Compare commits

..

3 Commits

Author SHA1 Message Date
Lincoln Stein
3c50448ccf Merge branch 'main' into dev/pytorch2 2023-04-06 21:47:46 -04:00
Lincoln Stein
5dec5b6f51 Merge branch 'main' into dev/pytorch2 2023-03-23 23:31:21 -04:00
Kevin Turner
e158ad8534 deps: upgrade to PyTorch 2.0 (replaces xformers) 2023-03-15 15:45:48 -07:00
600 changed files with 7602 additions and 24666 deletions

14
.github/CODEOWNERS vendored
View File

@@ -1,16 +1,16 @@
# continuous integration # continuous integration
/.github/workflows/ @lstein @blessedcoolant /.github/workflows/ @mauwii @lstein @blessedcoolant
# documentation # documentation
/docs/ @lstein @tildebyte @blessedcoolant /docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @blessedcoolant /mkdocs.yml @lstein @mauwii @blessedcoolant
# nodes # nodes
/invokeai/app/ @Kyle0654 @blessedcoolant /invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration # installation and configuration
/pyproject.toml @lstein @blessedcoolant /pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant /docker/ @mauwii @lstein @blessedcoolant
/scripts/ @ebr @lstein /scripts/ @ebr @lstein
/installer/ @lstein @ebr /installer/ @lstein @ebr
/invokeai/assets @lstein @ebr /invokeai/assets @lstein @ebr
@@ -22,11 +22,11 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein /invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation, model management, postprocessing # generation, model management, postprocessing
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2 /invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
# front ends # front ends
/invokeai/frontend/CLI @lstein /invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr /invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername /invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername /invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant /invokeai/frontend/web @psychedelicious @blessedcoolant

19
.github/stale.yaml vendored
View File

@@ -1,19 +0,0 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

View File

@@ -2,7 +2,8 @@ name: mkdocs-material
on: on:
push: push:
branches: branches:
- 'refs/heads/v2.3' - 'main'
- 'development'
permissions: permissions:
contents: write contents: write
@@ -11,10 +12,6 @@ jobs:
mkdocs-material: mkdocs-material:
if: github.event.pull_request.draft == false if: github.event.pull_request.draft == false
runs-on: ubuntu-latest runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps: steps:
- name: checkout sources - name: checkout sources
uses: actions/checkout@v3 uses: actions/checkout@v3
@@ -25,15 +22,11 @@ jobs:
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: '3.10' python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements - name: install requirements
env:
PIP_USE_PEP517: 1
run: | run: |
python -m \ python -m \
pip install ".[docs]" pip install -r docs/requirements-mkdocs.txt
- name: confirm buildability - name: confirm buildability
run: | run: |
@@ -43,7 +36,7 @@ jobs:
--verbose --verbose
- name: deploy to gh-pages - name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/v2.3' }} if: ${{ github.ref == 'refs/heads/main' }}
run: | run: |
python -m \ python -m \
mkdocs gh-deploy \ mkdocs gh-deploy \

2
.gitignore vendored
View File

@@ -9,8 +9,6 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml configs/models.user.yaml
config/models.user.yml config/models.user.yml
invokeai.init invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image # ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh anaconda.sh

View File

@@ -33,8 +33,6 @@
</div> </div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>] **Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
@@ -86,7 +84,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software, 6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models. select a set of starting image generaiton models.
7. Find the folder that InvokeAI was installed into (it is not the 7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this same as the unpacked zip file directory!) The default location of this
@@ -150,11 +148,6 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2 pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_ _For Macintoshes, either Intel or M1/M2:_
```sh ```sh

View File

@@ -1,18 +1,10 @@
# Invocations # Invocations
Invocations represent a single operation, its inputs, and its outputs. These Invocations represent a single operation, its inputs, and its outputs. These operations and their outputs can be chained together to generate and modify images.
operations and their outputs can be chained together to generate and modify
images.
## Creating a new invocation ## Creating a new invocation
To create a new invocation, either find the appropriate module file in To create a new invocation, either find the appropriate module file in `/ldm/invoke/app/invocations` to add your invocation to, or create a new one in that folder. All invocations in that folder will be discovered and made available to the CLI and API automatically. Invocations make use of [typing](https://docs.python.org/3/library/typing.html) and [pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration into the CLI and API.
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this: An invocation looks like this:
@@ -49,54 +41,34 @@ class UpscaleInvocation(BaseInvocation):
Each portion is important to implement correctly. Each portion is important to implement correctly.
### Class definition and type ### Class definition and type
```py ```py
class UpscaleInvocation(BaseInvocation): class UpscaleInvocation(BaseInvocation):
"""Upscales an image.""" """Upscales an image."""
type: Literal['upscale'] = 'upscale' type: Literal['upscale'] = 'upscale'
``` ```
All invocations must derive from `BaseInvocation`. They should have a docstring that declares what they do in a single, short line. They should also have a `type` with a type hint that's `Literal["command_name"]`, where `command_name` is what the user will type on the CLI or use in the API to create this invocation. The `command_name` must be unique. The `type` must be assigned to the value of the literal in the type hint.
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs ### Inputs
```py ```py
# Inputs # Inputs
image: Union[ImageField,None] = Field(description="The input image") image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength") strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level") level: Literal[2,4] = Field(default=2, description="The upscale level")
``` ```
Inputs consist of three parts: a name, a type hint, and a `Field` with default, description, and validation information. For example:
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
| Part | Value | Description | | Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- | | ---- | ----- | ----------- |
| Name | `strength` | This field is referred to as `strength` | | Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` | | Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. | | Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this field to be parsed with `None` as a value, which enables linking to previous invocations. All fields should either provide a default value or allow `None` as a value, so that they can be overwritten with a linked output from another invocation.
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as The special type `ImageField` is also used here. All images are passed as `ImageField`, which protects them from pydantic validation errors (since images only ever come from links).
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match. Finally, note that for all linking, the `type` of the linked fields must match. If the `name` also matches, then the field can be **automatically linked** to a previous invocation by name and matching.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Invoke Function ### Invoke Function
```py ```py
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name) image = context.services.images.get(self.image.image_type, self.image.image_name)
@@ -116,22 +88,13 @@ previous invocation by name and matching.
image = ImageField(image_type = image_type, image_name = image_name) image = ImageField(image_type = image_type, image_name = image_name)
) )
``` ```
The `invoke` function is the last portion of an invocation. It is provided an `InvocationContext` which contains services to perform work as well as a `session_id` for use as needed. It should return a class with output values that derives from `BaseInvocationOutput`.
The `invoke` function is the last portion of an invocation. It is provided an Before being called, the invocation will have all of its fields set from defaults, inputs, and finally links (overriding in that order).
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from Assume that this invocation may be running simultaneously with other invocations, may be running on another machine, or in other interesting scenarios. If you need functionality, please provide it as a service in the `InvocationServices` class, and make sure it can be overridden.
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs ### Outputs
```py ```py
class ImageOutput(BaseInvocationOutput): class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image""" """Base class for invocations that output an image"""
@@ -139,64 +102,4 @@ class ImageOutput(BaseInvocationOutput):
image: ImageField = Field(default=None, description="The output image") image: ImageField = Field(default=None, description="The output image")
``` ```
Output classes look like an invocation class without the invoke method. Prefer to use an existing output class if available, and prefer to name inputs the same as outputs when possible, to promote automatic invocation linking.
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
```
The generated OpenAPI schema, and all clients/types generated from it, will have
the `type` and `image` properties marked as optional, even though we know they
will always have a value by the time we can interact with them via the API.
Here's the same class, but with the schema customisation added:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
```
The resultant schema (and any API client or types generated from it) will now
have see `type` as string literal `"image"` and `image` as an `ImageField`
object.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

View File

@@ -32,7 +32,7 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually response is stored in the InvokeAI initialization file (usually
`invokeai.init` in your home directory). You can change the default at any `.invokeai` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`. uncommenting the line `--nsfw_checker`.

View File

@@ -89,7 +89,7 @@ experimental versions later.
sudo apt update sudo apt update
sudo apt install -y software-properties-common sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install -y python3.10 python3-pip python3.10-venv sudo apt install python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3 sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
``` ```

View File

@@ -50,7 +50,7 @@ subset that are currently installed are found in
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 | |stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting | |sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 | |stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting | |sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion | |analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate | |deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion | |d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |

View File

@@ -461,8 +461,7 @@ def get_torch_source() -> (Union[str, None],str):
url = "https://download.pytorch.org/whl/cpu" url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda': if device == 'cuda':
url = 'https://download.pytorch.org/whl/cu117' url = 'https://download.pytorch.org/whl/cu118'
optional_modules = '[xformers]'
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13 # in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -1,23 +1,20 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os import os
from argparse import Namespace
import invokeai.backend.util.logging as logger
from typing import types
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState, LibraryGraph from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage from ..services.sqlite import SqliteItemStorage
from ..services.metadata import PngMetadataService
from .events import FastAPIEventService from .events import FastAPIEventService
@@ -43,16 +40,15 @@ class ApiDependencies:
invoker: Invoker = None invoker: Invoker = None
@staticmethod @staticmethod
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger): def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet() Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert Globals.ckpt_convert = config.ckpt_convert
# TO DO: Use the config to select the logger rather than use the default # TODO: Use a logger
# invokeai logging module print(f">> Internet connectivity is {Globals.internet_available}")
logger.info(f"Internet connectivity is {Globals.internet_available}")
events = FastAPIEventService(event_handler_id) events = FastAPIEventService(event_handler_id)
@@ -62,33 +58,24 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')) latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
metadata = PngMetadataService() images = DiskImageStorage(f'{output_folder}/images')
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
# TODO: build a file/path manager? # TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db") db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices( services = InvocationServices(
model_manager=get_model_manager(config,logger), model_manager=get_model_manager(config),
events=events, events=events,
logger=logger,
latents=latents, latents=latents,
images=images, images=images,
metadata=metadata,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
), ),
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config,logger), restoration=RestorationServices(config),
) )
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services) ApiDependencies.invoker = Invoker(services)
@staticmethod @staticmethod

View File

@@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
) )
except Empty: except Empty:
await asyncio.sleep(0.1) await asyncio.sleep(0.001)
pass pass
except asyncio.CancelledError as e: except asyncio.CancelledError as e:

View File

@@ -1,40 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
"""The response type for images"""
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class SavedImage(BaseModel):
image_name: str = Field(description="The name of the saved image")
thumbnail_name: str = Field(description="The name of the saved thumbnail")
created: int = Field(description="The created timestamp of the saved image")

View File

@@ -1,20 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import Body, HTTPException, Path, Query, Request, UploadFile from datetime import datetime, timezone
from fastapi import Path, Request, UploadFile
from fastapi.responses import FileResponse, Response from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from PIL import Image from PIL import Image
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
@@ -26,123 +17,50 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
async def get_image( async def get_image(
image_type: ImageType = Path(description="The type of image to get"), image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"), image_name: str = Path(description="The name of the image to get"),
) -> FileResponse: ):
"""Gets an image""" """Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
path = ApiDependencies.invoker.services.images.get_path( @images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.delete("/{image_type}/{image_name}", operation_id="delete_image")
async def delete_image(
image_type: ImageType = Path(description="The type of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image and its thumbnail"""
ApiDependencies.invoker.services.images.delete(
image_type=image_type, image_name=image_name
)
@images_router.get(
"/{thumbnail_type}/thumbnails/{thumbnail_name}", operation_id="get_thumbnail"
)
async def get_thumbnail( async def get_thumbnail(
thumbnail_type: ImageType = Path(description="The type of thumbnail to get"), image_type: ImageType = Path(description="The type of image to get"),
thumbnail_name: str = Path(description="The name of the thumbnail to get"), image_name: str = Path(description="The name of the image to get"),
) -> FileResponse | Response: ):
"""Gets a thumbnail""" """Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
path = ApiDependencies.invoker.services.images.get_path( filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
image_type=thumbnail_type, image_name=thumbnail_name, is_thumbnail=True return FileResponse(filename)
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post( @images_router.post(
"/uploads/", "/uploads/",
operation_id="upload_image", operation_id="upload_image",
responses={ responses={
201: { 201: {"description": "The image was uploaded successfully"},
"description": "The image was uploaded successfully", 404: {"description": "Session not found"},
"model": ImageResponse,
}, },
415: {"description": "Image upload failed"},
},
status_code=201,
) )
async def upload_image( async def upload_image(file: UploadFile, request: Request):
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
if not file.content_type.startswith("image"): if not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image") return Response(status_code=415)
contents = await file.read() contents = await file.read()
try: try:
img = Image.open(io.BytesIO(contents)) im = Image.open(contents)
except: except:
# Error opening the image # Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image") return Response(status_code=415)
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png" filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
saved_image = ApiDependencies.invoker.services.images.save( return Response(
ImageType.UPLOAD, filename, img status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
) )
},
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
image_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name
) )
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name, True
)
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=saved_image.image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
metadata=ImageResponseMetadata(
created=saved_image.created,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = image_url
return res
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
)
async def list_images(
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result

View File

@@ -1,12 +1,10 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter, HTTPException from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"]) models_router = APIRouter(prefix="/v1/models", tags=["models"])
@@ -17,9 +15,11 @@ class VaeRepo(BaseModel):
path: Optional[str] = Field(description="The path to the VAE") path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE") subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel): class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model") description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo): class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt' format: Literal['ckpt'] = 'ckpt'
@@ -29,6 +29,7 @@ class CkptModelInfo(ModelInfo):
width: Optional[int] = Field(description="The width of the model") width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model") height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo): class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers' format: Literal['diffusers'] = 'diffusers'
@@ -36,29 +37,12 @@ class DiffusersModelInfo(ModelInfo):
repo_id: Optional[str] = Field(description="The repo ID to use for this model") repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model") path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel): class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]] models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get( @models_router.get(
"/", "/",
operation_id="list_models", operation_id="list_models",
@@ -70,60 +54,106 @@ async def list_models() -> ModelsList:
models = parse_obj_as(ModelsList, { "models": models_raw }) models = parse_obj_as(ModelsList, { "models": models_raw })
return models return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
@models_router.post( # @socketio.on("searchForModels")
"/", # def handle_search_models(search_folder: str):
operation_id="update_model", # try:
responses={200: {"status": "success"}}, # if not search_folder:
) # socketio.emit(
async def update_model( # "foundModels",
model_request: CreateModelRequest # {"search_folder": None, "found_models": None},
) -> CreateModelResponse: # )
""" Add Model """ # else:
model_request_info = model_request.info # (
info_dict = model_request_info.dict() # search_folder,
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success") # found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
ApiDependencies.invoker.services.model_manager.add_model( # @socketio.on("addNewModel")
model_name=model_request.name, # def handle_add_model(new_model_config: dict):
model_attributes=info_dict, # try:
clobber=True, # model_name = new_model_config["name"]
) # del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
return model_response # print(f">> Adding New Model: {model_name}")
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
@models_router.delete( # new_model_list = self.generate.model_manager.list_models()
"/{model_name}", # socketio.emit(
operation_id="del_model", # "newModelAdded",
responses={ # {
204: { # "new_model_name": model_name,
"description": "Model deleted successfully" # "model_list": new_model_list,
}, # "update": update,
404: { # },
"description": "Model not found" # )
} # print(f">> New Model Added: {model_name}")
}, # except Exception as e:
) # self.handle_exceptions(e)
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# check if model exists # @socketio.on("deleteModel")
logger.info(f"Checking for model {model_name}...") # def handle_delete_model(model_name: str):
# try:
if model_exists: # print(f">> Deleting Model: {model_name}")
logger.info(f"Deleting Model: {model_name}") # self.generate.model_manager.del_model(model_name)
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True) # self.generate.model_manager.commit(opt.conf)
logger.info(f"Model Deleted: {model_name}") # updated_model_list = self.generate.model_manager.list_models()
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully") # socketio.emit(
# "modelDeleted",
else: # {
logger.error(f"Model not found") # "deleted_model_name": model_name,
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found") # "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers") # @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict): # def convert_to_diffusers(model_to_convert: dict):
@@ -246,3 +276,4 @@ async def delete_model(model_name: str) -> None:
# print(f">> Models Merged: {models_to_merge}") # print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}") # print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e: # except Exception as e:
# self.handle_exceptions(e)

View File

@@ -2,7 +2,8 @@
from typing import Annotated, List, Optional, Union from typing import Annotated, List, Optional, Union
from fastapi import Body, HTTPException, Path, Query, Response from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic.fields import Field from pydantic.fields import Field
@@ -75,7 +76,7 @@ async def get_session(
"""Gets a session""" """Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
else: else:
return session return session
@@ -98,7 +99,7 @@ async def add_node(
"""Adds a node to the graph""" """Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
try: try:
session.add_node(node) session.add_node(node)
@@ -107,9 +108,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session.id return session.id
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
raise HTTPException(status_code=400) return Response(status_code=400)
except IndexError: except IndexError:
raise HTTPException(status_code=400) return Response(status_code=400)
@session_router.put( @session_router.put(
@@ -131,7 +132,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges""" """Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
try: try:
session.update_node(node_path, node) session.update_node(node_path, node)
@@ -140,9 +141,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
raise HTTPException(status_code=400) return Response(status_code=400)
except IndexError: except IndexError:
raise HTTPException(status_code=400) return Response(status_code=400)
@session_router.delete( @session_router.delete(
@@ -161,7 +162,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges""" """Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
try: try:
session.delete_node(node_path) session.delete_node(node_path)
@@ -170,9 +171,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
raise HTTPException(status_code=400) return Response(status_code=400)
except IndexError: except IndexError:
raise HTTPException(status_code=400) return Response(status_code=400)
@session_router.post( @session_router.post(
@@ -191,7 +192,7 @@ async def add_edge(
"""Adds an edge to the graph""" """Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
try: try:
session.add_edge(edge) session.add_edge(edge)
@@ -200,9 +201,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
raise HTTPException(status_code=400) return Response(status_code=400)
except IndexError: except IndexError:
raise HTTPException(status_code=400) return Response(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution # TODO: the edge being in the path here is really ugly, find a better solution
@@ -225,7 +226,7 @@ async def delete_edge(
"""Deletes an edge from the graph""" """Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
try: try:
edge = Edge( edge = Edge(
@@ -238,9 +239,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
raise HTTPException(status_code=400) return Response(status_code=400)
except IndexError: except IndexError:
raise HTTPException(status_code=400) return Response(status_code=400)
@session_router.put( @session_router.put(
@@ -258,14 +259,14 @@ async def invoke_session(
all: bool = Query( all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations" default=False, description="Whether or not to invoke all remaining invocations"
), ),
) -> Response: ) -> None:
"""Invokes a session""" """Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
raise HTTPException(status_code=404) return Response(status_code=404)
if session.is_complete(): if session.is_complete():
raise HTTPException(status_code=400) return Response(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all) ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202) return Response(status_code=202)
@@ -280,7 +281,7 @@ async def invoke_session(
) )
async def cancel_session_invoke( async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"), session_id: str = Path(description="The id of the session to cancel"),
) -> Response: ) -> None:
"""Invokes a session""" """Invokes a session"""
ApiDependencies.invoker.cancel(session_id) ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202) return Response(status_code=202)

View File

@@ -3,7 +3,6 @@ import asyncio
from inspect import signature from inspect import signature
import uvicorn import uvicorn
import invokeai.backend.util.logging as logger
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@@ -17,6 +16,7 @@ from ..backend import Args
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models from .api.routers import images, sessions, models
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
# Create the app # Create the app
@@ -56,7 +56,7 @@ async def startup_event():
config.parse_args() config.parse_args()
ApiDependencies.initialize( ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id, logger=logger config=config, event_handler_id=event_handler_id
) )

View File

@@ -2,46 +2,15 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
import argparse import argparse
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import networkx as nx import networkx as nx
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState, LibraryGraph, Edge from ..services.graph import GraphExecutionState
from ..services.invoker import Invoker from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers( def add_parsers(
subparsers, subparsers,
commands: list[type], commands: list[type],
@@ -66,26 +35,30 @@ def add_parsers(
if name in exclude_fields: if name in exclude_fields:
continue continue
add_field_argument(command_parser, name, field) if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
def add_graph_parsers( f"--{name}",
subparsers, dest=name,
graphs: list[LibraryGraph], type=field_type,
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None default=field.default if field.default_factory is None else field.default_factory(),
): choices=allowed_values,
for graph in graphs: help=field.field_info.description,
command_parser = subparsers.add_parser(graph.name, help=graph.description) )
else:
if add_arguments is not None: command_parser.add_argument(
add_arguments(command_parser) f"--{name}",
dest=name,
# Add arguments for inputs type=field.type_,
for exposed_input in graph.exposed_inputs: default=field.default if field.default_factory is None else field.default_factory(),
node = graph.graph.get_node(exposed_input.node_path) help=field.field_info.description,
field = node.__fields__[exposed_input.field] )
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext: class CliContext:
@@ -93,38 +66,17 @@ class CliContext:
session: GraphExecutionState session: GraphExecutionState
parser: argparse.ArgumentParser parser: argparse.ArgumentParser
defaults: dict[str, Any] defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser): def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker self.invoker = invoker
self.session = session self.session = session
self.parser = parser self.parser = parser
self.defaults = dict() self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self): def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id) self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception): class ExitCli(Exception):
"""Exception to exit the CLI""" """Exception to exit the CLI"""
@@ -230,7 +182,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))): for i in range(min(self.count, len(history))):
entry_id = history[-1 - i] entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id) entry = context.get_session().graph.get_node(entry_id)
logger.info(f"{entry_id}: {get_invocation_command(entry)}") print(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand): class SetDefaultCommand(BaseCommand):

