bounding_boxes else None
)
sam_points = [p.to_list() for p in self.point_lists] if self.point_lists else None
@staticmethod
def _load_sam_2_model(model_path: Path):
sam2_model = Sam2Model.from_pretrained(model_path, local_files_only=True)
sam2_processor = Sam2Processor.from_pretrained(model_path, local_files_only=True)
return SegmentAnything2Pipeline(sam2_model=sam2_model, sam2_processor=sam2_processor)
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes, point_lists=sam_points)
def _segment(self, context: InvocationContext, image: Image.Image) -> list[torch.Tensor]:
"""Use Segment Anything (SAM or SAM2) to generate masks given an image + a set of bounding boxes."""
source = SEGMENT_ANYTHING_MODEL_IDS[self.model]
inputs: list[SAMInput] = []
for bbox_field, point_field in zip_longest(self.bounding_boxes or [], self.point_lists or [], fillvalue=None):
inputs.append(
SAMInput(
bounding_box=bbox_field,
points=point_field.points if point_field else None,
)
)
if "sam2" in source:
loader = SegmentAnythingInvocation._load_sam_2_model
with context.models.load_remote_model(source=source, loader=loader) as pipeline:
assert isinstance(pipeline, SegmentAnything2Pipeline)
masks = pipeline.segment(image=image, inputs=inputs)
else:
loader = SegmentAnythingInvocation._load_sam_model
with context.models.load_remote_model(source=source, loader=loader) as pipeline:
assert isinstance(pipeline, SegmentAnythingPipeline)
masks = pipeline.segment(image=image, inputs=inputs)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:

View File

@@ -11,7 +11,6 @@ from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
UIType,
WithBoard,
WithMetadata,
)
@@ -19,6 +18,7 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import ModelType
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
@@ -33,7 +33,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image_to_image_model: ModelIdentifierField = InputField(
title="Image-to-Image Model",
description=FieldDescriptions.spandrel_image_to_image_model,
ui_type=UIType.SpandrelImageToImageModel,
ui_model_type=ModelType.SpandrelImageToImage,
)
tile_size: int = InputField(
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."

View File

@@ -8,11 +8,12 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class T2IAdapterField(BaseModel):
@@ -60,7 +61,8 @@ class T2IAdapterInvocation(BaseInvocation):
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
ui_order=-1,
ui_type=UIType.T2IAdapterModel,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.T2IAdapter,
)
weight: Union[float, list[float]] = InputField(
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"

View File

@@ -49,3 +49,11 @@ class BoardImageRecordStorageBase(ABC):
) -> int:
"""Gets the number of images for a board."""
pass
@abstractmethod
def get_asset_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of assets for a board."""
pass

View File

@@ -3,6 +3,8 @@ from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import (
ASSETS_CATEGORIES,
IMAGE_CATEGORIES,
ImageCategory,
ImageRecord,
deserialize_image_record,
@@ -151,15 +153,38 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
def get_image_count_for_board(self, board_id: str) -> int:
with self._db.transaction() as cursor:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(IMAGE_CATEGORIES)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
cursor.execute(
"""--sql
f"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
WHERE images.is_intermediate = FALSE AND images.image_category IN ( {placeholders} )
AND board_images.board_id = ?;
""",
(board_id,),
(*category_strings, board_id),
)
count = cast(int, cursor.fetchone()[0])
return count
def get_asset_count_for_board(self, board_id: str) -> int:
with self._db.transaction() as cursor:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(ASSETS_CATEGORIES)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE AND images.image_category IN ( {placeholders} )
AND board_images.board_id = ?;
""",
(*category_strings, board_id),
)
count = cast(int, cursor.fetchone()[0])
return count

View File

@@ -12,12 +12,20 @@ class BoardDTO(BoardRecord):
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
asset_count: int = Field(description="The number of assets in the board.")
"""The number of assets in the board."""
video_count: int = Field(description="The number of videos in the board.")
"""The number of videos in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int, asset_count: int, video_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
asset_count=asset_count,
video_count=video_count,
)

View File

@@ -17,7 +17,7 @@ class BoardService(BoardServiceABC):
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
return board_record_to_dto(board_record, None, 0, 0, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
@@ -27,7 +27,9 @@ class BoardService(BoardServiceABC):
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(board_id)
video_count = 0 # noop for OSS
return board_record_to_dto(board_record, cover_image_name, image_count, asset_count, video_count)
def update(
self,
@@ -42,7 +44,9 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(board_id)
video_count = 0 # noop for OSS
return board_record_to_dto(board_record, cover_image_name, image_count, asset_count, video_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
@@ -67,7 +71,9 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(r.board_id)
video_count = 0 # noop for OSS
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count, asset_count, video_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
@@ -84,6 +90,8 @@ class BoardService(BoardServiceABC):
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
asset_count = self.__invoker.services.board_image_records.get_asset_count_for_board(r.board_id)
video_count = 0 # noop for OSS
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count, asset_count, video_count))
return board_dtos

View File

@@ -150,4 +150,15 @@ class BulkDownloadService(BulkDownloadBase):
def _is_valid_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for a bulk download."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()
# Resolve the path to handle any path traversal attempts (e.g., ../)
resolved_path = path.resolve()
# The path may not traverse out of the bulk downloads folder or its subfolders
does_not_traverse = resolved_path.parent == self._bulk_downloads_folder.resolve()
# The path must exist and be a .zip file
does_exist = resolved_path.exists()
is_zip_file = resolved_path.suffix == ".zip"
return does_exist and is_zip_file and does_not_traverse

View File

@@ -0,0 +1,42 @@
from abc import ABC, abstractmethod
class ClientStatePersistenceABC(ABC):
"""
Base class for client persistence implementations.
This class defines the interface for persisting client data.
"""
@abstractmethod
def set_by_key(self, queue_id: str, key: str, value: str) -> str:
"""
Set a key-value pair for the client.
Args:
key (str): The key to set.
value (str): The value to set for the key.
Returns:
str: The value that was set.
"""
pass
@abstractmethod
def get_by_key(self, queue_id: str, key: str) -> str | None:
"""
Get the value for a specific key of the client.
Args:
key (str): The key to retrieve the value for.
Returns:
str | None: The value associated with the key, or None if the key does not exist.
"""
pass
@abstractmethod
def delete(self, queue_id: str) -> None:
"""
Delete all client state.
"""
pass

View File

@@ -0,0 +1,65 @@
import json
from invokeai.app.services.client_state_persistence.client_state_persistence_base import ClientStatePersistenceABC
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class ClientStatePersistenceSqlite(ClientStatePersistenceABC):
"""
Base class for client persistence implementations.
This class defines the interface for persisting client data.
"""
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._db = db
self._default_row_id = 1
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def _get(self) -> dict[str, str] | None:
with self._db.transaction() as cursor:
cursor.execute(
f"""
SELECT data FROM client_state
WHERE id = {self._default_row_id}
"""
)
row = cursor.fetchone()
if row is None:
return None
return json.loads(row[0])
def set_by_key(self, queue_id: str, key: str, value: str) -> str:
state = self._get() or {}
state.update({key: value})
with self._db.transaction() as cursor:
cursor.execute(
f"""
INSERT INTO client_state (id, data)
VALUES ({self._default_row_id}, ?)
ON CONFLICT(id) DO UPDATE
SET data = excluded.data;
""",
(json.dumps(state),),
)
return value
def get_by_key(self, queue_id: str, key: str) -> str | None:
state = self._get()
if state is None:
return None
return state.get(key, None)
def delete(self, queue_id: str) -> None:
with self._db.transaction() as cursor:
cursor.execute(
f"""
DELETE FROM client_state
WHERE id = {self._default_row_id}
"""
)

View File

@@ -107,6 +107,7 @@ class InvokeAIAppConfig(BaseSettings):
hashing_algorithm: Model hashing algorthim for model installs. 'blake3_multi' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.<br>Valid values: `blake3_multi`, `blake3_single`, `random`, `md5`, `sha1`, `sha224`, `sha256`, `sha384`, `sha512`, `blake2b`, `blake2s`, `sha3_224`, `sha3_256`, `sha3_384`, `sha3_512`, `shake_128`, `shake_256`
remote_api_tokens: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
scan_models_on_startup: Scan the models directory on startup, registering orphaned models. This is typically only used in conjunction with `use_memory_db` for testing purposes.
unsafe_disable_picklescan: UNSAFE. Disable the picklescan security check during model installation. Recommended only for development and testing purposes. This will allow arbitrary code execution during model installation, so should never be used in production.
"""
_root: Optional[Path] = PrivateAttr(default=None)
@@ -196,6 +197,7 @@ class InvokeAIAppConfig(BaseSettings):
hashing_algorithm: HASHING_ALGORITHMS = Field(default="blake3_single", description="Model hashing algorthim for model installs. 'blake3_multi' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.")
remote_api_tokens: Optional[list[URLRegexTokenPair]] = Field(default=None, description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.")
scan_models_on_startup: bool = Field(default=False, description="Scan the models directory on startup, registering orphaned models. This is typically only used in conjunction with `use_memory_db` for testing purposes.")
unsafe_disable_picklescan: bool = Field(default=False, description="UNSAFE. Disable the picklescan security check during model installation. Recommended only for development and testing purposes. This will allow arbitrary code execution during model installation, so should never be used in production.")
# fmt: on

View File

@@ -234,8 +234,8 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
error_type: Optional[str] = Field(default=None, description="The error type, if any")
error_message: Optional[str] = Field(default=None, description="The error message, if any")
error_traceback: Optional[str] = Field(default=None, description="The error traceback, if any")
created_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was created")
updated_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was last updated")
created_at: str = Field(description="The timestamp when the queue item was created")
updated_at: str = Field(description="The timestamp when the queue item was last updated")
started_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was started")
completed_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was completed")
batch_status: BatchStatus = Field(description="The status of the batch")
@@ -258,8 +258,8 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
error_type=queue_item.error_type,
error_message=queue_item.error_message,
error_traceback=queue_item.error_traceback,
created_at=str(queue_item.created_at) if queue_item.created_at else None,
updated_at=str(queue_item.updated_at) if queue_item.updated_at else None,
created_at=str(queue_item.created_at),
updated_at=str(queue_item.updated_at),
started_at=str(queue_item.started_at) if queue_item.started_at else None,
completed_at=str(queue_item.completed_at) if queue_item.completed_at else None,
batch_status=batch_status,

View File

@@ -58,6 +58,15 @@ class ImageCategory(str, Enum, metaclass=MetaEnum):
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
IMAGE_CATEGORIES: list[ImageCategory] = [ImageCategory.GENERAL]
ASSETS_CATEGORIES: list[ImageCategory] = [
ImageCategory.CONTROL,
ImageCategory.MASK,
ImageCategory.USER,
ImageCategory.OTHER,
]
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.

