Compare commits

...

41 Commits

Author SHA1 Message Date
psychedelicious
7f3e5ced38 fix(ui): wrong translation string 2025-09-18 22:26:12 +10:00
psychedelicious
b9c7c6a282 chore(ui): lint 2025-09-18 22:21:04 +10:00
psychedelicious
73bed0d834 tidy(ui): prefer types from zod schemas for model attrs 2025-09-18 22:04:56 +10:00
psychedelicious
4070f26e8a tests(mm): fix test for MM, leave the UnknownModelConfig class in the list of configs 2025-09-18 21:56:04 +10:00
psychedelicious
15e5c9aec9 chore(ui): typegen 2025-09-18 21:02:11 +10:00
psychedelicious
01596340da docs: update config docstrings 2025-09-18 20:01:08 +10:00
psychedelicious
b18916d476 feat(ui): toast warning when installed model is unidentified 2025-09-18 19:53:27 +10:00
psychedelicious
d6b72a316a chore(ui): typegen 2025-09-18 19:53:06 +10:00
psychedelicious
39bb60a778 feat(app): add the installed model config to install complete events 2025-09-18 19:52:49 +10:00
psychedelicious
82409d1ecd feat(ui): allow changing model format in MM 2025-09-18 19:08:18 +10:00
psychedelicious
57787e3dcf feat(app): add setting to allow unknown models 2025-09-18 18:54:00 +10:00
psychedelicious
c9dd1159a8 feat(mm): omit model description instead of making it "base type filename model" 2025-09-18 18:50:21 +10:00
psychedelicious
3f82c38e09 feat(ui): allow changing model type in MM, fix up base and variant selects 2025-09-18 18:47:31 +10:00
psychedelicious
e348105800 feat(ui): add unknown model base support in ui 2025-09-18 18:28:47 +10:00
psychedelicious
a87fcfd4f7 chore(ui): typegen 2025-09-18 18:28:25 +10:00
psychedelicious
7f9022e4aa feat(nodes): add unknown as model base 2025-09-18 18:28:12 +10:00
psychedelicious
fa47e23643 refactor(ui): remove unused excludeSubmodels
I can't remember what this was for and don't see any reference to it.
Maybe it's just remnants from a previous implementation?
2025-09-18 18:19:10 +10:00
psychedelicious
bd893cf3f6 refactor(ui)refactor(ui): more cleanup of model categories 2025-09-18 18:15:39 +10:00
psychedelicious
b68871a13f refactor(ui): move model categorisation-ish logic to central location, simplify model manager models list 2025-09-18 17:54:52 +10:00
psychedelicious
3f3f941e09 feat(mm): add UnknownModelConfig 2025-09-18 15:40:09 +10:00
Riccardo Giovanetti
4d585e3eec translationBot(ui): update translation (Italian)
Currently translated at 98.4% (2130 of 2163 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (2127 of 2161 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-09-18 14:01:31 +10:00
psychedelicious
006b4356bb chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
da947866f2 fix(nodes): ensure SD2 models are pickable in loader/cnet nodes 2025-09-18 12:39:27 +10:00
psychedelicious
84a2cc6fc9 chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
b50534bb49 revert(nodes): do not deprecate ui_type for output fields! only deprecate the model ui types 2025-09-18 12:39:27 +10:00
psychedelicious
c305e79fee tests(ui): update tests to reflect new model parsing logic 2025-09-18 12:39:27 +10:00
psychedelicious
c32949d113 tidy(nodes): mark all UIType.*ModelField as deprecated 2025-09-18 12:39:27 +10:00
psychedelicious
87a98902da tidy(nodes): remove unused UIType.Video 2025-09-18 12:39:27 +10:00
psychedelicious
2857a446c9 docs(nodes): update docstrings for InputField 2025-09-18 12:39:27 +10:00
psychedelicious
035d9432bd feat(ui): support filtering on model format 2025-09-18 12:39:27 +10:00
psychedelicious
bdeb9fb1cf chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
dadff57061 feat(nodes): add ui_model_format filter for nodes 2025-09-18 12:39:27 +10:00
psychedelicious
480857ae4e fix(nodes): add base to SD1 model loader 2025-09-18 12:39:27 +10:00
psychedelicious
eaf0624004 feat(ui): remove explicit model type handling from workflow editor 2025-09-18 12:39:27 +10:00
psychedelicious
58bca1b9f4 feat(nodes): use new ui_model_[base|type|variant] on all core nodes 2025-09-18 12:39:27 +10:00
psychedelicious
54aa6908fa feat(ui): update invocation parsing to handle new ui_model_[base|type|variant] attrs 2025-09-18 12:39:27 +10:00
psychedelicious
e6d9daca96 chore(ui): typegen 2025-09-18 12:39:27 +10:00
psychedelicious
6e5a529cb7 feat(nodes): add ui_model_[base|type|variant] to InputField args for dynamic UI generation 2025-09-18 12:39:27 +10:00
Iq1pl
8c742a6e38 ruff format 2025-09-18 11:05:32 +10:00
Iq1pl
693373f1c1 Update ip_adapter.py
added support for NOOB-IPA-MARK1
2025-09-18 11:05:32 +10:00
Josh Corbett
4809080fd9 fix(ui): allow scrolling in ModelPane 2025-09-18 10:33:22 +10:00
100 changed files with 1450 additions and 3673 deletions

View File

@@ -5,7 +5,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import (
GlmEncoderField,
ModelIdentifierField,
@@ -14,6 +14,7 @@ from invokeai.app.invocations.model import (
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("cogview4_model_loader_output")
@@ -38,8 +39,9 @@ class CogView4ModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.cogview4_model,
ui_type=UIType.CogView4MainModel,
input=Input.Direct,
ui_model_base=BaseModelType.CogView4,
ui_model_type=ModelType.Main,
)
def invoke(self, context: InvocationContext) -> CogView4ModelLoaderOutput:

View File

@@ -16,7 +16,6 @@ from invokeai.app.invocations.fields import (
ImageField,
InputField,
OutputField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
@@ -28,6 +27,7 @@ from invokeai.app.util.controlnet_utils import (
heuristic_resize_fast,
)
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class ControlField(BaseModel):
@@ -63,13 +63,17 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet - SD1.5, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3")
@invocation(
"controlnet", title="ControlNet - SD1.5, SD2, SDXL", tags=["controlnet"], category="controlnet", version="1.1.3"
)
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
description=FieldDescriptions.controlnet_model,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.ControlNet,
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"

View File

@@ -7,6 +7,13 @@ from pydantic_core import PydanticUndefined
from invokeai.app.util.metaenum import MetaEnum
from invokeai.backend.image_util.segment_anything.shared import BoundingBox
from invokeai.backend.model_manager.taxonomy import (
BaseModelType,
ClipVariantType,
ModelFormat,
ModelType,
ModelVariantType,
)
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
@@ -39,42 +46,9 @@ class UIType(str, Enum, metaclass=MetaEnum):
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
MainModel = "MainModelField"
CogView4MainModel = "CogView4MainModelField"
FluxMainModel = "FluxMainModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
FluxVAEModel = "FluxVAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
CLIPLEmbedModel = "CLIPLEmbedModelField"
CLIPGEmbedModel = "CLIPGEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
ControlLoRAModel = "ControlLoRAModelField"
SigLipModel = "SigLipModelField"
FluxReduxModel = "FluxReduxModelField"
LlavaOnevisionModel = "LLaVAModelField"
Imagen3Model = "Imagen3ModelField"
Imagen4Model = "Imagen4ModelField"
ChatGPT4oModel = "ChatGPT4oModelField"
Gemini2_5Model = "Gemini2_5ModelField"
FluxKontextModel = "FluxKontextModelField"
Veo3Model = "Veo3ModelField"
RunwayModel = "RunwayModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
Video = "VideoField"
# endregion
# region Internal Field Types
@@ -124,6 +98,38 @@ class UIType(str, Enum, metaclass=MetaEnum):
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
# Deprecated Model Field Types - use ui_model_[base|type|variant|format] instead
MainModel = "DEPRECATED_MainModelField"
CogView4MainModel = "DEPRECATED_CogView4MainModelField"
FluxMainModel = "DEPRECATED_FluxMainModelField"
SD3MainModel = "DEPRECATED_SD3MainModelField"
SDXLMainModel = "DEPRECATED_SDXLMainModelField"
SDXLRefinerModel = "DEPRECATED_SDXLRefinerModelField"
ONNXModel = "DEPRECATED_ONNXModelField"
VAEModel = "DEPRECATED_VAEModelField"
FluxVAEModel = "DEPRECATED_FluxVAEModelField"
LoRAModel = "DEPRECATED_LoRAModelField"
ControlNetModel = "DEPRECATED_ControlNetModelField"
IPAdapterModel = "DEPRECATED_IPAdapterModelField"
T2IAdapterModel = "DEPRECATED_T2IAdapterModelField"
T5EncoderModel = "DEPRECATED_T5EncoderModelField"
CLIPEmbedModel = "DEPRECATED_CLIPEmbedModelField"
CLIPLEmbedModel = "DEPRECATED_CLIPLEmbedModelField"
CLIPGEmbedModel = "DEPRECATED_CLIPGEmbedModelField"
SpandrelImageToImageModel = "DEPRECATED_SpandrelImageToImageModelField"
ControlLoRAModel = "DEPRECATED_ControlLoRAModelField"
SigLipModel = "DEPRECATED_SigLipModelField"
FluxReduxModel = "DEPRECATED_FluxReduxModelField"
LlavaOnevisionModel = "DEPRECATED_LLaVAModelField"
Imagen3Model = "DEPRECATED_Imagen3ModelField"
Imagen4Model = "DEPRECATED_Imagen4ModelField"
ChatGPT4oModel = "DEPRECATED_ChatGPT4oModelField"
Gemini2_5Model = "DEPRECATED_Gemini2_5ModelField"
FluxKontextModel = "DEPRECATED_FluxKontextModelField"
Veo3Model = "DEPRECATED_Veo3ModelField"
RunwayModel = "DEPRECATED_RunwayModelField"
# endregion
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
@@ -409,6 +415,10 @@ class InputFieldJSONSchemaExtra(BaseModel):
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
ui_model_base: Optional[list[BaseModelType]] = None
ui_model_type: Optional[list[ModelType]] = None
ui_model_variant: Optional[list[ClipVariantType | ModelVariantType]] = None
ui_model_format: Optional[list[ModelFormat]] = None
model_config = ConfigDict(
validate_assignment=True,
@@ -465,9 +475,9 @@ class OutputFieldJSONSchemaExtra(BaseModel):
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
ui_hidden: bool = False
ui_order: Optional[int] = None
ui_type: Optional[UIType] = None
model_config = ConfigDict(
validate_assignment=True,
@@ -501,35 +511,63 @@ def InputField(
ui_hidden: Optional[bool] = None,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
ui_model_base: Optional[BaseModelType | list[BaseModelType]] = None,
ui_model_type: Optional[ModelType | list[ModelType]] = None,
ui_model_variant: Optional[ClipVariantType | ModelVariantType | list[ClipVariantType | ModelVariantType]] = None,
ui_model_format: Optional[ModelFormat | list[ModelFormat]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field)
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
If the field is a `ModelIdentifierField`, use the `ui_model_[base|type|variant|format]` args to filter the model list
in the Workflow Editor. Otherwise, use `ui_type` to provide extra type hints for the UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
Don't use both `ui_type` and `ui_model_[base|type|variant|format]` - if both are provided, a warning will be
logged and `ui_type` will be ignored.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
Args:
input: The kind of input this field requires.
- `Input.Direct` means a value must be provided on instantiation.
- `Input.Connection` means the value must be provided by a connection.
- `Input.Any` means either will do.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
ui_type: Optionally provides an extra type hint for the UI. In some situations, the field's type is not enough
to infer the correct UI type. For example, Scheduler fields are enums, but we want to render a special scheduler
dropdown in the UI. Use `UIType.Scheduler` to indicate this.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
ui_component: Optionally specifies a specific component to use in the UI. The UI will always render a suitable
component, but sometimes you want something different than the default. For example, a `string` field will
default to a single-line input, but you may want a multi-line textarea instead. In this case, you could use
`UIComponent.Textarea`.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
ui_hidden: Specifies whether or not this field should be hidden in the UI.
ui_order: Specifies the order in which this field should be rendered in the UI. If omitted, the field will be
rendered after all fields with an explicit order, in the order they are defined in the Invocation class.
ui_model_base: Specifies the base model architectures to filter the model list by in the Workflow Editor. For
example, `ui_model_base=BaseModelType.StableDiffusionXL` will show only SDXL architecture models. This arg is
only valid if this Input field is annotated as a `ModelIdentifierField`.
ui_model_type: Specifies the model type(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_type=ModelType.VAE` will show only VAE models. This arg is only valid if this Input field is
annotated as a `ModelIdentifierField`.
ui_model_variant: Specifies the model variant(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_variant=ModelVariantType.Inpainting` will show only inpainting models. This arg is only valid if this
Input field is annotated as a `ModelIdentifierField`.
ui_model_format: Specifies the model format(s) to filter the model list by in the Workflow Editor. For example,
`ui_model_format=ModelFormat.Diffusers` will show only models in the diffusers format. This arg is only valid
if this Input field is annotated as a `ModelIdentifierField`.
ui_choice_labels: Specifies the labels to use for the choices in an enum field. If omitted, the enum values
will be used. This arg is only valid if the field is annotated with as a `Literal`. For example,
`Literal["choice1", "choice2", "choice3"]` with `ui_choice_labels={"choice1": "Choice 1", "choice2": "Choice 2",
"choice3": "Choice 3"}` will render a dropdown with the labels "Choice 1", "Choice 2" and "Choice 3".
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
@@ -538,7 +576,92 @@ def InputField(
)
if ui_type is not None:
json_schema_extra_.ui_type = ui_type
if (
ui_model_base is not None
or ui_model_type is not None
or ui_model_variant is not None
or ui_model_format is not None
):
logger.warning("InputField: Use either ui_type or ui_model_[base|type|variant|format]. Ignoring ui_type.")
# Map old-style UIType to new-style ui_model_[base|type|variant|format]
elif ui_type is UIType.MainModel:
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.CogView4MainModel:
json_schema_extra_.ui_model_base = [BaseModelType.CogView4]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.FluxMainModel:
json_schema_extra_.ui_model_base = [BaseModelType.Flux]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.SD3MainModel:
json_schema_extra_.ui_model_base = [BaseModelType.StableDiffusion3]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.SDXLMainModel:
json_schema_extra_.ui_model_base = [BaseModelType.StableDiffusionXL]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.SDXLRefinerModel:
json_schema_extra_.ui_model_base = [BaseModelType.StableDiffusionXLRefiner]
json_schema_extra_.ui_model_type = [ModelType.Main]
# Think this UIType is unused...?
# elif ui_type is UIType.ONNXModel:
# json_schema_extra_.ui_model_base =
# json_schema_extra_.ui_model_type =
elif ui_type is UIType.VAEModel:
json_schema_extra_.ui_model_type = [ModelType.VAE]
elif ui_type is UIType.FluxVAEModel:
json_schema_extra_.ui_model_base = [BaseModelType.Flux]
json_schema_extra_.ui_model_type = [ModelType.VAE]
elif ui_type is UIType.LoRAModel:
json_schema_extra_.ui_model_type = [ModelType.LoRA]
elif ui_type is UIType.ControlNetModel:
json_schema_extra_.ui_model_type = [ModelType.ControlNet]
elif ui_type is UIType.IPAdapterModel:
json_schema_extra_.ui_model_type = [ModelType.IPAdapter]
elif ui_type is UIType.T2IAdapterModel:
json_schema_extra_.ui_model_type = [ModelType.T2IAdapter]
elif ui_type is UIType.T5EncoderModel:
json_schema_extra_.ui_model_type = [ModelType.T5Encoder]
elif ui_type is UIType.CLIPEmbedModel:
json_schema_extra_.ui_model_type = [ModelType.CLIPEmbed]
elif ui_type is UIType.CLIPLEmbedModel:
json_schema_extra_.ui_model_type = [ModelType.CLIPEmbed]
json_schema_extra_.ui_model_variant = [ClipVariantType.L]
elif ui_type is UIType.CLIPGEmbedModel:
json_schema_extra_.ui_model_type = [ModelType.CLIPEmbed]
json_schema_extra_.ui_model_variant = [ClipVariantType.G]
elif ui_type is UIType.SpandrelImageToImageModel:
json_schema_extra_.ui_model_type = [ModelType.SpandrelImageToImage]
elif ui_type is UIType.ControlLoRAModel:
json_schema_extra_.ui_model_type = [ModelType.ControlLoRa]
elif ui_type is UIType.SigLipModel:
json_schema_extra_.ui_model_type = [ModelType.SigLIP]
elif ui_type is UIType.FluxReduxModel:
json_schema_extra_.ui_model_type = [ModelType.FluxRedux]
elif ui_type is UIType.LlavaOnevisionModel:
json_schema_extra_.ui_model_type = [ModelType.LlavaOnevision]
elif ui_type is UIType.Imagen3Model:
json_schema_extra_.ui_model_base = [BaseModelType.Imagen3]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.Imagen4Model:
json_schema_extra_.ui_model_base = [BaseModelType.Imagen4]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.ChatGPT4oModel:
json_schema_extra_.ui_model_base = [BaseModelType.ChatGPT4o]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.Gemini2_5Model:
json_schema_extra_.ui_model_base = [BaseModelType.Gemini2_5]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.FluxKontextModel:
json_schema_extra_.ui_model_base = [BaseModelType.FluxKontext]
json_schema_extra_.ui_model_type = [ModelType.Main]
elif ui_type is UIType.Veo3Model:
json_schema_extra_.ui_model_base = [BaseModelType.Veo3]
json_schema_extra_.ui_model_type = [ModelType.Video]
elif ui_type is UIType.RunwayModel:
json_schema_extra_.ui_model_base = [BaseModelType.Runway]
json_schema_extra_.ui_model_type = [ModelType.Video]
else:
json_schema_extra_.ui_type = ui_type
if ui_component is not None:
json_schema_extra_.ui_component = ui_component
if ui_hidden is not None:
@@ -547,6 +670,26 @@ def InputField(
json_schema_extra_.ui_order = ui_order
if ui_choice_labels is not None:
json_schema_extra_.ui_choice_labels = ui_choice_labels
if ui_model_base is not None:
if isinstance(ui_model_base, list):
json_schema_extra_.ui_model_base = ui_model_base
else:
json_schema_extra_.ui_model_base = [ui_model_base]
if ui_model_type is not None:
if isinstance(ui_model_type, list):
json_schema_extra_.ui_model_type = ui_model_type
else:
json_schema_extra_.ui_model_type = [ui_model_type]
if ui_model_variant is not None:
if isinstance(ui_model_variant, list):
json_schema_extra_.ui_model_variant = ui_model_variant
else:
json_schema_extra_.ui_model_variant = [ui_model_variant]
if ui_model_format is not None:
if isinstance(ui_model_format, list):
json_schema_extra_.ui_model_format = ui_model_format
else:
json_schema_extra_.ui_model_format = [ui_model_format]
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
@@ -648,20 +791,20 @@ def OutputField(
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization)
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
Args:
ui_type: Optionally provides an extra type hint for the UI. In some situations, the field's type is not enough
to infer the correct UI type. For example, Scheduler fields are enums, but we want to render a special scheduler
dropdown in the UI. Use `UIType.Scheduler` to indicate this.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
ui_hidden: Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
ui_order: Specifies the order in which this field should be rendered in the UI. If omitted, the field will be
rendered after all fields with an explicit order, in the order they are defined in the Invocation class.
"""
return Field(
default=default,
title=title,
@@ -679,9 +822,9 @@ def OutputField(
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_type=ui_type,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)

View File

@@ -4,9 +4,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ControlLoRAField, ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("flux_control_lora_loader_output")
@@ -29,7 +30,10 @@ class FluxControlLoRALoaderInvocation(BaseInvocation):
"""LoRA model and Image to use with FLUX transformer generation."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.control_lora_model, title="Control LoRA", ui_type=UIType.ControlLoRAModel
description=FieldDescriptions.control_lora_model,
title="Control LoRA",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.ControlLoRa,
)
image: ImageField = InputField(description="The image to encode.")
weight: float = InputField(description="The weight of the LoRA.", default=1.0)

View File

@@ -6,11 +6,12 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class FluxControlNetField(BaseModel):
@@ -57,7 +58,9 @@ class FluxControlNetInvocation(BaseInvocation):
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
description=FieldDescriptions.controlnet_model,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.ControlNet,
)
control_weight: float | list[float] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"

View File

@@ -5,7 +5,7 @@ from pydantic import field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, UIType
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.ip_adapter import (
CLIP_VISION_MODEL_MAP,
IPAdapterField,
@@ -20,6 +20,7 @@ from invokeai.backend.model_manager.config import (
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation(
@@ -36,7 +37,10 @@ class FluxIPAdapterInvocation(BaseInvocation):
image: ImageField = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", ui_type=UIType.IPAdapterModel
description="The IP-Adapter model.",
title="IP-Adapter Model",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.IPAdapter,
)
# Currently, the only known ViT model used by FLUX IP-Adapters is ViT-L.
clip_vision_model: Literal["ViT-L"] = InputField(description="CLIP Vision model to use.", default="ViT-L")

View File

@@ -6,10 +6,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, LoRAField, ModelIdentifierField, T5EncoderField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import BaseModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
@invocation_output("flux_lora_loader_output")
@@ -36,7 +36,10 @@ class FluxLoRALoaderInvocation(BaseInvocation):
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
transformer: TransformerField | None = InputField(

View File

@@ -6,7 +6,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
@@ -17,7 +17,7 @@ from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
@invocation_output("flux_model_loader_output")
@@ -46,23 +46,30 @@ class FluxModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.Main,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
description=FieldDescriptions.t5_encoder,
input=Input.Direct,
title="T5 Encoder",
ui_model_type=ModelType.T5Encoder,
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
ui_model_type=ModelType.CLIPEmbed,
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
description=FieldDescriptions.vae_model,
title="VAE",
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:

View File

@@ -18,7 +18,6 @@ from invokeai.app.invocations.fields import (
InputField,
OutputField,
TensorField,
UIType,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
@@ -64,7 +63,8 @@ class FluxReduxInvocation(BaseInvocation):
redux_model: ModelIdentifierField = InputField(
description="The FLUX Redux model to use.",
title="FLUX Redux Model",
ui_type=UIType.FluxReduxModel,
ui_model_base=BaseModelType.Flux,
ui_model_type=ModelType.FluxRedux,
)
downsampling_factor: int = InputField(
ge=1,

View File

@@ -5,7 +5,7 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, TensorField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
@@ -85,7 +85,8 @@ class IPAdapterInvocation(BaseInvocation):
description="The IP-Adapter model.",
title="IP-Adapter Model",
ui_order=-1,
ui_type=UIType.IPAdapterModel,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.IPAdapter,
)
clip_vision_model: Literal["ViT-H", "ViT-G", "ViT-L"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",

View File

@@ -6,11 +6,12 @@ from pydantic import field_validator
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, LlavaOnevisionProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, UIComponent
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.llava_onevision_pipeline import LlavaOnevisionPipeline
from invokeai.backend.model_manager.taxonomy import ModelType
from invokeai.backend.util.devices import TorchDevice
@@ -34,7 +35,7 @@ class LlavaOnevisionVllmInvocation(BaseInvocation):
vllm_model: ModelIdentifierField = InputField(
title="LLaVA Model Type",
description=FieldDescriptions.vllm_model,
ui_type=UIType.LlavaOnevisionModel,
ui_model_type=ModelType.LlavaOnevision,
)
@field_validator("images", mode="before")

View File

@@ -53,7 +53,7 @@ from invokeai.app.invocations.primitives import (
from invokeai.app.invocations.scheduler import SchedulerOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField, T2IAdapterInvocation
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import ModelType, SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.version import __version__
@@ -473,7 +473,6 @@ class MetadataToModelOutput(BaseInvocationOutput):
model: ModelIdentifierField = OutputField(
description=FieldDescriptions.main_model,
title="Model",
ui_type=UIType.MainModel,
)
name: str = OutputField(description="Model Name", title="Name")
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@@ -488,7 +487,6 @@ class MetadataToSDXLModelOutput(BaseInvocationOutput):
model: ModelIdentifierField = OutputField(
description=FieldDescriptions.main_model,
title="Model",
ui_type=UIType.SDXLMainModel,
)
name: str = OutputField(description="Model Name", title="Name")
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@@ -519,8 +517,7 @@ class MetadataToModelInvocation(BaseInvocation, WithMetadata):
input=Input.Direct,
)
default_value: ModelIdentifierField = InputField(
description="The default model to use if not found in the metadata",
ui_type=UIType.MainModel,
description="The default model to use if not found in the metadata", ui_model_type=ModelType.Main
)
_validate_custom_label = model_validator(mode="after")(validate_custom_label)
@@ -575,7 +572,8 @@ class MetadataToSDXLModelInvocation(BaseInvocation, WithMetadata):
)
default_value: ModelIdentifierField = InputField(
description="The default SDXL Model to use if not found in the metadata",
ui_type=UIType.SDXLMainModel,
ui_model_type=ModelType.Main,
ui_model_base=BaseModelType.StableDiffusionXL,
)
_validate_custom_label = model_validator(mode="after")(validate_custom_label)

View File

@@ -9,7 +9,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import (
@@ -145,7 +145,7 @@ class ModelIdentifierInvocation(BaseInvocation):
@invocation(
"main_model_loader",
title="Main Model - SD1.5",
title="Main Model - SD1.5, SD2",
tags=["model"],
category="model",
version="1.0.4",
@@ -153,7 +153,11 @@ class ModelIdentifierInvocation(BaseInvocation):
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: ModelIdentifierField = InputField(description=FieldDescriptions.main_model, ui_type=UIType.MainModel)
model: ModelIdentifierField = InputField(
description=FieldDescriptions.main_model,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2],
ui_model_type=ModelType.Main,
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
@@ -187,7 +191,10 @@ class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.StableDiffusion1,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@@ -250,7 +257,9 @@ class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
@@ -332,7 +341,10 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model,
title="LoRA",
ui_model_base=BaseModelType.StableDiffusionXL,
ui_model_type=ModelType.LoRA,
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@@ -473,13 +485,26 @@ class SDXLLoRACollectionLoader(BaseInvocation):
@invocation(
"vae_loader", title="VAE Model - SD1.5, SDXL, SD3, FLUX", tags=["vae", "model"], category="model", version="1.0.4"
"vae_loader",
title="VAE Model - SD1.5, SD2, SDXL, SD3, FLUX",
tags=["vae", "model"],
category="model",
version="1.0.4",
)
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, title="VAE", ui_type=UIType.VAEModel
description=FieldDescriptions.vae_model,
title="VAE",
ui_model_base=[
BaseModelType.StableDiffusion1,
BaseModelType.StableDiffusion2,
BaseModelType.StableDiffusionXL,
BaseModelType.StableDiffusion3,
BaseModelType.Flux,
],
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> VAEOutput:

View File

@@ -6,14 +6,14 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.t5_model_identifier import (
preprocess_t5_encoder_model_identifier,
preprocess_t5_tokenizer_model_identifier,
)
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ClipVariantType, ModelType, SubModelType
@invocation_output("sd3_model_loader_output")
@@ -39,36 +39,43 @@ class Sd3ModelLoaderInvocation(BaseInvocation):
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sd3_model,
ui_type=UIType.SD3MainModel,
input=Input.Direct,
ui_model_base=BaseModelType.StableDiffusion3,
ui_model_type=ModelType.Main,
)
t5_encoder_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
title="T5 Encoder",
default=None,
ui_model_type=ModelType.T5Encoder,
)
clip_l_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPLEmbedModel,
input=Input.Direct,
title="CLIP L Encoder",
default=None,
ui_model_type=ModelType.CLIPEmbed,
ui_model_variant=ClipVariantType.L,
)
clip_g_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.clip_g_model,
ui_type=UIType.CLIPGEmbedModel,
input=Input.Direct,
title="CLIP G Encoder",
default=None,
ui_model_type=ModelType.CLIPEmbed,
ui_model_variant=ClipVariantType.G,
)
vae_model: Optional[ModelIdentifierField] = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE", default=None
description=FieldDescriptions.vae_model,
title="VAE",
default=None,
ui_model_base=BaseModelType.StableDiffusion3,
ui_model_type=ModelType.VAE,
)
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:

View File

@@ -1,8 +1,8 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import SubModelType
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType, SubModelType
@invocation_output("sdxl_model_loader_output")
@@ -29,7 +29,9 @@ class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_main_model, ui_type=UIType.SDXLMainModel
description=FieldDescriptions.sdxl_main_model,
ui_model_base=BaseModelType.StableDiffusionXL,
ui_model_type=ModelType.Main,
)
# TODO: precision?
@@ -67,7 +69,9 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_refiner_model, ui_type=UIType.SDXLRefinerModel
description=FieldDescriptions.sdxl_refiner_model,
ui_model_base=BaseModelType.StableDiffusionXLRefiner,
ui_model_type=ModelType.Main,
)
# TODO: precision?

View File

@@ -11,7 +11,6 @@ from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
UIType,
WithBoard,
WithMetadata,
)
@@ -19,6 +18,7 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.taxonomy import ModelType
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
@@ -33,7 +33,7 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
image_to_image_model: ModelIdentifierField = InputField(
title="Image-to-Image Model",
description=FieldDescriptions.spandrel_image_to_image_model,
ui_type=UIType.SpandrelImageToImageModel,
ui_model_type=ModelType.SpandrelImageToImage,
)
tile_size: int = InputField(
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."