View File

@@ -10,7 +10,6 @@ import shlex
from pathlib import Path from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
import invokeai.backend.util.logging as logger
from ...backend import ModelManager, Globals from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand from .commands import BaseCommand
@@ -161,8 +160,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass pass
except OSError: # file likely corrupted except OSError: # file likely corrupted
newname = f"{histfile}.old" newname = f"{histfile}.old"
logger.error( print(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}" f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
) )
histfile.replace(Path(newname)) histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile) atexit.register(readline.write_history_file, histfile)

View File

@@ -13,21 +13,17 @@ from typing import (
from pydantic import BaseModel from pydantic import BaseModel
from pydantic.fields import Field from pydantic.fields import Field
import invokeai.backend.util.logging as logger
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices from .services.invocation_services import InvocationServices
@@ -62,7 +58,7 @@ def add_invocation_args(command_parser):
) )
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser: def get_command_parser() -> argparse.ArgumentParser:
# Create invocation parser # Create invocation parser
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
@@ -80,72 +76,20 @@ def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses() commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"]) add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges( def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation, context: CliContext a: BaseInvocation, b: BaseInvocation
) -> list[Edge]: ) -> list[Edge]:
"""Generates all possible edges between two invocations""" """Generates all possible edges between two invocations"""
afields = get_node_outputs(a, context) atype = type(a)
bfields = get_node_inputs(b, context) btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
matching_fields = set(afields.keys()).intersection(bfields.keys()) matching_fields = set(afields.keys()).intersection(bfields.keys())
@@ -154,14 +98,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields) matching_fields = matching_fields.difference(invalid_fields)
# Validate types # Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)] matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
edges = [ edges = [
Edge( Edge(
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field), source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field) destination=EdgeConnection(node_id=b.id, field=field)
) )
for alias in matching_fields for field in matching_fields
] ]
return edges return edges
@@ -181,7 +125,7 @@ def invoke_all(context: CliContext):
# Print any errors # Print any errors
if context.session.has_error(): if context.session.has_error():
for n in context.session.errors: for n in context.session.errors:
context.invoker.services.logger.error( print(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}" f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
) )
@@ -191,18 +135,16 @@ def invoke_all(context: CliContext):
def invoke_cli(): def invoke_cli():
config = Args() config = Args()
config.parse_args() config.parse_args()
model_manager = get_model_manager(config,logger=logger) model_manager = get_model_manager(config)
# This initializes the autocompleter and returns it. # This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer # Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion # object, but the object can be used to change autocompletion
# behavior on the fly, if desired. # behavior on the fly, if desired.
set_autocompleter(model_manager) completer = set_autocompleter(model_manager)
events = EventServiceBase() events = EventServiceBase()
metadata = PngMetadataService()
output_folder = os.path.abspath( output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs") os.path.join(os.path.dirname(__file__), "../../../outputs")
) )
@@ -214,26 +156,18 @@ def invoke_cli():
model_manager=model_manager, model_manager=model_manager,
events=events, events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')), latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata), images=DiskImageStorage(f'{output_folder}/images'),
metadata=metadata,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
), ),
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config,logger=logger), restoration=RestorationServices(config),
logger=logger,
) )
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services) invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state() session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser(services) parser = get_command_parser()
re_negid = re.compile('^-[0-9]+$') re_negid = re.compile('^-[0-9]+$')
@@ -251,12 +185,11 @@ def invoke_cli():
try: try:
# Refresh the state of the session # Refresh the state of the session
#history = list(get_graph_execution_history(context.session)) history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping # Split the command for piping
cmds = cmd_input.split("|") cmds = cmd_input.split("|")
start_id = len(context.nodes_added) start_id = len(history)
current_id = start_id current_id = start_id
new_invocations = list() new_invocations = list()
for cmd in cmds: for cmd in cmds:
@@ -272,25 +205,9 @@ def invoke_cli():
args[field_name] = field_default args[field_name] = field_default
# Parse invocation # Parse invocation
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id args["id"] = current_id
command = CliCommand(command=args) command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately # Run any CLI commands immediately
if isinstance(command.command, BaseCommand): if isinstance(command.command, BaseCommand):
# Invoke all current nodes to preserve operation order # Invoke all current nodes to preserve operation order
@@ -300,7 +217,6 @@ def invoke_cli():
command.command.run(context) command.command.run(context)
continue continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command) # Pipe previous command output (if there was a previous command)
edges: list[Edge] = list() edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id: if len(history) > 0 or current_id != start_id:
@@ -313,7 +229,7 @@ def invoke_cli():
else context.session.graph.get_node(from_id) else context.session.graph.get_node(from_id)
) )
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(
from_node, command.command, context from_node, command.command
) )
edges.extend(matching_edges) edges.extend(matching_edges)
@@ -326,7 +242,7 @@ def invoke_cli():
link_node = context.session.graph.get_node(node_id) link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(
link_node, command.command, context link_node, command.command
) )
matching_destinations = [e.destination for e in matching_edges] matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations] edges = [e for e in edges if e.destination not in matching_destinations]
@@ -340,14 +256,12 @@ def invoke_cli():
if re_negid.match(node_id): if re_negid.match(node_id):
node_id = str(current_id + int(node_id)) node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append( edges.append(
Edge( Edge(
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field), source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field) destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
) )
) )
@@ -356,22 +270,22 @@ def invoke_cli():
current_id = current_id + 1 current_id = current_id + 1
# Add the node to the session # Add the node to the session
context.add_node(command.command) context.session.add_node(command.command)
for edge in edges: for edge in edges:
print(edge) print(edge)
context.add_edge(edge) context.session.add_edge(edge)
# Execute all remaining nodes # Execute all remaining nodes
invoke_all(context) invoke_all(context)
except InvalidArgs: except InvalidArgs:
invoker.services.logger.warning('Invalid command, use "help" to list commands') print('Invalid command, use "help" to list commands')
continue continue
except SessionError: except SessionError:
# Start a new session # Start a new session
invoker.services.logger.warning("Session error: creating a new session") print("Session error: creating a new session")
context.reset() context.session = context.invoker.create_execution_state()
except ExitCli: except ExitCli:
break break

View File

@@ -2,7 +2,7 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from inspect import signature from inspect import signature
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict from typing import get_args, get_type_hints
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
@@ -76,56 +76,3 @@ class BaseInvocation(ABC, BaseModel):
#fmt: off #fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.") id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on #fmt: on
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
"""
schema_extra: CustomisedSchemaExtra

View File

@@ -1,17 +1,16 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional from typing import Literal
import cv2 as cv
import numpy as np import numpy as np
import numpy.random import numpy.random
from PIL import Image, ImageOps
from pydantic import Field from pydantic import Field
from .baseinvocation import ( from ..services.image_storage import ImageType
BaseInvocation, from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
InvocationConfig, from .image import ImageField, ImageOutput
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput): class IntCollectionOutput(BaseInvocationOutput):
@@ -34,9 +33,7 @@ class RangeInvocation(BaseInvocation):
step: int = Field(default=1, description="The step of the range") step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput( return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
collection=list(range(self.start, self.stop, self.step))
)
class RandomRangeInvocation(BaseInvocation): class RandomRangeInvocation(BaseInvocation):
@@ -46,19 +43,8 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs # Inputs
low: int = Field(default=0, description="The inclusive low value") low: int = Field(default=0, description="The inclusive low value")
high: int = Field( high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate") size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
rng = np.random.default_rng(self.seed) return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@@ -1,245 +0,0 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
)
from invokeai.backend.globals import Globals
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
# TODO: support legacy blend?
prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str)
if getattr(Globals, "log_tokenization", False):
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support
#if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.set(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@@ -5,26 +5,14 @@ from typing import Literal
import cv2 as cv import cv2 as cv
import numpy import numpy
from PIL import Image, ImageOps from PIL import Image, ImageOps
from pydantic import BaseModel, Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageOutput, build_image_output from .image import ImageField, ImageOutput
class CvInvocationConfig(BaseModel): class CvInpaintInvocation(BaseInvocation):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
"""Simple inpaint using opencv.""" """Simple inpaint using opencv."""
#fmt: off #fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint" type: Literal["cv_inpaint"] = "cv_inpaint"
@@ -56,14 +44,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_inpainted)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
) )

View File

@@ -6,36 +6,21 @@ from typing import Literal, Optional, Union
import numpy as np import numpy as np
from torch import Tensor from torch import Tensor
from pydantic import BaseModel, Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from ..services.image_storage import ImageType
from invokeai.app.invocations.util.choose_model import choose_model from .baseinvocation import BaseInvocation, InvocationContext
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .image import ImageField, ImageOutput
from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.step_callback import stable_diffusion_step_callback from ..util.util import diffusers_step_callback_adapter, CanceledException
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image # Text to image
class TextToImageInvocation(BaseInvocation, SDImageInvocation): class TextToImageInvocation(BaseInvocation):
"""Generates an image using text2img.""" """Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img" type: Literal["txt2img"] = "txt2img"
@@ -46,10 +31,10 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
prompt: Optional[str] = Field(description="The prompt to generate an image from") prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", ) seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", ) width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", ) height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)") model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", ) progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
@@ -57,31 +42,35 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching? # TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress( def dispatch_progress(
self, self, context: InvocationContext, intermediate_state: PipelineIntermediateState
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None: ) -> None:
stable_diffusion_step_callback( if (context.services.queue.is_canceled(context.graph_execution_state_id)):
context=context, raise CanceledException
intermediate_state=intermediate_state,
node=self.dict(), step = intermediate_state.step
source_node_id=source_node_id, if intermediate_state.predicted_original is not None:
) # Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) # TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# Get the source node id (we are invoking the prepared node) # (right now uses whatever current model is set in model manager)
graph_execution_state = context.services.graph_execution_manager.get( model= context.services.model_manager.get_model()
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate( outputs = Txt2Img(model).generate(
prompt=self.prompt, prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context, source_node_id), step_callback=partial(self.dispatch_progress, context),
**self.dict( **self.dict(
exclude={"prompt"} exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
@@ -97,18 +86,9 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, generate_output.image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
) )
@@ -128,17 +108,20 @@ class ImageToImageInvocation(TextToImageInvocation):
) )
def dispatch_progress( def dispatch_progress(
self, self, context: InvocationContext, intermediate_state: PipelineIntermediateState
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None: ) -> None:
stable_diffusion_step_callback( if (context.services.queue.is_canceled(context.graph_execution_state_id)):
context=context, raise CanceledException
intermediate_state=intermediate_state,
node=self.dict(), step = intermediate_state.step
source_node_id=source_node_id, if intermediate_state.predicted_original is not None:
) # Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = ( image = (
@@ -150,23 +133,15 @@ class ImageToImageInvocation(TextToImageInvocation):
) )
mask = None mask = None
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) # TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# Get the source node id (we are invoking the prepared node) model = context.services.model_manager.get_model()
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate( outputs = Img2Img(model).generate(
prompt=self.prompt, prompt=self.prompt,
init_image=image, init_image=image,
init_mask=mask, init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id), step_callback=partial(self.dispatch_progress, context),
**self.dict( **self.dict(
exclude={"prompt", "image", "mask"} exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
@@ -185,19 +160,11 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, result_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
) )
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation): class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint.""" """Generates an image using inpaint."""
@@ -213,17 +180,20 @@ class InpaintInvocation(ImageToImageInvocation):
) )
def dispatch_progress( def dispatch_progress(
self, self, context: InvocationContext, intermediate_state: PipelineIntermediateState
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None: ) -> None:
stable_diffusion_step_callback( if (context.services.queue.is_canceled(context.graph_execution_state_id)):
context=context, raise CanceledException
intermediate_state=intermediate_state,
node=self.dict(), step = intermediate_state.step
source_node_id=source_node_id, if intermediate_state.predicted_original is not None:
) # Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = ( image = (
@@ -240,19 +210,14 @@ class InpaintInvocation(ImageToImageInvocation):
) )
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) # TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# Get the source node id (we are invoking the prepared node) model = context.services.model_manager.get_model()
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate( outputs = Inpaint(model).generate(
prompt=self.prompt, prompt=self.prompt,
init_image=image, init_img=image,
mask_image=mask, init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id), step_callback=partial(self.dispatch_progress, context),
**self.dict( **self.dict(
exclude={"prompt", "image", "mask"} exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
@@ -271,14 +236,7 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, result_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
) )

View File

@@ -1,66 +1,43 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional from typing import Literal, Optional
import numpy import numpy
from PIL import Image, ImageFilter, ImageOps from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType from ..services.image_storage import ImageType
from .baseinvocation import ( from ..services.invocation_services import InvocationServices
BaseInvocation, from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
BaseInvocationOutput,
InvocationContext,
InvocationConfig, class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
) )
image_name: Optional[str] = Field(default=None, description="The name of the image")
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput): class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image""" """Base class for invocations that output an image"""
#fmt: off #fmt: off
type: Literal["image"] = "image" type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image") image: ImageField = Field(default=None, description="The output image")
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
#fmt: on #fmt: on
class Config: class Config:
schema_extra = { schema_extra = {
"required": ["type", "image", "width", "height", "mode"] 'required': [
'type',
'image',
]
} }
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
class MaskOutput(BaseInvocationOutput): class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask""" """Base class for invocations that output a mask"""
#fmt: off #fmt: off
type: Literal["mask"] = "mask" type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask") mask: ImageField = Field(default=None, description="The output mask")
@@ -68,16 +45,15 @@ class MaskOutput(BaseInvocationOutput):
class Config: class Config:
schema_extra = { schema_extra = {
"required": [ 'required': [
"type", 'type',
"mask", 'mask',
] ]
} }
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation): class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output.""" """Load an image from a filename and provide it as output."""
#fmt: off #fmt: off
type: Literal["load_image"] = "load_image" type: Literal["load_image"] = "load_image"
@@ -85,13 +61,10 @@ class LoadImageInvocation(BaseInvocation):
image_type: ImageType = Field(description="The type of the image") image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image") image_name: str = Field(description="The name of the image")
#fmt: on #fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image_type, self.image_name)
return build_image_output( def invoke(self, context: InvocationContext) -> ImageOutput:
image_type=self.image_type, return ImageOutput(
image_name=self.image_name, image=ImageField(image_type=self.image_type, image_name=self.image_name)
image=image,
) )
@@ -112,16 +85,15 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure? # TODO: how to handle failure?
return build_image_output( return ImageOutput(
image_type=self.image.image_type, image=ImageField(
image_name=self.image.image_name, image_type=self.image.image_type, image_name=self.image.image_name
image=image, )
) )
class CropImageInvocation(BaseInvocation, PILInvocationConfig): class CropImageInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image.""" """Crops an image to a specified box. The box can be outside of the image."""
#fmt: off #fmt: off
type: Literal["crop"] = "crop" type: Literal["crop"] = "crop"
@@ -147,22 +119,14 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_crop)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
) )
class PasteImageInvocation(BaseInvocation, PILInvocationConfig): class PasteImageInvocation(BaseInvocation):
"""Pastes an image into another image.""" """Pastes an image into another image."""
#fmt: off #fmt: off
type: Literal["paste"] = "paste" type: Literal["paste"] = "paste"
@@ -185,7 +149,7 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
None None
if self.mask is None if self.mask is None
else ImageOps.invert( else ImageOps.invert(
context.services.images.get(self.mask.image_type, self.mask.image_name) services.images.get(self.mask.image_type, self.mask.image_name)
) )
) )
# TODO: probably shouldn't invert mask here... should user be required to do it? # TODO: probably shouldn't invert mask here... should user be required to do it?
@@ -205,22 +169,14 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, new_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
) )
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig): class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask.""" """Extracts the alpha channel of an image as a mask."""
#fmt: off #fmt: off
type: Literal["tomask"] = "tomask" type: Literal["tomask"] = "tomask"
@@ -242,16 +198,11 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_mask)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name)) return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation, PILInvocationConfig): class BlurInvocation(BaseInvocation):
"""Blurs an image""" """Blurs an image"""
#fmt: off #fmt: off
@@ -279,20 +230,14 @@ class BlurInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, blur_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
) )
class LerpInvocation(BaseInvocation, PILInvocationConfig): class LerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image""" """Linear interpolation of all pixels of an image"""
#fmt: off #fmt: off
type: Literal["lerp"] = "lerp" type: Literal["lerp"] = "lerp"
@@ -316,20 +261,14 @@ class LerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, lerp_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
) )
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig): class InverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image""" """Inverse linear interpolation of all pixels of an image"""
#fmt: off #fmt: off
type: Literal["ilerp"] = "ilerp" type: Literal["ilerp"] = "ilerp"
@@ -358,12 +297,7 @@ class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, ilerp_image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
) )

View File

@@ -1,26 +1,25 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional from typing import Literal, Optional
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from torch import Tensor
import torch import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput, build_image_output from .image import ImageField, ImageOutput
from .compel import ConditioningField from ...backend.generator import Generator
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers import diffusers
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline
@@ -31,8 +30,6 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents") latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput): class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents""" """Base class for invocations that output latents"""
@@ -102,31 +99,18 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
return x return x
def random_seed():
return random.randint(0, np.iinfo(np.uint32).max)
class NoiseInvocation(BaseInvocation): class NoiseInvocation(BaseInvocation):
"""Generates latent noise.""" """Generates latent noise."""
type: Literal["noise"] = "noise" type: Literal["noise"] = "noise"
# Inputs # Inputs
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed) seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", ) width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", ) height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
def invoke(self, context: InvocationContext) -> NoiseOutput: def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device()) device = torch.device(CUDA_DEVICE)
noise = get_noise(self.width, self.height, device, self.seed) noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}' name = f'{context.graph_execution_state_id}__{self.id}'
@@ -138,54 +122,60 @@ class NoiseInvocation(BaseInvocation):
# Text to image # Text to image
class TextToLatentsInvocation(BaseInvocation): class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings.""" """Generates latents from a prompt."""
type: Literal["t2l"] = "t2l" type: Literal["t2l"] = "t2l"
# Inputs # Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off # fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation") prompt: Optional[str] = Field(description="The prompt to generate an image from")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation") seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
noise: Optional[LatentsField] = Field(description="The noise to use") noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)") model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", ) progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on # fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching? # TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress( def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState self, context: InvocationContext, sample: Tensor, step: int
) -> None: ) -> None:
stable_diffusion_step_callback( # TODO: only output a preview image when requested
context=context, image = Generator.sample_to_lowres_estimated_image(sample)
intermediate_state=intermediate_state,
node=self.dict(), (width, height) = image.size
source_node_id=source_node_id, width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
) )
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline: def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model) model_info = model_manager.get_model(self.model)
model_name = model_info['model_name'] model_name = model_info['model_name']
model_hash = model_info['hash'] model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model'] model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler( model.scheduler = get_scheduler(
model=model, model=model,
scheduler_name=self.scheduler scheduler_name=self.sampler_name
) )
if isinstance(model, DiffusionPipeline): if isinstance(model, DiffusionPipeline):
@@ -203,10 +193,8 @@ class TextToLatentsInvocation(BaseInvocation):
return model return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData: def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name) uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData( conditioning_data = ConditioningData(
uc, uc,
c, c,
@@ -225,15 +213,11 @@ class TextToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state) self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager) model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model) conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size # TODO: Verify the noise is the right size
@@ -260,17 +244,6 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l" type: Literal["l2l"] = "l2l"
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model"
}
},
}
# Inputs # Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image") latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use") strength: float = Field(default=0.5, description="The strength of the latents to use")
@@ -279,12 +252,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise = context.services.latents.get(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name) latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state) self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager) model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model) conditioning_data = self.get_conditioning_data(model)
@@ -330,23 +299,12 @@ class LatentsToImageInvocation(BaseInvocation):
latents: Optional[LatentsField] = Field(description="The latents to generate an image from") latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use") model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae # TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model) model_info = context.services.model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model'] model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode(): with torch.inference_mode():
@@ -357,79 +315,7 @@ class LatentsToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image)
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
) )
torch.cuda.empty_cache()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=image
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))

View File

@@ -1,22 +1,15 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
class IntOutput(BaseInvocationOutput): class IntOutput(BaseInvocationOutput):
@@ -27,7 +20,7 @@ class IntOutput(BaseInvocationOutput):
#fmt: on #fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig): class AddInvocation(BaseInvocation):
"""Adds two numbers""" """Adds two numbers"""
#fmt: off #fmt: off
type: Literal["add"] = "add" type: Literal["add"] = "add"
@@ -39,7 +32,7 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a + self.b) return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation, MathInvocationConfig): class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers""" """Subtracts two numbers"""
#fmt: off #fmt: off
type: Literal["sub"] = "sub" type: Literal["sub"] = "sub"
@@ -51,7 +44,7 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a - self.b) return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation, MathInvocationConfig): class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers""" """Multiplies two numbers"""
#fmt: off #fmt: off
type: Literal["mul"] = "mul" type: Literal["mul"] = "mul"
@@ -63,7 +56,7 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a * self.b) return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation, MathInvocationConfig): class DivideInvocation(BaseInvocation):
"""Divides two numbers""" """Divides two numbers"""
#fmt: off #fmt: off
type: Literal["div"] = "div" type: Literal["div"] = "div"

View File

@@ -1,18 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)