View File

@@ -17,6 +17,7 @@ if TYPE_CHECKING:
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
from invokeai.app.services.client_state_persistence.client_state_persistence_base import ClientStatePersistenceABC
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
@@ -73,6 +74,7 @@ class InvocationServices:
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
workflow_thumbnails: "WorkflowThumbnailServiceBase",
client_state_persistence: "ClientStatePersistenceABC",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -102,3 +104,4 @@ class InvocationServices:
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files
self.workflow_thumbnails = workflow_thumbnails
self.client_state_persistence = client_state_persistence

View File

@@ -7,7 +7,7 @@ import threading
import time
from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from shutil import move, rmtree
from tempfile import mkdtemp
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
@@ -186,13 +186,15 @@ class ModelInstallService(ModelInstallServiceBase):
info: AnyModelConfig = self._probe(Path(model_path), config) # type: ignore
if preferred_name := config.name:
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
if Path(model_path).is_file():
# Careful! Don't use pathlib.Path(...).with_suffix - it can will strip everything after the first dot.
preferred_name = f"{preferred_name}{model_path.suffix}"
dest_path = (
self.app_config.models_path / info.base.value / info.type.value / (preferred_name or model_path.name)
)
try:
new_path = self._copy_model(model_path, dest_path)
new_path = self._move_model(model_path, dest_path)
except FileExistsError as excp:
raise DuplicateModelException(
f"A model named {model_path.name} is already installed at {dest_path.as_posix()}"
@@ -617,30 +619,17 @@ class ModelInstallService(ModelInstallServiceBase):
self.record_store.update_model(key, ModelRecordChanges(path=model.path))
return model
def _copy_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
if old_path.is_dir():
copytree(old_path, new_path)
else:
copyfile(old_path, new_path)
return new_path
def _move_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
if new_path.exists():
raise FileExistsError(f"Cannot move {old_path} to {new_path}: destination already exists")
new_path.parent.mkdir(parents=True, exist_ok=True)
# if path already exists then we jigger the name to make it unique
counter: int = 1
while new_path.exists():
path = new_path.with_stem(new_path.stem + f"_{counter:02d}")
if not path.exists():
new_path = path
counter += 1
move(old_path, new_path)
return new_path
def _probe(self, model_path: Path, config: Optional[ModelRecordChanges] = None):

View File

@@ -87,9 +87,21 @@ class ModelLoadService(ModelLoadServiceBase):
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception(f"The model at {checkpoint} is potentially infected by malware. Aborting load.")
if self._app_config.unsafe_disable_picklescan:
self._logger.warning(
f"Model at {checkpoint} is potentially infected by malware, but picklescan is disabled. "
"Proceeding with caution."
)
else:
raise Exception(f"The model at {checkpoint} is potentially infected by malware. Aborting load.")
if scan_result.scan_err:
raise Exception(f"Error scanning model at {checkpoint} for malware. Aborting load.")
if self._app_config.unsafe_disable_picklescan:
self._logger.warning(
f"Error scanning model at {checkpoint} for malware, but picklescan is disabled. "
"Proceeding with caution."
)
else:
raise Exception(f"Error scanning model at {checkpoint} for malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result

View File

@@ -15,6 +15,7 @@ from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.config import (
AnyModelConfig,
ControlAdapterDefaultSettings,
LoraModelDefaultSettings,
MainModelDefaultSettings,
)
from invokeai.backend.model_manager.taxonomy import (
@@ -83,8 +84,8 @@ class ModelRecordChanges(BaseModelExcludeNull):
file_size: Optional[int] = Field(description="Size of model file", default=None)
format: Optional[str] = Field(description="format of model file", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None
default_settings: Optional[MainModelDefaultSettings | LoraModelDefaultSettings | ControlAdapterDefaultSettings] = (
Field(description="Default settings for this model", default=None)
)
# Checkpoint-specific changes

View File

@@ -15,6 +15,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
EnqueueBatchResult,
IsEmptyResult,
IsFullResult,
ItemIdsResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
@@ -23,6 +24,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.services.shared.graph import GraphExecutionState
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class SessionQueueBase(ABC):
@@ -145,7 +147,7 @@ class SessionQueueBase(ABC):
status: Optional[QUEUE_ITEM_STATUS] = None,
destination: Optional[str] = None,
) -> CursorPaginatedResults[SessionQueueItem]:
"""Gets a page of session queue items"""
"""Gets a page of session queue items. Do not remove."""
pass
@abstractmethod
@@ -157,9 +159,18 @@ class SessionQueueBase(ABC):
"""Gets all queue items that match the given parameters"""
pass
@abstractmethod
def get_queue_item_ids(
self,
queue_id: str,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
) -> ItemIdsResult:
"""Gets all queue item ids that match the given parameters"""
pass
@abstractmethod
def get_queue_item(self, item_id: int) -> SessionQueueItem:
"""Gets a session queue item by ID"""
"""Gets a session queue item by ID for a given queue"""
pass
@abstractmethod

View File

@@ -176,6 +176,14 @@ DEFAULT_QUEUE_ID = "default"
QUEUE_ITEM_STATUS = Literal["pending", "in_progress", "completed", "failed", "canceled"]
class ItemIdsResult(BaseModel):
"""Response containing ordered item ids with metadata for optimistic updates."""
item_ids: list[int] = Field(description="Ordered list of item ids")
total_count: int = Field(description="Total number of queue items matching the query")
NodeFieldValueValidator = TypeAdapter(list[NodeFieldValue])

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
EnqueueBatchResult,
IsEmptyResult,
IsFullResult,
ItemIdsResult,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
@@ -34,6 +35,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.services.shared.graph import GraphExecutionState
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
@@ -671,6 +673,26 @@ class SqliteSessionQueue(SessionQueueBase):
items = [SessionQueueItem.queue_item_from_dict(dict(result)) for result in results]
return items
def get_queue_item_ids(
self,
queue_id: str,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
) -> ItemIdsResult:
with self._db.transaction() as cursor_:
query = f"""--sql
SELECT item_id
FROM session_queue
WHERE queue_id = ?
ORDER BY created_at {order_dir.value}
"""
query_params = [queue_id]
cursor_.execute(query, query_params)
result = cast(list[sqlite3.Row], cursor_.fetchall())
item_ids = [row[0] for row in result]
return ItemIdsResult(item_ids=item_ids, total_count=len(item_ids))
def get_queue_status(self, queue_id: str) -> SessionQueueStatus:
with self._db.transaction() as cursor:
cursor.execute(

View File

@@ -23,6 +23,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_17 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_18 import build_migration_18
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_19 import build_migration_19
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_20 import build_migration_20
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_21 import build_migration_21
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -63,6 +64,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_18())
migrator.register_migration(build_migration_19(app_config=config))
migrator.register_migration(build_migration_20())
migrator.register_migration(build_migration_21())
migrator.run_migrations()
return db

View File

@@ -0,0 +1,40 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration21Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
cursor.execute(
"""
CREATE TABLE client_state (
id INTEGER PRIMARY KEY CHECK(id = 1),
data TEXT NOT NULL, -- Frontend will handle the shape of this data
updated_at DATETIME NOT NULL DEFAULT (CURRENT_TIMESTAMP)
);
"""
)
cursor.execute(
"""
CREATE TRIGGER tg_client_state_updated_at
AFTER UPDATE ON client_state
FOR EACH ROW
BEGIN
UPDATE client_state
SET updated_at = CURRENT_TIMESTAMP
WHERE id = OLD.id;
END;
"""
)
def build_migration_21() -> Migration:
"""Builds the migration object for migrating from version 20 to version 21. This includes:
- Creating the `client_state` table.
- Adding a trigger to update the `updated_at` field on updates.
"""
return Migration(
from_version=20,
to_version=21,
callback=Migration21Callback(),
)

View File

@@ -0,0 +1,179 @@
import datetime
from typing import Optional, Union
from pydantic import BaseModel, Field, StrictBool, StrictStr
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
VIDEO_DTO_COLS = ", ".join(
[
"videos." + c
for c in [
"video_id",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
]
]
)
class VideoRecord(BaseModelExcludeNull):
"""Deserialized video record without metadata."""
video_id: str = Field(description="The unique id of the video.")
"""The unique id of the video."""
width: int = Field(description="The width of the video in px.")
"""The actual width of the video in px. This may be different from the width in metadata."""
height: int = Field(description="The height of the video in px.")
"""The actual height of the video in px. This may be different from the height in metadata."""
created_at: Union[datetime.datetime, str] = Field(description="The created timestamp of the video.")
"""The created timestamp of the video."""
updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the video.")
"""The updated timestamp of the video."""
deleted_at: Optional[Union[datetime.datetime, str]] = Field(
default=None, description="The deleted timestamp of the video."
)
"""The deleted timestamp of the video."""
is_intermediate: bool = Field(description="Whether this is an intermediate video.")
"""Whether this is an intermediate video."""
session_id: Optional[str] = Field(
default=None,
description="The session ID that generated this video, if it is a generated video.",
)
"""The session ID that generated this video, if it is a generated video."""
node_id: Optional[str] = Field(
default=None,
description="The node ID that generated this video, if it is a generated video.",
)
"""The node ID that generated this video, if it is a generated video."""
starred: bool = Field(description="Whether this video is starred.")
"""Whether this video is starred."""
class VideoRecordChanges(BaseModelExcludeNull):
"""A set of changes to apply to a video record.
Only limited changes are valid:
- `session_id`: change the session associated with a video
- `is_intermediate`: change the video's `is_intermediate` flag
- `starred`: change whether the video is starred
"""
session_id: Optional[StrictStr] = Field(
default=None,
description="The video's new session ID.",
)
"""The video's new session ID."""
is_intermediate: Optional[StrictBool] = Field(default=None, description="The video's new `is_intermediate` flag.")
"""The video's new `is_intermediate` flag."""
starred: Optional[StrictBool] = Field(default=None, description="The video's new `starred` state")
"""The video's new `starred` state."""
def deserialize_video_record(video_dict: dict) -> VideoRecord:
"""Deserializes a video record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
video_id = video_dict.get("video_id", "unknown")
width = video_dict.get("width", 0)
height = video_dict.get("height", 0)
session_id = video_dict.get("session_id", None)
node_id = video_dict.get("node_id", None)
created_at = video_dict.get("created_at", get_iso_timestamp())
updated_at = video_dict.get("updated_at", get_iso_timestamp())
deleted_at = video_dict.get("deleted_at", get_iso_timestamp())
is_intermediate = video_dict.get("is_intermediate", False)
starred = video_dict.get("starred", False)
return VideoRecord(
video_id=video_id,
width=width,
height=height,
session_id=session_id,
node_id=node_id,
created_at=created_at,
updated_at=updated_at,
deleted_at=deleted_at,
is_intermediate=is_intermediate,
starred=starred,
)
class VideoCollectionCounts(BaseModel):
starred_count: int = Field(description="The number of starred videos in the collection.")
unstarred_count: int = Field(description="The number of unstarred videos in the collection.")
class VideoIdsResult(BaseModel):
"""Response containing ordered video ids with metadata for optimistic updates."""
video_ids: list[str] = Field(description="Ordered list of video ids")
starred_count: int = Field(description="Number of starred videos (when starred_first=True)")
total_count: int = Field(description="Total number of videos matching the query")
class VideoUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
video_id: str = Field(description="The unique id of the video.")
"""The unique id of the video."""
video_url: str = Field(description="The URL of the video.")
"""The URL of the video."""
thumbnail_url: str = Field(description="The URL of the video's thumbnail.")
"""The URL of the video's thumbnail."""
class VideoDTO(VideoRecord, VideoUrlsDTO):
"""Deserialized video record, enriched for the frontend."""
board_id: Optional[str] = Field(
default=None, description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists."""
def video_record_to_dto(
video_record: VideoRecord,
video_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> VideoDTO:
"""Converts a video record to a video DTO."""
return VideoDTO(
**video_record.model_dump(),
video_url=video_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)
class ResultWithAffectedBoards(BaseModel):
affected_boards: list[str] = Field(description="The ids of boards affected by the delete operation")
class DeleteVideosResult(ResultWithAffectedBoards):
deleted_videos: list[str] = Field(description="The ids of the videos that were deleted")
class StarredVideosResult(ResultWithAffectedBoards):
starred_videos: list[str] = Field(description="The ids of the videos that were starred")
class UnstarredVideosResult(ResultWithAffectedBoards):
unstarred_videos: list[str] = Field(description="The ids of the videos that were unstarred")
class AddVideosToBoardResult(ResultWithAffectedBoards):
added_videos: list[str] = Field(description="The video ids that were added to the board")
class RemoveVideosFromBoardResult(ResultWithAffectedBoards):
removed_videos: list[str] = Field(description="The video ids that were removed from their board")