View File

@@ -8,11 +8,12 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.model_manager.taxonomy import BaseModelType, ModelType
class T2IAdapterField(BaseModel):
@@ -60,7 +61,8 @@ class T2IAdapterInvocation(BaseInvocation):
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
ui_order=-1,
ui_type=UIType.T2IAdapterModel,
ui_model_base=[BaseModelType.StableDiffusion1, BaseModelType.StableDiffusionXL],
ui_model_type=ModelType.T2IAdapter,
)
weight: Union[float, list[float]] = InputField(
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"

View File

@@ -108,6 +108,7 @@ class InvokeAIAppConfig(BaseSettings):
remote_api_tokens: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
scan_models_on_startup: Scan the models directory on startup, registering orphaned models. This is typically only used in conjunction with `use_memory_db` for testing purposes.
unsafe_disable_picklescan: UNSAFE. Disable the picklescan security check during model installation. Recommended only for development and testing purposes. This will allow arbitrary code execution during model installation, so should never be used in production.
allow_unknown_models: Allow installation of models that we are unable to identify. If enabled, models will be marked as `unknown` in the database, and will not have any metadata associated with them. If disabled, unknown models will be rejected during installation.
"""
_root: Optional[Path] = PrivateAttr(default=None)
@@ -198,6 +199,7 @@ class InvokeAIAppConfig(BaseSettings):
remote_api_tokens: Optional[list[URLRegexTokenPair]] = Field(default=None, description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.")
scan_models_on_startup: bool = Field(default=False, description="Scan the models directory on startup, registering orphaned models. This is typically only used in conjunction with `use_memory_db` for testing purposes.")
unsafe_disable_picklescan: bool = Field(default=False, description="UNSAFE. Disable the picklescan security check during model installation. Recommended only for development and testing purposes. This will allow arbitrary code execution during model installation, so should never be used in production.")
allow_unknown_models: bool = Field(default=True, description="Allow installation of models that we are unable to identify. If enabled, models will be marked as `unknown` in the database, and will not have any metadata associated with them. If disabled, unknown models will be rejected during installation.")
# fmt: on

View File

@@ -546,11 +546,18 @@ class ModelInstallCompleteEvent(ModelEventBase):
source: ModelSource = Field(description="Source of the model; local path, repo_id or url")
key: str = Field(description="Model config record key")
total_bytes: Optional[int] = Field(description="Size of the model (may be None for installation of a local path)")
config: AnyModelConfig = Field(description="The installed model's config")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCompleteEvent":
assert job.config_out is not None
return cls(id=job.id, source=job.source, key=(job.config_out.key), total_bytes=job.total_bytes)
return cls(
id=job.id,
source=job.source,
key=(job.config_out.key),
total_bytes=job.total_bytes,
config=job.config_out,
)
@payload_schema.register

View File

@@ -207,15 +207,24 @@ class IPAdapterPlusXL(IPAdapterPlus):
def load_ip_adapter_tensors(ip_adapter_ckpt_path: pathlib.Path, device: str) -> IPAdapterStateDict:
state_dict: IPAdapterStateDict = {"ip_adapter": {}, "image_proj": {}}
state_dict: IPAdapterStateDict = {
"ip_adapter": {},
"image_proj": {},
"adapter_modules": {}, # added for noobai-mark-ipa
"image_proj_model": {}, # added for noobai-mark-ipa
}
if ip_adapter_ckpt_path.suffix == ".safetensors":
model = safetensors.torch.load_file(ip_adapter_ckpt_path, device=device)
for key in model.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
if key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
elif key.startswith("image_proj_model."):
state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = model[key]
elif key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("adapter_modules."):
state_dict["adapter_modules"][key.replace("adapter_modules.", "")] = model[key]
else:
raise RuntimeError(f"Encountered unexpected IP Adapter state dict key: '{key}'.")
else:

View File

@@ -28,11 +28,12 @@ from abc import ABC, abstractmethod
from enum import Enum
from inspect import isabstract
from pathlib import Path
from typing import ClassVar, Literal, Optional, TypeAlias, Union
from typing import ClassVar, Literal, Optional, Type, TypeAlias, Union
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
@@ -55,6 +56,7 @@ from invokeai.backend.model_manager.util.model_util import lora_token_vector_len
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
logger = logging.getLogger(__name__)
app_config = get_config()
class InvalidModelConfigException(Exception):
@@ -109,6 +111,18 @@ class MatchSpeed(int, Enum):
SLOW = 2
class LegacyProbeMixin:
"""Mixin for classes using the legacy probe for model classification."""
@classmethod
def matches(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'matches' not implemented for {cls.__name__}")
@classmethod
def parse(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'parse' not implemented for {cls.__name__}")
class ModelConfigBase(ABC, BaseModel):
"""
Abstract Base class for model configurations.
@@ -125,7 +139,7 @@ class ModelConfigBase(ABC, BaseModel):
@staticmethod
def json_schema_extra(schema: dict[str, Any]) -> None:
schema["required"].extend(["key", "type", "format"])
schema["required"].extend(["key", "base", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
@@ -152,14 +166,15 @@ class ModelConfigBase(ABC, BaseModel):
)
usage_info: Optional[str] = Field(default=None, description="Usage information for this model")
USING_LEGACY_PROBE: ClassVar[set] = set()
USING_CLASSIFY_API: ClassVar[set] = set()
USING_LEGACY_PROBE: ClassVar[set[Type["ModelConfigBase"]]] = set()
USING_CLASSIFY_API: ClassVar[set[Type["ModelConfigBase"]]] = set()
_MATCH_SPEED: ClassVar[MatchSpeed] = MatchSpeed.MED
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
if issubclass(cls, LegacyProbeMixin):
ModelConfigBase.USING_LEGACY_PROBE.add(cls)
# Cannot use `elif isinstance(cls, UnknownModelConfig)` because UnknownModelConfig is not defined yet
else:
ModelConfigBase.USING_CLASSIFY_API.add(cls)
@@ -170,7 +185,9 @@ class ModelConfigBase(ABC, BaseModel):
return concrete
@staticmethod
def classify(mod: str | Path | ModelOnDisk, hash_algo: HASHING_ALGORITHMS = "blake3_single", **overrides):
def classify(
mod: str | Path | ModelOnDisk, hash_algo: HASHING_ALGORITHMS = "blake3_single", **overrides
) -> "AnyModelConfig":
"""
Returns the best matching ModelConfig instance from a model's file/folder path.
Raises InvalidModelConfigException if no valid configuration is found.
@@ -192,6 +209,13 @@ class ModelConfigBase(ABC, BaseModel):
else:
return config_cls.from_model_on_disk(mod, **overrides)
if app_config.allow_unknown_models:
try:
return UnknownModelConfig.from_model_on_disk(mod, **overrides)
except Exception:
# Fall through to raising the exception below
pass
raise InvalidModelConfigException("Unable to determine model type")
@classmethod
@@ -240,32 +264,31 @@ class ModelConfigBase(ABC, BaseModel):
cls.cast_overrides(overrides)
fields.update(overrides)
type = fields.get("type") or cls.model_fields["type"].default
base = fields.get("base") or cls.model_fields["base"].default
fields["path"] = mod.path.as_posix()
fields["source"] = fields.get("source") or fields["path"]
fields["source_type"] = fields.get("source_type") or ModelSourceType.Path
fields["name"] = name = fields.get("name") or mod.name
fields["name"] = fields.get("name") or mod.name
fields["hash"] = fields.get("hash") or mod.hash()
fields["key"] = fields.get("key") or uuid_string()
fields["description"] = fields.get("description") or f"{base.value} {type.value} model {name}"
fields["description"] = fields.get("description")
fields["repo_variant"] = fields.get("repo_variant") or mod.repo_variant()
fields["file_size"] = fields.get("file_size") or mod.size()
return cls(**fields)
class LegacyProbeMixin:
"""Mixin for classes using the legacy probe for model classification."""
class UnknownModelConfig(ModelConfigBase):
base: Literal[BaseModelType.Unknown] = BaseModelType.Unknown
type: Literal[ModelType.Unknown] = ModelType.Unknown
format: Literal[ModelFormat.Unknown] = ModelFormat.Unknown
@classmethod
def matches(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'matches' not implemented for {cls.__name__}")
def matches(cls, mod: ModelOnDisk) -> bool:
return False
@classmethod
def parse(cls, *args, **kwargs):
raise NotImplementedError(f"Method 'parse' not implemented for {cls.__name__}")
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
return {}
class CheckpointConfigBase(ABC, BaseModel):
@@ -353,7 +376,7 @@ class LoRAOmiConfig(LoRAConfigBase, ModelConfigBase):
metadata = mod.metadata()
return (
metadata.get("modelspec.sai_model_spec")
bool(metadata.get("modelspec.sai_model_spec"))
and metadata.get("ot_branch") == "omi_format"
and metadata["modelspec.architecture"].split("/")[1].lower() == "lora"
)
@@ -751,6 +774,7 @@ AnyModelConfig = Annotated[
Annotated[LlavaOnevisionConfig, LlavaOnevisionConfig.get_tag()],
Annotated[ApiModelConfig, ApiModelConfig.get_tag()],
Annotated[VideoApiModelConfig, VideoApiModelConfig.get_tag()],
Annotated[UnknownModelConfig, UnknownModelConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -33,6 +33,7 @@ class BaseModelType(str, Enum):
FluxKontext = "flux-kontext"
Veo3 = "veo3"
Runway = "runway"
Unknown = "unknown"
class ModelType(str, Enum):
@@ -55,6 +56,7 @@ class ModelType(str, Enum):
FluxRedux = "flux_redux"
LlavaOnevision = "llava_onevision"
Video = "video"
Unknown = "unknown"
class SubModelType(str, Enum):
@@ -107,6 +109,7 @@ class ModelFormat(str, Enum):
BnbQuantizednf4b = "bnb_quantized_nf4b"
GGUFQuantized = "gguf_quantized"
Api = "api"
Unknown = "unknown"
class SchedulerPredictionType(str, Enum):

View File

@@ -914,6 +914,9 @@
"hfTokenReset": "HF Token Reset",
"urlUnauthorizedErrorMessage": "You may need to configure an API token to access this model.",
"urlUnauthorizedErrorMessage2": "Learn how here.",
"unidentifiedModelTitle": "Unable to identify model",
"unidentifiedModelMessage": "We were unable to identify the type, base and/or format of the installed model. Try editing the model and selecting the appropriate settings for the model.",
"unidentifiedModelMessage2": "If you don't see the correct settings, or the model doesn't work after changing them, ask for help on <DiscordLink /> or create an issue on <GitHubIssuesLink />.",
"imageEncoderModelId": "Image Encoder Model ID",
"installedModelsCount": "{{installed}} of {{total}} models installed.",
"includesNModels": "Includes {{n}} models and their dependencies.",
@@ -942,6 +945,7 @@
"modelConverted": "Model Converted",
"modelDeleted": "Model Deleted",
"modelDeleteFailed": "Failed to delete model",
"modelFormat": "Model Format",
"modelImageDeleted": "Model Image Deleted",
"modelImageDeleteFailed": "Model Image Delete Failed",
"modelImageUpdated": "Model Image Updated",

View File

@@ -131,7 +131,8 @@
"notInstalled": "Non $t(common.installed)",
"prevPage": "Pagina precedente",
"nextPage": "Pagina successiva",
"resetToDefaults": "Ripristina impostazioni predefinite"
"resetToDefaults": "Ripristina impostazioni predefinite",
"crop": "Ritaglia"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -278,6 +279,14 @@
"selectVideoTab": {
"title": "Seleziona la scheda Video",
"desc": "Seleziona la scheda Video."
},
"promptHistoryPrev": {
"title": "Prompt precedente nella cronologia",
"desc": "Quando il prompt è attivo, passa al prompt precedente (più vecchio) nella cronologia."
},
"promptHistoryNext": {
"title": "Prossimo prompt nella cronologia",
"desc": "Quando il prompt è attivo, passa al prompt successivo (più recente) nella cronologia."
}
},
"hotkeys": "Tasti di scelta rapida",
@@ -875,7 +884,8 @@
"video": "Video",
"resolution": "Risoluzione",
"downloadImage": "Scarica l'immagine",
"showOptionsPanel": "Mostra pannello laterale (O o T)"
"showOptionsPanel": "Mostra pannello laterale (O o T)",
"startingFrameImageAspectRatioWarning": "Le proporzioni dell'immagine non corrispondono alle proporzioni del video ({{videoAspectRatio}}). Ciò potrebbe causare ritagli imprevisti durante la generazione del video."
},
"settings": {
"models": "Modelli",
@@ -2095,7 +2105,10 @@
"generateFromImage": "Genera prompt dall'immagine",
"resultTitle": "Espansione del prompt completata",
"resultSubtitle": "Scegli come gestire il prompt espanso:",
"insert": "Inserisci"
"insert": "Inserisci",
"noPromptHistory": "Nessuna cronologia di prompt registrata.",
"noMatchingPrompts": "Nessun prompt corrispondente nella cronologia.",
"toSwitchBetweenPrompts": "per passare da un prompt all'altro."
},
"controlLayers": {
"addLayer": "Aggiungi Livello",
@@ -2791,7 +2804,8 @@
"watchRecentReleaseVideos": "Guarda i video su questa versione",
"items": [
"Seleziona oggetto v2: selezione degli oggetti migliorata con input di punti e riquadri o prompt di testo.",
"Regolazioni del livello raster: regola facilmente la luminosità, il contrasto, la saturazione, le curve e altro ancora del livello."
"Regolazioni del livello raster: regola facilmente la luminosità, il contrasto, la saturazione, le curve e altro ancora del livello.",
"Cronologia prompt: rivedi e richiama rapidamente i tuoi ultimi 100 prompt."
],
"watchUiUpdatesOverview": "Guarda la panoramica degli aggiornamenti dell'interfaccia utente"
},

View File

@@ -11,8 +11,8 @@ import {
selectCanvasSlice,
} from 'features/controlLayers/store/selectors';
import { getEntityIdentifier } from 'features/controlLayers/store/types';
import { SUPPORTS_REF_IMAGES_BASE_MODELS } from 'features/modelManagerV2/models';
import { modelSelected } from 'features/parameters/store/actions';
import { SUPPORTS_REF_IMAGES_BASE_MODELS } from 'features/parameters/types/constants';
import { zParameterModel } from 'features/parameters/types/parameterSchemas';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';

View File

@@ -37,7 +37,7 @@ import type { Logger } from 'roarr';
import { modelConfigsAdapterSelectors, modelsApi } from 'services/api/endpoints/models';
import type { AnyModelConfig } from 'services/api/types';
import {
isCLIPEmbedModelConfig,
isCLIPEmbedModelConfigOrSubmodel,
isControlLayerModelConfig,
isControlNetModelConfig,
isFluxReduxModelConfig,
@@ -48,7 +48,7 @@ import {
isNonRefinerMainModelConfig,
isRefinerMainModelModelConfig,
isSpandrelImageToImageModelConfig,
isT5EncoderModelConfig,
isT5EncoderModelConfigOrSubmodel,
isVideoModelConfig,
} from 'services/api/types';
import type { JsonObject } from 'type-fest';
@@ -418,7 +418,7 @@ const handleTileControlNetModel: ModelHandler = (models, state, dispatch, log) =
const handleT5EncoderModels: ModelHandler = (models, state, dispatch, log) => {
const selectedT5EncoderModel = state.params.t5EncoderModel;
const t5EncoderModels = models.filter((m) => isT5EncoderModelConfig(m));
const t5EncoderModels = models.filter((m) => isT5EncoderModelConfigOrSubmodel(m));
// If the currently selected model is available, we don't need to do anything
if (selectedT5EncoderModel && t5EncoderModels.some((m) => m.key === selectedT5EncoderModel.key)) {
@@ -446,7 +446,7 @@ const handleT5EncoderModels: ModelHandler = (models, state, dispatch, log) => {
const handleCLIPEmbedModels: ModelHandler = (models, state, dispatch, log) => {
const selectedCLIPEmbedModel = state.params.clipEmbedModel;
const CLIPEmbedModels = models.filter((m) => isCLIPEmbedModelConfig(m));
const CLIPEmbedModels = models.filter((m) => isCLIPEmbedModelConfigOrSubmodel(m));
// If the currently selected model is available, we don't need to do anything
if (selectedCLIPEmbedModel && CLIPEmbedModels.some((m) => m.key === selectedCLIPEmbedModel.key)) {

View File

@@ -17,7 +17,7 @@ import Konva from 'konva';
import { atom, computed } from 'nanostores';
import type { Logger } from 'roarr';
import { serializeError } from 'serialize-error';
import { buildSelectModelConfig } from 'services/api/hooks/modelsByType';
import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/api/endpoints/models';
import { isControlLayerModelConfig } from 'services/api/types';
import stableHash from 'stable-hash';
import type { Equals } from 'tsafe';
@@ -202,11 +202,19 @@ export class CanvasEntityFilterer extends CanvasModuleBase {
createInitialFilterConfig = (): FilterConfig => {
if (this.parent.type === 'control_layer_adapter' && this.parent.state.controlAdapter.model) {
// If the parent is a control layer adapter, we should check if the model has a default filter and set it if so
const selectModelConfig = buildSelectModelConfig(
this.parent.state.controlAdapter.model.key,
isControlLayerModelConfig
);
const modelConfig = this.manager.stateApi.runSelector(selectModelConfig);
const key = this.parent.state.controlAdapter.model.key;
const modelConfig = this.manager.stateApi.runSelector((state) => {
const { data } = selectModelConfigsQuery(state);
if (!data) {
return null;
}
return (
modelConfigsAdapterSelectors
.selectAll(data)
.filter(isControlLayerModelConfig)
.find((m) => m.key === key) ?? null
);
});
// This always returns a filter
const filter = getFilterForModel(modelConfig) ?? IMAGE_FILTERS.canny_edge_detection;
return filter.buildDefaults();

View File

@@ -13,8 +13,8 @@ import { selectBboxOverlay } from 'features/controlLayers/store/canvasSettingsSl
import { selectModel } from 'features/controlLayers/store/paramsSlice';
import { selectBbox } from 'features/controlLayers/store/selectors';
import type { Coordinate, Rect, Tool } from 'features/controlLayers/store/types';
import { API_BASE_MODELS } from 'features/modelManagerV2/models';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import Konva from 'konva';
import { atom } from 'nanostores';
import type { Logger } from 'roarr';

View File

@@ -35,8 +35,8 @@ import {
getScaledBoundingBoxDimensions,
} from 'features/controlLayers/util/getScaledBoundingBoxDimensions';
import { simplifyFlatNumbersArray } from 'features/controlLayers/util/simplify';
import { API_BASE_MODELS } from 'features/modelManagerV2/models';
import { isMainModelBase, zModelIdentifierField } from 'features/nodes/types/common';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import { getGridSize, getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import type { IRect } from 'konva/lib/types';
import type { UndoableOptions } from 'redux-undo';

View File

@@ -25,14 +25,14 @@ import {
import { calculateNewSize } from 'features/controlLayers/util/getScaledBoundingBoxDimensions';
import {
API_BASE_MODELS,
CLIP_SKIP_MAP,
SUPPORTS_ASPECT_RATIO_BASE_MODELS,
SUPPORTS_NEGATIVE_PROMPT_BASE_MODELS,
SUPPORTS_OPTIMIZED_DENOISING_BASE_MODELS,
SUPPORTS_PIXEL_DIMENSIONS_BASE_MODELS,
SUPPORTS_REF_IMAGES_BASE_MODELS,
SUPPORTS_SEED_BASE_MODELS,
} from 'features/parameters/types/constants';
} from 'features/modelManagerV2/models';
import { CLIP_SKIP_MAP } from 'features/parameters/types/constants';
import type {
ParameterCanvasCoherenceMode,
ParameterCFGRescaleMultiplier,

View File

@@ -6,8 +6,8 @@ import { InformationalPopover } from 'common/components/InformationalPopover/Inf
import type { GroupStatusMap } from 'common/components/Picker/Picker';
import { loraAdded, selectLoRAsSlice } from 'features/controlLayers/store/lorasSlice';
import { selectBase } from 'features/controlLayers/store/paramsSlice';
import { API_BASE_MODELS } from 'features/modelManagerV2/models';
import { ModelPicker } from 'features/parameters/components/ModelPicker';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useLoRAModels } from 'services/api/hooks/modelsByType';

View File

@@ -49,7 +49,7 @@ import {
zVideoDuration,
zVideoResolution,
} from 'features/controlLayers/store/types';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import type { ModelIdentifierField, ModelType } from 'features/nodes/types/common';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { zModelIdentifier } from 'features/nodes/types/v2/common';
import { modelSelected } from 'features/parameters/store/actions';
@@ -108,7 +108,7 @@ import { useCallback, useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { imagesApi } from 'services/api/endpoints/images';
import { modelsApi } from 'services/api/endpoints/models';
import type { AnyModelConfig, ModelType } from 'services/api/types';
import type { AnyModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
import z from 'zod';

View File

@@ -0,0 +1,298 @@
import type { BaseModelType, ModelFormat, ModelType, ModelVariantType } from 'features/nodes/types/common';
import type { AnyModelConfig } from 'services/api/types';
import {
isCLIPEmbedModelConfig,
isCLIPVisionModelConfig,
isControlLoRAModelConfig,
isControlNetModelConfig,
isFluxReduxModelConfig,
isIPAdapterModelConfig,
isLLaVAModelConfig,
isLoRAModelConfig,
isNonRefinerMainModelConfig,
isRefinerMainModelModelConfig,
isSigLipModelConfig,
isSpandrelImageToImageModelConfig,
isT2IAdapterModelConfig,
isT5EncoderModelConfig,
isTIModelConfig,
isUnknownModelConfig,
isVAEModelConfig,
isVideoModelConfig,
} from 'services/api/types';
import { objectEntries } from 'tsafe';
import type { FilterableModelType } from './store/modelManagerV2Slice';
export type ModelCategoryData = {
category: FilterableModelType;
i18nKey: string;
filter: (config: AnyModelConfig) => boolean;
};
export const MODEL_CATEGORIES: Record<FilterableModelType, ModelCategoryData> = {
unknown: {
category: 'unknown',
i18nKey: 'common.unknown',
filter: isUnknownModelConfig,
},
main: {
category: 'main',
i18nKey: 'modelManager.main',
filter: isNonRefinerMainModelConfig,
},
refiner: {
category: 'refiner',
i18nKey: 'sdxl.refiner',
filter: isRefinerMainModelModelConfig,
},
lora: {
category: 'lora',
i18nKey: 'modelManager.loraModels',
filter: isLoRAModelConfig,
},
embedding: {
category: 'embedding',
i18nKey: 'modelManager.textualInversions',
filter: isTIModelConfig,
},
controlnet: {
category: 'controlnet',
i18nKey: 'ControlNet',
filter: isControlNetModelConfig,
},
t2i_adapter: {
category: 't2i_adapter',
i18nKey: 'common.t2iAdapter',
filter: isT2IAdapterModelConfig,
},
t5_encoder: {
category: 't5_encoder',
i18nKey: 'modelManager.t5Encoder',
filter: isT5EncoderModelConfig,
},
control_lora: {
category: 'control_lora',
i18nKey: 'modelManager.controlLora',
filter: isControlLoRAModelConfig,
},
clip_embed: {
category: 'clip_embed',
i18nKey: 'modelManager.clipEmbed',
filter: isCLIPEmbedModelConfig,
},
spandrel_image_to_image: {
category: 'spandrel_image_to_image',
i18nKey: 'modelManager.spandrelImageToImage',
filter: isSpandrelImageToImageModelConfig,
},
ip_adapter: {
category: 'ip_adapter',
i18nKey: 'common.ipAdapter',
filter: isIPAdapterModelConfig,
},
vae: {
category: 'vae',
i18nKey: 'VAE',
filter: isVAEModelConfig,
},
clip_vision: {
category: 'clip_vision',
i18nKey: 'CLIP Vision',
filter: isCLIPVisionModelConfig,
},
siglip: {
category: 'siglip',
i18nKey: 'modelManager.sigLip',
filter: isSigLipModelConfig,
},
flux_redux: {
category: 'flux_redux',
i18nKey: 'modelManager.fluxRedux',
filter: isFluxReduxModelConfig,
},
llava_onevision: {
category: 'llava_onevision',
i18nKey: 'modelManager.llavaOnevision',
filter: isLLaVAModelConfig,
},
video: {
category: 'video',
i18nKey: 'Video',
filter: isVideoModelConfig,
},
};
export const MODEL_CATEGORIES_AS_LIST = objectEntries(MODEL_CATEGORIES).map(([category, { i18nKey, filter }]) => ({
category,
i18nKey,
filter,
}));
/**
* Mapping of model base to its color
*/
export const MODEL_BASE_TO_COLOR: Record<BaseModelType, string> = {
any: 'base',
'sd-1': 'green',
'sd-2': 'teal',
'sd-3': 'purple',
sdxl: 'invokeBlue',
'sdxl-refiner': 'invokeBlue',
flux: 'gold',
cogview4: 'red',
imagen3: 'pink',
imagen4: 'pink',
'chatgpt-4o': 'pink',
'flux-kontext': 'pink',
'gemini-2.5': 'pink',
veo3: 'purple',
runway: 'green',
unknown: 'red',
};
/**
* Mapping of model type to human readable name
*/
export const MODEL_TYPE_TO_LONG_NAME: Record<ModelType, string> = {
main: 'Main',
vae: 'VAE',
lora: 'LoRA',
llava_onevision: 'LLaVA OneVision',
control_lora: 'ControlLoRA',
controlnet: 'ControlNet',
t2i_adapter: 'T2I Adapter',
ip_adapter: 'IP Adapter',
embedding: 'Embedding',
onnx: 'ONNX',
clip_vision: 'CLIP Vision',
spandrel_image_to_image: 'Spandrel (Image to Image)',
t5_encoder: 'T5 Encoder',
clip_embed: 'CLIP Embed',
siglip: 'SigLIP',
flux_redux: 'FLUX Redux',
video: 'Video',
unknown: 'Unknown',
};
/**
* Mapping of model base to human readable name
*/
export const MODEL_BASE_TO_LONG_NAME: Record<BaseModelType, string> = {
any: 'Any',
'sd-1': 'Stable Diffusion 1.x',
'sd-2': 'Stable Diffusion 2.x',
'sd-3': 'Stable Diffusion 3.x',
sdxl: 'Stable Diffusion XL',
'sdxl-refiner': 'Stable Diffusion XL Refiner',
flux: 'FLUX',
cogview4: 'CogView4',
imagen3: 'Imagen3',
imagen4: 'Imagen4',
'chatgpt-4o': 'ChatGPT 4o',
'flux-kontext': 'Flux Kontext',
'gemini-2.5': 'Gemini 2.5',
veo3: 'Veo3',
runway: 'Runway',
unknown: 'Unknown',
};
/**
* Mapping of model base to short human readable name
*/
export const MODEL_BASE_TO_SHORT_NAME: Record<BaseModelType, string> = {
any: 'Any',
'sd-1': 'SD1.X',
'sd-2': 'SD2.X',
'sd-3': 'SD3.X',
sdxl: 'SDXL',
'sdxl-refiner': 'SDXLR',
flux: 'FLUX',
cogview4: 'CogView4',
imagen3: 'Imagen3',
imagen4: 'Imagen4',
'chatgpt-4o': 'ChatGPT 4o',
'flux-kontext': 'Flux Kontext',
'gemini-2.5': 'Gemini 2.5',
veo3: 'Veo3',
runway: 'Runway',
unknown: 'Unknown',
};
export const MODEL_VARIANT_TO_LONG_NAME: Record<ModelVariantType, string> = {
normal: 'Normal',
inpaint: 'Inpaint',
depth: 'Depth',
};
export const MODEL_FORMAT_TO_LONG_NAME: Record<ModelFormat, string> = {
omi: 'OMI',
diffusers: 'Diffusers',
checkpoint: 'Checkpoint',
lycoris: 'LyCORIS',
onnx: 'ONNX',
olive: 'Olive',
embedding_file: 'Embedding (file)',
embedding_folder: 'Embedding (folder)',
invokeai: 'InvokeAI',
t5_encoder: 'T5 Encoder',
bnb_quantized_int8b: 'BNB Quantized (int8b)',
bnb_quantized_nf4b: 'BNB Quantized (nf4b)',
gguf_quantized: 'GGUF Quantized',
api: 'API',
unknown: 'Unknown',
};
/**
* List of base models that make API requests
*/
export const API_BASE_MODELS: BaseModelType[] = ['imagen3', 'imagen4', 'chatgpt-4o', 'flux-kontext', 'gemini-2.5'];
export const SUPPORTS_SEED_BASE_MODELS: BaseModelType[] = ['sd-1', 'sd-2', 'sd-3', 'sdxl', 'flux', 'cogview4'];
export const SUPPORTS_OPTIMIZED_DENOISING_BASE_MODELS: BaseModelType[] = ['flux', 'sd-3'];
export const SUPPORTS_REF_IMAGES_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sdxl',
'flux',
'flux-kontext',
'chatgpt-4o',
'gemini-2.5',
];
export const SUPPORTS_NEGATIVE_PROMPT_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sdxl',
'cogview4',
'sd-3',
'imagen3',
'imagen4',
];
export const SUPPORTS_PIXEL_DIMENSIONS_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sd-3',
'sdxl',
'flux',
'cogview4',
];
export const SUPPORTS_ASPECT_RATIO_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sd-3',
'sdxl',
'flux',
'cogview4',
'imagen3',
'imagen4',
'flux-kontext',
'chatgpt-4o',
];
export const VIDEO_BASE_MODELS = ['veo3', 'runway'];
export const REQUIRES_STARTING_FRAME_BASE_MODELS = ['runway'];