View File

@@ -1,11 +1,12 @@
from datetime import datetime, timezone
from typing import Literal, Union from typing import Literal, Union
from pydantic import Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageOutput, build_image_output from .image import ImageField, ImageOutput
class RestoreFaceInvocation(BaseInvocation): class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image.""" """Restores faces in an image."""
@@ -17,14 +18,6 @@ class RestoreFaceInvocation(BaseInvocation):
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" ) strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on #fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["restoration", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
self.image.image_type, self.image.image_name self.image.image_type, self.image.image_name
@@ -43,14 +36,7 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, results[0][0])
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
) )

View File

@@ -1,12 +1,14 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union from typing import Literal, Union
from pydantic import Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from ..services.invocation_services import InvocationServices
from .image import ImageOutput, build_image_output from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class UpscaleInvocation(BaseInvocation): class UpscaleInvocation(BaseInvocation):
@@ -20,15 +22,6 @@ class UpscaleInvocation(BaseInvocation):
level: Literal[2, 4] = Field(default=2, description="The upscale level") level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on #fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
self.image.image_type, self.image.image_name self.image.image_type, self.image.image_name
@@ -47,14 +40,7 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, results[0][0])
metadata = context.services.metadata.build_metadata( return ImageOutput(
session_id=context.graph_execution_state_id, node=self image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
) )

View File

@@ -1,13 +0,0 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_manager.valid_model(model_name):
model = model_manager.get_model(model_name)
else:
model = model_manager.get_model()
logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
return model

View File

@@ -1,3 +0,0 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@@ -1,29 +0,0 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: ImageType = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_type", "image_name"]}

View File

@@ -1,63 +0,0 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
graphs: list[LibraryGraph] = list()
text_to_image = graph_library.get(default_text_to_image_graph_id)
# TODO: Check if the graph is the same as the default one, and if not, update it
#if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@@ -1,9 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any from typing import Any, Dict, TypedDict
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase: class EventServiceBase:
session_event: str = "session_event" session_event: str = "session_event"
@@ -13,8 +14,7 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None: def dispatch(self, event_name: str, payload: Any) -> None:
pass pass
def __emit_session_event(self, event_name: str, payload: dict) -> None: def __emit_session_event(self, event_name: str, payload: Dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch( self.dispatch(
event_name=EventServiceBase.session_event, event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload), payload=dict(event=event_name, data=payload),
@@ -25,8 +25,7 @@ class EventServiceBase:
def emit_generator_progress( def emit_generator_progress(
self, self,
graph_execution_state_id: str, graph_execution_state_id: str,
node: dict, invocation_id: str,
source_node_id: str,
progress_image: ProgressImage | None, progress_image: ProgressImage | None,
step: int, step: int,
total_steps: int, total_steps: int,
@@ -36,60 +35,48 @@ class EventServiceBase:
event_name="generator_progress", event_name="generator_progress",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node=node, invocation_id=invocation_id,
source_node_id=source_node_id, progress_image=progress_image,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step, step=step,
total_steps=total_steps, total_steps=total_steps,
), ),
) )
def emit_invocation_complete( def emit_invocation_complete(
self, self, graph_execution_state_id: str, invocation_id: str, result: Dict
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None: ) -> None:
"""Emitted when an invocation has completed""" """Emitted when an invocation has completed"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_complete", event_name="invocation_complete",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node=node, invocation_id=invocation_id,
source_node_id=source_node_id,
result=result, result=result,
), ),
) )
def emit_invocation_error( def emit_invocation_error(
self, self, graph_execution_state_id: str, invocation_id: str, error: str
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None: ) -> None:
"""Emitted when an invocation has completed""" """Emitted when an invocation has completed"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_error", event_name="invocation_error",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node=node, invocation_id=invocation_id,
source_node_id=source_node_id,
error=error, error=error,
), ),
) )
def emit_invocation_started( def emit_invocation_started(
self, graph_execution_state_id: str, node: dict, source_node_id: str self, graph_execution_state_id: str, invocation_id: str
) -> None: ) -> None:
"""Emitted when an invocation has started""" """Emitted when an invocation has started"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_started", event_name="invocation_started",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
node=node, invocation_id=invocation_id,
source_node_id=source_node_id,
), ),
) )
@@ -97,7 +84,5 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations""" """Emitted when a session has completed all invocations"""
self.__emit_session_event( self.__emit_session_event(
event_name="graph_execution_state_complete", event_name="graph_execution_state_complete",
payload=dict( payload=dict(graph_execution_state_id=graph_execution_state_id),
graph_execution_state_id=graph_execution_state_id,
),
) )

View File

@@ -2,6 +2,7 @@
import copy import copy
import itertools import itertools
import traceback
import uuid import uuid
from types import NoneType from types import NoneType
from typing import ( from typing import (
@@ -16,7 +17,7 @@ from typing import (
) )
import networkx as nx import networkx as nx
from pydantic import BaseModel, root_validator, validator from pydantic import BaseModel, validator
from pydantic.fields import Field from pydantic.fields import Field
from ..invocations import * from ..invocations import *
@@ -25,6 +26,7 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput, BaseInvocationOutput,
InvocationContext, InvocationContext,
) )
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel): class EdgeConnection(BaseModel):
@@ -213,7 +215,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel): class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__()) id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me # TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field( nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict description="The nodes in this graph", default_factory=dict
@@ -281,8 +283,7 @@ class Graph(BaseModel):
:raises InvalidEdgeError: the provided edge is invalid. :raises InvalidEdgeError: the provided edge is invalid.
""" """
self._validate_edge(edge) if self._is_edge_valid(edge) and edge not in self.edges:
if edge not in self.edges:
self.edges.append(edge) self.edges.append(edge)
else: else:
raise InvalidEdgeError() raise InvalidEdgeError()
@@ -353,7 +354,7 @@ class Graph(BaseModel):
return True return True
def _validate_edge(self, edge: Edge): def _is_edge_valid(self, edge: Edge) -> bool:
"""Validates that a new edge doesn't create a cycle in the graph""" """Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly) # Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@@ -361,53 +362,54 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id) from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id) to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError: except NodeNotFoundError:
raise InvalidEdgeError("One or both nodes don't exist") return False
# Validate that an edge to this node+field doesn't already exist # Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field) input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation): if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists') return False
# Validate that no cycles would be created # Validate that no cycles would be created
g = self.nx_graph_flat() g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id) g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g): if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph') return False
# Validate that the field types are compatible # Validate that the field types are compatible
if not are_connections_compatible( if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field from_node, edge.source.field, to_node, edge.destination.field
): ):
raise InvalidEdgeError(f'Fields are incompatible') return False
# Validate if iterator output type matches iterator input type (if this edge results in both being set) # Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection": if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source edge.destination.node_id, new_input=edge.source
): ):
raise InvalidEdgeError(f'Iterator input type does not match iterator output type') return False
# Validate if iterator input type matches output type (if this edge results in both being set) # Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item": if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination edge.source.node_id, new_output=edge.destination
): ):
raise InvalidEdgeError(f'Iterator output type does not match iterator input type') return False
# Validate if collector input type matches output type (if this edge results in both being set) # Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item": if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source edge.destination.node_id, new_input=edge.source
): ):
raise InvalidEdgeError(f'Collector output type does not match collector input type') return False
# Validate if collector output type matches input type (if this edge results in both being set) # Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection": if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination edge.source.node_id, new_output=edge.destination
): ):
raise InvalidEdgeError(f'Collector input type does not match collector output type') return False
return True
def has_node(self, node_path: str) -> bool: def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph.""" """Determines whether or not a node exists in the graph."""
@@ -731,7 +733,7 @@ class Graph(BaseModel):
for sgn in ( for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation) gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
): ):
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix)) sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded # TODO: figure out if iteration nodes need to be expanded
@@ -748,7 +750,9 @@ class Graph(BaseModel):
class GraphExecutionState(BaseModel): class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution""" """Tracks the state of a graph execution"""
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__()) id: str = Field(
description="The id of the execution state", default_factory=uuid.uuid4
)
# TODO: Store a reference to the graph instead of the actual graph? # TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed") graph: Graph = Field(description="The graph being executed")
@@ -790,6 +794,9 @@ class GraphExecutionState(BaseModel):
default_factory=dict, default_factory=dict,
) )
# Declare all fields as required; necessary for OpenAPI schema generation build.
# Technically only fields without a `default_factory` need to be listed here.
# See: https://github.com/pydantic/pydantic/discussions/4577
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ 'required': [
@@ -854,8 +861,7 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool: def is_complete(self) -> bool:
"""Returns true if the graph is complete""" """Returns true if the graph is complete"""
node_ids = set(self.graph.nx_graph_flat().nodes) return self.has_error() or all((k in self.executed for k in self.graph.nodes))
return self.has_error() or all((k in self.executed for k in node_ids))
def has_error(self) -> bool: def has_error(self) -> bool:
"""Returns true if the graph has any errors""" """Returns true if the graph has any errors"""
@@ -943,11 +949,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph: def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node""" """Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph_flat() g = self.graph.nx_graph()
collectors = ( collectors = (
n n
for n in self.graph.nodes for n in self.graph.nodes
if isinstance(self.graph.get_node(n), CollectInvocation) if isinstance(self.graph.nodes[n], CollectInvocation)
) )
for c in collectors: for c in collectors:
g.remove_edges_from(list(g.in_edges(c))) g.remove_edges_from(list(g.in_edges(c)))
@@ -959,7 +965,7 @@ class GraphExecutionState(BaseModel):
iterators = [ iterators = [
n n
for n in nx.ancestors(g, node_id) for n in nx.ancestors(g, node_id)
if isinstance(self.graph.get_node(n), IterateInvocation) if isinstance(self.graph.nodes[n], IterateInvocation)
] ]
return iterators return iterators
@@ -1095,9 +1101,7 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state # TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool: def _is_edge_valid(self, edge: Edge) -> bool:
try: if not self._is_edge_valid(edge):
self.graph._validate_edge(edge)
except InvalidEdgeError:
return False return False
# Invalid if destination has already been prepared or executed # Invalid if destination has already been prepared or executed
@@ -1143,52 +1147,4 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge) self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs() GraphInvocation.update_forward_refs()

View File

@@ -1,29 +1,23 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os import os
from glob import glob
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path from pathlib import Path
from queue import Queue from queue import Queue
from typing import Dict, List from typing import Dict
from PIL.Image import Image from PIL.Image import Image
import PIL.Image as PILImage from invokeai.app.util.save_thumbnail import save_thumbnail
from send2trash import send2trash
from invokeai.app.api.models.images import ( from invokeai.backend.image_util import PngWriter
ImageResponse,
ImageResponseMetadata,
SavedImage, class ImageType(str, Enum):
) RESULT = "results"
from invokeai.app.models.image import ImageType INTERMEDIATE = "intermediates"
from invokeai.app.services.metadata import ( UPLOAD = "uploads"
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class ImageStorageBase(ABC): class ImageStorageBase(ABC):
@@ -31,74 +25,40 @@ class ImageStorageBase(ABC):
@abstractmethod @abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image: def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass pass
# TODO: make this a bit more flexible for e.g. cloud storage # TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod @abstractmethod
def get_path( def get_path(self, image_type: ImageType, image_name: str) -> str:
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the internal path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the external URI to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass pass
@abstractmethod @abstractmethod
def save( def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass pass
@abstractmethod @abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None: def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass pass
def create_name(self, context_id: str, node_id: str) -> str: def create_name(self, context_id: str, node_id: str) -> str:
"""Creates a unique contextual image filename.""" return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase): class DiskImageStorage(ImageStorageBase):
"""Stores images on disk""" """Stores images on disk"""
__output_folder: str __output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache __cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image] __cache: Dict[str, Image]
__max_cache_size: int __max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase): def __init__(self, output_folder: str):
self.__output_folder = output_folder self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict() self.__cache = dict()
self.__cache_ids = Queue() self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True) Path(output_folder).mkdir(parents=True, exist_ok=True)
@@ -111,155 +71,43 @@ class DiskImageStorage(ImageStorageBase):
parents=True, exist_ok=True parents=True, exist_ok=True
) )
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
dir_path = os.path.join(self.__output_folder, image_type)
image_paths = glob(f"{dir_path}/*.png")
count = len(image_paths)
sorted_image_paths = sorted(
glob(f"{dir_path}/*.png"), key=os.path.getctime, reverse=True
)
page_of_image_paths = sorted_image_paths[
page * per_page : (page + 1) * per_page
]
page_of_images: List[ImageResponse] = []
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=self.get_uri(image_type, filename),
thumbnail_url=self.get_uri(image_type, filename, True),
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
page_count_trunc = int(count / per_page)
page_count_mod = count % per_page
page_count = page_count_trunc if page_count_mod == 0 else page_count_trunc + 1
return PaginatedResults[ImageResponse](
items=page_of_images,
page=page,
pages=page_count,
per_page=per_page,
total=count,
)
def get(self, image_type: ImageType, image_name: str) -> Image: def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name) image_path = self.get_path(image_type, image_name)
cache_item = self.__get_cache(image_path) cache_item = self.__get_cache(image_path)
if cache_item: if cache_item:
return cache_item return cache_item
image = PILImage.open(image_path) image = Image.open(image_path)
self.__set_cache(image_path, image) self.__set_cache(image_path, image)
return image return image
# TODO: make this a bit more flexible for e.g. cloud storage # TODO: make this a bit more flexible for e.g. cloud storage
def get_path( def get_path(self, image_type: ImageType, image_name: str) -> str:
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False path = os.path.join(self.__output_folder, image_type, image_name)
) -> str: return path
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail: def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
path = os.path.join( image_subpath = os.path.join(image_type, image_name)
self.__output_folder, image_type, "thumbnails", basename self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
) )
else:
path = os.path.join(self.__output_folder, image_type, basename)
abspath = os.path.abspath(path)
return abspath
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
thumbnail_basename = get_thumbnail_name(basename)
uri = f"api/v1/images/{image_type.value}/thumbnails/{thumbnail_basename}"
else:
uri = f"api/v1/images/{image_type.value}/{basename}"
return uri
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
image_path = self.get_path(image_type, image_name) image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image) self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return SavedImage(
image_name=image_name,
thumbnail_name=thumbnail_name,
created=int(os.path.getctime(image_path)),
)
def delete(self, image_type: ImageType, image_name: str) -> None: def delete(self, image_type: ImageType, image_name: str) -> None:
basename = os.path.basename(image_name) image_path = self.get_path(image_type, image_name)
image_path = self.get_path(image_type, basename)
if os.path.exists(image_path): if os.path.exists(image_path):
send2trash(image_path) os.remove(image_path)
if image_path in self.__cache: if image_path in self.__cache:
del self.__cache[image_path] del self.__cache[image_path]
thumbnail_name = get_thumbnail_name(image_name) def __get_cache(self, image_name: str) -> Image:
thumbnail_path = self.get_path(image_type, thumbnail_name, True)
if os.path.exists(thumbnail_path):
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image | None:
return None if image_name not in self.__cache else self.__cache[image_name] return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image): def __set_cache(self, image_name: str, image: Image):

View File

@@ -1,17 +1,30 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from queue import Queue from queue import Queue
import time
from pydantic import BaseModel, Field
class InvocationQueueItem(BaseModel): # TODO: make this serializable
graph_execution_state_id: str = Field(description="The ID of the graph execution state") class InvocationQueueItem:
invocation_id: str = Field(description="The ID of the node being invoked") # session_id: str
invoke_all: bool = Field(default=False) graph_execution_state_id: str
timestamp: float = Field(default_factory=time.time) invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueABC(ABC): class InvocationQueueABC(ABC):

View File

@@ -1,7 +1,4 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import types
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager from invokeai.backend import ModelManager
from .events import EventServiceBase from .events import EventServiceBase
@@ -17,13 +14,11 @@ class InvocationServices:
events: EventServiceBase events: EventServiceBase
latents: LatentsStorageBase latents: LatentsStorageBase
images: ImageStorageBase images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC queue: InvocationQueueABC
model_manager: ModelManager model_manager: ModelManager
restoration: RestorationServices restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services # NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"] graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC" processor: "InvocationProcessorABC"
@@ -31,24 +26,18 @@ class InvocationServices:
self, self,
model_manager: ModelManager, model_manager: ModelManager,
events: EventServiceBase, events: EventServiceBase,
logger: types.ModuleType,
latents: LatentsStorageBase, latents: LatentsStorageBase,
images: ImageStorageBase, images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC, queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"], graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC", processor: "InvocationProcessorABC",
restoration: RestorationServices, restoration: RestorationServices,
): ):
self.model_manager = model_manager self.model_manager = model_manager
self.events = events self.events = events
self.logger = logger
self.latents = latents self.latents = latents
self.images = images self.images = images
self.metadata = metadata
self.queue = queue self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager self.graph_execution_manager = graph_execution_manager
self.processor = processor self.processor = processor
self.restoration = restoration self.restoration = restoration

View File

@@ -71,12 +71,18 @@ class Invoker:
for service in vars(self.services): for service in vars(self.services):
self.__start_service(getattr(self.services, service)) self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None: def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further.""" """Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services # First stop all services
for service in vars(self.services): for service in vars(self.services):
self.__stop_service(getattr(self.services, service)) self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None) self.services.queue.put(None)

View File

@@ -1,96 +0,0 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@@ -5,7 +5,6 @@ from argparse import Namespace
from invokeai.backend import Args from invokeai.backend import Args
from omegaconf import OmegaConf from omegaconf import OmegaConf
from pathlib import Path from pathlib import Path
from typing import types
import invokeai.version import invokeai.version
from ...backend import ModelManager from ...backend import ModelManager
@@ -13,16 +12,16 @@ from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase # TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager: def get_model_manager(config: Args) -> ModelManager:
if not config.conf: if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml") config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file): if not os.path.exists(config_file):
report_model_error( report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found."), logger config, FileNotFoundError(f"The file {config_file} could not be found.")
) )
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}") print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{Globals.root}"') print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing # these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported # when the frozen CLIP tokenizer is imported
@@ -63,12 +62,11 @@ def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
device_type=device, device_type=device,
max_loaded_models=config.max_loaded_models, max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path), embedding_path = Path(embedding_path),
logger = logger,
) )
except (FileNotFoundError, TypeError, AssertionError) as e: except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e, logger) report_model_error(config, e)
except (IOError, KeyError) as e: except (IOError, KeyError) as e:
logger.error(f"{e}. Aborting.") print(f"{e}. Aborting.")
sys.exit(-1) sys.exit(-1)
# try to autoconvert new models # try to autoconvert new models
@@ -78,18 +76,18 @@ def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
conf_path=config.conf, conf_path=config.conf,
weights_directory=path, weights_directory=path,
) )
logger.info('Model manager initialized')
return model_manager return model_manager
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType): def report_model_error(opt: Namespace, e: Exception):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"') print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error( print(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models." "** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
) )
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE") yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all: if yes_to_all:
logger.warning( print(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE" "** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
) )
else: else:
response = input( response = input(
@@ -98,12 +96,13 @@ def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
if response.startswith(("n", "N")): if response.startswith(("n", "N")):
return return
logger.info("invokeai-configure is launching....\n") print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI # Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed # only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else [] root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else [] config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"] sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir) sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict()) sys.argv.extend(config.to_dict())

View File

@@ -1,20 +1,17 @@
import traceback import traceback
from threading import Event, Thread, BoundedSemaphore from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException from ..util.util import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC): class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread __invoker_thread: Thread
__stop_event: Event __stop_event: Event
__invoker: Invoker __invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None: def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker self.__invoker = invoker
self.__stop_event = Event() self.__stop_event = Event()
self.__invoker_thread = Thread( self.__invoker_thread = Thread(
@@ -23,7 +20,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
kwargs=dict(stop_event=self.__stop_event), kwargs=dict(stop_event=self.__stop_event),
) )
self.__invoker_thread.daemon = ( self.__invoker_thread.daemon = (
True # TODO: make async and do not use threads True # TODO: probably better to just not use threads?
) )
self.__invoker_thread.start() self.__invoker_thread.start()
@@ -32,7 +29,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event): def __process(self, stop_event: Event):
try: try:
self.__threadLimit.acquire()
while not stop_event.is_set(): while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get() queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
if not queue_item: # Probably stopping if not queue_item: # Probably stopping
@@ -47,14 +43,10 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id queue_item.invocation_id
) )
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event # Send starting event
self.__invoker.services.events.emit_invocation_started( self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), invocation_id=invocation.id,
source_node_id=source_node_id
) )
# Invoke # Invoke
@@ -83,8 +75,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event # Send complete event
self.__invoker.services.events.emit_invocation_complete( self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), invocation_id=invocation.id,
source_node_id=source_node_id,
result=outputs.dict(), result=outputs.dict(),
) )
@@ -108,8 +99,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event # Send error event
self.__invoker.services.events.emit_invocation_error( self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(), invocation_id=invocation.id,
source_node_id=source_node_id,
error=error, error=error,
) )
@@ -131,6 +121,4 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
) )
except KeyboardInterrupt: except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor ... # Log something?
finally:
self.__threadLimit.release()