View File

@@ -1,314 +0,0 @@
import math
import os
from typing import List, Optional, Union
import numpy as np
import torch
import torch.distributed as dist
from diffusers.utils import logging
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_t5_prompt_embeds(
tokenizer: T5TokenizerFast,
text_encoder: T5EncoderModel,
prompt: Union[str, List[str], None] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 128,
device: Optional[torch.device] = None,
):
device = device or text_encoder.device
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
# padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
# Concat zeros to max_sequence
b, seq_len, dim = prompt_embeds.shape
if seq_len < max_sequence_length:
padding = torch.zeros(
(b, max_sequence_length - seq_len, dim), dtype=prompt_embeds.dtype, device=prompt_embeds.device
)
prompt_embeds = torch.concat([prompt_embeds, padding], dim=1)
prompt_embeds = prompt_embeds.to(device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
# in order the get the same sigmas as in training and sample from them
def get_original_sigmas(num_train_timesteps=1000, num_inference_steps=1000):
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
sigmas = timesteps / num_train_timesteps
inds = [int(ind) for ind in np.linspace(0, num_train_timesteps - 1, num_inference_steps)]
new_sigmas = sigmas[inds]
return new_sigmas
def is_ng_none(negative_prompt):
return (
negative_prompt is None
or negative_prompt == ""
or (isinstance(negative_prompt, list) and negative_prompt[0] is None)
or (isinstance(negative_prompt, list) and negative_prompt[0] == "")
)
class CudaTimerContext:
def __init__(self, times_arr):
self.times_arr = times_arr
def __enter__(self):
self.before_event = torch.cuda.Event(enable_timing=True)
self.after_event = torch.cuda.Event(enable_timing=True)
self.before_event.record()
def __exit__(self, type, value, traceback):
self.after_event.record()
torch.cuda.synchronize()
elapsed_time = self.before_event.elapsed_time(self.after_event) / 1000
self.times_arr.append(elapsed_time)
def get_env_prefix():
env = os.environ.get("CLOUD_PROVIDER", "AWS").upper()
if env == "AWS":
return "SM_CHANNEL"
elif env == "AZURE":
return "AZUREML_DATAREFERENCE"
raise Exception(f"Env {env} not supported")
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
return weighting
def initialize_distributed():
# Initialize the process group for distributed training
dist.init_process_group("nccl")
# Get the current process's rank (ID) and the total number of processes (world size)
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Initialized distributed training: Rank {rank}/{world_size}")
def get_clip_prompt_embeds(
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 77,
device: Optional[torch.device] = None,
):
device = device or text_encoder.device
assert max_sequence_length == tokenizer.model_max_length
prompt = [prompt] if isinstance(prompt, str) else prompt
# Define tokenizers and text encoders
tokenizers = [tokenizer, tokenizer_2]
text_encoders = [text_encoder, text_encoder_2]
# textual inversion: process multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders, strict=False):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, pooled_prompt_embeds
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[np.ndarray, int],
theta: float = 10000.0,
use_real=False,
linear_factor=1.0,
ntk_factor=1.0,
repeat_interleave_real=True,
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
linear_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the context extrapolation. Defaults to 1.0.
ntk_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
Otherwise, they are concateanted with themselves.
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
the dtype of the frequency tensor.
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real and repeat_interleave_real:
# flux, hunyuan-dit, cogvideox
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
elif use_real:
# stable audio, allegro
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
return freqs_cos, freqs_sin
else:
# lumina
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
class FluxPosEmbed(torch.nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
freqs_dtype = torch.float32 if is_mps else torch.float64
for i in range(n_axes):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin

View File

@@ -1,6 +0,0 @@
__version__ = "0.0.9"
from invokeai.backend.bria.controlnet_aux.canny import CannyDetector as CannyDetector
from invokeai.backend.bria.controlnet_aux.open_pose import OpenposeDetector as OpenposeDetector
__all__ = ["CannyDetector", "OpenposeDetector"]

View File

@@ -1,48 +0,0 @@
import warnings
import cv2
import numpy as np
from PIL import Image
from invokeai.backend.bria.controlnet_aux.util import HWC3, resize_image
class CannyDetector:
def __call__(
self,
input_image=None,
low_threshold=100,
high_threshold=200,
detect_resolution=512,
image_resolution=512,
output_type=None,
**kwargs,
):
if "img" in kwargs:
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning, stacklevel=2)
input_image = kwargs.pop("img")
if input_image is None:
raise ValueError("input_image must be defined.")
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
output_type = output_type or "pil"
else:
output_type = output_type or "np"
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
detected_map = cv2.Canny(input_image, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map

View File

@@ -1,108 +0,0 @@
OPENPOSE: MULTIPERSON KEYPOINT DETECTION
SOFTWARE LICENSE AGREEMENT
ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Carnegie Mellon University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor.
RESERVATION OF OWNERSHIP AND GRANT OF LICENSE:
Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive,
non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i).
CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication.
COPYRIGHT: The Software is owned by Licensor and is protected by United
States copyright laws and applicable international treaties and/or conventions.
PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto.
DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement.
BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies.
USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “OpenPose", "Carnegie Mellon" or any renditions thereof without the prior written permission of Licensor.
You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software.
ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void.
TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below.
The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement.
FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement.
DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS.
SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement.
EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage.
EXPORT REGULATION: Licensee agrees to comply with any and all applicable
U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control.
SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby.
NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor.
GOVERNING LAW: This Agreement shall be construed and enforced in accordance with the laws of the Commonwealth of Pennsylvania without reference to conflict of laws principles. You consent to the personal jurisdiction of the courts of this County and waive their rights to venue outside of Allegheny County, Pennsylvania.
ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto.
************************************************************************
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
1. Caffe, version 1.0.0, (https://github.com/BVLC/caffe/)
COPYRIGHT
All contributions by the University of California:
Copyright (c) 2014-2017 The Regents of the University of California (Regents)
All rights reserved.
All other contributions:
Copyright (c) 2014-2017, the respective contributors
All rights reserved.
Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.
LICENSE
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CONTRIBUTION AGREEMENT
By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.
************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION**********

View File

@@ -1,267 +0,0 @@
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
# This preprocessor is licensed by CMU for non-commercial use only.
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import warnings
from typing import List, NamedTuple, Tuple, Union
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.body import Body, BodyResult, Keypoint
from invokeai.backend.bria.controlnet_aux.open_pose.face import Face
from invokeai.backend.bria.controlnet_aux.open_pose.hand import Hand
from invokeai.backend.bria.controlnet_aux.util import HWC3, resize_image
HandResult = List[Keypoint]
FaceResult = List[Keypoint]
class PoseResult(NamedTuple):
body: BodyResult
left_hand: Union[HandResult, None]
right_hand: Union[HandResult, None]
face: Union[FaceResult, None]
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
"""
Draw the detected poses on an empty canvas.
Args:
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
H (int): The height of the canvas.
W (int): The width of the canvas.
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.
Returns:
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
"""
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
for pose in poses:
if draw_body:
canvas = util.draw_bodypose(canvas, pose.body.keypoints)
if draw_hand:
canvas = util.draw_handpose(canvas, pose.left_hand)
canvas = util.draw_handpose(canvas, pose.right_hand)
if draw_face:
canvas = util.draw_facepose(canvas, pose.face)
return canvas
class OpenposeDetector:
"""
A class for detecting human poses in images using the Openpose model.
Attributes:
model_dir (str): Path to the directory where the pose models are stored.
"""
def __init__(self, body_estimation, hand_estimation=None, face_estimation=None):
self.body_estimation = body_estimation
self.hand_estimation = hand_estimation
self.face_estimation = face_estimation
@classmethod
def from_pretrained(
cls,
pretrained_model_or_path,
filename=None,
hand_filename=None,
face_filename=None,
cache_dir=None,
local_files_only=False,
):
if pretrained_model_or_path == "lllyasviel/ControlNet":
filename = filename or "annotator/ckpts/body_pose_model.pth"
hand_filename = hand_filename or "annotator/ckpts/hand_pose_model.pth"
face_filename = face_filename or "facenet.pth"
face_pretrained_model_or_path = "lllyasviel/Annotators"
else:
filename = filename or "body_pose_model.pth"
hand_filename = hand_filename or "hand_pose_model.pth"
face_filename = face_filename or "facenet.pth"
face_pretrained_model_or_path = pretrained_model_or_path
if os.path.isdir(pretrained_model_or_path):
body_model_path = os.path.join(pretrained_model_or_path, filename)
hand_model_path = os.path.join(pretrained_model_or_path, hand_filename)
face_model_path = os.path.join(face_pretrained_model_or_path, face_filename)
else:
body_model_path = hf_hub_download(
pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only
)
hand_model_path = hf_hub_download(
pretrained_model_or_path, hand_filename, cache_dir=cache_dir, local_files_only=local_files_only
)
face_model_path = hf_hub_download(
face_pretrained_model_or_path, face_filename, cache_dir=cache_dir, local_files_only=local_files_only
)
body_estimation = Body(body_model_path)
hand_estimation = Hand(hand_model_path)
face_estimation = Face(face_model_path)
return cls(body_estimation, hand_estimation, face_estimation)
def to(self, device):
self.body_estimation.to(device)
self.hand_estimation.to(device)
self.face_estimation.to(device)
return self
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
left_hand = None
right_hand = None
H, W, _ = oriImg.shape
for x, y, w, is_left in util.handDetect(body, oriImg):
peaks = self.hand_estimation(oriImg[y : y + w, x : x + w, :]).astype(np.float32)
if peaks.ndim == 2 and peaks.shape[1] == 2:
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
hand_result = [Keypoint(x=peak[0], y=peak[1]) for peak in peaks]
if is_left:
left_hand = hand_result
else:
right_hand = hand_result
return left_hand, right_hand
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]:
face = util.faceDetect(body, oriImg)
if face is None:
return None
x, y, w = face
H, W, _ = oriImg.shape
heatmaps = self.face_estimation(oriImg[y : y + w, x : x + w, :])
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32)
if peaks.ndim == 2 and peaks.shape[1] == 2:
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
return [Keypoint(x=peak[0], y=peak[1]) for peak in peaks]
return None
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]:
"""
Detect poses in the given image.
Args:
oriImg (numpy.ndarray): The input image for pose detection.
include_hand (bool, optional): Whether to include hand detection. Defaults to False.
include_face (bool, optional): Whether to include face detection. Defaults to False.
Returns:
List[PoseResult]: A list of PoseResult objects containing the detected poses.
"""
oriImg = oriImg[:, :, ::-1].copy()
H, W, C = oriImg.shape
with torch.no_grad():
candidate, subset = self.body_estimation(oriImg)
bodies = self.body_estimation.format_body_result(candidate, subset)
results = []
for body in bodies:
left_hand, right_hand, face = (None,) * 3
if include_hand:
left_hand, right_hand = self.detect_hands(body, oriImg)
if include_face:
face = self.detect_face(body, oriImg)
results.append(
PoseResult(
BodyResult(
keypoints=[
Keypoint(x=keypoint.x / float(W), y=keypoint.y / float(H))
if keypoint is not None
else None
for keypoint in body.keypoints
],
total_score=body.total_score,
total_parts=body.total_parts,
),
left_hand,
right_hand,
face,
)
)
return results
def __call__(
self,
input_image,
detect_resolution=512,
image_resolution=512,
include_body=True,
include_hand=False,
include_face=False,
hand_and_face=None,
output_type="pil",
**kwargs,
):
if hand_and_face is not None:
warnings.warn(
"hand_and_face is deprecated. Use include_hand and include_face instead.",
DeprecationWarning,
stacklevel=2,
)
include_hand = hand_and_face
include_face = hand_and_face
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning, stacklevel=2)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn(
"Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions",
stacklevel=2,
)
if output_type:
output_type = "pil"
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
H, W, C = input_image.shape
poses = self.detect_poses(input_image, include_hand, include_face)
canvas = draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
detected_map = canvas
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map

View File

@@ -1,319 +0,0 @@
import math
from typing import List, NamedTuple, Union
import numpy as np
import torch
from scipy.ndimage.filters import gaussian_filter
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.model import bodypose_model
class Keypoint(NamedTuple):
x: float
y: float
score: float = 1.0
id: int = -1
class BodyResult(NamedTuple):
# Note: Using `Union` instead of `|` operator as the ladder is a Python
# 3.10 feature.
# Annotator code should be Python 3.8 Compatible, as controlnet repo uses
# Python 3.8 environment.
# https://github.com/lllyasviel/ControlNet/blob/d3284fcd0972c510635a4f5abe2eeb71dc0de524/environment.yaml#L6
keypoints: List[Union[Keypoint, None]]
total_score: float
total_parts: int
class Body(object):
def __init__(self, model_path):
self.model = bodypose_model()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, oriImg):
device = next(iter(self.model.parameters())).device
# scale_search = [0.5, 1.0, 1.5, 2.0]
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = util.smart_resize_k(oriImg, fx=scale, fy=scale)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
data = data.to(device)
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride)
heatmap = heatmap[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
heatmap = util.smart_resize(heatmap, (oriImg.shape[0], oriImg.shape[1]))
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
paf = util.smart_resize_k(paf, fx=stride, fy=stride)
paf = paf[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
paf = util.smart_resize(paf, (oriImg.shape[0], oriImg.shape[1]))
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += +paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(
one_heatmap >= map_left,
one_heatmap >= map_right,
one_heatmap >= map_up,
one_heatmap >= map_down,
one_heatmap > thre1,
)
)
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0], strict=False)) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
# the middle joints heatmap correpondence
mapIdx = [
[31, 32],
[39, 40],
[33, 34],
[35, 36],
[41, 42],
[43, 44],
[19, 20],
[21, 22],
[23, 24],
[25, 26],
[27, 28],
[29, 30],
[47, 48],
[49, 50],
[53, 54],
[51, 52],
[55, 56],
[37, 38],
[45, 46],
]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(
zip(
np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num),
strict=False,
)
)
vec_x = np.array(
[
score_mid[int(round(startend[i][1])), int(round(startend[i][0])), 0]
for i in range(len(startend))
]
)
vec_y = np.array(
[
score_mid[int(round(startend[i][1])), int(round(startend[i][0])), 1]
for i in range(len(startend))
]
)
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0
)
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]
)
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += subset[j2][:-2] + 1
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
# candidate: x, y, score, id
return candidate, subset
@staticmethod
def format_body_result(candidate: np.ndarray, subset: np.ndarray) -> List[BodyResult]:
"""
Format the body results from the candidate and subset arrays into a list of BodyResult objects.
Args:
candidate (np.ndarray): An array of candidates containing the x, y coordinates, score, and id
for each body part.
subset (np.ndarray): An array of subsets containing indices to the candidate array for each
person detected. The last two columns of each row hold the total score and total parts
of the person.
Returns:
List[BodyResult]: A list of BodyResult objects, where each object represents a person with
detected keypoints, total score, and total parts.
"""
return [
BodyResult(
keypoints=[
Keypoint(
x=candidate[candidate_index][0],
y=candidate[candidate_index][1],
score=candidate[candidate_index][2],
id=candidate[candidate_index][3],
)
if candidate_index != -1
else None
for candidate_index in person[:18].astype(int)
],
total_score=person[18],
total_parts=person[19],
)
for person in subset
]