View File

@@ -1,34 +1,16 @@
import { Badge } from '@invoke-ai/ui-library';
import { MODEL_TYPE_SHORT_MAP } from 'features/parameters/types/constants';
import { MODEL_BASE_TO_COLOR, MODEL_BASE_TO_SHORT_NAME } from 'features/modelManagerV2/models';
import type { BaseModelType } from 'features/nodes/types/common';
import { memo } from 'react';
import type { BaseModelType } from 'services/api/types';
type Props = {
base: BaseModelType;
};
export const BASE_COLOR_MAP: Record<BaseModelType, string> = {
any: 'base',
'sd-1': 'green',
'sd-2': 'teal',
'sd-3': 'purple',
sdxl: 'invokeBlue',
'sdxl-refiner': 'invokeBlue',
flux: 'gold',
cogview4: 'red',
imagen3: 'pink',
imagen4: 'pink',
'chatgpt-4o': 'pink',
'flux-kontext': 'pink',
'gemini-2.5': 'pink',
veo3: 'purple',
runway: 'green',
};
const ModelBaseBadge = ({ base }: Props) => {
return (
<Badge flexGrow={0} flexShrink={0} colorScheme={BASE_COLOR_MAP[base]} variant="subtle" h="min-content">
{MODEL_TYPE_SHORT_MAP[base]}
<Badge flexGrow={0} flexShrink={0} colorScheme={MODEL_BASE_TO_COLOR[base]} variant="subtle" h="min-content">
{MODEL_BASE_TO_SHORT_NAME[base]}
</Badge>
);
};

View File

@@ -19,6 +19,7 @@ const FORMAT_NAME_MAP: Record<AnyModelConfig['format'], string> = {
gguf_quantized: 'gguf',
api: 'api',
omi: 'omi',
unknown: 'unknown',
};
const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
@@ -34,6 +35,7 @@ const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
bnb_quantized_nf4b: 'base',
gguf_quantized: 'base',
api: 'base',
unknown: 'red',
};
const ModelFormatBadge = ({ format }: Props) => {

View File

@@ -1,6 +1,8 @@
import { Flex, Text } from '@invoke-ai/ui-library';
import { logger } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { MODEL_CATEGORIES_AS_LIST } from 'features/modelManagerV2/models';
import {
type FilterableModelType,
selectFilteredModelType,
@@ -8,274 +10,50 @@ import {
} from 'features/modelManagerV2/store/modelManagerV2Slice';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import {
useCLIPEmbedModels,
useCLIPVisionModels,
useControlLoRAModel,
useControlNetModels,
useEmbeddingModels,
useFluxReduxModels,
useIPAdapterModels,
useLLaVAModels,
useLoRAModels,
useMainModels,
useRefinerModels,
useSigLipModels,
useSpandrelImageToImageModels,
useT2IAdapterModels,
useT5EncoderModels,
useVAEModels,
} from 'services/api/hooks/modelsByType';
import { modelConfigsAdapterSelectors, useGetModelConfigsQuery } from 'services/api/endpoints/models';
import type { AnyModelConfig } from 'services/api/types';
import { FetchingModelsLoader } from './FetchingModelsLoader';
import { ModelListWrapper } from './ModelListWrapper';
const log = logger('models');
const ModelList = () => {
const filteredModelType = useAppSelector(selectFilteredModelType);
const searchTerm = useAppSelector(selectSearchTerm);
const { t } = useTranslation();
const [mainModels, { isLoading: isLoadingMainModels }] = useMainModels();
const filteredMainModels = useMemo(
() => modelsFilter(mainModels, searchTerm, filteredModelType),
[mainModels, searchTerm, filteredModelType]
);
const { data, isLoading } = useGetModelConfigsQuery();
const [refinerModels, { isLoading: isLoadingRefinerModels }] = useRefinerModels();
const filteredRefinerModels = useMemo(
() => modelsFilter(refinerModels, searchTerm, filteredModelType),
[refinerModels, searchTerm, filteredModelType]
);
const [loraModels, { isLoading: isLoadingLoRAModels }] = useLoRAModels();
const filteredLoRAModels = useMemo(
() => modelsFilter(loraModels, searchTerm, filteredModelType),
[loraModels, searchTerm, filteredModelType]
);
const [embeddingModels, { isLoading: isLoadingEmbeddingModels }] = useEmbeddingModels();
const filteredEmbeddingModels = useMemo(
() => modelsFilter(embeddingModels, searchTerm, filteredModelType),
[embeddingModels, searchTerm, filteredModelType]
);
const [controlNetModels, { isLoading: isLoadingControlNetModels }] = useControlNetModels();
const filteredControlNetModels = useMemo(
() => modelsFilter(controlNetModels, searchTerm, filteredModelType),
[controlNetModels, searchTerm, filteredModelType]
);
const [t2iAdapterModels, { isLoading: isLoadingT2IAdapterModels }] = useT2IAdapterModels();
const filteredT2IAdapterModels = useMemo(
() => modelsFilter(t2iAdapterModels, searchTerm, filteredModelType),
[t2iAdapterModels, searchTerm, filteredModelType]
);
const [ipAdapterModels, { isLoading: isLoadingIPAdapterModels }] = useIPAdapterModels();
const filteredIPAdapterModels = useMemo(
() => modelsFilter(ipAdapterModels, searchTerm, filteredModelType),
[ipAdapterModels, searchTerm, filteredModelType]
);
const [clipVisionModels, { isLoading: isLoadingCLIPVisionModels }] = useCLIPVisionModels();
const filteredCLIPVisionModels = useMemo(
() => modelsFilter(clipVisionModels, searchTerm, filteredModelType),
[clipVisionModels, searchTerm, filteredModelType]
);
const [vaeModels, { isLoading: isLoadingVAEModels }] = useVAEModels({ excludeSubmodels: true });
const filteredVAEModels = useMemo(
() => modelsFilter(vaeModels, searchTerm, filteredModelType),
[vaeModels, searchTerm, filteredModelType]
);
const [t5EncoderModels, { isLoading: isLoadingT5EncoderModels }] = useT5EncoderModels({ excludeSubmodels: true });
const filteredT5EncoderModels = useMemo(
() => modelsFilter(t5EncoderModels, searchTerm, filteredModelType),
[t5EncoderModels, searchTerm, filteredModelType]
);
const [controlLoRAModels, { isLoading: isLoadingControlLoRAModels }] = useControlLoRAModel();
const filteredControlLoRAModels = useMemo(
() => modelsFilter(controlLoRAModels, searchTerm, filteredModelType),
[controlLoRAModels, searchTerm, filteredModelType]
);
const [clipEmbedModels, { isLoading: isLoadingClipEmbedModels }] = useCLIPEmbedModels({ excludeSubmodels: true });
const filteredClipEmbedModels = useMemo(
() => modelsFilter(clipEmbedModels, searchTerm, filteredModelType),
[clipEmbedModels, searchTerm, filteredModelType]
);
const [spandrelImageToImageModels, { isLoading: isLoadingSpandrelImageToImageModels }] =
useSpandrelImageToImageModels();
const filteredSpandrelImageToImageModels = useMemo(
() => modelsFilter(spandrelImageToImageModels, searchTerm, filteredModelType),
[spandrelImageToImageModels, searchTerm, filteredModelType]
);
const [sigLipModels, { isLoading: isLoadingSigLipModels }] = useSigLipModels();
const filteredSigLipModels = useMemo(
() => modelsFilter(sigLipModels, searchTerm, filteredModelType),
[sigLipModels, searchTerm, filteredModelType]
);
const [fluxReduxModels, { isLoading: isLoadingFluxReduxModels }] = useFluxReduxModels();
const filteredFluxReduxModels = useMemo(
() => modelsFilter(fluxReduxModels, searchTerm, filteredModelType),
[fluxReduxModels, searchTerm, filteredModelType]
);
const [llavaOneVisionModels, { isLoading: isLoadingLlavaOneVisionModels }] = useLLaVAModels();
const filteredLlavaOneVisionModels = useMemo(
() => modelsFilter(llavaOneVisionModels, searchTerm, filteredModelType),
[llavaOneVisionModels, searchTerm, filteredModelType]
);
const totalFilteredModels = useMemo(() => {
return (
filteredMainModels.length +
filteredRefinerModels.length +
filteredLoRAModels.length +
filteredEmbeddingModels.length +
filteredControlNetModels.length +
filteredT2IAdapterModels.length +
filteredIPAdapterModels.length +
filteredCLIPVisionModels.length +
filteredVAEModels.length +
filteredSpandrelImageToImageModels.length +
filteredSigLipModels.length +
filteredFluxReduxModels.length +
t5EncoderModels.length +
clipEmbedModels.length +
controlLoRAModels.length
);
}, [
filteredControlNetModels.length,
filteredEmbeddingModels.length,
filteredIPAdapterModels.length,
filteredCLIPVisionModels.length,
filteredLoRAModels.length,
filteredMainModels.length,
filteredRefinerModels.length,
filteredT2IAdapterModels.length,
filteredVAEModels.length,
filteredSpandrelImageToImageModels.length,
filteredSigLipModels.length,
filteredFluxReduxModels.length,
t5EncoderModels.length,
clipEmbedModels.length,
controlLoRAModels.length,
]);
const models = useMemo(() => {
const modelConfigs = modelConfigsAdapterSelectors.selectAll(data ?? { ids: [], entities: {} });
const baseFilteredModelConfigs = modelsFilter(modelConfigs, searchTerm, filteredModelType);
const byCategory: { i18nKey: string; configs: AnyModelConfig[] }[] = [];
const total = baseFilteredModelConfigs.length;
let renderedTotal = 0;
for (const { i18nKey, filter } of MODEL_CATEGORIES_AS_LIST) {
const configs = baseFilteredModelConfigs.filter(filter);
renderedTotal += configs.length;
byCategory.push({ i18nKey, configs });
}
if (renderedTotal !== total) {
const ctx = { total, renderedTotal, difference: total - renderedTotal };
log.warn(
ctx,
`ModelList: Not all models were categorized - ensure all possible models are covered in MODEL_CATEGORIES`
);
}
return { total, byCategory };
}, [data, filteredModelType, searchTerm]);
return (
<ScrollableContent>
<Flex flexDirection="column" w="full" h="full" gap={4}>
{/* Main Model List */}
{isLoadingMainModels && <FetchingModelsLoader loadingMessage="Loading Main Models..." />}
{!isLoadingMainModels && filteredMainModels.length > 0 && (
<ModelListWrapper title={t('modelManager.main')} modelList={filteredMainModels} key="main" />
)}
{/* Refiner Model List */}
{isLoadingRefinerModels && <FetchingModelsLoader loadingMessage="Loading Refiner Models..." />}
{!isLoadingRefinerModels && filteredRefinerModels.length > 0 && (
<ModelListWrapper title={t('sdxl.refiner')} modelList={filteredRefinerModels} key="refiner" />
)}
{/* LoRAs List */}
{isLoadingLoRAModels && <FetchingModelsLoader loadingMessage="Loading LoRAs..." />}
{!isLoadingLoRAModels && filteredLoRAModels.length > 0 && (
<ModelListWrapper title={t('modelManager.loraModels')} modelList={filteredLoRAModels} key="loras" />
)}
{/* TI List */}
{isLoadingEmbeddingModels && <FetchingModelsLoader loadingMessage="Loading Textual Inversions..." />}
{!isLoadingEmbeddingModels && filteredEmbeddingModels.length > 0 && (
<ModelListWrapper
title={t('modelManager.textualInversions')}
modelList={filteredEmbeddingModels}
key="textual-inversions"
/>
)}
{/* VAE List */}
{isLoadingVAEModels && <FetchingModelsLoader loadingMessage="Loading VAEs..." />}
{!isLoadingVAEModels && filteredVAEModels.length > 0 && (
<ModelListWrapper title="VAE" modelList={filteredVAEModels} key="vae" />
)}
{/* Controlnet List */}
{isLoadingControlNetModels && <FetchingModelsLoader loadingMessage="Loading ControlNets..." />}
{!isLoadingControlNetModels && filteredControlNetModels.length > 0 && (
<ModelListWrapper title="ControlNet" modelList={filteredControlNetModels} key="controlnets" />
)}
{/* IP Adapter List */}
{isLoadingIPAdapterModels && <FetchingModelsLoader loadingMessage="Loading IP Adapters..." />}
{!isLoadingIPAdapterModels && filteredIPAdapterModels.length > 0 && (
<ModelListWrapper title={t('common.ipAdapter')} modelList={filteredIPAdapterModels} key="ip-adapters" />
)}
{/* CLIP Vision List */}
{isLoadingCLIPVisionModels && <FetchingModelsLoader loadingMessage="Loading CLIP Vision Models..." />}
{!isLoadingCLIPVisionModels && filteredCLIPVisionModels.length > 0 && (
<ModelListWrapper title="CLIP Vision" modelList={filteredCLIPVisionModels} key="clip-vision" />
)}
{/* T2I Adapters List */}
{isLoadingT2IAdapterModels && <FetchingModelsLoader loadingMessage="Loading T2I Adapters..." />}
{!isLoadingT2IAdapterModels && filteredT2IAdapterModels.length > 0 && (
<ModelListWrapper title={t('common.t2iAdapter')} modelList={filteredT2IAdapterModels} key="t2i-adapters" />
)}
{/* T5 Encoders List */}
{isLoadingT5EncoderModels && <FetchingModelsLoader loadingMessage="Loading T5 Encoder Models..." />}
{!isLoadingT5EncoderModels && filteredT5EncoderModels.length > 0 && (
<ModelListWrapper title={t('modelManager.t5Encoder')} modelList={filteredT5EncoderModels} key="t5-encoder" />
)}
{/* Control Lora List */}
{isLoadingControlLoRAModels && <FetchingModelsLoader loadingMessage="Loading Control Loras..." />}
{!isLoadingControlLoRAModels && filteredControlLoRAModels.length > 0 && (
<ModelListWrapper
title={t('modelManager.controlLora')}
modelList={filteredControlLoRAModels}
key="control-lora"
/>
)}
{/* Clip Embed List */}
{isLoadingClipEmbedModels && <FetchingModelsLoader loadingMessage="Loading Clip Embed Models..." />}
{!isLoadingClipEmbedModels && filteredClipEmbedModels.length > 0 && (
<ModelListWrapper title={t('modelManager.clipEmbed')} modelList={filteredClipEmbedModels} key="clip-embed" />
)}
{/* LLaVA OneVision List */}
{isLoadingLlavaOneVisionModels && <FetchingModelsLoader loadingMessage="Loading LLaVA OneVision Models..." />}
{!isLoadingLlavaOneVisionModels && filteredLlavaOneVisionModels.length > 0 && (
<ModelListWrapper
title={t('modelManager.llavaOnevision')}
modelList={filteredLlavaOneVisionModels}
key="llava-onevision"
/>
)}
{/* Spandrel Image to Image List */}
{isLoadingSpandrelImageToImageModels && (
<FetchingModelsLoader loadingMessage="Loading Image-to-Image Models..." />
)}
{!isLoadingSpandrelImageToImageModels && filteredSpandrelImageToImageModels.length > 0 && (
<ModelListWrapper
title={t('modelManager.spandrelImageToImage')}
modelList={filteredSpandrelImageToImageModels}
key="spandrel-image-to-image"
/>
)}
{/* SigLIP List */}
{isLoadingSigLipModels && <FetchingModelsLoader loadingMessage="Loading SigLIP Models..." />}
{!isLoadingSigLipModels && filteredSigLipModels.length > 0 && (
<ModelListWrapper title={t('modelManager.sigLip')} modelList={filteredSigLipModels} key="sig-lip" />
)}
{/* Flux Redux List */}
{isLoadingFluxReduxModels && <FetchingModelsLoader loadingMessage="Loading Flux Redux Models..." />}
{!isLoadingFluxReduxModels && filteredFluxReduxModels.length > 0 && (
<ModelListWrapper title={t('modelManager.fluxRedux')} modelList={filteredFluxReduxModels} key="flux-redux" />
)}
{totalFilteredModels === 0 && (
{isLoading && <FetchingModelsLoader loadingMessage="Loading..." />}
{models.byCategory.map(({ i18nKey, configs }) => (
<ModelListWrapper key={i18nKey} title={t(i18nKey)} modelList={configs} />
))}
{!isLoading && models.total === 0 && (
<Flex w="full" h="full" alignItems="center" justifyContent="center">
<Text>{t('modelManager.noMatchingModels')}</Text>
</Flex>
@@ -293,7 +71,13 @@ const modelsFilter = <T extends AnyModelConfig>(
filteredModelType: FilterableModelType | null
): T[] => {
return data.filter((model) => {
const matchesFilter = model.name.toLowerCase().includes(nameFilter.toLowerCase());
const matchesFilter =
model.name.toLowerCase().includes(nameFilter.toLowerCase()) ||
model.base.toLowerCase().includes(nameFilter.toLowerCase()) ||
model.type.toLowerCase().includes(nameFilter.toLowerCase()) ||
model.description?.toLowerCase().includes(nameFilter.toLowerCase()) ||
model.format.toLowerCase().includes(nameFilter.toLowerCase());
const matchesType = getMatchesType(model, filteredModelType);
return matchesFilter && matchesType;

View File

@@ -25,6 +25,9 @@ const contentSx = {
export const ModelListWrapper = memo((props: ModelListWrapperProps) => {
const { title, modelList } = props;
if (modelList.length === 0) {
return null;
}
return (
<StickyScrollable title={title} contentSx={contentSx} headingSx={headingSx}>
{modelList.map((model) => (

View File

@@ -1,46 +1,17 @@
import { Button, Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import type { FilterableModelType } from 'features/modelManagerV2/store/modelManagerV2Slice';
import type { ModelCategoryData } from 'features/modelManagerV2/models';
import { MODEL_CATEGORIES, MODEL_CATEGORIES_AS_LIST } from 'features/modelManagerV2/models';
import { selectFilteredModelType, setFilteredModelType } from 'features/modelManagerV2/store/modelManagerV2Slice';
import { memo, useCallback, useMemo } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFunnelBold } from 'react-icons/pi';
import { objectKeys } from 'tsafe';
export const ModelTypeFilter = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const MODEL_TYPE_LABELS: Record<FilterableModelType, string> = useMemo(
() => ({
main: t('modelManager.main'),
refiner: t('sdxl.refiner'),
lora: 'LoRA',
embedding: t('modelManager.textualInversions'),
controlnet: 'ControlNet',
vae: 'VAE',
t2i_adapter: t('common.t2iAdapter'),
t5_encoder: t('modelManager.t5Encoder'),
clip_embed: t('modelManager.clipEmbed'),
ip_adapter: t('common.ipAdapter'),
clip_vision: 'CLIP Vision',
spandrel_image_to_image: t('modelManager.spandrelImageToImage'),
control_lora: t('modelManager.controlLora'),
siglip: t('modelManager.sigLip'),
flux_redux: t('modelManager.fluxRedux'),
llava_onevision: t('modelManager.llavaOnevision'),
video: t('modelManager.video'),
}),
[t]
);
const filteredModelType = useAppSelector(selectFilteredModelType);
const selectModelType = useCallback(
(option: FilterableModelType) => {
dispatch(setFilteredModelType(option));
},
[dispatch]
);
const clearModelType = useCallback(() => {
dispatch(setFilteredModelType(null));
}, [dispatch]);
@@ -48,18 +19,12 @@ export const ModelTypeFilter = memo(() => {
return (
<Menu>
<MenuButton as={Button} size="sm" leftIcon={<PiFunnelBold />}>
{filteredModelType ? MODEL_TYPE_LABELS[filteredModelType] : t('modelManager.allModels')}
{filteredModelType ? t(MODEL_CATEGORIES[filteredModelType].i18nKey) : t('modelManager.allModels')}
</MenuButton>
<MenuList>
<MenuItem onClick={clearModelType}>{t('modelManager.allModels')}</MenuItem>
{objectKeys(MODEL_TYPE_LABELS).map((option) => (
<MenuItem
key={option}
bg={filteredModelType === option ? 'base.700' : 'transparent'}
onClick={selectModelType.bind(null, option)}
>
{MODEL_TYPE_LABELS[option]}
</MenuItem>
{MODEL_CATEGORIES_AS_LIST.map((data) => (
<ModelMenuItem key={data.category} data={data} />
))}
</MenuList>
</Menu>
@@ -67,3 +32,18 @@ export const ModelTypeFilter = memo(() => {
});
ModelTypeFilter.displayName = 'ModelTypeFilter';
const ModelMenuItem = memo(({ data }: { data: ModelCategoryData }) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const filteredModelType = useAppSelector(selectFilteredModelType);
const onClick = useCallback(() => {
dispatch(setFilteredModelType(data.category));
}, [data.category, dispatch]);
return (
<MenuItem bg={filteredModelType === data.category ? 'base.700' : 'transparent'} onClick={onClick}>
{t(data.i18nKey)}
</MenuItem>
);
});
ModelMenuItem.displayName = 'ModelMenuItem';

View File

@@ -18,6 +18,7 @@ const modelPaneSx: SystemStyleObject = {
},
h: 'full',
minWidth: '300px',
overflow: 'auto',
};
export const ModelPane = memo(() => {

View File

@@ -1,20 +1,17 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { Combobox } from '@invoke-ai/ui-library';
import { typedMemo } from 'common/util/typedMemo';
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
import { MODEL_BASE_TO_LONG_NAME } from 'features/modelManagerV2/models';
import { useCallback, useMemo } from 'react';
import type { Control } from 'react-hook-form';
import { useController } from 'react-hook-form';
import type { UpdateModelArg } from 'services/api/endpoints/models';
import { objectEntries } from 'tsafe';
const options: ComboboxOption[] = [
{ value: 'sd-1', label: MODEL_TYPE_MAP['sd-1'] },
{ value: 'sd-2', label: MODEL_TYPE_MAP['sd-2'] },
{ value: 'sd-3', label: MODEL_TYPE_MAP['sd-3'] },
{ value: 'flux', label: MODEL_TYPE_MAP['flux'] },
{ value: 'sdxl', label: MODEL_TYPE_MAP['sdxl'] },
{ value: 'sdxl-refiner', label: MODEL_TYPE_MAP['sdxl-refiner'] },
];
const options: ComboboxOption[] = objectEntries(MODEL_BASE_TO_LONG_NAME).map(([value, label]) => ({
label,
value,
}));
type Props = {
control: Control<UpdateModelArg['body']>;

View File

@@ -0,0 +1,32 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { Combobox } from '@invoke-ai/ui-library';
import { typedMemo } from 'common/util/typedMemo';
import { MODEL_FORMAT_TO_LONG_NAME } from 'features/modelManagerV2/models';
import { useCallback, useMemo } from 'react';
import type { Control } from 'react-hook-form';
import { useController } from 'react-hook-form';
import type { UpdateModelArg } from 'services/api/endpoints/models';
import { objectEntries } from 'tsafe';
const options: ComboboxOption[] = objectEntries(MODEL_FORMAT_TO_LONG_NAME).map(([value, label]) => ({
label,
value,
}));
type Props = {
control: Control<UpdateModelArg['body']>;
};
const ModelFormatSelect = ({ control }: Props) => {
const { field } = useController({ control, name: 'format' });
const value = useMemo(() => options.find((o) => o.value === field.value), [field.value]);
const onChange = useCallback<ComboboxOnChange>(
(v) => {
field.onChange(v?.value);
},
[field]
);
return <Combobox value={value} options={options} onChange={onChange} />;
};
export default typedMemo(ModelFormatSelect);

View File

@@ -0,0 +1,32 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { Combobox } from '@invoke-ai/ui-library';
import { typedMemo } from 'common/util/typedMemo';
import { MODEL_TYPE_TO_LONG_NAME } from 'features/modelManagerV2/models';
import { useCallback, useMemo } from 'react';
import type { Control } from 'react-hook-form';
import { useController } from 'react-hook-form';
import type { UpdateModelArg } from 'services/api/endpoints/models';
import { objectEntries } from 'tsafe';
const options: ComboboxOption[] = objectEntries(MODEL_TYPE_TO_LONG_NAME).map(([value, label]) => ({
label,
value,
}));
type Props = {
control: Control<UpdateModelArg['body']>;
};
const ModelTypeSelect = ({ control }: Props) => {
const { field } = useController({ control, name: 'type' });
const value = useMemo(() => options.find((o) => o.value === field.value), [field.value]);
const onChange = useCallback<ComboboxOnChange>(
(v) => {
field.onChange(v?.value);
},
[field]
);
return <Combobox value={value} options={options} onChange={onChange} />;
};
export default typedMemo(ModelTypeSelect);

View File

@@ -1,16 +1,14 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { Combobox } from '@invoke-ai/ui-library';
import { typedMemo } from 'common/util/typedMemo';
import { MODEL_VARIANT_TO_LONG_NAME } from 'features/modelManagerV2/models';
import { useCallback, useMemo } from 'react';
import type { Control } from 'react-hook-form';
import { useController } from 'react-hook-form';
import type { UpdateModelArg } from 'services/api/endpoints/models';
import { objectEntries } from 'tsafe';
const options: ComboboxOption[] = [
{ value: 'normal', label: 'Normal' },
{ value: 'inpaint', label: 'Inpaint' },
{ value: 'depth', label: 'Depth' },
];
const options: ComboboxOption[] = objectEntries(MODEL_VARIANT_TO_LONG_NAME).map(([value, label]) => ({ label, value }));
type Props = {
control: Control<UpdateModelArg['body']>;

View File

@@ -22,6 +22,8 @@ import { type UpdateModelArg, useUpdateModelMutation } from 'services/api/endpoi
import type { AnyModelConfig } from 'services/api/types';
import BaseModelSelect from './Fields/BaseModelSelect';
import ModelFormatSelect from './Fields/ModelFormatSelect';
import ModelTypeSelect from './Fields/ModelTypeSelect';
import ModelVariantSelect from './Fields/ModelVariantSelect';
import PredictionTypeSelect from './Fields/PredictionTypeSelect';
import { ModelFooter } from './ModelFooter';
@@ -127,6 +129,14 @@ export const ModelEdit = memo(({ modelConfig }: Props) => {
</Heading>
)}
<SimpleGrid columns={2} gap={4}>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.modelType')}</FormLabel>
<ModelTypeSelect control={form.control} />
</FormControl>
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.modelFormat')}</FormLabel>
<ModelFormatSelect control={form.control} />
</FormControl>
{modelConfig.type !== 'clip_vision' && (
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
<FormLabel>{t('modelManager.baseModel')}</FormLabel>

View File

@@ -40,7 +40,7 @@ export const ModelView = memo(({ modelConfig }: Props) => {
}, [modelConfig.base, modelConfig.type]);
return (
<Flex flexDir="column" gap={4}>
<Flex flexDir="column" gap={4} h="full">
<ModelHeader modelConfig={modelConfig}>
{modelConfig.format === 'checkpoint' && modelConfig.type === 'main' && (
<ModelConvertButton modelConfig={modelConfig} />
@@ -48,12 +48,12 @@ export const ModelView = memo(({ modelConfig }: Props) => {
<ModelEditButton />
</ModelHeader>
<Divider />
<Flex flexDir="column" h="full" gap={4}>
<Flex flexDir="column" gap={4}>
<Box>
<SimpleGrid columns={2} gap={4}>
<ModelAttrView label={t('modelManager.baseModel')} value={modelConfig.base} />
<ModelAttrView label={t('modelManager.modelType')} value={modelConfig.type} />
<ModelAttrView label={t('common.format')} value={modelConfig.format} />
<ModelAttrView label={t('modelManager.modelFormat')} value={modelConfig.format} />
<ModelAttrView label={t('modelManager.path')} value={modelConfig.path} />
<ModelAttrView label={t('modelManager.fileSize')} value={filesize(modelConfig.file_size)} />
{modelConfig.type === 'main' && (