View File

@@ -1,7 +1,6 @@
import sys import sys
import traceback import traceback
import torch import torch
from typing import types
from ...backend.restoration import Restoration from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
@@ -11,7 +10,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
class RestorationServices: class RestorationServices:
'''Face restoration and upscaling''' '''Face restoration and upscaling'''
def __init__(self,args,logger:types.ModuleType): def __init__(self,args):
try: try:
gfpgan, codeformer, esrgan = None, None, None gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan: if args.restore or args.esrgan:
@@ -21,22 +20,20 @@ class RestorationServices:
args.gfpgan_model_path args.gfpgan_model_path
) )
else: else:
logger.info("Face restoration disabled") print(">> Face restoration disabled")
if args.esrgan: if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile) esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else: else:
logger.info("Upscaling disabled") print(">> Upscaling disabled")
else: else:
logger.info("Face restoration and upscaling disabled") print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError): except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
logger.info("You may need to install the ESRGAN and/or GFPGAN modules") print(">> You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device()) self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan self.gfpgan = gfpgan
self.codeformer = codeformer self.codeformer = codeformer
self.esrgan = esrgan self.esrgan = esrgan
self.logger = logger
self.logger.info('Face restoration initialized')
# note that this one method does gfpgan and codepath reconstruction, as well as # note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling # esrgan upscaling
@@ -61,15 +58,15 @@ class RestorationServices:
if self.gfpgan is not None or self.codeformer is not None: if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan": if facetool == "gfpgan":
if self.gfpgan is None: if self.gfpgan is None:
self.logger.info( print(
"GFPGAN not found. Face restoration is disabled." ">> GFPGAN not found. Face restoration is disabled."
) )
else: else:
image = self.gfpgan.process(image, strength, seed) image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer": if facetool == "codeformer":
if self.codeformer is None: if self.codeformer is None:
self.logger.info( print(
"CodeFormer not found. Face restoration is disabled." ">> CodeFormer not found. Face restoration is disabled."
) )
else: else:
cf_device = ( cf_device = (
@@ -83,7 +80,7 @@ class RestorationServices:
fidelity=codeformer_fidelity, fidelity=codeformer_fidelity,
) )
else: else:
self.logger.info("Face Restoration is disabled.") print(">> Face Restoration is disabled.")
if upscale is not None: if upscale is not None:
if self.esrgan is not None: if self.esrgan is not None:
if len(upscale) < 2: if len(upscale) < 2:
@@ -96,10 +93,10 @@ class RestorationServices:
denoise_str=upscale_denoise_str, denoise_str=upscale_denoise_str,
) )
else: else:
self.logger.info("ESRGAN is disabled. Image not upscaled.") print(">> ESRGAN is disabled. Image not upscaled.")
except Exception as e: except Exception as e:
self.logger.info( print(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
) )
if image_callback is not None: if image_callback is not None:

View File

@@ -1,5 +0,0 @@
import datetime
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())

View File

@@ -0,0 +1,25 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@@ -1,55 +0,0 @@
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)

View File

@@ -1,15 +0,0 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

42
invokeai/app/util/util.py Normal file
View File

@@ -0,0 +1,42 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@@ -10,7 +10,7 @@ from .generator import (
Img2Img, Img2Img,
Inpaint Inpaint
) )
from .model_management import ModelManager, SDModelComponent from .model_management import ModelManager
from .safety_checker import SafetyChecker from .safety_checker import SafetyChecker
from .args import Args from .args import Args
from .globals import Globals from .globals import Globals

View File

@@ -96,7 +96,6 @@ from pathlib import Path
from typing import List from typing import List
import invokeai.version import invokeai.version
import invokeai.backend.util.logging as logger
from invokeai.backend.image_util import retrieve_metadata from invokeai.backend.image_util import retrieve_metadata
from .globals import Globals from .globals import Globals
@@ -190,7 +189,7 @@ class Args(object):
print(f"{APP_NAME} {APP_VERSION}") print(f"{APP_NAME} {APP_VERSION}")
sys.exit(0) sys.exit(0)
logger.info("Initializing, be patient...") print("* Initializing, be patient...")
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root)) Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
Globals.try_patchmatch = switches.patchmatch Globals.try_patchmatch = switches.patchmatch
@@ -198,13 +197,14 @@ class Args(object):
initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile)) initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile))
legacyinit = os.path.expanduser("~/.invokeai") legacyinit = os.path.expanduser("~/.invokeai")
if os.path.exists(initfile): if os.path.exists(initfile):
logger.info( print(
f"Initialization file {initfile} found. Loading...", f">> Initialization file {initfile} found. Loading...",
file=sys.stderr,
) )
sysargs.insert(0, f"@{initfile}") sysargs.insert(0, f"@{initfile}")
elif os.path.exists(legacyinit): elif os.path.exists(legacyinit):
logger.warning( print(
f"Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init." f">> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
) )
sysargs.insert(0, f"@{legacyinit}") sysargs.insert(0, f"@{legacyinit}")
Globals.log_tokenization = self._arg_parser.parse_args( Globals.log_tokenization = self._arg_parser.parse_args(
@@ -214,7 +214,7 @@ class Args(object):
self._arg_switches = self._arg_parser.parse_args(sysargs) self._arg_switches = self._arg_parser.parse_args(sysargs)
return self._arg_switches return self._arg_switches
except Exception as e: except Exception as e:
logger.error(f"An exception has occurred: {e}") print(f"An exception has occurred: {e}")
return None return None
def parse_cmd(self, cmd_string): def parse_cmd(self, cmd_string):
@@ -561,7 +561,7 @@ class Args(object):
"--autoimport", "--autoimport",
default=None, default=None,
type=str, type=str,
help="(DEPRECATED - NONFUNCTIONAL). Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly", help="Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
) )
model_group.add_argument( model_group.add_argument(
"--autoconvert", "--autoconvert",
@@ -1154,7 +1154,7 @@ class Args(object):
def format_metadata(**kwargs): def format_metadata(**kwargs):
logger.warning("format_metadata() is deprecated. Please use metadata_dumps()") print("format_metadata() is deprecated. Please use metadata_dumps()")
return metadata_dumps(kwargs) return metadata_dumps(kwargs)
@@ -1326,7 +1326,7 @@ def metadata_loads(metadata) -> list:
import sys import sys
import traceback import traceback
logger.error("Could not read metadata") print(">> could not read metadata", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
return results return results

View File

@@ -67,6 +67,7 @@ def install_requested_models(
scan_directory: Path = None, scan_directory: Path = None,
external_models: List[str] = None, external_models: List[str] = None,
scan_at_startup: bool = False, scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16", precision: str = "float16",
purge_deleted: bool = False, purge_deleted: bool = False,
config_file_path: Path = None, config_file_path: Path = None,
@@ -112,6 +113,7 @@ def install_requested_models(
try: try:
model_manager.heuristic_import( model_manager.heuristic_import(
path_url_or_repo, path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path, commit_to_conf=config_file_path,
) )
except KeyboardInterrupt: except KeyboardInterrupt:
@@ -120,7 +122,7 @@ def install_requested_models(
pass pass
if scan_at_startup and scan_directory.is_dir(): if scan_at_startup and scan_directory.is_dir():
argument = "--autoconvert" argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
initfile = Path(Globals.root, Globals.initfile) initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f"{Globals.initfile}.new") replacement = Path(Globals.root, f"{Globals.initfile}.new")
directory = str(scan_directory).replace("\\", "/") directory = str(scan_directory).replace("\\", "/")

View File

@@ -27,7 +27,6 @@ from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf from omegaconf import OmegaConf
from pathlib import Path from pathlib import Path
import invokeai.backend.util.logging as logger
from .args import metadata_from_png from .args import metadata_from_png
from .generator import infill_methods from .generator import infill_methods
from .globals import Globals, global_cache_dir from .globals import Globals, global_cache_dir
@@ -196,12 +195,12 @@ class Generate:
# device to Generate(). However the device was then ignored, so # device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated. # it wasn't actually doing anything. This logic could be reinstated.
self.device = torch.device(choose_torch_device()) self.device = torch.device(choose_torch_device())
logger.info(f"Using device_type {self.device.type}") print(f">> Using device_type {self.device.type}")
if full_precision: if full_precision:
if self.precision != "auto": if self.precision != "auto":
raise ValueError("Remove --full_precision / -F if using --precision") raise ValueError("Remove --full_precision / -F if using --precision")
logger.warning("Please remove deprecated --full_precision / -F") print("Please remove deprecated --full_precision / -F")
logger.warning("If auto config does not work you can use --precision=float32") print("If auto config does not work you can use --precision=float32")
self.precision = "float32" self.precision = "float32"
if self.precision == "auto": if self.precision == "auto":
self.precision = choose_precision(self.device) self.precision = choose_precision(self.device)
@@ -209,13 +208,13 @@ class Generate:
if is_xformers_available(): if is_xformers_available():
if torch.cuda.is_available() and not Globals.disable_xformers: if torch.cuda.is_available() and not Globals.disable_xformers:
logger.info("xformers memory-efficient attention is available and enabled") print(">> xformers memory-efficient attention is available and enabled")
else: else:
logger.info( print(
"xformers memory-efficient attention is available but disabled" ">> xformers memory-efficient attention is available but disabled"
) )
else: else:
logger.info("xformers not installed") print(">> xformers not installed")
# model caching system for fast switching # model caching system for fast switching
self.model_manager = ModelManager( self.model_manager = ModelManager(
@@ -230,8 +229,8 @@ class Generate:
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
model = model or fallback model = model or fallback
if not self.model_manager.valid_model(model): if not self.model_manager.valid_model(model):
logger.warning( print(
f'"{model}" is not a known model name; falling back to {fallback}.' f'** "{model}" is not a known model name; falling back to {fallback}.'
) )
model = None model = None
self.model_name = model or fallback self.model_name = model or fallback
@@ -247,10 +246,10 @@ class Generate:
# load safety checker if requested # load safety checker if requested
if safety_checker: if safety_checker:
logger.info("Initializing NSFW checker") print(">> Initializing NSFW checker")
self.safety_checker = SafetyChecker(self.device) self.safety_checker = SafetyChecker(self.device)
else: else:
logger.info("NSFW checker is disabled") print(">> NSFW checker is disabled")
def prompt2png(self, prompt, outdir, **kwargs): def prompt2png(self, prompt, outdir, **kwargs):
""" """
@@ -568,7 +567,7 @@ class Generate:
self.clear_cuda_cache() self.clear_cuda_cache()
if catch_interrupts: if catch_interrupts:
logger.warning("Interrupted** Partial results will be returned.") print("**Interrupted** Partial results will be returned.")
else: else:
raise KeyboardInterrupt raise KeyboardInterrupt
except RuntimeError: except RuntimeError:
@@ -576,11 +575,11 @@ class Generate:
self.clear_cuda_cache() self.clear_cuda_cache()
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
logger.info("Could not generate image.") print(">> Could not generate image.")
toc = time.time() toc = time.time()
logger.info("Usage stats:") print("\n>> Usage stats:")
logger.info(f"{len(results)} image(s) generated in "+"%4.2fs" % (toc - tic)) print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic))
self.print_cuda_stats() self.print_cuda_stats()
return results return results
@@ -610,16 +609,16 @@ class Generate:
def print_cuda_stats(self): def print_cuda_stats(self):
if self._has_cuda(): if self._has_cuda():
self.gather_cuda_stats() self.gather_cuda_stats()
logger.info( print(
"Max VRAM used for this generation: "+ ">> Max VRAM used for this generation:",
"%4.2fG. " % (self.max_memory_allocated / 1e9)+ "%4.2fG." % (self.max_memory_allocated / 1e9),
"Current VRAM utilization: "+ "Current VRAM utilization:",
"%4.2fG" % (self.memory_allocated / 1e9) "%4.2fG" % (self.memory_allocated / 1e9),
) )
logger.info( print(
"Max VRAM used since script start: " + ">> Max VRAM used since script start: ",
"%4.2fG" % (self.session_peakmem / 1e9) "%4.2fG" % (self.session_peakmem / 1e9),
) )
# this needs to be generalized to all sorts of postprocessors, which should be wrapped # this needs to be generalized to all sorts of postprocessors, which should be wrapped
@@ -648,7 +647,7 @@ class Generate:
seed = random.randrange(0, np.iinfo(np.uint32).max) seed = random.randrange(0, np.iinfo(np.uint32).max)
prompt = opt.prompt or args.prompt or "" prompt = opt.prompt or args.prompt or ""
logger.info(f'using seed {seed} and prompt "{prompt}" for {image_path}') print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
# try to reuse the same filename prefix as the original file. # try to reuse the same filename prefix as the original file.
# we take everything up to the first period # we take everything up to the first period
@@ -697,8 +696,8 @@ class Generate:
try: try:
extend_instructions[direction] = int(pixels) extend_instructions[direction] = int(pixels)
except ValueError: except ValueError:
logger.warning( print(
'invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"' '** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
) )
opt.seed = seed opt.seed = seed
@@ -721,8 +720,8 @@ class Generate:
# fetch the metadata from the image # fetch the metadata from the image
generator = self.select_generator(embiggen=True) generator = self.select_generator(embiggen=True)
opt.strength = opt.embiggen_strength or 0.40 opt.strength = opt.embiggen_strength or 0.40
logger.info( print(
f"Setting img2img strength to {opt.strength} for happy embiggening" f">> Setting img2img strength to {opt.strength} for happy embiggening"
) )
generator.generate( generator.generate(
prompt, prompt,
@@ -749,12 +748,12 @@ class Generate:
return restorer.process(opt, args, image_callback=callback, prefix=prefix) return restorer.process(opt, args, image_callback=callback, prefix=prefix)
elif tool is None: elif tool is None:
logger.warning( print(
"please provide at least one postprocessing option, such as -G or -U" "* please provide at least one postprocessing option, such as -G or -U"
) )
return None return None
else: else:
logger.warning(f"postprocessing tool {tool} is not yet supported") print(f"* postprocessing tool {tool} is not yet supported")
return None return None
def select_generator( def select_generator(
@@ -798,8 +797,8 @@ class Generate:
image = self._load_img(img) image = self._load_img(img)
if image.width < self.width and image.height < self.height: if image.width < self.width and image.height < self.height:
logger.warning( print(
f"img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions" f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
) )
# if image has a transparent area and no mask was provided, then try to generate mask # if image has a transparent area and no mask was provided, then try to generate mask
@@ -810,8 +809,8 @@ class Generate:
if (image.width * image.height) > ( if (image.width * image.height) > (
self.width * self.height self.width * self.height
) and self.size_matters: ) and self.size_matters:
logger.info( print(
"This input is larger than your defaults. If you run out of memory, please use a smaller image." ">> This input is larger than your defaults. If you run out of memory, please use a smaller image."
) )
self.size_matters = False self.size_matters = False
@@ -892,11 +891,11 @@ class Generate:
try: try:
model_data = cache.get_model(model_name) model_data = cache.get_model(model_name)
except Exception as e: except Exception as e:
logger.warning(f"model {model_name} could not be loaded: {str(e)}") print(f"** model {model_name} could not be loaded: {str(e)}")
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if previous_model_name is None: if previous_model_name is None:
raise e raise e
logger.warning("trying to reload previous model") print("** trying to reload previous model")
model_data = cache.get_model(previous_model_name) # load previous model_data = cache.get_model(previous_model_name) # load previous
if model_data is None: if model_data is None:
raise e raise e
@@ -963,15 +962,15 @@ class Generate:
if self.gfpgan is not None or self.codeformer is not None: if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan": if facetool == "gfpgan":
if self.gfpgan is None: if self.gfpgan is None:
logger.info( print(
"GFPGAN not found. Face restoration is disabled." ">> GFPGAN not found. Face restoration is disabled."
) )
else: else:
image = self.gfpgan.process(image, strength, seed) image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer": if facetool == "codeformer":
if self.codeformer is None: if self.codeformer is None:
logger.info( print(
"CodeFormer not found. Face restoration is disabled." ">> CodeFormer not found. Face restoration is disabled."
) )
else: else:
cf_device = ( cf_device = (
@@ -985,7 +984,7 @@ class Generate:
fidelity=codeformer_fidelity, fidelity=codeformer_fidelity,
) )
else: else:
logger.info("Face Restoration is disabled.") print(">> Face Restoration is disabled.")
if upscale is not None: if upscale is not None:
if self.esrgan is not None: if self.esrgan is not None:
if len(upscale) < 2: if len(upscale) < 2:
@@ -998,10 +997,10 @@ class Generate:
denoise_str=upscale_denoise_str, denoise_str=upscale_denoise_str,
) )
else: else:
logger.info("ESRGAN is disabled. Image not upscaled.") print(">> ESRGAN is disabled. Image not upscaled.")
except Exception as e: except Exception as e:
logger.info( print(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
) )
if image_callback is not None: if image_callback is not None:
@@ -1067,17 +1066,17 @@ class Generate:
if self.sampler_name in scheduler_map: if self.sampler_name in scheduler_map:
sampler_class = scheduler_map[self.sampler_name] sampler_class = scheduler_map[self.sampler_name]
msg = ( msg = (
f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})" f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
) )
self.sampler = sampler_class.from_config(self.model.scheduler.config) self.sampler = sampler_class.from_config(self.model.scheduler.config)
else: else:
msg = ( msg = (
f" Unsupported Sampler: {self.sampler_name} "+ f">> Unsupported Sampler: {self.sampler_name} "
f"Defaulting to {default}" f"Defaulting to {default}"
) )
self.sampler = default self.sampler = default
logger.info(msg) print(msg)
if not hasattr(self.sampler, "uses_inpainting_model"): if not hasattr(self.sampler, "uses_inpainting_model"):
# FIXME: terrible kludge! # FIXME: terrible kludge!
@@ -1086,17 +1085,17 @@ class Generate:
def _load_img(self, img) -> Image: def _load_img(self, img) -> Image:
if isinstance(img, Image.Image): if isinstance(img, Image.Image):
image = img image = img
logger.info(f"using provided input image of size {image.width}x{image.height}") print(f">> using provided input image of size {image.width}x{image.height}")
elif isinstance(img, str): elif isinstance(img, str):
assert os.path.exists(img), f"{img}: File not found" assert os.path.exists(img), f">> {img}: File not found"
image = Image.open(img) image = Image.open(img)
logger.info( print(
f"loaded input image of size {image.width}x{image.height} from {img}" f">> loaded input image of size {image.width}x{image.height} from {img}"
) )
else: else:
image = Image.open(img) image = Image.open(img)
logger.info(f"loaded input image of size {image.width}x{image.height}") print(f">> loaded input image of size {image.width}x{image.height}")
image = ImageOps.exif_transpose(image) image = ImageOps.exif_transpose(image)
return image return image
@@ -1184,14 +1183,14 @@ class Generate:
def _transparency_check_and_warning(self, image, mask, force_outpaint=False): def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
if not mask: if not mask:
logger.info( print(
"Initial image has transparent areas. Will inpaint in these regions." ">> Initial image has transparent areas. Will inpaint in these regions."
) )
if (not force_outpaint) and self._check_for_erasure(image): if (not force_outpaint) and self._check_for_erasure(image):
logger.info( print(
"Colors underneath the transparent region seem to have been erased.\n" + ">> WARNING: Colors underneath the transparent region seem to have been erased.\n",
"Inpainting will be suboptimal. Please preserve the colors when making\n" + ">> Inpainting will be suboptimal. Please preserve the colors when making\n",
"a transparency mask, or provide mask explicitly using --init_mask (-M)." ">> a transparency mask, or provide mask explicitly using --init_mask (-M).",
) )
def _squeeze_image(self, image): def _squeeze_image(self, image):
@@ -1202,11 +1201,11 @@ class Generate:
def _fit_image(self, image, max_dimensions): def _fit_image(self, image, max_dimensions):
w, h = max_dimensions w, h = max_dimensions
logger.info(f"image will be resized to fit inside a box {w}x{h} in size.") print(f">> image will be resized to fit inside a box {w}x{h} in size.")
# note that InitImageResizer does the multiple of 64 truncation internally # note that InitImageResizer does the multiple of 64 truncation internally
image = InitImageResizer(image).resize(width=w, height=h) image = InitImageResizer(image).resize(width=w, height=h)
logger.info( print(
f"after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}" f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
) )
return image return image
@@ -1217,8 +1216,8 @@ class Generate:
) # resize to integer multiple of 64 ) # resize to integer multiple of 64
if h != height or w != width: if h != height or w != width:
if log: if log:
logger.info( print(
f"Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}" f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
) )
height = h height = h
width = w width = w

View File

@@ -25,7 +25,6 @@ from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker from ..safety_checker import SafetyChecker
@@ -373,7 +372,7 @@ class Generator:
try: try:
x_T = self.get_noise(width, height) x_T = self.get_noise(width, height)
except: except:
logger.error("An error occurred while getting initial noise") print("** An error occurred while getting initial noise **")
print(traceback.format_exc()) print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own. # Pass on the seed in case a layer beneath us needs to generate noise on its own.
@@ -608,7 +607,7 @@ class Generator:
image = self.sample_to_image(sample) image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "." dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname): if not os.path.exists(dirname):
logger.info(f"creating directory {dirname}") print(f"** creating directory {dirname}")
os.makedirs(dirname, exist_ok=True) os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG") image.save(filepath, "PNG")

