Compare commits

...

70 Commits

Author SHA1 Message Date
Millun Atluri
db915441c1 Updated version to 3.4.0rc4 2023-11-11 11:17:39 +11:00
Millun Atluri
83799d69f4 Updated JS files with HRO 2023-11-11 11:14:51 +11:00
Millun Atluri
12668244f4 Updated JS files 2023-11-11 11:12:33 +11:00
Paul Curry
1c7ea57492 feat (ui, generation): High Resolution Fix- added automatic resolution toggle and replaced latent upscale with two improved methods (#4905)
* working

* added selector for method

* refactoring graph

* added ersgan method

* fixing yarn build

* add tooltips

* a conjuction

* rephrase

* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels

* working

* working

* working

* fixed tooltip

* add hrf to use all parameters

* adding hrf method to parameters

* working on parameter recall

* working on parameter recall

* cleaning

* fix(ui): fix unnecessary casts in addHrfToGraph

* chore(ui): use camelCase in addHrfToGraph

* fix(ui): do not add HRF metadata unless HRF is added to graph

* fix(ui): remove unused imports in addHrfToGraph

* feat(ui): do not hide HRF params when disabled, only disable them

* fix(ui): remove unused vars in addHrfToGraph

* feat(ui): default HRF str to 0.35, method ESRGAN

* fix(ui): use isValidBoolean to check hrfEnabled param

* fix(nodes): update CoreMetadataInvocation fields for HRF

* feat(ui): set hrf strength default to 0.45

* fix(ui): set default hrf strength in configSlice

* feat(ui): use translations for HRF features

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-11 00:11:46 +00:00
Millun Atluri
9ccfa34e04 Update installer.py to use cu118 instead of 121 (#5069)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-11 10:40:47 +11:00
Millun Atluri
d5aa74623d Merge branch 'main' into Millu-patch-1 2023-11-11 10:39:06 +11:00
Millun Atluri
d63a614b8b Update Transformers to 4.35 and fix pad_to_multiple_of (#4817)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes, with @blessedcoolant 
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

This PR updates Transformers to the most recent version and fixes the
value `pad_to_multiple_of` for `text_encoder.resize_token_embeddings`
which was introduced with
https://github.com/huggingface/transformers/pull/25088 in Transformers
4.32.0.

According to the [Nvidia
Documentation](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc),
`Performance is better when equivalent matrix dimensions M, N, and K are
aligned to multiples of 8 bytes (or 64 bytes on A100) for FP16`
This fixes the following error that was popping up before every
invocation starting with Transformers 4.32.0
`You are resizing the embedding layer without providing a
pad_to_multiple_of parameter. This means that the new embedding
dimension will be None. This might induce some performance reduction as
Tensor Cores will not be available. For more details about this, or help
on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc`

This is my first "real" fix PR, so I hope this is fine. Please inform me
if there is anything wrong with this. I am glad to help.

Have a nice day and thank you!


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue:
https://github.com/huggingface/transformers/issues/26303
- Related Discord discussion:
https://discord.com/channels/1020123559063990373/1154152783579197571
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-11 10:38:33 +11:00
Millun Atluri
cbc905a4d6 Update installer.py to use cu118 instead of 121 2023-11-11 10:36:07 +11:00
Wubbbi
6001d3d71d Change pad_to_multiple_of to be 8 for all cases. Add comment about it's temporary status 2023-11-10 17:51:59 -05:00
Wubbbi
b9f607be56 Update to 4.35.X 2023-11-10 17:51:59 -05:00
Wubbbi
8831d1ee41 Update Documentation 2023-11-10 17:51:59 -05:00
Wubbbi
a0be83e370 Update Transformers to 4.34 and fix pad_to_multiple_of 2023-11-10 17:51:59 -05:00
Lincoln Stein
8702a63197 add support for downloading and installing LCM lora diffusers models 2023-11-10 17:51:30 -05:00
psychedelicious
d7f0a7919f chore(ui): manually update vite to fix security issue in hoisted dep
`postcss` is a hoisted dependency of `vite`.
2023-11-10 06:58:22 -08:00
blessedcoolant
356b5a41a9 wip: Add LCMScheduler 2023-11-10 06:54:36 -08:00
Millun Atluri
e56a6d85a9 Update diffusers to ~=0.23 (#5063)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-10 12:44:28 +11:00
Millun Atluri
e22a091d76 Update diffusers to ~=0.23 2023-11-10 11:50:50 +11:00
Millun Atluri
141d02939a Upstream diffusers PR was merged, this no longer seems necessary (#5060)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-10 11:47:21 +11:00
Millun Atluri
5cb372e9d0 Merge branch 'main' into remove-deprecated-sdxl-t2i-hack 2023-11-10 11:33:32 +11:00
psychedelicious
f95fe68753 chore(ui): manually bump deps with security issues 2023-11-10 09:50:00 +11:00
psychedelicious
6d33893844 chore(ui): update all deps 2023-11-10 09:50:00 +11:00
psychedelicious
fc53112d8e chore(ui): remove unused deps 2023-11-10 09:50:00 +11:00
Brandon Rising
41f7aa6ab4 Remove unused import: 2023-11-09 15:06:01 -05:00
Brandon Rising
9bec755198 Upstream diffusers PR was merged, this no longer seems necessary 2023-11-09 15:02:24 -05:00
psychedelicious
2570497d83 fix(installer): fix import of ValidationError
It was being imported from a deprecated module
2023-11-10 06:11:15 +11:00
Surisen
5d735a714d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (1219 of 1219 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-11-09 10:54:56 -08:00
psychedelicious
6aa87f973e fix(nodes): create app/shared/ module to prevent circular imports
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.

This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.

Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.

Other shared classes, objects, and functions will be moved here in future commits.
2023-11-09 16:41:55 +11:00
Kevin Turner
f793fdf3d4 fix(socketio): leave room on unsubscribe
https://discord.com/channels/1020123559063990373/1049495067846524939/1171976251704086559
2023-11-09 12:12:32 +11:00
Fattire
2e404b7cca Fix updater option list numbering
Fix updater option list numbering in invokeai_update.py so that they don't go 1, 2, 2, 3.  The options themselves work fine.
2023-11-07 19:11:25 -08:00
Kent Keirsey
a760bdae9f (fix) update freeU config to be compatible with custom nodes (#5050)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes: @psychedelicious told me to do this :) 
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-06 21:43:18 -08:00
Millun Atluri
4cfd55936c run black formatting 2023-11-07 16:06:18 +11:00
Millun Atluri
5c3a27aac6 fixed sorts 2023-11-07 16:03:06 +11:00
Millun Atluri
d573a23090 Moved FreeU Config Import 2023-11-07 15:48:53 +11:00
Millun Atluri
351abd2ca2 Merge branch 'invoke-ai:main' into main 2023-11-07 15:43:04 +11:00
Millun Atluri
9733cd4199 Update xformers to 0.0.22post7 2023-11-06 17:17:03 -08:00
Millun Atluri
9976bc6908 Update installer.py to cu121 2023-11-06 17:17:03 -08:00
Millun Atluri
c68db6e40f Update xformers to ~0.0.22 2023-11-06 17:17:03 -08:00
Millun Atluri
3a50798a52 Update xformers to 0.0.22post7 2023-11-07 12:00:39 +11:00
Millun Atluri
a98426d2c6 Update installer.py to cu121 2023-11-07 11:57:02 +11:00
Millun Atluri
504f426f0a Update xformers to ~0.0.22 2023-11-07 11:53:39 +11:00
Kent Keirsey
840cbc1d39 xformers==0.0.20 (#4881)
I'm not sure if it's correct way of handling things, but correcting this
string to '==0.0.20' fixes xformers install for me - and maybe for
others it will too. Sorry for absolutely incorrect PR.

Please see [this
thread](https://github.com/facebookresearch/xformers/issues/740), this
is the issue I had (trying to install InvokeAI with
Automatic/Manual/StableMatrix way).

With ~=0.0.19 (0.0.22):
```
(InvokeAI) pip install torch torchvision xformers~=0.0.19
Collecting torch
  Obtaining dependency information for torch from edce54779f/torch-2.1.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torch-2.1.0-cp311-cp311-win_amd64.whl.metadata (25 kB)
Collecting torchvision
  Obtaining dependency information for torchvision from ab6f42af83/torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata (6.6 kB)
Collecting xformers
  Using cached xformers-0.0.22.post3.tar.gz (3.9 MB)
  Installing build dependencies ... done
  Getting requirements to build wheel ... error
  error: subprocess-exited-with-error

  × Getting requirements to build wheel did not run successfully.
  │ exit code: 1
  ╰─> [20 lines of output]
      Traceback (most recent call last):
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module>
          main()
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main
          json_out['return_val'] = hook(**hook_input['kwargs'])
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel
          return hook(config_settings)
                 ^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 355, in get_requires_for_build_wheel
          return self._get_build_requires(config_settings, requirements=['wheel'])
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 325, in _get_build_requires
          self.run_setup()
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 507, in run_setup
          super(_BuildMetaLegacyBackend, self).run_setup(setup_script=setup_script)
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 341, in run_setup
          exec(code, locals())
        File "<string>", line 23, in <module>
      ModuleNotFoundError: No module named 'torch'
```

With 0.0.20:

```
(InvokeAI) pip install torch torchvision xformers==0.0.20
Collecting torch
  Obtaining dependency information for torch from edce54779f/torch-2.1.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torch-2.1.0-cp311-cp311-win_amd64.whl.metadata (25 kB)
Collecting torchvision
  Obtaining dependency information for torchvision from ab6f42af83/torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata (6.6 kB)
Collecting xformers==0.0.20
  Obtaining dependency information for xformers==0.0.20 from d4a42f582a/xformers-0.0.20-cp311-cp311-win_amd64.whl.metadata
  Using cached xformers-0.0.20-cp311-cp311-win_amd64.whl.metadata (1.1 kB)
Collecting numpy (from xformers==0.0.20)
  Obtaining dependency information for numpy from 3f826c6d15/numpy-1.26.0-cp311-cp311-win_amd64.whl.metadata
  Using cached numpy-1.26.0-cp311-cp311-win_amd64.whl.metadata (61 kB)
Collecting pyre-extensions==0.0.29 (from xformers==0.0.20)
  Using cached pyre_extensions-0.0.29-py3-none-any.whl (12 kB)
Collecting torch
  Using cached torch-2.0.1-cp311-cp311-win_amd64.whl (172.3 MB)
Collecting filelock (from torch)
  Obtaining dependency information for filelock from 97afbafd9d/filelock-3.12.4-py3-none-any.whl.metadata
  Using cached filelock-3.12.4-py3-none-any.whl.metadata (2.8 kB)
Requirement already satisfied: typing-extensions in c:\users\drun\invokeai\.venv\lib\site-packages (from torch) (4.8.0)
Requirement already satisfied: sympy in c:\users\drun\invokeai\.venv\lib\site-packages (from torch) (1.12)
Collecting networkx (from torch)
  Using cached networkx-3.1-py3-none-any.whl (2.1 MB)
Collecting jinja2 (from torch)
  Using cached Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting typing-inspect (from pyre-extensions==0.0.29->xformers==0.0.20)
  Obtaining dependency information for typing-inspect from 107a22063b/typing_inspect-0.9.0-py3-none-any.whl.metadata
  Using cached typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB)
Collecting requests (from torchvision)
  Obtaining dependency information for requests from 0e2d847013/requests-2.31.0-py3-none-any.whl.metadata
  Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)
INFO: pip is looking at multiple versions of torchvision to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
  Using cached torchvision-0.15.2-cp311-cp311-win_amd64.whl (1.2 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Obtaining dependency information for pillow!=8.3.*,>=5.3.0 from debe992677/Pillow-10.0.1-cp311-cp311-win_amd64.whl.metadata
  Using cached Pillow-10.0.1-cp311-cp311-win_amd64.whl.metadata (9.6 kB)
Collecting MarkupSafe>=2.0 (from jinja2->torch)
  Obtaining dependency information for MarkupSafe>=2.0 from 08b85bc194/MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl.metadata
  Using cached MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl.metadata (3.1 kB)
Collecting charset-normalizer<4,>=2 (from requests->torchvision)
  Obtaining dependency information for charset-normalizer<4,>=2 from 50028bbb26/charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl.metadata
  Using cached charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl.metadata (33 kB)
Collecting idna<4,>=2.5 (from requests->torchvision)
  Using cached idna-3.4-py3-none-any.whl (61 kB)
Collecting urllib3<3,>=1.21.1 (from requests->torchvision)
  Obtaining dependency information for urllib3<3,>=1.21.1 from 9957270221/urllib3-2.0.6-py3-none-any.whl.metadata
  Using cached urllib3-2.0.6-py3-none-any.whl.metadata (6.6 kB)
Collecting certifi>=2017.4.17 (from requests->torchvision)
  Obtaining dependency information for certifi>=2017.4.17 from 2234eab223/certifi-2023.7.22-py3-none-any.whl.metadata
  Using cached certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB)
Requirement already satisfied: mpmath>=0.19 in c:\users\drun\invokeai\.venv\lib\site-packages (from sympy->torch) (1.3.0)
Collecting mypy-extensions>=0.3.0 (from typing-inspect->pyre-extensions==0.0.29->xformers==0.0.20)
  Using cached mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)
Using cached xformers-0.0.20-cp311-cp311-win_amd64.whl (97.6 MB)
Using cached Pillow-10.0.1-cp311-cp311-win_amd64.whl (2.5 MB)
Using cached filelock-3.12.4-py3-none-any.whl (11 kB)
Using cached numpy-1.26.0-cp311-cp311-win_amd64.whl (15.8 MB)
Using cached requests-2.31.0-py3-none-any.whl (62 kB)
Using cached certifi-2023.7.22-py3-none-any.whl (158 kB)
Using cached charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl (97 kB)
Using cached MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl (17 kB)
Using cached urllib3-2.0.6-py3-none-any.whl (123 kB)
Using cached typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)
Installing collected packages: urllib3, pillow, numpy, networkx, mypy-extensions, MarkupSafe, idna, filelock, charset-normalizer, certifi, typing-inspect, requests, jinja2, torch, pyre-extensions, xformers, torchvision
Successfully installed MarkupSafe-2.1.3 certifi-2023.7.22 charset-normalizer-3.3.0 filelock-3.12.4 idna-3.4 jinja2-3.1.2 mypy-extensions-1.0.0 networkx-3.1 numpy-1.26.0 pillow-10.0.1 pyre-extensions-0.0.29 requests-2.31.0 torch-2.0.1 torchvision-0.15.2 typing-inspect-0.9.0 urllib3-2.0.6 xformers-0.0.20
```

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: I'm no-brainer. It fixed issue for me, so I did PR.
Who knows?

## Technical details:
Windows 11, Standalone clean and freshly-installed Python 3.11
2023-11-06 16:07:03 -08:00
Millun Atluri
014d6187ab Update pyproject.toml 2023-11-07 10:22:20 +11:00
Millun Atluri
9fb15fae87 Update pyproject.toml 2023-11-07 10:20:16 +11:00
Millun Atluri
a07336a020 Merge branch 'main' into patch-1 2023-11-07 10:17:46 +11:00
Millun Atluri
0718cc2392 Update xformers to 0.0.21 2023-11-07 10:16:44 +11:00
Kent Keirsey
935e4632c2 feat(nodes): add freeu support (#4846)
### What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description

**Note: FreeU is not in the current release of diffusers. Looks like it
will be in release 0.22. This PR needs to wait until that is released.**

[feat(nodes): add freeu
support](15b33ad501)

Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very
simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU
config to the UNet
- No support for model-dependent presets, this will be a future workflow
editor enhancement

Closes https://github.com/invoke-ai/InvokeAI/issues/4845

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #4845 

## QA Instructions, Screenshots, Recordings

You'll need to install diffusers from their github repo before testing
this:
`pip install git+https://github.com/huggingface/diffusers`

1. Create a graph like this:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/af17719b-b001-4534-8c4e-883484fd7465)
2. Get a free lunch!

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/279d1a69-1577-4c31-ab82-ebf67f65920d)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/c332c778-0b87-4215-8a36-d4822e06f4de)

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/ebec097b-ad54-4295-b734-33656738a2cf)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/3423140d-c9ce-4697-9993-d2bb0d0f5634)

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7cb0e39d-aa87-4a48-a3af-b9f47a866814)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/9113d2fe-5bd3-474f-8f33-82cdeb7abf82)
2023-11-06 13:58:32 -08:00
Kent Keirsey
a83d8810c4 Merge branch 'main' into feat/nodes/freeu 2023-11-06 13:47:56 -08:00
Wilson E. Alvarez
76b3f8956b Fix ROCm support in Docker container 2023-11-06 13:47:08 -08:00
Kent Keirsey
ff8a8a1963 Merge branch 'main' into feat/nodes/freeu 2023-11-06 09:04:54 -08:00
blessedcoolant
cb6d0c8851 Re-add feat/mix cnet t2iadapter (#4929)
Reverts invoke-ai/InvokeAI#4923, which was a revert on the premature
merge.

slide to the left. revert, revert.
2023-11-06 22:29:13 +05:30
Kent Keirsey
67f2616d5a Merge branch 'main' into revert-4923-revert-4914-feat/mix-cnet-t2iadapter 2023-11-06 07:34:51 -08:00
Kent Keirsey
f8f1740668 Set Defaults to 1 2023-11-06 07:11:16 -08:00
Kent Keirsey
e66d0f7372 Merge branch 'main' into feat/nodes/freeu 2023-11-06 05:39:58 -08:00
Kent Keirsey
546aaedbe4 Update pyproject.toml 2023-11-06 05:29:17 -08:00
Riccardo Giovanetti
7f650d00de translationBot(ui): update translation (Italian)
Currently translated at 97.7% (1191 of 1219 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-11-05 11:12:33 -08:00
Riccardo Giovanetti
4e6b579526 translationBot(ui): update translation (Italian)
Currently translated at 97.6% (1190 of 1219 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-11-05 12:09:20 +11:00
Alexander Eichhorn
6334c4adf5 translationBot(ui): update translation (German)
Currently translated at 53.8% (657 of 1219 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-11-05 12:09:20 +11:00
Lincoln Stein
66b2366efc Remove LowRA from Initial Models (#5016)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description
Removing LowRA from the initial models as it's been deleted from
CivitAI.

## Related Tickets & Documents

https://discord.com/channels/1020123559063990373/1168415065205112872


- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-04 17:14:24 -04:00
Lincoln Stein
e147379aa7 Merge branch 'main' into main 2023-11-04 17:05:01 -04:00
Lincoln Stein
5a821384d3 fix model-not-found error 2023-11-04 08:24:01 -07:00
Millun Atluri
584b513038 Remove LowRA from Initial Models 2023-11-01 08:55:06 +11:00
Kent Keirsey
55ad4feb5c Revert "Revert "feat(ui): remove special handling for t2i vs controlnet""
This reverts commit bdf4c4944c.
2023-10-17 11:59:19 -04:00
Kent Keirsey
b7555ddae8 Revert "Revert "chore: lint""
This reverts commit 38e7eb8878.
2023-10-17 11:59:19 -04:00
Kent Keirsey
8afc47018b Revert "Revert "Cleaning up (removing diagnostic prints)""
This reverts commit 6e697b7b6f.
2023-10-17 11:59:19 -04:00
Kent Keirsey
a97ec88e06 Revert "Revert "Changes to _apply_standard_conditioning_sequentially() and _apply_cross_attention_controlled_conditioning() to reflect changes to T2I-Adapter implementation to allow usage of T2I-Adapter and ControlNet at the same time.""
This reverts commit c04fb451ee.
2023-10-17 11:59:19 -04:00
Kent Keirsey
282d36b640 Revert "Revert "Fixing some var and arg names.""
This reverts commit 58a0709c1e.
2023-10-17 11:59:19 -04:00
Millun Atluri
14e25bf277 Merge branch 'main' into feat/nodes/freeu 2023-10-17 16:42:59 +11:00
Millun Atluri
001bba1719 Merge branch 'main' into feat/nodes/freeu 2023-10-17 15:58:00 +11:00
Drun555
9db152bf75 xformers==0.0.20
I'm not sure if it's correct way of handling things, but correcting this string to '==0.0.20' fixes xformers install for me - and maybe for others too. 

Please see this thread, this is the issue I had (trying to install InvokeAI):
https://github.com/facebookresearch/xformers/issues/740
2023-10-14 14:59:55 +04:00
psychedelicious
15b33ad501 feat(nodes): add freeu support
Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU config to the UNet
- No support for model-dependent presets, this will be a future workflow editor enhancement

Closes #4845
2023-10-11 13:49:28 +11:00
76 changed files with 3787 additions and 2295 deletions

View File

@@ -11,5 +11,5 @@ INVOKEAI_ROOT=
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup.
# GPU_DRIVER=cuda
# CONTAINER_UID=1000
# GPU_DRIVER=cuda # or rocm
# CONTAINER_UID=1000

View File

@@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG TORCH_VERSION=2.1.0
ARG TORCHVISION_VERSION=0.16
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\

View File

@@ -15,6 +15,10 @@ services:
- driver: nvidia
count: 1
capabilities: [gpu]
# For AMD support, comment out the deploy section above and uncomment the devices section below:
#devices:
# - /dev/kfd:/dev/kfd
# - /dev/dri:/dev/dri
build:
context: ..
dockerfile: docker/Dockerfile

View File

@@ -7,5 +7,5 @@ set -e
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
docker compose up --build -d
docker compose up -d
docker compose logs -f

View File

@@ -198,6 +198,7 @@ The list of schedulers has been completely revamped and brought up to date:
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.

View File

@@ -34,4 +34,4 @@ class SocketIO:
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
await self.__sio.leave_room(sid, data["queue_id"])

View File

@@ -16,6 +16,7 @@ from pydantic.fields import FieldInfo, _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.misc import uuid_string
if TYPE_CHECKING:
@@ -30,70 +31,6 @@ class InvalidFieldError(TypeError):
pass
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
class Input(str, Enum):
"""
The type of input a field accepts.

View File

@@ -7,6 +7,7 @@ from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ExtraConditioningInfo,
@@ -19,7 +20,6 @@ from ...backend.util.devices import torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@@ -28,12 +28,12 @@ from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from ...backend.model_management import BaseModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@@ -9,19 +9,11 @@ from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import (
BaseInvocation,
FieldDescriptions,
Input,
InputField,
InvocationContext,
WithMetadata,
WithWorkflow,
invocation,
)
from .baseinvocation import BaseInvocation, Input, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@@ -17,6 +16,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id

View File

@@ -10,7 +10,7 @@ import torch
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import FullAdapterXL, T2IAdapter
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
@@ -34,6 +34,7 @@ from invokeai.app.invocations.primitives import (
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
@@ -57,7 +58,6 @@ from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@@ -562,10 +562,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_model: T2IAdapter
with t2i_adapter_model_info as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
if isinstance(t2i_adapter_model.adapter, FullAdapterXL):
# HACK(ryand): Work around a bug in FullAdapterXL. This is being addressed upstream in diffusers by
# this PR: https://github.com/huggingface/diffusers/pull/5134.
total_downscale_factor = total_downscale_factor // 2
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
@@ -710,6 +706,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
with (
ExitStack() as exit_stack,
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.

View File

@@ -6,8 +6,9 @@ import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.shared.fields import FieldDescriptions
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")
@@ -182,8 +183,8 @@ class IntegerMathInvocation(BaseInvocation):
operation: INTEGER_OPERATIONS = InputField(
default="ADD", description="The operation to perform", ui_choice_labels=INTEGER_OPERATIONS_LABELS
)
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
a: int = InputField(default=1, description=FieldDescriptions.num_1)
b: int = InputField(default=1, description=FieldDescriptions.num_2)
@field_validator("b")
def no_unrepresentable_results(cls, v: int, info: ValidationInfo):
@@ -256,8 +257,8 @@ class FloatMathInvocation(BaseInvocation):
operation: FLOAT_OPERATIONS = InputField(
default="ADD", description="The operation to perform", ui_choice_labels=FLOAT_OPERATIONS_LABELS
)
a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2)
a: float = InputField(default=1, description=FieldDescriptions.num_1)
b: float = InputField(default=1, description=FieldDescriptions.num_2)
@field_validator("b")
def no_unrepresentable_results(cls, v: float, info: ValidationInfo):

View File

@@ -5,7 +5,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
InvocationContext,
MetadataField,
@@ -19,6 +18,7 @@ from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.shared.fields import FieldDescriptions
from ...version import __version__
@@ -160,13 +160,14 @@ class CoreMetadataInvocation(BaseInvocation):
)
# High resolution fix metadata.
hrf_width: Optional[int] = InputField(
hrf_enabled: Optional[float] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
description="Whether or not high resolution fix was enabled.",
)
hrf_height: Optional[int] = InputField(
# TODO: should this be stricter or do we just let the UI handle it?
hrf_method: Optional[str] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
description="The high resolution fix upscale method.",
)
hrf_strength: Optional[float] = InputField(
default=None,

View File

@@ -3,11 +3,13 @@ from typing import List, Optional
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.shared.models import FreeUConfig
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@@ -36,6 +38,7 @@ class UNetField(BaseModel):
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class ClipField(BaseModel):
@@ -51,15 +54,34 @@ class VaeField(BaseModel):
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("model_loader_output")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("vae_output")
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
"""Model loader output"""
pass
class MainModelField(BaseModel):
"""Main model field"""
@@ -366,13 +388,6 @@ class VAEModelField(BaseModel):
model_config = ConfigDict(protected_namespaces=())
@invocation_output("vae_loader_output")
class VaeLoaderOutput(BaseInvocationOutput):
"""VAE output"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
@@ -384,7 +399,7 @@ class VaeLoaderInvocation(BaseInvocation):
title="VAE",
)
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
def invoke(self, context: InvocationContext) -> VAEOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
@@ -395,7 +410,7 @@ class VaeLoaderInvocation(BaseInvocation):
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
return VAEOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
@@ -457,3 +472,24 @@ class SeamlessModeInvocation(BaseInvocation):
vae.seamless_axes = seamless_axes_list
return SeamlessModeOutput(unet=unet, vae=vae)
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.0")
class FreeUInvocation(BaseInvocation):
"""
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):
SD1.5: 1.2/1.4/0.9/0.2,
SD2: 1.1/1.2/0.9/0.2,
SDXL: 1.1/1.2/0.6/0.4,
"""
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
b1: float = InputField(default=1.2, ge=-1, le=3, description=FieldDescriptions.freeu_b1)
b2: float = InputField(default=1.4, ge=-1, le=3, description=FieldDescriptions.freeu_b2)
s1: float = InputField(default=0.9, ge=-1, le=3, description=FieldDescriptions.freeu_s1)
s2: float = InputField(default=0.2, ge=-1, le=3, description=FieldDescriptions.freeu_s2)
def invoke(self, context: InvocationContext) -> UNetOutput:
self.unet.freeu_config = FreeUConfig(s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2)
return UNetOutput(unet=self.unet)

View File

@@ -5,13 +5,13 @@ import torch
from pydantic import field_validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
InvocationContext,
OutputField,

View File

@@ -14,6 +14,7 @@ from tqdm import tqdm
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
@@ -23,7 +24,6 @@ from ...backend.util import choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@@ -5,10 +5,11 @@ from typing import Optional, Tuple
import torch
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@@ -1,8 +1,9 @@
from invokeai.app.shared.fields import FieldDescriptions
from ...backend.model_management import ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@@ -5,7 +5,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@@ -16,6 +15,7 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType

View File

@@ -0,0 +1,5 @@
"""
This module contains various classes, functions and models which are shared across the app, particularly by invocations.
Lifting these classes, functions and models into this shared module helps to reduce circular imports.
"""

View File

@@ -0,0 +1,66 @@
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
freeu_s1 = 'Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."