View File

@@ -1,14 +1,10 @@
import { FloatFieldInput } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/FloatFieldInput';
import { FloatFieldInputAndSlider } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/FloatFieldInputAndSlider';
import { FloatFieldSlider } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/FloatFieldSlider';
import ChatGPT4oModelFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ChatGPT4oModelFieldInputComponent';
import { FloatFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/FloatFieldCollectionInputComponent';
import { FloatGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/FloatGeneratorFieldComponent';
import FluxKontextModelFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/FluxKontextModelFieldInputComponent';
import { ImageFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ImageFieldCollectionInputComponent';
import { ImageGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ImageGeneratorFieldComponent';
import Imagen3ModelFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/Imagen3ModelFieldInputComponent';
import Imagen4ModelFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/Imagen4ModelFieldInputComponent';
import { IntegerFieldCollectionInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/IntegerFieldCollectionInputComponent';
import { IntegerGeneratorFieldInputComponent } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/IntegerGeneratorFieldComponent';
import ModelIdentifierFieldInputComponent from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelIdentifierFieldInputComponent';
@@ -27,22 +23,8 @@ import {
isBoardFieldInputTemplate,
isBooleanFieldInputInstance,
isBooleanFieldInputTemplate,
isChatGPT4oModelFieldInputInstance,
isChatGPT4oModelFieldInputTemplate,
isCLIPEmbedModelFieldInputInstance,
isCLIPEmbedModelFieldInputTemplate,
isCLIPGEmbedModelFieldInputInstance,
isCLIPGEmbedModelFieldInputTemplate,
isCLIPLEmbedModelFieldInputInstance,
isCLIPLEmbedModelFieldInputTemplate,
isCogView4MainModelFieldInputInstance,
isCogView4MainModelFieldInputTemplate,
isColorFieldInputInstance,
isColorFieldInputTemplate,
isControlLoRAModelFieldInputInstance,
isControlLoRAModelFieldInputTemplate,
isControlNetModelFieldInputInstance,
isControlNetModelFieldInputTemplate,
isEnumFieldInputInstance,
isEnumFieldInputTemplate,
isFloatFieldCollectionInputInstance,
@@ -51,68 +33,28 @@ import {
isFloatFieldInputTemplate,
isFloatGeneratorFieldInputInstance,
isFloatGeneratorFieldInputTemplate,
isFluxKontextModelFieldInputInstance,
isFluxKontextModelFieldInputTemplate,
isFluxMainModelFieldInputInstance,
isFluxMainModelFieldInputTemplate,
isFluxReduxModelFieldInputInstance,
isFluxReduxModelFieldInputTemplate,
isFluxVAEModelFieldInputInstance,
isFluxVAEModelFieldInputTemplate,
isImageFieldCollectionInputInstance,
isImageFieldCollectionInputTemplate,
isImageFieldInputInstance,
isImageFieldInputTemplate,
isImageGeneratorFieldInputInstance,
isImageGeneratorFieldInputTemplate,
isImagen3ModelFieldInputInstance,
isImagen3ModelFieldInputTemplate,
isImagen4ModelFieldInputInstance,
isImagen4ModelFieldInputTemplate,
isIntegerFieldCollectionInputInstance,
isIntegerFieldCollectionInputTemplate,
isIntegerFieldInputInstance,
isIntegerFieldInputTemplate,
isIntegerGeneratorFieldInputInstance,
isIntegerGeneratorFieldInputTemplate,
isIPAdapterModelFieldInputInstance,
isIPAdapterModelFieldInputTemplate,
isLLaVAModelFieldInputInstance,
isLLaVAModelFieldInputTemplate,
isLoRAModelFieldInputInstance,
isLoRAModelFieldInputTemplate,
isMainModelFieldInputInstance,
isMainModelFieldInputTemplate,
isModelIdentifierFieldInputInstance,
isModelIdentifierFieldInputTemplate,
isRunwayModelFieldInputInstance,
isRunwayModelFieldInputTemplate,
isSchedulerFieldInputInstance,
isSchedulerFieldInputTemplate,
isSD3MainModelFieldInputInstance,
isSD3MainModelFieldInputTemplate,
isSDXLMainModelFieldInputInstance,
isSDXLMainModelFieldInputTemplate,
isSDXLRefinerModelFieldInputInstance,
isSDXLRefinerModelFieldInputTemplate,
isSigLipModelFieldInputInstance,
isSigLipModelFieldInputTemplate,
isSpandrelImageToImageModelFieldInputInstance,
isSpandrelImageToImageModelFieldInputTemplate,
isStringFieldCollectionInputInstance,
isStringFieldCollectionInputTemplate,
isStringFieldInputInstance,
isStringFieldInputTemplate,
isStringGeneratorFieldInputInstance,
isStringGeneratorFieldInputTemplate,
isT2IAdapterModelFieldInputInstance,
isT2IAdapterModelFieldInputTemplate,
isT5EncoderModelFieldInputInstance,
isT5EncoderModelFieldInputTemplate,
isVAEModelFieldInputInstance,
isVAEModelFieldInputTemplate,
isVeo3ModelFieldInputInstance,
isVeo3ModelFieldInputTemplate,
} from 'features/nodes/types/field';
import type { NodeFieldElement } from 'features/nodes/types/workflow';
import { memo } from 'react';
@@ -121,33 +63,10 @@ import { assert } from 'tsafe';
import BoardFieldInputComponent from './inputs/BoardFieldInputComponent';
import BooleanFieldInputComponent from './inputs/BooleanFieldInputComponent';
import CLIPEmbedModelFieldInputComponent from './inputs/CLIPEmbedModelFieldInputComponent';
import CLIPGEmbedModelFieldInputComponent from './inputs/CLIPGEmbedModelFieldInputComponent';
import CLIPLEmbedModelFieldInputComponent from './inputs/CLIPLEmbedModelFieldInputComponent';
import CogView4MainModelFieldInputComponent from './inputs/CogView4MainModelFieldInputComponent';
import ColorFieldInputComponent from './inputs/ColorFieldInputComponent';
import ControlLoRAModelFieldInputComponent from './inputs/ControlLoraModelFieldInputComponent';
import ControlNetModelFieldInputComponent from './inputs/ControlNetModelFieldInputComponent';
import EnumFieldInputComponent from './inputs/EnumFieldInputComponent';
import FluxMainModelFieldInputComponent from './inputs/FluxMainModelFieldInputComponent';
import FluxReduxModelFieldInputComponent from './inputs/FluxReduxModelFieldInputComponent';
import FluxVAEModelFieldInputComponent from './inputs/FluxVAEModelFieldInputComponent';
import ImageFieldInputComponent from './inputs/ImageFieldInputComponent';
import IPAdapterModelFieldInputComponent from './inputs/IPAdapterModelFieldInputComponent';
import LLaVAModelFieldInputComponent from './inputs/LLaVAModelFieldInputComponent';
import LoRAModelFieldInputComponent from './inputs/LoRAModelFieldInputComponent';
import MainModelFieldInputComponent from './inputs/MainModelFieldInputComponent';
import RefinerModelFieldInputComponent from './inputs/RefinerModelFieldInputComponent';
import RunwayModelFieldInputComponent from './inputs/RunwayModelFieldInputComponent';
import SchedulerFieldInputComponent from './inputs/SchedulerFieldInputComponent';
import SD3MainModelFieldInputComponent from './inputs/SD3MainModelFieldInputComponent';
import SDXLMainModelFieldInputComponent from './inputs/SDXLMainModelFieldInputComponent';
import SigLipModelFieldInputComponent from './inputs/SigLipModelFieldInputComponent';
import SpandrelImageToImageModelFieldInputComponent from './inputs/SpandrelImageToImageModelFieldInputComponent';
import T2IAdapterModelFieldInputComponent from './inputs/T2IAdapterModelFieldInputComponent';
import T5EncoderModelFieldInputComponent from './inputs/T5EncoderModelFieldInputComponent';
import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
import Veo3ModelFieldInputComponent from './inputs/Veo3ModelFieldInputComponent';
type Props = {
nodeId: string;
@@ -287,13 +206,6 @@ export const InputFieldRenderer = memo(({ nodeId, fieldName, settings }: Props)
return <BoardFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isMainModelFieldInputTemplate(template)) {
if (!isMainModelFieldInputInstance(field)) {
return null;
}
return <MainModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isModelIdentifierFieldInputTemplate(template)) {
if (!isModelIdentifierFieldInputInstance(field)) {
return null;
@@ -301,159 +213,6 @@ export const InputFieldRenderer = memo(({ nodeId, fieldName, settings }: Props)
return <ModelIdentifierFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSDXLRefinerModelFieldInputTemplate(template)) {
if (!isSDXLRefinerModelFieldInputInstance(field)) {
return null;
}
return <RefinerModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isVAEModelFieldInputTemplate(template)) {
if (!isVAEModelFieldInputInstance(field)) {
return null;
}
return <VAEModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isT5EncoderModelFieldInputTemplate(template)) {
if (!isT5EncoderModelFieldInputInstance(field)) {
return null;
}
return <T5EncoderModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isCLIPEmbedModelFieldInputTemplate(template)) {
if (!isCLIPEmbedModelFieldInputInstance(field)) {
return null;
}
return <CLIPEmbedModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isCLIPLEmbedModelFieldInputTemplate(template)) {
if (!isCLIPLEmbedModelFieldInputInstance(field)) {
return null;
}
return <CLIPLEmbedModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isCLIPGEmbedModelFieldInputTemplate(template)) {
if (!isCLIPGEmbedModelFieldInputInstance(field)) {
return null;
}
return <CLIPGEmbedModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isControlLoRAModelFieldInputTemplate(template)) {
if (!isControlLoRAModelFieldInputInstance(field)) {
return null;
}
return <ControlLoRAModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isLLaVAModelFieldInputTemplate(template)) {
if (!isLLaVAModelFieldInputInstance(field)) {
return null;
}
return <LLaVAModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isFluxVAEModelFieldInputTemplate(template)) {
if (!isFluxVAEModelFieldInputInstance(field)) {
return null;
}
return <FluxVAEModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isLoRAModelFieldInputTemplate(template)) {
if (!isLoRAModelFieldInputInstance(field)) {
return null;
}
return <LoRAModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isControlNetModelFieldInputTemplate(template)) {
if (!isControlNetModelFieldInputInstance(field)) {
return null;
}
return <ControlNetModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isIPAdapterModelFieldInputTemplate(template)) {
if (!isIPAdapterModelFieldInputInstance(field)) {
return null;
}
return <IPAdapterModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isT2IAdapterModelFieldInputTemplate(template)) {
if (!isT2IAdapterModelFieldInputInstance(field)) {
return null;
}
return <T2IAdapterModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSpandrelImageToImageModelFieldInputTemplate(template)) {
if (!isSpandrelImageToImageModelFieldInputInstance(field)) {
return null;
}
return <SpandrelImageToImageModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSigLipModelFieldInputTemplate(template)) {
if (!isSigLipModelFieldInputInstance(field)) {
return null;
}
return <SigLipModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isFluxReduxModelFieldInputTemplate(template)) {
if (!isFluxReduxModelFieldInputInstance(field)) {
return null;
}
return <FluxReduxModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isImagen3ModelFieldInputTemplate(template)) {
if (!isImagen3ModelFieldInputInstance(field)) {
return null;
}
return <Imagen3ModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isImagen4ModelFieldInputTemplate(template)) {
if (!isImagen4ModelFieldInputInstance(field)) {
return null;
}
return <Imagen4ModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isFluxKontextModelFieldInputTemplate(template)) {
if (!isFluxKontextModelFieldInputInstance(field)) {
return null;
}
return <FluxKontextModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isChatGPT4oModelFieldInputTemplate(template)) {
if (!isChatGPT4oModelFieldInputInstance(field)) {
return null;
}
return <ChatGPT4oModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isVeo3ModelFieldInputTemplate(template)) {
if (!isVeo3ModelFieldInputInstance(field)) {
return null;
}
return <Veo3ModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isRunwayModelFieldInputTemplate(template)) {
if (!isRunwayModelFieldInputInstance(field)) {
return null;
}
return <RunwayModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isColorFieldInputTemplate(template)) {
if (!isColorFieldInputInstance(field)) {
return null;
@@ -461,34 +220,6 @@ export const InputFieldRenderer = memo(({ nodeId, fieldName, settings }: Props)
return <ColorFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isFluxMainModelFieldInputTemplate(template)) {
if (!isFluxMainModelFieldInputInstance(field)) {
return null;
}
return <FluxMainModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSD3MainModelFieldInputTemplate(template)) {
if (!isSD3MainModelFieldInputInstance(field)) {
return null;
}
return <SD3MainModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isCogView4MainModelFieldInputTemplate(template)) {
if (!isCogView4MainModelFieldInputInstance(field)) {
return null;
}
return <CogView4MainModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSDXLMainModelFieldInputTemplate(template)) {
if (!isSDXLMainModelFieldInputInstance(field)) {
return null;
}
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={field} fieldTemplate={template} />;
}
if (isSchedulerFieldInputTemplate(template)) {
if (!isSchedulerFieldInputInstance(field)) {
return null;

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldCLIPEmbedValueChanged } from 'features/nodes/store/nodesSlice';
import type { CLIPEmbedModelFieldInputInstance, CLIPEmbedModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useCLIPEmbedModels } from 'services/api/hooks/modelsByType';
import type { CLIPEmbedModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<CLIPEmbedModelFieldInputInstance, CLIPEmbedModelFieldInputTemplate>;
const CLIPEmbedModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useCLIPEmbedModels();
const onChange = useCallback(
(value: CLIPEmbedModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldCLIPEmbedValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(CLIPEmbedModelFieldInputComponent);

View File

@@ -1,45 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldCLIPGEmbedValueChanged } from 'features/nodes/store/nodesSlice';
import type { CLIPGEmbedModelFieldInputInstance, CLIPGEmbedModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useCLIPEmbedModels } from 'services/api/hooks/modelsByType';
import { type CLIPGEmbedModelConfig, isCLIPGEmbedModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<CLIPGEmbedModelFieldInputInstance, CLIPGEmbedModelFieldInputTemplate>;
const CLIPGEmbedModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useCLIPEmbedModels();
const onChange = useCallback(
(value: CLIPGEmbedModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldCLIPGEmbedValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs.filter((config) => isCLIPGEmbedModelConfig(config))}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(CLIPGEmbedModelFieldInputComponent);

View File

@@ -1,45 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldCLIPLEmbedValueChanged } from 'features/nodes/store/nodesSlice';
import type { CLIPLEmbedModelFieldInputInstance, CLIPLEmbedModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useCLIPEmbedModels } from 'services/api/hooks/modelsByType';
import { type CLIPLEmbedModelConfig, isCLIPLEmbedModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<CLIPLEmbedModelFieldInputInstance, CLIPLEmbedModelFieldInputTemplate>;
const CLIPLEmbedModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useCLIPEmbedModels();
const onChange = useCallback(
(value: CLIPLEmbedModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldCLIPLEmbedValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs.filter((config) => isCLIPLEmbedModelConfig(config))}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(CLIPLEmbedModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldChatGPT4oModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { ChatGPT4oModelFieldInputInstance, ChatGPT4oModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useChatGPT4oModels } from 'services/api/hooks/modelsByType';
import type { ApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const ChatGPT4oModelFieldInputComponent = (
props: FieldComponentProps<ChatGPT4oModelFieldInputInstance, ChatGPT4oModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useChatGPT4oModels();
const onChange = useCallback(
(value: ApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldChatGPT4oModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(ChatGPT4oModelFieldInputComponent);

View File

@@ -1,63 +0,0 @@
import { Combobox, Flex, FormControl } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import { NO_DRAG_CLASS, NO_WHEEL_CLASS } from 'features/nodes/types/constants';
import type {
CogView4MainModelFieldInputInstance,
CogView4MainModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useCogView4Models } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<CogView4MainModelFieldInputInstance, CogView4MainModelFieldInputTemplate>;
const CogView4MainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useCogView4Models();
const _onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChange,
isLoading,
selectedModel: field.value,
});
return (
<Flex w="full" alignItems="center" gap={2}>
<FormControl
className={`${NO_WHEEL_CLASS} ${NO_DRAG_CLASS}`}
isDisabled={!options.length}
isInvalid={!value && props.fieldTemplate.required}
>
<Combobox
value={value}
placeholder={placeholder}
options={options}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Flex>
);
};
export default memo(CogView4MainModelFieldInputComponent);

View File

@@ -1,48 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldControlLoRAModelValueChanged } from 'features/nodes/store/nodesSlice';
import type {
ControlLoRAModelFieldInputInstance,
ControlLoRAModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useControlLoRAModel } from 'services/api/hooks/modelsByType';
import type { ControlLoRAModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<ControlLoRAModelFieldInputInstance, ControlLoRAModelFieldInputTemplate>;
const ControlLoRAModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useControlLoRAModel();
const onChange = useCallback(
(value: ControlLoRAModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldControlLoRAModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(ControlLoRAModelFieldInputComponent);

View File

@@ -1,45 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldControlNetModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { ControlNetModelFieldInputInstance, ControlNetModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useControlNetModels } from 'services/api/hooks/modelsByType';
import type { ControlNetModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<ControlNetModelFieldInputInstance, ControlNetModelFieldInputTemplate>;
const ControlNetModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useControlNetModels();
const onChange = useCallback(
(value: ControlNetModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldControlNetModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(ControlNetModelFieldInputComponent);

View File

@@ -1,49 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldFluxKontextModelValueChanged } from 'features/nodes/store/nodesSlice';
import type {
FluxKontextModelFieldInputInstance,
FluxKontextModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useFluxKontextModels } from 'services/api/hooks/modelsByType';
import type { ApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const FluxKontextModelFieldInputComponent = (
props: FieldComponentProps<FluxKontextModelFieldInputInstance, FluxKontextModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useFluxKontextModels();
const onChange = useCallback(
(value: ApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldFluxKontextModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(FluxKontextModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useFluxModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate>;
const FluxMainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useFluxModels();
const onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(FluxMainModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldFluxReduxModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { FluxReduxModelFieldInputInstance, FluxReduxModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useFluxReduxModels } from 'services/api/hooks/modelsByType';
import type { FLUXReduxModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const FluxReduxModelFieldInputComponent = (
props: FieldComponentProps<FluxReduxModelFieldInputInstance, FluxReduxModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useFluxReduxModels();
const onChange = useCallback(
(value: FLUXReduxModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldFluxReduxModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(FluxReduxModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldFluxVAEModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { FluxVAEModelFieldInputInstance, FluxVAEModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useFluxVAEModels } from 'services/api/hooks/modelsByType';
import type { VAEModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<FluxVAEModelFieldInputInstance, FluxVAEModelFieldInputTemplate>;
const FluxVAEModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useFluxVAEModels();
const onChange = useCallback(
(value: VAEModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldFluxVAEModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(FluxVAEModelFieldInputComponent);

View File

@@ -1,45 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldIPAdapterModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { IPAdapterModelFieldInputInstance, IPAdapterModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useIPAdapterModels } from 'services/api/hooks/modelsByType';
import type { IPAdapterModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const IPAdapterModelFieldInputComponent = (
props: FieldComponentProps<IPAdapterModelFieldInputInstance, IPAdapterModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useIPAdapterModels();
const onChange = useCallback(
(value: IPAdapterModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldIPAdapterModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(IPAdapterModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldImagen3ModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { Imagen3ModelFieldInputInstance, Imagen3ModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useImagen3Models } from 'services/api/hooks/modelsByType';
import type { ApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const Imagen3ModelFieldInputComponent = (
props: FieldComponentProps<Imagen3ModelFieldInputInstance, Imagen3ModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useImagen3Models();
const onChange = useCallback(
(value: ApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldImagen3ModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(Imagen3ModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldImagen4ModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { Imagen4ModelFieldInputInstance, Imagen4ModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useImagen4Models } from 'services/api/hooks/modelsByType';
import type { ApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const Imagen4ModelFieldInputComponent = (
props: FieldComponentProps<Imagen4ModelFieldInputInstance, Imagen4ModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useImagen4Models();
const onChange = useCallback(
(value: ApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldImagen4ModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(Imagen4ModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldLLaVAModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { LLaVAModelFieldInputInstance, LLaVAModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useLLaVAModels } from 'services/api/hooks/modelsByType';
import type { LlavaOnevisionConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<LLaVAModelFieldInputInstance, LLaVAModelFieldInputTemplate>;
const LLaVAModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useLLaVAModels();
const onChange = useCallback(
(value: LlavaOnevisionConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldLLaVAModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(LLaVAModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldLoRAModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { LoRAModelFieldInputInstance, LoRAModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useLoRAModels } from 'services/api/hooks/modelsByType';
import type { LoRAModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<LoRAModelFieldInputInstance, LoRAModelFieldInputTemplate>;
const LoRAModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useLoRAModels();
const onChange = useCallback(
(value: LoRAModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldLoRAModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(LoRAModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { MainModelFieldInputInstance, MainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useNonSDXLMainModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<MainModelFieldInputInstance, MainModelFieldInputTemplate>;
const MainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useNonSDXLMainModels();
const onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(MainModelFieldInputComponent);

View File

@@ -12,7 +12,7 @@ import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<ModelIdentifierFieldInputInstance, ModelIdentifierFieldInputTemplate>;
const ModelIdentifierFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const { nodeId, field, fieldTemplate } = props;
const dispatch = useAppDispatch();
const { data, isLoading } = useGetModelConfigsQuery();
const onChange = useCallback(
@@ -36,8 +36,31 @@ const ModelIdentifierFieldInputComponent = (props: Props) => {
return EMPTY_ARRAY;
}
return modelConfigsAdapterSelectors.selectAll(data);
}, [data]);
if (!fieldTemplate.ui_model_base && !fieldTemplate.ui_model_type) {
return modelConfigsAdapterSelectors.selectAll(data);
}
return modelConfigsAdapterSelectors.selectAll(data).filter((config) => {
if (fieldTemplate.ui_model_base && !fieldTemplate.ui_model_base.includes(config.base)) {
return false;
}
if (fieldTemplate.ui_model_type && !fieldTemplate.ui_model_type.includes(config.type)) {
return false;
}
if (
fieldTemplate.ui_model_variant &&
'variant' in config &&
config.variant &&
!fieldTemplate.ui_model_variant.includes(config.variant)
) {
return false;
}
if (fieldTemplate.ui_model_format && !fieldTemplate.ui_model_format.includes(config.format)) {
return false;
}
return true;
});
}, [data, fieldTemplate]);
return (
<ModelFieldCombobox

View File

@@ -1,47 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldRefinerModelValueChanged } from 'features/nodes/store/nodesSlice';
import type {
SDXLRefinerModelFieldInputInstance,
SDXLRefinerModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useRefinerModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<SDXLRefinerModelFieldInputInstance, SDXLRefinerModelFieldInputTemplate>;
const RefinerModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useRefinerModels();
const onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldRefinerModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(RefinerModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldRunwayModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { RunwayModelFieldInputInstance, RunwayModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useRunwayModels } from 'services/api/hooks/modelsByType';
import type { VideoApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const RunwayModelFieldInputComponent = (
props: FieldComponentProps<RunwayModelFieldInputInstance, RunwayModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useRunwayModels();
const onChange = useCallback(
(value: VideoApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldRunwayModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(RunwayModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { SD3MainModelFieldInputInstance, SD3MainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useSD3Models } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<SD3MainModelFieldInputInstance, SD3MainModelFieldInputTemplate>;
const SD3MainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useSD3Models();
const onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(SD3MainModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { SDXLMainModelFieldInputInstance, SDXLMainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useSDXLModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<SDXLMainModelFieldInputInstance, SDXLMainModelFieldInputTemplate>;
const SDXLMainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useSDXLModels();
const onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(SDXLMainModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldSigLipModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { SigLipModelFieldInputInstance, SigLipModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useSigLipModels } from 'services/api/hooks/modelsByType';
import type { SigLipModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const SigLipModelFieldInputComponent = (
props: FieldComponentProps<SigLipModelFieldInputInstance, SigLipModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useSigLipModels();
const onChange = useCallback(
(value: SigLipModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldSigLipModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(SigLipModelFieldInputComponent);

View File

@@ -1,49 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldSpandrelImageToImageModelValueChanged } from 'features/nodes/store/nodesSlice';
import type {
SpandrelImageToImageModelFieldInputInstance,
SpandrelImageToImageModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useSpandrelImageToImageModels } from 'services/api/hooks/modelsByType';
import type { SpandrelImageToImageModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const SpandrelImageToImageModelFieldInputComponent = (
props: FieldComponentProps<SpandrelImageToImageModelFieldInputInstance, SpandrelImageToImageModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useSpandrelImageToImageModels();
const onChange = useCallback(
(value: SpandrelImageToImageModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldSpandrelImageToImageModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(SpandrelImageToImageModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldT2IAdapterModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { T2IAdapterModelFieldInputInstance, T2IAdapterModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useT2IAdapterModels } from 'services/api/hooks/modelsByType';
import type { T2IAdapterModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const T2IAdapterModelFieldInputComponent = (
props: FieldComponentProps<T2IAdapterModelFieldInputInstance, T2IAdapterModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useT2IAdapterModels();
const onChange = useCallback(
(value: T2IAdapterModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldT2IAdapterModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(T2IAdapterModelFieldInputComponent);

View File

@@ -1,43 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldT5EncoderValueChanged } from 'features/nodes/store/nodesSlice';
import type { T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useT5EncoderModels } from 'services/api/hooks/modelsByType';
import type { T5EncoderBnbQuantizedLlmInt8bModelConfig, T5EncoderModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate>;
const T5EncoderModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useT5EncoderModels();
const onChange = useCallback(
(value: T5EncoderBnbQuantizedLlmInt8bModelConfig | T5EncoderModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldT5EncoderValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(T5EncoderModelFieldInputComponent);

View File

@@ -1,44 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldVaeModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { VAEModelFieldInputInstance, VAEModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useVAEModels } from 'services/api/hooks/modelsByType';
import type { VAEModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<VAEModelFieldInputInstance, VAEModelFieldInputTemplate>;
const VAEModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useVAEModels();
const onChange = useCallback(
(value: VAEModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldVaeModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(VAEModelFieldInputComponent);

View File

@@ -1,46 +0,0 @@
import { useAppDispatch } from 'app/store/storeHooks';
import { ModelFieldCombobox } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/ModelFieldCombobox';
import { fieldVeo3ModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { Veo3ModelFieldInputInstance, Veo3ModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useVeo3Models } from 'services/api/hooks/modelsByType';
import type { VideoApiModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
const Veo3ModelFieldInputComponent = (
props: FieldComponentProps<Veo3ModelFieldInputInstance, Veo3ModelFieldInputTemplate>
) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useVeo3Models();
const onChange = useCallback(
(value: VideoApiModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldVeo3ModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
return (
<ModelFieldCombobox
value={field.value}
modelConfigs={modelConfigs}
isLoadingConfigs={isLoading}
onChange={onChange}
required={props.fieldTemplate.required}
/>
);
};
export default memo(Veo3ModelFieldInputComponent);

View File

@@ -2,20 +2,16 @@ import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { useInvocationNodeContext } from 'features/nodes/components/flow/nodes/Invocation/context';
import type { FieldInputTemplate } from 'features/nodes/types/field';
import { isSingleOrCollection } from 'features/nodes/types/field';
import { TEMPLATE_BUILDER_MAP } from 'features/nodes/util/schema/buildFieldInputTemplate';
import { isSingleOrCollection, isStatefulFieldType } from 'features/nodes/types/field';
import { useMemo } from 'react';
const isConnectionInputField = (field: FieldInputTemplate) => {
return (
(field.input === 'connection' && !isSingleOrCollection(field.type)) || !(field.type.name in TEMPLATE_BUILDER_MAP)
);
return (field.input === 'connection' && !isSingleOrCollection(field.type)) || !isStatefulFieldType(field.type);
};
const isAnyOrDirectInputField = (field: FieldInputTemplate) => {
return (
(['any', 'direct'].includes(field.input) || isSingleOrCollection(field.type)) &&
field.type.name in TEMPLATE_BUILDER_MAP
(['any', 'direct'].includes(field.input) || isSingleOrCollection(field.type)) && isStatefulFieldType(field.type)
);
};