View File

@@ -1,307 +0,0 @@
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Conv2d, MaxPool2d, Module, ReLU, init
from torchvision.transforms import ToPILImage, ToTensor
from invokeai.backend.bria.controlnet_aux.open_pose import util
class FaceNet(Module):
"""Model the cascading heatmaps."""
def __init__(self):
super(FaceNet, self).__init__()
# cnn to make feature map
self.relu = ReLU()
self.max_pooling_2d = MaxPool2d(kernel_size=2, stride=2)
self.conv1_1 = Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_3 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_4 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_3 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_4 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_3_CPM = Conv2d(in_channels=512, out_channels=128, kernel_size=3, stride=1, padding=1)
# stage1
self.conv6_1_CPM = Conv2d(in_channels=128, out_channels=512, kernel_size=1, stride=1, padding=0)
self.conv6_2_CPM = Conv2d(in_channels=512, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage2
self.Mconv1_stage2 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage2 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage3
self.Mconv1_stage3 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage3 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage4
self.Mconv1_stage4 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage4 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage5
self.Mconv1_stage5 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage5 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage6
self.Mconv1_stage6 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage6 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
for m in self.modules():
if isinstance(m, Conv2d):
init.constant_(m.bias, 0)
def forward(self, x):
"""Return a list of heatmaps."""
heatmaps = []
h = self.relu(self.conv1_1(x))
h = self.relu(self.conv1_2(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv2_1(h))
h = self.relu(self.conv2_2(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv3_1(h))
h = self.relu(self.conv3_2(h))
h = self.relu(self.conv3_3(h))
h = self.relu(self.conv3_4(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv4_1(h))
h = self.relu(self.conv4_2(h))
h = self.relu(self.conv4_3(h))
h = self.relu(self.conv4_4(h))
h = self.relu(self.conv5_1(h))
h = self.relu(self.conv5_2(h))
h = self.relu(self.conv5_3_CPM(h))
feature_map = h
# stage1
h = self.relu(self.conv6_1_CPM(h))
h = self.conv6_2_CPM(h)
heatmaps.append(h)
# stage2
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage2(h))
h = self.relu(self.Mconv2_stage2(h))
h = self.relu(self.Mconv3_stage2(h))
h = self.relu(self.Mconv4_stage2(h))
h = self.relu(self.Mconv5_stage2(h))
h = self.relu(self.Mconv6_stage2(h))
h = self.Mconv7_stage2(h)
heatmaps.append(h)
# stage3
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage3(h))
h = self.relu(self.Mconv2_stage3(h))
h = self.relu(self.Mconv3_stage3(h))
h = self.relu(self.Mconv4_stage3(h))
h = self.relu(self.Mconv5_stage3(h))
h = self.relu(self.Mconv6_stage3(h))
h = self.Mconv7_stage3(h)
heatmaps.append(h)
# stage4
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage4(h))
h = self.relu(self.Mconv2_stage4(h))
h = self.relu(self.Mconv3_stage4(h))
h = self.relu(self.Mconv4_stage4(h))
h = self.relu(self.Mconv5_stage4(h))
h = self.relu(self.Mconv6_stage4(h))
h = self.Mconv7_stage4(h)
heatmaps.append(h)
# stage5
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage5(h))
h = self.relu(self.Mconv2_stage5(h))
h = self.relu(self.Mconv3_stage5(h))
h = self.relu(self.Mconv4_stage5(h))
h = self.relu(self.Mconv5_stage5(h))
h = self.relu(self.Mconv6_stage5(h))
h = self.Mconv7_stage5(h)
heatmaps.append(h)
# stage6
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage6(h))
h = self.relu(self.Mconv2_stage6(h))
h = self.relu(self.Mconv3_stage6(h))
h = self.relu(self.Mconv4_stage6(h))
h = self.relu(self.Mconv5_stage6(h))
h = self.relu(self.Mconv6_stage6(h))
h = self.Mconv7_stage6(h)
heatmaps.append(h)
return heatmaps
LOG = logging.getLogger(__name__)
TOTEN = ToTensor()
TOPIL = ToPILImage()
params = {
"gaussian_sigma": 2.5,
"inference_img_size": 736, # 368, 736, 1312
"heatmap_peak_thresh": 0.1,
"crop_scale": 1.5,
"line_indices": [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 12],
[12, 13],
[13, 14],
[14, 15],
[15, 16],
[17, 18],
[18, 19],
[19, 20],
[20, 21],
[22, 23],
[23, 24],
[24, 25],
[25, 26],
[27, 28],
[28, 29],
[29, 30],
[31, 32],
[32, 33],
[33, 34],
[34, 35],
[36, 37],
[37, 38],
[38, 39],
[39, 40],
[40, 41],
[41, 36],
[42, 43],
[43, 44],
[44, 45],
[45, 46],
[46, 47],
[47, 42],
[48, 49],
[49, 50],
[50, 51],
[51, 52],
[52, 53],
[53, 54],
[54, 55],
[55, 56],
[56, 57],
[57, 58],
[58, 59],
[59, 48],
[60, 61],
[61, 62],
[62, 63],
[63, 64],
[64, 65],
[65, 66],
[66, 67],
[67, 60],
],
}
class Face(object):
"""
The OpenPose face landmark detector model.
Args:
inference_size: set the size of the inference image size, suggested:
368, 736, 1312, default 736
gaussian_sigma: blur the heatmaps, default 2.5
heatmap_peak_thresh: return landmark if over threshold, default 0.1
"""
def __init__(self, face_model_path, inference_size=None, gaussian_sigma=None, heatmap_peak_thresh=None):
self.inference_size = inference_size or params["inference_img_size"]
self.sigma = gaussian_sigma or params["gaussian_sigma"]
self.threshold = heatmap_peak_thresh or params["heatmap_peak_thresh"]
self.model = FaceNet()
self.model.load_state_dict(torch.load(face_model_path))
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, face_img):
device = next(iter(self.model.parameters())).device
H, W, C = face_img.shape
w_size = 384
x_data = torch.from_numpy(util.smart_resize(face_img, (w_size, w_size))).permute([2, 0, 1]) / 256.0 - 0.5
x_data = x_data.to(device)
with torch.no_grad():
hs = self.model(x_data[None, ...])
heatmaps = F.interpolate(hs[-1], (H, W), mode="bilinear", align_corners=True).cpu().numpy()[0]
return heatmaps
def compute_peaks_from_heatmaps(self, heatmaps):
all_peaks = []
for part in range(heatmaps.shape[0]):
map_ori = heatmaps[part].copy()
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8)
if np.sum(binary) == 0:
continue
positions = np.where(binary > 0.5)
intensities = map_ori[positions]
mi = np.argmax(intensities)
y, x = positions[0][mi], positions[1][mi]
all_peaks.append([x, y])
return np.array(all_peaks)

View File

@@ -1,91 +0,0 @@
import cv2
import numpy as np
import torch
from scipy.ndimage.filters import gaussian_filter
from skimage.measure import label
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.model import handpose_model
class Hand(object):
def __init__(self, model_path):
self.model = handpose_model()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, oriImgRaw):
device = next(iter(self.model.parameters())).device
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize for x in scale_search]
wsize = 128
heatmap_avg = np.zeros((wsize, wsize, 22))
Hr, Wr, Cr = oriImgRaw.shape
oriImg = cv2.GaussianBlur(oriImgRaw, (0, 0), 0.8)
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = util.smart_resize(oriImg, (scale, scale))
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
data = data.to(device)
with torch.no_grad():
output = self.model(data).cpu().numpy()
# extract outputs, resize, and remove padding
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride)
heatmap = heatmap[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
heatmap = util.smart_resize(heatmap, (wsize, wsize))
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = util.npmax(map_ori)
y = int(float(y) * float(Hr) / float(wsize))
x = int(float(x) * float(Wr) / float(wsize))
all_peaks.append([x, y])
return np.array(all_peaks)
if __name__ == "__main__":
hand_estimation = Hand("../model/hand_pose_model.pth")
# test_image = '../images/hand.jpg'
test_image = "../images/hand.jpg"
oriImg = cv2.imread(test_image) # B,G,R order
peaks = hand_estimation(oriImg)
canvas = util.draw_handpose(oriImg, peaks, True)
cv2.imshow("", canvas)
cv2.waitKey(0)

View File

@@ -1,240 +0,0 @@
from collections import OrderedDict
import torch
import torch.nn as nn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if "pool" in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(("relu_" + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
class bodypose_model(nn.Module):
def __init__(self):
super(bodypose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv5_5_CPM_L1",
"conv5_5_CPM_L2",
"Mconv7_stage2_L1",
"Mconv7_stage2_L2",
"Mconv7_stage3_L1",
"Mconv7_stage3_L2",
"Mconv7_stage4_L1",
"Mconv7_stage4_L2",
"Mconv7_stage5_L1",
"Mconv7_stage5_L2",
"Mconv7_stage6_L1",
"Mconv7_stage6_L1",
]
blocks = {}
block0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3_CPM", [512, 256, 3, 1, 1]),
("conv4_4_CPM", [256, 128, 3, 1, 1]),
]
)
# Stage 1
block1_1 = OrderedDict(
[
("conv5_1_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L1", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L1", [512, 38, 1, 1, 0]),
]
)
block1_2 = OrderedDict(
[
("conv5_1_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L2", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L2", [512, 19, 1, 1, 0]),
]
)
blocks["block1_1"] = block1_1
blocks["block1_2"] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks["block%d_1" % i] = OrderedDict(
[
("Mconv1_stage%d_L1" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L1" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L1" % i, [128, 38, 1, 1, 0]),
]
)
blocks["block%d_2" % i] = OrderedDict(
[
("Mconv1_stage%d_L2" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L2" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L2" % i, [128, 19, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks["block1_1"]
self.model2_1 = blocks["block2_1"]
self.model3_1 = blocks["block3_1"]
self.model4_1 = blocks["block4_1"]
self.model5_1 = blocks["block5_1"]
self.model6_1 = blocks["block6_1"]
self.model1_2 = blocks["block1_2"]
self.model2_2 = blocks["block2_2"]
self.model3_2 = blocks["block3_2"]
self.model4_2 = blocks["block4_2"]
self.model5_2 = blocks["block5_2"]
self.model6_2 = blocks["block6_2"]
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class handpose_model(nn.Module):
def __init__(self):
super(handpose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv6_2_CPM",
"Mconv7_stage2",
"Mconv7_stage3",
"Mconv7_stage4",
"Mconv7_stage5",
"Mconv7_stage6",
]
# stage 1
block1_0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3", [512, 512, 3, 1, 1]),
("conv4_4", [512, 512, 3, 1, 1]),
("conv5_1", [512, 512, 3, 1, 1]),
("conv5_2", [512, 512, 3, 1, 1]),
("conv5_3_CPM", [512, 128, 3, 1, 1]),
]
)
block1_1 = OrderedDict([("conv6_1_CPM", [128, 512, 1, 1, 0]), ("conv6_2_CPM", [512, 22, 1, 1, 0])])
blocks = {}
blocks["block1_0"] = block1_0
blocks["block1_1"] = block1_1
# stage 2-6
for i in range(2, 7):
blocks["block%d" % i] = OrderedDict(
[
("Mconv1_stage%d" % i, [150, 128, 7, 1, 3]),
("Mconv2_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d" % i, [128, 22, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks["block1_0"]
self.model1_1 = blocks["block1_1"]
self.model2 = blocks["block2"]
self.model3 = blocks["block3"]
self.model4 = blocks["block4"]
self.model5 = blocks["block5"]
self.model6 = blocks["block6"]
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6