View File

@@ -0,0 +1,16 @@
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
class FreeUConfig(BaseModel):
"""
Configuration for the FreeU hyperparameters.
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU
"""
s1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s1)
s2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s2)
b1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b1)
b2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b2)

View File

@@ -32,7 +32,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from pydantic.error_wrappers import ValidationError
from pydantic import ValidationError
from tqdm import tqdm
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextConfig, CLIPTextModel, CLIPTokenizer

View File

@@ -38,6 +38,7 @@ SAMPLER_CHOICES = [
"k_heun",
"k_lms",
"plms",
"lcm",
]
PRECISION_CHOICES = [

View File

@@ -254,7 +254,13 @@ class ModelInstall(object):
elif path.is_dir() and any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"pytorch_lora_weights.safetensors",
}
]
):
models_installed.update({str(model_path_id_or_url): self._install_path(path)})
@@ -357,7 +363,7 @@ class ModelInstall(object):
for suffix in ["safetensors", "bin"]:
if f"{prefix}pytorch_lora_weights.{suffix}" in files:
location = self._download_hf_model(
repo_id, ["pytorch_lora_weights.bin"], staging, subfolder=subfolder
repo_id, [f"pytorch_lora_weights.{suffix}"], staging, subfolder=subfolder
) # LoRA
break
elif (

View File

@@ -12,6 +12,8 @@ from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from .models.lora import LoRAModel
"""
@@ -164,6 +166,15 @@ class ModelPatcher:
init_tokens_count = None
new_tokens_added = None
# TODO: This is required since Transformers 4.32 see
# https://github.com/huggingface/transformers/pull/25088
# More information by NVIDIA:
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
# This value might need to be changed in the future and take the GPUs model into account as there seem
# to be ideal values for different GPUS. This value is temporary!
# For references to the current discussion please see https://github.com/invoke-ai/InvokeAI/pull/4817
pad_to_multiple_of = 8
try:
# HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a
# workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after
@@ -173,7 +184,7 @@ class ModelPatcher:
# but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs).
ti_tokenizer = pickle.loads(pickle.dumps(tokenizer))
ti_manager = TextualInversionManager(ti_tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
init_tokens_count = text_encoder.resize_token_embeddings(None, pad_to_multiple_of).num_embeddings
def _get_trigger(ti_name, index):
trigger = ti_name
@@ -188,7 +199,7 @@ class ModelPatcher:
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of)
model_embeddings = text_encoder.get_input_embeddings()
for ti_name, ti in ti_list:
@@ -220,7 +231,7 @@ class ModelPatcher:
finally:
if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count)
text_encoder.resize_token_embeddings(init_tokens_count, pad_to_multiple_of)
@classmethod
@contextmanager
@@ -240,6 +251,25 @@ class ModelPatcher:
while len(skipped_layers) > 0:
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
@classmethod
@contextmanager
def apply_freeu(
cls,
unet: UNet2DConditionModel,
freeu_config: Optional[FreeUConfig] = None,
):
did_apply_freeu = False
try:
if freeu_config is not None:
unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2)
did_apply_freeu = True
yield
finally:
if did_apply_freeu:
unet.disable_freeu()
class TextualInversionModel:
embedding: torch.Tensor # [n, 768]|[n, 1280]

View File

@@ -183,12 +183,13 @@ class ModelProbe(object):
if model:
class_name = model.__class__.__name__
else:
for suffix in ["bin", "safetensors"]:
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "learned_embeds.bin").exists():
return ModelType.TextualInversion
if (folder_path / "pytorch_lora_weights.bin").exists():
return ModelType.Lora
if (folder_path / "image_encoder.txt").exists():
return ModelType.IPAdapter

View File

@@ -68,8 +68,9 @@ class LoRAModel(ModelBase):
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")):
return LoRAModelFormat.Diffusers
for ext in ["safetensors", "bin"]:
if os.path.exists(os.path.join(path, f"pytorch_lora_weights.{ext}")):
return LoRAModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
@@ -86,8 +87,10 @@ class LoRAModel(ModelBase):
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == LoRAModelFormat.Diffusers:
# TODO: add diffusers lora when it stabilizes a bit
raise NotImplementedError("Diffusers lora not supported")
for ext in ["safetensors", "bin"]: # return path to the safetensors file inside the folder
path = Path(model_path, f"pytorch_lora_weights.{ext}")
if path.exists():
return path
else:
return model_path

View File

@@ -546,11 +546,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None
mid_block_additional_residual = None
if control_data is not None and t2i_adapter_data is not None:
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
elif control_data is not None:
down_intrablock_additional_residuals = None
# if control_data is not None and t2i_adapter_data is not None:
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
# raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
# elif control_data is not None:
if control_data is not None:
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
control_data=control_data,
sample=latent_model_input,
@@ -559,7 +561,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=total_step_count,
conditioning_data=conditioning_data,
)
elif t2i_adapter_data is not None:
# elif t2i_adapter_data is not None:
if t2i_adapter_data is not None:
accum_adapter_state = None
for single_t2i_adapter_data in t2i_adapter_data:
# Determine the T2I-Adapter weights for the current denoising step.
@@ -584,7 +587,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
down_block_additional_residuals = accum_adapter_state
# down_block_additional_residuals = accum_adapter_state
down_intrablock_additional_residuals = accum_adapter_state
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
@@ -593,8 +597,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=total_step_count,
conditioning_data=conditioning_data,
# extra:
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
)
guidance_scale = conditioning_data.guidance_scale

View File

@@ -260,7 +260,6 @@ class InvokeAIDiffuserComponent:
conditioning_data,
**kwargs,
)
else:
(
unconditioned_next_x,
@@ -410,6 +409,15 @@ class InvokeAIDiffuserComponent:
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_down_intrablock, cond_down_intrablock = None, None
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
if down_intrablock_additional_residuals is not None:
uncond_down_intrablock, cond_down_intrablock = [], []
for down_intrablock in down_intrablock_additional_residuals:
_uncond_down, _cond_down = down_intrablock.chunk(2)
uncond_down_intrablock.append(_uncond_down)
cond_down_intrablock.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
@@ -441,6 +449,7 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
down_intrablock_additional_residuals=uncond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
@@ -470,6 +479,7 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
down_intrablock_additional_residuals=cond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
@@ -494,6 +504,15 @@ class InvokeAIDiffuserComponent:
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_down_intrablock, cond_down_intrablock = None, None
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
if down_intrablock_additional_residuals is not None:
uncond_down_intrablock, cond_down_intrablock = [], []
for down_intrablock in down_intrablock_additional_residuals:
_uncond_down, _cond_down = down_intrablock.chunk(2)
uncond_down_intrablock.append(_uncond_down)
cond_down_intrablock.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
@@ -522,6 +541,7 @@ class InvokeAIDiffuserComponent:
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
down_intrablock_additional_residuals=uncond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
@@ -541,6 +561,7 @@ class InvokeAIDiffuserComponent:
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
down_intrablock_additional_residuals=cond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)

View File

@@ -10,6 +10,7 @@ from diffusers import (
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LCMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
@@ -38,4 +39,5 @@ SCHEDULER_MAP = dict(
dpmpp_sde=(DPMSolverSDEScheduler, dict(use_karras_sigmas=False, noise_sampler_seed=0)),
dpmpp_sde_k=(DPMSolverSDEScheduler, dict(use_karras_sigmas=True, noise_sampler_seed=0)),
unipc=(UniPCMultistepScheduler, dict(cpu_only=True)),
lcm=(LCMScheduler, dict()),
)

View File

@@ -117,9 +117,6 @@ sd-1/embedding/EasyNegative:
recommended: True
sd-1/embedding/ahx-beta-453407d:
repo_id: sd-concepts-library/ahx-beta-453407d
sd-1/lora/LowRA:
path: https://civitai.com/api/download/models/63006
recommended: True
sd-1/lora/Ink scenery:
path: https://civitai.com/api/download/models/83390
sd-1/ip_adapter/ip_adapter_sd15:

View File

@@ -63,8 +63,8 @@ def welcome(latest_release: str, latest_prerelease: str):
yield "[bold yellow]Options:"
yield f"""[1] Update to the latest [bold]official release[/bold] ([italic]{latest_release}[/italic])
[2] Update to the latest [bold]pre-release[/bold] (may be buggy; caveat emptor!) ([italic]{latest_prerelease}[/italic])
[2] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[3] Manually enter the [bold]branch name[/bold] for the version you wish to update to"""
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to"""
console.rule()
print(

View File

@@ -274,9 +274,10 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
else:
interp = self.interpolations[self.merge_method.value[0]]
bases = ["sd-1", "sd-2", "sdxl"]
args = dict(
model_names=models,
base_model=tuple(BaseModelType)[self.base_select.value[0]],
base_model=BaseModelType(bases[self.base_select.value[0]]),
alpha=self.alpha.value,
interp=interp,
force=self.force.value,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{w as s,i2 as T,v as l,a2 as I,i3 as R,ae as V,i4 as z,i5 as j,i6 as D,i7 as F,i8 as G,i9 as W,ia as K,aG as H,ib as U,ic as Y}from"./index-27e8922c.js";import{M as Z}from"./MantineProvider-70b4f32d.js";var P=String.raw,E=P`
import{w as s,ib as T,v as l,a1 as I,ic as R,ad as V,id as z,ie as j,ig as D,ih as F,ii as G,ij as W,ik as K,aG as H,il as U,im as Y}from"./index-7ba6700b.js";import{M as Z}from"./MantineProvider-bf828180.js";var P=String.raw,E=P`
:root,
:host {
--chakra-vh: 100vh;

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -15,7 +15,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-27e8922c.js"></script>
<script type="module" crossorigin src="./assets/index-7ba6700b.js"></script>
</head>
<body dir="ltr">

View File

@@ -4,14 +4,14 @@
"reportBugLabel": "Fehler melden",
"settingsLabel": "Einstellungen",
"img2img": "Bild zu Bild",
"nodes": "Knoten",
"nodes": "Knoten Editor",
"langGerman": "Deutsch",
"nodesDesc": "Ein knotenbasiertes System, für die Erzeugung von Bildern, ist derzeit in der Entwicklung. Bleiben Sie gespannt auf Updates zu dieser fantastischen Funktion.",
"postProcessing": "Nachbearbeitung",
"postProcessDesc1": "InvokeAI bietet eine breite Palette von Nachbearbeitungsfunktionen. Bildhochskalierung und Gesichtsrekonstruktion sind bereits in der WebUI verfügbar. Sie können sie über das Menü Erweiterte Optionen der Reiter Text in Bild und Bild in Bild aufrufen. Sie können Bilder auch direkt bearbeiten, indem Sie die Schaltflächen für Bildaktionen oberhalb der aktuellen Bildanzeige oder im Viewer verwenden.",
"postProcessDesc2": "Eine spezielle Benutzeroberfläche wird in Kürze veröffentlicht, um erweiterte Nachbearbeitungs-Workflows zu erleichtern.",
"postProcessDesc3": "Die InvokeAI Kommandozeilen-Schnittstelle bietet verschiedene andere Funktionen, darunter Embiggen.",
"training": "Training",
"training": "trainieren",
"trainingDesc1": "Ein spezieller Arbeitsablauf zum Trainieren Ihrer eigenen Embeddings und Checkpoints mit Textual Inversion und Dreambooth über die Weboberfläche.",
"trainingDesc2": "InvokeAI unterstützt bereits das Training von benutzerdefinierten Embeddings mit Textual Inversion unter Verwendung des Hauptskripts.",
"upload": "Hochladen",
@@ -38,14 +38,14 @@
"statusUpscalingESRGAN": "Hochskalierung (ESRGAN)",
"statusLoadingModel": "Laden des Modells",
"statusModelChanged": "Modell Geändert",
"cancel": "Abbruch",
"cancel": "Abbrechen",
"accept": "Annehmen",
"back": "Zurück",
"langEnglish": "Englisch",
"langDutch": "Niederländisch",
"langFrench": "Französisch",
"langItalian": "Italienisch",
"langPortuguese": "Portogisisch",
"langPortuguese": "Portugiesisch",
"langRussian": "Russisch",
"langUkranian": "Ukrainisch",
"hotkeysLabel": "Tastenkombinationen",
@@ -58,12 +58,44 @@
"langArabic": "Arabisch",
"langKorean": "Koreanisch",
"langHebrew": "Hebräisch",
"langSpanish": "Spanisch"
"langSpanish": "Spanisch",
"t2iAdapter": "T2I Adapter",
"communityLabel": "Gemeinschaft",
"dontAskMeAgain": "Frag mich nicht nochmal",
"loadingInvokeAI": "Lade Invoke AI",
"statusMergedModels": "Modelle zusammengeführt",
"areYouSure": "Bist du dir sicher?",
"statusConvertingModel": "Model konvertieren",
"on": "An",
"nodeEditor": "Knoten Editor",
"statusMergingModels": "Modelle zusammenführen",
"langSimplifiedChinese": "Vereinfachtes Chinesisch",
"ipAdapter": "IP Adapter",
"controlAdapter": "Control Adapter",
"auto": "Automatisch",
"controlNet": "ControlNet",
"imageFailedToLoad": "Kann Bild nicht laden",
"statusModelConverted": "Model konvertiert",
"modelManager": "Model Manager",
"lightMode": "Heller Modus",
"generate": "Erstellen",
"learnMore": "Mehr lernen",
"darkMode": "Dunkler Modus",
"loading": "Lade",
"random": "Zufall",
"batch": "Stapel-Manager",
"advanced": "Erweitert",
"langBrPortuguese": "Portugiesisch (Brasilien)",
"unifiedCanvas": "Einheitliche Leinwand",
"openInNewTab": "In einem neuem Tab öffnen",
"statusProcessing": "wird bearbeitet",
"linear": "Linear",
"imagePrompt": "Bild Prompt"
},
"gallery": {
"generations": "Erzeugungen",
"showGenerations": "Zeige Erzeugnisse",
"uploads": "Hochgelades",
"uploads": "Uploads",
"showUploads": "Zeige Uploads",
"galleryImageSize": "Bildgröße",
"galleryImageResetSize": "Größe zurücksetzen",
@@ -73,7 +105,15 @@
"singleColumnLayout": "Einspaltiges Layout",
"allImagesLoaded": "Alle Bilder geladen",
"loadMore": "Mehr laden",
"noImagesInGallery": "Keine Bilder in der Galerie"
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"preparingDownload": "bereite Download vor",
"preparingDownloadFailed": "Problem beim Download vorbereiten",
"deleteImage": "Lösche Bild",
"images": "Bilder",
"copy": "Kopieren",
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild"
},
"hotkeys": {
"keyboardShortcuts": "Tastenkürzel",
@@ -82,7 +122,8 @@
"galleryHotkeys": "Galerie Tastenkürzel",
"unifiedCanvasHotkeys": "Unified Canvas Tastenkürzel",
"invoke": {
"desc": "Ein Bild erzeugen"
"desc": "Ein Bild erzeugen",
"title": "Invoke"
},
"cancel": {
"title": "Abbrechen",
@@ -166,7 +207,7 @@
},
"toggleGalleryPin": {
"title": "Galerie anheften umschalten",
"desc": "Heftet die Galerie an die Benutzeroberfläche bzw. löst die sie."
"desc": "Heftet die Galerie an die Benutzeroberfläche bzw. löst die sie"
},
"increaseGalleryThumbSize": {
"title": "Größe der Galeriebilder erhöhen",
@@ -279,6 +320,10 @@
"acceptStagingImage": {
"title": "Staging-Bild akzeptieren",
"desc": "Akzeptieren Sie das aktuelle Bild des Staging-Bereichs"
},
"nodesHotkeys": "Knoten Tastenkürzel",
"addNodes": {
"title": "Knotenpunkt hinzufügen"
}
},
"modelManager": {
@@ -295,7 +340,7 @@
"config": "Konfiguration",
"configValidationMsg": "Pfad zur Konfigurationsdatei Ihres Models.",
"modelLocation": "Ort des Models",
"modelLocationValidationMsg": "Pfad zum Speicherort Ihres Models.",
"modelLocationValidationMsg": "Pfad zum Speicherort Ihres Models",
"vaeLocation": "VAE Ort",
"vaeLocationValidationMsg": "Pfad zum Speicherort Ihres VAE.",
"width": "Breite",
@@ -328,11 +373,63 @@
"deleteModel": "Model löschen",
"deleteConfig": "Konfiguration löschen",
"deleteMsg1": "Möchten Sie diesen Model-Eintrag wirklich aus InvokeAI löschen?",
"deleteMsg2": "Dadurch wird die Modellprüfpunktdatei nicht von Ihrer Festplatte gelöscht. Sie können sie bei Bedarf erneut hinzufügen.",
"deleteMsg2": "Dadurch WIRD das Modell von der Festplatte gelöscht WENN es im InvokeAI Root Ordner liegt. Wenn es in einem anderem Ordner liegt wird das Modell NICHT von der Festplatte gelöscht.",
"customConfig": "Benutzerdefinierte Konfiguration",
"invokeRoot": "InvokeAI Ordner",
"formMessageDiffusersVAELocationDesc": "Falls nicht angegeben, sucht InvokeAI nach der VAE-Datei innerhalb des oben angegebenen Modell Speicherortes.",
"checkpointModels": "Kontrollpunkte"
"checkpointModels": "Kontrollpunkte",
"convert": "Umwandeln",
"addCheckpointModel": "Kontrollpunkt / SafeTensors Modell hinzufügen",
"allModels": "Alle Modelle",
"alpha": "Alpha",
"addDifference": "Unterschied hinzufügen",
"convertToDiffusersHelpText2": "Bei diesem Vorgang wird Ihr Eintrag im Modell-Manager durch die Diffusor-Version desselben Modells ersetzt.",
"convertToDiffusersHelpText5": "Bitte stellen Sie sicher, dass Sie über genügend Speicherplatz verfügen. Die Modelle sind in der Regel zwischen 2 GB und 7 GB groß.",
"convertToDiffusersHelpText3": "Ihre Kontrollpunktdatei auf der Festplatte wird NICHT gelöscht oder in irgendeiner Weise verändert. Sie können Ihren Kontrollpunkt dem Modell-Manager wieder hinzufügen, wenn Sie dies wünschen.",
"convertToDiffusersHelpText4": "Dies ist ein einmaliger Vorgang. Er kann je nach den Spezifikationen Ihres Computers etwa 30-60 Sekunden dauern.",
"convertToDiffusersHelpText6": "Möchten Sie dieses Modell konvertieren?",
"custom": "Benutzerdefiniert",
"modelConverted": "Modell umgewandelt",
"inverseSigmoid": "Inverses Sigmoid",
"invokeAIFolder": "Invoke AI Ordner",
"formMessageDiffusersModelLocationDesc": "Bitte geben Sie mindestens einen an.",
"customSaveLocation": "Benutzerdefinierter Speicherort",
"formMessageDiffusersVAELocation": "VAE Speicherort",
"mergedModelCustomSaveLocation": "Benutzerdefinierter Pfad",
"modelMergeHeaderHelp2": "Nur Diffusers sind für die Zusammenführung verfügbar. Wenn Sie ein Kontrollpunktmodell zusammenführen möchten, konvertieren Sie es bitte zuerst in Diffusers.",
"manual": "Manuell",
"modelManager": "Modell Manager",
"modelMergeAlphaHelp": "Alpha steuert die Überblendungsstärke für die Modelle. Niedrigere Alphawerte führen zu einem geringeren Einfluss des zweiten Modells.",
"modelMergeHeaderHelp1": "Sie können bis zu drei verschiedene Modelle miteinander kombinieren, um eine Mischung zu erstellen, die Ihren Bedürfnissen entspricht.",
"ignoreMismatch": "Unstimmigkeiten zwischen ausgewählten Modellen ignorieren",
"model": "Modell",
"convertToDiffusersSaveLocation": "Speicherort",
"pathToCustomConfig": "Pfad zur benutzerdefinierten Konfiguration",
"v1": "v1",
"modelMergeInterpAddDifferenceHelp": "In diesem Modus wird zunächst Modell 3 von Modell 2 subtrahiert. Die resultierende Version wird mit Modell 1 mit dem oben eingestellten Alphasatz gemischt.",
"modelTwo": "Modell 2",
"modelOne": "Modell 1",
"v2_base": "v2 (512px)",
"scanForModels": "Nach Modellen suchen",
"name": "Name",
"safetensorModels": "SafeTensors",
"pickModelType": "Modell Typ auswählen",
"sameFolder": "Gleicher Ordner",
"modelThree": "Modell 3",
"v2_768": "v2 (768px)",
"none": "Nix",
"repoIDValidationMsg": "Online Repo Ihres Modells",
"vaeRepoIDValidationMsg": "Online Repo Ihrer VAE",
"importModels": "Importiere Modelle",
"merge": "Zusammenführen",
"addDiffuserModel": "Diffusers hinzufügen",
"advanced": "Erweitert",
"closeAdvanced": "Schließe Erweitert",
"convertingModelBegin": "Konvertiere Modell. Bitte warten.",
"customConfigFileLocation": "Benutzerdefinierte Konfiguration Datei Speicherort",
"baseModel": "Basis Modell",
"convertToDiffusers": "Konvertiere zu Diffusers",
"diffusersModels": "Diffusers"
},
"parameters": {
"images": "Bilder",
@@ -352,7 +449,7 @@
"type": "Art",
"strength": "Stärke",
"upscaling": "Hochskalierung",
"upscale": "Hochskalieren",
"upscale": "Hochskalieren (Shift + U)",
"upscaleImage": "Bild hochskalieren",
"scale": "Maßstab",
"otherOptions": "Andere Optionen",
@@ -369,7 +466,7 @@
"seamCorrectionHeader": "Nahtkorrektur",
"infillScalingHeader": "Infill und Skalierung",
"img2imgStrength": "Bild-zu-Bild-Stärke",
"toggleLoopback": "Toggle Loopback",
"toggleLoopback": "Loopback umschalten",
"sendTo": "Senden an",
"sendToImg2Img": "Senden an Bild zu Bild",
"sendToUnifiedCanvas": "Senden an Unified Canvas",
@@ -384,8 +481,20 @@
"initialImage": "Ursprüngliches Bild",
"showOptionsPanel": "Optionsleiste zeigen",
"cancel": {
"setType": "Abbruchart festlegen"
}
"setType": "Abbruchart festlegen",
"immediate": "Sofort abbrechen",
"schedule": "Abbrechen nach der aktuellen Iteration",
"isScheduled": "Abbrechen"
},
"copyImage": "Bild kopieren",
"denoisingStrength": "Stärke der Entrauschung",
"symmetry": "Symmetrie",
"imageToImage": "Bild zu Bild",
"info": "Information",
"general": "Allgemein",
"hiresStrength": "High Res Stärke",
"hidePreview": "Verstecke Vorschau",
"showPreview": "Zeige Vorschau"
},
"settings": {
"displayInProgress": "Bilder in Bearbeitung anzeigen",
@@ -396,7 +505,9 @@
"resetWebUI": "Web-Oberfläche zurücksetzen",
"resetWebUIDesc1": "Das Zurücksetzen der Web-Oberfläche setzt nur den lokalen Cache des Browsers mit Ihren Bildern und gespeicherten Einstellungen zurück. Es werden keine Bilder von der Festplatte gelöscht.",
"resetWebUIDesc2": "Wenn die Bilder nicht in der Galerie angezeigt werden oder etwas anderes nicht funktioniert, versuchen Sie bitte, die Einstellungen zurückzusetzen, bevor Sie einen Fehler auf GitHub melden.",
"resetComplete": "Die Web-Oberfläche wurde zurückgesetzt. Aktualisieren Sie die Seite, um sie neu zu laden."
"resetComplete": "Die Web-Oberfläche wurde zurückgesetzt.",
"models": "Modelle",
"useSlidersForAll": "Schieberegler für alle Optionen verwenden"
},
"toast": {
"tempFoldersEmptied": "Temp-Ordner geleert",
@@ -406,7 +517,7 @@
"imageCopied": "Bild kopiert",
"imageLinkCopied": "Bildlink kopiert",
"imageNotLoaded": "Kein Bild geladen",
"imageNotLoadedDesc": "Kein Bild gefunden, das an das Bild zu Bild-Modul gesendet werden kann",
"imageNotLoadedDesc": "Konnte kein Bild finden",
"imageSavedToGallery": "Bild in die Galerie gespeichert",
"canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild",
@@ -476,7 +587,7 @@
"autoSaveToGallery": "Automatisch in Galerie speichern",
"saveBoxRegionOnly": "Nur Auswahlbox speichern",
"limitStrokesToBox": "Striche auf Box beschränken",
"showCanvasDebugInfo": "Leinwand-Debug-Infos anzeigen",
"showCanvasDebugInfo": "Zusätzliche Informationen zur Leinwand anzeigen",
"clearCanvasHistory": "Leinwand-Verlauf löschen",
"clearHistory": "Verlauf löschen",
"clearCanvasHistoryMessage": "Wenn Sie den Verlauf der Leinwand löschen, bleibt die aktuelle Leinwand intakt, aber der Verlauf der Rückgängig- und Wiederherstellung wird unwiderruflich gelöscht.",
@@ -501,14 +612,17 @@
"betaClear": "Löschen",
"betaDarkenOutside": "Außen abdunkeln",
"betaLimitToBox": "Begrenzung auf das Feld",
"betaPreserveMasked": "Maskiertes bewahren"
"betaPreserveMasked": "Maskiertes bewahren",
"antialiasing": "Kantenglättung",
"showResultsOn": "Zeige Ergebnisse (An)",
"showResultsOff": "Zeige Ergebnisse (Aus)"
},
"accessibility": {
"modelSelect": "Model Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
"copyMetadataJson": "Kopiere metadata JSON",
"copyMetadataJson": "Kopiere Metadaten JSON",
"zoomIn": "Vergrößern",
"rotateClockwise": "Im Uhrzeigersinn drehen",
"flipHorizontally": "Horizontal drehen",
@@ -517,9 +631,191 @@
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showOptionsPanel": "Zeige Optionen",
"reset": "Zurücksetzen",
"reset": "Zurücksetzten",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen"
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen",
"showGalleryPanel": "Galeriefenster anzeigen",
"exitViewer": "Betrachten beenden",
"menu": "Menü",
"loadMore": "Mehr laden",
"invokeProgressBar": "Invoke Fortschrittsanzeige"
},
"boards": {
"autoAddBoard": "Automatisches Hinzufügen zum Ordner",
"topMessage": "Dieser Ordner enthält Bilder die in den folgenden Funktionen verwendet werden:",
"move": "Bewegen",
"menuItemAutoAdd": "Automatisches Hinzufügen zu diesem Ordner",
"myBoard": "Meine Ordner",
"searchBoard": "Ordner durchsuchen...",
"noMatching": "Keine passenden Ordner",
"selectBoard": "Ordner aussuchen",
"cancel": "Abbrechen",
"addBoard": "Ordner hinzufügen",
"uncategorized": "Nicht kategorisiert",
"downloadBoard": "Ordner runterladen",
"changeBoard": "Ordner wechseln",
"loading": "Laden...",
"clearSearch": "Suche leeren",
"bottomMessage": "Durch das Löschen dieses Ordners und seiner Bilder werden alle Funktionen zurückgesetzt, die sie derzeit verwenden."
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
"contentShuffleDescription": "Mischt den Inhalt von einem Bild",
"addT2IAdapter": "$t(common.t2iAdapter) hinzufügen",
"importImageFromCanvas": "Importieren Bild von Zeichenfläche",
"lineartDescription": "Konvertiere Bild zu Lineart",
"importMaskFromCanvas": "Importiere Maske von Zeichenfläche",
"hed": "HED",
"hideAdvanced": "Verstecke Erweitert",
"contentShuffle": "Inhalt mischen",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) ist aktiv, $t(common.t2iAdapter) ist deaktiviert",
"ipAdapterModel": "Adapter Modell",
"beginEndStepPercent": "Start / Ende Step Prozent",
"duplicate": "Kopieren",
"f": "F",
"h": "H",
"depthMidasDescription": "Tiefenmap erstellen mit Midas",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) ist aktiv, $t(common.controlNet) ist deaktiviert",
"weight": "Breite",
"selectModel": "Wähle ein Modell",
"depthMidas": "Tiefe (Midas)",
"w": "W",
"addControlNet": "$t(common.controlNet) hinzufügen",
"none": "Kein",
"incompatibleBaseModel": "Inkompatibles Basismodell:",
"enableControlnet": "Aktiviere ControlNet",
"detectResolution": "Auflösung erkennen",
"controlNetT2IMutexDesc": "$t(common.controlNet) und $t(common.t2iAdapter) zur gleichen Zeit wird nicht unterstützt.",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"fill": "Füllen",
"addIPAdapter": "$t(common.ipAdapter) hinzufügen",
"colorMapDescription": "Erstelle eine Farbkarte von diesem Bild",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"imageResolution": "Bild Auflösung",
"depthZoe": "Tiefe (Zoe)",
"colorMap": "Farbe",
"lowThreshold": "Niedrige Schwelle",
"highThreshold": "Hohe Schwelle",
"toggleControlNet": "Schalten ControlNet um",
"delete": "Löschen",
"controlAdapter_one": "Control Adapter",
"controlAdapter_other": "Control Adapters",
"colorMapTileSize": "Tile Größe",
"depthZoeDescription": "Tiefenmap erstellen mit Zoe",
"setControlImageDimensions": "Setze Control Bild Auflösung auf Breite/Höhe",
"handAndFace": "Hand und Gesicht",
"enableIPAdapter": "Aktiviere IP Adapter",
"resize": "Größe ändern",
"resetControlImage": "Zurücksetzen vom Referenz Bild",
"balanced": "Ausgewogen",
"prompt": "Prompt",
"resizeMode": "Größenänderungsmodus",
"processor": "Prozessor",
"saveControlImage": "Speichere Referenz Bild",
"safe": "Speichern",
"ipAdapterImageFallback": "Kein IP Adapter Bild ausgewählt",
"resetIPAdapterImage": "Zurücksetzen vom IP Adapter Bild"
},
"queue": {
"status": "Status",
"cancelTooltip": "Aktuellen Aufgabe abbrechen",
"queueEmpty": "Warteschlange leer",
"in_progress": "In Arbeit",
"queueFront": "An den Anfang der Warteschlange tun",
"completed": "Fertig",
"queueBack": "In die Warteschlange",
"clearFailed": "Probleme beim leeren der Warteschlange",
"clearSucceeded": "Warteschlange geleert",
"pause": "Pause",
"cancelSucceeded": "Auftrag abgebrochen",
"queue": "Warteschlange",
"batch": "Stapel",
"pending": "Ausstehend",
"clear": "Leeren",
"prune": "Leeren",
"total": "Gesamt",
"canceled": "Abgebrochen",
"clearTooltip": "Abbrechen und alle Aufträge leeren",
"current": "Aktuell",
"failed": "Fehler",
"cancelItem": "Abbruch Auftrag",
"next": "Nächste",
"cancel": "Abbruch",
"session": "Sitzung",
"queueTotal": "{{total}} Gesamt",
"resume": "Wieder aufnehmen",
"item": "Auftrag",
"notReady": "Warteschlange noch nicht bereit",
"batchValues": "Stapel Werte",
"queueCountPrediction": "{{predicted}} zur Warteschlange hinzufügen",
"queuedCount": "{{pending}} wartenden Elemente",
"clearQueueAlertDialog": "Die Warteschlange leeren, stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",
"cancelBatch": "Stapel stoppen",
"enqueueing": "Stapel in der Warteschlange",
"queueMaxExceeded": "Maximum von {{max_queue_size}} Elementen erreicht, würde {{skip}} Elemente überspringen",
"cancelBatchFailed": "Problem beim Abbruch vom Stapel",
"clearQueueAlertDialog2": "bist du sicher die Warteschlange zu leeren?"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
"metadata": "Meta-Data",
"strength": "Bild zu Bild stärke",
"imageDetails": "Bild Details",
"model": "Modell",
"noImageDetails": "Keine Bild Details gefunden",
"cfgScale": "CFG-Skala",
"fit": "Bild zu Bild passen",
"height": "Höhe",
"noMetaData": "Keine Meta-Data gefunden",
"width": "Breite",
"createdBy": "Erstellt von",
"steps": "Schritte"
},
"popovers": {
"noiseUseCPU": {
"heading": "Nutze Prozessor rauschen"
},
"paramModel": {
"heading": "Modell"
},
"paramIterations": {
"heading": "Iterationen"
},
"paramCFGScale": {
"heading": "CFG-Skala"
},
"paramSteps": {
"heading": "Schritte"
},
"lora": {
"heading": "LoRA Gewichte"
},
"infillMethod": {
"heading": "Füllmethode"
},
"paramVAE": {
"heading": "VAE"
}
},
"ui": {
"lockRatio": "Verhältnis sperren",
"hideProgressImages": "Verstecke Prozess Bild",
"showProgressImages": "Zeige Prozess Bild"
},
"invocationCache": {
"disable": "Deaktivieren",
"misses": "Cache Nötig",
"hits": "Cache Treffer",
"enable": "Aktivieren",
"clear": "Leeren"
},
"embedding": {
"noMatchingEmbedding": "Keine passenden Embeddings",
"addEmbedding": "Embedding hinzufügen",
"incompatibleModel": "Inkompatibles Basismodell:"
}
}