View File

@@ -24,90 +24,44 @@ import { SHARED_NODE_PROPERTIES } from 'features/nodes/types/constants';
import type {
BoardFieldValue,
BooleanFieldValue,
ChatGPT4oModelFieldValue,
CLIPEmbedModelFieldValue,
CLIPGEmbedModelFieldValue,
CLIPLEmbedModelFieldValue,
ColorFieldValue,
ControlLoRAModelFieldValue,
ControlNetModelFieldValue,
EnumFieldValue,
FieldValue,
FloatFieldValue,
FloatGeneratorFieldValue,
FluxKontextModelFieldValue,
FluxReduxModelFieldValue,
FluxVAEModelFieldValue,
ImageFieldCollectionValue,
ImageFieldValue,
ImageGeneratorFieldValue,
Imagen3ModelFieldValue,
Imagen4ModelFieldValue,
IntegerFieldCollectionValue,
IntegerFieldValue,
IntegerGeneratorFieldValue,
IPAdapterModelFieldValue,
LLaVAModelFieldValue,
LoRAModelFieldValue,
MainModelFieldValue,
ModelIdentifierFieldValue,
RunwayModelFieldValue,
SchedulerFieldValue,
SDXLRefinerModelFieldValue,
SigLipModelFieldValue,
SpandrelImageToImageModelFieldValue,
StatefulFieldValue,
StringFieldCollectionValue,
StringFieldValue,
StringGeneratorFieldValue,
T2IAdapterModelFieldValue,
T5EncoderModelFieldValue,
VAEModelFieldValue,
Veo3ModelFieldValue,
} from 'features/nodes/types/field';
import {
zBoardFieldValue,
zBooleanFieldValue,
zChatGPT4oModelFieldValue,
zCLIPEmbedModelFieldValue,
zCLIPGEmbedModelFieldValue,
zCLIPLEmbedModelFieldValue,
zColorFieldValue,
zControlLoRAModelFieldValue,
zControlNetModelFieldValue,
zEnumFieldValue,
zFloatFieldCollectionValue,
zFloatFieldValue,
zFloatGeneratorFieldValue,
zFluxKontextModelFieldValue,
zFluxReduxModelFieldValue,
zFluxVAEModelFieldValue,
zImageFieldCollectionValue,
zImageFieldValue,
zImageGeneratorFieldValue,
zImagen3ModelFieldValue,
zImagen4ModelFieldValue,
zIntegerFieldCollectionValue,
zIntegerFieldValue,
zIntegerGeneratorFieldValue,
zIPAdapterModelFieldValue,
zLLaVAModelFieldValue,
zLoRAModelFieldValue,
zMainModelFieldValue,
zModelIdentifierFieldValue,
zRunwayModelFieldValue,
zSchedulerFieldValue,
zSDXLRefinerModelFieldValue,
zSigLipModelFieldValue,
zSpandrelImageToImageModelFieldValue,
zStatefulFieldValue,
zStringFieldCollectionValue,
zStringFieldValue,
zStringGeneratorFieldValue,
zT2IAdapterModelFieldValue,
zT5EncoderModelFieldValue,
zVAEModelFieldValue,
zVeo3ModelFieldValue,
} from 'features/nodes/types/field';
import type { AnyEdge, AnyNode } from 'features/nodes/types/invocation';
import { isInvocationNode, isNotesNode } from 'features/nodes/types/invocation';
@@ -493,81 +447,9 @@ const slice = createSlice({
fieldColorValueChanged: (state, action: FieldValueAction<ColorFieldValue>) => {
fieldValueReducer(state, action, zColorFieldValue);
},
fieldMainModelValueChanged: (state, action: FieldValueAction<MainModelFieldValue>) => {
fieldValueReducer(state, action, zMainModelFieldValue);
},
fieldModelIdentifierValueChanged: (state, action: FieldValueAction<ModelIdentifierFieldValue>) => {
fieldValueReducer(state, action, zModelIdentifierFieldValue);
},
fieldRefinerModelValueChanged: (state, action: FieldValueAction<SDXLRefinerModelFieldValue>) => {
fieldValueReducer(state, action, zSDXLRefinerModelFieldValue);
},
fieldVaeModelValueChanged: (state, action: FieldValueAction<VAEModelFieldValue>) => {
fieldValueReducer(state, action, zVAEModelFieldValue);
},
fieldLoRAModelValueChanged: (state, action: FieldValueAction<LoRAModelFieldValue>) => {
fieldValueReducer(state, action, zLoRAModelFieldValue);
},
fieldLLaVAModelValueChanged: (state, action: FieldValueAction<LLaVAModelFieldValue>) => {
fieldValueReducer(state, action, zLLaVAModelFieldValue);
},
fieldControlNetModelValueChanged: (state, action: FieldValueAction<ControlNetModelFieldValue>) => {
fieldValueReducer(state, action, zControlNetModelFieldValue);
},
fieldIPAdapterModelValueChanged: (state, action: FieldValueAction<IPAdapterModelFieldValue>) => {
fieldValueReducer(state, action, zIPAdapterModelFieldValue);
},
fieldT2IAdapterModelValueChanged: (state, action: FieldValueAction<T2IAdapterModelFieldValue>) => {
fieldValueReducer(state, action, zT2IAdapterModelFieldValue);
},
fieldSpandrelImageToImageModelValueChanged: (
state,
action: FieldValueAction<SpandrelImageToImageModelFieldValue>
) => {
fieldValueReducer(state, action, zSpandrelImageToImageModelFieldValue);
},
fieldT5EncoderValueChanged: (state, action: FieldValueAction<T5EncoderModelFieldValue>) => {
fieldValueReducer(state, action, zT5EncoderModelFieldValue);
},
fieldCLIPEmbedValueChanged: (state, action: FieldValueAction<CLIPEmbedModelFieldValue>) => {
fieldValueReducer(state, action, zCLIPEmbedModelFieldValue);
},
fieldCLIPLEmbedValueChanged: (state, action: FieldValueAction<CLIPLEmbedModelFieldValue>) => {
fieldValueReducer(state, action, zCLIPLEmbedModelFieldValue);
},
fieldCLIPGEmbedValueChanged: (state, action: FieldValueAction<CLIPGEmbedModelFieldValue>) => {
fieldValueReducer(state, action, zCLIPGEmbedModelFieldValue);
},
fieldControlLoRAModelValueChanged: (state, action: FieldValueAction<ControlLoRAModelFieldValue>) => {
fieldValueReducer(state, action, zControlLoRAModelFieldValue);
},
fieldFluxVAEModelValueChanged: (state, action: FieldValueAction<FluxVAEModelFieldValue>) => {
fieldValueReducer(state, action, zFluxVAEModelFieldValue);
},
fieldSigLipModelValueChanged: (state, action: FieldValueAction<SigLipModelFieldValue>) => {
fieldValueReducer(state, action, zSigLipModelFieldValue);
},
fieldFluxReduxModelValueChanged: (state, action: FieldValueAction<FluxReduxModelFieldValue>) => {
fieldValueReducer(state, action, zFluxReduxModelFieldValue);
},
fieldImagen3ModelValueChanged: (state, action: FieldValueAction<Imagen3ModelFieldValue>) => {
fieldValueReducer(state, action, zImagen3ModelFieldValue);
},
fieldImagen4ModelValueChanged: (state, action: FieldValueAction<Imagen4ModelFieldValue>) => {
fieldValueReducer(state, action, zImagen4ModelFieldValue);
},
fieldChatGPT4oModelValueChanged: (state, action: FieldValueAction<ChatGPT4oModelFieldValue>) => {
fieldValueReducer(state, action, zChatGPT4oModelFieldValue);
},
fieldVeo3ModelValueChanged: (state, action: FieldValueAction<Veo3ModelFieldValue>) => {
fieldValueReducer(state, action, zVeo3ModelFieldValue);
},
fieldRunwayModelValueChanged: (state, action: FieldValueAction<RunwayModelFieldValue>) => {
fieldValueReducer(state, action, zRunwayModelFieldValue);
},
fieldFluxKontextModelValueChanged: (state, action: FieldValueAction<FluxKontextModelFieldValue>) => {
fieldValueReducer(state, action, zFluxKontextModelFieldValue);
},
fieldEnumModelValueChanged: (state, action: FieldValueAction<EnumFieldValue>) => {
fieldValueReducer(state, action, zEnumFieldValue);
},
@@ -706,45 +588,22 @@ export const {
fieldBoardValueChanged,
fieldBooleanValueChanged,
fieldColorValueChanged,
fieldControlNetModelValueChanged,
fieldEnumModelValueChanged,
fieldImageValueChanged,
fieldImageCollectionValueChanged,
fieldIPAdapterModelValueChanged,
fieldT2IAdapterModelValueChanged,
fieldSpandrelImageToImageModelValueChanged,
fieldLabelChanged,
fieldLoRAModelValueChanged,
fieldLLaVAModelValueChanged,
fieldModelIdentifierValueChanged,
fieldMainModelValueChanged,
fieldIntegerValueChanged,
fieldFloatValueChanged,
fieldFloatCollectionValueChanged,
fieldIntegerCollectionValueChanged,
fieldRefinerModelValueChanged,
fieldSchedulerValueChanged,
fieldStringValueChanged,
fieldStringCollectionValueChanged,
fieldVaeModelValueChanged,
fieldT5EncoderValueChanged,
fieldCLIPEmbedValueChanged,
fieldCLIPLEmbedValueChanged,
fieldCLIPGEmbedValueChanged,
fieldControlLoRAModelValueChanged,
fieldFluxVAEModelValueChanged,
fieldSigLipModelValueChanged,
fieldFluxReduxModelValueChanged,
fieldImagen3ModelValueChanged,
fieldImagen4ModelValueChanged,
fieldChatGPT4oModelValueChanged,
fieldFluxKontextModelValueChanged,
fieldFloatGeneratorValueChanged,
fieldIntegerGeneratorValueChanged,
fieldStringGeneratorValueChanged,
fieldImageGeneratorValueChanged,
fieldVeo3ModelValueChanged,
fieldRunwayModelValueChanged,
fieldDescriptionChanged,
nodeEditorReset,
nodeIsIntermediateChanged,

View File

@@ -40,7 +40,7 @@ describe(areTypesEqual.name, () => {
},
};
const targetType: FieldType = {
name: 'MainModelField',
name: 'StringField',
cardinality: 'SINGLE',
batch: false,
originalType: {
@@ -54,7 +54,7 @@ describe(areTypesEqual.name, () => {
it('should handle equal original source type and target type', () => {
const sourceType: FieldType = {
name: 'MainModelField',
name: 'FloatField',
cardinality: 'SINGLE',
batch: false,
originalType: {
@@ -78,7 +78,7 @@ describe(areTypesEqual.name, () => {
it('should handle equal original source type and original target type', () => {
const sourceType: FieldType = {
name: 'MainModelField',
name: 'IntegerField',
cardinality: 'SINGLE',
batch: false,
originalType: {
@@ -88,7 +88,7 @@ describe(areTypesEqual.name, () => {
},
};
const targetType: FieldType = {
name: 'LoRAModelField',
name: 'StringField',
cardinality: 'SINGLE',
batch: false,
originalType: {

View File

@@ -247,17 +247,12 @@ export const main_model_loader: InvocationTemplate = {
fieldKind: 'input',
input: 'direct',
ui_hidden: false,
ui_type: 'MainModelField',
ui_model_base: ['sd-1'],
ui_model_type: ['main'],
type: {
name: 'MainModelField',
name: 'ModelIdentifierField',
cardinality: 'SINGLE',
batch: false,
originalType: {
name: 'ModelIdentifierField',
cardinality: 'SINGLE',
batch: false,
},
},
},
},
@@ -796,7 +791,8 @@ export const schema = {
input: 'direct',
orig_required: true,
ui_hidden: false,
ui_type: 'MainModelField',
ui_model_base: ['sd-1'],
ui_model_type: ['main'],
},
type: {
type: 'string',

View File

@@ -1,5 +1,4 @@
import type {
BaseModelType,
BoardField,
Classification,
ColorField,
@@ -10,17 +9,23 @@ import type {
ModelIdentifierField,
ProgressImage,
SchedulerField,
SubModelType,
T2IAdapterField,
zBaseModelType,
zClipVariantType,
zModelFormat,
zModelVariantType,
zSubModelType,
} from 'features/nodes/types/common';
import type { Invocation, ModelType, S } from 'services/api/types';
import type { Invocation, S } from 'services/api/types';
import type { Equals, Extends } from 'tsafe';
import { assert } from 'tsafe';
import { describe, test } from 'vitest';
import type z from 'zod';
/**
* These types originate from the server and are recreated as zod schemas manually, for use at runtime.
* The tests ensure that the types are correctly recreated.
* The tests ensure that the types are correctly recreated. If one of these tests fails, it means the zod
* schema and the type have diverged and need to be reconciled - update the zod schema.
*/
describe('Common types', () => {
@@ -36,9 +41,11 @@ describe('Common types', () => {
// Model component types
test('ModelIdentifier', () => assert<Equals<ModelIdentifierField, S['ModelIdentifierField']>>());
test('ModelIdentifier', () => assert<Equals<BaseModelType, S['BaseModelType']>>());
test('ModelIdentifier', () => assert<Equals<SubModelType, S['SubModelType']>>());
test('ModelIdentifier', () => assert<Equals<ModelType, S['ModelType']>>());
test('ModelIdentifier', () => assert<Equals<z.infer<typeof zBaseModelType>, S['BaseModelType']>>());
test('ModelIdentifier', () => assert<Equals<z.infer<typeof zSubModelType>, S['SubModelType']>>());
test('ClipVariantType', () => assert<Equals<z.infer<typeof zClipVariantType>, S['ClipVariantType']>>());
test('ModelVariantType', () => assert<Equals<z.infer<typeof zModelVariantType>, S['ModelVariantType']>>());
test('ModelFormat', () => assert<Equals<z.infer<typeof zModelFormat>, S['ModelFormat']>>());
// Misc types
test('ProgressImage', () => assert<Equals<ProgressImage, S['ProgressImage']>>());

View File

@@ -73,7 +73,7 @@ export type SchedulerField = z.infer<typeof zSchedulerField>;
// #endregion
// #region Model-related schemas
const zBaseModel = z.enum([
export const zBaseModelType = z.enum([
'any',
'sd-1',
'sd-2',
@@ -89,8 +89,9 @@ const zBaseModel = z.enum([
'gemini-2.5',
'veo3',
'runway',
'unknown',
]);
export type BaseModelType = z.infer<typeof zBaseModel>;
export type BaseModelType = z.infer<typeof zBaseModelType>;
export const zMainModelBase = z.enum([
'sd-1',
'sd-2',
@@ -126,8 +127,10 @@ export const zModelType = z.enum([
'siglip',
'flux_redux',
'video',
'unknown',
]);
const zSubModelType = z.enum([
export type ModelType = z.infer<typeof zModelType>;
export const zSubModelType = z.enum([
'unet',
'transformer',
'text_encoder',
@@ -142,12 +145,34 @@ const zSubModelType = z.enum([
'scheduler',
'safety_checker',
]);
export type SubModelType = z.infer<typeof zSubModelType>;
export const zClipVariantType = z.enum(['large', 'gigantic']);
export const zModelVariantType = z.enum(['normal', 'inpaint', 'depth']);
export type ModelVariantType = z.infer<typeof zModelVariantType>;
export const zModelFormat = z.enum([
'omi',
'diffusers',
'checkpoint',
'lycoris',
'onnx',
'olive',
'embedding_file',
'embedding_folder',
'invokeai',
't5_encoder',
'bnb_quantized_int8b',
'bnb_quantized_nf4b',
'gguf_quantized',
'api',
'unknown',
]);
export type ModelFormat = z.infer<typeof zModelFormat>;
export const zModelIdentifierField = z.object({
key: z.string().min(1),
hash: z.string().min(1),
name: z.string().min(1),
base: zBaseModel,
base: zBaseModelType,
type: zModelType,
submodel_type: zSubModelType.nullish(),
});