View File

@@ -1,436 +0,0 @@
import math
from typing import List, Tuple, Union
import cv2
import numpy as np
from invokeai.backend.bria.controlnet_aux.open_pose.body import BodyResult, Keypoint
eps = 0.01
def smart_resize(x, s):
Ht, Wt = s
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
def smart_resize_k(x, fx, fy):
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
Ht, Wt = Ho * fy, Wo * fx
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights[".".join(weights_name.split(".")[1:])]
return transfered_model_weights
def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray:
"""
Draw keypoints and limbs representing body pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose.
keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
H, W, C = canvas.shape
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for (k1_index, k2_index), color in zip(limbSeq, colors, strict=False):
keypoint1 = keypoints[k1_index - 1]
keypoint2 = keypoints[k2_index - 1]
if keypoint1 is None or keypoint2 is None:
continue
Y = np.array([keypoint1.x, keypoint2.x]) * float(W)
X = np.array([keypoint1.y, keypoint2.y]) * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])
for keypoint, color in zip(keypoints, colors, strict=False):
if keypoint is None:
continue
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1)
return canvas
def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
import matplotlib
"""
Draw keypoints and connections representing hand pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for ie, (e1, e2) in enumerate(edges):
k1 = keypoints[e1]
k2 = keypoints[e2]
if k1 is None or k2 is None:
continue
x1 = int(k1.x * W)
y1 = int(k1.y * H)
x2 = int(k2.x * W)
y2 = int(k2.y * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
thickness=2,
)
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
"""
Draw keypoints representing face pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]:
"""
Detect hands in the input body pose keypoints and calculate the bounding box for each hand.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left
corner of the bounding box, the width (height) of the bounding box, and
a boolean flag indicating whether the hand is a left hand (True) or a
right hand (False).
Notes:
- The width and height of the bounding boxes are equal since the network requires squared input.
- The minimum bounding box size is 20 pixels.
"""
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
left_shoulder = keypoints[5]
left_elbow = keypoints[6]
left_wrist = keypoints[7]
right_shoulder = keypoints[2]
right_elbow = keypoints[3]
right_wrist = keypoints[4]
# if any of three not detected
has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist))
has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist))
if not (has_left or has_right):
return []
hands = []
# left hand
if has_left:
hands.append([left_shoulder.x, left_shoulder.y, left_elbow.x, left_elbow.y, left_wrist.x, left_wrist.y, True])
# right hand
if has_right:
hands.append(
[right_shoulder.x, right_shoulder.y, right_elbow.x, right_elbow.y, right_wrist.x, right_wrist.y, False]
)
for x1, y1, x2, y2, x3, y3, is_left in hands:
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
# handRectangle.x -= handRectangle.width / 2.f;
# handRectangle.y -= handRectangle.height / 2.f;
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width
width2 = width
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append((int(x), int(y), int(width), is_left))
"""
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left.
"""
return detect_result
# Written by Lvmin
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]:
"""
Detect the face in the input body pose keypoints and calculate the bounding box for the face.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the
bounding box and the width (height) of the bounding box, or None if the
face is not detected or the bounding box width is less than 20 pixels.
Notes:
- The width and height of the bounding box are equal.
- The minimum bounding box size is 20 pixels.
"""
# left right eye ear 14 15 16 17
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
head = keypoints[0]
left_eye = keypoints[14]
right_eye = keypoints[15]
left_ear = keypoints[16]
right_ear = keypoints[17]
if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)):
return None
width = 0.0
x0, y0 = head.x, head.y
if left_eye is not None:
x1, y1 = left_eye.x, left_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if right_eye is not None:
x1, y1 = right_eye.x, right_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if left_ear is not None:
x1, y1 = left_ear.x, left_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
if right_ear is not None:
x1, y1 = right_ear.x, right_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
x, y = x0, y0
x -= width
y -= width
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width * 2
width2 = width * 2
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
if width >= 20:
return int(x), int(y), int(width)
else:
return None
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return i, j

View File

@@ -1,260 +0,0 @@
import os
import random
import cv2
import numpy as np
import torch
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), "ckpts")
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def make_noise_disk(H, W, C, F):
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
noise = noise[F : F + H, F : F + W]
noise -= np.min(noise)
noise /= np.max(noise)
if C == 1:
noise = noise[:, :, None]
return noise
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def min_max_norm(x):
x -= np.min(x)
x /= np.maximum(np.max(x), 1e-5)
return x
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def img2mask(img, H, W, low=10, high=90):
assert img.ndim == 3 or img.ndim == 2
assert img.dtype == np.uint8
if img.ndim == 3:
y = img[:, :, random.randrange(0, img.shape[2])]
else:
y = img
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
if random.uniform(0, 1) < 0.5:
y = 255 - y
return y < np.percentile(y, random.randrange(low, high))
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[120, 120, 120],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
]

View File

@@ -1,559 +0,0 @@
# type: ignore
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.controlnet import zero_module
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.outputs import BaseOutput
from invokeai.backend.bria.transformer_bria import (
EmbedND,
FluxSingleTransformerBlock,
FluxTransformerBlock,
TimestepProjEmbeddings,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
BRIA_CONTROL_MODES = Literal["depth", "canny", "colorgrid", "recolor", "tile", "pose"]
class BriaControlModes(Enum):
depth = 0
canny = 1
colorgrid = 2
recolor = 3
tile = 4
pose = 5
@dataclass
class BriaControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
controlnet_single_block_samples: Tuple[torch.Tensor]
class BriaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Optional[List[int]] = None,
num_mode: int = None,
rope_theta: int = 10000,
time_theta: int = 10000,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
# self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
axes_dims_rope = [16, 56, 56] if axes_dims_rope is None else axes_dims_rope
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
# text_time_guidance_cls = (
# CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
# )
# self.time_text_embed = text_time_guidance_cls(
# embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
# )
self.time_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim, time_theta=time_theta)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_single_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_transformer_blocks)):
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.union = num_mode is not None and num_mode > 0
if self.union:
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self):
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(
cls,
transformer,
num_layers: int = 4,
num_single_layers: int = 10,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
load_weights_from_transformer=True,
):
config = transformer.config
config["num_layers"] = num_layers
config["num_single_layers"] = num_single_layers
config["attention_head_dim"] = attention_head_dim
config["num_attention_heads"] = num_attention_heads
controlnet = cls(**config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
controlnet.single_transformer_blocks.load_state_dict(
transformer.single_transformer_blocks.state_dict(), strict=False
)
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
return controlnet
def forward(
self,
hidden_states: torch.Tensor,
controlnet_cond: torch.Tensor,
controlnet_mode: torch.Tensor = None,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
controlnet_cond (`torch.Tensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
controlnet_mode (`torch.Tensor`):
The mode tensor of shape `(batch_size, 1)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if guidance is not None:
print("guidance is not supported in BriaControlNetModel")
if pooled_projections is not None:
print("pooled_projections is not supported in BriaControlNetModel")
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
# Convert controlnet_cond to the same dtype as the model weights
controlnet_cond = controlnet_cond.to(dtype=self.controlnet_x_embedder.weight.dtype)
# add
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
timestep = timestep.to(hidden_states.dtype) # Original code was * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) # Original code was * 1000
else:
guidance = None
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
if self.union:
# union mode
if controlnet_mode is None:
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
# Validate controlnet_mode values are within the valid range
if torch.any(controlnet_mode < 0) or torch.any(controlnet_mode >= self.num_mode):
raise ValueError(
f"`controlnet_mode` values must be in range [0, {self.num_mode - 1}], but got values outside this range"
)
# union mode emb
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
if controlnet_mode_emb.shape[0] < encoder_hidden_states.shape[0]: # duplicate mode emb for each batch
controlnet_mode_emb = controlnet_mode_emb.expand(
encoder_hidden_states.shape[0], 1, encoder_hidden_states.shape[2]
)
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
txt_ids = torch.cat((txt_ids[0:1, :], txt_ids), dim=0)
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
block_samples = ()
for _, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
block_samples = block_samples + (hidden_states,)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
single_block_samples = ()
for _, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
# controlnet block
controlnet_block_samples = ()
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks, strict=False):
block_sample = controlnet_block(block_sample)
controlnet_block_samples = controlnet_block_samples + (block_sample,)
controlnet_single_block_samples = ()
for single_block_sample, controlnet_block in zip(
single_block_samples, self.controlnet_single_blocks, strict=False
):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
# scaling
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
controlnet_single_block_samples = (
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)
return BriaControlNetOutput(
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)
class BriaMultiControlNetModel(ModelMixin):
r"""
`BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
compatible with `BriaControlNetModel`.
Args:
controlnets (`List[BriaControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. You must set multiple
`BriaControlNetModel` as a list.
"""
def __init__(self, controlnets):
super().__init__()
self.nets = nn.ModuleList(controlnets)
def forward(
self,
hidden_states: torch.FloatTensor,
controlnet_cond: List[torch.tensor],
controlnet_mode: List[torch.tensor],
conditioning_scale: List[float],
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[BriaControlNetOutput, Tuple]:
# ControlNet-Union with multiple conditions
# only load one ControlNet for saving memories
if len(self.nets) == 1 and self.nets[0].union:
controlnet = self.nets[0]
for i, (image, mode, scale) in enumerate(
zip(controlnet_cond, controlnet_mode, conditioning_scale, strict=False)
):
block_samples, single_block_samples = controlnet(
hidden_states=hidden_states,
controlnet_cond=image,
controlnet_mode=mode[:, None],
conditioning_scale=scale,
timestep=timestep,
guidance=guidance,
pooled_projections=pooled_projections,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=img_ids,
joint_attention_kwargs=joint_attention_kwargs,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
control_single_block_samples = single_block_samples
else:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(
control_block_samples, block_samples, strict=False
)
]
control_single_block_samples = [
control_single_block_sample + block_sample
for control_single_block_sample, block_sample in zip(
control_single_block_samples, single_block_samples, strict=False
)
]
# Regular Multi-ControlNets
# load all ControlNets into memories
else:
for i, (image, mode, scale, controlnet) in enumerate(
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets, strict=False)
):
block_samples, single_block_samples = controlnet(
hidden_states=hidden_states,
controlnet_cond=image,
controlnet_mode=mode[:, None],
conditioning_scale=scale,
timestep=timestep,
guidance=guidance,
pooled_projections=pooled_projections,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=img_ids,
joint_attention_kwargs=joint_attention_kwargs,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
control_single_block_samples = single_block_samples
else:
if block_samples is not None and control_block_samples is not None:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(
control_block_samples, block_samples, strict=False
)
]
if single_block_samples is not None and control_single_block_samples is not None:
control_single_block_samples = [
control_single_block_sample + block_sample
for control_single_block_sample, block_sample in zip(
control_single_block_samples, single_block_samples, strict=False
)
]
return control_block_samples, control_single_block_samples

View File

@@ -1,68 +0,0 @@
from typing import List, Tuple
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from PIL import Image
@torch.no_grad()
def prepare_control_images(
vae: AutoencoderKL,
control_images: list[Image.Image],
control_modes: list[int],
width: int,
height: int,
device: torch.device,
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
tensored_control_images = []
tensored_control_modes = []
for idx, control_image_ in enumerate(control_images):
tensored_control_image = _prepare_image(
image=control_image_,
width=width,
height=height,
device=device,
dtype=vae.dtype,
)
height, width = tensored_control_image.shape[-2:]
# vae encode
tensored_control_image = vae.encode(tensored_control_image).latent_dist.sample()
tensored_control_image = (tensored_control_image) * vae.config.scaling_factor
# pack
height_control_image, width_control_image = tensored_control_image.shape[2:]
tensored_control_image = _pack_latents(
tensored_control_image,
height_control_image,
width_control_image,
)
tensored_control_images.append(tensored_control_image)
tensored_control_modes.append(
torch.tensor(control_modes[idx]).expand(tensored_control_image.shape[0]).to(device, dtype=torch.long)
)
return tensored_control_images, tensored_control_modes
def _prepare_image(
image: Image.Image,
width: int,
height: int,
device: torch.device,
dtype: torch.dtype,
) -> torch.Tensor:
image = image.convert("RGB")
image = VaeImageProcessor(vae_scale_factor=16).preprocess(image, height=height, width=width)
image = image.repeat_interleave(1, dim=0)
image = image.to(device=device, dtype=dtype)
return image
def _pack_latents(latents, height, width):
latents = latents.view(1, 4, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(1, (height // 2) * (width // 2), 16)
return latents