View File

@@ -70,8 +70,8 @@
"langDutch": "Nederlands",
"langEnglish": "English",
"langFrench": "Français",
"langGerman": "Deutsch",
"langHebrew": "עברית",
"langGerman": "German",
"langHebrew": "Hebrew",
"langItalian": "Italiano",
"langJapanese": "日本語",
"langKorean": "한국어",
@@ -137,9 +137,9 @@
"controlnet": {
"controlAdapter_one": "Control Adapter",
"controlAdapter_other": "Control Adapters",
"controlnet": "$t(controlnet.controlAdapter) #{{number}} ($t(common.controlNet))",
"ip_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.t2iAdapter))",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"addControlNet": "Add $t(common.controlNet)",
"addIPAdapter": "Add $t(common.ipAdapter)",
"addT2IAdapter": "Add $t(common.t2iAdapter)",
@@ -221,6 +221,19 @@
"resetIPAdapterImage": "Reset IP Adapter Image",
"ipAdapterImageFallback": "No IP Adapter Image Selected"
},
"hrf": {
"hrf": "High Resolution Fix",
"enableHrf": "Enable High Resolution Fix",
"enableHrfTooltip": "Generate with a lower initial resolution, upscale to the base resolution, then run Image-to-Image.",
"upscaleMethod": "Upscale Method",
"hrfStrength": "High Resolution Fix Strength",
"strengthTooltip": "Lower values result in fewer details, which may reduce potential artifacts.",
"metadata": {
"enabled": "High Resolution Fix Enabled",
"strength": "High Resolution Fix Strength",
"method": "High Resolution Fix Method"
}
},
"embedding": {
"addEmbedding": "Add Embedding",
"incompatibleModel": "Incompatible base model:",
@@ -559,8 +572,10 @@
"negativePrompt": "Negative Prompt",
"noImageDetails": "No image details found",
"noMetaData": "No metadata found",
"noRecallParameters": "No parameters to recall found",
"perlin": "Perlin Noise",
"positivePrompt": "Positive Prompt",
"recallParameters": "Recall Parameters",
"scheduler": "Scheduler",
"seamless": "Seamless",
"seed": "Seed",
@@ -720,7 +735,9 @@
"noMatchingModels": "No matching Models",
"noModelsAvailable": "No models available",
"selectLoRA": "Select a LoRA",
"selectModel": "Select a Model"
"selectModel": "Select a Model",
"noLoRAsInstalled": "No LoRAs installed",
"noRefinerModelsInstalled": "No SDXL Refiner models installed"
},
"nodes": {
"addNode": "Add Node",
@@ -1113,13 +1130,13 @@
"showProgressInViewer": "Show Progress Images in Viewer",
"ui": "User Interface",
"useSlidersForAll": "Use Sliders For All Options",
"clearIntermediatesDisabled": "Queue must be empty to clear intermediates",
"clearIntermediatesDesc1": "Clearing intermediates will reset your Canvas and ControlNet state.",
"clearIntermediatesDesc2": "Intermediate images are byproducts of generation, different from the result images in the gallery. Clearing intermediates will free disk space.",
"clearIntermediatesDesc3": "Your gallery images will not be deleted.",
"clearIntermediates": "Clear Intermediates",
"clearIntermediatesWithCount_one": "Clear {{count}} Intermediate",
"clearIntermediatesWithCount_other": "Clear {{count}} Intermediates",
"clearIntermediatesWithCount_zero": "No Intermediates to Clear",
"intermediatesCleared_one": "Cleared {{count}} Intermediate",
"intermediatesCleared_other": "Cleared {{count}} Intermediates",
"intermediatesClearedFailed": "Problem Clearing Intermediates"

View File

@@ -87,7 +87,9 @@
"learnMore": "Per saperne di più",
"ipAdapter": "Adattatore IP",
"t2iAdapter": "Adattatore T2I",
"controlAdapter": "Adattatore di Controllo"
"controlAdapter": "Adattatore di Controllo",
"controlNet": "ControlNet",
"auto": "Automatico"
},
"gallery": {
"generations": "Generazioni",
@@ -115,7 +117,10 @@
"currentlyInUse": "Questa immagine è attualmente utilizzata nelle seguenti funzionalità:",
"copy": "Copia",
"download": "Scarica",
"setCurrentImage": "Imposta come immagine corrente"
"setCurrentImage": "Imposta come immagine corrente",
"preparingDownload": "Preparazione del download",
"preparingDownloadFailed": "Problema durante la preparazione del download",
"downloadSelection": "Scarica gli elementi selezionati"
},
"hotkeys": {
"keyboardShortcuts": "Tasti rapidi",
@@ -468,7 +473,8 @@
"useCustomConfig": "Utilizza configurazione personalizzata",
"closeAdvanced": "Chiudi Avanzate",
"modelType": "Tipo di modello",
"customConfigFileLocation": "Posizione del file di configurazione personalizzato"
"customConfigFileLocation": "Posizione del file di configurazione personalizzato",
"vaePrecision": "Precisione VAE"
},
"parameters": {
"images": "Immagini",
@@ -570,9 +576,12 @@
"systemBusy": "Sistema occupato",
"unableToInvoke": "Impossibile invocare",
"systemDisconnected": "Sistema disconnesso",
"noControlImageForControlAdapter": "L'adattatore di controllo {{number}} non ha un'immagine di controllo",
"noModelForControlAdapter": "Nessun modello selezionato per l'adattatore di controllo {{number}}.",
"incompatibleBaseModelForControlAdapter": "Il modello dell'adattatore di controllo {{number}} non è compatibile con il modello principale."
"noControlImageForControlAdapter": "L'adattatore di controllo #{{number}} non ha un'immagine di controllo",
"noModelForControlAdapter": "Nessun modello selezionato per l'adattatore di controllo #{{number}}.",
"incompatibleBaseModelForControlAdapter": "Il modello dell'adattatore di controllo #{{number}} non è compatibile con il modello principale.",
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante"
},
"enableNoiseSettings": "Abilita le impostazioni del rumore",
"cpuNoise": "Rumore CPU",
@@ -583,7 +592,7 @@
"iterations": "Iterazioni",
"iterationsWithCount_one": "{{count}} Iterazione",
"iterationsWithCount_many": "{{count}} Iterazioni",
"iterationsWithCount_other": "",
"iterationsWithCount_other": "{{count}} Iterazioni",
"seamlessX&Y": "Senza cuciture X & Y",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
@@ -591,7 +600,8 @@
},
"seamlessX": "Senza cuciture X",
"seamlessY": "Senza cuciture Y",
"imageActions": "Azioni Immagine"
"imageActions": "Azioni Immagine",
"aspectRatioFree": "Libere"
},
"settings": {
"models": "Modelli",
@@ -620,7 +630,19 @@
"beta": "Beta",
"enableNodesEditor": "Abilita l'editor dei nodi",
"experimental": "Sperimentale",
"autoChangeDimensions": "Aggiorna L/A alle impostazioni predefinite del modello in caso di modifica"
"autoChangeDimensions": "Aggiorna L/A alle impostazioni predefinite del modello in caso di modifica",
"clearIntermediates": "Cancella le immagini intermedie",
"clearIntermediatesDesc3": "Le immagini della galleria non verranno eliminate.",
"clearIntermediatesDesc2": "Le immagini intermedie sono sottoprodotti della generazione, diversi dalle immagini risultanti nella galleria. La cancellazione degli intermedi libererà spazio su disco.",
"intermediatesCleared_one": "Cancellata {{count}} immagine intermedia",
"intermediatesCleared_many": "Cancellate {{count}} immagini intermedie",
"intermediatesCleared_other": "Cancellate {{count}} immagini intermedie",
"clearIntermediatesDesc1": "La cancellazione delle immagini intermedie ripristinerà lo stato di Tela Unificata e ControlNet.",
"intermediatesClearedFailed": "Problema con la cancellazione delle immagini intermedie",
"clearIntermediatesWithCount_one": "Cancella {{count}} immagine intermedia",
"clearIntermediatesWithCount_many": "Cancella {{count}} immagini intermedie",
"clearIntermediatesWithCount_other": "Cancella {{count}} immagini intermedie",
"clearIntermediatesDisabled": "La coda deve essere vuota per cancellare le immagini intermedie"
},
"toast": {
"tempFoldersEmptied": "Cartella temporanea svuotata",
@@ -670,9 +692,9 @@
"nodesUnrecognizedTypes": "Impossibile caricare. Il grafico ha tipi di dati non riconosciuti",
"nodesNotValidJSON": "JSON non valido",
"nodesBrokenConnections": "Impossibile caricare. Alcune connessioni sono interrotte.",
"baseModelChangedCleared_one": "Il modello base è stato modificato, cancellato o disabilitato {{number}} sotto-modello incompatibile",
"baseModelChangedCleared_many": "",
"baseModelChangedCleared_other": "",
"baseModelChangedCleared_one": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modello incompatibile",
"baseModelChangedCleared_many": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
"baseModelChangedCleared_other": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
"imageSavingFailed": "Salvataggio dell'immagine non riuscito",
"canvasSentControlnetAssets": "Tela inviata a ControlNet & Risorse",
"problemCopyingCanvasDesc": "Impossibile copiare la tela",
@@ -866,7 +888,145 @@
"workflowValidation": "Errore di convalida del flusso di lavoro",
"workflowAuthor": "Autore",
"workflowName": "Nome",
"workflowNotes": "Note"
"workflowNotes": "Note",
"unhandledInputProperty": "Proprietà di input non gestita",
"versionUnknown": " Versione sconosciuta",
"unableToValidateWorkflow": "Impossibile convalidare il flusso di lavoro",
"updateApp": "Aggiorna App",
"problemReadingWorkflow": "Problema durante la lettura del flusso di lavoro dall'immagine",
"unableToLoadWorkflow": "Impossibile caricare il flusso di lavoro",
"updateNode": "Aggiorna nodo",
"version": "Versione",
"notes": "Note",
"problemSettingTitle": "Problema nell'impostazione del titolo",
"unkownInvocation": "Tipo di invocazione sconosciuta",
"unknownTemplate": "Modello sconosciuto",
"nodeType": "Tipo di nodo",
"vaeField": "VAE",
"unhandledOutputProperty": "Proprietà di output non gestita",
"notesDescription": "Aggiunge note sul tuo flusso di lavoro",
"unknownField": "Campo sconosciuto",
"unknownNode": "Nodo sconosciuto",
"vaeFieldDescription": "Sotto modello VAE.",
"booleanPolymorphicDescription": "Una raccolta di booleani.",
"missingTemplate": "Modello mancante",
"outputSchemaNotFound": "Schema di output non trovato",
"colorFieldDescription": "Un colore RGBA.",
"maybeIncompatible": "Potrebbe essere incompatibile con quello installato",
"noNodeSelected": "Nessun nodo selezionato",
"colorPolymorphic": "Colore polimorfico",
"booleanCollectionDescription": "Una raccolta di booleani.",
"colorField": "Colore",
"nodeTemplate": "Modello di nodo",
"nodeOpacity": "Opacità del nodo",
"pickOne": "Sceglierne uno",
"outputField": "Campo di output",
"nodeSearch": "Cerca nodi",
"nodeOutputs": "Uscite del nodo",
"collectionItem": "Oggetto della raccolta",
"noConnectionInProgress": "Nessuna connessione in corso",
"noConnectionData": "Nessun dato di connessione",
"outputFields": "Campi di output",
"cannotDuplicateConnection": "Impossibile creare connessioni duplicate",
"booleanPolymorphic": "Polimorfico booleano",
"colorPolymorphicDescription": "Una collezione di colori polimorfici.",
"missingCanvaInitImage": "Immagine iniziale della tela mancante",
"clipFieldDescription": "Sottomodelli di tokenizzatore e codificatore di testo.",
"noImageFoundState": "Nessuna immagine iniziale trovata nello stato",
"clipField": "CLIP",
"noMatchingNodes": "Nessun nodo corrispondente",
"noFieldType": "Nessun tipo di campo",
"colorCollection": "Una collezione di colori.",
"noOutputSchemaName": "Nessun nome dello schema di output trovato nell'oggetto di riferimento",
"boolean": "Booleani",
"missingCanvaInitMaskImages": "Immagini di inizializzazione e maschera della tela mancanti",
"oNNXModelField": "Modello ONNX",
"node": "Nodo",
"booleanDescription": "I booleani sono veri o falsi.",
"collection": "Raccolta",
"cannotConnectInputToInput": "Impossibile collegare Input a Input",
"cannotConnectOutputToOutput": "Impossibile collegare Output ad Output",
"booleanCollection": "Raccolta booleana",
"cannotConnectToSelf": "Impossibile connettersi a se stesso",
"mismatchedVersion": "Ha una versione non corrispondente",
"outputNode": "Nodo di Output",
"loadingNodes": "Caricamento nodi...",
"oNNXModelFieldDescription": "Campo del modello ONNX.",
"denoiseMaskFieldDescription": "La maschera di riduzione del rumore può essere passata tra i nodi",
"floatCollectionDescription": "Una raccolta di numeri virgola mobile.",
"enum": "Enumeratore",
"float": "In virgola mobile",
"doesNotExist": "non esiste",
"currentImageDescription": "Visualizza l'immagine corrente nell'editor dei nodi",
"fieldTypesMustMatch": "I tipi di campo devono corrispondere",
"edge": "Bordo",
"enumDescription": "Gli enumeratori sono valori che possono essere una delle diverse opzioni.",
"denoiseMaskField": "Maschera riduzione rumore",
"currentImage": "Immagine corrente",
"floatCollection": "Raccolta in virgola mobile",
"inputField": "Campo di Input",
"controlFieldDescription": "Informazioni di controllo passate tra i nodi.",
"skippingUnknownOutputType": "Tipo di campo di output sconosciuto saltato",
"latentsFieldDescription": "Le immagini latenti possono essere passate tra i nodi.",
"ipAdapterPolymorphicDescription": "Una raccolta di adattatori IP.",
"latentsPolymorphicDescription": "Le immagini latenti possono essere passate tra i nodi.",
"ipAdapterCollection": "Raccolta Adattatori IP",
"conditioningCollection": "Raccolta condizionamenti",
"ipAdapterPolymorphic": "Adattatore IP Polimorfico",
"integerPolymorphicDescription": "Una raccolta di numeri interi.",
"conditioningCollectionDescription": "Il condizionamento può essere passato tra i nodi.",
"skippingReservedFieldType": "Tipo di campo riservato saltato",
"conditioningPolymorphic": "Condizionamento Polimorfico",
"integer": "Numero Intero",
"latentsCollection": "Raccolta Latenti",
"sourceNode": "Nodo di origine",
"integerDescription": "Gli interi sono numeri senza punto decimale.",
"stringPolymorphic": "Stringa polimorfica",
"conditioningPolymorphicDescription": "Il condizionamento può essere passato tra i nodi.",
"skipped": "Saltato",
"imagePolymorphic": "Immagine Polimorfica",
"imagePolymorphicDescription": "Una raccolta di immagini.",
"floatPolymorphic": "Numeri in virgola mobile Polimorfici",
"ipAdapterCollectionDescription": "Una raccolta di adattatori IP.",
"stringCollectionDescription": "Una raccolta di stringhe.",
"unableToParseNode": "Impossibile analizzare il nodo",
"controlCollection": "Raccolta di Controllo",
"stringCollection": "Raccolta di stringhe",
"inputMayOnlyHaveOneConnection": "L'ingresso può avere solo una connessione",
"ipAdapter": "Adattatore IP",
"integerCollection": "Raccolta di numeri interi",
"controlCollectionDescription": "Informazioni di controllo passate tra i nodi.",
"skippedReservedInput": "Campo di input riservato saltato",
"inputNode": "Nodo di Input",
"imageField": "Immagine",
"skippedReservedOutput": "Campo di output riservato saltato",
"integerCollectionDescription": "Una raccolta di numeri interi.",
"conditioningFieldDescription": "Il condizionamento può essere passato tra i nodi.",
"stringDescription": "Le stringhe sono testo.",
"integerPolymorphic": "Numero intero Polimorfico",
"ipAdapterModel": "Modello Adattatore IP",
"latentsPolymorphic": "Latenti polimorfici",
"skippingInputNoTemplate": "Campo di input senza modello saltato",
"ipAdapterDescription": "Un adattatore di prompt di immagini (Adattatore IP).",
"stringPolymorphicDescription": "Una raccolta di stringhe.",
"skippingUnknownInputType": "Tipo di campo di input sconosciuto saltato",
"controlField": "Controllo",
"ipAdapterModelDescription": "Campo Modello adattatore IP",
"invalidOutputSchema": "Schema di output non valido",
"floatDescription": "I numeri in virgola mobile sono numeri con un punto decimale.",
"floatPolymorphicDescription": "Una raccolta di numeri in virgola mobile.",
"conditioningField": "Condizionamento",
"string": "Stringa",
"latentsField": "Latenti",
"connectionWouldCreateCycle": "La connessione creerebbe un ciclo",
"inputFields": "Campi di Input",
"uNetFieldDescription": "Sub-modello UNet.",
"imageCollectionDescription": "Una raccolta di immagini.",
"imageFieldDescription": "Le immagini possono essere passate tra i nodi.",
"unableToParseEdge": "Impossibile analizzare il bordo",
"latentsCollectionDescription": "Le immagini latenti possono essere passate tra i nodi.",
"imageCollection": "Raccolta Immagini",
"loRAModelField": "LoRA"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -883,7 +1043,8 @@
"searchBoard": "Cerca bacheche ...",
"noMatching": "Nessuna bacheca corrispondente",
"selectBoard": "Seleziona una Bacheca",
"uncategorized": "Non categorizzato"
"uncategorized": "Non categorizzato",
"downloadBoard": "Scarica la bacheca"
},
"controlnet": {
"contentShuffleDescription": "Rimescola il contenuto di un'immagine",
@@ -951,8 +1112,13 @@
"addControlNet": "Aggiungi $t(common.controlNet)",
"controlNetT2IMutexDesc": "$t(common.controlNet) e $t(common.t2iAdapter) contemporaneamente non sono attualmente supportati.",
"addIPAdapter": "Aggiungi $t(common.ipAdapter)",
"controlAdapter": "Adattatore di Controllo",
"megaControl": "Mega ControlNet"
"controlAdapter_one": "Adattatore di Controllo",
"controlAdapter_many": "Adattatori di Controllo",
"controlAdapter_other": "Adattatori di Controllo",
"megaControl": "Mega ControlNet",
"minConfidence": "Confidenza minima",
"scribble": "Scribble",
"amult": "Angolo di illuminazione"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",
@@ -979,7 +1145,9 @@
"pause": "Sospendi",
"pruneTooltip": "Rimuovi {{item_count}} elementi completati",
"cancelSucceeded": "Elemento annullato",
"batchQueuedDesc": "Aggiunte {{item_count}} sessioni a {{direction}} della coda",
"batchQueuedDesc_one": "Aggiunta {{count}} sessione a {{direction}} della coda",
"batchQueuedDesc_many": "Aggiunte {{count}} sessioni a {{direction}} della coda",
"batchQueuedDesc_other": "Aggiunte {{count}} sessioni a {{direction}} della coda",
"graphQueued": "Grafico in coda",
"batch": "Lotto",
"clearQueueAlertDialog": "Lo svuotamento della coda annulla immediatamente tutti gli elementi in elaborazione e cancella completamente la coda.",
@@ -1025,7 +1193,9 @@
"noLoRAsAvailable": "Nessun LoRA disponibile",
"noModelsAvailable": "Nessun modello disponibile",
"selectModel": "Seleziona un modello",
"selectLoRA": "Seleziona un LoRA"
"selectLoRA": "Seleziona un LoRA",
"noRefinerModelsInstalled": "Nessun modello SDXL Refiner installato",
"noLoRAsInstalled": "Nessun LoRA installato"
},
"invocationCache": {
"disable": "Disabilita",
@@ -1056,7 +1226,7 @@
"maxPrompts": "Numero massimo di prompt",
"promptsWithCount_one": "{{count}} Prompt",
"promptsWithCount_many": "{{count}} Prompt",
"promptsWithCount_other": "",
"promptsWithCount_other": "{{count}} Prompt",
"dynamicPrompts": "Prompt dinamici"
},
"popovers": {
@@ -1268,7 +1438,8 @@
"controlNet": {
"paragraphs": [
"ControlNet fornisce una guida al processo di generazione, aiutando a creare immagini con composizione, struttura o stile controllati, a seconda del modello selezionato."
]
],
"heading": "ControlNet"
}
},
"sdxl": {
@@ -1313,6 +1484,8 @@
"createdBy": "Creato da",
"workflow": "Flusso di lavoro",
"steps": "Passi",
"scheduler": "Campionatore"
"scheduler": "Campionatore",
"recallParameters": "Richiama i parametri",
"noRecallParameters": "Nessun parametro da richiamare trovato"
}
}