View File

@@ -9,7 +9,18 @@ import { assert } from 'tsafe';
import { z } from 'zod';
import type { ImageField } from './common';
import { zBoardField, zColorField, zImageField, zModelIdentifierField, zSchedulerField } from './common';
import {
zBaseModelType,
zBoardField,
zClipVariantType,
zColorField,
zImageField,
zModelFormat,
zModelIdentifierField,
zModelType,
zModelVariantType,
zSchedulerField,
} from './common';
/**
* zod schemas & inferred types for fields.
@@ -60,6 +71,10 @@ const zFieldInputTemplateBase = zFieldTemplateBase.extend({
default: z.undefined(),
ui_component: zFieldUIComponent.nullish(),
ui_choice_labels: z.record(z.string(), z.string()).nullish(),
ui_model_base: z.array(zBaseModelType).nullish(),
ui_model_type: z.array(zModelType).nullish(),
ui_model_variant: z.array(zModelVariantType.or(zClipVariantType)).nullish(),
ui_model_format: z.array(zModelFormat).nullish(),
});
const zFieldOutputTemplateBase = zFieldTemplateBase.extend({
fieldKind: z.literal('output'),
@@ -161,118 +176,10 @@ const zColorFieldType = zFieldTypeBase.extend({
name: z.literal('ColorField'),
originalType: zStatelessFieldType.optional(),
});
const zMainModelFieldType = zFieldTypeBase.extend({
name: z.literal('MainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zModelIdentifierFieldType = zFieldTypeBase.extend({
name: z.literal('ModelIdentifierField'),
originalType: zStatelessFieldType.optional(),
});
const zSDXLMainModelFieldType = zFieldTypeBase.extend({
name: z.literal('SDXLMainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSD3MainModelFieldType = zFieldTypeBase.extend({
name: z.literal('SD3MainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zCogView4MainModelFieldType = zFieldTypeBase.extend({
name: z.literal('CogView4MainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zFluxMainModelFieldType = zFieldTypeBase.extend({
name: z.literal('FluxMainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSDXLRefinerModelFieldType = zFieldTypeBase.extend({
name: z.literal('SDXLRefinerModelField'),
originalType: zStatelessFieldType.optional(),
});
const zVAEModelFieldType = zFieldTypeBase.extend({
name: z.literal('VAEModelField'),
originalType: zStatelessFieldType.optional(),
});
const zLoRAModelFieldType = zFieldTypeBase.extend({
name: z.literal('LoRAModelField'),
originalType: zStatelessFieldType.optional(),
});
const zLLaVAModelFieldType = zFieldTypeBase.extend({
name: z.literal('LLaVAModelField'),
originalType: zStatelessFieldType.optional(),
});
const zControlNetModelFieldType = zFieldTypeBase.extend({
name: z.literal('ControlNetModelField'),
originalType: zStatelessFieldType.optional(),
});
const zIPAdapterModelFieldType = zFieldTypeBase.extend({
name: z.literal('IPAdapterModelField'),
originalType: zStatelessFieldType.optional(),
});
const zT2IAdapterModelFieldType = zFieldTypeBase.extend({
name: z.literal('T2IAdapterModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSpandrelImageToImageModelFieldType = zFieldTypeBase.extend({
name: z.literal('SpandrelImageToImageModelField'),
originalType: zStatelessFieldType.optional(),
});
const zT5EncoderModelFieldType = zFieldTypeBase.extend({
name: z.literal('T5EncoderModelField'),
originalType: zStatelessFieldType.optional(),
});
const zCLIPEmbedModelFieldType = zFieldTypeBase.extend({
name: z.literal('CLIPEmbedModelField'),
originalType: zStatelessFieldType.optional(),
});
const zCLIPLEmbedModelFieldType = zFieldTypeBase.extend({
name: z.literal('CLIPLEmbedModelField'),
originalType: zStatelessFieldType.optional(),
});
const zCLIPGEmbedModelFieldType = zFieldTypeBase.extend({
name: z.literal('CLIPGEmbedModelField'),
originalType: zStatelessFieldType.optional(),
});
const zControlLoRAModelFieldType = zFieldTypeBase.extend({
name: z.literal('ControlLoRAModelField'),
originalType: zStatelessFieldType.optional(),
});
const zFluxVAEModelFieldType = zFieldTypeBase.extend({
name: z.literal('FluxVAEModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSigLipModelFieldType = zFieldTypeBase.extend({
name: z.literal('SigLipModelField'),
originalType: zStatelessFieldType.optional(),
});
const zFluxReduxModelFieldType = zFieldTypeBase.extend({
name: z.literal('FluxReduxModelField'),
originalType: zStatelessFieldType.optional(),
});
const zImagen3ModelFieldType = zFieldTypeBase.extend({
name: z.literal('Imagen3ModelField'),
originalType: zStatelessFieldType.optional(),
});
const zImagen4ModelFieldType = zFieldTypeBase.extend({
name: z.literal('Imagen4ModelField'),
originalType: zStatelessFieldType.optional(),
});
const zChatGPT4oModelFieldType = zFieldTypeBase.extend({
name: z.literal('ChatGPT4oModelField'),
originalType: zStatelessFieldType.optional(),
});
const zVeo3ModelFieldType = zFieldTypeBase.extend({
name: z.literal('Veo3ModelField'),
originalType: zStatelessFieldType.optional(),
});
const zRunwayModelFieldType = zFieldTypeBase.extend({
name: z.literal('RunwayModelField'),
originalType: zStatelessFieldType.optional(),
});
const zFluxKontextModelFieldType = zFieldTypeBase.extend({
name: z.literal('FluxKontextModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSchedulerFieldType = zFieldTypeBase.extend({
name: z.literal('SchedulerField'),
originalType: zStatelessFieldType.optional(),
@@ -302,33 +209,6 @@ const zStatefulFieldType = z.union([
zImageFieldType,
zBoardFieldType,
zModelIdentifierFieldType,
zMainModelFieldType,
zSDXLMainModelFieldType,
zSD3MainModelFieldType,
zCogView4MainModelFieldType,
zFluxMainModelFieldType,
zSDXLRefinerModelFieldType,
zVAEModelFieldType,
zLoRAModelFieldType,
zLLaVAModelFieldType,
zControlNetModelFieldType,
zIPAdapterModelFieldType,
zT2IAdapterModelFieldType,
zSpandrelImageToImageModelFieldType,
zT5EncoderModelFieldType,
zCLIPEmbedModelFieldType,
zCLIPLEmbedModelFieldType,
zCLIPGEmbedModelFieldType,
zControlLoRAModelFieldType,
zFluxVAEModelFieldType,
zSigLipModelFieldType,
zFluxReduxModelFieldType,
zImagen3ModelFieldType,
zImagen4ModelFieldType,
zChatGPT4oModelFieldType,
zFluxKontextModelFieldType,
zVeo3ModelFieldType,
zRunwayModelFieldType,
zColorFieldType,
zSchedulerFieldType,
zFloatGeneratorFieldType,
@@ -344,36 +224,7 @@ const zFieldType = z.union([zStatefulFieldType, zStatelessFieldType]);
export type FieldType = z.infer<typeof zFieldType>;
const modelFieldTypeNames = [
// Stateful model fields
zModelIdentifierFieldType.shape.name.value,
zMainModelFieldType.shape.name.value,
zSDXLMainModelFieldType.shape.name.value,
zSD3MainModelFieldType.shape.name.value,
zCogView4MainModelFieldType.shape.name.value,
zFluxMainModelFieldType.shape.name.value,
zSDXLRefinerModelFieldType.shape.name.value,
zVAEModelFieldType.shape.name.value,
zLoRAModelFieldType.shape.name.value,
zLLaVAModelFieldType.shape.name.value,
zControlNetModelFieldType.shape.name.value,
zIPAdapterModelFieldType.shape.name.value,
zT2IAdapterModelFieldType.shape.name.value,
zSpandrelImageToImageModelFieldType.shape.name.value,
zT5EncoderModelFieldType.shape.name.value,
zCLIPEmbedModelFieldType.shape.name.value,
zCLIPLEmbedModelFieldType.shape.name.value,
zCLIPGEmbedModelFieldType.shape.name.value,
zControlLoRAModelFieldType.shape.name.value,
zFluxVAEModelFieldType.shape.name.value,
zSigLipModelFieldType.shape.name.value,
zFluxReduxModelFieldType.shape.name.value,
zImagen3ModelFieldType.shape.name.value,
zImagen4ModelFieldType.shape.name.value,
zChatGPT4oModelFieldType.shape.name.value,
zFluxKontextModelFieldType.shape.name.value,
zVeo3ModelFieldType.shape.name.value,
zRunwayModelFieldType.shape.name.value,
// Stateless model fields
'UNetField',
'VAEField',
'CLIPField',
@@ -779,26 +630,6 @@ export const isColorFieldInputInstance = buildInstanceTypeGuard(zColorFieldInput
export const isColorFieldInputTemplate = buildTemplateTypeGuard<ColorFieldInputTemplate>('ColorField');
// #endregion
// #region MainModelField
export const zMainModelFieldValue = zModelIdentifierField.optional();
const zMainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zMainModelFieldValue,
});
const zMainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zMainModelFieldType,
originalType: zFieldType.optional(),
default: zMainModelFieldValue,
});
const zMainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zMainModelFieldType,
});
export type MainModelFieldValue = z.infer<typeof zMainModelFieldValue>;
export type MainModelFieldInputInstance = z.infer<typeof zMainModelFieldInputInstance>;
export type MainModelFieldInputTemplate = z.infer<typeof zMainModelFieldInputTemplate>;
export const isMainModelFieldInputInstance = buildInstanceTypeGuard(zMainModelFieldInputInstance);
export const isMainModelFieldInputTemplate = buildTemplateTypeGuard<MainModelFieldInputTemplate>('MainModelField');
// #endregion
// #region ModelIdentifierField
export const zModelIdentifierFieldValue = zModelIdentifierField.optional();
const zModelIdentifierFieldInputInstance = zFieldInputInstanceBase.extend({
@@ -820,507 +651,6 @@ export const isModelIdentifierFieldInputTemplate =
buildTemplateTypeGuard<ModelIdentifierFieldInputTemplate>('ModelIdentifierField');
// #endregion
// #region SDXLMainModelField
const zSDXLMainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL models only.
const zSDXLMainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSDXLMainModelFieldValue,
});
const zSDXLMainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSDXLMainModelFieldType,
originalType: zFieldType.optional(),
default: zSDXLMainModelFieldValue,
});
const zSDXLMainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zSDXLMainModelFieldType,
});
export type SDXLMainModelFieldInputInstance = z.infer<typeof zSDXLMainModelFieldInputInstance>;
export type SDXLMainModelFieldInputTemplate = z.infer<typeof zSDXLMainModelFieldInputTemplate>;
export const isSDXLMainModelFieldInputInstance = buildInstanceTypeGuard(zSDXLMainModelFieldInputInstance);
export const isSDXLMainModelFieldInputTemplate =
buildTemplateTypeGuard<SDXLMainModelFieldInputTemplate>('SDXLMainModelField');
// #endregion
// #region SD3MainModelField
const zSD3MainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL models only.
const zSD3MainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSD3MainModelFieldValue,
});
const zSD3MainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSD3MainModelFieldType,
originalType: zFieldType.optional(),
default: zSD3MainModelFieldValue,
});
const zSD3MainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zSD3MainModelFieldType,
});
export type SD3MainModelFieldInputInstance = z.infer<typeof zSD3MainModelFieldInputInstance>;
export type SD3MainModelFieldInputTemplate = z.infer<typeof zSD3MainModelFieldInputTemplate>;
export const isSD3MainModelFieldInputInstance = buildInstanceTypeGuard(zSD3MainModelFieldInputInstance);
export const isSD3MainModelFieldInputTemplate =
buildTemplateTypeGuard<SD3MainModelFieldInputTemplate>('SD3MainModelField');
// #endregion
// #region CogView4MainModelField
const zCogView4MainModelFieldValue = zMainModelFieldValue;
const zCogView4MainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zCogView4MainModelFieldValue,
});
const zCogView4MainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zCogView4MainModelFieldType,
originalType: zFieldType.optional(),
default: zCogView4MainModelFieldValue,
});
const zCogView4MainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zCogView4MainModelFieldType,
});
export type CogView4MainModelFieldInputInstance = z.infer<typeof zCogView4MainModelFieldInputInstance>;
export type CogView4MainModelFieldInputTemplate = z.infer<typeof zCogView4MainModelFieldInputTemplate>;
export const isCogView4MainModelFieldInputInstance = buildInstanceTypeGuard(zCogView4MainModelFieldInputInstance);
export const isCogView4MainModelFieldInputTemplate =
buildTemplateTypeGuard<CogView4MainModelFieldInputTemplate>('CogView4MainModelField');
// #endregion
// #region FluxMainModelField
const zFluxMainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL models only.
const zFluxMainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zFluxMainModelFieldValue,
});
const zFluxMainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zFluxMainModelFieldType,
originalType: zFieldType.optional(),
default: zFluxMainModelFieldValue,
});
const zFluxMainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zFluxMainModelFieldType,
});
export type FluxMainModelFieldInputInstance = z.infer<typeof zFluxMainModelFieldInputInstance>;
export type FluxMainModelFieldInputTemplate = z.infer<typeof zFluxMainModelFieldInputTemplate>;
export const isFluxMainModelFieldInputInstance = buildInstanceTypeGuard(zFluxMainModelFieldInputInstance);
export const isFluxMainModelFieldInputTemplate =
buildTemplateTypeGuard<FluxMainModelFieldInputTemplate>('FluxMainModelField');
// #endregion
// #region SDXLRefinerModelField
/** @alias */ // tells knip to ignore this duplicate export
export const zSDXLRefinerModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL Refiner models only.
const zSDXLRefinerModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSDXLRefinerModelFieldValue,
});
const zSDXLRefinerModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSDXLRefinerModelFieldType,
originalType: zFieldType.optional(),
default: zSDXLRefinerModelFieldValue,
});
const zSDXLRefinerModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zSDXLRefinerModelFieldType,
});
export type SDXLRefinerModelFieldValue = z.infer<typeof zSDXLRefinerModelFieldValue>;
export type SDXLRefinerModelFieldInputInstance = z.infer<typeof zSDXLRefinerModelFieldInputInstance>;
export type SDXLRefinerModelFieldInputTemplate = z.infer<typeof zSDXLRefinerModelFieldInputTemplate>;
export const isSDXLRefinerModelFieldInputInstance = buildInstanceTypeGuard(zSDXLRefinerModelFieldInputInstance);
export const isSDXLRefinerModelFieldInputTemplate =
buildTemplateTypeGuard<SDXLRefinerModelFieldInputTemplate>('SDXLRefinerModelField');
// #endregion
// #region VAEModelField
export const zVAEModelFieldValue = zModelIdentifierField.optional();
const zVAEModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zVAEModelFieldValue,
});
const zVAEModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zVAEModelFieldType,
originalType: zFieldType.optional(),
default: zVAEModelFieldValue,
});
const zVAEModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zVAEModelFieldType,
});
export type VAEModelFieldValue = z.infer<typeof zVAEModelFieldValue>;
export type VAEModelFieldInputInstance = z.infer<typeof zVAEModelFieldInputInstance>;
export type VAEModelFieldInputTemplate = z.infer<typeof zVAEModelFieldInputTemplate>;
export const isVAEModelFieldInputInstance = buildInstanceTypeGuard(zVAEModelFieldInputInstance);
export const isVAEModelFieldInputTemplate = buildTemplateTypeGuard<VAEModelFieldInputTemplate>('VAEModelField');
// #endregion
// #region LoRAModelField
export const zLoRAModelFieldValue = zModelIdentifierField.optional();
const zLoRAModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zLoRAModelFieldValue,
});
const zLoRAModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zLoRAModelFieldType,
originalType: zFieldType.optional(),
default: zLoRAModelFieldValue,
});
const zLoRAModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zLoRAModelFieldType,
});
export type LoRAModelFieldValue = z.infer<typeof zLoRAModelFieldValue>;
export type LoRAModelFieldInputInstance = z.infer<typeof zLoRAModelFieldInputInstance>;
export type LoRAModelFieldInputTemplate = z.infer<typeof zLoRAModelFieldInputTemplate>;
export const isLoRAModelFieldInputInstance = buildInstanceTypeGuard(zLoRAModelFieldInputInstance);
export const isLoRAModelFieldInputTemplate = buildTemplateTypeGuard<LoRAModelFieldInputTemplate>('LoRAModelField');
// #endregion
// #region LLaVAModelField
export const zLLaVAModelFieldValue = zModelIdentifierField.optional();
const zLLaVAModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zLLaVAModelFieldValue,
});
const zLLaVAModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zLLaVAModelFieldType,
originalType: zFieldType.optional(),
default: zLLaVAModelFieldValue,
});
const zLLaVAModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zLLaVAModelFieldType,
});
export type LLaVAModelFieldValue = z.infer<typeof zLLaVAModelFieldValue>;
export type LLaVAModelFieldInputInstance = z.infer<typeof zLLaVAModelFieldInputInstance>;
export type LLaVAModelFieldInputTemplate = z.infer<typeof zLLaVAModelFieldInputTemplate>;
export const isLLaVAModelFieldInputInstance = buildInstanceTypeGuard(zLLaVAModelFieldInputInstance);
export const isLLaVAModelFieldInputTemplate = buildTemplateTypeGuard<LLaVAModelFieldInputTemplate>('LLaVAModelField');
// #endregion
// #region ControlNetModelField
export const zControlNetModelFieldValue = zModelIdentifierField.optional();
const zControlNetModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zControlNetModelFieldValue,
});
const zControlNetModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zControlNetModelFieldType,
originalType: zFieldType.optional(),
default: zControlNetModelFieldValue,
});
const zControlNetModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zControlNetModelFieldType,
});
export type ControlNetModelFieldValue = z.infer<typeof zControlNetModelFieldValue>;
export type ControlNetModelFieldInputInstance = z.infer<typeof zControlNetModelFieldInputInstance>;
export type ControlNetModelFieldInputTemplate = z.infer<typeof zControlNetModelFieldInputTemplate>;
export const isControlNetModelFieldInputInstance = buildInstanceTypeGuard(zControlNetModelFieldInputInstance);
export const isControlNetModelFieldInputTemplate =
buildTemplateTypeGuard<ControlNetModelFieldInputTemplate>('ControlNetModelField');
// #endregion
// #region IPAdapterModelField
export const zIPAdapterModelFieldValue = zModelIdentifierField.optional();
const zIPAdapterModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zIPAdapterModelFieldValue,
});
const zIPAdapterModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zIPAdapterModelFieldType,
originalType: zFieldType.optional(),
default: zIPAdapterModelFieldValue,
});
const zIPAdapterModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zIPAdapterModelFieldType,
});
export type IPAdapterModelFieldValue = z.infer<typeof zIPAdapterModelFieldValue>;
export type IPAdapterModelFieldInputInstance = z.infer<typeof zIPAdapterModelFieldInputInstance>;
export type IPAdapterModelFieldInputTemplate = z.infer<typeof zIPAdapterModelFieldInputTemplate>;
export const isIPAdapterModelFieldInputInstance = buildInstanceTypeGuard(zIPAdapterModelFieldInputInstance);
export const isIPAdapterModelFieldInputTemplate =
buildTemplateTypeGuard<IPAdapterModelFieldInputTemplate>('IPAdapterModelField');
// #endregion
// #region T2IAdapterField
export const zT2IAdapterModelFieldValue = zModelIdentifierField.optional();
const zT2IAdapterModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zT2IAdapterModelFieldValue,
});
const zT2IAdapterModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zT2IAdapterModelFieldType,
originalType: zFieldType.optional(),
default: zT2IAdapterModelFieldValue,
});
const zT2IAdapterModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zT2IAdapterModelFieldType,
});
export type T2IAdapterModelFieldValue = z.infer<typeof zT2IAdapterModelFieldValue>;
export type T2IAdapterModelFieldInputInstance = z.infer<typeof zT2IAdapterModelFieldInputInstance>;
export type T2IAdapterModelFieldInputTemplate = z.infer<typeof zT2IAdapterModelFieldInputTemplate>;
export const isT2IAdapterModelFieldInputInstance = buildInstanceTypeGuard(zT2IAdapterModelFieldInputInstance);
export const isT2IAdapterModelFieldInputTemplate =
buildTemplateTypeGuard<T2IAdapterModelFieldInputTemplate>('T2IAdapterModelField');
// #endregion
// #region SpandrelModelToModelField
export const zSpandrelImageToImageModelFieldValue = zModelIdentifierField.optional();
const zSpandrelImageToImageModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSpandrelImageToImageModelFieldValue,
});
const zSpandrelImageToImageModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSpandrelImageToImageModelFieldType,
originalType: zFieldType.optional(),
default: zSpandrelImageToImageModelFieldValue,
});
const zSpandrelImageToImageModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zSpandrelImageToImageModelFieldType,
});
export type SpandrelImageToImageModelFieldValue = z.infer<typeof zSpandrelImageToImageModelFieldValue>;
export type SpandrelImageToImageModelFieldInputInstance = z.infer<typeof zSpandrelImageToImageModelFieldInputInstance>;
export type SpandrelImageToImageModelFieldInputTemplate = z.infer<typeof zSpandrelImageToImageModelFieldInputTemplate>;
export const isSpandrelImageToImageModelFieldInputInstance = buildInstanceTypeGuard(
zSpandrelImageToImageModelFieldInputInstance
);
export const isSpandrelImageToImageModelFieldInputTemplate =
buildTemplateTypeGuard<SpandrelImageToImageModelFieldInputTemplate>('SpandrelImageToImageModelField');
// #endregion
// #region T5EncoderModelField
export const zT5EncoderModelFieldValue = zModelIdentifierField.optional();
const zT5EncoderModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zT5EncoderModelFieldValue,
});
const zT5EncoderModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zT5EncoderModelFieldType,
originalType: zFieldType.optional(),
default: zT5EncoderModelFieldValue,
});
export type T5EncoderModelFieldValue = z.infer<typeof zT5EncoderModelFieldValue>;
export type T5EncoderModelFieldInputInstance = z.infer<typeof zT5EncoderModelFieldInputInstance>;
export type T5EncoderModelFieldInputTemplate = z.infer<typeof zT5EncoderModelFieldInputTemplate>;
export const isT5EncoderModelFieldInputInstance = buildInstanceTypeGuard(zT5EncoderModelFieldInputInstance);
export const isT5EncoderModelFieldInputTemplate =
buildTemplateTypeGuard<T5EncoderModelFieldInputTemplate>('T5EncoderModelField');
// #endregion
// #region FluxVAEModelField
export const zFluxVAEModelFieldValue = zModelIdentifierField.optional();
const zFluxVAEModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zFluxVAEModelFieldValue,
});
const zFluxVAEModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zFluxVAEModelFieldType,
originalType: zFieldType.optional(),
default: zFluxVAEModelFieldValue,
});
export type FluxVAEModelFieldValue = z.infer<typeof zFluxVAEModelFieldValue>;
export type FluxVAEModelFieldInputInstance = z.infer<typeof zFluxVAEModelFieldInputInstance>;
export type FluxVAEModelFieldInputTemplate = z.infer<typeof zFluxVAEModelFieldInputTemplate>;
export const isFluxVAEModelFieldInputInstance = buildInstanceTypeGuard(zFluxVAEModelFieldInputInstance);
export const isFluxVAEModelFieldInputTemplate =
buildTemplateTypeGuard<FluxVAEModelFieldInputTemplate>('FluxVAEModelField');
// #endregion
// #region CLIPEmbedModelField
export const zCLIPEmbedModelFieldValue = zModelIdentifierField.optional();
const zCLIPEmbedModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zCLIPEmbedModelFieldValue,
});
const zCLIPEmbedModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zCLIPEmbedModelFieldType,
originalType: zFieldType.optional(),
default: zCLIPEmbedModelFieldValue,
});
export type CLIPEmbedModelFieldValue = z.infer<typeof zCLIPEmbedModelFieldValue>;
export type CLIPEmbedModelFieldInputInstance = z.infer<typeof zCLIPEmbedModelFieldInputInstance>;
export type CLIPEmbedModelFieldInputTemplate = z.infer<typeof zCLIPEmbedModelFieldInputTemplate>;
export const isCLIPEmbedModelFieldInputInstance = buildInstanceTypeGuard(zCLIPEmbedModelFieldInputInstance);
export const isCLIPEmbedModelFieldInputTemplate =
buildTemplateTypeGuard<CLIPEmbedModelFieldInputTemplate>('CLIPEmbedModelField');
// #endregion
// #region CLIPLEmbedModelField
export const zCLIPLEmbedModelFieldValue = zModelIdentifierField.optional();
const zCLIPLEmbedModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zCLIPLEmbedModelFieldValue,
});
const zCLIPLEmbedModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zCLIPLEmbedModelFieldType,
originalType: zFieldType.optional(),
default: zCLIPLEmbedModelFieldValue,
});
export type CLIPLEmbedModelFieldValue = z.infer<typeof zCLIPLEmbedModelFieldValue>;
export type CLIPLEmbedModelFieldInputInstance = z.infer<typeof zCLIPLEmbedModelFieldInputInstance>;
export type CLIPLEmbedModelFieldInputTemplate = z.infer<typeof zCLIPLEmbedModelFieldInputTemplate>;
export const isCLIPLEmbedModelFieldInputInstance = buildInstanceTypeGuard(zCLIPLEmbedModelFieldInputInstance);
export const isCLIPLEmbedModelFieldInputTemplate =
buildTemplateTypeGuard<CLIPLEmbedModelFieldInputTemplate>('CLIPLEmbedModelField');
// #endregion
// #region CLIPGEmbedModelField
export const zCLIPGEmbedModelFieldValue = zModelIdentifierField.optional();
const zCLIPGEmbedModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zCLIPGEmbedModelFieldValue,
});
const zCLIPGEmbedModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zCLIPGEmbedModelFieldType,
originalType: zFieldType.optional(),
default: zCLIPGEmbedModelFieldValue,
});
export type CLIPGEmbedModelFieldValue = z.infer<typeof zCLIPLEmbedModelFieldValue>;
export type CLIPGEmbedModelFieldInputInstance = z.infer<typeof zCLIPGEmbedModelFieldInputInstance>;
export type CLIPGEmbedModelFieldInputTemplate = z.infer<typeof zCLIPGEmbedModelFieldInputTemplate>;
export const isCLIPGEmbedModelFieldInputInstance = buildInstanceTypeGuard(zCLIPGEmbedModelFieldInputInstance);
export const isCLIPGEmbedModelFieldInputTemplate =
buildTemplateTypeGuard<CLIPGEmbedModelFieldInputTemplate>('CLIPGEmbedModelField');
// #endregion
// #region ControlLoRAModelField
export const zControlLoRAModelFieldValue = zModelIdentifierField.optional();
const zControlLoRAModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zControlLoRAModelFieldValue,
});
const zControlLoRAModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zControlLoRAModelFieldType,
originalType: zFieldType.optional(),
default: zControlLoRAModelFieldValue,
});
export type ControlLoRAModelFieldValue = z.infer<typeof zCLIPLEmbedModelFieldValue>;
export type ControlLoRAModelFieldInputInstance = z.infer<typeof zControlLoRAModelFieldInputInstance>;
export type ControlLoRAModelFieldInputTemplate = z.infer<typeof zControlLoRAModelFieldInputTemplate>;
export const isControlLoRAModelFieldInputInstance = buildInstanceTypeGuard(zControlLoRAModelFieldInputInstance);
export const isControlLoRAModelFieldInputTemplate =
buildTemplateTypeGuard<ControlLoRAModelFieldInputTemplate>('ControlLoRAModelField');
// #endregion
// #region SigLipModelField
export const zSigLipModelFieldValue = zModelIdentifierField.optional();
const zSigLipModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSigLipModelFieldValue,
});
const zSigLipModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSigLipModelFieldType,
originalType: zFieldType.optional(),
default: zSigLipModelFieldValue,
});
export type SigLipModelFieldValue = z.infer<typeof zSigLipModelFieldValue>;
export type SigLipModelFieldInputInstance = z.infer<typeof zSigLipModelFieldInputInstance>;
export type SigLipModelFieldInputTemplate = z.infer<typeof zSigLipModelFieldInputTemplate>;
export const isSigLipModelFieldInputInstance = buildInstanceTypeGuard(zSigLipModelFieldInputInstance);
export const isSigLipModelFieldInputTemplate =
buildTemplateTypeGuard<SigLipModelFieldInputTemplate>('SigLipModelField');
// #endregion
// #region FluxReduxModelField
export const zFluxReduxModelFieldValue = zModelIdentifierField.optional();
const zFluxReduxModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zFluxReduxModelFieldValue,
});
const zFluxReduxModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zFluxReduxModelFieldType,
originalType: zFieldType.optional(),
default: zFluxReduxModelFieldValue,
});
export type FluxReduxModelFieldValue = z.infer<typeof zFluxReduxModelFieldValue>;
export type FluxReduxModelFieldInputInstance = z.infer<typeof zFluxReduxModelFieldInputInstance>;
export type FluxReduxModelFieldInputTemplate = z.infer<typeof zFluxReduxModelFieldInputTemplate>;
export const isFluxReduxModelFieldInputInstance = buildInstanceTypeGuard(zFluxReduxModelFieldInputInstance);
export const isFluxReduxModelFieldInputTemplate =
buildTemplateTypeGuard<FluxReduxModelFieldInputTemplate>('FluxReduxModelField');
// #endregion
// #region Imagen3ModelField
export const zImagen3ModelFieldValue = zModelIdentifierField.optional();
const zImagen3ModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zImagen3ModelFieldValue,
});
const zImagen3ModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zImagen3ModelFieldType,
originalType: zFieldType.optional(),
default: zImagen3ModelFieldValue,
});
export type Imagen3ModelFieldValue = z.infer<typeof zImagen3ModelFieldValue>;
export type Imagen3ModelFieldInputInstance = z.infer<typeof zImagen3ModelFieldInputInstance>;
export type Imagen3ModelFieldInputTemplate = z.infer<typeof zImagen3ModelFieldInputTemplate>;
export const isImagen3ModelFieldInputInstance = buildInstanceTypeGuard(zImagen3ModelFieldInputInstance);
export const isImagen3ModelFieldInputTemplate =
buildTemplateTypeGuard<Imagen3ModelFieldInputTemplate>('Imagen3ModelField');
// #endregion
// #region Imagen4ModelField
export const zImagen4ModelFieldValue = zModelIdentifierField.optional();
const zImagen4ModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zImagen4ModelFieldValue,
});
const zImagen4ModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zImagen4ModelFieldType,
originalType: zFieldType.optional(),
default: zImagen4ModelFieldValue,
});
export type Imagen4ModelFieldValue = z.infer<typeof zImagen4ModelFieldValue>;
export type Imagen4ModelFieldInputInstance = z.infer<typeof zImagen4ModelFieldInputInstance>;
export type Imagen4ModelFieldInputTemplate = z.infer<typeof zImagen4ModelFieldInputTemplate>;
export const isImagen4ModelFieldInputInstance = buildInstanceTypeGuard(zImagen4ModelFieldInputInstance);
export const isImagen4ModelFieldInputTemplate =
buildTemplateTypeGuard<Imagen4ModelFieldInputTemplate>('Imagen4ModelField');
// #endregion
// #region FluxKontextModelField
export const zFluxKontextModelFieldValue = zModelIdentifierField.optional();
const zFluxKontextModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zFluxKontextModelFieldValue,
});
const zFluxKontextModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zFluxKontextModelFieldType,
originalType: zFieldType.optional(),
default: zFluxKontextModelFieldValue,
});
export type FluxKontextModelFieldValue = z.infer<typeof zFluxKontextModelFieldValue>;
export type FluxKontextModelFieldInputInstance = z.infer<typeof zFluxKontextModelFieldInputInstance>;
export type FluxKontextModelFieldInputTemplate = z.infer<typeof zFluxKontextModelFieldInputTemplate>;
export const isFluxKontextModelFieldInputInstance = buildInstanceTypeGuard(zFluxKontextModelFieldInputInstance);
export const isFluxKontextModelFieldInputTemplate =
buildTemplateTypeGuard<FluxKontextModelFieldInputTemplate>('FluxKontextModelField');
// #endregion
// #region ChatGPT4oModelField
export const zChatGPT4oModelFieldValue = zModelIdentifierField.optional();
const zChatGPT4oModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zChatGPT4oModelFieldValue,
});
const zChatGPT4oModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zChatGPT4oModelFieldType,
originalType: zFieldType.optional(),
default: zChatGPT4oModelFieldValue,
});
export type ChatGPT4oModelFieldValue = z.infer<typeof zChatGPT4oModelFieldValue>;
export type ChatGPT4oModelFieldInputInstance = z.infer<typeof zChatGPT4oModelFieldInputInstance>;
export type ChatGPT4oModelFieldInputTemplate = z.infer<typeof zChatGPT4oModelFieldInputTemplate>;
export const isChatGPT4oModelFieldInputInstance = buildInstanceTypeGuard(zChatGPT4oModelFieldInputInstance);
export const isChatGPT4oModelFieldInputTemplate =
buildTemplateTypeGuard<ChatGPT4oModelFieldInputTemplate>('ChatGPT4oModelField');
// #endregion
// #region Veo3ModelField
export const zVeo3ModelFieldValue = zModelIdentifierField.optional();
const zVeo3ModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zVeo3ModelFieldValue,
});
const zVeo3ModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zVeo3ModelFieldType,
originalType: zFieldType.optional(),
default: zVeo3ModelFieldValue,
});
export type Veo3ModelFieldValue = z.infer<typeof zVeo3ModelFieldValue>;
export type Veo3ModelFieldInputInstance = z.infer<typeof zVeo3ModelFieldInputInstance>;
export type Veo3ModelFieldInputTemplate = z.infer<typeof zVeo3ModelFieldInputTemplate>;
export const isVeo3ModelFieldInputInstance = buildInstanceTypeGuard(zVeo3ModelFieldInputInstance);
export const isVeo3ModelFieldInputTemplate = buildTemplateTypeGuard<Veo3ModelFieldInputTemplate>('Veo3ModelField');
// #endregion
// #region RunwayModelField
export const zRunwayModelFieldValue = zModelIdentifierField.optional();
const zRunwayModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zRunwayModelFieldValue,
});
const zRunwayModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zRunwayModelFieldType,
originalType: zFieldType.optional(),
default: zRunwayModelFieldValue,
});
export type RunwayModelFieldValue = z.infer<typeof zRunwayModelFieldValue>;
export type RunwayModelFieldInputInstance = z.infer<typeof zRunwayModelFieldInputInstance>;
export type RunwayModelFieldInputTemplate = z.infer<typeof zRunwayModelFieldInputTemplate>;
export const isRunwayModelFieldInputInstance = buildInstanceTypeGuard(zRunwayModelFieldInputInstance);
export const isRunwayModelFieldInputTemplate =
buildTemplateTypeGuard<RunwayModelFieldInputTemplate>('RunwayModelField');
// #endregion
// #region SchedulerField
export const zSchedulerFieldValue = zSchedulerField.optional();
const zSchedulerFieldInputInstance = zFieldInputInstanceBase.extend({
@@ -1931,31 +1261,6 @@ export const zStatefulFieldValue = z.union([
zImageFieldCollectionValue,
zBoardFieldValue,
zModelIdentifierFieldValue,
zMainModelFieldValue,
zSDXLMainModelFieldValue,
zFluxMainModelFieldValue,
zSD3MainModelFieldValue,
zCogView4MainModelFieldValue,
zSDXLRefinerModelFieldValue,
zVAEModelFieldValue,
zLoRAModelFieldValue,
zLLaVAModelFieldValue,
zControlNetModelFieldValue,
zIPAdapterModelFieldValue,
zT2IAdapterModelFieldValue,
zSpandrelImageToImageModelFieldValue,
zT5EncoderModelFieldValue,
zFluxVAEModelFieldValue,
zCLIPEmbedModelFieldValue,
zCLIPLEmbedModelFieldValue,
zCLIPGEmbedModelFieldValue,
zControlLoRAModelFieldValue,
zSigLipModelFieldValue,
zFluxReduxModelFieldValue,
zImagen3ModelFieldValue,
zImagen4ModelFieldValue,
zFluxKontextModelFieldValue,
zChatGPT4oModelFieldValue,
zColorFieldValue,
zSchedulerFieldValue,
zFloatGeneratorFieldValue,
@@ -1983,22 +1288,6 @@ const zStatefulFieldInputInstance = z.union([
zImageFieldCollectionInputInstance,
zBoardFieldInputInstance,
zModelIdentifierFieldInputInstance,
zMainModelFieldInputInstance,
zFluxMainModelFieldInputInstance,
zSD3MainModelFieldInputInstance,
zCogView4MainModelFieldInputInstance,
zSDXLMainModelFieldInputInstance,
zSDXLRefinerModelFieldInputInstance,
zVAEModelFieldInputInstance,
zLoRAModelFieldInputInstance,
zLLaVAModelFieldInputInstance,
zControlNetModelFieldInputInstance,
zIPAdapterModelFieldInputInstance,
zT2IAdapterModelFieldInputInstance,
zSpandrelImageToImageModelFieldInputInstance,
zT5EncoderModelFieldInputInstance,
zFluxVAEModelFieldInputInstance,
zCLIPEmbedModelFieldInputInstance,
zColorFieldInputInstance,
zSchedulerFieldInputInstance,
zFloatGeneratorFieldInputInstance,
@@ -2025,33 +1314,6 @@ const zStatefulFieldInputTemplate = z.union([
zImageFieldCollectionInputTemplate,
zBoardFieldInputTemplate,
zModelIdentifierFieldInputTemplate,
zMainModelFieldInputTemplate,
zFluxMainModelFieldInputTemplate,
zSD3MainModelFieldInputTemplate,
zCogView4MainModelFieldInputTemplate,
zSDXLMainModelFieldInputTemplate,
zSDXLRefinerModelFieldInputTemplate,
zVAEModelFieldInputTemplate,
zLoRAModelFieldInputTemplate,
zLLaVAModelFieldInputTemplate,
zControlNetModelFieldInputTemplate,
zIPAdapterModelFieldInputTemplate,
zT2IAdapterModelFieldInputTemplate,
zSpandrelImageToImageModelFieldInputTemplate,
zT5EncoderModelFieldInputTemplate,
zFluxVAEModelFieldInputTemplate,
zCLIPEmbedModelFieldInputTemplate,
zCLIPLEmbedModelFieldInputTemplate,
zCLIPGEmbedModelFieldInputTemplate,
zControlLoRAModelFieldInputTemplate,
zSigLipModelFieldInputTemplate,
zFluxReduxModelFieldInputTemplate,
zImagen3ModelFieldInputTemplate,
zImagen4ModelFieldInputTemplate,
zChatGPT4oModelFieldInputTemplate,
zFluxKontextModelFieldInputTemplate,
zVeo3ModelFieldInputTemplate,
zRunwayModelFieldInputTemplate,
zColorFieldInputTemplate,
zSchedulerFieldInputTemplate,
zStatelessFieldInputTemplate,
@@ -2079,19 +1341,6 @@ const zStatefulFieldOutputTemplate = z.union([
zImageFieldCollectionOutputTemplate,
zBoardFieldOutputTemplate,
zModelIdentifierFieldOutputTemplate,
zMainModelFieldOutputTemplate,
zFluxMainModelFieldOutputTemplate,
zSD3MainModelFieldOutputTemplate,
zCogView4MainModelFieldOutputTemplate,
zSDXLMainModelFieldOutputTemplate,
zSDXLRefinerModelFieldOutputTemplate,
zVAEModelFieldOutputTemplate,
zLoRAModelFieldOutputTemplate,
zLLaVAModelFieldOutputTemplate,
zControlNetModelFieldOutputTemplate,
zIPAdapterModelFieldOutputTemplate,
zT2IAdapterModelFieldOutputTemplate,
zSpandrelImageToImageModelFieldOutputTemplate,
zColorFieldOutputTemplate,
zSchedulerFieldOutputTemplate,
zFloatGeneratorFieldOutputTemplate,

View File

@@ -2,10 +2,11 @@ import type { RootState } from 'app/store/store';
import { generateSeeds } from 'common/util/generateSeeds';
import { range } from 'es-toolkit/compat';
import type { SeedBehaviour } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { API_BASE_MODELS, VIDEO_BASE_MODELS } from 'features/modelManagerV2/models';
import type { BaseModelType } from 'features/nodes/types/common';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { API_BASE_MODELS, VIDEO_BASE_MODELS } from 'features/parameters/types/constants';
import type { components } from 'services/api/schema';
import type { BaseModelType, Batch, EnqueueBatchArg, Invocation } from 'services/api/types';
import type { Batch, EnqueueBatchArg, Invocation } from 'services/api/types';
const getExtendedPrompts = (arg: {
seedBehaviour: SeedBehaviour;

View File

@@ -9,36 +9,9 @@ const FIELD_VALUE_FALLBACK_MAP: Record<StatefulFieldType['name'], FieldValue> =
FloatField: 0,
ImageField: undefined,
IntegerField: 0,
IPAdapterModelField: undefined,
LoRAModelField: undefined,
LLaVAModelField: undefined,
ModelIdentifierField: undefined,
MainModelField: undefined,
SchedulerField: 'dpmpp_3m_k',
SDXLMainModelField: undefined,
FluxMainModelField: undefined,
SD3MainModelField: undefined,
CogView4MainModelField: undefined,
SDXLRefinerModelField: undefined,
StringField: '',
T2IAdapterModelField: undefined,
SpandrelImageToImageModelField: undefined,
VAEModelField: undefined,
ControlNetModelField: undefined,
T5EncoderModelField: undefined,
FluxVAEModelField: undefined,
CLIPEmbedModelField: undefined,
CLIPLEmbedModelField: undefined,
CLIPGEmbedModelField: undefined,
ControlLoRAModelField: undefined,
SigLipModelField: undefined,
FluxReduxModelField: undefined,
Imagen3ModelField: undefined,
Imagen4ModelField: undefined,
ChatGPT4oModelField: undefined,
FluxKontextModelField: undefined,
Veo3ModelField: undefined,
RunwayModelField: undefined,
FloatGeneratorField: undefined,
IntegerGeneratorField: undefined,
StringGeneratorField: undefined,