View File

@@ -1,636 +0,0 @@
from typing import Any, Callable, Dict, List, Optional, Union
import diffusers
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.backend.bria.bria_utils import get_original_sigmas, get_t5_prompt_embeds, is_ng_none
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusion3Pipeline
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> image = pipe(prompt).images[0]
>>> image.save("sd3.png")
```
"""
T5_PRECISION = torch.float16
"""
Based on FluxPipeline with several changes:
- no pooled embeddings
- We use zero padding for prompts
- No guidance embedding since this is not a distilled version
"""
class BriaPipeline(FluxPipeline):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. Stable Diffusion 3 uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
"""
def __init__(
self,
transformer: BriaTransformer2DModel,
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: T5TokenizerFast,
):
self.register_modules(
vae=vae,
transformer=transformer,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
# TODO - why different than offical flux (-1)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = 64 # due to patchify=> 128,128 => res of 1k,1k
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
if self.vae.config.shift_factor is None:
self.vae.config.shift_factor = 0
self.vae.to(dtype=torch.float32)
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 128,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = get_t5_prompt_embeds(
self.tokenizer,
self.text_encoder,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=self.transformer.dtype)
if do_classifier_free_guidance and negative_prompt_embeds is None:
if not is_ng_none(negative_prompt):
negative_prompt = (
batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
)
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = get_t5_prompt_embeds(
self.tokenizer,
self.text_encoder,
prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=self.transformer.dtype)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
if self.text_encoder is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, negative_prompt_embeds, text_ids
@property
def guidance_scale(self):
return self._guidance_scale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 30,
timesteps: List[int] = None,
guidance_scale: float = 5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
max_sequence_length: int = 128,
clip_value: Union[None, float] = None,
normalize: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
callback_on_step_end_tensor_inputs = (
["latents"] if callback_on_step_end_tensor_inputs is None else callback_on_step_end_tensor_inputs
)
self.check_inputs(
prompt=prompt,
height=height,
width=width,
prompt_embeds=prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
(prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if (
isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler)
and self.scheduler.config["use_dynamic_shifting"]
):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1] # Shift by height - Why just height?
print(f"Using dynamic shift in pipeline with sequence length {image_seq_len}")
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
else:
# 4. Prepare timesteps
# Sample from training sigmas
if isinstance(self.scheduler, DDIMScheduler) or isinstance(self.scheduler, EulerAncestralDiscreteScheduler):
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, None, None
)
else:
sigmas = get_original_sigmas(
num_train_timesteps=self.scheduler.config.num_train_timesteps,
num_inference_steps=num_inference_steps,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# Supprot different diffusers versions
if diffusers.__version__ >= "0.32.0":
latent_image_ids = latent_image_ids[0]
text_ids = text_ids[0]
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# This is predicts "v" from flow-matching or eps from diffusion
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
txt_ids=text_ids,
img_ids=latent_image_ids,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
cfg_noise_pred_text = noise_pred_text.std()
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if normalize:
noise_pred = noise_pred * (0.7 * (cfg_noise_pred_text / noise_pred.std())) + 0.3 * noise_pred
if clip_value:
assert clip_value > 0
noise_pred = noise_pred.clip(-clip_value, clip_value)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents.to(dtype=torch.float32) / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
def to(self, *args, **kwargs):
DiffusionPipeline.to(self, *args, **kwargs)
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
for block in self.text_encoder.encoder.block:
block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
if self.vae.config.shift_factor == 0 and self.vae.dtype != torch.float32:
self.vae.to(dtype=torch.float32)
return self
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
@staticmethod
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
height = height // vae_scale_factor
width = width // vae_scale_factor
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
return latents
@staticmethod
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)

View File

@@ -1,671 +0,0 @@
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Union
import diffusers
import numpy as np
import torch
from diffusers import AutoencoderKL # Waiting for diffusers udpdate
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import USE_PEFT_BACKEND, logging
from diffusers.utils.peft_utils import scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.backend.bria.bria_utils import get_original_sigmas, get_t5_prompt_embeds, is_ng_none
from invokeai.backend.bria.controlnet_bria import BriaControlNetModel
from invokeai.backend.bria.pipeline_bria import BriaPipeline
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class BriaControlNetPipeline(BriaPipeline):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. Stable Diffusion 3 uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
def __init__( # EYAL - removed clip text encoder + tokenizer
self,
transformer: BriaTransformer2DModel,
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: T5TokenizerFast,
controlnet: BriaControlNetModel,
):
super().__init__(
transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
)
self.register_modules(controlnet=controlnet)
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if isinstance(image, torch.Tensor):
pass
else:
image = self.image_processor.preprocess(image, height=height, width=width)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
num_channels_latents = self.transformer.config.in_channels // 4
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
)
height, width = control_image.shape[-2:]
# vae encode
control_image = self.vae.encode(control_image).latent_dist.sample()
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# pack
height_control_image, width_control_image = control_image.shape[2:]
control_image = self._pack_latents(
control_image,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
# Here we ensure that `control_mode` has the same length as the control_image.
if control_mode is not None:
if not isinstance(control_mode, int):
raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`")
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
return control_image, control_mode
def prepare_multi_control(
self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode
):
num_channels_latents = self.transformer.config.in_channels // 4
control_images = []
for _, control_image_ in enumerate(control_image):
control_image_ = self.prepare_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
)
height, width = control_image_.shape[-2:]
# vae encode
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# pack
height_control_image, width_control_image = control_image_.shape[2:]
control_image_ = self._pack_latents(
control_image_,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
control_images.append(control_image_)
control_image = control_images
# Here we ensure that `control_mode` has the same length as the control_image.
if isinstance(control_mode, list) and len(control_mode) != len(control_image):
raise ValueError(
"For Multi-ControlNet, `control_mode` must be a list of the same "
+ " length as the number of controlnets (control images) specified"
)
if not isinstance(control_mode, list):
control_mode = [control_mode] * len(control_image)
# set control mode
control_modes = []
for cmode in control_mode:
if cmode is None:
cmode = -1
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
control_modes.append(control_mode)
control_mode = control_modes
return control_image, control_mode
def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end, strict=False)
]
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps)
return controlnet_keep
def get_control_start_end(self, control_guidance_start, control_guidance_end):
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = 1 # TODO - why is this 1?
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
return control_guidance_start, control_guidance_end
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 30,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
control_image: Optional[PipelineImageInput] = None,
control_mode: Optional[Union[int, List[int]]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
latent_image_ids: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
text_ids: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
max_sequence_length: int = 128,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
control_guidance_start, control_guidance_end = self.get_control_start_end(
control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
)
# 1. Check inputs. Raise error if not correct
callback_on_step_end_tensor_inputs = (
["latents"] if callback_on_step_end_tensor_inputs is None else callback_on_step_end_tensor_inputs
)
self.check_inputs(
prompt,
height,
width,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
device = self._execution_device
# 4. Prepare timesteps
if (
isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler)
and self.scheduler.config["use_dynamic_shifting"]
):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
# Determine image sequence length
if control_image is not None:
if isinstance(control_image, list):
image_seq_len = control_image[0].shape[1]
else:
image_seq_len = control_image.shape[1]
else:
# Use latents sequence length when no control image is provided
image_seq_len = latents.shape[1]
print(f"Using dynamic shift in pipeline with sequence length {image_seq_len}")
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps=None,
sigmas=sigmas,
mu=mu,
)
else:
# 5. Prepare timesteps
sigmas = get_original_sigmas(
num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 6. Create tensor stating which controlnets to keep
if control_image is not None:
controlnet_keep = self.get_controlnet_keep(
timesteps=timesteps,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
)
if diffusers.__version__ >= "0.32.0":
latent_image_ids = latent_image_ids[0]
text_ids = text_ids[0]
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# EYAL - added the CFG loop
# 7. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# Handling ControlNet
if control_image is not None:
if isinstance(controlnet_keep[i], list):
if isinstance(controlnet_conditioning_scale, list):
cond_scale = controlnet_conditioning_scale
else:
cond_scale = [
c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i], strict=False)
]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
hidden_states=latents,
controlnet_cond=control_image,
controlnet_mode=control_mode,
conditioning_scale=cond_scale,
timestep=timestep,
# guidance=guidance,
# pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)
else:
controlnet_block_samples, controlnet_single_block_samples = None, None
# This is predicts "v" from flow-matching
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
txt_ids=text_ids,
img_ids=latent_image_ids,
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def encode_prompt(
prompt: Union[str, List[str]],
tokenizer: T5TokenizerFast,
text_encoder: T5EncoderModel,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 128,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
device = device or torch.device("cuda")
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
# dynamically adjust the LoRA scale
if text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(text_encoder, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
dtype = text_encoder.dtype if text_encoder is not None else torch.float32
if prompt_embeds is None:
prompt_embeds = get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=dtype)
if negative_prompt_embeds is None:
if not is_ng_none(negative_prompt):
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=dtype)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
if text_encoder is not None:
if USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(text_encoder, lora_scale)
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, negative_prompt_embeds, text_ids
def prepare_latents(
batch_size: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
generator: torch.Generator,
latents: Optional[torch.FloatTensor] = None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
vae_scale_factor = 16
height = 2 * (int(height) // vae_scale_factor)
width = 2 * (int(width) // vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents

View File

@@ -1,322 +0,0 @@
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from invokeai.backend.bria.bria_utils import FluxPosEmbed as EmbedND
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Timesteps(nn.Module):
def __init__(
self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1, time_theta=10000
):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
self.time_theta = time_theta
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
max_period=self.time_theta,
)
return t_emb
class TimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, time_theta):