View File

@@ -1,6 +1,6 @@
{
"common": {
"languagePickerLabel": "言語選択",
"languagePickerLabel": "言語",
"reportBugLabel": "バグ報告",
"settingsLabel": "設定",
"langJapanese": "日本語",
@@ -63,11 +63,34 @@
"langFrench": "Français",
"langGerman": "Deutsch",
"langPortuguese": "Português",
"nodes": "ノード",
"nodes": "ワークフローエディター",
"langKorean": "한국어",
"langPolish": "Polski",
"txt2img": "txt2img",
"postprocessing": "Post Processing"
"postprocessing": "Post Processing",
"t2iAdapter": "T2I アダプター",
"communityLabel": "コミュニティ",
"dontAskMeAgain": "次回から確認しない",
"areYouSure": "本当によろしいですか?",
"on": "オン",
"nodeEditor": "ノードエディター",
"ipAdapter": "IPアダプター",
"controlAdapter": "コントロールアダプター",
"auto": "自動",
"openInNewTab": "新しいタブで開く",
"controlNet": "コントロールネット",
"statusProcessing": "処理中",
"linear": "リニア",
"imageFailedToLoad": "画像が読み込めません",
"imagePrompt": "画像プロンプト",
"modelManager": "モデルマネージャー",
"lightMode": "ライトモード",
"generate": "生成",
"learnMore": "もっと学ぶ",
"darkMode": "ダークモード",
"random": "ランダム",
"batch": "バッチマネージャー",
"advanced": "高度な設定"
},
"gallery": {
"uploads": "アップロード",
@@ -274,7 +297,7 @@
"config": "Config",
"configValidationMsg": "モデルの設定ファイルへのパス",
"modelLocation": "モデルの場所",
"modelLocationValidationMsg": "モデルが配置されている場所へのパス。",
"modelLocationValidationMsg": "ディフューザーモデルのあるローカルフォルダーのパスを入力してください",
"repo_id": "Repo ID",
"repoIDValidationMsg": "モデルのリモートリポジトリ",
"vaeLocation": "VAEの場所",
@@ -309,12 +332,79 @@
"delete": "削除",
"deleteModel": "モデルを削除",
"deleteConfig": "設定を削除",
"deleteMsg1": "InvokeAIからこのモデルエントリーを削除してよろしいですか?",
"deleteMsg2": "これは、ドライブからモデルのCheckpointファイルを削除するものではありません。必要であればそれらを読み込むことができます。",
"deleteMsg1": "InvokeAIからこのモデルを削除してよろしいですか?",
"deleteMsg2": "これは、モデルがInvokeAIルートフォルダ内にある場合、ディスクからモデルを削除します。カスタム保存場所を使用している場合、モデルはディスクから削除されません。",
"formMessageDiffusersModelLocation": "Diffusersモデルの場所",
"formMessageDiffusersModelLocationDesc": "最低でも1つは入力してください。",
"formMessageDiffusersVAELocation": "VAEの場所s",
"formMessageDiffusersVAELocationDesc": "指定しない場合、InvokeAIは上記のモデルの場所にあるVAEファイルを探します。"
"formMessageDiffusersVAELocationDesc": "指定しない場合、InvokeAIは上記のモデルの場所にあるVAEファイルを探します。",
"importModels": "モデルをインポート",
"custom": "カスタム",
"none": "なし",
"convert": "変換",
"statusConverting": "変換中",
"cannotUseSpaces": "スペースは使えません",
"convertToDiffusersHelpText6": "このモデルを変換しますか?",
"checkpointModels": "チェックポイント",
"settings": "設定",
"convertingModelBegin": "モデルを変換しています...",
"baseModel": "ベースモデル",
"modelDeleteFailed": "モデルの削除ができませんでした",
"convertToDiffusers": "ディフューザーに変換",
"alpha": "アルファ",
"diffusersModels": "ディフューザー",
"pathToCustomConfig": "カスタム設定のパス",
"noCustomLocationProvided": "カスタムロケーションが指定されていません",
"modelConverted": "モデル変換が完了しました",
"weightedSum": "重み付け総和",
"inverseSigmoid": "逆シグモイド",
"invokeAIFolder": "Invoke AI フォルダ",
"syncModelsDesc": "モデルがバックエンドと同期していない場合、このオプションを使用してモデルを更新できます。通常、モデル.yamlファイルを手動で更新したり、アプリケーションの起動後にモデルをInvokeAIルートフォルダに追加した場合に便利です。",
"noModels": "モデルが見つかりません",
"sigmoid": "シグモイド",
"merge": "マージ",
"modelMergeInterpAddDifferenceHelp": "このモードでは、モデル3がまずモデル2から減算されます。その結果得られたバージョンが、上記で設定されたアルファ率でモデル1とブレンドされます。",
"customConfig": "カスタム設定",
"predictionType": "予測タイプ(安定したディフュージョン 2.x モデルおよび一部の安定したディフュージョン 1.x モデル用)",
"selectModel": "モデルを選択",
"modelSyncFailed": "モデルの同期に失敗しました",
"quickAdd": "クイック追加",
"simpleModelDesc": "ローカルのDiffusersモデル、ローカルのチェックポイント/safetensorsモデル、HuggingFaceリポジトリのID、またはチェックポイント/ DiffusersモデルのURLへのパスを指定してください。",
"customSaveLocation": "カスタム保存場所",
"advanced": "高度な設定",
"modelDeleted": "モデルが削除されました",
"convertToDiffusersHelpText2": "このプロセスでは、モデルマネージャーのエントリーを同じモデルのディフューザーバージョンに置き換えます。",
"modelUpdateFailed": "モデル更新が失敗しました",
"useCustomConfig": "カスタム設定を使用する",
"convertToDiffusersHelpText5": "十分なディスク空き容量があることを確認してください。モデルは一般的に2GBから7GBのサイズがあります。",
"modelConversionFailed": "モデル変換が失敗しました",
"modelEntryDeleted": "モデルエントリーが削除されました",
"syncModels": "モデルを同期",
"mergedModelSaveLocation": "保存場所",
"closeAdvanced": "高度な設定を閉じる",
"modelType": "モデルタイプ",
"modelsMerged": "モデルマージ完了",
"modelsMergeFailed": "モデルマージ失敗",
"scanForModels": "モデルをスキャン",
"customConfigFileLocation": "カスタム設定ファイルの場所",
"convertToDiffusersHelpText1": "このモデルは 🧨 Diffusers フォーマットに変換されます。",
"modelsSynced": "モデルが同期されました",
"invokeRoot": "InvokeAIフォルダ",
"mergedModelCustomSaveLocation": "カスタムパス",
"mergeModels": "マージモデル",
"interpolationType": "補間タイプ",
"modelMergeHeaderHelp2": "マージできるのはDiffusersのみです。チェックポイントモデルをマージしたい場合は、まずDiffusersに変換してください。",
"convertToDiffusersSaveLocation": "保存場所",
"pickModelType": "モデルタイプを選択",
"sameFolder": "同じフォルダ",
"convertToDiffusersHelpText3": "チェックポイントファイルは、InvokeAIルートフォルダ内にある場合、ディスクから削除されます。カスタムロケーションにある場合は、削除されません。",
"loraModels": "LoRA",
"modelMergeAlphaHelp": "アルファはモデルのブレンド強度を制御します。アルファ値が低いと、2番目のモデルの影響が低くなります。",
"addDifference": "差分を追加",
"modelMergeHeaderHelp1": "あなたのニーズに適したブレンドを作成するために、異なるモデルを最大3つまでマージすることができます。",
"ignoreMismatch": "選択されたモデル間の不一致を無視する",
"convertToDiffusersHelpText4": "これは一回限りのプロセスです。コンピュータの仕様によっては、約30秒から60秒かかる可能性があります。",
"mergedModelName": "マージされたモデル名"
},
"parameters": {
"images": "画像",
@@ -440,7 +530,8 @@
"next": "次",
"accept": "同意",
"showHide": "表示/非表示",
"discardAll": "すべて破棄"
"discardAll": "すべて破棄",
"snapToGrid": "グリッドにスナップ"
},
"accessibility": {
"modelSelect": "モデルを選択",
@@ -452,7 +543,7 @@
"useThisParameter": "このパラメータを使用する",
"copyMetadataJson": "メタデータをコピー(JSON)",
"zoomIn": "ズームイン",
"exitViewer": "ExitViewer",
"exitViewer": "ビューアーを終了",
"zoomOut": "ズームアウト",
"rotateCounterClockwise": "反時計回りに回転",
"rotateClockwise": "時計回りに回転",
@@ -461,6 +552,265 @@
"toggleAutoscroll": "自動スクロールの切替",
"modifyConfig": "Modify Config",
"toggleLogViewer": "Log Viewerの切替",
"showOptionsPanel": "オプションパネルを表示"
"showOptionsPanel": "サイドパネルを表示",
"showGalleryPanel": "ギャラリーパネルを表示",
"menu": "メニュー",
"loadMore": "さらに読み込む"
},
"controlnet": {
"resize": "リサイズ",
"showAdvanced": "高度な設定を表示",
"addT2IAdapter": "$t(common.t2iAdapter)を追加",
"importImageFromCanvas": "キャンバスから画像をインポート",
"lineartDescription": "画像を線画に変換",
"importMaskFromCanvas": "キャンバスからマスクをインポート",
"hideAdvanced": "高度な設定を非表示",
"ipAdapterModel": "アダプターモデル",
"resetControlImage": "コントロール画像をリセット",
"beginEndStepPercent": "開始 / 終了ステップパーセンテージ",
"duplicate": "複製",
"balanced": "バランス",
"prompt": "プロンプト",
"depthMidasDescription": "Midasを使用して深度マップを生成",
"openPoseDescription": "Openposeを使用してポーズを推定",
"control": "コントロール",
"resizeMode": "リサイズモード",
"weight": "重み",
"selectModel": "モデルを選択",
"crop": "切り抜き",
"w": "幅",
"processor": "プロセッサー",
"addControlNet": "$t(common.controlNet)を追加",
"none": "なし",
"incompatibleBaseModel": "互換性のないベースモデル:",
"enableControlnet": "コントロールネットを有効化",
"detectResolution": "検出解像度",
"controlNetT2IMutexDesc": "$t(common.controlNet)と$t(common.t2iAdapter)の同時使用は現在サポートされていません。",
"pidiDescription": "PIDI画像処理",
"controlMode": "コントロールモード",
"fill": "塗りつぶし",
"cannyDescription": "Canny 境界検出",
"addIPAdapter": "$t(common.ipAdapter)を追加",
"colorMapDescription": "画像からカラーマップを生成",
"lineartAnimeDescription": "アニメスタイルの線画処理",
"imageResolution": "画像解像度",
"megaControl": "メガコントロール",
"lowThreshold": "最低閾値",
"autoConfigure": "プロセッサーを自動設定",
"highThreshold": "最大閾値",
"saveControlImage": "コントロール画像を保存",
"toggleControlNet": "このコントロールネットを切り替え",
"delete": "削除",
"controlAdapter_other": "コントロールアダプター",
"colorMapTileSize": "タイルサイズ",
"ipAdapterImageFallback": "IP Adapterの画像が選択されていません",
"mediapipeFaceDescription": "Mediapipeを使用して顔を検出",
"depthZoeDescription": "Zoeを使用して深度マップを生成",
"setControlImageDimensions": "コントロール画像のサイズを幅と高さにセット",
"resetIPAdapterImage": "IP Adapterの画像をリセット",
"handAndFace": "手と顔",
"enableIPAdapter": "IP Adapterを有効化",
"amult": "a_mult",
"contentShuffleDescription": "画像の内容をシャッフルします",
"bgth": "bg_th",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) が有効化され、$t(common.t2iAdapter)s が無効化されました",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) が有効化され、$t(common.controlNet)s が無効化されました",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"minConfidence": "最小確信度",
"colorMap": "Color",
"noneDescription": "処理は行われていません",
"canny": "Canny",
"hedDescription": "階層的エッジ検出",
"maxFaces": "顔の最大数"
},
"metadata": {
"seamless": "シームレス",
"Threshold": "ノイズ閾値",
"seed": "シード",
"width": "幅",
"workflow": "ワークフロー",
"steps": "ステップ",
"scheduler": "スケジューラー",
"positivePrompt": "ポジティブプロンプト",
"strength": "Image to Image 強度",
"perlin": "パーリンノイズ",
"recallParameters": "パラメータを呼び出す"
},
"queue": {
"queueEmpty": "キューが空です",
"pauseSucceeded": "処理が一時停止されました",
"queueFront": "キューの先頭へ追加",
"queueBack": "キューに追加",
"queueCountPrediction": "{{predicted}}をキューに追加",
"queuedCount": "保留中 {{pending}}",
"pause": "一時停止",
"queue": "キュー",
"pauseTooltip": "処理を一時停止",
"cancel": "キャンセル",
"queueTotal": "合計 {{total}}",
"resumeSucceeded": "処理が再開されました",
"resumeTooltip": "処理を再開",
"resume": "再会",
"status": "ステータス",
"pruneSucceeded": "キューから完了アイテム{{item_count}}件を削除しました",
"cancelTooltip": "現在のアイテムをキャンセル",
"in_progress": "進行中",
"notReady": "キューに追加できません",
"batchFailedToQueue": "バッチをキューに追加できませんでした",
"completed": "完了",
"batchValues": "バッチの値",
"cancelFailed": "アイテムのキャンセルに問題があります",
"batchQueued": "バッチをキューに追加しました",
"pauseFailed": "処理の一時停止に問題があります",
"clearFailed": "キューのクリアに問題があります",
"front": "先頭",
"clearSucceeded": "キューがクリアされました",
"pruneTooltip": "{{item_count}} の完了アイテムを削除",
"cancelSucceeded": "アイテムがキャンセルされました",
"batchQueuedDesc_other": "{{count}} セッションをキューの{{direction}}に追加しました",
"graphQueued": "グラフをキューに追加しました",
"batch": "バッチ",
"clearQueueAlertDialog": "キューをクリアすると、処理中のアイテムは直ちにキャンセルされ、キューは完全にクリアされます。",
"pending": "保留中",
"resumeFailed": "処理の再開に問題があります",
"clear": "クリア",
"total": "合計",
"canceled": "キャンセル",
"pruneFailed": "キューの削除に問題があります",
"cancelBatchSucceeded": "バッチがキャンセルされました",
"clearTooltip": "全てのアイテムをキャンセルしてクリア",
"current": "現在",
"failed": "失敗",
"cancelItem": "項目をキャンセル",
"next": "次",
"cancelBatch": "バッチをキャンセル",
"session": "セッション",
"enqueueing": "バッチをキューに追加",
"queueMaxExceeded": "{{max_queue_size}} の最大値を超えたため、{{skip}} をスキップします",
"cancelBatchFailed": "バッチのキャンセルに問題があります",
"clearQueueAlertDialog2": "キューをクリアしてもよろしいですか?",
"item": "アイテム",
"graphFailedToQueue": "グラフをキューに追加できませんでした"
},
"models": {
"noMatchingModels": "一致するモデルがありません",
"loading": "読み込み中",
"noMatchingLoRAs": "一致するLoRAがありません",
"noLoRAsAvailable": "使用可能なLoRAがありません",
"noModelsAvailable": "使用可能なモデルがありません",
"selectModel": "モデルを選択してください",
"selectLoRA": "LoRAを選択してください"
},
"nodes": {
"addNode": "ノードを追加",
"boardField": "ボード",
"boolean": "ブーリアン",
"boardFieldDescription": "ギャラリーボード",
"addNodeToolTip": "ノードを追加 (Shift+A, Space)",
"booleanPolymorphicDescription": "ブーリアンのコレクション。",
"inputField": "入力フィールド",
"latentsFieldDescription": "潜在空間はノード間で伝達できます。",
"floatCollectionDescription": "浮動小数点のコレクション。",
"missingTemplate": "テンプレートが見つかりません",
"ipAdapterPolymorphicDescription": "IP-Adaptersのコレクション。",
"latentsPolymorphicDescription": "潜在空間はノード間で伝達できます。",
"colorFieldDescription": "RGBAカラー。",
"ipAdapterCollection": "IP-Adapterコレクション",
"conditioningCollection": "条件付きコレクション",
"hideGraphNodes": "グラフオーバーレイを非表示",
"loadWorkflow": "ワークフローを読み込み",
"integerPolymorphicDescription": "整数のコレクション。",
"hideLegendNodes": "フィールドタイプの凡例を非表示",
"float": "浮動小数点",
"booleanCollectionDescription": "ブーリアンのコレクション。",
"integer": "整数",
"colorField": "カラー",
"nodeTemplate": "ノードテンプレート",
"integerDescription": "整数は小数点を持たない数値です。",
"imagePolymorphicDescription": "画像のコレクション。",
"doesNotExist": "存在しません",
"ipAdapterCollectionDescription": "IP-Adaptersのコレクション。",
"inputMayOnlyHaveOneConnection": "入力は1つの接続しか持つことができません",
"nodeOutputs": "ノード出力",
"currentImageDescription": "ノードエディタ内の現在の画像を表示",
"downloadWorkflow": "ワークフローのJSONをダウンロード",
"integerCollection": "整数コレクション",
"collectionItem": "コレクションアイテム",
"fieldTypesMustMatch": "フィールドタイプが一致している必要があります",
"edge": "輪郭",
"inputNode": "入力ノード",
"imageField": "画像",
"animatedEdgesHelp": "選択したエッジおよび選択したノードに接続されたエッジをアニメーション化します",
"cannotDuplicateConnection": "重複した接続は作れません",
"noWorkflow": "ワークフローがありません",
"integerCollectionDescription": "整数のコレクション。",
"colorPolymorphicDescription": "カラーのコレクション。",
"missingCanvaInitImage": "キャンバスの初期画像が見つかりません",
"clipFieldDescription": "トークナイザーとテキストエンコーダーサブモデル。",
"fullyContainNodesHelp": "ノードは選択ボックス内に完全に存在する必要があります",
"clipField": "クリップ",
"nodeType": "ノードタイプ",
"executionStateInProgress": "処理中",
"executionStateError": "エラー",
"ipAdapterModel": "IP-Adapterモデル",
"ipAdapterDescription": "イメージプロンプトアダプター(IP-Adapter)。",
"missingCanvaInitMaskImages": "キャンバスの初期画像およびマスクが見つかりません",
"hideMinimapnodes": "ミニマップを非表示",
"fitViewportNodes": "全体を表示",
"executionStateCompleted": "完了",
"node": "ノード",
"currentImage": "現在の画像",
"controlField": "コントロール",
"booleanDescription": "ブーリアンはtrueかfalseです。",
"collection": "コレクション",
"ipAdapterModelDescription": "IP-Adapterモデルフィールド",
"cannotConnectInputToInput": "入力から入力には接続できません",
"invalidOutputSchema": "無効な出力スキーマ",
"floatDescription": "浮動小数点は、小数点を持つ数値です。",
"floatPolymorphicDescription": "浮動小数点のコレクション。",
"floatCollection": "浮動小数点コレクション",
"latentsField": "潜在空間",
"cannotConnectOutputToOutput": "出力から出力には接続できません",
"booleanCollection": "ブーリアンコレクション",
"cannotConnectToSelf": "自身のノードには接続できません",
"inputFields": "入力フィールド(複数)",
"colorCodeEdges": "カラー-Code Edges",
"imageCollectionDescription": "画像のコレクション。",
"loadingNodes": "ノードを読み込み中...",
"imageCollection": "画像コレクション"
},
"boards": {
"autoAddBoard": "自動追加するボード",
"move": "移動",
"menuItemAutoAdd": "このボードに自動追加",
"myBoard": "マイボード",
"searchBoard": "ボードを検索...",
"noMatching": "一致するボードがありません",
"selectBoard": "ボードを選択",
"cancel": "キャンセル",
"addBoard": "ボードを追加",
"uncategorized": "未分類",
"downloadBoard": "ボードをダウンロード",
"changeBoard": "ボードを変更",
"loading": "ロード中...",
"topMessage": "このボードには、以下の機能で使用されている画像が含まれています:",
"bottomMessage": "このボードおよび画像を削除すると、現在これらを利用している機能はリセットされます。",
"clearSearch": "検索をクリア"
},
"embedding": {
"noMatchingEmbedding": "一致する埋め込みがありません",
"addEmbedding": "埋め込みを追加",
"incompatibleModel": "互換性のないベースモデル:"
},
"invocationCache": {
"invocationCache": "呼び出しキャッシュ",
"clearSucceeded": "呼び出しキャッシュをクリアしました",
"clearFailed": "呼び出しキャッシュのクリアに問題があります",
"enable": "有効",
"clear": "クリア",
"maxCacheSize": "最大キャッシュサイズ",
"cacheSize": "キャッシュサイズ"
}
}