View File

@@ -3,53 +3,26 @@ import { FieldParseError } from 'features/nodes/types/error';
import type {
BoardFieldInputTemplate,
BooleanFieldInputTemplate,
ChatGPT4oModelFieldInputTemplate,
CLIPEmbedModelFieldInputTemplate,
CLIPGEmbedModelFieldInputTemplate,
CLIPLEmbedModelFieldInputTemplate,
CogView4MainModelFieldInputTemplate,
ColorFieldInputTemplate,
ControlLoRAModelFieldInputTemplate,
ControlNetModelFieldInputTemplate,
EnumFieldInputTemplate,
FieldInputTemplate,
FieldType,
FloatFieldCollectionInputTemplate,
FloatFieldInputTemplate,
FloatGeneratorFieldInputTemplate,
FluxKontextModelFieldInputTemplate,
FluxMainModelFieldInputTemplate,
FluxReduxModelFieldInputTemplate,
FluxVAEModelFieldInputTemplate,
ImageFieldCollectionInputTemplate,
ImageFieldInputTemplate,
ImageGeneratorFieldInputTemplate,
Imagen3ModelFieldInputTemplate,
Imagen4ModelFieldInputTemplate,
IntegerFieldCollectionInputTemplate,
IntegerFieldInputTemplate,
IntegerGeneratorFieldInputTemplate,
IPAdapterModelFieldInputTemplate,
LLaVAModelFieldInputTemplate,
LoRAModelFieldInputTemplate,
MainModelFieldInputTemplate,
ModelIdentifierFieldInputTemplate,
RunwayModelFieldInputTemplate,
SchedulerFieldInputTemplate,
SD3MainModelFieldInputTemplate,
SDXLMainModelFieldInputTemplate,
SDXLRefinerModelFieldInputTemplate,
SigLipModelFieldInputTemplate,
SpandrelImageToImageModelFieldInputTemplate,
StatefulFieldType,
StatelessFieldInputTemplate,
StringFieldCollectionInputTemplate,
StringFieldInputTemplate,
StringGeneratorFieldInputTemplate,
T2IAdapterModelFieldInputTemplate,
T5EncoderModelFieldInputTemplate,
VAEModelFieldInputTemplate,
Veo3ModelFieldInputTemplate,
} from 'features/nodes/types/field';
import {
getFloatGeneratorArithmeticSequenceDefaults,
@@ -302,373 +275,6 @@ const buildModelIdentifierFieldInputTemplate: FieldInputTemplateBuilder<ModelIde
return template;
};
const buildMainModelFieldInputTemplate: FieldInputTemplateBuilder<MainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: MainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildSDXLMainModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLMainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: SDXLMainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildFluxMainModelFieldInputTemplate: FieldInputTemplateBuilder<FluxMainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: FluxMainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildSD3MainModelFieldInputTemplate: FieldInputTemplateBuilder<SD3MainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: SD3MainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildCogView4MainModelFieldInputTemplate: FieldInputTemplateBuilder<CogView4MainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: CogView4MainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildRefinerModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLRefinerModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: SDXLRefinerModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildVAEModelFieldInputTemplate: FieldInputTemplateBuilder<VAEModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: VAEModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildT5EncoderModelFieldInputTemplate: FieldInputTemplateBuilder<T5EncoderModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: T5EncoderModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildCLIPEmbedModelFieldInputTemplate: FieldInputTemplateBuilder<CLIPEmbedModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: CLIPEmbedModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildCLIPLEmbedModelFieldInputTemplate: FieldInputTemplateBuilder<CLIPLEmbedModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: CLIPLEmbedModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildCLIPGEmbedModelFieldInputTemplate: FieldInputTemplateBuilder<CLIPGEmbedModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: CLIPGEmbedModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildControlLoRAModelFieldInputTemplate: FieldInputTemplateBuilder<ControlLoRAModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: ControlLoRAModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildLLaVAModelFieldInputTemplate: FieldInputTemplateBuilder<LLaVAModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: LLaVAModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildFluxVAEModelFieldInputTemplate: FieldInputTemplateBuilder<FluxVAEModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: FluxVAEModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildLoRAModelFieldInputTemplate: FieldInputTemplateBuilder<LoRAModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: LoRAModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildControlNetModelFieldInputTemplate: FieldInputTemplateBuilder<ControlNetModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: ControlNetModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildIPAdapterModelFieldInputTemplate: FieldInputTemplateBuilder<IPAdapterModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: IPAdapterModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildT2IAdapterModelFieldInputTemplate: FieldInputTemplateBuilder<T2IAdapterModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: T2IAdapterModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildSpandrelImageToImageModelFieldInputTemplate: FieldInputTemplateBuilder<
SpandrelImageToImageModelFieldInputTemplate
> = ({ schemaObject, baseField, fieldType }) => {
const template: SpandrelImageToImageModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildSigLipModelFieldInputTemplate: FieldInputTemplateBuilder<SigLipModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: SigLipModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildFluxReduxModelFieldInputTemplate: FieldInputTemplateBuilder<FluxReduxModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: FluxReduxModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildImagen3ModelFieldInputTemplate: FieldInputTemplateBuilder<Imagen3ModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: Imagen3ModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildImagen4ModelFieldInputTemplate: FieldInputTemplateBuilder<Imagen4ModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: Imagen4ModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildFluxKontextModelFieldInputTemplate: FieldInputTemplateBuilder<FluxKontextModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: FluxKontextModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildVeo3ModelFieldInputTemplate: FieldInputTemplateBuilder<Veo3ModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: Veo3ModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildRunwayModelFieldInputTemplate: FieldInputTemplateBuilder<RunwayModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: RunwayModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildChatGPT4oModelFieldInputTemplate: FieldInputTemplateBuilder<ChatGPT4oModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: ChatGPT4oModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildBoardFieldInputTemplate: FieldInputTemplateBuilder<BoardFieldInputTemplate> = ({
schemaObject,
baseField,
@@ -843,56 +449,41 @@ const buildImageGeneratorFieldInputTemplate: FieldInputTemplateBuilder<ImageGene
return template;
};
export const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputTemplateBuilder> = {
const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputTemplateBuilder> = {
BoardField: buildBoardFieldInputTemplate,
BooleanField: buildBooleanFieldInputTemplate,
ColorField: buildColorFieldInputTemplate,
ControlNetModelField: buildControlNetModelFieldInputTemplate,
EnumField: buildEnumFieldInputTemplate,
FloatField: buildFloatFieldInputTemplate,
ImageField: buildImageFieldInputTemplate,
IntegerField: buildIntegerFieldInputTemplate,
IPAdapterModelField: buildIPAdapterModelFieldInputTemplate,
LoRAModelField: buildLoRAModelFieldInputTemplate,
LLaVAModelField: buildLLaVAModelFieldInputTemplate,
ModelIdentifierField: buildModelIdentifierFieldInputTemplate,
MainModelField: buildMainModelFieldInputTemplate,
SchedulerField: buildSchedulerFieldInputTemplate,
SDXLMainModelField: buildSDXLMainModelFieldInputTemplate,
SD3MainModelField: buildSD3MainModelFieldInputTemplate,
CogView4MainModelField: buildCogView4MainModelFieldInputTemplate,
FluxMainModelField: buildFluxMainModelFieldInputTemplate,
SDXLRefinerModelField: buildRefinerModelFieldInputTemplate,
StringField: buildStringFieldInputTemplate,
T2IAdapterModelField: buildT2IAdapterModelFieldInputTemplate,
SpandrelImageToImageModelField: buildSpandrelImageToImageModelFieldInputTemplate,
VAEModelField: buildVAEModelFieldInputTemplate,
T5EncoderModelField: buildT5EncoderModelFieldInputTemplate,
CLIPEmbedModelField: buildCLIPEmbedModelFieldInputTemplate,
CLIPLEmbedModelField: buildCLIPLEmbedModelFieldInputTemplate,
CLIPGEmbedModelField: buildCLIPGEmbedModelFieldInputTemplate,
FluxVAEModelField: buildFluxVAEModelFieldInputTemplate,
ControlLoRAModelField: buildControlLoRAModelFieldInputTemplate,
SigLipModelField: buildSigLipModelFieldInputTemplate,
FluxReduxModelField: buildFluxReduxModelFieldInputTemplate,
Imagen3ModelField: buildImagen3ModelFieldInputTemplate,
Imagen4ModelField: buildImagen4ModelFieldInputTemplate,
ChatGPT4oModelField: buildChatGPT4oModelFieldInputTemplate,
FluxKontextModelField: buildFluxKontextModelFieldInputTemplate,
Veo3ModelField: buildVeo3ModelFieldInputTemplate,
RunwayModelField: buildRunwayModelFieldInputTemplate,
FloatGeneratorField: buildFloatGeneratorFieldInputTemplate,
IntegerGeneratorField: buildIntegerGeneratorFieldInputTemplate,
StringGeneratorField: buildStringGeneratorFieldInputTemplate,
ImageGeneratorField: buildImageGeneratorFieldInputTemplate,
} as const;
};
export const buildFieldInputTemplate = (
fieldSchema: InvocationFieldSchema,
fieldName: string,
fieldType: FieldType
): FieldInputTemplate => {
const { input, ui_hidden, ui_component, ui_type, ui_order, ui_choice_labels, orig_required: required } = fieldSchema;
const {
input,
ui_hidden,
ui_component,
ui_type,
ui_order,
ui_choice_labels,
orig_required: required,
ui_model_base,
ui_model_type,
ui_model_variant,
ui_model_format,
} = fieldSchema;
// This is the base field template that is common to all fields. The builder function will add all other
// properties to this template.
@@ -908,6 +499,10 @@ export const buildFieldInputTemplate = (
ui_type,
ui_order,
ui_choice_labels,
ui_model_base,
ui_model_type,
ui_model_variant,
ui_model_format,
};
if (isStatefulFieldType(fieldType)) {

View File

@@ -7,7 +7,7 @@ import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useCLIPEmbedModels } from 'services/api/hooks/modelsByType';
import type { CLIPGEmbedModelConfig } from 'services/api/types';
import { isCLIPGEmbedModelConfig } from 'services/api/types';
import { isCLIPGEmbedModelConfigOrSubmodel } from 'services/api/types';
const ParamCLIPEmbedModelSelect = () => {
const dispatch = useAppDispatch();
@@ -25,7 +25,7 @@ const ParamCLIPEmbedModelSelect = () => {
);
const { options, value, onChange, noOptionsMessage } = useModelCombobox({
modelConfigs: modelConfigs.filter((config) => isCLIPGEmbedModelConfig(config)),
modelConfigs: modelConfigs.filter((config) => isCLIPGEmbedModelConfigOrSubmodel(config)),
onChange: _onChange,
selectedModel: clipEmbedModel,
isLoading,

View File

@@ -7,7 +7,7 @@ import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useCLIPEmbedModels } from 'services/api/hooks/modelsByType';
import type { CLIPLEmbedModelConfig } from 'services/api/types';
import { isCLIPLEmbedModelConfig } from 'services/api/types';
import { isCLIPLEmbedModelConfigOrSubmodel } from 'services/api/types';
const ParamCLIPEmbedModelSelect = () => {
const dispatch = useAppDispatch();
@@ -25,7 +25,7 @@ const ParamCLIPEmbedModelSelect = () => {
);
const { options, value, onChange, noOptionsMessage } = useModelCombobox({
modelConfigs: modelConfigs.filter((config) => isCLIPLEmbedModelConfig(config)),
modelConfigs: modelConfigs.filter((config) => isCLIPLEmbedModelConfigOrSubmodel(config)),
onChange: _onChange,
selectedModel: clipEmbedModel,
isLoading,

View File

@@ -24,11 +24,16 @@ import { typedMemo } from 'common/util/typedMemo';
import { uniq } from 'es-toolkit/compat';
import { selectLoRAsSlice } from 'features/controlLayers/store/lorasSlice';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import {
API_BASE_MODELS,
MODEL_BASE_TO_COLOR,
MODEL_BASE_TO_LONG_NAME,
MODEL_BASE_TO_SHORT_NAME,
} from 'features/modelManagerV2/models';
import { setInstallModelsTabByName } from 'features/modelManagerV2/store/installModelsStore';
import { BASE_COLOR_MAP } from 'features/modelManagerV2/subpanels/ModelManagerPanel/ModelBaseBadge';
import ModelImage from 'features/modelManagerV2/subpanels/ModelManagerPanel/ModelImage';
import type { BaseModelType } from 'features/nodes/types/common';
import { NavigateToModelManagerButton } from 'features/parameters/components/MainModel/NavigateToModelManagerButton';
import { API_BASE_MODELS, MODEL_TYPE_MAP, MODEL_TYPE_SHORT_MAP } from 'features/parameters/types/constants';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { selectIsModelsTabDisabled } from 'features/system/store/configSlice';
import { navigationApi } from 'features/ui/layouts/navigation-api';
@@ -37,7 +42,7 @@ import { memo, useCallback, useMemo, useRef } from 'react';
import { Trans, useTranslation } from 'react-i18next';
import { PiCaretDownBold, PiLinkSimple } from 'react-icons/pi';
import { useGetRelatedModelIdsBatchQuery } from 'services/api/endpoints/modelRelationships';
import type { AnyModelConfig, BaseModelType } from 'services/api/types';
import type { AnyModelConfig } from 'services/api/types';
const selectSelectedModelKeys = createMemoizedSelector(selectParamsSlice, selectLoRAsSlice, (params, loras) => {
const keys: string[] = [];
@@ -123,21 +128,21 @@ const getGroupNameFromModelConfig = (modelConfig: AnyModelConfig): string => {
if (API_BASE_MODELS.includes(modelConfig.base)) {
return 'External API';
}
return MODEL_TYPE_MAP[modelConfig.base];
return MODEL_BASE_TO_LONG_NAME[modelConfig.base];
};
const getGroupShortNameFromModelConfig = (modelConfig: AnyModelConfig): string => {
if (API_BASE_MODELS.includes(modelConfig.base)) {
return 'api';
}
return MODEL_TYPE_SHORT_MAP[modelConfig.base];
return MODEL_BASE_TO_SHORT_NAME[modelConfig.base];
};
const getGroupColorSchemeFromModelConfig = (modelConfig: AnyModelConfig): string => {
if (API_BASE_MODELS.includes(modelConfig.base)) {
return 'pink';
}
return BASE_COLOR_MAP[modelConfig.base];
return MODEL_BASE_TO_COLOR[modelConfig.base];
};
const relatedModelKeysQueryOptions = {

View File

@@ -21,9 +21,9 @@ import {
zVideoDuration,
zVideoResolution,
} from 'features/controlLayers/store/types';
import { REQUIRES_STARTING_FRAME_BASE_MODELS } from 'features/modelManagerV2/models';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { REQUIRES_STARTING_FRAME_BASE_MODELS } from 'features/parameters/types/constants';
import { modelConfigsAdapterSelectors, selectModelConfigsQuery } from 'services/api/endpoints/models';
import { isVideoModelConfig } from 'services/api/types';
import { assert } from 'tsafe';

View File

@@ -1,47 +1,5 @@
import type { ComboboxOption } from '@invoke-ai/ui-library';
import type { BaseModelType } from 'services/api/types';
/**
* Mapping of base model to human readable name
*/
export const MODEL_TYPE_MAP: Record<BaseModelType, string> = {
any: 'Any',
'sd-1': 'Stable Diffusion 1.x',
'sd-2': 'Stable Diffusion 2.x',
'sd-3': 'Stable Diffusion 3.x',
sdxl: 'Stable Diffusion XL',
'sdxl-refiner': 'Stable Diffusion XL Refiner',
flux: 'FLUX',
cogview4: 'CogView4',
imagen3: 'Imagen3',
imagen4: 'Imagen4',
'chatgpt-4o': 'ChatGPT 4o',
'flux-kontext': 'Flux Kontext',
'gemini-2.5': 'Gemini 2.5',
veo3: 'Veo3',
runway: 'Runway',
};
/**
* Mapping of base model to (short) human readable name
*/
export const MODEL_TYPE_SHORT_MAP: Record<BaseModelType, string> = {
any: 'Any',
'sd-1': 'SD1.X',
'sd-2': 'SD2.X',
'sd-3': 'SD3.X',
sdxl: 'SDXL',
'sdxl-refiner': 'SDXLR',
flux: 'FLUX',
cogview4: 'CogView4',
imagen3: 'Imagen3',
imagen4: 'Imagen4',
'chatgpt-4o': 'ChatGPT 4o',
'flux-kontext': 'Flux Kontext',
'gemini-2.5': 'Gemini 2.5',
veo3: 'Veo3',
runway: 'Runway',
};
import type { BaseModelType } from 'features/nodes/types/common';
/**
* Mapping of base model to CLIP skip parameter constraints
@@ -136,57 +94,3 @@ export const SCHEDULER_OPTIONS: ComboboxOption[] = [
{ value: 'unipc', label: 'UniPC' },
{ value: 'unipc_k', label: 'UniPC Karras' },
];
/**
* List of base models that make API requests
*/
export const API_BASE_MODELS: BaseModelType[] = ['imagen3', 'imagen4', 'chatgpt-4o', 'flux-kontext', 'gemini-2.5'];
export const SUPPORTS_SEED_BASE_MODELS: BaseModelType[] = ['sd-1', 'sd-2', 'sd-3', 'sdxl', 'flux', 'cogview4'];
export const SUPPORTS_OPTIMIZED_DENOISING_BASE_MODELS: BaseModelType[] = ['flux', 'sd-3'];
export const SUPPORTS_REF_IMAGES_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sdxl',
'flux',
'flux-kontext',
'chatgpt-4o',
'gemini-2.5',
];
export const SUPPORTS_NEGATIVE_PROMPT_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sdxl',
'cogview4',
'sd-3',
'imagen3',
'imagen4',
];
export const SUPPORTS_PIXEL_DIMENSIONS_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sd-3',
'sdxl',
'flux',
'cogview4',
];
export const SUPPORTS_ASPECT_RATIO_BASE_MODELS: BaseModelType[] = [
'sd-1',
'sd-2',
'sd-3',
'sdxl',
'flux',
'cogview4',
'imagen3',
'imagen4',
'flux-kontext',
'chatgpt-4o',
];
export const VIDEO_BASE_MODELS = ['veo3', 'runway'];
export const REQUIRES_STARTING_FRAME_BASE_MODELS = ['runway'];

View File

@@ -1,4 +1,4 @@
import type { BaseModelType } from 'services/api/types';
import type { BaseModelType } from 'features/nodes/types/common';
/**
* Gets the optimal dimension for a given base model:

View File

@@ -24,6 +24,7 @@ import {
import type { DynamicPromptsState } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { SUPPORTS_REF_IMAGES_BASE_MODELS } from 'features/modelManagerV2/models';
import { $isInPublishFlow } from 'features/nodes/components/sidePanel/workflow/publish';
import { $templates } from 'features/nodes/store/nodesSlice';
import { selectNodesSlice } from 'features/nodes/store/selectors';
@@ -37,7 +38,6 @@ import { useIsModelDisabled } from 'features/parameters/hooks/useIsModelDisabled
import type { UpscaleState } from 'features/parameters/store/upscaleSlice';
import { selectUpscaleSlice } from 'features/parameters/store/upscaleSlice';
import { selectVideoSlice, type VideoState } from 'features/parameters/store/videoSlice';
import { SUPPORTS_REF_IMAGES_BASE_MODELS } from 'features/parameters/types/constants';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import { getGridSize } from 'features/parameters/util/optimalDimension';
import { promptExpansionApi, type PromptExpansionRequestState } from 'features/prompt/PromptExpansion/state';

View File

@@ -12,12 +12,12 @@ import {
} from 'features/controlLayers/store/paramsSlice';
import { LoRAList } from 'features/lora/components/LoRAList';
import LoRASelect from 'features/lora/components/LoRASelect';
import { API_BASE_MODELS } from 'features/modelManagerV2/models';
import ParamCFGScale from 'features/parameters/components/Core/ParamCFGScale';
import ParamGuidance from 'features/parameters/components/Core/ParamGuidance';
import ParamScheduler from 'features/parameters/components/Core/ParamScheduler';
import ParamSteps from 'features/parameters/components/Core/ParamSteps';
import { DisabledModelWarning } from 'features/parameters/components/MainModel/DisabledModelWarning';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import { MainModelPicker } from 'features/settingsAccordions/components/GenerationSettingsAccordion/MainModelPicker';
import { useExpanderToggle } from 'features/settingsAccordions/hooks/useExpanderToggle';
import { useStandaloneAccordionToggle } from 'features/settingsAccordions/hooks/useStandaloneAccordionToggle';

View File

@@ -7,12 +7,12 @@ import { selectLoRAsSlice } from 'features/controlLayers/store/lorasSlice';
import { selectIsApiBaseModel, selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { LoRAList } from 'features/lora/components/LoRAList';
import LoRASelect from 'features/lora/components/LoRASelect';
import { API_BASE_MODELS } from 'features/modelManagerV2/models';
import ParamGuidance from 'features/parameters/components/Core/ParamGuidance';
import ParamSteps from 'features/parameters/components/Core/ParamSteps';
import { DisabledModelWarning } from 'features/parameters/components/MainModel/DisabledModelWarning';
import ParamUpscaleCFGScale from 'features/parameters/components/Upscale/ParamUpscaleCFGScale';
import ParamUpscaleScheduler from 'features/parameters/components/Upscale/ParamUpscaleScheduler';
import { API_BASE_MODELS } from 'features/parameters/types/constants';
import { MainModelPicker } from 'features/settingsAccordions/components/GenerationSettingsAccordion/MainModelPicker';
import { useExpanderToggle } from 'features/settingsAccordions/hooks/useExpanderToggle';
import { useStandaloneAccordionToggle } from 'features/settingsAccordions/hooks/useStandaloneAccordionToggle';

View File

@@ -1,3 +1,4 @@
export const githubLink = 'http://github.com/invoke-ai/InvokeAI';
export const githubIssuesLink = 'https://github.com/invoke-ai/InvokeAI/issues';
export const discordLink = 'https://discord.gg/ZmtBAhwWhy';
export const websiteLink = 'https://www.invoke.com/';

View File

@@ -1,4 +1,4 @@
import { createSelector, type Selector } from '@reduxjs/toolkit';
import type { Selector } from '@reduxjs/toolkit';
import { EMPTY_ARRAY } from 'app/store/constants';
import type { RootState } from 'app/store/store';
import { useMemo } from 'react';
@@ -10,46 +10,27 @@ import {
import type { AnyModelConfig } from 'services/api/types';
import {
isChatGPT4oModelConfig,
isCLIPEmbedModelConfig,
isCLIPVisionModelConfig,
isCogView4MainModelModelConfig,
isCLIPEmbedModelConfigOrSubmodel,
isControlLayerModelConfig,
isControlLoRAModelConfig,
isControlNetModelConfig,
isFluxKontextApiModelConfig,
isFluxKontextModelConfig,
isFluxMainModelModelConfig,
isFluxReduxModelConfig,
isFluxVAEModelConfig,
isGemini2_5ModelConfig,
isImagen3ModelConfig,
isImagen4ModelConfig,
isIPAdapterModelConfig,
isLLaVAModelConfig,
isLoRAModelConfig,
isNonRefinerMainModelConfig,
isNonSDXLMainModelConfig,
isRefinerMainModelModelConfig,
isRunwayModelConfig,
isSD3MainModelModelConfig,
isSDXLMainModelModelConfig,
isSigLipModelConfig,
isSpandrelImageToImageModelConfig,
isT2IAdapterModelConfig,
isT5EncoderModelConfig,
isT5EncoderModelConfigOrSubmodel,
isTIModelConfig,
isVAEModelConfig,
isVeo3ModelConfig,
isVAEModelConfigOrSubmodel,
isVideoModelConfig,
} from 'services/api/types';
type ModelHookArgs = { excludeSubmodels?: boolean };
const buildModelsHook =
<T extends AnyModelConfig>(
typeGuard: (config: AnyModelConfig, excludeSubmodels?: boolean) => config is T,
excludeSubmodels?: boolean
) =>
<T extends AnyModelConfig>(typeGuard: (config: AnyModelConfig) => config is T) =>
(filter: (config: T) => boolean = () => true) => {
const result = useGetModelConfigsQuery(undefined);
const modelConfigs = useMemo(() => {
@@ -59,37 +40,23 @@ const buildModelsHook =
return modelConfigsAdapterSelectors
.selectAll(result.data)
.filter((config) => typeGuard(config, excludeSubmodels))
.filter((config) => typeGuard(config))
.filter(filter);
}, [filter, result.data]);
return [modelConfigs, result] as const;
};
export const useMainModels = buildModelsHook(isNonRefinerMainModelConfig);
export const useNonSDXLMainModels = buildModelsHook(isNonSDXLMainModelConfig);
export const useRefinerModels = buildModelsHook(isRefinerMainModelModelConfig);
export const useFluxModels = buildModelsHook(isFluxMainModelModelConfig);
export const useSD3Models = buildModelsHook(isSD3MainModelModelConfig);
export const useCogView4Models = buildModelsHook(isCogView4MainModelModelConfig);
export const useSDXLModels = buildModelsHook(isSDXLMainModelModelConfig);
export const useLoRAModels = buildModelsHook(isLoRAModelConfig);
export const useControlLoRAModel = buildModelsHook(isControlLoRAModelConfig);
export const useControlLayerModels = buildModelsHook(isControlLayerModelConfig);
export const useControlNetModels = buildModelsHook(isControlNetModelConfig);
export const useT2IAdapterModels = buildModelsHook(isT2IAdapterModelConfig);
export const useT5EncoderModels = (args?: ModelHookArgs) =>
buildModelsHook(isT5EncoderModelConfig, args?.excludeSubmodels)();
export const useCLIPEmbedModels = (args?: ModelHookArgs) =>
buildModelsHook(isCLIPEmbedModelConfig, args?.excludeSubmodels)();
export const useT5EncoderModels = () => buildModelsHook(isT5EncoderModelConfigOrSubmodel)();
export const useCLIPEmbedModels = () => buildModelsHook(isCLIPEmbedModelConfigOrSubmodel)();
export const useSpandrelImageToImageModels = buildModelsHook(isSpandrelImageToImageModelConfig);
export const useIPAdapterModels = buildModelsHook(isIPAdapterModelConfig);
export const useEmbeddingModels = buildModelsHook(isTIModelConfig);
export const useVAEModels = (args?: ModelHookArgs) => buildModelsHook(isVAEModelConfig, args?.excludeSubmodels)();
export const useFluxVAEModels = (args?: ModelHookArgs) =>
buildModelsHook(isFluxVAEModelConfig, args?.excludeSubmodels)();
export const useCLIPVisionModels = buildModelsHook(isCLIPVisionModelConfig);
export const useSigLipModels = buildModelsHook(isSigLipModelConfig);
export const useFluxReduxModels = buildModelsHook(isFluxReduxModelConfig);
export const useVAEModels = () => buildModelsHook(isVAEModelConfigOrSubmodel)();
export const useFluxVAEModels = () => buildModelsHook(isFluxVAEModelConfig)();
export const useGlobalReferenceImageModels = buildModelsHook(
(config) =>
isIPAdapterModelConfig(config) ||
@@ -102,13 +69,6 @@ export const useGlobalReferenceImageModels = buildModelsHook(
export const useRegionalReferenceImageModels = buildModelsHook(
(config) => isIPAdapterModelConfig(config) || isFluxReduxModelConfig(config)
);
export const useLLaVAModels = buildModelsHook(isLLaVAModelConfig);
export const useImagen3Models = buildModelsHook(isImagen3ModelConfig);
export const useImagen4Models = buildModelsHook(isImagen4ModelConfig);
export const useChatGPT4oModels = buildModelsHook(isChatGPT4oModelConfig);
export const useFluxKontextModels = buildModelsHook(isFluxKontextApiModelConfig);
export const useVeo3Models = buildModelsHook(isVeo3ModelConfig);
export const useRunwayModels = buildModelsHook(isRunwayModelConfig);
export const useVideoModels = buildModelsHook(isVideoModelConfig);
const buildModelsSelector =
@@ -120,23 +80,7 @@ const buildModelsSelector =
}
return modelConfigsAdapterSelectors.selectAll(result.data).filter(typeGuard);
};
// export const selectSDMainModels = buildModelsSelector(isNonRefinerNonFluxMainModelConfig);
// export const selectMainModels = buildModelsSelector(isNonRefinerMainModelConfig);
// export const selectNonSDXLMainModels = buildModelsSelector(isNonSDXLMainModelConfig);
// export const selectRefinerModels = buildModelsSelector(isRefinerMainModelModelConfig);
// export const selectFluxModels = buildModelsSelector(isFluxMainModelModelConfig);
// export const selectSDXLModels = buildModelsSelector(isSDXLMainModelModelConfig);
// export const selectLoRAModels = buildModelsSelector(isLoRAModelConfig);
// export const selectControlNetAndT2IAdapterModels = buildModelsSelector(isControlNetOrT2IAdapterModelConfig);
// export const selectControlNetModels = buildModelsSelector(isControlNetModelConfig);
// export const selectT2IAdapterModels = buildModelsSelector(isT2IAdapterModelConfig);
// export const selectT5EncoderModels = buildModelsSelector(isT5EncoderModelConfig);
// export const selectClipEmbedModels = buildModelsSelector(isClipEmbedModelConfig);
// export const selectSpandrelImageToImageModels = buildModelsSelector(isSpandrelImageToImageModelConfig);
export const selectIPAdapterModels = buildModelsSelector(isIPAdapterModelConfig);
// export const selectEmbeddingModels = buildModelsSelector(isTIModelConfig);
// export const selectVAEModels = buildModelsSelector(isVAEModelConfig);
// export const selectFluxVAEModels = buildModelsSelector(isFluxVAEModelConfig);
export const selectGlobalRefImageModels = buildModelsSelector(
(config) =>
isIPAdapterModelConfig(config) ||
@@ -149,19 +93,3 @@ export const selectGlobalRefImageModels = buildModelsSelector(
export const selectRegionalRefImageModels = buildModelsSelector(
(config) => isIPAdapterModelConfig(config) || isFluxReduxModelConfig(config)
);
export const buildSelectModelConfig = <T extends AnyModelConfig>(
key: string,
typeGuard: (config: AnyModelConfig) => config is T
): Selector<RootState, T | null> =>
createSelector(selectModelConfigsQuery, (result) => {
if (!result.data) {
return null;
}
return (
modelConfigsAdapterSelectors
.selectAll(result.data)
.filter(typeGuard)
.find((m) => m.key === key) ?? null
);
});