super().__init__()
self.time_proj = Timesteps(
num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, time_theta=time_theta
)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D)
return timesteps_emb
"""
Based on FluxPipeline with several changes:
- no pooled embeddings
- We use zero padding for prompts
- No guidance embedding since this is not a distilled version
"""
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Parameters:
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = None,
guidance_embeds: bool = False,
axes_dims_rope: Optional[List[int]] = None,
rope_theta=10000,
time_theta=10000,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
axes_dims_rope = [16, 56, 56] if axes_dims_rope is None else axes_dims_rope
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
self.time_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim, time_theta=time_theta)
# if pooled_projection_dim:
# self.pooled_text_embed = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim=self.inner_dim, act_fn="silu")
if guidance_embeds:
self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype)
if guidance is not None:
guidance = guidance.to(hidden_states.dtype)
else:
guidance = None
# temb = (
# self.time_text_embed(timestep, pooled_projections)
# if guidance is None
# else self.time_text_embed(timestep, guidance, pooled_projections)
# )
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
# if pooled_projections:
# temb+=self.pooled_text_embed(pooled_projections)
if guidance:
temb += self.guidance_embed(guidance, dtype=hidden_states.dtype)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if len(txt_ids.shape) == 2:
ids = torch.cat((txt_ids, img_ids), dim=0)
else:
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pos_embed(ids)
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -112,7 +112,7 @@ def denoise(
)
# Slice prediction to only include the main image tokens
if img_input_ids is not None:
if img_cond_seq is not None:
pred = pred[:, :original_seq_len]
step_cfg_scale = cfg_scale[step_index]
@@ -125,9 +125,26 @@ def denoise(
if neg_regional_prompting_extension is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
# For negative prediction with Kontext, we need to include the reference images
# to maintain consistency between positive and negative passes. Without this,
# CFG would create artifacts as the attention mechanism would see different
# spatial structures in each pass
neg_img_input = img
neg_img_input_ids = img_ids
# Add channel-wise conditioning for negative pass if present
if img_cond is not None:
neg_img_input = torch.cat((neg_img_input, img_cond), dim=-1)
# Add sequence-wise conditioning (Kontext) for negative pass
# This ensures reference images are processed consistently
if img_cond_seq is not None:
neg_img_input = torch.cat((neg_img_input, img_cond_seq), dim=1)
neg_img_input_ids = torch.cat((neg_img_input_ids, img_cond_seq_ids), dim=1)
neg_pred = model(
img=img,
img_ids=img_ids,
img=neg_img_input,
img_ids=neg_img_input_ids,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
@@ -140,6 +157,10 @@ def denoise(
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
# Slice negative prediction to match main image tokens
if img_cond_seq is not None:
neg_pred = neg_pred[:, :original_seq_len]
pred = neg_pred + step_cfg_scale * (pred - neg_pred)
preview_img = img - t_curr * pred

View File

@@ -1,15 +1,14 @@
import einops
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from einops import repeat
from PIL import Image
from invokeai.app.invocations.fields import FluxKontextConditioningField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.sampling_utils import pack
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
from invokeai.backend.util.devices import TorchDevice
def generate_img_ids_with_offset(
@@ -19,8 +18,10 @@ def generate_img_ids_with_offset(
device: torch.device,
dtype: torch.dtype,
idx_offset: int = 0,
h_offset: int = 0,
w_offset: int = 0,
) -> torch.Tensor:
"""Generate tensor of image position ids with an optional offset.
"""Generate tensor of image position ids with optional index and spatial offsets.
Args:
latent_height (int): Height of image in latent space (after packing, this becomes h//2).
@@ -28,7 +29,9 @@ def generate_img_ids_with_offset(
batch_size (int): Number of images in the batch.
device (torch.device): Device to create tensors on.
dtype (torch.dtype): Data type for the tensors.
idx_offset (int): Offset to add to the first dimension of the image ids.
idx_offset (int): Offset to add to the first dimension of the image ids (default: 0).
h_offset (int): Spatial offset for height/y-coordinates in latent space (default: 0).
w_offset (int): Spatial offset for width/x-coordinates in latent space (default: 0).
Returns:
torch.Tensor: Image position ids with shape [batch_size, (latent_height//2 * latent_width//2), 3].
@@ -42,6 +45,10 @@ def generate_img_ids_with_offset(
packed_height = latent_height // 2
packed_width = latent_width // 2
# Convert spatial offsets from latent space to packed space
packed_h_offset = h_offset // 2
packed_w_offset = w_offset // 2
# Create base tensor for position IDs with shape [packed_height, packed_width, 3]
# The 3 channels represent: [batch_offset, y_position, x_position]
img_ids = torch.zeros(packed_height, packed_width, 3, device=device, dtype=dtype)
@@ -49,13 +56,13 @@ def generate_img_ids_with_offset(
# Set the batch offset for all positions
img_ids[..., 0] = idx_offset
# Create y-coordinate indices (vertical positions)
y_indices = torch.arange(packed_height, device=device, dtype=dtype)
# Create y-coordinate indices (vertical positions) with spatial offset
y_indices = torch.arange(packed_height, device=device, dtype=dtype) + packed_h_offset
# Broadcast y_indices to match the spatial dimensions [packed_height, 1]
img_ids[..., 1] = y_indices[:, None]
# Create x-coordinate indices (horizontal positions)
x_indices = torch.arange(packed_width, device=device, dtype=dtype)
# Create x-coordinate indices (horizontal positions) with spatial offset
x_indices = torch.arange(packed_width, device=device, dtype=dtype) + packed_w_offset
# Broadcast x_indices to match the spatial dimensions [1, packed_width]
img_ids[..., 2] = x_indices[None, :]
@@ -73,14 +80,14 @@ class KontextExtension:
def __init__(
self,
kontext_conditioning: FluxKontextConditioningField,
kontext_conditioning: list[FluxKontextConditioningField],
context: InvocationContext,
vae_field: VAEField,
device: torch.device,
dtype: torch.dtype,
):
"""
Initializes the KontextExtension, pre-processing the reference image
Initializes the KontextExtension, pre-processing the reference images
into latents and positional IDs.
"""
self._context = context
@@ -93,54 +100,116 @@ class KontextExtension:
self.kontext_latents, self.kontext_ids = self._prepare_kontext()
def _prepare_kontext(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Encodes the reference image and prepares its latents and IDs."""
image = self._context.images.get_pil(self.kontext_conditioning.image.image_name)
"""Encodes the reference images and prepares their concatenated latents and IDs with spatial tiling."""
all_latents = []
all_ids = []
# Calculate aspect ratio of input image
width, height = image.size
aspect_ratio = width / height
# Track cumulative dimensions for spatial tiling
# These track the running extent of the virtual canvas in latent space
canvas_h = 0 # Running canvas height
canvas_w = 0 # Running canvas width
# Find the closest preferred resolution by aspect ratio
_, target_width, target_height = min(
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS), key=lambda x: x[0]
)
# Apply BFL's scaling formula
# This ensures compatibility with the model's training
scaled_width = 2 * int(target_width / 16)
scaled_height = 2 * int(target_height / 16)
# Resize to the exact resolution used during training
image = image.convert("RGB")
final_width = 8 * scaled_width
final_height = 8 * scaled_height
image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
# Convert to tensor with same normalization as BFL
image_np = np.array(image)
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0
image_tensor = einops.rearrange(image_tensor, "h w c -> 1 c h w")
image_tensor = image_tensor.to(self._device)
# Continue with VAE encoding
vae_info = self._context.models.load(self._vae_field.vae)
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
# Extract tensor dimensions
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
for idx, kontext_field in enumerate(self.kontext_conditioning):
image = self._context.images.get_pil(kontext_field.image.image_name)
# Pack the latents and generate IDs
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
kontext_ids = generate_img_ids_with_offset(
latent_height=latent_height,
latent_width=latent_width,
batch_size=batch_size,
device=self._device,
dtype=self._dtype,
idx_offset=1,
)
# Convert to RGB
image = image.convert("RGB")
return kontext_latents_packed, kontext_ids
# Convert to tensor using torchvision transforms for consistency
transformation = T.Compose(
[
T.ToTensor(), # Converts PIL image to tensor and scales to [0, 1]
]
)
image_tensor = transformation(image)
# Convert from [0, 1] to [-1, 1] range expected by VAE
image_tensor = image_tensor * 2.0 - 1.0
image_tensor = image_tensor.unsqueeze(0) # Add batch dimension
image_tensor = image_tensor.to(self._device)
# Continue with VAE encoding
# Don't sample from the distribution for reference images - use the mean (matching ComfyUI)
# Estimate working memory for encode operation (50% of decode memory requirements)
img_h = image_tensor.shape[-2]
img_w = image_tensor.shape[-1]
element_size = next(vae_info.model.parameters()).element_size()
scaling_constant = 1100 # 50% of decode scaling constant (2200)
estimated_working_memory = int(img_h * img_w * element_size * scaling_constant)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
# Use sample=False to get the distribution mean without noise
kontext_latents_unpacked = vae.encode(image_tensor, sample=False)
TorchDevice.empty_cache()
# Extract tensor dimensions
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
# Pad latents to be compatible with patch_size=2
# This ensures dimensions are even for the pack() function
pad_h = (2 - latent_height % 2) % 2
pad_w = (2 - latent_width % 2) % 2
if pad_h > 0 or pad_w > 0:
kontext_latents_unpacked = F.pad(kontext_latents_unpacked, (0, pad_w, 0, pad_h), mode="circular")
# Update dimensions after padding
_, _, latent_height, latent_width = kontext_latents_unpacked.shape
# Pack the latents
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
# Determine spatial offsets for this reference image
h_offset = 0
w_offset = 0
if idx > 0: # First image starts at (0, 0)
# Calculate potential canvas dimensions for each tiling option
# Option 1: Tile vertically (below existing content)
potential_h_vertical = canvas_h + latent_height
# Option 2: Tile horizontally (to the right of existing content)
potential_w_horizontal = canvas_w + latent_width
# Choose arrangement that minimizes the maximum dimension
# This keeps the canvas closer to square, optimizing attention computation
if potential_h_vertical > potential_w_horizontal:
# Tile horizontally (to the right of existing images)
w_offset = canvas_w
canvas_w = canvas_w + latent_width
canvas_h = max(canvas_h, latent_height)
else:
# Tile vertically (below existing images)
h_offset = canvas_h
canvas_h = canvas_h + latent_height
canvas_w = max(canvas_w, latent_width)
else:
# First image - just set canvas dimensions
canvas_h = latent_height
canvas_w = latent_width
# Generate IDs with both index offset and spatial offsets
kontext_ids = generate_img_ids_with_offset(
latent_height=latent_height,
latent_width=latent_width,
batch_size=batch_size,
device=self._device,
dtype=self._dtype,
idx_offset=1, # All reference images use index=1 (matching ComfyUI implementation)
h_offset=h_offset,
w_offset=w_offset,
)
all_latents.append(kontext_latents_packed)
all_ids.append(kontext_ids)
# Concatenate all latents and IDs along the sequence dimension
concatenated_latents = torch.cat(all_latents, dim=1) # Concatenate along sequence dimension
concatenated_ids = torch.cat(all_ids, dim=1) # Concatenate along sequence dimension
return concatenated_latents, concatenated_ids
def ensure_batch_size(self, target_batch_size: int) -> None:
"""Ensures the kontext latents and IDs match the target batch size by repeating if necessary."""

View File

@@ -0,0 +1,304 @@
# This file is vendored from https://github.com/ShieldMnt/invisible-watermark
#
# `invisible-watermark` is MIT licensed as of August 23, 2025, when the code was copied into this repo.
#
# Why we vendored it in:
# `invisible-watermark` has a dependency on `opencv-python`, which conflicts with Invoke's dependency on
# `opencv-contrib-python`. It's easier to copy the code over than complicate the installation process by
# requiring an extra post-install step of removing `opencv-python` and installing `opencv-contrib-python`.
import struct
import uuid
import base64
import cv2
import numpy as np
import pywt
class WatermarkEncoder(object):
def __init__(self, content=b""):
seq = np.array([n for n in content], dtype=np.uint8)
self._watermarks = list(np.unpackbits(seq))
self._wmLen = len(self._watermarks)
self._wmType = "bytes"
def set_by_ipv4(self, addr):
bits = []
ips = addr.split(".")
for ip in ips:
bits += list(np.unpackbits(np.array([ip % 255], dtype=np.uint8)))
self._watermarks = bits
self._wmLen = len(self._watermarks)
self._wmType = "ipv4"
assert self._wmLen == 32
def set_by_uuid(self, uid):
u = uuid.UUID(uid)
self._wmType = "uuid"
seq = np.array([n for n in u.bytes], dtype=np.uint8)
self._watermarks = list(np.unpackbits(seq))
self._wmLen = len(self._watermarks)
def set_by_bytes(self, content):
self._wmType = "bytes"
seq = np.array([n for n in content], dtype=np.uint8)
self._watermarks = list(np.unpackbits(seq))
self._wmLen = len(self._watermarks)
def set_by_b16(self, b16):