View File

@@ -79,7 +79,18 @@
"modelManager": "Modelbeheer",
"darkMode": "Donkere modus",
"lightMode": "Lichte modus",
"communityLabel": "Gemeenschap"
"communityLabel": "Gemeenschap",
"t2iAdapter": "T2I-adapter",
"on": "Aan",
"nodeEditor": "Knooppunteditor",
"ipAdapter": "IP-adapter",
"controlAdapter": "Control-adapter",
"auto": "Autom.",
"controlNet": "ControlNet",
"statusProcessing": "Bezig met verwerken",
"imageFailedToLoad": "Kan afbeelding niet laden",
"learnMore": "Meer informatie",
"advanced": "Uitgebreid"
},
"gallery": {
"generations": "Gegenereerde afbeeldingen",
@@ -95,12 +106,22 @@
"allImagesLoaded": "Alle afbeeldingen geladen",
"loadMore": "Laad meer",
"noImagesInGallery": "Geen afbeeldingen om te tonen",
"deleteImage": "Wis afbeelding",
"deleteImageBin": "Gewiste afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
"deleteImagePermanent": "Gewiste afbeeldingen kunnen niet worden hersteld.",
"deleteImage": "Verwijder afbeelding",
"deleteImageBin": "Verwijderde afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
"assets": "Eigen onderdelen",
"images": "Afbeeldingen",
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken"
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken",
"featuresWillReset": "Als je deze afbeelding verwijdert, dan worden deze functies onmiddellijk teruggezet.",
"loading": "Bezig met laden",
"unableToLoad": "Kan galerij niet laden",
"preparingDownload": "Bezig met voorbereiden van download",
"preparingDownloadFailed": "Fout bij voorbereiden van download",
"downloadSelection": "Download selectie",
"currentlyInUse": "Deze afbeelding is momenteel in gebruik door de volgende functies:",
"copy": "Kopieer",
"download": "Download",
"setCurrentImage": "Stel in als huidige afbeelding"
},
"hotkeys": {
"keyboardShortcuts": "Sneltoetsen",
@@ -332,7 +353,7 @@
"config": "Configuratie",
"configValidationMsg": "Pad naar het configuratiebestand van je model.",
"modelLocation": "Locatie model",
"modelLocationValidationMsg": "Pad naar waar je model zich bevindt.",
"modelLocationValidationMsg": "Geef het pad naar een lokale map waar je Diffusers-model wordt bewaard",
"vaeLocation": "Locatie VAE",
"vaeLocationValidationMsg": "Pad naar waar je VAE zich bevindt.",
"width": "Breedte",
@@ -365,11 +386,11 @@
"deleteModel": "Verwijder model",
"deleteConfig": "Verwijder configuratie",
"deleteMsg1": "Weet je zeker dat je dit model wilt verwijderen uit InvokeAI?",
"deleteMsg2": "Hiermee ZAL het model van schijf worden verwijderd als het zich bevindt in de InvokeAI-beginmap. Als je het model vanaf een eigen locatie gebruikt, dan ZAL het model NIET van schijf worden verwijderd.",
"deleteMsg2": "Hiermee ZAL het model van schijf worden verwijderd als het zich bevindt in de beginmap van InvokeAI. Als je het model vanaf een eigen locatie gebruikt, dan ZAL het model NIET van schijf worden verwijderd.",
"formMessageDiffusersVAELocationDesc": "Indien niet opgegeven, dan zal InvokeAI kijken naar het VAE-bestand in de hierboven gegeven modellocatie.",
"repoIDValidationMsg": "Online repository van je model",
"formMessageDiffusersModelLocation": "Locatie Diffusers-model",
"convertToDiffusersHelpText3": "Je checkpoint-bestand op schijf ZAL worden verwijderd als het zich in de InvokeAI root map bevindt. Het zal NIET worden verwijderd als het zich in een andere locatie bevindt.",
"convertToDiffusersHelpText3": "Je checkpoint-bestand op de schijf ZAL worden verwijderd als het zich in de beginmap van InvokeAI bevindt. Het ZAL NIET worden verwijderd als het zich in een andere locatie bevindt.",
"convertToDiffusersHelpText6": "Wil je dit model omzetten?",
"allModels": "Alle modellen",
"checkpointModels": "Checkpoints",
@@ -437,14 +458,24 @@
"noCustomLocationProvided": "Geen Aangepaste Locatie Opgegeven",
"syncModels": "Synchroniseer Modellen",
"modelsSynced": "Modellen Gesynchroniseerd",
"modelSyncFailed": "Synchronisatie Modellen Gefaald",
"modelSyncFailed": "Synchronisatie modellen mislukt",
"modelDeleteFailed": "Model kon niet verwijderd worden",
"convertingModelBegin": "Model aan het converteren. Even geduld.",
"importModels": "Importeer Modellen",
"syncModelsDesc": "Als je modellen niet meer synchroon zijn met de backend, kan je ze met deze optie verversen. Dit wordt typisch gebruikt in het geval je het models.yaml bestand met de hand bewerkt of als je modellen aan de InvokeAI root map toevoegt nadat de applicatie gestart werd.",
"syncModelsDesc": "Als je modellen niet meer synchroon zijn met de backend, kan je ze met deze optie vernieuwen. Dit wordt meestal gebruikt in het geval je het bestand models.yaml met de hand bewerkt of als je modellen aan de beginmap van InvokeAI toevoegt nadat de applicatie gestart is.",
"loraModels": "LoRA's",
"onnxModels": "Onnx",
"oliveModels": "Olives"
"oliveModels": "Olives",
"noModels": "Geen modellen gevonden",
"predictionType": "Soort voorspelling (voor Stable Diffusion 2.x-modellen en incidentele Stable Diffusion 1.x-modellen)",
"quickAdd": "Voeg snel toe",
"simpleModelDesc": "Geef een pad naar een lokaal Diffusers-model, lokale-checkpoint- / safetensors-model, een HuggingFace-repo-ID of een url naar een checkpoint- / Diffusers-model.",
"advanced": "Uitgebreid",
"useCustomConfig": "Gebruik eigen configuratie",
"closeAdvanced": "Sluit uitgebreid",
"modelType": "Soort model",
"customConfigFileLocation": "Locatie eigen configuratiebestand",
"vaePrecision": "Nauwkeurigheid VAE"
},
"parameters": {
"images": "Afbeeldingen",
@@ -465,7 +496,7 @@
"type": "Soort",
"strength": "Sterkte",
"upscaling": "Opschalen",
"upscale": "Schaal op",
"upscale": "Vergroot (Shift + U)",
"upscaleImage": "Schaal afbeelding op",
"scale": "Schaal",
"otherOptions": "Andere opties",
@@ -496,7 +527,7 @@
"useInitImg": "Gebruik initiële afbeelding",
"info": "Info",
"initialImage": "Initiële afbeelding",
"showOptionsPanel": "Toon deelscherm Opties",
"showOptionsPanel": "Toon deelscherm Opties (O of T)",
"symmetry": "Symmetrie",
"hSymmetryStep": "Stap horiz. symmetrie",
"vSymmetryStep": "Stap vert. symmetrie",
@@ -504,7 +535,8 @@
"immediate": "Annuleer direct",
"isScheduled": "Annuleren",
"setType": "Stel annuleervorm in",
"schedule": "Annuleer na huidige iteratie"
"schedule": "Annuleer na huidige iteratie",
"cancel": "Annuleer"
},
"general": "Algemeen",
"copyImage": "Kopieer afbeelding",
@@ -520,7 +552,7 @@
"boundingBoxWidth": "Tekenvak breedte",
"boundingBoxHeight": "Tekenvak hoogte",
"clipSkip": "Overslaan CLIP",
"aspectRatio": "Verhouding",
"aspectRatio": "Beeldverhouding",
"negativePromptPlaceholder": "Negatieve prompt",
"controlNetControlMode": "Aansturingsmodus",
"positivePromptPlaceholder": "Positieve prompt",
@@ -532,7 +564,46 @@
"coherenceSteps": "Stappen",
"coherenceStrength": "Sterkte",
"seamHighThreshold": "Hoog",
"seamLowThreshold": "Laag"
"seamLowThreshold": "Laag",
"invoke": {
"noNodesInGraph": "Geen knooppunten in graaf",
"noModelSelected": "Geen model ingesteld",
"invoke": "Start",
"noPrompts": "Geen prompts gegenereerd",
"systemBusy": "Systeem is bezig",
"noInitialImageSelected": "Geen initiële afbeelding gekozen",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} invoer ontbreekt",
"noControlImageForControlAdapter": "Controle-adapter #{{number}} heeft geen controle-afbeelding",
"noModelForControlAdapter": "Control-adapter #{{number}} heeft geen model ingesteld staan.",
"unableToInvoke": "Kan niet starten",
"incompatibleBaseModelForControlAdapter": "Model van controle-adapter #{{number}} is ongeldig in combinatie met het hoofdmodel.",
"systemDisconnected": "Systeem is niet verbonden",
"missingNodeTemplate": "Knooppuntsjabloon ontbreekt",
"readyToInvoke": "Klaar om te starten",
"missingFieldTemplate": "Veldsjabloon ontbreekt",
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan"
},
"seamlessX&Y": "Naadloos X en Y",
"isAllowedToUpscale": {
"useX2Model": "Afbeelding is te groot om te vergroten met het x4-model. Gebruik hiervoor het x2-model",
"tooLarge": "Afbeelding is te groot om te vergoten. Kies een kleinere afbeelding"
},
"aspectRatioFree": "Vrij",
"cpuNoise": "CPU-ruis",
"patchmatchDownScaleSize": "Verklein",
"gpuNoise": "GPU-ruis",
"seamlessX": "Naadloos X",
"useCpuNoise": "Gebruik CPU-ruis",
"clipSkipWithLayerCount": "Overslaan CLIP {{layerCount}}",
"seamlessY": "Naadloos Y",
"manualSeed": "Handmatige seedwaarde",
"imageActions": "Afbeeldingshandeling",
"randomSeed": "Willekeurige seedwaarde",
"iterations": "Iteraties",
"iterationsWithCount_one": "{{count}} iteratie",
"iterationsWithCount_other": "{{count}} iteraties",
"enableNoiseSettings": "Schakel ruisinstellingen in",
"coherenceMode": "Modus"
},
"settings": {
"models": "Modellen",
@@ -544,14 +615,14 @@
"resetWebUI": "Herstel web-UI",
"resetWebUIDesc1": "Herstel web-UI herstelt alleen de lokale afbeeldingscache en de onthouden instellingen van je browser. Het verwijdert geen afbeeldingen van schijf.",
"resetWebUIDesc2": "Als afbeeldingen niet getoond worden in de galerij of iets anders werkt niet, probeer dan eerst deze herstelfunctie voordat je een fout aanmeldt op GitHub.",
"resetComplete": "Webgebruikersinterface is hersteld.",
"resetComplete": "Webinterface is hersteld.",
"useSlidersForAll": "Gebruik schuifbalken voor alle opties",
"consoleLogLevel": "Logboekniveau",
"consoleLogLevel": "Niveau logboek",
"shouldLogToConsole": "Schrijf logboek naar console",
"developer": "Ontwikkelaar",
"general": "Algemeen",
"showProgressInViewer": "Toon voortgangsafbeeldingen in viewer",
"generation": "Generatie",
"generation": "Genereren",
"ui": "Gebruikersinterface",
"antialiasProgressImages": "Voer anti-aliasing uit op voortgangsafbeeldingen",
"showAdvancedOptions": "Toon uitgebreide opties",
@@ -560,8 +631,17 @@
"beta": "Bèta",
"experimental": "Experimenteel",
"alternateCanvasLayout": "Omwisselen Canvas Layout",
"enableNodesEditor": "Knopen Editor Inschakelen",
"autoChangeDimensions": "Werk bij wijziging afmetingen bij naar modelstandaard"
"enableNodesEditor": "Schakel Knooppunteditor in",
"autoChangeDimensions": "Werk B/H bij naar modelstandaard bij wijziging",
"clearIntermediates": "Wis tussentijdse afbeeldingen",
"clearIntermediatesDesc3": "Je galerijafbeeldingen zullen niet worden verwijderd.",
"clearIntermediatesWithCount_one": "Wis {{count}} tussentijdse afbeelding",
"clearIntermediatesWithCount_other": "Wis {{count}} tussentijdse afbeeldingen",
"clearIntermediatesDesc2": "Tussentijdse afbeeldingen zijn nevenproducten bij het genereren. Deze wijken af van de uitvoerafbeeldingen in de galerij. Als je tussentijdse afbeeldingen wist, wordt schijfruimte vrijgemaakt.",
"intermediatesCleared_one": "{{count}} tussentijdse afbeelding gewist",
"intermediatesCleared_other": "{{count}} tussentijdse afbeeldingen gewist",
"clearIntermediatesDesc1": "Als je tussentijdse afbeeldingen wist, dan wordt de staat hersteld van je canvas en van ControlNet.",
"intermediatesClearedFailed": "Fout bij wissen van tussentijdse afbeeldingen"
},
"toast": {
"tempFoldersEmptied": "Tijdelijke map geleegd",
@@ -610,7 +690,42 @@
"nodesCorruptedGraph": "Kan niet laden. Graph lijkt corrupt.",
"nodesUnrecognizedTypes": "Laden mislukt. Graph heeft onherkenbare types",
"nodesBrokenConnections": "Laden mislukt. Sommige verbindingen zijn verbroken.",
"nodesNotValidGraph": "Geen geldige knooppunten graph"
"nodesNotValidGraph": "Geen geldige knooppunten graph",
"baseModelChangedCleared_one": "Basismodel is gewijzigd: {{count}} niet-compatibel submodel weggehaald of uitgeschakeld",
"baseModelChangedCleared_other": "Basismodel is gewijzigd: {{count}} niet-compatibele submodellen weggehaald of uitgeschakeld",
"imageSavingFailed": "Fout bij bewaren afbeelding",
"canvasSentControlnetAssets": "Canvas gestuurd naar ControlNet en Assets",
"problemCopyingCanvasDesc": "Kan basislaag niet exporteren",
"loadedWithWarnings": "Werkstroom geladen met waarschuwingen",
"setInitialImage": "Ingesteld als initiële afbeelding",
"canvasCopiedClipboard": "Canvas gekopieerd naar klembord",
"setControlImage": "Ingesteld als controle-afbeelding",
"setNodeField": "Ingesteld als knooppuntveld",
"problemSavingMask": "Fout bij bewaren masker",
"problemSavingCanvasDesc": "Kan basislaag niet exporteren",
"maskSavedAssets": "Masker bewaard in Assets",
"modelAddFailed": "Fout bij toevoegen model",
"problemDownloadingCanvas": "Fout bij downloaden van canvas",
"problemMergingCanvas": "Fout bij samenvoegen canvas",
"setCanvasInitialImage": "Ingesteld als initiële canvasafbeelding",
"imageUploaded": "Afbeelding geüpload",
"addedToBoard": "Toegevoegd aan bord",
"workflowLoaded": "Werkstroom geladen",
"modelAddedSimple": "Model toegevoegd",
"problemImportingMaskDesc": "Kan masker niet exporteren",
"problemCopyingCanvas": "Fout bij kopiëren canvas",
"problemSavingCanvas": "Fout bij bewaren canvas",
"canvasDownloaded": "Canvas gedownload",
"setIPAdapterImage": "Ingesteld als IP-adapterafbeelding",
"problemMergingCanvasDesc": "Kan basislaag niet exporteren",
"problemDownloadingCanvasDesc": "Kan basislaag niet exporteren",
"problemSavingMaskDesc": "Kan masker niet exporteren",
"imageSaved": "Afbeelding bewaard",
"maskSentControlnetAssets": "Masker gestuurd naar ControlNet en Assets",
"canvasSavedGallery": "Canvas bewaard in galerij",
"imageUploadFailed": "Fout bij uploaden afbeelding",
"modelAdded": "Model toegevoegd: {{modelName}}",
"problemImportingMask": "Fout bij importeren masker"
},
"tooltip": {
"feature": {
@@ -685,7 +800,9 @@
"betaDarkenOutside": "Verduister buiten tekenvak",
"betaLimitToBox": "Beperk tot tekenvak",
"betaPreserveMasked": "Behoud masker",
"antialiasing": "Anti-aliasing"
"antialiasing": "Anti-aliasing",
"showResultsOn": "Toon resultaten (aan)",
"showResultsOff": "Toon resultaten (uit)"
},
"accessibility": {
"exitViewer": "Stop viewer",
@@ -707,7 +824,9 @@
"toggleAutoscroll": "Autom. scrollen aan/uit",
"toggleLogViewer": "Logboekviewer aan/uit",
"showOptionsPanel": "Toon zijscherm",
"menu": "Menu"
"menu": "Menu",
"showGalleryPanel": "Toon deelscherm Galerij",
"loadMore": "Laad meer"
},
"ui": {
"showProgressImages": "Toon voortgangsafbeeldingen",
@@ -730,6 +849,661 @@
"resetWorkflow": "Herstel werkstroom",
"resetWorkflowDesc": "Weet je zeker dat je deze werkstroom wilt herstellen?",
"resetWorkflowDesc2": "Herstel van een werkstroom haalt alle knooppunten, randen en werkstroomdetails weg.",
"downloadWorkflow": "Download JSON van werkstroom"
"downloadWorkflow": "Download JSON van werkstroom",
"booleanPolymorphicDescription": "Een verzameling Booleanse waarden.",
"scheduler": "Planner",
"inputField": "Invoerveld",
"controlFieldDescription": "Controlegegevens doorgegeven tussen knooppunten.",
"skippingUnknownOutputType": "Overslaan van onbekend soort uitvoerveld",
"latentsFieldDescription": "Latents kunnen worden doorgegeven tussen knooppunten.",
"denoiseMaskFieldDescription": "Ontruisingsmasker kan worden doorgegeven tussen knooppunten",
"floatCollectionDescription": "Een verzameling zwevende-kommagetallen.",
"missingTemplate": "Ontbrekende sjabloon",
"outputSchemaNotFound": "Uitvoerschema niet gevonden",
"ipAdapterPolymorphicDescription": "Een verzameling IP-adapters.",
"workflowDescription": "Korte beschrijving",
"latentsPolymorphicDescription": "Latents kunnen worden doorgegeven tussen knooppunten.",
"colorFieldDescription": "Een RGBA-kleur.",
"mainModelField": "Model",
"unhandledInputProperty": "Onverwerkt invoerkenmerk",
"versionUnknown": " Versie onbekend",
"ipAdapterCollection": "Verzameling IP-adapters",
"conditioningCollection": "Verzameling conditionering",
"maybeIncompatible": "Is mogelijk niet compatibel met geïnstalleerde knooppunten",
"ipAdapterPolymorphic": "Polymorfisme IP-adapter",
"noNodeSelected": "Geen knooppunt gekozen",
"addNode": "Voeg knooppunt toe",
"unableToValidateWorkflow": "Kan werkstroom niet valideren",
"enum": "Enumeratie",
"integerPolymorphicDescription": "Een verzameling gehele getallen.",
"noOutputRecorded": "Geen uitvoer opgenomen",
"updateApp": "Werk app bij",
"conditioningCollectionDescription": "Conditionering kan worden doorgegeven tussen knooppunten.",
"colorPolymorphic": "Polymorfisme kleur",
"colorCodeEdgesHelp": "Kleurgecodeerde randen op basis van hun verbonden velden",
"collectionDescription": "TODO",
"float": "Zwevende-kommagetal",
"workflowContact": "Contactpersoon",
"skippingReservedFieldType": "Overslaan van gereserveerd veldsoort",
"animatedEdges": "Geanimeerde randen",
"booleanCollectionDescription": "Een verzameling van Booleanse waarden.",
"sDXLMainModelFieldDescription": "SDXL-modelveld.",
"conditioningPolymorphic": "Polymorfisme conditionering",
"integer": "Geheel getal",
"colorField": "Kleur",
"boardField": "Bord",
"nodeTemplate": "Sjabloon knooppunt",
"latentsCollection": "Verzameling latents",
"problemReadingWorkflow": "Fout bij lezen van werkstroom uit afbeelding",
"sourceNode": "Bronknooppunt",
"nodeOpacity": "Dekking knooppunt",
"pickOne": "Kies er een",
"collectionItemDescription": "TODO",
"integerDescription": "Gehele getallen zijn getallen zonder een decimaalteken.",
"outputField": "Uitvoerveld",
"unableToLoadWorkflow": "Kan werkstroom niet valideren",
"snapToGrid": "Lijn uit op raster",
"stringPolymorphic": "Polymorfisme tekenreeks",
"conditioningPolymorphicDescription": "Conditionering kan worden doorgegeven tussen knooppunten.",
"noFieldsLinearview": "Geen velden toegevoegd aan lineaire weergave",
"skipped": "Overgeslagen",
"imagePolymorphic": "Polymorfisme afbeelding",
"nodeSearch": "Zoek naar knooppunten",
"updateNode": "Werk knooppunt bij",
"sDXLRefinerModelFieldDescription": "Beschrijving",
"imagePolymorphicDescription": "Een verzameling afbeeldingen.",
"floatPolymorphic": "Polymorfisme zwevende-kommagetal",
"version": "Versie",
"doesNotExist": "bestaat niet",
"ipAdapterCollectionDescription": "Een verzameling van IP-adapters.",
"stringCollectionDescription": "Een verzameling tekenreeksen.",
"unableToParseNode": "Kan knooppunt niet inlezen",
"controlCollection": "Controle-verzameling",
"validateConnections": "Valideer verbindingen en graaf",
"stringCollection": "Verzameling tekenreeksen",
"inputMayOnlyHaveOneConnection": "Invoer mag slechts een enkele verbinding hebben",
"notes": "Opmerkingen",
"uNetField": "UNet",
"nodeOutputs": "Uitvoer knooppunt",
"currentImageDescription": "Toont de huidige afbeelding in de knooppunteditor",
"validateConnectionsHelp": "Voorkom dat er ongeldige verbindingen worden gelegd en dat er ongeldige grafen worden aangeroepen",
"problemSettingTitle": "Fout bij instellen titel",
"ipAdapter": "IP-adapter",
"integerCollection": "Verzameling gehele getallen",
"collectionItem": "Verzamelingsonderdeel",
"noConnectionInProgress": "Geen verbinding bezig te maken",
"vaeModelField": "VAE",
"controlCollectionDescription": "Controlegegevens doorgegeven tussen knooppunten.",
"skippedReservedInput": "Overgeslagen gereserveerd invoerveld",
"workflowVersion": "Versie",
"noConnectionData": "Geen verbindingsgegevens",
"outputFields": "Uitvoervelden",
"fieldTypesMustMatch": "Veldsoorten moeten overeenkomen",
"workflow": "Werkstroom",
"edge": "Rand",
"inputNode": "Invoerknooppunt",
"enumDescription": "Enumeraties zijn waarden die uit een aantal opties moeten worden gekozen.",
"unkownInvocation": "Onbekende aanroepsoort",
"loRAModelFieldDescription": "TODO",
"imageField": "Afbeelding",
"skippedReservedOutput": "Overgeslagen gereserveerd uitvoerveld",
"animatedEdgesHelp": "Animeer gekozen randen en randen verbonden met de gekozen knooppunten",
"cannotDuplicateConnection": "Kan geen dubbele verbindingen maken",
"booleanPolymorphic": "Polymorfisme Booleaanse waarden",
"unknownTemplate": "Onbekend sjabloon",
"noWorkflow": "Geen werkstroom",
"removeLinearView": "Verwijder uit lineaire weergave",
"colorCollectionDescription": "TODO",
"integerCollectionDescription": "Een verzameling gehele getallen.",
"colorPolymorphicDescription": "Een verzameling kleuren.",
"sDXLMainModelField": "SDXL-model",
"workflowTags": "Labels",
"denoiseMaskField": "Ontruisingsmasker",
"schedulerDescription": "Beschrijving",
"missingCanvaInitImage": "Ontbrekende initialisatie-afbeelding voor canvas",
"conditioningFieldDescription": "Conditionering kan worden doorgegeven tussen knooppunten.",
"clipFieldDescription": "Submodellen voor tokenizer en text_encoder.",
"fullyContainNodesHelp": "Knooppunten moeten zich volledig binnen het keuzevak bevinden om te worden gekozen",
"noImageFoundState": "Geen initiële afbeelding gevonden in de staat",
"workflowValidation": "Validatiefout werkstroom",
"clipField": "Clip",
"stringDescription": "Tekenreeksen zijn tekst.",
"nodeType": "Soort knooppunt",
"noMatchingNodes": "Geen overeenkomende knooppunten",
"fullyContainNodes": "Omvat knooppunten volledig om ze te kiezen",
"integerPolymorphic": "Polymorfisme geheel getal",
"executionStateInProgress": "Bezig",
"noFieldType": "Geen soort veld",
"colorCollection": "Een verzameling kleuren.",
"executionStateError": "Fout",
"noOutputSchemaName": "Geen naam voor uitvoerschema gevonden in referentieobject",
"ipAdapterModel": "Model IP-adapter",
"latentsPolymorphic": "Polymorfisme latents",
"vaeModelFieldDescription": "Beschrijving",
"skippingInputNoTemplate": "Overslaan van invoerveld zonder sjabloon",
"ipAdapterDescription": "Een Afbeeldingsprompt-adapter (IP-adapter).",
"boolean": "Booleaanse waarden",
"missingCanvaInitMaskImages": "Ontbrekende initialisatie- en maskerafbeeldingen voor canvas",
"problemReadingMetadata": "Fout bij lezen van metagegevens uit afbeelding",
"stringPolymorphicDescription": "Een verzameling tekenreeksen.",
"oNNXModelField": "ONNX-model",
"executionStateCompleted": "Voltooid",
"node": "Knooppunt",
"skippingUnknownInputType": "Overslaan van onbekend soort invoerveld",
"workflowAuthor": "Auteur",
"currentImage": "Huidige afbeelding",
"controlField": "Controle",
"workflowName": "Naam",
"booleanDescription": "Booleanse waarden zijn waar en onwaar.",
"collection": "Verzameling",
"ipAdapterModelDescription": "Modelveld IP-adapter",
"cannotConnectInputToInput": "Kan invoer niet aan invoer verbinden",
"invalidOutputSchema": "Ongeldig uitvoerschema",
"boardFieldDescription": "Een galerijbord",
"floatDescription": "Zwevende-kommagetallen zijn getallen met een decimaalteken.",
"floatPolymorphicDescription": "Een verzameling zwevende-kommagetallen.",
"vaeField": "Vae",
"conditioningField": "Conditionering",
"unhandledOutputProperty": "Onverwerkt uitvoerkenmerk",
"workflowNotes": "Opmerkingen",
"string": "Tekenreeks",
"floatCollection": "Verzameling zwevende-kommagetallen",
"latentsField": "Latents",
"cannotConnectOutputToOutput": "Kan uitvoer niet aan uitvoer verbinden",
"booleanCollection": "Verzameling Booleaanse waarden",
"connectionWouldCreateCycle": "Verbinding zou cyclisch worden",
"cannotConnectToSelf": "Kan niet aan zichzelf verbinden",
"notesDescription": "Voeg opmerkingen toe aan je werkstroom",
"unknownField": "Onbekend veld",
"inputFields": "Invoervelden",
"colorCodeEdges": "Kleurgecodeerde randen",
"uNetFieldDescription": "UNet-submodel.",
"unknownNode": "Onbekend knooppunt",
"imageCollectionDescription": "Een verzameling afbeeldingen.",
"mismatchedVersion": "Heeft niet-overeenkomende versie",
"vaeFieldDescription": "Vae-submodel.",
"imageFieldDescription": "Afbeeldingen kunnen worden doorgegeven tussen knooppunten.",
"outputNode": "Uitvoerknooppunt",
"addNodeToolTip": "Voeg knooppunt toe (Shift+A, spatie)",
"loadingNodes": "Bezig met laden van knooppunten...",
"snapToGridHelp": "Lijn knooppunten uit op raster bij verplaatsing",
"workflowSettings": "Instellingen werkstroomeditor",
"mainModelFieldDescription": "TODO",
"sDXLRefinerModelField": "Verfijningsmodel",
"loRAModelField": "LoRA",
"unableToParseEdge": "Kan rand niet inlezen",
"latentsCollectionDescription": "Latents kunnen worden doorgegeven tussen knooppunten.",
"oNNXModelFieldDescription": "ONNX-modelveld.",
"imageCollection": "Afbeeldingsverzameling"
},
"controlnet": {
"amult": "a_mult",
"resize": "Schaal",
"showAdvanced": "Toon uitgebreide opties",
"contentShuffleDescription": "Verschuift het materiaal in de afbeelding",
"bgth": "bg_th",
"addT2IAdapter": "Voeg $t(common.t2iAdapter) toe",
"pidi": "PIDI",
"importImageFromCanvas": "Importeer afbeelding uit canvas",
"lineartDescription": "Zet afbeelding om naar line-art",
"normalBae": "Normale BAE",
"importMaskFromCanvas": "Importeer masker uit canvas",
"hed": "HED",
"hideAdvanced": "Verberg uitgebreid",
"contentShuffle": "Verschuif materiaal",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) ingeschakeld, $t(common.t2iAdapter)s uitgeschakeld",
"ipAdapterModel": "Adaptermodel",
"resetControlImage": "Herstel controle-afbeelding",
"beginEndStepPercent": "Percentage begin-/eindstap",
"mlsdDescription": "Minimalistische herkenning lijnsegmenten",
"duplicate": "Maak kopie",
"balanced": "Gebalanceerd",
"f": "F",
"h": "H",
"prompt": "Prompt",
"depthMidasDescription": "Genereer diepteblad via Midas",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"openPoseDescription": "Menselijke pose-benadering via Openpose",
"control": "Controle",
"resizeMode": "Modus schaling",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) ingeschakeld, $t(common.controlNet)s uitgeschakeld",
"coarse": "Grof",
"weight": "Gewicht",
"selectModel": "Kies een model",
"crop": "Snij bij",
"depthMidas": "Diepte (Midas)",
"w": "B",
"processor": "Verwerker",
"addControlNet": "Voeg $t(common.controlNet) toe",
"none": "Geen",
"incompatibleBaseModel": "Niet-compatibel basismodel:",
"enableControlnet": "Schakel ControlNet in",
"detectResolution": "Herken resolutie",
"controlNetT2IMutexDesc": "Gelijktijdig gebruik van $t(common.controlNet) en $t(common.t2iAdapter) wordt op dit moment niet ondersteund.",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"pidiDescription": "PIDI-afbeeldingsverwerking",
"mediapipeFace": "Mediapipe - Gezicht",
"mlsd": "M-LSD",
"controlMode": "Controlemodus",
"fill": "Vul",
"cannyDescription": "Herkenning Canny-rand",
"addIPAdapter": "Voeg $t(common.ipAdapter) toe",
"lineart": "Line-art",
"colorMapDescription": "Genereert een kleurenblad van de afbeelding",
"lineartAnimeDescription": "Lineartverwerking in anime-stijl",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"minConfidence": "Min. vertrouwensniveau",
"imageResolution": "Resolutie afbeelding",
"megaControl": "Zeer veel controle",
"depthZoe": "Diepte (Zoe)",
"colorMap": "Kleur",
"lowThreshold": "Lage drempelwaarde",
"autoConfigure": "Configureer verwerker automatisch",
"highThreshold": "Hoge drempelwaarde",
"normalBaeDescription": "Normale BAE-verwerking",
"noneDescription": "Geen verwerking toegepast",
"saveControlImage": "Bewaar controle-afbeelding",
"openPose": "Openpose",
"toggleControlNet": "Zet deze ControlNet aan/uit",
"delete": "Verwijder",
"controlAdapter_one": "Control-adapter",
"controlAdapter_other": "Control-adapters",
"safe": "Veilig",
"colorMapTileSize": "Grootte tegel",
"lineartAnime": "Line-art voor anime",
"ipAdapterImageFallback": "Geen IP-adapterafbeelding gekozen",
"mediapipeFaceDescription": "Gezichtsherkenning met Mediapipe",
"canny": "Canny",
"depthZoeDescription": "Genereer diepteblad via Zoe",
"hedDescription": "Herkenning van holistisch-geneste randen",
"setControlImageDimensions": "Stel afmetingen controle-afbeelding in op B/H",
"scribble": "Krabbel",
"resetIPAdapterImage": "Herstel IP-adapterafbeelding",
"handAndFace": "Hand en gezicht",
"enableIPAdapter": "Schakel IP-adapter in",
"maxFaces": "Max. gezichten"
},
"dynamicPrompts": {
"seedBehaviour": {
"perPromptDesc": "Gebruik een verschillende seedwaarde per afbeelding",
"perIterationLabel": "Seedwaarde per iteratie",
"perIterationDesc": "Gebruik een verschillende seedwaarde per iteratie",
"perPromptLabel": "Seedwaarde per afbeelding",
"label": "Gedrag seedwaarde"
},
"enableDynamicPrompts": "Schakel dynamische prompts in",
"combinatorial": "Combinatorisch genereren",
"maxPrompts": "Max. prompts",
"promptsWithCount_one": "{{count}} prompt",
"promptsWithCount_other": "{{count}} prompts",
"dynamicPrompts": "Dynamische prompts"
},
"popovers": {
"noiseUseCPU": {
"paragraphs": [
"Bepaalt of ruis wordt gegenereerd op de CPU of de GPU.",
"Met CPU-ruis ingeschakeld zal een bepaalde seedwaarde dezelfde afbeelding opleveren op welke machine dan ook.",
"Er is geen prestatieverschil bij het inschakelen van CPU-ruis."
],
"heading": "Gebruik CPU-ruis"
},
"paramScheduler": {
"paragraphs": [
"De planner bepaalt hoe ruis per iteratie wordt toegevoegd aan een afbeelding of hoe een monster wordt bijgewerkt op basis van de uitvoer van een model."
],
"heading": "Planner"
},
"scaleBeforeProcessing": {
"paragraphs": [
"Schaalt het gekozen gebied naar de grootte die het meest geschikt is voor het model, vooraf aan het proces van het afbeeldingen genereren."
],
"heading": "Schaal vooraf aan verwerking"
},
"compositingMaskAdjustments": {
"heading": "Aanpassingen masker",
"paragraphs": [
"Pas het masker aan."
]
},
"paramRatio": {
"heading": "Beeldverhouding",
"paragraphs": [
"De beeldverhouding van de afmetingen van de afbeelding die wordt gegenereerd.",
"Een afbeeldingsgrootte (in aantal pixels) equivalent aan 512x512 wordt aanbevolen voor SD1.5-modellen. Een grootte-equivalent van 1024x1024 wordt aanbevolen voor SDXL-modellen."
]
},
"compositingCoherenceSteps": {
"heading": "Stappen",
"paragraphs": [
"Het aantal te gebruiken ontruisingsstappen in de coherentiefase.",
"Gelijk aan de hoofdparameter Stappen."
]
},
"dynamicPrompts": {
"paragraphs": [
"Dynamische prompts vormt een enkele prompt om in vele.",
"De basissyntax is \"a {red|green|blue} ball\". Dit zal de volgende drie prompts geven: \"a red ball\", \"a green ball\" en \"a blue ball\".",
"Gebruik de syntax zo vaak als je wilt in een enkele prompt, maar zorg ervoor dat het aantal gegenereerde prompts in lijn ligt met de instelling Max. prompts."
],
"heading": "Dynamische prompts"
},
"paramVAE": {
"paragraphs": [
"Het model gebruikt voor het vertalen van AI-uitvoer naar de uiteindelijke afbeelding."
],
"heading": "VAE"
},
"compositingBlur": {
"heading": "Vervaging",
"paragraphs": [
"De vervagingsstraal van het masker."
]
},
"paramIterations": {
"paragraphs": [
"Het aantal te genereren afbeeldingen.",
"Als dynamische prompts is ingeschakeld, dan zal elke prompt dit aantal keer gegenereerd worden."
],
"heading": "Iteraties"
},
"paramVAEPrecision": {
"heading": "Nauwkeurigheid VAE",
"paragraphs": [
"De nauwkeurigheid gebruikt tijdens de VAE-codering en -decodering. FP16/halve nauwkeurig is efficiënter, ten koste van kleine afbeeldingsvariaties."
]
},
"compositingCoherenceMode": {
"heading": "Modus",
"paragraphs": [
"De modus van de coherentiefase."
]
},
"paramSeed": {
"paragraphs": [
"Bepaalt de startruis die gebruikt wordt bij het genereren.",
"Schakel \"Willekeurige seedwaarde\" uit om identieke resultaten te krijgen met dezelfde genereer-instellingen."
],
"heading": "Seedwaarde"
},
"controlNetResizeMode": {
"heading": "Schaalmodus",
"paragraphs": [
"Hoe de ControlNet-afbeelding zal worden geschaald aan de uitvoergrootte van de afbeelding."
]
},
"controlNetBeginEnd": {
"paragraphs": [
"Op welke stappen van het ontruisingsproces ControlNet worden toegepast.",
"ControlNets die worden toegepast aan het begin begeleiden het compositieproces. ControlNets die worden toegepast aan het eind zorgen voor details."
],
"heading": "Percentage begin- / eindstap"
},
"dynamicPromptsSeedBehaviour": {
"paragraphs": [
"Bepaalt hoe de seedwaarde wordt gebruikt bij het genereren van prompts.",
"Per iteratie zal een unieke seedwaarde worden gebruikt voor elke iteratie. Gebruik dit om de promptvariaties binnen een enkele seedwaarde te verkennen.",
"Bijvoorbeeld: als je vijf prompts heb, dan zal voor elke afbeelding dezelfde seedwaarde gebruikt worden.",
"De optie Per afbeelding zal een unieke seedwaarde voor elke afbeelding gebruiken. Dit biedt meer variatie."
],
"heading": "Gedrag seedwaarde"
},
"clipSkip": {
"paragraphs": [
"Kies hoeveel CLIP-modellagen je wilt overslaan.",
"Bepaalde modellen werken beter met bepaalde Overslaan CLIP-instellingen.",
"Een hogere waarde geeft meestal een minder gedetailleerde afbeelding."
],
"heading": "Overslaan CLIP"
},
"paramModel": {
"heading": "Model",
"paragraphs": [
"Model gebruikt voor de ontruisingsstappen.",
"Verschillende modellen zijn meestal getraind om zich te specialiseren in het maken van bepaalde esthetische resultaten en materiaal."
]
},
"compositingCoherencePass": {
"heading": "Coherentiefase",
"paragraphs": [
"Een tweede ronde ontruising helpt bij het samenstellen van de erin- of eruitgetekende afbeelding."
]
},
"paramDenoisingStrength": {
"paragraphs": [
"Hoeveel ruis wordt toegevoegd aan de invoerafbeelding.",
"0 levert een identieke afbeelding op, waarbij 1 een volledig nieuwe afbeelding oplevert."
],
"heading": "Ontruisingssterkte"
},
"compositingStrength": {
"heading": "Sterkte",
"paragraphs": [
"Ontruisingssterkte voor de coherentiefase.",
"Gelijk aan de parameter Ontruisingssterkte Afbeelding naar afbeelding."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"Het genereerproces voorkomt de gegeven begrippen in de negatieve prompt. Gebruik dit om bepaalde zaken of voorwerpen uit te sluiten van de uitvoerafbeelding.",
"Ondersteunt Compel-syntax en -embeddingen."
],
"heading": "Negatieve prompt"
},
"compositingBlurMethod": {
"heading": "Vervagingsmethode",
"paragraphs": [
"De methode van de vervaging die wordt toegepast op het gemaskeerd gebied."
]
},
"dynamicPromptsMaxPrompts": {
"heading": "Max. prompts",
"paragraphs": [
"Beperkt het aantal prompts die kunnen worden gegenereerd door dynamische prompts."
]
},
"infillMethod": {
"paragraphs": [
"Methode om een gekozen gebied in te vullen."
],
"heading": "Invulmethode"
},
"controlNetWeight": {
"heading": "Gewicht",
"paragraphs": [
"Hoe sterk ControlNet effect heeft op de gegeneerde afbeelding."
]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
"ControlNets begeleidt het genereerproces, waarbij geholpen wordt bij het maken van afbeeldingen met aangestuurde compositie, structuur of stijl, afhankelijk van het gekozen model."
]
},
"paramCFGScale": {
"heading": "CFG-schaal",
"paragraphs": [
"Bepaalt hoeveel je prompt invloed heeft op het genereerproces."
]
},
"controlNetControlMode": {
"paragraphs": [
"Geeft meer gewicht aan ofwel de prompt danwel ControlNet."
],
"heading": "Controlemodus"
},
"paramSteps": {
"heading": "Stappen",
"paragraphs": [
"Het aantal uit te voeren stappen tijdens elke generatie.",
"Een hoger aantal stappen geven meestal betere afbeeldingen, ten koste van een hogere benodigde tijd om te genereren."
]
},
"paramPositiveConditioning": {
"heading": "Positieve prompt",
"paragraphs": [
"Begeleidt het generartieproces. Gebruik een woord of frase naar keuze.",
"Syntaxes en embeddings voor Compel en dynamische prompts."
]
},
"lora": {
"heading": "Gewicht LoRA",
"paragraphs": [
"Een hogere LoRA-gewicht zal leiden tot een groter effect op de uiteindelijke afbeelding."
]
}
},
"metadata": {
"seamless": "Naadloos",
"positivePrompt": "Positieve prompt",
"negativePrompt": "Negatieve prompt",
"generationMode": "Genereermodus",
"Threshold": "Drempelwaarde ruis",
"metadata": "Metagegevens",
"strength": "Sterkte Afbeelding naar afbeelding",
"seed": "Seedwaarde",
"imageDetails": "Afbeeldingsdetails",
"perlin": "Perlin-ruis",
"model": "Model",
"noImageDetails": "Geen afbeeldingsdetails gevonden",
"hiresFix": "Optimalisatie voor hoge resolutie",
"cfgScale": "CFG-schaal",
"fit": "Schaal aanpassen in Afbeelding naar afbeelding",
"initImage": "Initiële afbeelding",
"recallParameters": "Opnieuw aan te roepen parameters",
"height": "Hoogte",
"variations": "Paren seedwaarde-gewicht",
"noMetaData": "Geen metagegevens gevonden",
"width": "Breedte",
"createdBy": "Gemaakt door",
"workflow": "Werkstroom",
"steps": "Stappen",
"scheduler": "Planner",
"noRecallParameters": "Geen opnieuw uit te voeren parameters gevonden"
},
"queue": {
"status": "Status",
"pruneSucceeded": "{{item_count}} voltooide onderdelen uit wachtrij opgeruimd",
"cancelTooltip": "Annuleer huidig onderdeel",
"queueEmpty": "Wachtrij leeg",
"pauseSucceeded": "Verwerker onderbroken",
"in_progress": "Bezig",
"queueFront": "Voeg vooraan toe in wachtrij",
"notReady": "Fout bij plaatsen in wachtrij",
"batchFailedToQueue": "Fout bij reeks in wachtrij plaatsen",
"completed": "Voltooid",
"queueBack": "Voeg toe aan wachtrij",
"batchValues": "Reekswaarden",
"cancelFailed": "Fout bij annuleren onderdeel",
"queueCountPrediction": "Voeg {{predicted}} toe aan wachtrij",
"batchQueued": "Reeks in wachtrij geplaatst",
"pauseFailed": "Fout bij onderbreken verwerker",
"clearFailed": "Fout bij wissen van wachtrij",
"queuedCount": "{{pending}} wachtend",
"front": "begin",
"clearSucceeded": "Wachtrij gewist",
"pause": "Onderbreek",
"pruneTooltip": "Ruim {{item_count}} voltooide onderdelen op",
"cancelSucceeded": "Onderdeel geannuleerd",
"batchQueuedDesc_one": "Voeg {{count}} sessie toe aan het {{direction}} van de wachtrij",
"batchQueuedDesc_other": "Voeg {{count}} sessies toe aan het {{direction}} van de wachtrij",
"graphQueued": "Graaf in wachtrij geplaatst",
"queue": "Wachtrij",
"batch": "Reeks",
"clearQueueAlertDialog": "Als je de wachtrij onmiddellijk wist, dan worden alle onderdelen die bezig zijn geannuleerd en wordt de wachtrij volledig gewist.",
"pending": "Wachtend",
"completedIn": "Voltooid na",
"resumeFailed": "Fout bij hervatten verwerker",
"clear": "Wis",
"prune": "Ruim op",
"total": "Totaal",
"canceled": "Geannuleerd",
"pruneFailed": "Fout bij opruimen van wachtrij",
"cancelBatchSucceeded": "Reeks geannuleerd",
"clearTooltip": "Annuleer en wis alle onderdelen",
"current": "Huidig",
"pauseTooltip": "Onderbreek verwerker",
"failed": "Mislukt",
"cancelItem": "Annuleer onderdeel",
"next": "Volgende",
"cancelBatch": "Annuleer reeks",
"back": "eind",
"cancel": "Annuleer",
"session": "Sessie",
"queueTotal": "Totaal {{total}}",
"resumeSucceeded": "Verwerker hervat",
"enqueueing": "Bezig met toevoegen van reeks aan wachtrij",
"resumeTooltip": "Hervat verwerker",
"queueMaxExceeded": "Max. aantal van {{max_queue_size}} overschreden, {{skip}} worden overgeslagen",
"resume": "Hervat",
"cancelBatchFailed": "Fout bij annuleren van reeks",
"clearQueueAlertDialog2": "Weet je zeker dat je de wachtrij wilt wissen?",
"item": "Onderdeel",
"graphFailedToQueue": "Fout bij toevoegen graaf aan wachtrij"
},
"sdxl": {
"refinerStart": "Startwaarde verfijning",
"selectAModel": "Kies een model",
"scheduler": "Planner",
"cfgScale": "CFG-schaal",
"negStylePrompt": "Negatieve-stijlprompt",
"noModelsAvailable": "Geen modellen beschikbaar",
"refiner": "Verfijning",
"negAestheticScore": "Negatieve esthetische score",
"useRefiner": "Gebruik verfijning",
"denoisingStrength": "Sterkte ontruising",
"refinermodel": "Verfijningsmodel",
"posAestheticScore": "Positieve esthetische score",
"concatPromptStyle": "Plak prompt- en stijltekst aan elkaar",
"loading": "Bezig met laden...",
"steps": "Stappen",
"posStylePrompt": "Positieve-stijlprompt"
},
"models": {
"noMatchingModels": "Geen overeenkomend modellen",
"loading": "bezig met laden",
"noMatchingLoRAs": "Geen overeenkomende LoRA's",
"noLoRAsAvailable": "Geen LoRA's beschikbaar",
"noModelsAvailable": "Geen modellen beschikbaar",
"selectModel": "Kies een model",
"selectLoRA": "Kies een LoRA"
},
"boards": {
"autoAddBoard": "Voeg automatisch bord toe",
"topMessage": "Dit bord bevat afbeeldingen die in gebruik zijn door de volgende functies:",
"move": "Verplaats",
"menuItemAutoAdd": "Voeg dit automatisch toe aan bord",
"myBoard": "Mijn bord",
"searchBoard": "Zoek borden...",
"noMatching": "Geen overeenkomende borden",
"selectBoard": "Kies een bord",
"cancel": "Annuleer",
"addBoard": "Voeg bord toe",
"bottomMessage": "Als je dit bord en alle afbeeldingen erop verwijdert, dan worden alle functies teruggezet die ervan gebruik maken.",
"uncategorized": "Zonder categorie",
"downloadBoard": "Download bord",
"changeBoard": "Wijzig bord",
"loading": "Bezig met laden...",
"clearSearch": "Maak zoekopdracht leeg"
},
"invocationCache": {
"disable": "Schakel uit",
"misses": "Mislukt cacheverzoek",
"enableFailed": "Fout bij inschakelen aanroepcache",
"invocationCache": "Aanroepcache",
"clearSucceeded": "Aanroepcache gewist",
"enableSucceeded": "Aanroepcache ingeschakeld",
"clearFailed": "Fout bij wissen aanroepcache",
"hits": "Gelukt cacheverzoek",
"disableSucceeded": "Aanroepcache uitgeschakeld",
"disableFailed": "Fout bij uitschakelen aanroepcache",
"enable": "Schakel in",
"clear": "Wis",
"maxCacheSize": "Max. grootte cache",
"cacheSize": "Grootte cache"
},
"embedding": {
"noMatchingEmbedding": "Geen overeenkomende embeddings",
"addEmbedding": "Voeg embedding toe",
"incompatibleModel": "Niet-compatibel basismodel:"
}
}