View File

@@ -2467,7 +2467,7 @@ export type components = {
* @description Base model type.
* @enum {string}
*/
BaseModelType: "any" | "sd-1" | "sd-2" | "sd-3" | "sdxl" | "sdxl-refiner" | "flux" | "cogview4" | "imagen3" | "imagen4" | "gemini-2.5" | "chatgpt-4o" | "flux-kontext" | "veo3" | "runway";
BaseModelType: "any" | "sd-1" | "sd-2" | "sd-3" | "sdxl" | "sdxl-refiner" | "flux" | "cogview4" | "imagen3" | "imagen4" | "gemini-2.5" | "chatgpt-4o" | "flux-kontext" | "veo3" | "runway" | "unknown";
/** Batch */
Batch: {
/**
@@ -5580,7 +5580,7 @@ export type components = {
repo_variant?: components["schemas"]["ModelRepoVariant"] | null;
};
/**
* ControlNet - SD1.5, SDXL
* ControlNet - SD1.5, SD2, SDXL
* @description Collects ControlNet info to pass to other nodes
*/
ControlNetInvocation: {
@@ -11805,6 +11805,26 @@ export type components = {
ui_choice_labels: {
[key: string]: string;
} | null;
/**
* Ui Model Base
* @default null
*/
ui_model_base: components["schemas"]["BaseModelType"][] | null;
/**
* Ui Model Type
* @default null
*/
ui_model_type: components["schemas"]["ModelType"][] | null;
/**
* Ui Model Variant
* @default null
*/
ui_model_variant: (components["schemas"]["ClipVariantType"] | components["schemas"]["ModelVariantType"])[] | null;
/**
* Ui Model Format
* @default null
*/
ui_model_format: components["schemas"]["ModelFormat"][] | null;
};
/**
* InstallStatus
@@ -12653,6 +12673,7 @@ export type components = {
* remote_api_tokens: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.
* scan_models_on_startup: Scan the models directory on startup, registering orphaned models. This is typically only used in conjunction with `use_memory_db` for testing purposes.
* unsafe_disable_picklescan: UNSAFE. Disable the picklescan security check during model installation. Recommended only for development and testing purposes. This will allow arbitrary code execution during model installation, so should never be used in production.
* allow_unknown_models: Allow installation of models that we are unable to identify. If enabled, models will be marked as `unknown` in the database, and will not have any metadata associated with them. If disabled, unknown models will be rejected during installation.
*/
InvokeAIAppConfig: {
/**
@@ -13008,6 +13029,12 @@ export type components = {
* @default false
*/
unsafe_disable_picklescan?: boolean;
/**
* Allow Unknown Models
* @description Allow installation of models that we are unable to identify. If enabled, models will be marked as `unknown` in the database, and will not have any metadata associated with them. If disabled, unknown models will be rejected during installation.
* @default true
*/
allow_unknown_models?: boolean;
};
/**
* InvokeAIAppConfigWithSetFields
@@ -15163,7 +15190,7 @@ export type components = {
guidance?: number | null;
};
/**
* Main Model - SD1.5
* Main Model - SD1.5, SD2
* @description Loads a main model, outputting its submodels.
*/
MainModelLoaderInvocation: {
@@ -16887,7 +16914,7 @@ export type components = {
* @description Storage format of model.
* @enum {string}
*/
ModelFormat: "omi" | "diffusers" | "checkpoint" | "lycoris" | "onnx" | "olive" | "embedding_file" | "embedding_folder" | "invokeai" | "t5_encoder" | "bnb_quantized_int8b" | "bnb_quantized_nf4b" | "gguf_quantized" | "api";
ModelFormat: "omi" | "diffusers" | "checkpoint" | "lycoris" | "onnx" | "olive" | "embedding_file" | "embedding_folder" | "invokeai" | "t5_encoder" | "bnb_quantized_int8b" | "bnb_quantized_nf4b" | "gguf_quantized" | "api" | "unknown";
/** ModelIdentifierField */
ModelIdentifierField: {
/**
@@ -17020,6 +17047,11 @@ export type components = {
* @description Size of the model (may be None for installation of a local path)
*/
total_bytes: number | null;
/**
* Config
* @description The installed model's config
*/
config: components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
};
/**
* ModelInstallDownloadProgressEvent
@@ -17185,7 +17217,7 @@ export type components = {
* Config Out
* @description After successful installation, this will hold the configuration object.
*/
config_out?: (components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"]) | null;
config_out?: (components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"]) | null;
/**
* Inplace
* @description Leave model in its current location; otherwise install under models directory
@@ -17271,7 +17303,7 @@ export type components = {
* Config
* @description The model's config
*/
config: components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
config: components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
/**
* @description The submodel type, if any
* @default null
@@ -17292,7 +17324,7 @@ export type components = {
* Config
* @description The model's config
*/
config: components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
config: components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
/**
* @description The submodel type, if any
* @default null
@@ -17448,7 +17480,7 @@ export type components = {
* @description Model type.
* @enum {string}
*/
ModelType: "onnx" | "main" | "vae" | "lora" | "control_lora" | "controlnet" | "embedding" | "ip_adapter" | "clip_vision" | "clip_embed" | "t2i_adapter" | "t5_encoder" | "spandrel_image_to_image" | "siglip" | "flux_redux" | "llava_onevision" | "video";
ModelType: "onnx" | "main" | "vae" | "lora" | "control_lora" | "controlnet" | "embedding" | "ip_adapter" | "clip_vision" | "clip_embed" | "t2i_adapter" | "t5_encoder" | "spandrel_image_to_image" | "siglip" | "flux_redux" | "llava_onevision" | "video" | "unknown";
/**
* ModelVariantType
* @description Variant type.
@@ -17461,7 +17493,7 @@ export type components = {
*/
ModelsList: {
/** Models */
models: (components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"])[];
models: (components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"])[];
};
/**
* Multiply Integers
@@ -17719,11 +17751,18 @@ export type components = {
*/
OutputFieldJSONSchemaExtra: {
field_kind: components["schemas"]["FieldKind"];
/** Ui Hidden */
/**
* Ui Hidden
* @default false
*/
ui_hidden: boolean;
ui_type: components["schemas"]["UIType"] | null;
/** Ui Order */
/**
* Ui Order
* @default null
*/
ui_order: number | null;
/** @default null */
ui_type: components["schemas"]["UIType"] | null;
};
/** PaginatedResults[WorkflowRecordListItemWithThumbnailDTO] */
PaginatedResults_WorkflowRecordListItemWithThumbnailDTO_: {
@@ -21830,7 +21869,7 @@ export type components = {
* used, and the type will be ignored. They are included here for backwards compatibility.
* @enum {string}
*/
UIType: "MainModelField" | "CogView4MainModelField" | "FluxMainModelField" | "SD3MainModelField" | "SDXLMainModelField" | "SDXLRefinerModelField" | "ONNXModelField" | "VAEModelField" | "FluxVAEModelField" | "LoRAModelField" | "ControlNetModelField" | "IPAdapterModelField" | "T2IAdapterModelField" | "T5EncoderModelField" | "CLIPEmbedModelField" | "CLIPLEmbedModelField" | "CLIPGEmbedModelField" | "SpandrelImageToImageModelField" | "ControlLoRAModelField" | "SigLipModelField" | "FluxReduxModelField" | "LLaVAModelField" | "Imagen3ModelField" | "Imagen4ModelField" | "ChatGPT4oModelField" | "Gemini2_5ModelField" | "FluxKontextModelField" | "Veo3ModelField" | "RunwayModelField" | "SchedulerField" | "AnyField" | "VideoField" | "CollectionField" | "CollectionItemField" | "DEPRECATED_Boolean" | "DEPRECATED_Color" | "DEPRECATED_Conditioning" | "DEPRECATED_Control" | "DEPRECATED_Float" | "DEPRECATED_Image" | "DEPRECATED_Integer" | "DEPRECATED_Latents" | "DEPRECATED_String" | "DEPRECATED_BooleanCollection" | "DEPRECATED_ColorCollection" | "DEPRECATED_ConditioningCollection" | "DEPRECATED_ControlCollection" | "DEPRECATED_FloatCollection" | "DEPRECATED_ImageCollection" | "DEPRECATED_IntegerCollection" | "DEPRECATED_LatentsCollection" | "DEPRECATED_StringCollection" | "DEPRECATED_BooleanPolymorphic" | "DEPRECATED_ColorPolymorphic" | "DEPRECATED_ConditioningPolymorphic" | "DEPRECATED_ControlPolymorphic" | "DEPRECATED_FloatPolymorphic" | "DEPRECATED_ImagePolymorphic" | "DEPRECATED_IntegerPolymorphic" | "DEPRECATED_LatentsPolymorphic" | "DEPRECATED_StringPolymorphic" | "DEPRECATED_UNet" | "DEPRECATED_Vae" | "DEPRECATED_CLIP" | "DEPRECATED_Collection" | "DEPRECATED_CollectionItem" | "DEPRECATED_Enum" | "DEPRECATED_WorkflowField" | "DEPRECATED_IsIntermediate" | "DEPRECATED_BoardField" | "DEPRECATED_MetadataItem" | "DEPRECATED_MetadataItemCollection" | "DEPRECATED_MetadataItemPolymorphic" | "DEPRECATED_MetadataDict";
UIType: "SchedulerField" | "AnyField" | "CollectionField" | "CollectionItemField" | "DEPRECATED_Boolean" | "DEPRECATED_Color" | "DEPRECATED_Conditioning" | "DEPRECATED_Control" | "DEPRECATED_Float" | "DEPRECATED_Image" | "DEPRECATED_Integer" | "DEPRECATED_Latents" | "DEPRECATED_String" | "DEPRECATED_BooleanCollection" | "DEPRECATED_ColorCollection" | "DEPRECATED_ConditioningCollection" | "DEPRECATED_ControlCollection" | "DEPRECATED_FloatCollection" | "DEPRECATED_ImageCollection" | "DEPRECATED_IntegerCollection" | "DEPRECATED_LatentsCollection" | "DEPRECATED_StringCollection" | "DEPRECATED_BooleanPolymorphic" | "DEPRECATED_ColorPolymorphic" | "DEPRECATED_ConditioningPolymorphic" | "DEPRECATED_ControlPolymorphic" | "DEPRECATED_FloatPolymorphic" | "DEPRECATED_ImagePolymorphic" | "DEPRECATED_IntegerPolymorphic" | "DEPRECATED_LatentsPolymorphic" | "DEPRECATED_StringPolymorphic" | "DEPRECATED_UNet" | "DEPRECATED_Vae" | "DEPRECATED_CLIP" | "DEPRECATED_Collection" | "DEPRECATED_CollectionItem" | "DEPRECATED_Enum" | "DEPRECATED_WorkflowField" | "DEPRECATED_IsIntermediate" | "DEPRECATED_BoardField" | "DEPRECATED_MetadataItem" | "DEPRECATED_MetadataItemCollection" | "DEPRECATED_MetadataItemPolymorphic" | "DEPRECATED_MetadataDict" | "DEPRECATED_MainModelField" | "DEPRECATED_CogView4MainModelField" | "DEPRECATED_FluxMainModelField" | "DEPRECATED_SD3MainModelField" | "DEPRECATED_SDXLMainModelField" | "DEPRECATED_SDXLRefinerModelField" | "DEPRECATED_ONNXModelField" | "DEPRECATED_VAEModelField" | "DEPRECATED_FluxVAEModelField" | "DEPRECATED_LoRAModelField" | "DEPRECATED_ControlNetModelField" | "DEPRECATED_IPAdapterModelField" | "DEPRECATED_T2IAdapterModelField" | "DEPRECATED_T5EncoderModelField" | "DEPRECATED_CLIPEmbedModelField" | "DEPRECATED_CLIPLEmbedModelField" | "DEPRECATED_CLIPGEmbedModelField" | "DEPRECATED_SpandrelImageToImageModelField" | "DEPRECATED_ControlLoRAModelField" | "DEPRECATED_SigLipModelField" | "DEPRECATED_FluxReduxModelField" | "DEPRECATED_LLaVAModelField" | "DEPRECATED_Imagen3ModelField" | "DEPRECATED_Imagen4ModelField" | "DEPRECATED_ChatGPT4oModelField" | "DEPRECATED_Gemini2_5ModelField" | "DEPRECATED_FluxKontextModelField" | "DEPRECATED_Veo3ModelField" | "DEPRECATED_RunwayModelField";
/** UNetField */
UNetField: {
/** @description Info to load unet submodel */
@@ -21901,6 +21940,86 @@ export type components = {
*/
token: string;
};
/** UnknownModelConfig */
UnknownModelConfig: {
/**
* Key
* @description A unique key for this model.
*/
key: string;
/**
* Hash
* @description The hash of the model file(s).
*/
hash: string;
/**
* Path
* @description Path to the model on the filesystem. Relative paths are relative to the Invoke root directory.
*/
path: string;
/**
* File Size
* @description The size of the model in bytes.
*/
file_size: number;
/**
* Name
* @description Name of the model.
*/
name: string;
/**
* Type
* @default unknown
* @constant
*/
type: "unknown";
/**
* Format
* @default unknown
* @constant
*/
format: "unknown";
/**
* Base
* @default unknown
* @constant
*/
base: "unknown";
/**
* Source
* @description The original source of the model (path, URL or repo_id).
*/
source: string;
/** @description The type of source */
source_type: components["schemas"]["ModelSourceType"];
/**
* Description
* @description Model description
*/
description?: string | null;
/**
* Source Api Response
* @description The original API response from the source, as stringified JSON.
*/
source_api_response?: string | null;
/**
* Cover Image
* @description Url for image to preview model
*/
cover_image?: string | null;
/**
* Submodels
* @description Loadable submodels in this model
*/
submodels?: {
[key: string]: components["schemas"]["SubmodelDefinition"];
} | null;
/**
* Usage Info
* @description Usage information for this model
*/
usage_info?: string | null;
};
/**
* Unsharp Mask
* @description Applies an unsharp mask filter to an image
@@ -22176,7 +22295,7 @@ export type components = {
seamless_axes?: string[];
};
/**
* VAE Model - SD1.5, SDXL, SD3, FLUX
* VAE Model - SD1.5, SD2, SDXL, SD3, FLUX
* @description Loads a VAE model, outputting a VaeLoaderOutput
*/
VAELoaderInvocation: {
@@ -22911,7 +23030,7 @@ export interface operations {
[name: string]: unknown;
};
content: {
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
};
};
/** @description Validation Error */
@@ -22961,7 +23080,7 @@ export interface operations {
* "repo_variant": "fp16",
* "upcast_attention": false
* } */
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
};
};
/** @description Bad request */
@@ -23066,7 +23185,7 @@ export interface operations {
* "repo_variant": "fp16",
* "upcast_attention": false
* } */
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
};
};
/** @description Bad request */
@@ -23580,7 +23699,7 @@ export interface operations {
* "repo_variant": "fp16",
* "upcast_attention": false
* } */
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"];
"application/json": components["schemas"]["MainDiffusersConfig"] | components["schemas"]["MainCheckpointConfig"] | components["schemas"]["MainBnbQuantized4bCheckpointConfig"] | components["schemas"]["MainGGUFCheckpointConfig"] | components["schemas"]["VAEDiffusersConfig"] | components["schemas"]["VAECheckpointConfig"] | components["schemas"]["ControlNetDiffusersConfig"] | components["schemas"]["ControlNetCheckpointConfig"] | components["schemas"]["LoRALyCORISConfig"] | components["schemas"]["LoRAOmiConfig"] | components["schemas"]["ControlLoRALyCORISConfig"] | components["schemas"]["ControlLoRADiffusersConfig"] | components["schemas"]["LoRADiffusersConfig"] | components["schemas"]["T5EncoderConfig"] | components["schemas"]["T5EncoderBnbQuantizedLlmInt8bConfig"] | components["schemas"]["TextualInversionFileConfig"] | components["schemas"]["TextualInversionFolderConfig"] | components["schemas"]["IPAdapterInvokeAIConfig"] | components["schemas"]["IPAdapterCheckpointConfig"] | components["schemas"]["T2IAdapterConfig"] | components["schemas"]["SpandrelImageToImageConfig"] | components["schemas"]["CLIPVisionDiffusersConfig"] | components["schemas"]["CLIPLEmbedDiffusersConfig"] | components["schemas"]["CLIPGEmbedDiffusersConfig"] | components["schemas"]["SigLIPConfig"] | components["schemas"]["FluxReduxConfig"] | components["schemas"]["LlavaOnevisionConfig"] | components["schemas"]["ApiModelConfig"] | components["schemas"]["VideoApiModelConfig"] | components["schemas"]["UnknownModelConfig"];
};
};
/** @description Bad request */

View File

@@ -105,16 +105,9 @@ export const isVideoDTO = (dto: ImageDTO | VideoDTO): dto is VideoDTO => {
return 'video_id' in dto;
};
// Models
export type ModelType = S['ModelType'];
export type BaseModelType = S['BaseModelType'];
// Model Configs
export type ControlLoRAModelConfig = S['ControlLoRALyCORISConfig'] | S['ControlLoRADiffusersConfig'];
// TODO(MM2): Can we make key required in the pydantic model?
export type LoRAModelConfig = S['LoRADiffusersConfig'] | S['LoRALyCORISConfig'] | S['LoRAOmiConfig'];
// TODO(MM2): Can we rename this from Vae -> VAE
export type VAEModelConfig = S['VAECheckpointConfig'] | S['VAEDiffusersConfig'];
export type ControlNetModelConfig = S['ControlNetDiffusersConfig'] | S['ControlNetCheckpointConfig'];
export type IPAdapterModelConfig = S['IPAdapterInvokeAIConfig'] | S['IPAdapterCheckpointConfig'];
@@ -122,7 +115,7 @@ export type T2IAdapterModelConfig = S['T2IAdapterConfig'];
export type CLIPLEmbedModelConfig = S['CLIPLEmbedDiffusersConfig'];
export type CLIPGEmbedModelConfig = S['CLIPGEmbedDiffusersConfig'];
export type CLIPEmbedModelConfig = CLIPLEmbedModelConfig | CLIPGEmbedModelConfig;
export type LlavaOnevisionConfig = S['LlavaOnevisionConfig'];
type LlavaOnevisionConfig = S['LlavaOnevisionConfig'];
export type T5EncoderModelConfig = S['T5EncoderConfig'];
export type T5EncoderBnbQuantizedLlmInt8bModelConfig = S['T5EncoderBnbQuantizedLlmInt8bConfig'];
export type SpandrelImageToImageModelConfig = S['SpandrelImageToImageConfig'];
@@ -130,16 +123,15 @@ type TextualInversionModelConfig = S['TextualInversionFileConfig'] | S['TextualI
type DiffusersModelConfig = S['MainDiffusersConfig'];
export type CheckpointModelConfig = S['MainCheckpointConfig'];
type CLIPVisionDiffusersConfig = S['CLIPVisionDiffusersConfig'];
export type SigLipModelConfig = S['SigLIPConfig'];
type SigLipModelConfig = S['SigLIPConfig'];
export type FLUXReduxModelConfig = S['FluxReduxConfig'];
export type ApiModelConfig = S['ApiModelConfig'];
type ApiModelConfig = S['ApiModelConfig'];
export type VideoApiModelConfig = S['VideoApiModelConfig'];
type UnknownModelConfig = S['UnknownModelConfig'];
export type MainModelConfig = DiffusersModelConfig | CheckpointModelConfig | ApiModelConfig;
export type FLUXKontextModelConfig = MainModelConfig;
export type ChatGPT4oModelConfig = ApiModelConfig;
export type Gemini2_5ModelConfig = ApiModelConfig;
type Veo3ModelConfig = VideoApiModelConfig;
type RunwayModelConfig = VideoApiModelConfig;
export type AnyModelConfig =
| ControlLoRAModelConfig
| LoRAModelConfig
@@ -157,7 +149,8 @@ export type AnyModelConfig =
| CLIPVisionDiffusersConfig
| SigLipModelConfig
| FLUXReduxModelConfig
| LlavaOnevisionConfig;
| LlavaOnevisionConfig
| UnknownModelConfig;
/**
* Checks if a list of submodels contains any that match a given variant or type
@@ -201,10 +194,17 @@ export const isControlLoRAModelConfig = (config: AnyModelConfig): config is Cont
return config.type === 'control_lora';
};
export const isVAEModelConfig = (config: AnyModelConfig, excludeSubmodels?: boolean): config is VAEModelConfig => {
export const isVAEModelConfigOrSubmodel = (
config: AnyModelConfig,
excludeSubmodels?: boolean
): config is VAEModelConfig => {
return config.type === 'vae' || (!excludeSubmodels && config.type === 'main' && checkSubmodels(['vae'], config));
};
export const isVAEModelConfig = (config: AnyModelConfig): config is VAEModelConfig => {
return config.type === 'vae';
};
export const isNonFluxVAEModelConfig = (
config: AnyModelConfig,
excludeSubmodels?: boolean
@@ -248,7 +248,7 @@ export const isT2IAdapterModelConfig = (config: AnyModelConfig): config is T2IAd
return config.type === 't2i_adapter';
};
export const isT5EncoderModelConfig = (
export const isT5EncoderModelConfigOrSubmodel = (
config: AnyModelConfig,
excludeSubmodels?: boolean
): config is T5EncoderModelConfig | T5EncoderBnbQuantizedLlmInt8bModelConfig => {
@@ -258,7 +258,13 @@ export const isT5EncoderModelConfig = (
);
};
export const isCLIPEmbedModelConfig = (
export const isT5EncoderModelConfig = (
config: AnyModelConfig
): config is T5EncoderModelConfig | T5EncoderBnbQuantizedLlmInt8bModelConfig => {
return config.type === 't5_encoder';
};
export const isCLIPEmbedModelConfigOrSubmodel = (
config: AnyModelConfig,
excludeSubmodels?: boolean
): config is CLIPEmbedModelConfig => {
@@ -268,7 +274,11 @@ export const isCLIPEmbedModelConfig = (
);
};
export const isCLIPLEmbedModelConfig = (
export const isCLIPEmbedModelConfig = (config: AnyModelConfig): config is CLIPEmbedModelConfig => {
return config.type === 'clip_embed';
};
export const isCLIPLEmbedModelConfigOrSubmodel = (
config: AnyModelConfig,
excludeSubmodels?: boolean
): config is CLIPLEmbedModelConfig => {
@@ -278,7 +288,7 @@ export const isCLIPLEmbedModelConfig = (
);
};
export const isCLIPGEmbedModelConfig = (
export const isCLIPGEmbedModelConfigOrSubmodel = (
config: AnyModelConfig,
excludeSubmodels?: boolean
): config is CLIPGEmbedModelConfig => {
@@ -310,20 +320,8 @@ export const isVideoModelConfig = (config: AnyModelConfig): config is VideoApiMo
return config.type === 'video';
};
export const isVeo3ModelConfig = (config: AnyModelConfig): config is Veo3ModelConfig => {
return config.base === 'veo3' && config.type === 'video';
};
export const isRunwayModelConfig = (config: AnyModelConfig): config is RunwayModelConfig => {
return config.base === 'runway' && config.type === 'video';
};
export const isImagen3ModelConfig = (config: AnyModelConfig): config is ApiModelConfig => {
return config.type === 'main' && config.base === 'imagen3';
};
export const isImagen4ModelConfig = (config: AnyModelConfig): config is ApiModelConfig => {
return config.type === 'main' && config.base === 'imagen4';
export const isUnknownModelConfig = (config: AnyModelConfig): config is UnknownModelConfig => {
return config.type === 'unknown';
};
export const isFluxKontextApiModelConfig = (config: AnyModelConfig): config is ApiModelConfig => {
@@ -350,30 +348,10 @@ export const isRefinerMainModelModelConfig = (config: AnyModelConfig): config is
return config.type === 'main' && config.base === 'sdxl-refiner';
};
export const isSDXLMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'sdxl';
};
export const isSD3MainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'sd-3';
};
export const isCogView4MainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'cogview4';
};
export const isFluxMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'flux';
};
export const isFluxFillMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'flux' && config.variant === 'inpaint';
};
export const isNonSDXLMainModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && (config.base === 'sd-1' || config.base === 'sd-2');
};
export const isTIModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'embedding';
};

View File

@@ -4,6 +4,7 @@ import { logger } from 'app/logging/logger';
import type { AppDispatch, AppGetState } from 'app/store/store';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { discordLink, githubIssuesLink } from 'features/system/store/constants';
import { toast, toastApi } from 'features/toast/toast';
import { navigationApi } from 'features/ui/layouts/navigation-api';
import { t } from 'i18next';
@@ -191,3 +192,10 @@ const HFUnauthorizedToastDescription = () => {
</Text>
);
};
export const DiscordLink = () => {
return <ExternalLink fontWeight="semibold" href={discordLink} display="inline-flex" label="Discord" />;
};
export const GitHubIssuesLink = () => {
return <ExternalLink fontWeight="semibold" href={githubIssuesLink} display="inline-flex" label="GitHub" />;
};

View File

@@ -1,4 +1,4 @@
import { ExternalLink } from '@invoke-ai/ui-library';
import { ExternalLink, Flex, Text } from '@invoke-ai/ui-library';
import { isAnyOf } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import { socketConnected } from 'app/store/middleware/listenerMiddleware/listeners/socketConnected';
@@ -20,13 +20,14 @@ import ErrorToastDescription, { getTitle } from 'features/toast/ErrorToastDescri
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { LRUCache } from 'lru-cache';
import { Trans } from 'react-i18next';
import type { ApiTagDescription } from 'services/api';
import { api, LIST_ALL_TAG, LIST_TAG } from 'services/api';
import { modelsApi } from 'services/api/endpoints/models';
import { queueApi } from 'services/api/endpoints/queue';
import { workflowsApi } from 'services/api/endpoints/workflows';
import { buildOnInvocationComplete } from 'services/events/onInvocationComplete';
import { buildOnModelInstallError } from 'services/events/onModelInstallError';
import { buildOnModelInstallError, DiscordLink, GitHubIssuesLink } from 'services/events/onModelInstallError';
import type { ClientToServerEvents, ServerToClientEvents } from 'services/events/types';
import type { Socket } from 'socket.io-client';
import type { JsonObject } from 'type-fest';
@@ -292,7 +293,41 @@ export const setEventListeners = ({ socket, store, setIsConnected }: SetEventLis
socket.on('model_install_complete', (data) => {
log.debug({ data }, 'Model install complete');
const { id } = data;
const { id, config } = data;
if (
config.type === 'unknown' ||
config.base === 'unknown' ||
/**
* Checking if type/base are 'unknown' technically narrows the config such that it's not possible for a config
* that passes to the `config.[type|base] === 'unknown'` checks. In the future, if we have more model config
* classes, this may change, so we will continue to check all three. Any one being 'unknown' is concerning
* enough to warrant a toast.
*/
/* @ts-expect-error See note above */
config.format === 'unknown'
) {
toast({
id: 'UNKNOWN_MODEL',
title: t('modelManager.unidentifiedModelTitle'),
description: (
<Flex flexDir="column" gap={2}>
<Text fontSize="md" as="span">
<Trans i18nKey="modelManager.unidentifiedModelMessage" />
</Text>
<Text fontSize="md" as="span">
<Trans
i18nKey="modelManager.unidentifiedModelMessage2"
components={{ DiscordLink: <DiscordLink />, GitHubIssuesLink: <GitHubIssuesLink /> }}
/>
</Text>
</Flex>
),
status: 'error',
isClosable: true,
duration: null,
});
}
const installs = selectModelInstalls(getState()).data;

189
test.json Normal file
View File

@@ -0,0 +1,189 @@
{
"$defs": {
"ClipVariantType": {
"description": "Variant type.",
"enum": ["large", "gigantic"],
"title": "ClipVariantType",
"type": "string"
},
"ModelSourceType": {
"description": "Model source type.",
"enum": ["path", "url", "hf_repo_id"],
"title": "ModelSourceType",
"type": "string"
},
"ModelType": {
"description": "Model type.",
"enum": [
"onnx",
"main",
"vae",
"lora",
"control_lora",
"controlnet",
"embedding",
"ip_adapter",
"clip_vision",
"clip_embed",
"t2i_adapter",
"t5_encoder",
"spandrel_image_to_image",
"siglip",
"flux_redux",
"llava_onevision",
"video",
"unknown"
],
"title": "ModelType",
"type": "string"
},
"ModelVariantType": {
"description": "Variant type.",
"enum": ["normal", "inpaint", "depth"],
"title": "ModelVariantType",
"type": "string"
},
"SubModelType": {
"description": "Submodel type.",
"enum": [
"unet",
"transformer",
"text_encoder",
"text_encoder_2",
"text_encoder_3",
"tokenizer",
"tokenizer_2",
"tokenizer_3",
"vae",
"vae_decoder",
"vae_encoder",
"scheduler",
"safety_checker"
],
"title": "SubModelType",
"type": "string"
},
"SubmodelDefinition": {
"properties": {
"path_or_prefix": { "title": "Path Or Prefix", "type": "string" },
"model_type": { "$ref": "#/$defs/ModelType" },
"variant": {
"anyOf": [
{ "$ref": "#/$defs/ModelVariantType" },
{ "$ref": "#/$defs/ClipVariantType" },
{ "type": "null" }
],
"default": null,
"title": "Variant"
}
},
"required": ["path_or_prefix", "model_type"],
"title": "SubmodelDefinition",
"type": "object"
}
},
"properties": {
"key": {
"description": "A unique key for this model.",
"title": "Key",
"type": "string"
},
"hash": {
"description": "The hash of the model file(s).",
"title": "Hash",
"type": "string"
},
"path": {
"description": "Path to the model on the filesystem. Relative paths are relative to the Invoke root directory.",
"title": "Path",
"type": "string"
},
"file_size": {
"description": "The size of the model in bytes.",
"title": "File Size",
"type": "integer"
},
"name": {
"description": "Name of the model.",
"title": "Name",
"type": "string"
},
"type": {
"const": "unknown",
"default": "unknown",
"title": "Type",
"type": "string"
},
"format": {
"const": "unknown",
"default": "unknown",
"title": "Format",
"type": "string"
},
"base": {
"const": "any",
"default": "any",
"title": "Base",
"type": "string"
},
"source": {
"description": "The original source of the model (path, URL or repo_id).",
"title": "Source",
"type": "string"
},
"source_type": {
"$ref": "#/$defs/ModelSourceType",
"description": "The type of source"
},
"description": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"default": null,
"description": "Model description",
"title": "Description"
},
"source_api_response": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"default": null,
"description": "The original API response from the source, as stringified JSON.",
"title": "Source Api Response"
},
"cover_image": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"default": null,
"description": "Url for image to preview model",
"title": "Cover Image"
},
"submodels": {
"anyOf": [
{
"additionalProperties": { "$ref": "#/$defs/SubmodelDefinition" },
"propertyNames": { "$ref": "#/$defs/SubModelType" },
"type": "object"
},
{ "type": "null" }
],
"default": null,
"description": "Loadable submodels in this model",
"title": "Submodels"
},
"usage_info": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"default": null,
"description": "Usage information for this model",
"title": "Usage Info"
}
},
"required": [
"hash",
"path",
"file_size",
"name",
"source",
"source_type",
"key",
"type",
"format"
],
"title": "UnknownModelConfig",
"type": "object"
}