View File

@@ -8,11 +8,10 @@ import torch
from PIL import Image from PIL import Image
from tqdm import trange from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator from .base import Generator
from .img2img import Img2Img from .img2img import Img2Img
class Embiggen(Generator): class Embiggen(Generator):
def __init__(self, model, precision): def __init__(self, model, precision):
super().__init__(model, precision) super().__init__(model, precision)
@@ -73,22 +72,22 @@ class Embiggen(Generator):
embiggen = [1.0] # If not specified, assume no scaling embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0: elif embiggen[0] < 0:
embiggen[0] = 1.0 embiggen[0] = 1.0
logger.warning( print(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !" ">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
) )
if len(embiggen) < 2: if len(embiggen) < 2:
embiggen.append(0.75) embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0: elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75 embiggen[1] = 0.75
logger.warning( print(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !" ">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
) )
if len(embiggen) < 3: if len(embiggen) < 3:
embiggen.append(0.25) embiggen.append(0.25)
elif embiggen[2] < 0: elif embiggen[2] < 0:
embiggen[2] = 0.25 embiggen[2] = 0.25
logger.warning( print(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !" ">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
) )
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math # Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
@@ -98,8 +97,8 @@ class Embiggen(Generator):
embiggen_tiles.sort() embiggen_tiles.sort()
if strength >= 0.5: if strength >= 0.5:
logger.warning( print(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45." f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
) )
# Prep img2img generator, since we wrap over it # Prep img2img generator, since we wrap over it
@@ -122,8 +121,8 @@ class Embiggen(Generator):
from ..restoration.realesrgan import ESRGAN from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN() esrgan = ESRGAN()
logger.info( print(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}" f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
) )
if embiggen[0] > 2: if embiggen[0] > 2:
initsuperimage = esrgan.process( initsuperimage = esrgan.process(
@@ -313,10 +312,10 @@ class Embiggen(Generator):
def make_image(): def make_image():
# Make main tiles ------------------------------------------------- # Make main tiles -------------------------------------------------
if embiggen_tiles: if embiggen_tiles:
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...") print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
else: else:
logger.info( print(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..." f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
) )
emb_tile_store = [] emb_tile_store = []
@@ -362,11 +361,11 @@ class Embiggen(Generator):
# newinitimage.save(newinitimagepath) # newinitimage.save(newinitimagepath)
if embiggen_tiles: if embiggen_tiles:
logger.debug( print(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)" f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
) )
else: else:
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles") print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image # create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0 newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
@@ -548,8 +547,8 @@ class Embiggen(Generator):
# Layer tile onto final image # Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top)) outputsuperimage.alpha_composite(intileimage, (left, top))
else: else:
logger.error( print(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation." "Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
) )
# after internal loops and patching up return Embiggen image # after internal loops and patching up return Embiggen image

View File

@@ -14,8 +14,6 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
from ..stable_diffusion.diffusers_pipeline import ConditioningData from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator): class Txt2Img2Img(Generator):
def __init__(self, model, precision): def __init__(self, model, precision):
super().__init__(model, precision) super().__init__(model, precision)
@@ -79,8 +77,8 @@ class Txt2Img2Img(Generator):
# the message below is accurate. # the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
logger.info( print(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling" f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
) )
# resizing # resizing

View File

@@ -5,9 +5,10 @@ wraps the actual patchmatch object. It respects the global
be suppressed or deferred be suppressed or deferred
""" """
import numpy as np import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class PatchMatch: class PatchMatch:
""" """
Thin class wrapper around the patchmatch function. Thin class wrapper around the patchmatch function.
@@ -27,12 +28,12 @@ class PatchMatch:
from patchmatch import patch_match as pm from patchmatch import patch_match as pm
if pm.patchmatch_available: if pm.patchmatch_available:
logger.info("Patchmatch initialized") print(">> Patchmatch initialized")
else: else:
logger.info("Patchmatch not loaded (nonfatal)") print(">> Patchmatch not loaded (nonfatal)")
self.patch_match = pm self.patch_match = pm
else: else:
logger.info("Patchmatch loading disabled") print(">> Patchmatch loading disabled")
self.tried_load = True self.tried_load = True
@classmethod @classmethod

View File

@@ -30,9 +30,9 @@ work fine.
import numpy as np import numpy as np
import torch import torch
from PIL import Image, ImageOps from PIL import Image, ImageOps
from torchvision import transforms
from transformers import AutoProcessor, CLIPSegForImageSegmentation from transformers import AutoProcessor, CLIPSegForImageSegmentation
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir from invokeai.backend.globals import global_cache_dir
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
@@ -83,7 +83,7 @@ class Txt2Mask(object):
""" """
def __init__(self, device="cpu", refined=False): def __init__(self, device="cpu", refined=False):
logger.info("Initializing clipseg model for text to mask inference") print(">> Initializing clipseg model for text to mask inference")
# BUG: we are not doing anything with the device option at this time # BUG: we are not doing anything with the device option at this time
self.device = device self.device = device
@@ -101,6 +101,18 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be. pixels indicate where the object is inferred to be.
""" """
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str: if type(image) is str:
image = Image.open(image).convert("RGB") image = Image.open(image).convert("RGB")

View File

@@ -5,7 +5,5 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers, convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt, load_pipeline_from_original_stable_diffusion_ckpt,
) )
from .model_manager import ModelManager,SDModelComponent from .model_manager import ModelManager

View File

@@ -25,7 +25,6 @@ from typing import Union
import torch import torch
from safetensors.torch import load_file from safetensors.torch import load_file
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir, global_config_dir from invokeai.backend.globals import global_cache_dir, global_config_dir
from .model_manager import ModelManager, SDLegacyType from .model_manager import ModelManager, SDLegacyType
@@ -373,9 +372,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
unet_key = "model.diffusion_model." unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100: if sum(k.startswith("model_ema") for k in keys) > 100:
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.") print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
if extract_ema: if extract_ema:
logger.debug("Extracting EMA weights (usually better for inference)") print(" | Extracting EMA weights (usually better for inference)")
for key in keys: for key in keys:
if key.startswith("model.diffusion_model"): if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
@@ -393,8 +392,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
key key
) )
else: else:
logger.debug( print(
"Extracting only the non-EMA weights (usually better for fine-tuning)" " | Extracting only the non-EMA weights (usually better for fine-tuning)"
) )
for key in keys: for key in keys:
@@ -1116,7 +1115,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint: if "global_step" in checkpoint:
global_step = checkpoint["global_step"] global_step = checkpoint["global_step"]
else: else:
logger.debug("global_step key not found in model") print(" | global_step key not found in model")
global_step = None global_step = None
# sometimes there is a state_dict key and sometimes not # sometimes there is a state_dict key and sometimes not
@@ -1230,15 +1229,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
# If a replacement VAE path was specified, we'll incorporate that into # If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it # the checkpoint model and then convert it
if vae_path: if vae_path:
logger.debug(f"Converting VAE {vae_path}") print(f" | Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path) replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that # otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed # an externally loaded diffusers VAE was not passed
elif not vae: elif not vae:
logger.debug("Using checkpoint model's original VAE") print(" | Using checkpoint model's original VAE")
if vae: if vae:
logger.debug("Using replacement diffusers VAE") print(" | Using replacement diffusers VAE")
else: # convert the original or replacement VAE else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config( vae_config = create_vae_diffusers_config(
original_config, image_size=image_size original_config, image_size=image_size

View File

@@ -1,4 +1,4 @@
"""enum """
Manage a cache of Stable Diffusion model files for fast switching. Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be below a preset minimum, the least recently used model will be
@@ -15,22 +15,17 @@ import sys
import textwrap import textwrap
import time import time
import warnings import warnings
from enum import Enum, auto from enum import Enum
from pathlib import Path from pathlib import Path
from shutil import move, rmtree from shutil import move, rmtree
from typing import Any, Optional, Union, Callable, types from typing import Any, Optional, Union, Callable
import safetensors import safetensors
import safetensors.torch import safetensors.torch
import torch import torch
import transformers import transformers
import invokeai.backend.util.logging as logger from diffusers import AutoencoderKL
from diffusers import ( from diffusers import logging as dlogging
AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
logging as dlogging,
)
from huggingface_hub import scan_cache_dir from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig from omegaconf.dictconfig import DictConfig
@@ -38,46 +33,23 @@ from picklescan.scanner import scan_file_path
from invokeai.backend.globals import Globals, global_cache_dir from invokeai.backend.globals import Globals, global_cache_dir
from transformers import ( from ..stable_diffusion import StableDiffusionGeneratorPipeline
CLIPTextModel,
CLIPTokenizer,
CLIPFeatureExtractor,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from ..stable_diffusion import (
StableDiffusionGeneratorPipeline,
)
from ..util import CUDA_DEVICE, ask_user, download_with_resume from ..util import CUDA_DEVICE, ask_user, download_with_resume
class SDLegacyType(Enum): class SDLegacyType(Enum):
V1 = auto() V1 = 1
V1_INPAINT = auto() V1_INPAINT = 2
V2 = auto() V2 = 3
V2_e = auto() V2_e = 4
V2_v = auto() V2_v = 5
UNKNOWN = auto() UNKNOWN = 99
class SDModelComponent(Enum):
vae="vae"
text_encoder="text_encoder"
tokenizer="tokenizer"
unet="unet"
scheduler="scheduler"
safety_checker="safety_checker"
feature_extractor="feature_extractor"
DEFAULT_MAX_MODELS = 2 DEFAULT_MAX_MODELS = 2
class ModelManager(object): class ModelManager(object):
""" '''
Model manager handles loading, caching, importing, deleting, converting, and editing models. Model manager handles loading, caching, importing, deleting, converting, and editing models.
""" '''
logger: types.ModuleType = logger
def __init__( def __init__(
self, self,
config: OmegaConf|Path, config: OmegaConf|Path,
@@ -86,7 +58,6 @@ class ModelManager(object):
max_loaded_models=DEFAULT_MAX_MODELS, max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False, sequential_offload=False,
embedding_path: Path=None, embedding_path: Path=None,
logger: types.ModuleType = logger,
): ):
""" """
Initialize with the path to the models.yaml config file or Initialize with the path to the models.yaml config file or
@@ -108,7 +79,6 @@ class ModelManager(object):
self.current_model = None self.current_model = None
self.sequential_offload = sequential_offload self.sequential_offload = sequential_offload
self.embedding_path = embedding_path self.embedding_path = embedding_path
self.logger = logger
def valid_model(self, model_name: str) -> bool: def valid_model(self, model_name: str) -> bool:
""" """
@@ -118,27 +88,17 @@ class ModelManager(object):
return model_name in self.config return model_name in self.config
def get_model(self, model_name: str=None)->dict: def get_model(self, model_name: str=None)->dict:
"""Given a model named identified in models.yaml, return a dict """
containing the model object and some of its key features. If Given a model named identified in models.yaml, return
in RAM will load into GPU VRAM. If on disk, will load from the model object. If in RAM will load into GPU VRAM.
there. If on disk, will load from there.
The dict has the following keys:
'model': The StableDiffusionGeneratorPipeline object
'model_name': The name of the model in models.yaml
'width': The width of images trained by this model
'height': The height of images trained by this model
'hash': A unique hash of this model's files on disk.
""" """
if not model_name: if not model_name:
return ( return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model())
self.get_model(self.current_model)
if self.current_model
else self.get_model(self.default_model())
)
if not self.valid_model(model_name): if not self.valid_model(model_name):
self.logger.error( print(
f'"{model_name}" is not a known model name. Please check your models.yaml file' f'** "{model_name}" is not a known model name. Please check your models.yaml file'
) )
return self.current_model return self.current_model
@@ -149,7 +109,7 @@ class ModelManager(object):
if model_name in self.models: if model_name in self.models:
requested_model = self.models[model_name]["model"] requested_model = self.models[model_name]["model"]
self.logger.info(f"Retrieving model {model_name} from system RAM cache") print(f">> Retrieving model {model_name} from system RAM cache")
requested_model.ready() requested_model.ready()
width = self.models[model_name]["width"] width = self.models[model_name]["width"]
height = self.models[model_name]["height"] height = self.models[model_name]["height"]
@@ -175,81 +135,6 @@ class ModelManager(object):
"hash": hash, "hash": hash,
} }
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned VAE as an
AutoencoderKL object. If no model name is provided, return the
vae from the model currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.vae)
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTokenizer. If no
model name is provided, return the tokenizer from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned UNet2DConditionModel. If no model
name is provided, return the UNet from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.unet)
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTextModel. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned scheduler. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.scheduler)
def _get_sub_model(
self,
model_name: str=None,
model_part: SDModelComponent=SDModelComponent.vae,
) -> Union[
AutoencoderKL,
CLIPTokenizer,
CLIPFeatureExtractor,
UNet2DConditionModel,
CLIPTextModel,
StableDiffusionSafetyChecker,
]:
"""Given a model name identified in models.yaml, and the part of the
model you wish to retrieve, return that part. Parts are in an Enum
class named SDModelComponent, and consist of:
SDModelComponent.vae
SDModelComponent.text_encoder
SDModelComponent.tokenizer
SDModelComponent.unet
SDModelComponent.scheduler
SDModelComponent.safety_checker
SDModelComponent.feature_extractor
"""
model_dict = self.get_model(model_name)
model = model_dict["model"]
return getattr(model, model_part.value)
def default_model(self) -> str | None: def default_model(self) -> str | None:
""" """
Returns the name of the default model, or None Returns the name of the default model, or None
@@ -384,7 +269,7 @@ class ModelManager(object):
""" """
omega = self.config omega = self.config
if model_name not in omega: if model_name not in omega:
self.logger.error(f"Unknown model {model_name}") print(f"** Unknown model {model_name}")
return return
# save these for use in deletion later # save these for use in deletion later
conf = omega[model_name] conf = omega[model_name]
@@ -397,13 +282,13 @@ class ModelManager(object):
self.stack.remove(model_name) self.stack.remove(model_name)
if delete_files: if delete_files:
if weights: if weights:
self.logger.info(f"Deleting file {weights}") print(f"** Deleting file {weights}")
Path(weights).unlink(missing_ok=True) Path(weights).unlink(missing_ok=True)
elif path: elif path:
self.logger.info(f"Deleting directory {path}") print(f"** Deleting directory {path}")
rmtree(path, ignore_errors=True) rmtree(path, ignore_errors=True)
elif repo_id: elif repo_id:
self.logger.info(f"Deleting the cached model directory for {repo_id}") print(f"** Deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id) self._delete_model_from_cache(repo_id)
def add_model( def add_model(
@@ -444,7 +329,7 @@ class ModelManager(object):
def _load_model(self, model_name: str): def _load_model(self, model_name: str):
"""Load and initialize the model from configuration variables passed at object creation time""" """Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config: if model_name not in self.config:
self.logger.error( print(
f'"{model_name}" is not a known model name. Please check your models.yaml file' f'"{model_name}" is not a known model name. Please check your models.yaml file'
) )
return return
@@ -462,7 +347,7 @@ class ModelManager(object):
model_format = mconfig.get("format", "ckpt") model_format = mconfig.get("format", "ckpt")
if model_format == "ckpt": if model_format == "ckpt":
weights = mconfig.weights weights = mconfig.weights
self.logger.info(f"Loading {model_name} from {weights}") print(f">> Loading {model_name} from {weights}")
model, width, height, model_hash = self._load_ckpt_model( model, width, height, model_hash = self._load_ckpt_model(
model_name, mconfig model_name, mconfig
) )
@@ -478,15 +363,13 @@ class ModelManager(object):
# usage statistics # usage statistics
toc = time.time() toc = time.time()
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic)) print(">> Model loaded in", "%4.2fs" % (toc - tic))
if self._has_cuda(): if self._has_cuda():
self.logger.info( print(
"Max VRAM used to load the model: "+ ">> Max VRAM used to load the model:",
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9) "%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
) "\n>> Current VRAM usage:"
self.logger.info( "%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
"Current VRAM usage: "+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
) )
return model, width, height, model_hash return model, width, height, model_hash
@@ -494,11 +377,11 @@ class ModelManager(object):
name_or_path = self.model_name_or_path(mconfig) name_or_path = self.model_name_or_path(mconfig)
using_fp16 = self.precision == "float16" using_fp16 = self.precision == "float16"
self.logger.info(f"Loading diffusers model from {name_or_path}") print(f">> Loading diffusers model from {name_or_path}")
if using_fp16: if using_fp16:
self.logger.debug("Using faster float16 precision") print(" | Using faster float16 precision")
else: else:
self.logger.debug("Using more accurate float32 precision") print(" | Using more accurate float32 precision")
# TODO: scan weights maybe? # TODO: scan weights maybe?
pipeline_args: dict[str, Any] = dict( pipeline_args: dict[str, Any] = dict(
@@ -530,8 +413,8 @@ class ModelManager(object):
if str(e).startswith("fp16 is not a valid"): if str(e).startswith("fp16 is not a valid"):
pass pass
else: else:
self.logger.error( print(
f"An unexpected error occurred while downloading the model: {e})" f"** An unexpected error occurred while downloading the model: {e})"
) )
if pipeline: if pipeline:
break break
@@ -549,7 +432,7 @@ class ModelManager(object):
# square images??? # square images???
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width height = width
self.logger.debug(f"Default image dimensions = {width} x {height}") print(f" | Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash return pipeline, width, height, model_hash
@@ -566,23 +449,19 @@ class ModelManager(object):
weights = os.path.normpath(os.path.join(Globals.root, weights)) weights = os.path.normpath(os.path.join(Globals.root, weights))
# Convert to diffusers and return a diffusers pipeline # Convert to diffusers and return a diffusers pipeline
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...") print(f">> Converting legacy checkpoint {model_name} into a diffusers model...")
from . import load_pipeline_from_original_stable_diffusion_ckpt from . import load_pipeline_from_original_stable_diffusion_ckpt
try: try:
if self.list_models()[self.current_model]["status"] == "active": if self.list_models()[self.current_model]['status'] == 'active':
self.offload_model(self.current_model) self.offload_model(self.current_model)
except Exception: except Exception as e:
pass pass
vae_path = None vae_path = None
if vae: if vae:
vae_path = ( vae_path = vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae))
vae
if os.path.isabs(vae)
else os.path.normpath(os.path.join(Globals.root, vae))
)
if self._has_cuda(): if self._has_cuda():
torch.cuda.empty_cache() torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt( pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@@ -631,7 +510,7 @@ class ModelManager(object):
if model_name not in self.models: if model_name not in self.models:
return return
self.logger.info(f"Offloading {model_name} to CPU") print(f">> Offloading {model_name} to CPU")
model = self.models[model_name]["model"] model = self.models[model_name]["model"]
model.offload_all() model.offload_all()
self.current_model = None self.current_model = None
@@ -647,26 +526,30 @@ class ModelManager(object):
and option to exit if an infected file is identified. and option to exit if an infected file is identified.
""" """
# scan model # scan model
self.logger.debug(f"Scanning Model: {model_name}") print(f" | Scanning Model: {model_name}")
scan_result = scan_file_path(checkpoint) scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0: if scan_result.infected_files != 0:
if scan_result.infected_files == 1: if scan_result.infected_files == 1:
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}") print(f"\n### Issues Found In Model: {scan_result.issues_count}")
self.logger.critical("The model you are trying to load seems to be infected.") print(
self.logger.critical("For your safety, InvokeAI will not load this model.") "### WARNING: The model you are trying to load seems to be infected."
self.logger.critical("Please use checkpoints from trusted sources.") )
self.logger.critical("Exiting InvokeAI") print("### For your safety, InvokeAI will not load this model.")
print("### Please use checkpoints from trusted sources.")
print("### Exiting InvokeAI")
sys.exit() sys.exit()
else: else:
self.logger.warning("InvokeAI was unable to scan the model you are using.") print(
"\n### WARNING: InvokeAI was unable to scan the model you are using."
)
model_safe_check_fail = ask_user( model_safe_check_fail = ask_user(
"Do you want to to continue loading the model?", ["y", "n"] "Do you want to to continue loading the model?", ["y", "n"]
) )
if model_safe_check_fail.lower() != "y": if model_safe_check_fail.lower() != "y":
self.logger.critical("Exiting InvokeAI") print("### Exiting InvokeAI")
sys.exit() sys.exit()
else: else:
self.logger.debug("Model scanned ok") print(" | Model scanned ok")
def import_diffuser_model( def import_diffuser_model(
self, self,
@@ -688,7 +571,9 @@ class ModelManager(object):
models.yaml file. models.yaml file.
""" """
model_name = model_name or Path(repo_or_path).stem model_name = model_name or Path(repo_or_path).stem
model_description = description or f"Imported diffusers model {model_name}" model_description = (
description or f"Imported diffusers model {model_name}"
)
new_config = dict( new_config = dict(
description=model_description, description=model_description,
vae=vae, vae=vae,
@@ -717,7 +602,7 @@ class ModelManager(object):
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN SDLegacyType.UNKNOWN
""" """
global_step = checkpoint.get("global_step") global_step = checkpoint.get('global_step')
state_dict = checkpoint.get("state_dict") or checkpoint state_dict = checkpoint.get("state_dict") or checkpoint
try: try:
@@ -783,24 +668,26 @@ class ModelManager(object):
model_path: Path = None model_path: Path = None
thing = path_url_or_repo # to save typing thing = path_url_or_repo # to save typing
self.logger.info(f"Probing {thing} for import") print(f">> Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")): if thing.startswith(("http:", "https:", "ftp:")):
self.logger.info(f"{thing} appears to be a URL") print(f" | {thing} appears to be a URL")
model_path = self._resolve_path( model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1" thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed ) # _resolve_path does a download if needed
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]: if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import") print(
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
)
return return
else: else:
self.logger.debug(f"{thing} appears to be a checkpoint file on disk") print(f" | {thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
self.logger.debug(f"{thing} appears to be a diffusers file on disk") print(f" | {thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
@@ -811,30 +698,34 @@ class ModelManager(object):
elif Path(thing).is_dir(): elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists(): if (Path(thing) / "model_index.json").exists():
self.logger.debug(f"{thing} appears to be a diffusers model.") print(f" | {thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf thing, commit_to_conf=commit_to_conf
) )
else: else:
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import") print(
f" |{thing} appears to be a directory. Will scan for models to import"
)
for m in list(Path(thing).rglob("*.ckpt")) + list( for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors") Path(thing).rglob("*.safetensors")
): ):
if model_name := self.heuristic_import( if model_name := self.heuristic_import(
str(m), commit_to_conf=commit_to_conf str(m), commit_to_conf=commit_to_conf
): ):
self.logger.info(f"{model_name} successfully imported") print(f" >> {model_name} successfully imported")
return model_name return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id") print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf thing, commit_to_conf=commit_to_conf
) )
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
return model_name return model_name
else: else:
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id") print(
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
)
# Model_path is set in the event of a legacy checkpoint file. # Model_path is set in the event of a legacy checkpoint file.
# If not set, we're all done # If not set, we're all done
@@ -842,7 +733,7 @@ class ModelManager(object):
return return
if model_path.stem in self.config: # already imported if model_path.stem in self.config: # already imported
self.logger.debug("Already imported. Skipping") print(" | Already imported. Skipping")
return model_path.stem return model_path.stem
# another round of heuristics to guess the correct config file. # another round of heuristics to guess the correct config file.
@@ -858,39 +749,42 @@ class ModelManager(object):
# look for a like-named .yaml file in same directory # look for a like-named .yaml file in same directory
if model_path.with_suffix(".yaml").exists(): if model_path.with_suffix(".yaml").exists():
model_config_file = model_path.with_suffix(".yaml") model_config_file = model_path.with_suffix(".yaml")
self.logger.debug(f"Using config file {model_config_file.name}") print(f" | Using config file {model_config_file.name}")
else: else:
model_type = self.probe_model_type(checkpoint) model_type = self.probe_model_type(checkpoint)
if model_type == SDLegacyType.V1: if model_type == SDLegacyType.V1:
self.logger.debug("SD-v1 model detected") print(" | SD-v1 model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml" Globals.root, "configs/stable-diffusion/v1-inference.yaml"
) )
elif model_type == SDLegacyType.V1_INPAINT: elif model_type == SDLegacyType.V1_INPAINT:
self.logger.debug("SD-v1 inpainting model detected") print(" | SD-v1 inpainting model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
"configs/stable-diffusion/v1-inpainting-inference.yaml",
) )
elif model_type == SDLegacyType.V2_v: elif model_type == SDLegacyType.V2_v:
self.logger.debug("SD-v2-v model detected") print(
" | SD-v2-v model detected"
)
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
) )
elif model_type == SDLegacyType.V2_e: elif model_type == SDLegacyType.V2_e:
self.logger.debug("SD-v2-e model detected") print(
" | SD-v2-e model detected"
)
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml" Globals.root, "configs/stable-diffusion/v2-inference.yaml"
) )
elif model_type == SDLegacyType.V2: elif model_type == SDLegacyType.V2:
self.logger.warning( print(
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
) )
return return
else: else:
self.logger.warning( print(
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
) )
return return
@@ -906,7 +800,7 @@ class ModelManager(object):
for suffix in ["pt", "ckpt", "safetensors"]: for suffix in ["pt", "ckpt", "safetensors"]:
if (model_path.with_suffix(f".vae.{suffix}")).exists(): if (model_path.with_suffix(f".vae.{suffix}")).exists():
vae_path = model_path.with_suffix(f".vae.{suffix}") vae_path = model_path.with_suffix(f".vae.{suffix}")
self.logger.debug(f"Using VAE file {vae_path.name}") print(f" | Using VAE file {vae_path.name}")
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse") vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
diffuser_path = Path( diffuser_path = Path(
@@ -952,14 +846,14 @@ class ModelManager(object):
from . import convert_ckpt_to_diffusers from . import convert_ckpt_to_diffusers
if diffusers_path.exists(): if diffusers_path.exists():
self.logger.error( print(
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again." f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
) )
return return
model_name = model_name or diffusers_path.name model_name = model_name or diffusers_path.name
model_description = model_description or f"Converted version of {model_name}" model_description = model_description or f"Converted version of {model_name}"
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)") print(f" | Converting {model_name} to diffusers (30-60s)")
try: try:
# By passing the specified VAE to the conversion function, the autoencoder # By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file # will be built into the model rather than tacked on afterward via the config file
@@ -976,10 +870,10 @@ class ModelManager(object):
vae_path=vae_path, vae_path=vae_path,
scan_needed=scan_needed, scan_needed=scan_needed,
) )
self.logger.debug( print(
f"Success. Converted model is now located at {str(diffusers_path)}" f" | Success. Converted model is now located at {str(diffusers_path)}"
) )
self.logger.debug(f"Writing new config file entry for {model_name}") print(f" | Writing new config file entry for {model_name}")
new_config = dict( new_config = dict(
path=str(diffusers_path), path=str(diffusers_path),
description=model_description, description=model_description,
@@ -990,17 +884,17 @@ class ModelManager(object):
self.add_model(model_name, new_config, True) self.add_model(model_name, new_config, True)
if commit_to_conf: if commit_to_conf:
self.commit(commit_to_conf) self.commit(commit_to_conf)
self.logger.debug("Conversion succeeded") print(" | Conversion succeeded")
except Exception as e: except Exception as e:
self.logger.warning(f"Conversion failed: {str(e)}") print(f"** Conversion failed: {str(e)}")
self.logger.warning( print(
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" "** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
) )
return model_name return model_name
def search_models(self, search_folder): def search_models(self, search_folder):
self.logger.info(f"Finding Models In: {search_folder}") print(f">> Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
@@ -1024,8 +918,8 @@ class ModelManager(object):
num_loaded_models = len(self.models) num_loaded_models = len(self.models)
if num_loaded_models >= self.max_loaded_models: if num_loaded_models >= self.max_loaded_models:
least_recent_model = self._pop_oldest_model() least_recent_model = self._pop_oldest_model()
self.logger.info( print(
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}" f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
) )
if least_recent_model is not None: if least_recent_model is not None:
del self.models[least_recent_model] del self.models[least_recent_model]
@@ -1033,8 +927,8 @@ class ModelManager(object):
def print_vram_usage(self) -> None: def print_vram_usage(self) -> None:
if self._has_cuda: if self._has_cuda:
self.logger.info( print(
"Current VRAM usage:"+ ">> Current VRAM usage: ",
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9), "%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
) )
@@ -1082,15 +976,15 @@ class ModelManager(object):
legacy_locations = [ legacy_locations = [
Path( Path(
models_dir, models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker", "CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
), ),
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"), Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
Path( Path(
models_dir, models_dir,
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14", "openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
), ),
] ]
legacy_locations.extend(list(global_cache_dir("diffusers").glob("*"))) legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
legacy_layout = False legacy_layout = False
for model in legacy_locations: for model in legacy_locations:
@@ -1109,7 +1003,7 @@ class ModelManager(object):
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready. >> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue.""" >> Otherwise press <enter> to continue."""
) )
input("continue> ") input('continue> ')
# transformer files get moved into the hub directory # transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present(): if cls._is_huggingface_hub_directory_present():
@@ -1123,10 +1017,10 @@ class ModelManager(object):
dest = hub / model.stem dest = hub / model.stem
if dest.exists() and not source.exists(): if dest.exists() and not source.exists():
continue continue
cls.logger.info(f"{source} => {dest}") print(f"** {source} => {dest}")
if source.exists(): if source.exists():
if dest.is_symlink(): if dest.is_symlink():
logger.warning(f"Found symlink at {dest.name}. Not migrating.") print(f"** Found symlink at {dest.name}. Not migrating.")
elif dest.exists(): elif dest.exists():
if source.is_dir(): if source.is_dir():
rmtree(source) rmtree(source)
@@ -1143,7 +1037,7 @@ class ModelManager(object):
] ]
for d in empty: for d in empty:
os.rmdir(d) os.rmdir(d)
cls.logger.info("Migration is done. Continuing...") print("** Migration is done. Continuing...")
def _resolve_path( def _resolve_path(
self, source: Union[str, Path], dest_directory: str self, source: Union[str, Path], dest_directory: str
@@ -1186,22 +1080,22 @@ class ModelManager(object):
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline): def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
if self.embedding_path is not None: if self.embedding_path is not None:
self.logger.info(f"Loading embeddings from {self.embedding_path}") print(f">> Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path): for root, _, files in os.walk(self.embedding_path):
for name in files: for name in files:
ti_path = os.path.join(root, name) ti_path = os.path.join(root, name)
model.textual_inversion_manager.load_textual_inversion( model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True ti_path, defer_injecting_tokens=True
) )
self.logger.info( print(
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}' f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
) )
def _has_cuda(self) -> bool: def _has_cuda(self) -> bool:
return self.device.type == "cuda" return self.device.type == "cuda"
def _diffuser_sha256( def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=16777216 self, name_or_path: Union[str, Path], chunksize=4096
) -> Union[str, bytes]: ) -> Union[str, bytes]:
path = None path = None
if isinstance(name_or_path, Path): if isinstance(name_or_path, Path):
@@ -1216,7 +1110,7 @@ class ModelManager(object):
with open(hashpath) as f: with open(hashpath) as f:
hash = f.read() hash = f.read()
return hash return hash
self.logger.debug("Calculating sha256 hash of model files") print(" | Calculating sha256 hash of model files")
tic = time.time() tic = time.time()
sha = hashlib.sha256() sha = hashlib.sha256()
count = 0 count = 0
@@ -1228,7 +1122,7 @@ class ModelManager(object):
sha.update(chunk) sha.update(chunk)
hash = sha.hexdigest() hash = sha.hexdigest()
toc = time.time() toc = time.time()
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic)) print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f: with open(hashpath, "w") as f:
f.write(hash) f.write(hash)
return hash return hash
@@ -1246,13 +1140,13 @@ class ModelManager(object):
hash = f.read() hash = f.read()
return hash return hash
self.logger.debug("Calculating sha256 hash of weights file") print(" | Calculating sha256 hash of weights file")
tic = time.time() tic = time.time()
sha = hashlib.sha256() sha = hashlib.sha256()
sha.update(data) sha.update(data)
hash = sha.hexdigest() hash = sha.hexdigest()
toc = time.time() toc = time.time()
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic)) print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f: with open(hashpath, "w") as f:
f.write(hash) f.write(hash)
@@ -1273,12 +1167,12 @@ class ModelManager(object):
local_files_only=not Globals.internet_available, local_files_only=not Globals.internet_available,
) )
self.logger.debug(f"Loading diffusers VAE from {name_or_path}") print(f" | Loading diffusers VAE from {name_or_path}")
if using_fp16: if using_fp16:
vae_args.update(torch_dtype=torch.float16) vae_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}] fp_args_list = [{"revision": "fp16"}, {}]
else: else:
self.logger.debug("Using more accurate float32 precision") print(" | Using more accurate float32 precision")
fp_args_list = [{}] fp_args_list = [{}]
vae = None vae = None
@@ -1302,12 +1196,12 @@ class ModelManager(object):
break break
if not vae and deferred_error: if not vae and deferred_error:
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}") print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
return vae return vae
@classmethod @staticmethod
def _delete_model_from_cache(cls,repo_id): def _delete_model_from_cache(repo_id):
cache_info = scan_cache_dir(global_cache_dir("hub")) cache_info = scan_cache_dir(global_cache_dir("hub"))
# I'm sure there is a way to do this with comprehensions # I'm sure there is a way to do this with comprehensions
@@ -1318,8 +1212,8 @@ class ModelManager(object):
for revision in repo.revisions: for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash) hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete) strategy = cache_info.delete_revisions(*hashes_to_delete)
cls.logger.warning( print(
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}" f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}"
) )
strategy.execute() strategy.execute()