View File

@@ -88,7 +88,9 @@
"t2iAdapter": "T2I Adapter",
"ipAdapter": "IP Adapter",
"controlAdapter": "Control Adapter",
"controlNet": "ControlNet"
"controlNet": "ControlNet",
"on": "开",
"auto": "自动"
},
"gallery": {
"generations": "生成的图像",
@@ -472,7 +474,8 @@
"vae": "VAE",
"oliveModels": "Olive",
"loraModels": "LoRA",
"alpha": "Alpha"
"alpha": "Alpha",
"vaePrecision": "VAE 精度"
},
"parameters": {
"images": "图像",
@@ -595,7 +598,11 @@
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"iterationsWithCount_other": "{{count}} 次迭代生成"
"iterationsWithCount_other": "{{count}} 次迭代生成",
"seamlessX&Y": "无缝 X & Y",
"aspectRatioFree": "自由",
"seamlessX": "无缝 X",
"seamlessY": "无缝 Y"
},
"settings": {
"models": "模型",
@@ -628,10 +635,11 @@
"clearIntermediates": "清除中间产物",
"clearIntermediatesDesc3": "您图库中的图像不会被删除。",
"clearIntermediatesDesc2": "中间产物图像是生成过程中产生的副产品,与图库中的结果图像不同。清除中间产物可释放磁盘空间。",
"intermediatesCleared_other": "已清除 {{number}} 个中间产物",
"intermediatesCleared_other": "已清除 {{count}} 个中间产物",
"clearIntermediatesDesc1": "清除中间产物会重置您的画布和 ControlNet 状态。",
"intermediatesClearedFailed": "清除中间产物时出现问题",
"noIntermediates": "没有可清除的中间产物"
"clearIntermediatesWithCount_other": "清除 {{count}} 个中间产物",
"clearIntermediatesDisabled": "队列为空才能清理中间产物"
},
"toast": {
"tempFoldersEmptied": "临时文件夹已清空",
@@ -714,7 +722,7 @@
"canvasSavedGallery": "画布已保存到图库",
"imageUploadFailed": "图像上传失败",
"problemImportingMask": "导入遮罩时出现问题",
"baseModelChangedCleared_other": "基础模型已更改, 已清除或禁用 {{number}} 个不兼容的子模型"
"baseModelChangedCleared_other": "基础模型已更改, 已清除或禁用 {{count}} 个不兼容的子模型"
},
"unifiedCanvas": {
"layer": "图层",
@@ -858,7 +866,7 @@
"version": "版本",
"validateConnections": "验证连接和节点图",
"inputMayOnlyHaveOneConnection": "输入仅能有一个连接",
"notes": "节点",
"notes": "注释",
"nodeOutputs": "节点输出",
"currentImageDescription": "在节点编辑器中显示当前图像",
"validateConnectionsHelp": "防止建立无效连接和调用无效节点图",
@@ -884,11 +892,11 @@
"currentImage": "当前图像",
"workflowName": "名称",
"cannotConnectInputToInput": "无法将输入连接到输入",
"workflowNotes": "节点",
"workflowNotes": "注释",
"cannotConnectOutputToOutput": "无法将输出连接到输出",
"connectionWouldCreateCycle": "连接将创建一个循环",
"cannotConnectToSelf": "无法连接自己",
"notesDescription": "添加有关您的工作流的节点",
"notesDescription": "添加有关您的工作流的注释",
"unknownField": "未知",
"colorCodeEdges": "边缘颜色编码",
"unknownNode": "未知节点",
@@ -1003,7 +1011,27 @@
"booleanCollection": "布尔值合集",
"imageCollectionDescription": "一个图像合集。",
"loRAModelField": "LoRA",
"imageCollection": "图像合集"
"imageCollection": "图像合集",
"ipAdapterPolymorphicDescription": "一个 IP-Adapters Collection 合集。",
"ipAdapterCollection": "IP-Adapters 合集",
"conditioningCollection": "条件合集",
"ipAdapterPolymorphic": "IP-Adapters 多态",
"conditioningCollectionDescription": "条件可以在节点间传递。",
"colorPolymorphic": "颜色多态",
"conditioningPolymorphic": "条件多态",
"latentsCollection": "Latents 合集",
"stringPolymorphic": "字符多态",
"conditioningPolymorphicDescription": "条件可以在节点间传递。",
"imagePolymorphic": "图像多态",
"floatPolymorphic": "浮点多态",
"ipAdapterCollectionDescription": "一个 IP-Adapters Collection 合集。",
"ipAdapter": "IP-Adapter",
"booleanPolymorphic": "布尔多态",
"conditioningFieldDescription": "条件可以在节点间传递。",
"integerPolymorphic": "整数多态",
"latentsPolymorphic": "Latents 多态",
"conditioningField": "条件",
"latentsField": "Latents"
},
"controlnet": {
"resize": "直接缩放",
@@ -1073,21 +1101,21 @@
"contentShuffle": "Content Shuffle",
"f": "F",
"h": "H",
"controlnet": "$t(controlnet.controlAdapter) #{{number}} ($t(common.controlNet))",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"control": "Control (普通控制)",
"coarse": "Coarse",
"depthMidas": "Depth (Midas)",
"w": "W",
"ip_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.ipAdapter))",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"mediapipeFace": "Mediapipe Face",
"mlsd": "M-LSD",
"lineart": "Lineart",
"t2i_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.t2iAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"megaControl": "Mega Control (超级控制)",
"depthZoe": "Depth (Zoe)",
"colorMap": "Color",
"openPose": "Openpose",
"controlAdapter": "Control Adapter",
"controlAdapter_other": "Control Adapters",
"lineartAnime": "Lineart Anime",
"canny": "Canny"
},
@@ -1141,7 +1169,7 @@
"queuedCount": "{{pending}} 待处理",
"front": "前",
"pruneTooltip": "修剪 {{item_count}} 个已完成的项目",
"batchQueuedDesc": "在队列的 {{direction}} 中添加了 {{item_count}} 个会话",
"batchQueuedDesc_other": "在队列的 {{direction}} 中添加了 {{count}} 个会话",
"graphQueued": "节点图已加入队列",
"back": "后",
"session": "会话",
@@ -1192,7 +1220,9 @@
"steps": "步数",
"scheduler": "调度器",
"seamless": "无缝",
"fit": "图生图适应"
"fit": "图生图匹配",
"recallParameters": "召回参数",
"noRecallParameters": "未找到要召回的参数"
},
"models": {
"noMatchingModels": "无相匹配的模型",
@@ -1201,7 +1231,9 @@
"noLoRAsAvailable": "无可用 LoRA",
"noModelsAvailable": "无可用模型",
"selectModel": "选择一个模型",
"selectLoRA": "选择一个 LoRA"
"selectLoRA": "选择一个 LoRA",
"noRefinerModelsInstalled": "无已安装的 SDXL Refiner 模型",
"noLoRAsInstalled": "无已安装的 LoRA"
},
"boards": {
"autoAddBoard": "自动添加面板",