content = base64.b16decode(b16)
self.set_by_bytes(content)
self._wmType = "b16"
def set_by_bits(self, bits=[]):
self._watermarks = [int(bit) % 2 for bit in bits]
self._wmLen = len(self._watermarks)
self._wmType = "bits"
def set_watermark(self, wmType="bytes", content=""):
if wmType == "ipv4":
self.set_by_ipv4(content)
elif wmType == "uuid":
self.set_by_uuid(content)
elif wmType == "bits":
self.set_by_bits(content)
elif wmType == "bytes":
self.set_by_bytes(content)
elif wmType == "b16":
self.set_by_b16(content)
else:
raise NameError("%s is not supported" % wmType)
def get_length(self):
return self._wmLen
# @classmethod
# def loadModel(cls):
# RivaWatermark.loadModel()
def encode(self, cv2Image, method="dwtDct", **configs):
(r, c, channels) = cv2Image.shape
if r * c < 256 * 256:
raise RuntimeError("image too small, should be larger than 256x256")
if method == "dwtDct":
embed = EmbedMaxDct(self._watermarks, wmLen=self._wmLen, **configs)
return embed.encode(cv2Image)
# elif method == 'dwtDctSvd':
# embed = EmbedDwtDctSvd(self._watermarks, wmLen=self._wmLen, **configs)
# return embed.encode(cv2Image)
# elif method == 'rivaGan':
# embed = RivaWatermark(self._watermarks, self._wmLen)
# return embed.encode(cv2Image)
else:
raise NameError("%s is not supported" % method)
class WatermarkDecoder(object):
def __init__(self, wm_type="bytes", length=0):
self._wmType = wm_type
if wm_type == "ipv4":
self._wmLen = 32
elif wm_type == "uuid":
self._wmLen = 128
elif wm_type == "bytes":
self._wmLen = length
elif wm_type == "bits":
self._wmLen = length
elif wm_type == "b16":
self._wmLen = length
else:
raise NameError("%s is unsupported" % wm_type)
def reconstruct_ipv4(self, bits):
ips = [str(ip) for ip in list(np.packbits(bits))]
return ".".join(ips)
def reconstruct_uuid(self, bits):
nums = np.packbits(bits)
bstr = b""
for i in range(16):
bstr += struct.pack(">B", nums[i])
return str(uuid.UUID(bytes=bstr))
def reconstruct_bits(self, bits):
# return ''.join([str(b) for b in bits])
return bits
def reconstruct_b16(self, bits):
bstr = self.reconstruct_bytes(bits)
return base64.b16encode(bstr)
def reconstruct_bytes(self, bits):
nums = np.packbits(bits)
bstr = b""
for i in range(self._wmLen // 8):
bstr += struct.pack(">B", nums[i])
return bstr
def reconstruct(self, bits):
if len(bits) != self._wmLen:
raise RuntimeError("bits are not matched with watermark length")
if self._wmType == "ipv4":
return self.reconstruct_ipv4(bits)
elif self._wmType == "uuid":
return self.reconstruct_uuid(bits)
elif self._wmType == "bits":
return self.reconstruct_bits(bits)
elif self._wmType == "b16":
return self.reconstruct_b16(bits)
else:
return self.reconstruct_bytes(bits)
def decode(self, cv2Image, method="dwtDct", **configs):
(r, c, channels) = cv2Image.shape
if r * c < 256 * 256:
raise RuntimeError("image too small, should be larger than 256x256")
bits = []
if method == "dwtDct":
embed = EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
bits = embed.decode(cv2Image)
# elif method == 'dwtDctSvd':
# embed = EmbedDwtDctSvd(watermarks=[], wmLen=self._wmLen, **configs)
# bits = embed.decode(cv2Image)
# elif method == 'rivaGan':
# embed = RivaWatermark(watermarks=[], wmLen=self._wmLen, **configs)
# bits = embed.decode(cv2Image)
else:
raise NameError("%s is not supported" % method)
return self.reconstruct(bits)
# @classmethod
# def loadModel(cls):
# RivaWatermark.loadModel()
class EmbedMaxDct(object):
def __init__(self, watermarks=[], wmLen=8, scales=[0, 36, 36], block=4):
self._watermarks = watermarks
self._wmLen = wmLen
self._scales = scales
self._block = block
def encode(self, bgr):
(row, col, channels) = bgr.shape
yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
for channel in range(2):
if self._scales[channel] <= 0:
continue
ca1, (h1, v1, d1) = pywt.dwt2(yuv[: row // 4 * 4, : col // 4 * 4, channel], "haar")
self.encode_frame(ca1, self._scales[channel])
yuv[: row // 4 * 4, : col // 4 * 4, channel] = pywt.idwt2((ca1, (v1, h1, d1)), "haar")
bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
return bgr_encoded
def decode(self, bgr):
(row, col, channels) = bgr.shape
yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
scores = [[] for i in range(self._wmLen)]
for channel in range(2):
if self._scales[channel] <= 0:
continue
ca1, (h1, v1, d1) = pywt.dwt2(yuv[: row // 4 * 4, : col // 4 * 4, channel], "haar")
scores = self.decode_frame(ca1, self._scales[channel], scores)
avgScores = list(map(lambda l: np.array(l).mean(), scores))
bits = np.array(avgScores) * 255 > 127
return bits
def decode_frame(self, frame, scale, scores):
(row, col) = frame.shape
num = 0
for i in range(row // self._block):
for j in range(col // self._block):
block = frame[
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
]
score = self.infer_dct_matrix(block, scale)
# score = self.infer_dct_svd(block, scale)
wmBit = num % self._wmLen
scores[wmBit].append(score)
num = num + 1
return scores
def diffuse_dct_svd(self, block, wmBit, scale):
u, s, v = np.linalg.svd(cv2.dct(block))
s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
def infer_dct_svd(self, block, scale):
u, s, v = np.linalg.svd(cv2.dct(block))
score = 0
score = int((s[0] % scale) > scale * 0.5)
return score
if score >= 0.5:
return 1.0
else:
return 0.0
def diffuse_dct_matrix(self, block, wmBit, scale):
pos = np.argmax(abs(block.flatten()[1:])) + 1
i, j = pos // self._block, pos % self._block
val = block[i][j]
if val >= 0.0:
block[i][j] = (val // scale + 0.25 + 0.5 * wmBit) * scale
else:
val = abs(val)
block[i][j] = -1.0 * (val // scale + 0.25 + 0.5 * wmBit) * scale
return block
def infer_dct_matrix(self, block, scale):
pos = np.argmax(abs(block.flatten()[1:])) + 1
i, j = pos // self._block, pos % self._block
val = block[i][j]
if val < 0:
val = abs(val)
if (val % scale) > 0.5 * scale:
return 1
else:
return 0
def encode_frame(self, frame, scale):
"""
frame is a matrix (M, N)
we get K (watermark bits size) blocks (self._block x self._block)
For i-th block, we encode watermark[i] bit into it
"""
(row, col) = frame.shape
num = 0
for i in range(row // self._block):
for j in range(col // self._block):
block = frame[
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
]
wmBit = self._watermarks[(num % self._wmLen)]
diffusedBlock = self.diffuse_dct_matrix(block, wmBit, scale)
# diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
frame[
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
] = diffusedBlock
num = num + 1

View File

@@ -6,13 +6,10 @@ configuration variable, that allows the watermarking to be supressed.
import cv2
import numpy as np
from imwatermark import WatermarkEncoder
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
config = get_config()
from invokeai.backend.image_util.imwatermark.vendor import WatermarkEncoder
class InvisibleWatermark:

View File

@@ -0,0 +1,109 @@
from typing import Optional
import torch
from PIL import Image
# Import SAM2 components - these should be available in transformers 4.56.0+
from transformers.models.sam2 import Sam2Model
from transformers.models.sam2.processing_sam2 import Sam2Processor
from invokeai.backend.image_util.segment_anything.shared import SAMInput
from invokeai.backend.raw_model import RawModel
class SegmentAnything2Pipeline(RawModel):
"""A wrapper class for the transformers SAM2 model and processor that makes it compatible with the model manager."""
def __init__(self, sam2_model: Sam2Model, sam2_processor: Sam2Processor):
"""Initialize the SAM2 pipeline.
Args:
sam2_model: The SAM2 model
sam2_processor: The SAM2 processor (can be Sam2Processor or Sam2VideoProcessor)
"""
self._sam2_model = sam2_model
self._sam2_processor = sam2_processor
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK: The SAM2 pipeline may not work on MPS devices. We only allow it to be moved to CPU or CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._sam2_model.to(device=device, dtype=dtype)
def calc_size(self) -> int:
# HACK: Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._sam2_model)
def segment(
self,
image: Image.Image,
inputs: list[SAMInput],
) -> torch.Tensor:
"""Segment the image using the provided inputs.
Args:
image: The image to segment.
inputs: A list of SAMInput objects containing bounding boxes and/or point lists.
Returns:
torch.Tensor: The segmentation masks. dtype: torch.bool. shape: [num_masks, channels, height, width].
"""
input_boxes: list[list[float]] = []
input_points: list[list[list[float]]] = []
input_labels: list[list[int]] = []
for i in inputs:
box: list[float] | None = None
points: list[list[float]] | None = None
labels: list[int] | None = None
if i.bounding_box is not None:
box: list[float] | None = [
i.bounding_box.x_min,
i.bounding_box.y_min,
i.bounding_box.x_max,
i.bounding_box.y_max,
]
if i.points is not None:
points = []
labels = []
for point in i.points:
points.append([point.x, point.y])
labels.append(point.label.value)
if box is not None:
input_boxes.append(box)
if points is not None:
input_points.append(points)
if labels is not None:
input_labels.append(labels)
batched_input_boxes = [input_boxes] if input_boxes else None
batched_input_points = [input_points] if input_points else None
batched_input_labels = [input_labels] if input_labels else None
processed_inputs = self._sam2_processor(
images=image,
input_boxes=batched_input_boxes,
input_points=batched_input_points,
input_labels=batched_input_labels,
return_tensors="pt",
).to(self._sam2_model.device)
# Generate masks using the SAM2 model
outputs = self._sam2_model(**processed_inputs)
# Post-process the masks to get the final segmentation
masks = self._sam2_processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=processed_inputs.original_sizes,
reshaped_input_sizes=processed_inputs.reshaped_input_sizes,
)
# There should be only one batch.
assert len(masks) == 1
return masks[0]

View File

@@ -1,20 +1,13 @@
from typing import Optional, TypeAlias
from typing import Optional
import torch
from PIL import Image
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.backend.image_util.segment_anything.shared import SAMInput
from invokeai.backend.raw_model import RawModel
# Type aliases for the inputs to the SAM model.
ListOfBoundingBoxes: TypeAlias = list[list[int]]
"""A list of bounding boxes. Each bounding box is in the format [xmin, ymin, xmax, ymax]."""
ListOfPoints: TypeAlias = list[list[int]]
"""A list of points. Each point is in the format [x, y]."""
ListOfPointLabels: TypeAlias = list[int]
"""A list of SAM point labels. Each label is an integer where -1 is background, 0 is neutral, and 1 is foreground."""
class SegmentAnythingPipeline(RawModel):
"""A wrapper class for the transformers SAM model and processor that makes it compatible with the model manager."""
@@ -38,55 +31,65 @@ class SegmentAnythingPipeline(RawModel):
def segment(
self,
image: Image.Image,
bounding_boxes: list[list[int]] | None = None,
point_lists: list[list[list[int]]] | None = None,
inputs: list[SAMInput],
) -> torch.Tensor:
"""Run the SAM model.
Either bounding_boxes or point_lists must be provided. If both are provided, bounding_boxes will be used and
point_lists will be ignored.
"""Segment the image using the provided inputs.
Args:
image (Image.Image): The image to segment.
bounding_boxes (list[list[int]]): The bounding box prompts. Each bounding box is in the format
[xmin, ymin, xmax, ymax].
point_lists (list[list[list[int]]]): The points prompts. Each point is in the format [x, y, label].
`label` is an integer where -1 is background, 0 is neutral, and 1 is foreground.
image: The image to segment.
inputs: A list of SAMInput objects containing bounding boxes and/or point lists.
Returns:
torch.Tensor: The segmentation masks. dtype: torch.bool. shape: [num_masks, channels, height, width].
"""
# Prep the inputs:
# - Create a list of bounding boxes or points and labels.
# - Add a batch dimension of 1 to the inputs.
if bounding_boxes:
input_boxes: list[ListOfBoundingBoxes] | None = [bounding_boxes]
input_points: list[ListOfPoints] | None = None
input_labels: list[ListOfPointLabels] | None = None
elif point_lists:
input_boxes: list[ListOfBoundingBoxes] | None = None
input_points: list[ListOfPoints] | None = []
input_labels: list[ListOfPointLabels] | None = []
for point_list in point_lists:
input_points.append([[p[0], p[1]] for p in point_list])
input_labels.append([p[2] for p in point_list])
input_boxes: list[list[float]] = []
input_points: list[list[list[float]]] = []
input_labels: list[list[int]] = []
else:
raise ValueError("Either bounding_boxes or points and labels must be provided.")
for i in inputs:
box: list[float] | None = None
points: list[list[float]] | None = None
labels: list[int] | None = None
inputs = self._sam_processor(
if i.bounding_box is not None:
box: list[float] | None = [
i.bounding_box.x_min,
i.bounding_box.y_min,
i.bounding_box.x_max,
i.bounding_box.y_max,
]
if i.points is not None:
points = []
labels = []
for point in i.points:
points.append([point.x, point.y])
labels.append(point.label.value)
if box is not None:
input_boxes.append(box)
if points is not None:
input_points.append(points)
if labels is not None:
input_labels.append(labels)
batched_input_boxes = [input_boxes] if input_boxes else None
batched_input_points = input_points if input_points else None
batched_input_labels = input_labels if input_labels else None
processed_inputs = self._sam_processor(
images=image,
input_boxes=input_boxes,
input_points=input_points,
input_labels=input_labels,
input_boxes=batched_input_boxes,
input_points=batched_input_points,
input_labels=batched_input_labels,
return_tensors="pt",
).to(self._sam_model.device)
outputs = self._sam_model(**inputs)
outputs = self._sam_model(**processed_inputs)
masks = self._sam_processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes,
original_sizes=processed_inputs.original_sizes,
reshaped_input_sizes=processed_inputs.reshaped_input_sizes,
)
# There should be only one batch.

Some files were not shown because too many files have changed in this diff Show More