View File

@@ -18,7 +18,6 @@ from compel.prompt_parser import (
PromptParser, PromptParser,
) )
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
from ..stable_diffusion import InvokeAIDiffuserComponent from ..stable_diffusion import InvokeAIDiffuserComponent
@@ -163,8 +162,8 @@ def log_tokenization(
negative_prompt: Union[Blend, FlattenedPrompt], negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer, tokenizer,
): ):
logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}") print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}") print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer) log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object( log_tokenization_for_prompt_object(
@@ -238,12 +237,12 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
usedTokens += 1 usedTokens += 1
if usedTokens > 0: if usedTokens > 0:
logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
logger.debug(f"{tokenized}\x1b[0m") print(f"{tokenized}\x1b[0m")
if discarded != "": if discarded != "":
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):") print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
logger.debug(f"{discarded}\x1b[0m") print(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]: def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
@@ -296,8 +295,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
return parsed_prompts return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts)) weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0: if weight_sum == 0:
logger.warning( print(
"Subprompt weights add up to zero. Discarding and using even weights instead." "* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
) )
equal_weight = 1 / max(len(parsed_prompts), 1) equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts] return [(x[0], equal_weight) for x in parsed_prompts]

View File

@@ -1,5 +1,3 @@
import invokeai.backend.util.logging as logger
class Restoration: class Restoration:
def __init__(self) -> None: def __init__(self) -> None:
pass pass
@@ -10,17 +8,17 @@ class Restoration:
# Load GFPGAN # Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path) gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists: if gfpgan.gfpgan_model_exists:
logger.info("GFPGAN Initialized") print(">> GFPGAN Initialized")
else: else:
logger.info("GFPGAN Disabled") print(">> GFPGAN Disabled")
gfpgan = None gfpgan = None
# Load CodeFormer # Load CodeFormer
codeformer = self.load_codeformer() codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists: if codeformer.codeformer_model_exists:
logger.info("CodeFormer Initialized") print(">> CodeFormer Initialized")
else: else:
logger.info("CodeFormer Disabled") print(">> CodeFormer Disabled")
codeformer = None codeformer = None
return gfpgan, codeformer return gfpgan, codeformer
@@ -41,5 +39,5 @@ class Restoration:
from .realesrgan import ESRGAN from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile) esrgan = ESRGAN(esrgan_bg_tile)
logger.info("ESRGAN Initialized") print(">> ESRGAN Initialized")
return esrgan return esrgan

View File

@@ -5,7 +5,6 @@ import warnings
import numpy as np import numpy as np
import torch import torch
import invokeai.backend.util.logging as logger
from ..globals import Globals from ..globals import Globals
pretrained_model_url = ( pretrained_model_url = (
@@ -24,12 +23,12 @@ class CodeFormerRestoration:
self.codeformer_model_exists = os.path.isfile(self.model_path) self.codeformer_model_exists = os.path.isfile(self.model_path)
if not self.codeformer_model_exists: if not self.codeformer_model_exists:
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path) print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir)) sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75): def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None: if seed is not None:
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}") print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=UserWarning)
@@ -98,7 +97,7 @@ class CodeFormerRestoration:
del output del output
torch.cuda.empty_cache() torch.cuda.empty_cache()
except RuntimeError as error: except RuntimeError as error:
logger.error(f"Failed inference for CodeFormer: {error}.") print(f"\tFailed inference for CodeFormer: {error}.")
restored_face = cropped_face restored_face = cropped_face
restored_face = restored_face.astype("uint8") restored_face = restored_face.astype("uint8")

View File

@@ -6,9 +6,9 @@ import numpy as np
import torch import torch
from PIL import Image from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class GFPGAN: class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None: def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
if not os.path.isabs(gfpgan_model_path): if not os.path.isabs(gfpgan_model_path):
@@ -19,7 +19,7 @@ class GFPGAN:
self.gfpgan_model_exists = os.path.isfile(self.model_path) self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists: if not self.gfpgan_model_exists:
logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path) print("## NOT FOUND: GFPGAN model not found at " + self.model_path)
return None return None
def model_exists(self): def model_exists(self):
@@ -27,7 +27,7 @@ class GFPGAN:
def process(self, image, strength: float, seed: str = None): def process(self, image, strength: float, seed: str = None):
if seed is not None: if seed is not None:
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}") print(f">> GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=DeprecationWarning)
@@ -47,14 +47,14 @@ class GFPGAN:
except Exception: except Exception:
import traceback import traceback
logger.error("Error loading GFPGAN:", file=sys.stderr) print(">> Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd) os.chdir(cwd)
if self.gfpgan is None: if self.gfpgan is None:
logger.warning("WARNING: GFPGAN not initialized.") print(f">> WARNING: GFPGAN not initialized.")
logger.warning( print(
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}" f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
) )
image = image.convert("RGB") image = image.convert("RGB")

View File

@@ -1,7 +1,7 @@
import math import math
from PIL import Image from PIL import Image
import invokeai.backend.util.logging as logger
class Outcrop(object): class Outcrop(object):
def __init__( def __init__(
@@ -82,7 +82,7 @@ class Outcrop(object):
pixels = extents[direction] pixels = extents[direction]
# round pixels up to the nearest 64 # round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64 pixels = math.ceil(pixels / 64) * 64
logger.info(f"extending image {direction}ward by {pixels} pixels") print(f">> extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction) image = self._rotate(image, direction)
image = self._extend(image, pixels) image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True) image = self._rotate(image, direction, reverse=True)

View File

@@ -6,13 +6,18 @@ import torch
from PIL import Image from PIL import Image
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class ESRGAN: class ESRGAN:
def __init__(self, bg_tile_size=400) -> None: def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self, denoise_str): def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1 if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False use_half_precision = False
@@ -69,16 +74,16 @@ class ESRGAN:
import sys import sys
import traceback import traceback
logger.error("Error loading Real-ESRGAN:") print(">> Error loading Real-ESRGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0: if upsampler_scale == 0:
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.") print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.")
return image return image
if seed is not None: if seed is not None:
logger.info( print(
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}" f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
) )
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB # ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB") image = image.convert("RGB")

View File

@@ -14,7 +14,6 @@ from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets import invokeai.assets.web as web_assets
import invokeai.backend.util.logging as logger
from .globals import global_cache_dir from .globals import global_cache_dir
from .util import CPU_DEVICE from .util import CPU_DEVICE
@@ -41,8 +40,8 @@ class SafetyChecker(object):
cache_dir=safety_model_path, cache_dir=safety_model_path,
) )
except Exception: except Exception:
logger.error( print(
"An error was encountered while installing the safety checker:" "** An error was encountered while installing the safety checker:"
) )
print(traceback.format_exc()) print(traceback.format_exc())
@@ -66,8 +65,8 @@ class SafetyChecker(object):
) )
self.safety_checker.to(CPU_DEVICE) # offload self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]: if has_nsfw_concept[0]:
logger.warning( print(
"An image with potential non-safe content has been detected. A blurred image will be returned." "** An image with potential non-safe content has been detected. A blurred image will be returned. **"
) )
return self.blur(image) return self.blur(image)
else: else:

View File

@@ -17,7 +17,6 @@ from huggingface_hub import (
hf_hub_url, hf_hub_url,
) )
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
@@ -58,7 +57,7 @@ class HuggingFaceConceptsLibrary(object):
self.concept_list.extend(list(local_concepts_to_add)) self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list return self.concept_list
return self.concept_list return self.concept_list
elif Globals.internet_available is True: else:
try: try:
models = self.hf_api.list_models( models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/") filter=ModelFilter(model_name="sd-concepts-library/")
@@ -67,15 +66,13 @@ class HuggingFaceConceptsLibrary(object):
# when init, add all in dir. when not init, add only concepts added between init and now # when init, add all in dir. when not init, add only concepts added between init and now
self.concept_list.extend(list(local_concepts_to_add)) self.concept_list.extend(list(local_concepts_to_add))
except Exception as e: except Exception as e:
logger.warning( print(
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}." f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
) )
logger.warning( print(
"You may load .bin and .pt file(s) manually using the --embedding_directory argument." " ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
) )
return self.concept_list return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str: def get_concept_model_path(self, concept_name: str) -> str:
""" """
@@ -84,7 +81,7 @@ class HuggingFaceConceptsLibrary(object):
be downloaded. be downloaded.
""" """
if not concept_name in self.list_concepts(): if not concept_name in self.list_concepts():
logger.warning( print(
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept." f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
) )
return None return None
@@ -222,7 +219,7 @@ class HuggingFaceConceptsLibrary(object):
if chunk == 0: if chunk == 0:
bytes += total bytes += total
logger.info(f"Downloading {repo_id}...", end="") print(f">> Downloading {repo_id}...", end="")
try: try:
for file in ( for file in (
"README.md", "README.md",
@@ -236,22 +233,22 @@ class HuggingFaceConceptsLibrary(object):
) )
except ul_error.HTTPError as e: except ul_error.HTTPError as e:
if e.code == 404: if e.code == 404:
logger.warning( print(
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept." f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
) )
else: else:
logger.warning( print(
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)" f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
) )
os.rmdir(dest) os.rmdir(dest)
return False return False
except ul_error.URLError as e: except ul_error.URLError as e:
logger.error( print(
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept." f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
) )
os.rmdir(dest) os.rmdir(dest)
return False return False
logger.info("...{:.2f}Kb".format(bytes / 1024)) print("...{:.2f}Kb".format(bytes / 1024))
return succeeded return succeeded
def _concept_id(self, concept_name: str) -> str: def _concept_id(self, concept_name: str) -> str:

View File

@@ -445,15 +445,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property @property
def _submodels(self) -> Sequence[torch.nn.Module]: def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config)) module_names, _, _ = self.extract_init_dict(dict(self.config))
submodels = [] values = [getattr(self, name) for name in module_names.keys()]
for name in module_names.keys(): return [m for m in values if isinstance(m, torch.nn.Module)]
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
def image_from_embeddings( def image_from_embeddings(
self, self,
@@ -538,7 +531,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id: str = None, run_id: str = None,
additional_guidance: List[Callable] = None, additional_guidance: List[Callable] = None,
): ):
self._adjust_memory_efficient_attention(latents) # FIXME: do we still use any slicing now that PyTorch 2.0 has scaled dot-product attention on all platforms?
# self._adjust_memory_efficient_attention(latents)
if run_id is None: if run_id is None:
run_id = secrets.token_urlsafe(self.ID_LENGTH) run_id = secrets.token_urlsafe(self.ID_LENGTH)
if additional_guidance is None: if additional_guidance is None:
@@ -551,7 +545,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
yield PipelineIntermediateState( yield PipelineIntermediateState(
run_id=run_id, run_id=run_id,
step=-1, step=-1,
timestep=self.scheduler.config.num_train_timesteps, timestep=self.scheduler.num_train_timesteps,
latents=latents, latents=latents,
) )
@@ -922,7 +916,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property @property
def channels(self) -> int: def channels(self) -> int:
"""Compatible with DiffusionWrapper""" """Compatible with DiffusionWrapper"""
return self.unet.config.in_channels return self.unet.in_channels
def decode_latents(self, latents): def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method. # Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@@ -10,12 +10,13 @@ import diffusers
import psutil import psutil
import torch import torch
from compel.cross_attention_control import Arguments from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import AttentionProcessor from diffusers.models.cross_attention import AttnProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from torch import nn from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype from ...util import torch_dtype
class CrossAttentionType(enum.Enum): class CrossAttentionType(enum.Enum):
SELF = 1 SELF = 1
TOKENS = 2 TOKENS = 2
@@ -187,7 +188,7 @@ class Context:
class InvokeAICrossAttentionMixin: class InvokeAICrossAttentionMixin:
""" """
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection. and dymamic slicing strategy selection.
""" """
@@ -208,7 +209,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size), :param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent. which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current Attention module for which the callback is being invoked. `module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice `suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing. `dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length. If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@@ -344,11 +345,11 @@ class InvokeAICrossAttentionMixin:
def restore_default_cross_attention( def restore_default_cross_attention(
model, model,
is_running_diffusers: bool, is_running_diffusers: bool,
restore_attention_processor: Optional[AttentionProcessor] = None, restore_attention_processor: Optional[AttnProcessor] = None,
): ):
if is_running_diffusers: if is_running_diffusers:
unet = model unet = model
unet.set_attn_processor(restore_attention_processor or AttnProcessor()) unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor())
else: else:
remove_attention_function(model) remove_attention_function(model)
@@ -407,9 +408,12 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
def get_cross_attention_modules( def get_cross_attention_modules(
model, which: CrossAttentionType model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]: ) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
cross_attention_class: type = ( cross_attention_class: type = (
InvokeAIDiffusersCrossAttention InvokeAIDiffusersCrossAttention
if isinstance(model, UNet2DConditionModel)
else CrossAttention
) )
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2" which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [ attention_module_tuples = [
@@ -421,13 +425,13 @@ def get_cross_attention_modules(
expected_count = 16 expected_count = 16
if cross_attention_modules_in_model_count != expected_count: if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work. # non-fatal error but .swap() won't work.
logger.error( print(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model " f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed " + f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, " + f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows " + f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
+ "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not " + f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ "work properly until it is fixed." + f"work properly until it is fixed."
) )
return attention_module_tuples return attention_module_tuples
@@ -546,7 +550,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention( class InvokeAIDiffusersCrossAttention(
diffusers.models.attention.Attention, InvokeAICrossAttentionMixin diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin
): ):
def __init__(self, **kwargs): def __init__(self, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
@@ -568,8 +572,8 @@ class InvokeAIDiffusersCrossAttention(
""" """
# base implementation # base implementation
class AttnProcessor: class CrossAttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@@ -597,9 +601,9 @@ class AttnProcessor:
from dataclasses import dataclass, field from dataclasses import dataclass, field
import torch import torch
from diffusers.models.attention_processor import ( from diffusers.models.cross_attention import (
Attention, CrossAttention,
AttnProcessor, CrossAttnProcessor,
SlicedAttnProcessor, SlicedAttnProcessor,
) )
@@ -649,7 +653,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
def __call__( def __call__(
self, self,
attn: Attention, attn: CrossAttention,
hidden_states, hidden_states,
encoder_hidden_states=None, encoder_hidden_states=None,
attention_mask=None, attention_mask=None,

View File

@@ -5,10 +5,9 @@ from typing import Any, Callable, Dict, Optional, Union
import numpy as np import numpy as np
import torch import torch
from diffusers.models.attention_processor import AttentionProcessor from diffusers.models.cross_attention import AttnProcessor
from typing_extensions import TypeAlias from typing_extensions import TypeAlias
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
from .cross_attention_control import ( from .cross_attention_control import (
@@ -102,7 +101,7 @@ class InvokeAIDiffuserComponent:
def override_cross_attention( def override_cross_attention(
self, conditioning: ExtraConditioningInfo, step_count: int self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttentionProcessor]: ) -> Dict[str, AttnProcessor]:
""" """
setup cross attention .swap control. for diffusers this replaces the attention processor, so setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later. the previous attention processor is returned so that the caller can restore it later.
@@ -119,7 +118,7 @@ class InvokeAIDiffuserComponent:
) )
def restore_default_cross_attention( def restore_default_cross_attention(
self, restore_attention_processor: Optional["AttentionProcessor"] = None self, restore_attention_processor: Optional["AttnProcessor"] = None
): ):
self.conditioning = None self.conditioning = None
self.cross_attention_control_context = None self.cross_attention_control_context = None
@@ -263,7 +262,7 @@ class InvokeAIDiffuserComponent:
# TODO remove when compvis codepath support is dropped # TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None: if step_index is None and sigma is None:
raise ValueError( raise ValueError(
"Either step_index or sigma is required when doing cross attention control, but both are None." f"Either step_index or sigma is required when doing cross attention control, but both are None."
) )
percent_through = self.estimate_percent_through(step_index, sigma) percent_through = self.estimate_percent_through(step_index, sigma)
return percent_through return percent_through
@@ -467,14 +466,10 @@ class InvokeAIDiffuserComponent:
outside = torch.count_nonzero( outside = torch.count_nonzero(
(latents < -current_threshold) | (latents > current_threshold) (latents < -current_threshold) | (latents > current_threshold)
) )
logger.info( print(
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})" f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
) f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
logger.debug( f" | {outside / latents.numel() * 100:.2f}% values outside threshold"
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
)
logger.debug(
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
) )
if maxval < current_threshold and minval > -current_threshold: if maxval < current_threshold and minval > -current_threshold:
@@ -501,11 +496,9 @@ class InvokeAIDiffuserComponent:
) )
if self.debug_thresholding: if self.debug_thresholding:
logger.debug( print(
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})" f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
) f" | {num_altered / latents.numel() * 100:.2f}% values altered"
logger.debug(
f"{num_altered / latents.numel() * 100:.2f}% values altered"
) )
return latents return latents
@@ -606,6 +599,7 @@ class InvokeAIDiffuserComponent:
) )
# below is fugly omg # below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c, weight in weighted_cond_list] conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list] weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = ceil(len(conditionings) / 2) chunk_count = ceil(len(conditionings) / 2)

View File

@@ -10,7 +10,7 @@ from torchvision.utils import make_grid
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py # import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
import invokeai.backend.util.logging as logger
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@@ -191,7 +191,7 @@ def mkdirs(paths):
def mkdir_and_rename(path): def mkdir_and_rename(path):
if os.path.exists(path): if os.path.exists(path):
new_name = path + "_archived_" + get_timestamp() new_name = path + "_archived_" + get_timestamp()
logger.error("Path already exists. Rename it to [{:s}]".format(new_name)) print("Path already exists. Rename it to [{:s}]".format(new_name))
os.replace(path, new_name) os.replace(path, new_name)
os.makedirs(path) os.makedirs(path)

View File

@@ -10,7 +10,6 @@ from compel.embeddings_provider import BaseTextualInversionManager
from picklescan.scanner import scan_file_path from picklescan.scanner import scan_file_path
from transformers import CLIPTextModel, CLIPTokenizer from transformers import CLIPTextModel, CLIPTokenizer
import invokeai.backend.util.logging as logger
from .concepts_lib import HuggingFaceConceptsLibrary from .concepts_lib import HuggingFaceConceptsLibrary
@dataclass @dataclass
@@ -60,12 +59,12 @@ class TextualInversionManager(BaseTextualInversionManager):
or self.has_textual_inversion_for_trigger_string(concept_name) or self.has_textual_inversion_for_trigger_string(concept_name)
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>") or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
): # in case a token with literal angle brackets encountered ): # in case a token with literal angle brackets encountered
logger.info(f"Loaded local embedding for trigger {concept_name}") print(f">> Loaded local embedding for trigger {concept_name}")
continue continue
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name) bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
if not bin_file: if not bin_file:
continue continue
logger.info(f"Loaded remote embedding for trigger {concept_name}") print(f">> Loaded remote embedding for trigger {concept_name}")
self.load_textual_inversion(bin_file) self.load_textual_inversion(bin_file)
self.hf_concepts_library.concepts_loaded[concept_name] = True self.hf_concepts_library.concepts_loaded[concept_name] = True
@@ -86,8 +85,8 @@ class TextualInversionManager(BaseTextualInversionManager):
embedding_list = self._parse_embedding(str(ckpt_path)) embedding_list = self._parse_embedding(str(ckpt_path))
for embedding_info in embedding_list: for embedding_info in embedding_list:
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim): if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
logger.warning( print(
f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}." f" ** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
) )
continue continue
@@ -106,8 +105,8 @@ class TextualInversionManager(BaseTextualInversionManager):
if ckpt_path.name == "learned_embeds.bin" if ckpt_path.name == "learned_embeds.bin"
else f"<{ckpt_path.stem}>" else f"<{ckpt_path.stem}>"
) )
logger.info( print(
f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}" f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
) )
trigger_str = replacement_trigger_str trigger_str = replacement_trigger_str
@@ -121,8 +120,8 @@ class TextualInversionManager(BaseTextualInversionManager):
self.trigger_to_sourcefile[trigger_str] = sourcefile self.trigger_to_sourcefile[trigger_str] = sourcefile
except ValueError as e: except ValueError as e:
logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}') print(f' | Ignoring incompatible embedding {embedding_info["name"]}')
logger.debug(f"The error was {str(e)}") print(f" | The error was {str(e)}")
def _add_textual_inversion( def _add_textual_inversion(
self, trigger_str, embedding, defer_injecting_tokens=False self, trigger_str, embedding, defer_injecting_tokens=False
@@ -134,8 +133,8 @@ class TextualInversionManager(BaseTextualInversionManager):
:return: The token id for the added embedding, either existing or newly-added. :return: The token id for the added embedding, either existing or newly-added.
""" """
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]: if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
logger.warning( print(
f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'" f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
) )
return return
if not self.full_precision: if not self.full_precision:
@@ -156,11 +155,11 @@ class TextualInversionManager(BaseTextualInversionManager):
except ValueError as e: except ValueError as e:
if str(e).startswith("Warning"): if str(e).startswith("Warning"):
logger.warning(f"{str(e)}") print(f">> {str(e)}")
else: else:
traceback.print_exc() traceback.print_exc()
logger.error( print(
f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}." f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
) )
raise raise
@@ -220,16 +219,16 @@ class TextualInversionManager(BaseTextualInversionManager):
for ti in self.textual_inversions: for ti in self.textual_inversions:
if ti.trigger_token_id is None and ti.trigger_string in prompt_string: if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
if ti.embedding_vector_length > 1: if ti.embedding_vector_length > 1:
logger.info( print(
f"Preparing tokens for textual inversion {ti.trigger_string}..." f">> Preparing tokens for textual inversion {ti.trigger_string}..."
) )
try: try:
self._inject_tokens_and_assign_embeddings(ti) self._inject_tokens_and_assign_embeddings(ti)
except ValueError as e: except ValueError as e:
logger.debug( print(
f"Ignoring incompatible embedding trigger {ti.trigger_string}" f" | Ignoring incompatible embedding trigger {ti.trigger_string}"
) )
logger.debug(f"The error was {str(e)}") print(f" | The error was {str(e)}")
continue continue
injected_token_ids.append(ti.trigger_token_id) injected_token_ids.append(ti.trigger_token_id)
injected_token_ids.extend(ti.pad_token_ids) injected_token_ids.extend(ti.pad_token_ids)
@@ -307,16 +306,16 @@ class TextualInversionManager(BaseTextualInversionManager):
if suffix in [".pt",".ckpt",".bin"]: if suffix in [".pt",".ckpt",".bin"]:
scan_result = scan_file_path(embedding_file) scan_result = scan_file_path(embedding_file)
if scan_result.infected_files > 0: if scan_result.infected_files > 0:
logger.critical( print(
f"Security Issues Found in Model: {scan_result.issues_count}" f" ** Security Issues Found in Model: {scan_result.issues_count}"
) )
logger.critical("For your safety, InvokeAI will not load this embed.") print(" ** For your safety, InvokeAI will not load this embed.")
return list() return list()
ckpt = torch.load(embedding_file,map_location="cpu") ckpt = torch.load(embedding_file,map_location="cpu")
else: else:
ckpt = safetensors.torch.load_file(embedding_file) ckpt = safetensors.torch.load_file(embedding_file)
except Exception as e: except Exception as e:
logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}") print(f" ** Notice: unrecognized embedding file format: {embedding_file}: {e}")
return list() return list()
# try to figure out what kind of embedding file it is and parse accordingly # try to figure out what kind of embedding file it is and parse accordingly
@@ -335,7 +334,7 @@ class TextualInversionManager(BaseTextualInversionManager):
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]: def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
basename = Path(file_path).stem basename = Path(file_path).stem
logger.debug(f'Loading v1 embedding file: {basename}') print(f' | Loading v1 embedding file: {basename}')
embeddings = list() embeddings = list()
token_counter = -1 token_counter = -1
@@ -343,7 +342,7 @@ class TextualInversionManager(BaseTextualInversionManager):
if token_counter < 0: if token_counter < 0:
trigger = embedding_ckpt["name"] trigger = embedding_ckpt["name"]
elif token_counter == 0: elif token_counter == 0:
trigger = '<basename>' trigger = f'<basename>'
else: else:
trigger = f'<{basename}-{int(token_counter:=token_counter)}>' trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
token_counter += 1 token_counter += 1
@@ -366,7 +365,7 @@ class TextualInversionManager(BaseTextualInversionManager):
This handles embedding .pt file variant #2. This handles embedding .pt file variant #2.
""" """
basename = Path(file_path).stem basename = Path(file_path).stem
logger.debug(f'Loading v2 embedding file: {basename}') print(f' | Loading v2 embedding file: {basename}')
embeddings = list() embeddings = list()
if isinstance( if isinstance(
@@ -385,7 +384,7 @@ class TextualInversionManager(BaseTextualInversionManager):
) )
embeddings.append(embedding_info) embeddings.append(embedding_info)
else: else:
logger.warning(f"{basename}: Unrecognized embedding format") print(f" ** {basename}: Unrecognized embedding format")
return embeddings return embeddings
@@ -394,7 +393,7 @@ class TextualInversionManager(BaseTextualInversionManager):
Parse 'version 3' of the .pt textual inversion embedding files. Parse 'version 3' of the .pt textual inversion embedding files.
""" """
basename = Path(file_path).stem basename = Path(file_path).stem
logger.debug(f'Loading v3 embedding file: {basename}') print(f' | Loading v3 embedding file: {basename}')
embedding = embedding_ckpt['emb_params'] embedding = embedding_ckpt['emb_params']
embedding_info = EmbeddingInfo( embedding_info = EmbeddingInfo(
name = f'<{basename}>', name = f'<{basename}>',
@@ -412,11 +411,11 @@ class TextualInversionManager(BaseTextualInversionManager):
basename = Path(filepath).stem basename = Path(filepath).stem
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
logger.debug(f'Loading v4 embedding file: {short_path}') print(f' | Loading v4 embedding file: {short_path}')
embeddings = list() embeddings = list()
if list(embedding_ckpt.keys()) == 0: if list(embedding_ckpt.keys()) == 0:
logger.warning(f"Invalid embeddings file: {short_path}") print(f" ** Invalid embeddings file: {short_path}")
else: else:
for token,embedding in embedding_ckpt.items(): for token,embedding in embedding_ckpt.items():
embedding_info = EmbeddingInfo( embedding_info = EmbeddingInfo(

View File

@@ -1,109 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""invokeai.util.logging
Logging class for InvokeAI that produces console messages that follow
the conventions established in InvokeAI 1.X through 2.X.
One way to use it:
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.getLogger(__name__)
logger.critical('this is critical')
logger.error('this is an error')
logger.warning('this is a warning')
logger.info('this is info')
logger.debug('this is debugging')
Console messages:
### this is critical
*** this is an error ***
** this is a warning
>> this is info
| this is debugging
Another way:
import invokeai.backend.util.logging as ialog
ialogger.debug('this is a debugging message')
"""
import logging
# module level functions
def debug(msg, *args, **kwargs):
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
def warning(msg, *args, **kwargs):
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
def error(msg, *args, **kwargs):
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
def critical(msg, *args, **kwargs):
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
def disable(level=logging.CRITICAL):
InvokeAILogger.getLogger().disable(level)
def basicConfig(**kwargs):
InvokeAILogger.getLogger().basicConfig(**kwargs)
def getLogger(name: str=None)->logging.Logger:
return InvokeAILogger.getLogger(name)
class InvokeAILogFormatter(logging.Formatter):
'''
Repurposed from:
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
'''
crit_fmt = "### %(msg)s"
err_fmt = "*** %(msg)s"
warn_fmt = "** %(msg)s"
info_fmt = ">> %(msg)s"
dbg_fmt = " | %(msg)s"
def __init__(self):
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
def format(self, record):
# Remember the format used when the logging module
# was installed (in the event that this formatter is
# used with the vanilla logging module.
format_orig = self._style._fmt
if record.levelno == logging.DEBUG:
self._style._fmt = InvokeAILogFormatter.dbg_fmt
if record.levelno == logging.INFO:
self._style._fmt = InvokeAILogFormatter.info_fmt
if record.levelno == logging.WARNING:
self._style._fmt = InvokeAILogFormatter.warn_fmt
if record.levelno == logging.ERROR:
self._style._fmt = InvokeAILogFormatter.err_fmt
if record.levelno == logging.CRITICAL:
self._style._fmt = InvokeAILogFormatter.crit_fmt
# parent class does the work
result = super().format(record)
self._style._fmt = format_orig
return result
class InvokeAILogger(object):
loggers = dict()
@classmethod
def getLogger(self, name:str='invokeai')->logging.Logger:
if name not in self.loggers:
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
fmt = InvokeAILogFormatter()
ch.setFormatter(fmt)
logger.addHandler(ch)
self.loggers[name] = logger
return self.loggers[name]

View File

@@ -18,7 +18,6 @@ import torch
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm from tqdm import tqdm
import invokeai.backend.util.logging as logger
from .devices import torch_dtype from .devices import torch_dtype
@@ -39,7 +38,7 @@ def log_txt_as_img(wh, xc, size=10):
try: try:
draw.text((0, 0), lines, fill="black", font=font) draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError: except UnicodeEncodeError:
logger.warning("Cant encode string for logging. Skipping.") print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt) txts.append(txt)
@@ -81,8 +80,8 @@ def mean_flat(tensor):
def count_params(model, verbose=False): def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters()) total_params = sum(p.numel() for p in model.parameters())
if verbose: if verbose:
logger.debug( print(
f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params." f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
) )
return total_params return total_params
@@ -133,8 +132,8 @@ def parallel_data_prefetch(
raise ValueError("list expected but function got ndarray.") raise ValueError("list expected but function got ndarray.")
elif isinstance(data, abc.Iterable): elif isinstance(data, abc.Iterable):
if isinstance(data, dict): if isinstance(data, dict):
logger.warning( print(
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' 'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
) )
data = list(data.values()) data = list(data.values())
if target_data_type == "ndarray": if target_data_type == "ndarray":
@@ -176,7 +175,7 @@ def parallel_data_prefetch(
processes += [p] processes += [p]
# start processes # start processes
logger.info("Start prefetching...") print("Start prefetching...")
import time import time
start = time.time() start = time.time()
@@ -195,7 +194,7 @@ def parallel_data_prefetch(
gather_res[res[0]] = res[1] gather_res[res[0]] = res[1]
except Exception as e: except Exception as e:
logger.error("Exception: ", e) print("Exception: ", e)
for p in processes: for p in processes:
p.terminate() p.terminate()
@@ -203,7 +202,7 @@ def parallel_data_prefetch(
finally: finally:
for p in processes: for p in processes:
p.join() p.join()
logger.info(f"Prefetching complete. [{time.time() - start} sec.]") print(f"Prefetching complete. [{time.time() - start} sec.]")
if target_data_type == "ndarray": if target_data_type == "ndarray":
if not isinstance(gather_res[0], np.ndarray): if not isinstance(gather_res[0], np.ndarray):
@@ -319,23 +318,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
resp = requests.get(url, headers=header, stream=True) # new request with range resp = requests.get(url, headers=header, stream=True) # new request with range
if exist_size > content_length: if exist_size > content_length:
logger.warning("corrupt existing file found. re-downloading") print("* corrupt existing file found. re-downloading")
os.remove(dest) os.remove(dest)
exist_size = 0 exist_size = 0
if resp.status_code == 416 or exist_size == content_length: if resp.status_code == 416 or exist_size == content_length:
logger.warning(f"{dest}: complete file found. Skipping.") print(f"* {dest}: complete file found. Skipping.")
return dest return dest
elif resp.status_code == 206 or exist_size > 0: elif resp.status_code == 206 or exist_size > 0:
logger.warning(f"{dest}: partial file found. Resuming...") print(f"* {dest}: partial file found. Resuming...")
elif resp.status_code != 200: elif resp.status_code != 200:
logger.error(f"An error occurred during downloading {dest}: {resp.reason}") print(f"** An error occurred during downloading {dest}: {resp.reason}")
else: else:
logger.error(f"{dest}: Downloading...") print(f"* {dest}: Downloading...")
try: try:
if content_length < 2000: if content_length < 2000:
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}") print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
return None return None
with open(dest, open_mode) as file, tqdm( with open(dest, open_mode) as file, tqdm(
@@ -350,7 +349,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
size = file.write(data) size = file.write(data)
bar.update(size) bar.update(size)
except Exception as e: except Exception as e:
logger.error(f"An error occurred while downloading {dest}: {str(e)}") print(f"An error occurred while downloading {dest}: {str(e)}")
return None return None
return dest return dest