View File

@@ -54,42 +54,35 @@
]
},
"dependencies": {
"@chakra-ui/anatomy": "^2.2.1",
"@chakra-ui/anatomy": "^2.2.2",
"@chakra-ui/icons": "^2.1.1",
"@chakra-ui/react": "^2.8.1",
"@chakra-ui/styled-system": "^2.9.1",
"@chakra-ui/theme-tools": "^2.1.1",
"@chakra-ui/react": "^2.8.2",
"@chakra-ui/styled-system": "^2.9.2",
"@chakra-ui/theme-tools": "^2.1.2",
"@dagrejs/graphlib": "^2.1.13",
"@dnd-kit/core": "^6.0.8",
"@dnd-kit/modifiers": "^6.0.1",
"@dnd-kit/utilities": "^3.2.1",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/utilities": "^3.2.2",
"@emotion/react": "^11.11.1",
"@emotion/styled": "^11.11.0",
"@floating-ui/react-dom": "^2.0.2",
"@fontsource-variable/inter": "^5.0.13",
"@fontsource/inter": "^5.0.13",
"@fontsource-variable/inter": "^5.0.15",
"@mantine/core": "^6.0.19",
"@mantine/form": "^6.0.19",
"@mantine/hooks": "^6.0.19",
"@nanostores/react": "^0.7.1",
"@reduxjs/toolkit": "^1.9.7",
"@roarr/browser-log-writer": "^1.3.0",
"@stevebel/png": "^1.5.1",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"formik": "^2.4.5",
"framer-motion": "^10.16.4",
"fuse.js": "^6.6.2",
"i18next": "^23.5.1",
"i18next-browser-languagedetector": "^7.0.2",
"i18next-http-backend": "^2.2.2",
"konva": "^9.2.2",
"i18next": "^23.6.0",
"i18next-http-backend": "^2.3.1",
"konva": "^9.2.3",
"lodash-es": "^4.17.21",
"nanostores": "^0.9.2",
"nanostores": "^0.9.4",
"new-github-issue-url": "^1.0.0",
"openapi-fetch": "^0.7.10",
"overlayscrollbars": "^2.3.2",
"overlayscrollbars-react": "^0.5.2",
"openapi-fetch": "^0.8.1",
"overlayscrollbars": "^2.4.4",
"overlayscrollbars-react": "^0.5.3",
"patch-package": "^8.0.0",
"query-string": "^8.1.0",
"react": "^18.2.0",
@@ -98,26 +91,25 @@
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.11",
"react-hotkeys-hook": "4.4.1",
"react-i18next": "^13.3.0",
"react-i18next": "^13.3.1",
"react-icons": "^4.11.0",
"react-konva": "^18.2.10",
"react-redux": "^8.1.3",
"react-resizable-panels": "^0.0.55",
"react-use": "^17.4.0",
"react-virtuoso": "^4.6.1",
"react-zoom-pan-pinch": "^3.2.0",
"reactflow": "^11.9.3",
"react-virtuoso": "^4.6.2",
"reactflow": "^11.9.4",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^4.0.4",
"roarr": "^7.15.1",
"roarr": "^7.18.3",
"serialize-error": "^11.0.2",
"socket.io-client": "^4.7.2",
"type-fest": "^4.4.0",
"use-debounce": "^9.0.4",
"type-fest": "^4.7.1",
"use-debounce": "^10.0.0",
"use-image": "^1.1.1",
"uuid": "^9.0.1",
"zod": "^3.22.4",
"zod-validation-error": "^1.5.0"
"zod-validation-error": "^2.1.0"
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.0",
@@ -128,39 +120,33 @@
},
"devDependencies": {
"@chakra-ui/cli": "^2.4.1",
"@types/dateformat": "^5.0.0",
"@types/lodash-es": "^4.17.9",
"@types/node": "^20.8.6",
"@types/react": "^18.2.28",
"@types/react-dom": "^18.2.13",
"@types/react-redux": "^7.1.27",
"@types/react-transition-group": "^4.4.7",
"@types/uuid": "^9.0.5",
"@typescript-eslint/eslint-plugin": "^6.7.5",
"@typescript-eslint/parser": "^6.7.5",
"@vitejs/plugin-react-swc": "^3.4.0",
"axios": "^1.5.1",
"babel-plugin-transform-imports": "^2.0.0",
"concurrently": "^8.2.1",
"eslint": "^8.51.0",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.11",
"@types/node": "^20.9.0",
"@types/react": "^18.2.37",
"@types/react-dom": "^18.2.15",
"@types/react-redux": "^7.1.30",
"@types/uuid": "^9.0.7",
"@typescript-eslint/eslint-plugin": "^6.10.0",
"@typescript-eslint/parser": "^6.10.0",
"@vitejs/plugin-react-swc": "^3.4.1",
"concurrently": "^8.2.2",
"eslint": "^8.53.0",
"eslint-config-prettier": "^9.0.0",
"eslint-plugin-prettier": "^5.0.1",
"eslint-plugin-react": "^7.33.2",
"eslint-plugin-react-hooks": "^4.6.0",
"form-data": "^4.0.0",
"husky": "^8.0.3",
"lint-staged": "^15.0.1",
"lint-staged": "^15.0.2",
"madge": "^6.1.0",
"openapi-types": "^12.1.3",
"openapi-typescript": "^6.7.0",
"postinstall-postinstall": "^2.1.0",
"prettier": "^3.0.3",
"rollup-plugin-visualizer": "^5.9.2",
"ts-toolbelt": "^9.6.0",
"typescript": "^5.2.2",
"vite": "^4.4.11",
"vite": "^4.5.0",
"vite-plugin-css-injected-by-js": "^3.3.0",
"vite-plugin-dts": "^3.6.0",
"vite-plugin-dts": "^3.6.3",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.2.1",
"yarn": "^1.22.19"

View File

@@ -83,13 +83,14 @@
"darkMode": "Dunkler Modus",
"loading": "Lade",
"random": "Zufall",
"batch": "Batch-Manager",
"batch": "Stapel-Manager",
"advanced": "Erweitert",
"langBrPortuguese": "Portugiesisch (Brasilien)",
"unifiedCanvas": "Einheitliche Leinwand",
"openInNewTab": "In einem neuem Tab öffnen",
"statusProcessing": "wird bearbeitet",
"linear": "Linear"
"linear": "Linear",
"imagePrompt": "Bild Prompt"
},
"gallery": {
"generations": "Erzeugungen",
@@ -655,7 +656,8 @@
"downloadBoard": "Ordner runterladen",
"changeBoard": "Ordner wechseln",
"loading": "Laden...",
"clearSearch": "Suche leeren"
"clearSearch": "Suche leeren",
"bottomMessage": "Durch das Löschen dieses Ordners und seiner Bilder werden alle Funktionen zurückgesetzt, die sie derzeit verwenden."
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
@@ -704,7 +706,17 @@
"depthZoeDescription": "Tiefenmap erstellen mit Zoe",
"setControlImageDimensions": "Setze Control Bild Auflösung auf Breite/Höhe",
"handAndFace": "Hand und Gesicht",
"enableIPAdapter": "Aktiviere IP Adapter"
"enableIPAdapter": "Aktiviere IP Adapter",
"resize": "Größe ändern",
"resetControlImage": "Zurücksetzen vom Referenz Bild",
"balanced": "Ausgewogen",
"prompt": "Prompt",
"resizeMode": "Größenänderungsmodus",
"processor": "Prozessor",
"saveControlImage": "Speichere Referenz Bild",
"safe": "Speichern",
"ipAdapterImageFallback": "Kein IP Adapter Bild ausgewählt",
"resetIPAdapterImage": "Zurücksetzen vom IP Adapter Bild"
},
"queue": {
"status": "Status",
@@ -734,7 +746,19 @@
"session": "Sitzung",
"queueTotal": "{{total}} Gesamt",
"resume": "Wieder aufnehmen",
"item": "Auftrag"
"item": "Auftrag",
"notReady": "Warteschlange noch nicht bereit",
"batchValues": "Stapel Werte",
"queueCountPrediction": "{{predicted}} zur Warteschlange hinzufügen",
"queuedCount": "{{pending}} wartenden Elemente",
"clearQueueAlertDialog": "Die Warteschlange leeren, stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",
"cancelBatch": "Stapel stoppen",
"enqueueing": "Stapel in der Warteschlange",
"queueMaxExceeded": "Maximum von {{max_queue_size}} Elementen erreicht, würde {{skip}} Elemente überspringen",
"cancelBatchFailed": "Problem beim Abbruch vom Stapel",
"clearQueueAlertDialog2": "bist du sicher die Warteschlange zu leeren?"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
@@ -788,5 +812,10 @@
"hits": "Cache Treffer",
"enable": "Aktivieren",
"clear": "Leeren"
},
"embedding": {
"noMatchingEmbedding": "Keine passenden Embeddings",
"addEmbedding": "Embedding hinzufügen",
"incompatibleModel": "Inkompatibles Basismodell:"
}
}

View File

@@ -221,6 +221,19 @@
"resetIPAdapterImage": "Reset IP Adapter Image",
"ipAdapterImageFallback": "No IP Adapter Image Selected"
},
"hrf": {
"hrf": "High Resolution Fix",
"enableHrf": "Enable High Resolution Fix",
"enableHrfTooltip": "Generate with a lower initial resolution, upscale to the base resolution, then run Image-to-Image.",
"upscaleMethod": "Upscale Method",
"hrfStrength": "High Resolution Fix Strength",
"strengthTooltip": "Lower values result in fewer details, which may reduce potential artifacts.",
"metadata": {
"enabled": "High Resolution Fix Enabled",
"strength": "High Resolution Fix Strength",
"method": "High Resolution Fix Method"
}
},
"embedding": {
"addEmbedding": "Add Embedding",
"incompatibleModel": "Incompatible base model:",
@@ -1258,15 +1271,11 @@
},
"compositingBlur": {
"heading": "Blur",
"paragraphs": [
"The blur radius of the mask."
]
"paragraphs": ["The blur radius of the mask."]
},
"compositingBlurMethod": {
"heading": "Blur Method",
"paragraphs": [
"The method of blur applied to the masked area."
]
"paragraphs": ["The method of blur applied to the masked area."]
},
"compositingCoherencePass": {
"heading": "Coherence Pass",
@@ -1276,9 +1285,7 @@
},
"compositingCoherenceMode": {
"heading": "Mode",
"paragraphs": [
"The mode of the Coherence Pass."
]
"paragraphs": ["The mode of the Coherence Pass."]
},
"compositingCoherenceSteps": {
"heading": "Steps",
@@ -1296,9 +1303,7 @@
},
"compositingMaskAdjustments": {
"heading": "Mask Adjustments",
"paragraphs": [
"Adjust the mask."
]
"paragraphs": ["Adjust the mask."]
},
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
@@ -1356,9 +1361,7 @@
},
"infillMethod": {
"heading": "Infill Method",
"paragraphs": [
"Method to infill the selected area."
]
"paragraphs": ["Method to infill the selected area."]
},
"lora": {
"heading": "LoRA Weight",

View File

@@ -1025,7 +1025,8 @@
"imageFieldDescription": "Le immagini possono essere passate tra i nodi.",
"unableToParseEdge": "Impossibile analizzare il bordo",
"latentsCollectionDescription": "Le immagini latenti possono essere passate tra i nodi.",
"imageCollection": "Raccolta Immagini"
"imageCollection": "Raccolta Immagini",
"loRAModelField": "LoRA"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1192,7 +1193,9 @@
"noLoRAsAvailable": "Nessun LoRA disponibile",
"noModelsAvailable": "Nessun modello disponibile",
"selectModel": "Seleziona un modello",
"selectLoRA": "Seleziona un LoRA"
"selectLoRA": "Seleziona un LoRA",
"noRefinerModelsInstalled": "Nessun modello SDXL Refiner installato",
"noLoRAsInstalled": "Nessun LoRA installato"
},
"invocationCache": {
"disable": "Disabilita",

View File

@@ -1231,7 +1231,9 @@
"noLoRAsAvailable": "无可用 LoRA",
"noModelsAvailable": "无可用模型",
"selectModel": "选择一个模型",
"selectLoRA": "选择一个 LoRA"
"selectLoRA": "选择一个 LoRA",
"noRefinerModelsInstalled": "无已安装的 SDXL Refiner 模型",
"noLoRAsInstalled": "无已安装的 LoRA"
},
"boards": {
"autoAddBoard": "自动添加面板",

View File

@@ -12,6 +12,7 @@ import { addFirstListImagesListener } from './listeners/addFirstListImagesListen
import { addAnyEnqueuedListener } from './listeners/anyEnqueued';
import { addAppConfigReceivedListener } from './listeners/appConfigReceived';
import { addAppStartedListener } from './listeners/appStarted';
import { addBatchEnqueuedListener } from './listeners/batchEnqueued';
import { addDeleteBoardAndImagesFulfilledListener } from './listeners/boardAndImagesDeleted';
import { addBoardIdSelectedListener } from './listeners/boardIdSelected';
import { addCanvasCopiedToClipboardListener } from './listeners/canvasCopiedToClipboard';
@@ -71,8 +72,6 @@ import { addStagingAreaImageSavedListener } from './listeners/stagingAreaImageSa
import { addTabChangedListener } from './listeners/tabChanged';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
import { addWorkflowLoadedListener } from './listeners/workflowLoaded';
import { addBatchEnqueuedListener } from './listeners/batchEnqueued';
import { addControlAdapterAddedOrEnabledListener } from './listeners/controlAdapterAddedOrEnabled';
export const listenerMiddleware = createListenerMiddleware();
@@ -200,7 +199,3 @@ addTabChangedListener();
// Dynamic prompts
addDynamicPromptsListener();
// Display toast when controlnet or t2i adapter enabled
// TODO: Remove when they can both be enabled at same time
addControlAdapterAddedOrEnabledListener();

View File

@@ -1,87 +0,0 @@
import { isAnyOf } from '@reduxjs/toolkit';
import {
controlAdapterAdded,
controlAdapterAddedFromImage,
controlAdapterIsEnabledChanged,
controlAdapterRecalled,
selectControlAdapterAll,
selectControlAdapterById,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { ControlAdapterType } from 'features/controlAdapters/store/types';
import { addToast } from 'features/system/store/systemSlice';
import i18n from 'i18n';
import { startAppListening } from '..';
const isAnyControlAdapterAddedOrEnabled = isAnyOf(
controlAdapterAdded,
controlAdapterAddedFromImage,
controlAdapterRecalled,
controlAdapterIsEnabledChanged
);
/**
* Until we can have both controlnet and t2i adapter enabled at once, they are mutually exclusive
* This displays a toast when one is enabled and the other is already enabled, or one is added
* with the other enabled
*/
export const addControlAdapterAddedOrEnabledListener = () => {
startAppListening({
matcher: isAnyControlAdapterAddedOrEnabled,
effect: async (action, { dispatch, getOriginalState }) => {
const controlAdapters = getOriginalState().controlAdapters;
const hasEnabledControlNets = selectControlAdapterAll(
controlAdapters
).some((ca) => ca.isEnabled && ca.type === 'controlnet');
const hasEnabledT2IAdapters = selectControlAdapterAll(
controlAdapters
).some((ca) => ca.isEnabled && ca.type === 't2i_adapter');
let caType: ControlAdapterType | null = null;
if (controlAdapterAdded.match(action)) {
caType = action.payload.type;
}
if (controlAdapterAddedFromImage.match(action)) {
caType = action.payload.type;
}
if (controlAdapterRecalled.match(action)) {
caType = action.payload.type;
}
if (controlAdapterIsEnabledChanged.match(action)) {
const _caType = selectControlAdapterById(
controlAdapters,
action.payload.id
)?.type;
if (!_caType) {
return;
}
caType = _caType;
}
if (
(caType === 'controlnet' && hasEnabledT2IAdapters) ||
(caType === 't2i_adapter' && hasEnabledControlNets)
) {
const title =
caType === 'controlnet'
? i18n.t('controlnet.controlNetEnabledT2IDisabled')
: i18n.t('controlnet.t2iEnabledControlNetDisabled');
const description = i18n.t('controlnet.controlNetT2IMutexDesc');
dispatch(
addToast({
title,
description,
status: 'warning',
})
);
}
},
});
};

View File

@@ -88,61 +88,6 @@ export const selectValidT2IAdapters = (controlAdapters: ControlAdaptersState) =>
(ca.processorType === 'none' && Boolean(ca.controlImage)))
);
// TODO: I think we can safely remove this?
// const disableAllIPAdapters = (
// state: ControlAdaptersState,
// exclude?: string
// ) => {
// const updates: Update<ControlAdapterConfig>[] = selectAllIPAdapters(state)
// .filter((ca) => ca.id !== exclude)
// .map((ca) => ({
// id: ca.id,
// changes: { isEnabled: false },
// }));
// caAdapter.updateMany(state, updates);
// };
const disableAllControlNets = (
state: ControlAdaptersState,
exclude?: string
) => {
const updates: Update<ControlAdapterConfig>[] = selectAllControlNets(state)
.filter((ca) => ca.id !== exclude)
.map((ca) => ({
id: ca.id,
changes: { isEnabled: false },
}));
caAdapter.updateMany(state, updates);
};
const disableAllT2IAdapters = (
state: ControlAdaptersState,
exclude?: string
) => {
const updates: Update<ControlAdapterConfig>[] = selectAllT2IAdapters(state)
.filter((ca) => ca.id !== exclude)
.map((ca) => ({
id: ca.id,
changes: { isEnabled: false },
}));
caAdapter.updateMany(state, updates);
};
const disableIncompatibleControlAdapters = (
state: ControlAdaptersState,
type: ControlAdapterType,
exclude?: string
) => {
if (type === 'controlnet') {
// we cannot do controlnet + t2i adapter, if we are enabled a controlnet, disable all t2is
disableAllT2IAdapters(state, exclude);
}
if (type === 't2i_adapter') {
// we cannot do controlnet + t2i adapter, if we are enabled a t2i, disable controlnets
disableAllControlNets(state, exclude);
}
};
export const controlAdaptersSlice = createSlice({
name: 'controlAdapters',
initialState: initialControlAdapterState,
@@ -158,7 +103,6 @@ export const controlAdaptersSlice = createSlice({
) => {
const { id, type, overrides } = action.payload;
caAdapter.addOne(state, buildControlAdapter(id, type, overrides));
disableIncompatibleControlAdapters(state, type, id);
},
prepare: ({
type,
@@ -175,8 +119,6 @@ export const controlAdaptersSlice = createSlice({
action: PayloadAction<ControlAdapterConfig>
) => {
caAdapter.addOne(state, action.payload);
const { type, id } = action.payload;
disableIncompatibleControlAdapters(state, type, id);
},
controlAdapterDuplicated: {
reducer: (
@@ -196,8 +138,6 @@ export const controlAdaptersSlice = createSlice({
isEnabled: true,
});
caAdapter.addOne(state, newControlAdapter);
const { type } = newControlAdapter;
disableIncompatibleControlAdapters(state, type, newId);
},
prepare: (id: string) => {
return { payload: { id, newId: uuidv4() } };
@@ -217,7 +157,6 @@ export const controlAdaptersSlice = createSlice({
state,
buildControlAdapter(id, type, { controlImage })
);
disableIncompatibleControlAdapters(state, type, id);
},
prepare: (payload: {
type: ControlAdapterType;
@@ -235,12 +174,6 @@ export const controlAdaptersSlice = createSlice({
) => {
const { id, isEnabled } = action.payload;
caAdapter.updateOne(state, { id, changes: { isEnabled } });
if (isEnabled) {
// we are enabling a control adapter. due to limitations in the current system, we may need to disable other adapters
// TODO: disable when multiple IP adapters are supported
const ca = selectControlAdapterById(state, id);
ca && disableIncompatibleControlAdapters(state, ca.type, id);
}
},
controlAdapterImageChanged: (
state,

View File

@@ -35,6 +35,9 @@ const ImageMetadataActions = (props: Props) => {
recallWidth,
recallHeight,
recallStrength,
recallHrfEnabled,
recallHrfStrength,
recallHrfMethod,
recallLoRA,
recallControlNet,
recallIPAdapter,
@@ -81,6 +84,18 @@ const ImageMetadataActions = (props: Props) => {
recallStrength(metadata?.strength);
}, [metadata?.strength, recallStrength]);
const handleRecallHrfEnabled = useCallback(() => {
recallHrfEnabled(metadata?.hrf_enabled);
}, [metadata?.hrf_enabled, recallHrfEnabled]);
const handleRecallHrfStrength = useCallback(() => {
recallHrfStrength(metadata?.hrf_strength);
}, [metadata?.hrf_strength, recallHrfStrength]);
const handleRecallHrfMethod = useCallback(() => {
recallHrfMethod(metadata?.hrf_method);
}, [metadata?.hrf_method, recallHrfMethod]);
const handleRecallLoRA = useCallback(
(lora: LoRAMetadataItem) => {
recallLoRA(lora);
@@ -225,6 +240,27 @@ const ImageMetadataActions = (props: Props) => {
onClick={handleRecallStrength}
/>
)}
{metadata.hrf_enabled && (
<ImageMetadataItem
label={t('hrf.metadata.enabled')}
value={metadata.hrf_enabled}
onClick={handleRecallHrfEnabled}
/>
)}
{metadata.hrf_enabled && metadata.hrf_strength && (
<ImageMetadataItem
label={t('hrf.metadata.strength')}
value={metadata.hrf_strength}
onClick={handleRecallHrfStrength}
/>
)}
{metadata.hrf_enabled && metadata.hrf_method && (
<ImageMetadataItem
label={t('hrf.metadata.method')}
value={metadata.hrf_method}
onClick={handleRecallHrfMethod}
/>
)}
{metadata.loras &&
metadata.loras.map((lora, index) => {
if (isValidLoRAModel(lora.lora)) {

View File

@@ -1424,6 +1424,9 @@ export const zCoreMetadata = z
loras: z.array(zLoRAMetadataItem).nullish().catch(null),
vae: zVaeModelField.nullish().catch(null),
strength: z.number().nullish().catch(null),
hrf_enabled: z.boolean().nullish().catch(null),
hrf_strength: z.number().nullish().catch(null),
hrf_method: z.string().nullish().catch(null),
init_image: z.string().nullish().catch(null),
positive_style_prompt: z.string().nullish().catch(null),
negative_style_prompt: z.string().nullish().catch(null),

View File

@@ -1,22 +1,26 @@
import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import { NonNullableGraph } from 'features/nodes/types/types';
import {
DenoiseLatentsInvocation,
ESRGANInvocation,
Edge,
LatentsToImageInvocation,
NoiseInvocation,
ResizeLatentsInvocation,
} from 'services/api/types';
import {
DENOISE_LATENTS,
DENOISE_LATENTS_HRF,
ESRGAN_HRF,
IMAGE_TO_LATENTS_HRF,
LATENTS_TO_IMAGE,
LATENTS_TO_IMAGE_HRF,
LATENTS_TO_IMAGE_HRF_HR,
LATENTS_TO_IMAGE_HRF_LR,
MAIN_MODEL_LOADER,
NOISE,
NOISE_HRF,
RESCALE_LATENTS,
RESIZE_HRF,
VAE_LOADER,
} from './constants';
import { upsertMetadata } from './metadata';
@@ -56,6 +60,52 @@ function copyConnectionsToDenoiseLatentsHrf(graph: NonNullableGraph): void {
graph.edges = graph.edges.concat(newEdges);
}
/**
* Calculates the new resolution for high-resolution features (HRF) based on base model type.
* Adjusts the width and height to maintain the aspect ratio and constrains them by the model's dimension limits,
* rounding down to the nearest multiple of 8.
*
* @param {string} baseModel The base model type, which determines the base dimension used in calculations.
* @param {number} width The current width to be adjusted for HRF.
* @param {number} height The current height to be adjusted for HRF.
* @return {{newWidth: number, newHeight: number}} The new width and height, adjusted and rounded as needed.
*/
function calculateHrfRes(
baseModel: string,
width: number,
height: number
): { newWidth: number; newHeight: number } {
const aspect = width / height;
let dimension;
if (baseModel == 'sdxl') {
dimension = 1024;
} else {
dimension = 512;
}
const minDimension = Math.floor(dimension * 0.5);
const modelArea = dimension * dimension; // Assuming square images for model_area
let initWidth;
let initHeight;
if (aspect > 1.0) {
initHeight = Math.max(minDimension, Math.sqrt(modelArea / aspect));
initWidth = initHeight * aspect;
} else {
initWidth = Math.max(minDimension, Math.sqrt(modelArea * aspect));
initHeight = initWidth / aspect;
}
// Cap initial height and width to final height and width.
initWidth = Math.min(width, initWidth);
initHeight = Math.min(height, initHeight);
const newWidth = roundToMultiple(Math.floor(initWidth), 8);
const newHeight = roundToMultiple(Math.floor(initHeight), 8);
return { newWidth, newHeight };
}
// Adds the high-res fix feature to the given graph.
export const addHrfToGraph = (
state: RootState,
@@ -71,151 +121,61 @@ export const addHrfToGraph = (
}
const log = logger('txt2img');
const { vae, hrfWidth, hrfHeight, hrfStrength } = state.generation;
const { vae, hrfStrength, hrfEnabled, hrfMethod } = state.generation;
const isAutoVae = !vae;
const width = state.generation.width;
const height = state.generation.height;
const baseModel = state.generation.model
? state.generation.model.base_model
: 'sd1';
const { newWidth: hrfWidth, newHeight: hrfHeight } = calculateHrfRes(
baseModel,
width,
height
);
// Pre-existing (original) graph nodes.
const originalDenoiseLatentsNode = graph.nodes[DENOISE_LATENTS] as
| DenoiseLatentsInvocation
| undefined;
const originalNoiseNode = graph.nodes[NOISE] as NoiseInvocation | undefined;
// Original latents to image should pick this up.
const originalLatentsToImageNode = graph.nodes[LATENTS_TO_IMAGE] as
| LatentsToImageInvocation
| undefined;
// Check if originalDenoiseLatentsNode is undefined and log an error
if (!originalDenoiseLatentsNode) {
log.error('originalDenoiseLatentsNode is undefined');
return;
}
// Check if originalNoiseNode is undefined and log an error
if (!originalNoiseNode) {
log.error('originalNoiseNode is undefined');
return;
}
// Check if originalLatentsToImageNode is undefined and log an error
if (!originalLatentsToImageNode) {
log.error('originalLatentsToImageNode is undefined');
return;
}
// Change height and width of original noise node to initial resolution.
if (originalNoiseNode) {
originalNoiseNode.width = hrfWidth;
originalNoiseNode.height = hrfHeight;
}
// Define new nodes.
// Denoise latents node to be run on upscaled latents.
const denoiseLatentsHrfNode: DenoiseLatentsInvocation = {
type: 'denoise_latents',
id: DENOISE_LATENTS_HRF,
is_intermediate: originalDenoiseLatentsNode?.is_intermediate,
cfg_scale: originalDenoiseLatentsNode?.cfg_scale,
scheduler: originalDenoiseLatentsNode?.scheduler,
steps: originalDenoiseLatentsNode?.steps,
denoising_start: 1 - hrfStrength,
denoising_end: 1,
// Define new nodes and their connections, roughly in order of operations.
graph.nodes[LATENTS_TO_IMAGE_HRF_LR] = {
type: 'l2i',
id: LATENTS_TO_IMAGE_HRF_LR,
fp32: originalLatentsToImageNode?.fp32,
is_intermediate: true,
};
// New base resolution noise node.
const hrfNoiseNode: NoiseInvocation = {
type: 'noise',
id: NOISE_HRF,
seed: originalNoiseNode?.seed,
use_cpu: originalNoiseNode?.use_cpu,
is_intermediate: originalNoiseNode?.is_intermediate,
};
const rescaleLatentsNode: ResizeLatentsInvocation = {
id: RESCALE_LATENTS,
type: 'lresize',
width: state.generation.width,
height: state.generation.height,
};
// New node to convert latents to image.
const latentsToImageHrfNode: LatentsToImageInvocation | undefined =
originalLatentsToImageNode
? {
type: 'l2i',
id: LATENTS_TO_IMAGE_HRF,
fp32: originalLatentsToImageNode?.fp32,
is_intermediate: originalLatentsToImageNode?.is_intermediate,
}
: undefined;
// Add new nodes to graph.
graph.nodes[LATENTS_TO_IMAGE_HRF] =
latentsToImageHrfNode as LatentsToImageInvocation;
graph.nodes[DENOISE_LATENTS_HRF] =
denoiseLatentsHrfNode as DenoiseLatentsInvocation;
graph.nodes[NOISE_HRF] = hrfNoiseNode as NoiseInvocation;
graph.nodes[RESCALE_LATENTS] = rescaleLatentsNode as ResizeLatentsInvocation;
// Connect nodes.
graph.edges.push(
{
// Set up rescale latents.
source: {
node_id: DENOISE_LATENTS,
field: 'latents',
},
destination: {
node_id: RESCALE_LATENTS,
field: 'latents',
},
},
// Set up new noise node
{
source: {
node_id: RESCALE_LATENTS,
field: 'height',
},
destination: {
node_id: NOISE_HRF,
field: 'height',
},
},
{
source: {
node_id: RESCALE_LATENTS,
field: 'width',
},
destination: {
node_id: NOISE_HRF,
field: 'width',
},
},
// Set up new denoise node.
{
source: {
node_id: RESCALE_LATENTS,
field: 'latents',
},
destination: {
node_id: DENOISE_LATENTS_HRF,
field: 'latents',
},
},
{
source: {
node_id: NOISE_HRF,
field: 'noise',
},
destination: {
node_id: DENOISE_LATENTS_HRF,
field: 'noise',
},
},
// Set up new latents to image node.
{
source: {
node_id: DENOISE_LATENTS_HRF,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_IMAGE_HRF,
node_id: LATENTS_TO_IMAGE_HRF_LR,
field: 'latents',
},
},
@@ -225,17 +185,188 @@ export const addHrfToGraph = (
field: 'vae',
},
destination: {
node_id: LATENTS_TO_IMAGE_HRF,
node_id: LATENTS_TO_IMAGE_HRF_LR,
field: 'vae',
},
}
);
upsertMetadata(graph, {
hrf_height: hrfHeight,
hrf_width: hrfWidth,
hrf_strength: hrfStrength,
});
graph.nodes[RESIZE_HRF] = {
id: RESIZE_HRF,
type: 'img_resize',
is_intermediate: true,
width: width,
height: height,
};
if (hrfMethod == 'ESRGAN') {
let model_name: ESRGANInvocation['model_name'] = 'RealESRGAN_x2plus.pth';
if ((width * height) / (hrfWidth * hrfHeight) > 2) {
model_name = 'RealESRGAN_x4plus.pth';
}
graph.nodes[ESRGAN_HRF] = {
id: ESRGAN_HRF,
type: 'esrgan',
model_name,
is_intermediate: true,
};
graph.edges.push(
{
source: {
node_id: LATENTS_TO_IMAGE_HRF_LR,
field: 'image',
},
destination: {
node_id: ESRGAN_HRF,
field: 'image',
},
},
{
source: {
node_id: ESRGAN_HRF,
field: 'image',
},
destination: {
node_id: RESIZE_HRF,
field: 'image',
},
}
);
} else {
graph.edges.push({
source: {
node_id: LATENTS_TO_IMAGE_HRF_LR,
field: 'image',
},
destination: {
node_id: RESIZE_HRF,
field: 'image',
},
});
}
graph.nodes[NOISE_HRF] = {
type: 'noise',
id: NOISE_HRF,
seed: originalNoiseNode?.seed,
use_cpu: originalNoiseNode?.use_cpu,
is_intermediate: true,
};
graph.edges.push(
{
source: {
node_id: RESIZE_HRF,
field: 'height',
},
destination: {
node_id: NOISE_HRF,
field: 'height',
},
},
{
source: {
node_id: RESIZE_HRF,
field: 'width',
},
destination: {
node_id: NOISE_HRF,
field: 'width',
},
}
);
graph.nodes[IMAGE_TO_LATENTS_HRF] = {
type: 'i2l',
id: IMAGE_TO_LATENTS_HRF,
is_intermediate: true,
};
graph.edges.push(
{
source: {
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
field: 'vae',
},
destination: {
node_id: IMAGE_TO_LATENTS_HRF,
field: 'vae',
},
},
{
source: {
node_id: RESIZE_HRF,
field: 'image',
},
destination: {
node_id: IMAGE_TO_LATENTS_HRF,
field: 'image',
},
}
);
graph.nodes[DENOISE_LATENTS_HRF] = {
type: 'denoise_latents',
id: DENOISE_LATENTS_HRF,
is_intermediate: true,
cfg_scale: originalDenoiseLatentsNode?.cfg_scale,
scheduler: originalDenoiseLatentsNode?.scheduler,
steps: originalDenoiseLatentsNode?.steps,
denoising_start: 1 - state.generation.hrfStrength,
denoising_end: 1,
};
graph.edges.push(
{
source: {
node_id: IMAGE_TO_LATENTS_HRF,
field: 'latents',
},
destination: {
node_id: DENOISE_LATENTS_HRF,
field: 'latents',
},
},
{
source: {
node_id: NOISE_HRF,
field: 'noise',
},
destination: {
node_id: DENOISE_LATENTS_HRF,
field: 'noise',
},
}
);
copyConnectionsToDenoiseLatentsHrf(graph);
graph.nodes[LATENTS_TO_IMAGE_HRF_HR] = {
type: 'l2i',
id: LATENTS_TO_IMAGE_HRF_HR,
fp32: originalLatentsToImageNode?.fp32,
is_intermediate: true,
};
graph.edges.push(
{
source: {
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
field: 'vae',
},
destination: {
node_id: LATENTS_TO_IMAGE_HRF_HR,
field: 'vae',
},
},
{
source: {
node_id: DENOISE_LATENTS_HRF,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_IMAGE_HRF_HR,
field: 'latents',
},
}
);
upsertMetadata(graph, {
hrf_strength: hrfStrength,
hrf_enabled: hrfEnabled,
hrf_method: hrfMethod,
});
};

View File

@@ -5,7 +5,7 @@ import { SaveImageInvocation } from 'services/api/types';
import {
CANVAS_OUTPUT,
LATENTS_TO_IMAGE,
LATENTS_TO_IMAGE_HRF,
LATENTS_TO_IMAGE_HRF_HR,
NSFW_CHECKER,
SAVE_IMAGE,
WATERMARKER,
@@ -62,10 +62,10 @@ export const addSaveImageNode = (
},
destination,
});
} else if (LATENTS_TO_IMAGE_HRF in graph.nodes) {
} else if (LATENTS_TO_IMAGE_HRF_HR in graph.nodes) {
graph.edges.push({
source: {
node_id: LATENTS_TO_IMAGE_HRF,
node_id: LATENTS_TO_IMAGE_HRF_HR,
field: 'image',
},
destination,

View File

@@ -4,7 +4,11 @@ export const NEGATIVE_CONDITIONING = 'negative_conditioning';
export const DENOISE_LATENTS = 'denoise_latents';
export const DENOISE_LATENTS_HRF = 'denoise_latents_hrf';
export const LATENTS_TO_IMAGE = 'latents_to_image';
export const LATENTS_TO_IMAGE_HRF = 'latents_to_image_hrf';
export const LATENTS_TO_IMAGE_HRF_HR = 'latents_to_image_hrf_hr';
export const LATENTS_TO_IMAGE_HRF_LR = 'latents_to_image_hrf_lr';
export const IMAGE_TO_LATENTS_HRF = 'image_to_latents_hrf';
export const RESIZE_HRF = 'resize_hrf';
export const ESRGAN_HRF = 'esrgan_hrf';
export const SAVE_IMAGE = 'save_image';
export const NSFW_CHECKER = 'nsfw_checker';
export const WATERMARKER = 'invisible_watermark';
@@ -21,7 +25,6 @@ export const CLIP_SKIP = 'clip_skip';
export const IMAGE_TO_LATENTS = 'image_to_latents';
export const LATENTS_TO_LATENTS = 'latents_to_latents';
export const RESIZE = 'resize_image';
export const RESCALE_LATENTS = 'rescale_latents';
export const IMG2IMG_RESIZE = 'img2img_resize';
export const CANVAS_OUTPUT = 'canvas_output';
export const INPAINT_IMAGE = 'inpaint_image';

View File

@@ -7,10 +7,9 @@ import IAICollapse from 'common/components/IAICollapse';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import ParamHrfHeight from './ParamHrfHeight';
import ParamHrfStrength from './ParamHrfStrength';
import ParamHrfToggle from './ParamHrfToggle';
import ParamHrfWidth from './ParamHrfWidth';
import ParamHrfMethod from './ParamHrfMethod';
const selector = createSelector(
stateSelector,
@@ -37,28 +36,11 @@ export default function ParamHrfCollapse() {
}
return (
<IAICollapse label="High Resolution Fix" activeLabel={activeLabel}>
<IAICollapse label={t('hrf.hrf')} activeLabel={activeLabel}>
<Flex sx={{ flexDir: 'column', gap: 2 }}>
<ParamHrfToggle />
{hrfEnabled && (
<Flex
sx={{
gap: 2,
p: 4,
borderRadius: 4,
flexDirection: 'column',
w: 'full',
bg: 'base.100',
_dark: {
bg: 'base.750',
},
}}
>
<ParamHrfWidth />
<ParamHrfHeight />
</Flex>
)}
{hrfEnabled && <ParamHrfStrength />}
<ParamHrfStrength />
<ParamHrfMethod />
</Flex>
</IAICollapse>
);

View File

@@ -1,87 +0,0 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import {
setHrfHeight,
setHrfWidth,
} from 'features/parameters/store/generationSlice';
import { memo, useCallback } from 'react';
function findPrevMultipleOfEight(n: number): number {
return Math.floor((n - 1) / 8) * 8;
}
const selector = createSelector(
[stateSelector],
({ generation, hotkeys, config }) => {
const { min, fineStep, coarseStep } = config.sd.height;
const { model, height, hrfHeight, aspectRatio, hrfEnabled } = generation;
const step = hotkeys.shift ? fineStep : coarseStep;
return {
model,
height,
hrfHeight,
min,
step,
aspectRatio,
hrfEnabled,
};
},
defaultSelectorOptions
);
type ParamHeightProps = Omit<
IAIFullSliderProps,
'label' | 'value' | 'onChange'
>;
const ParamHrfHeight = (props: ParamHeightProps) => {
const { height, hrfHeight, min, step, aspectRatio, hrfEnabled } =
useAppSelector(selector);
const dispatch = useAppDispatch();
const maxHrfHeight = Math.max(findPrevMultipleOfEight(height), min);
const handleChange = useCallback(
(v: number) => {
dispatch(setHrfHeight(v));
if (aspectRatio) {
const newWidth = roundToMultiple(v * aspectRatio, 8);
dispatch(setHrfWidth(newWidth));
}
},
[dispatch, aspectRatio]
);
const handleReset = useCallback(() => {
dispatch(setHrfHeight(maxHrfHeight));
if (aspectRatio) {
const newWidth = roundToMultiple(maxHrfHeight * aspectRatio, 8);
dispatch(setHrfWidth(newWidth));
}
}, [dispatch, maxHrfHeight, aspectRatio]);
return (
<IAISlider
label="Initial Height"
value={hrfHeight}
min={min}
step={step}
max={maxHrfHeight}
onChange={handleChange}
handleReset={handleReset}
withInput
withReset
withSliderMarks
sliderNumberInputProps={{ max: maxHrfHeight }}
isDisabled={!hrfEnabled}
{...props}
/>
);
};
export default memo(ParamHrfHeight);

View File

@@ -0,0 +1,49 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAIMantineSelect from 'common/components/IAIMantineSelect';
import { setHrfMethod } from 'features/parameters/store/generationSlice';
import { HrfMethodParam } from 'features/parameters/types/parameterSchemas';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const selector = createSelector(
stateSelector,
({ generation }) => {
const { hrfMethod, hrfEnabled } = generation;
return { hrfMethod, hrfEnabled };
},
defaultSelectorOptions
);
const DATA = ['ESRGAN', 'bilinear'];
// Dropdown selection for the type of high resolution fix method to use.
const ParamHrfMethodSelect = () => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const { hrfMethod, hrfEnabled } = useAppSelector(selector);
const handleChange = useCallback(
(v: HrfMethodParam | null) => {
if (!v) {
return;
}
dispatch(setHrfMethod(v));
},
[dispatch]
);
return (
<IAIMantineSelect
label={t('hrf.upscaleMethod')}
value={hrfMethod}
data={DATA}
onChange={handleChange}
disabled={!hrfEnabled}
/>
);
};
export default memo(ParamHrfMethodSelect);

View File

@@ -5,6 +5,8 @@ import { memo, useCallback } from 'react';
import { stateSelector } from 'app/store/store';
import { setHrfStrength } from 'features/parameters/store/generationSlice';
import IAISlider from 'common/components/IAISlider';
import { Tooltip } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
const selector = createSelector(
[stateSelector],
@@ -31,6 +33,7 @@ const ParamHrfStrength = () => {
const { hrfStrength, initial, min, sliderMax, step, hrfEnabled } =
useAppSelector(selector);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleHrfStrengthReset = useCallback(() => {
dispatch(setHrfStrength(initial));
@@ -44,20 +47,21 @@ const ParamHrfStrength = () => {
);
return (
<IAISlider
label="Denoising Strength"
aria-label="High Resolution Denoising Strength"
min={min}
max={sliderMax}
step={step}
value={hrfStrength}
onChange={handleHrfStrengthChange}
withSliderMarks
withInput
withReset
handleReset={handleHrfStrengthReset}
isDisabled={!hrfEnabled}
/>
<Tooltip label={t('hrf.strengthTooltip')} placement="right" hasArrow>
<IAISlider
label={t('parameters.denoisingStrength')}
min={min}
max={sliderMax}
step={step}
value={hrfStrength}
onChange={handleHrfStrengthChange}
withSliderMarks
withInput
withReset
handleReset={handleHrfStrengthReset}
isDisabled={!hrfEnabled}
/>
</Tooltip>
);
};

View File

@@ -3,9 +3,11 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAISwitch from 'common/components/IAISwitch';
import { setHrfEnabled } from 'features/parameters/store/generationSlice';
import { ChangeEvent, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
export default function ParamHrfToggle() {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const hrfEnabled = useAppSelector(
(state: RootState) => state.generation.hrfEnabled
@@ -19,9 +21,10 @@ export default function ParamHrfToggle() {
return (
<IAISwitch
label="Enable High Resolution Fix"
label={t('hrf.enableHrf')}
isChecked={hrfEnabled}
onChange={handleHrfEnabled}
tooltip={t('hrf.enableHrfTooltip')}
/>
);
}

View File

@@ -1,84 +0,0 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import IAISlider, { IAIFullSliderProps } from 'common/components/IAISlider';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import {
setHrfHeight,
setHrfWidth,
} from 'features/parameters/store/generationSlice';
import { memo, useCallback } from 'react';
function findPrevMultipleOfEight(n: number): number {
return Math.floor((n - 1) / 8) * 8;
}
const selector = createSelector(
[stateSelector],
({ generation, hotkeys, config }) => {
const { min, fineStep, coarseStep } = config.sd.width;
const { model, width, hrfWidth, aspectRatio, hrfEnabled } = generation;
const step = hotkeys.shift ? fineStep : coarseStep;
return {
model,
width,
hrfWidth,
min,
step,
aspectRatio,
hrfEnabled,
};
},
defaultSelectorOptions
);
type ParamWidthProps = Omit<IAIFullSliderProps, 'label' | 'value' | 'onChange'>;
const ParamHrfWidth = (props: ParamWidthProps) => {
const { width, hrfWidth, min, step, aspectRatio, hrfEnabled } =
useAppSelector(selector);
const dispatch = useAppDispatch();
const maxHrfWidth = Math.max(findPrevMultipleOfEight(width), min);
const handleChange = useCallback(
(v: number) => {
dispatch(setHrfWidth(v));
if (aspectRatio) {
const newHeight = roundToMultiple(v / aspectRatio, 8);
dispatch(setHrfHeight(newHeight));
}
},
[dispatch, aspectRatio]
);
const handleReset = useCallback(() => {
dispatch(setHrfWidth(maxHrfWidth));
if (aspectRatio) {
const newHeight = roundToMultiple(maxHrfWidth / aspectRatio, 8);
dispatch(setHrfHeight(newHeight));
}
}, [dispatch, maxHrfWidth, aspectRatio]);
return (
<IAISlider
label="Initial Width"
value={hrfWidth}
min={min}
step={step}
max={maxHrfWidth}
onChange={handleChange}
handleReset={handleReset}
withInput
withReset
withSliderMarks
sliderNumberInputProps={{ max: maxHrfWidth }}
isDisabled={!hrfEnabled}
{...props}
/>
);
};
export default memo(ParamHrfWidth);

View File

@@ -55,6 +55,9 @@ import { initialImageSelected, modelSelected } from '../store/actions';
import {
setCfgScale,
setHeight,
setHrfEnabled,
setHrfMethod,
setHrfStrength,
setImg2imgStrength,
setNegativePrompt,
setPositivePrompt,
@@ -67,6 +70,7 @@ import {
isValidCfgScale,
isValidControlNetModel,
isValidHeight,
isValidHrfMethod,
isValidIPAdapterModel,
isValidLoRAModel,
isValidMainModel,
@@ -83,6 +87,7 @@ import {
isValidSteps,
isValidStrength,
isValidWidth,
isValidBoolean,
} from '../types/parameterSchemas';
const selector = createSelector(
@@ -361,6 +366,51 @@ export const useRecallParameters = () => {
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall high resolution enabled with toast
*/
const recallHrfEnabled = useCallback(
(hrfEnabled: unknown) => {
if (!isValidBoolean(hrfEnabled)) {
parameterNotSetToast();
return;
}
dispatch(setHrfEnabled(hrfEnabled));
parameterSetToast();
},
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall high resolution strength with toast
*/
const recallHrfStrength = useCallback(
(hrfStrength: unknown) => {
if (!isValidStrength(hrfStrength)) {
parameterNotSetToast();
return;
}
dispatch(setHrfStrength(hrfStrength));
parameterSetToast();
},
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall high resolution method with toast
*/
const recallHrfMethod = useCallback(
(hrfMethod: unknown) => {
if (!isValidHrfMethod(hrfMethod)) {
parameterNotSetToast();
return;
}
dispatch(setHrfMethod(hrfMethod));
parameterSetToast();
},
[dispatch, parameterSetToast, parameterNotSetToast]
);
/**
* Recall LoRA with toast
*/
@@ -711,6 +761,9 @@ export const useRecallParameters = () => {
steps,
width,
strength,
hrf_enabled,
hrf_strength,
hrf_method,
positive_style_prompt,
negative_style_prompt,
refiner_model,
@@ -729,34 +782,55 @@ export const useRecallParameters = () => {
if (isValidCfgScale(cfg_scale)) {
dispatch(setCfgScale(cfg_scale));
}
if (isValidMainModel(model)) {
dispatch(modelSelected(model));
}
if (isValidPositivePrompt(positive_prompt)) {
dispatch(setPositivePrompt(positive_prompt));
}
if (isValidNegativePrompt(negative_prompt)) {
dispatch(setNegativePrompt(negative_prompt));
}
if (isValidScheduler(scheduler)) {
dispatch(setScheduler(scheduler));
}
if (isValidSeed(seed)) {
dispatch(setSeed(seed));
}
if (isValidSteps(steps)) {
dispatch(setSteps(steps));
}
if (isValidWidth(width)) {
dispatch(setWidth(width));
}
if (isValidHeight(height)) {
dispatch(setHeight(height));
}
if (isValidStrength(strength)) {
dispatch(setImg2imgStrength(strength));
}
if (isValidBoolean(hrf_enabled)) {
dispatch(setHrfEnabled(hrf_enabled));
}
if (isValidStrength(hrf_strength)) {
dispatch(setHrfStrength(hrf_strength));
}
if (isValidHrfMethod(hrf_method)) {
dispatch(setHrfMethod(hrf_method));
}
if (isValidSDXLPositiveStylePrompt(positive_style_prompt)) {
dispatch(setPositiveStylePromptSDXL(positive_style_prompt));
}
@@ -862,6 +936,9 @@ export const useRecallParameters = () => {
recallWidth,
recallHeight,
recallStrength,
recallHrfEnabled,
recallHrfStrength,
recallHrfMethod,
recallLoRA,
recallControlNet,
recallIPAdapter,

View File

@@ -11,6 +11,7 @@ import {
CanvasCoherenceModeParam,
CfgScaleParam,
HeightParam,
HrfMethodParam,
MainModelParam,
MaskBlurMethodParam,
NegativePromptParam,
@@ -27,10 +28,9 @@ import {
} from '../types/parameterSchemas';
export interface GenerationState {
hrfHeight: HeightParam;
hrfWidth: WidthParam;
hrfEnabled: boolean;
hrfStrength: StrengthParam;
hrfMethod: HrfMethodParam;
cfgScale: CfgScaleParam;
height: HeightParam;
img2imgStrength: StrengthParam;
@@ -73,10 +73,9 @@ export interface GenerationState {
}
export const initialGenerationState: GenerationState = {
hrfHeight: 64,
hrfWidth: 64,
hrfStrength: 0.75,
hrfStrength: 0.45,
hrfEnabled: false,
hrfMethod: 'ESRGAN',
cfgScale: 7.5,
height: 512,
img2imgStrength: 0.75,
@@ -279,18 +278,15 @@ export const generationSlice = createSlice({
setClipSkip: (state, action: PayloadAction<number>) => {
state.clipSkip = action.payload;
},
setHrfHeight: (state, action: PayloadAction<number>) => {
state.hrfHeight = action.payload;
},
setHrfWidth: (state, action: PayloadAction<number>) => {
state.hrfWidth = action.payload;
},
setHrfStrength: (state, action: PayloadAction<number>) => {
state.hrfStrength = action.payload;
},
setHrfEnabled: (state, action: PayloadAction<boolean>) => {
state.hrfEnabled = action.payload;
},
setHrfMethod: (state, action: PayloadAction<HrfMethodParam>) => {
state.hrfMethod = action.payload;
},
shouldUseCpuNoiseChanged: (state, action: PayloadAction<boolean>) => {
state.shouldUseCpuNoise = action.payload;
},
@@ -375,10 +371,9 @@ export const {
setSeamlessXAxis,
setSeamlessYAxis,
setClipSkip,
setHrfHeight,
setHrfWidth,
setHrfStrength,
setHrfEnabled,
setHrfStrength,
setHrfMethod,
shouldUseCpuNoiseChanged,
setAspectRatio,
setShouldLockAspectRatio,

View File

@@ -132,6 +132,7 @@ export const zScheduler = z.enum([
'lms_k',
'euler_a',
'kdpm_2_a',
'lcm',
]);
/**
* Type alias for scheduler parameter, inferred from its zod schema
@@ -166,6 +167,7 @@ export const SCHEDULER_LABEL_MAP: Record<SchedulerParam, string> = {
lms_k: 'LMS Karras',
euler_a: 'Euler Ancestral',
kdpm_2_a: 'KDPM 2 Ancestral',
lcm: 'LCM',
};
/**
@@ -398,6 +400,20 @@ export type PrecisionParam = z.infer<typeof zPrecision>;
export const isValidPrecision = (val: unknown): val is PrecisionParam =>
zPrecision.safeParse(val).success;
/**
* Zod schema for a high resolution fix method parameter.
*/
export const zHrfMethod = z.enum(['ESRGAN', 'bilinear']);
/**
* Type alias for high resolution fix method parameter, inferred from its zod schema
*/
export type HrfMethodParam = z.infer<typeof zHrfMethod>;
/**
* Validates/type-guards a value as a high resolution fix method parameter
*/
export const isValidHrfMethod = (val: unknown): val is HrfMethodParam =>
zHrfMethod.safeParse(val).success;
/**
* Zod schema for SDXL refiner positive aesthetic score parameter
*/
@@ -480,6 +496,17 @@ export const isValidCoherenceModeParam = (
): val is CanvasCoherenceModeParam =>
zCanvasCoherenceMode.safeParse(val).success;
/**
* Zod schema for a boolean.
*/
export const zBoolean = z.boolean();
/**
* Validates/type-guards a value as a boolean parameter
*/
export const isValidBoolean = (val: unknown): val is boolean =>
zBoolean.safeParse(val).success && val !== null && val !== undefined;
// /**
// * Zod schema for BaseModelType
// */

View File

@@ -70,7 +70,7 @@ export const initialConfigState: AppConfig = {
coarseStep: 0.05,
},
hrfStrength: {
initial: 0.7,
initial: 0.45,
min: 0,
sliderMax: 1,
inputMax: 1,

File diff suppressed because one or more lines are too long

View File

@@ -127,7 +127,6 @@ export type CompelInvocation = s['CompelInvocation'];
export type DynamicPromptInvocation = s['DynamicPromptInvocation'];
export type NoiseInvocation = s['NoiseInvocation'];
export type DenoiseLatentsInvocation = s['DenoiseLatentsInvocation'];
export type ResizeLatentsInvocation = s['ResizeLatentsInvocation'];
export type ONNXTextToLatentsInvocation = s['ONNXTextToLatentsInvocation'];
export type SDXLLoraLoaderInvocation = s['SDXLLoraLoaderInvocation'];
export type ImageToLatentsInvocation = s['ImageToLatentsInvocation'];

File diff suppressed because it is too large Load Diff

View File

@@ -1 +1 @@
__version__ = "3.3.0"
__version__ = "3.4.0rc4"

View File

@@ -40,9 +40,7 @@ dependencies = [
"controlnet-aux>=0.0.6",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"datasets",
# When bumping diffusers beyond 0.21, make sure to address this:
# https://github.com/invoke-ai/InvokeAI/blob/fc09ab7e13cb7ca5389100d149b6422ace7b8ed3/invokeai/app/invocations/latent.py#L513
"diffusers[torch]~=0.21.0",
"diffusers[torch]~=0.23.0",
"dnspython~=2.4.0",
"dynamicprompts",
"easing-functions",
@@ -80,11 +78,11 @@ dependencies = [
"semver~=3.0.1",
"send2trash",
"test-tube~=0.7.5",
"torch~=2.0.1",
"torchvision~=0.15.2",
"torch~=2.1.0",
"torchvision~=0.16",
"torchmetrics~=0.11.0",
"torchsde~=0.2.5",
"transformers~=4.31.0",
"transformers~=4.35.0",
"uvicorn[standard]~=0.21.1",
"windows-curses; sys_platform=='win32'",
]
@@ -109,8 +107,8 @@ dependencies = [
"pytest-datadir",
]
"xformers" = [
"xformers~=0.0.19; sys_platform!='darwin'",
"triton; sys_platform=='linux'",
"xformers==0.0.22post7; sys_platform!='darwin'",
"triton; sys_platform=='linux'",
]
"onnx" = ["onnxruntime"]
"onnx-cuda" = ["onnxruntime-gpu"]