View File

@@ -19,7 +19,6 @@ from PIL import Image
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
from werkzeug.utils import secure_filename from werkzeug.utils import secure_filename
import invokeai.backend.util.logging as logger
import invokeai.frontend.web.dist as frontend import invokeai.frontend.web.dist as frontend
from .. import Generate from .. import Generate
@@ -78,6 +77,7 @@ class InvokeAIWebServer:
mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css") mimetypes.add_type("text/css", ".css")
# Socket IO # Socket IO
logger = True if args.web_verbose else False
engineio_logger = True if args.web_verbose else False engineio_logger = True if args.web_verbose else False
max_http_buffer_size = 10000000 max_http_buffer_size = 10000000
@@ -213,7 +213,7 @@ class InvokeAIWebServer:
self.load_socketio_listeners(self.socketio) self.load_socketio_listeners(self.socketio)
if args.gui: if args.gui:
logger.info("Launching Invoke AI GUI") print(">> Launching Invoke AI GUI")
try: try:
from flaskwebgui import FlaskUI from flaskwebgui import FlaskUI
@@ -231,17 +231,17 @@ class InvokeAIWebServer:
sys.exit(0) sys.exit(0)
else: else:
useSSL = args.certfile or args.keyfile useSSL = args.certfile or args.keyfile
logger.info("Started Invoke AI Web Server") print(">> Started Invoke AI Web Server")
if self.host == "0.0.0.0": if self.host == "0.0.0.0":
logger.info( print(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address." f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
) )
else: else:
logger.info( print(
"Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address." ">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
) )
logger.info( print(
f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}" f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
) )
if not useSSL: if not useSSL:
self.socketio.run(app=self.app, host=self.host, port=self.port) self.socketio.run(app=self.app, host=self.host, port=self.port)
@@ -273,7 +273,7 @@ class InvokeAIWebServer:
# path for thumbnail images # path for thumbnail images
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/") self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
# txt log # txt log
self.log_path = os.path.join(self.result_path, "invoke_logger.txt") self.log_path = os.path.join(self.result_path, "invoke_log.txt")
# make all output paths # make all output paths
[ [
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
@@ -290,7 +290,7 @@ class InvokeAIWebServer:
def load_socketio_listeners(self, socketio): def load_socketio_listeners(self, socketio):
@socketio.on("requestSystemConfig") @socketio.on("requestSystemConfig")
def handle_request_capabilities(): def handle_request_capabilities():
logger.info("System config requested") print(">> System config requested")
config = self.get_system_config() config = self.get_system_config()
config["model_list"] = self.generate.model_manager.list_models() config["model_list"] = self.generate.model_manager.list_models()
config["infill_methods"] = infill_methods() config["infill_methods"] = infill_methods()
@@ -330,7 +330,7 @@ class InvokeAIWebServer:
if model_name in current_model_list: if model_name in current_model_list:
update = True update = True
logger.info(f"Adding New Model: {model_name}") print(f">> Adding New Model: {model_name}")
self.generate.model_manager.add_model( self.generate.model_manager.add_model(
model_name=model_name, model_name=model_name,
@@ -348,14 +348,14 @@ class InvokeAIWebServer:
"update": update, "update": update,
}, },
) )
logger.info(f"New Model Added: {model_name}") print(f">> New Model Added: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@socketio.on("deleteModel") @socketio.on("deleteModel")
def handle_delete_model(model_name: str): def handle_delete_model(model_name: str):
try: try:
logger.info(f"Deleting Model: {model_name}") print(f">> Deleting Model: {model_name}")
self.generate.model_manager.del_model(model_name) self.generate.model_manager.del_model(model_name)
self.generate.model_manager.commit(opt.conf) self.generate.model_manager.commit(opt.conf)
updated_model_list = self.generate.model_manager.list_models() updated_model_list = self.generate.model_manager.list_models()
@@ -366,14 +366,14 @@ class InvokeAIWebServer:
"model_list": updated_model_list, "model_list": updated_model_list,
}, },
) )
logger.info(f"Model Deleted: {model_name}") print(f">> Model Deleted: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@socketio.on("requestModelChange") @socketio.on("requestModelChange")
def handle_set_model(model_name: str): def handle_set_model(model_name: str):
try: try:
logger.info(f"Model change requested: {model_name}") print(f">> Model change requested: {model_name}")
model = self.generate.set_model(model_name) model = self.generate.set_model(model_name)
model_list = self.generate.model_manager.list_models() model_list = self.generate.model_manager.list_models()
if model is None: if model is None:
@@ -454,7 +454,7 @@ class InvokeAIWebServer:
"update": True, "update": True,
}, },
) )
logger.info(f"Model Converted: {model_name}") print(f">> Model Converted: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@@ -490,7 +490,7 @@ class InvokeAIWebServer:
if vae := self.generate.model_manager.config[models_to_merge[0]].get( if vae := self.generate.model_manager.config[models_to_merge[0]].get(
"vae", None "vae", None
): ):
logger.info(f"Using configured VAE assigned to {models_to_merge[0]}") print(f">> Using configured VAE assigned to {models_to_merge[0]}")
merged_model_config.update(vae=vae) merged_model_config.update(vae=vae)
self.generate.model_manager.import_diffuser_model( self.generate.model_manager.import_diffuser_model(
@@ -507,8 +507,8 @@ class InvokeAIWebServer:
"update": True, "update": True,
}, },
) )
logger.info(f"Models Merged: {models_to_merge}") print(f">> Models Merged: {models_to_merge}")
logger.info(f"New Model Added: {model_merge_info['merged_model_name']}") print(f">> New Model Added: {model_merge_info['merged_model_name']}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@@ -698,7 +698,7 @@ class InvokeAIWebServer:
} }
) )
except Exception as e: except Exception as e:
logger.info(f"Unable to load {path}") print(f">> Unable to load {path}")
socketio.emit( socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"} "error", {"message": f"Unable to load {path}: {str(e)}"}
) )
@@ -735,9 +735,9 @@ class InvokeAIWebServer:
printable_parameters["init_mask"][:64] + "..." printable_parameters["init_mask"][:64] + "..."
) )
logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n") print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
logger.info(f"ESRGAN Parameters: {esrgan_parameters}") print(f">> ESRGAN Parameters: {esrgan_parameters}")
logger.info(f"Facetool Parameters: {facetool_parameters}") print(f">> Facetool Parameters: {facetool_parameters}")
self.generate_images( self.generate_images(
generation_parameters, generation_parameters,
@@ -750,8 +750,8 @@ class InvokeAIWebServer:
@socketio.on("runPostprocessing") @socketio.on("runPostprocessing")
def handle_run_postprocessing(original_image, postprocessing_parameters): def handle_run_postprocessing(original_image, postprocessing_parameters):
try: try:
logger.info( print(
f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}' f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
) )
progress = Progress() progress = Progress()
@@ -861,14 +861,14 @@ class InvokeAIWebServer:
@socketio.on("cancel") @socketio.on("cancel")
def handle_cancel(): def handle_cancel():
logger.info("Cancel processing requested") print(">> Cancel processing requested")
self.canceled.set() self.canceled.set()
# TODO: I think this needs a safety mechanism. # TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage") @socketio.on("deleteImage")
def handle_delete_image(url, thumbnail, uuid, category): def handle_delete_image(url, thumbnail, uuid, category):
try: try:
logger.info(f'Delete requested "{url}"') print(f'>> Delete requested "{url}"')
from send2trash import send2trash from send2trash import send2trash
path = self.get_image_path_from_url(url) path = self.get_image_path_from_url(url)
@@ -1263,7 +1263,7 @@ class InvokeAIWebServer:
image, os.path.basename(path), self.thumbnail_image_path image, os.path.basename(path), self.thumbnail_image_path
) )
logger.info(f'Image generated: "{path}"\n') print(f'\n\n>> Image generated: "{path}"\n')
self.write_log_message(f'[Generated] "{path}": {command}') self.write_log_message(f'[Generated] "{path}": {command}')
if progress.total_iterations > progress.current_iteration: if progress.total_iterations > progress.current_iteration:
@@ -1329,7 +1329,7 @@ class InvokeAIWebServer:
except Exception as e: except Exception as e:
# Clear the CUDA cache on an exception # Clear the CUDA cache on an exception
self.empty_cuda_cache() self.empty_cuda_cache()
logger.error(e) print(e)
self.handle_exceptions(e) self.handle_exceptions(e)
def empty_cuda_cache(self): def empty_cuda_cache(self):

View File

@@ -16,7 +16,6 @@ if sys.platform == "darwin":
import pyparsing # type: ignore import pyparsing # type: ignore
import invokeai.version as invokeai import invokeai.version as invokeai
import invokeai.backend.util.logging as logger
from ...backend import Generate, ModelManager from ...backend import Generate, ModelManager
from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png
@@ -70,7 +69,7 @@ def main():
# run any post-install patches needed # run any post-install patches needed
run_patches() run_patches()
logger.info(f"Internet connectivity is {Globals.internet_available}") print(f">> Internet connectivity is {Globals.internet_available}")
if not args.conf: if not args.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml") config_file = os.path.join(Globals.root, "configs", "models.yaml")
@@ -79,8 +78,8 @@ def main():
opt, FileNotFoundError(f"The file {config_file} could not be found.") opt, FileNotFoundError(f"The file {config_file} could not be found.")
) )
logger.info(f"{invokeai.__app_name__}, version {invokeai.__version__}") print(f">> {invokeai.__app_name__}, version {invokeai.__version__}")
logger.info(f'InvokeAI runtime directory is "{Globals.root}"') print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# loading here to avoid long delays on startup # loading here to avoid long delays on startup
# these two lines prevent a horrible warning message from appearing # these two lines prevent a horrible warning message from appearing
@@ -122,7 +121,7 @@ def main():
else: else:
raise FileNotFoundError(f"{opt.infile} not found.") raise FileNotFoundError(f"{opt.infile} not found.")
except (FileNotFoundError, IOError) as e: except (FileNotFoundError, IOError) as e:
logger.critical('Aborted',exc_info=True) print(f"{e}. Aborting.")
sys.exit(-1) sys.exit(-1)
# creating a Generate object: # creating a Generate object:
@@ -143,12 +142,12 @@ def main():
) )
except (FileNotFoundError, TypeError, AssertionError) as e: except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt, e) report_model_error(opt, e)
except (IOError, KeyError): except (IOError, KeyError) as e:
logger.critical("Aborted",exc_info=True) print(f"{e}. Aborting.")
sys.exit(-1) sys.exit(-1)
if opt.seamless: if opt.seamless:
logger.info("Changed to seamless tiling mode") print(">> changed to seamless tiling mode")
# preload the model # preload the model
try: try:
@@ -159,9 +158,14 @@ def main():
report_model_error(opt, e) report_model_error(opt, e)
# try to autoconvert new models # try to autoconvert new models
if path := opt.autoimport:
gen.model_manager.heuristic_import(
str(path), convert=False, commit_to_conf=opt.conf
)
if path := opt.autoconvert: if path := opt.autoconvert:
gen.model_manager.heuristic_import( gen.model_manager.heuristic_import(
str(path), commit_to_conf=opt.conf str(path), convert=True, commit_to_conf=opt.conf
) )
# web server loops forever # web server loops forever
@@ -181,7 +185,9 @@ def main():
f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}' f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}'
) )
except Exception: except Exception:
logger.error("An error occurred",exc_info=True) print(">> An error occurred:")
traceback.print_exc()
# TODO: main_loop() has gotten busy. Needs to be refactored. # TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt): def main_loop(gen, opt):
@@ -247,7 +253,7 @@ def main_loop(gen, opt):
if not opt.prompt: if not opt.prompt:
oldargs = metadata_from_png(opt.init_img) oldargs = metadata_from_png(opt.init_img)
opt.prompt = oldargs.prompt opt.prompt = oldargs.prompt
logger.info(f'Retrieved old prompt "{opt.prompt}" from {opt.init_img}') print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
except (OSError, AttributeError, KeyError): except (OSError, AttributeError, KeyError):
pass pass
@@ -264,9 +270,9 @@ def main_loop(gen, opt):
if opt.init_img is not None and re.match("^-\\d+$", opt.init_img): if opt.init_img is not None and re.match("^-\\d+$", opt.init_img):
try: try:
opt.init_img = last_results[int(opt.init_img)][0] opt.init_img = last_results[int(opt.init_img)][0]
logger.info(f"Reusing previous image {opt.init_img}") print(f">> Reusing previous image {opt.init_img}")
except IndexError: except IndexError:
logger.info(f"No previous initial image at position {opt.init_img} found") print(f">> No previous initial image at position {opt.init_img} found")
opt.init_img = None opt.init_img = None
continue continue
@@ -287,9 +293,9 @@ def main_loop(gen, opt):
if opt.seed is not None and opt.seed < 0 and operation != "postprocess": if opt.seed is not None and opt.seed < 0 and operation != "postprocess":
try: try:
opt.seed = last_results[opt.seed][1] opt.seed = last_results[opt.seed][1]
logger.info(f"Reusing previous seed {opt.seed}") print(f">> Reusing previous seed {opt.seed}")
except IndexError: except IndexError:
logger.info(f"No previous seed at position {opt.seed} found") print(f">> No previous seed at position {opt.seed} found")
opt.seed = None opt.seed = None
continue continue
@@ -308,7 +314,7 @@ def main_loop(gen, opt):
subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))] subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))]
current_outdir = os.path.join(opt.outdir, subdir) current_outdir = os.path.join(opt.outdir, subdir)
logger.info('Writing files to directory: "' + current_outdir + '"') print('Writing files to directory: "' + current_outdir + '"')
# make sure the output directory exists # make sure the output directory exists
if not os.path.exists(current_outdir): if not os.path.exists(current_outdir):
@@ -437,14 +443,15 @@ def main_loop(gen, opt):
catch_interrupts=catch_ctrl_c, catch_interrupts=catch_ctrl_c,
**vars(opt), **vars(opt),
) )
except (PromptParser.ParsingException, pyparsing.ParseException): except (PromptParser.ParsingException, pyparsing.ParseException) as e:
logger.error("An error occurred while processing your prompt",exc_info=True) print("** An error occurred while processing your prompt **")
print(f"** {str(e)} **")
elif operation == "postprocess": elif operation == "postprocess":
logger.info(f"fixing {opt.prompt}") print(f">> fixing {opt.prompt}")
opt.last_operation = do_postprocess(gen, opt, image_writer) opt.last_operation = do_postprocess(gen, opt, image_writer)
elif operation == "mask": elif operation == "mask":
logger.info(f"generating masks from {opt.prompt}") print(f">> generating masks from {opt.prompt}")
do_textmask(gen, opt, image_writer) do_textmask(gen, opt, image_writer)
if opt.grid and len(grid_images) > 0: if opt.grid and len(grid_images) > 0:
@@ -467,12 +474,12 @@ def main_loop(gen, opt):
) )
results = [[path, formatted_dream_prompt]] results = [[path, formatted_dream_prompt]]
except AssertionError: except AssertionError as e:
logger.error(e) print(e)
continue continue
except OSError as e: except OSError as e:
logger.error(e) print(e)
continue continue
print("Outputs:") print("Outputs:")
@@ -511,7 +518,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
gen.set_model(model_name) gen.set_model(model_name)
add_embedding_terms(gen, completer) add_embedding_terms(gen, completer)
except KeyError as e: except KeyError as e:
logger.error(e) print(str(e))
except Exception as e: except Exception as e:
report_model_error(opt, e) report_model_error(opt, e)
completer.add_history(command) completer.add_history(command)
@@ -525,8 +532,8 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!import"): elif command.startswith("!import"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
logger.warning( print(
"please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1" "** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
) )
else: else:
try: try:
@@ -539,7 +546,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith(("!convert", "!optimize")): elif command.startswith(("!convert", "!optimize")):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
logger.warning("please provide the path to a .ckpt or .safetensors model") print("** please provide the path to a .ckpt or .safetensors model")
else: else:
try: try:
convert_model(path[1], gen, opt, completer) convert_model(path[1], gen, opt, completer)
@@ -551,7 +558,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!edit"): elif command.startswith("!edit"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
logger.warning("please provide the name of a model") print("** please provide the name of a model")
else: else:
edit_model(path[1], gen, opt, completer) edit_model(path[1], gen, opt, completer)
completer.add_history(command) completer.add_history(command)
@@ -560,7 +567,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!del"): elif command.startswith("!del"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
logger.warning("please provide the name of a model") print("** please provide the name of a model")
else: else:
del_config(path[1], gen, opt, completer) del_config(path[1], gen, opt, completer)
completer.add_history(command) completer.add_history(command)
@@ -574,7 +581,6 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!replay"): elif command.startswith("!replay"):
file_path = command.replace("!replay", "", 1).strip() file_path = command.replace("!replay", "", 1).strip()
file_path = os.path.join(opt.outdir, file_path)
if infile is None and os.path.isfile(file_path): if infile is None and os.path.isfile(file_path):
infile = open(file_path, "r", encoding="utf-8") infile = open(file_path, "r", encoding="utf-8")
completer.add_history(command) completer.add_history(command)
@@ -640,8 +646,8 @@ def import_model(model_path: str, gen, opt, completer):
try: try:
default_name = url_attachment_name(model_path) default_name = url_attachment_name(model_path)
default_name = Path(default_name).stem default_name = Path(default_name).stem
except Exception: except Exception as e:
logger.warning(f"A problem occurred while assigning the name of the downloaded model",exc_info=True) print(f"** URL: {str(e)}")
model_name, model_desc = _get_model_name_and_desc( model_name, model_desc = _get_model_name_and_desc(
gen.model_manager, gen.model_manager,
completer, completer,
@@ -662,11 +668,11 @@ def import_model(model_path: str, gen, opt, completer):
model_config_file=config_file, model_config_file=config_file,
) )
if not imported_name: if not imported_name:
logger.error("Aborting import.") print("** Aborting import.")
return return
if not _verify_load(imported_name, gen): if not _verify_load(imported_name, gen):
logger.error("model failed to load. Discarding configuration entry") print("** model failed to load. Discarding configuration entry")
gen.model_manager.del_model(imported_name) gen.model_manager.del_model(imported_name)
return return
if click.confirm("Make this the default model?", default=False): if click.confirm("Make this the default model?", default=False):
@@ -674,7 +680,7 @@ def import_model(model_path: str, gen, opt, completer):
gen.model_manager.commit(opt.conf) gen.model_manager.commit(opt.conf)
completer.update_models(gen.model_manager.list_models()) completer.update_models(gen.model_manager.list_models())
logger.info(f"{imported_name} successfully installed") print(f">> {imported_name} successfully installed")
def _pick_configuration_file(completer)->Path: def _pick_configuration_file(completer)->Path:
print( print(
@@ -718,21 +724,21 @@ Please select the type of this model:
return choice return choice
def _verify_load(model_name: str, gen) -> bool: def _verify_load(model_name: str, gen) -> bool:
logger.info("Verifying that new model loads...") print(">> Verifying that new model loads...")
current_model = gen.model_name current_model = gen.model_name
try: try:
if not gen.set_model(model_name): if not gen.set_model(model_name):
return return
except Exception as e: except Exception as e:
logger.warning(f"model failed to load: {str(e)}") print(f"** model failed to load: {str(e)}")
logger.warning( print(
"** note that importing 2.X checkpoints is not supported. Please use !convert_model instead." "** note that importing 2.X checkpoints is not supported. Please use !convert_model instead."
) )
return False return False
if click.confirm("Keep model loaded?", default=True): if click.confirm("Keep model loaded?", default=True):
gen.set_model(model_name) gen.set_model(model_name)
else: else:
logger.info("Restoring previous model") print(">> Restoring previous model")
gen.set_model(current_model) gen.set_model(current_model)
return True return True
@@ -755,7 +761,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
ckpt_path = None ckpt_path = None
original_config_file = None original_config_file = None
if model_name_or_path == gen.model_name: if model_name_or_path == gen.model_name:
logger.warning("Can't convert the active model. !switch to another model first. **") print("** Can't convert the active model. !switch to another model first. **")
return return
elif model_info := manager.model_info(model_name_or_path): elif model_info := manager.model_info(model_name_or_path):
if "weights" in model_info: if "weights" in model_info:
@@ -765,7 +771,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
model_description = model_info["description"] model_description = model_info["description"]
vae_path = model_info.get("vae") vae_path = model_info.get("vae")
else: else:
logger.warning(f"{model_name_or_path} is not a legacy .ckpt weights file") print(f"** {model_name_or_path} is not a legacy .ckpt weights file")
return return
model_name = manager.convert_and_import( model_name = manager.convert_and_import(
ckpt_path, ckpt_path,
@@ -786,16 +792,16 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
manager.commit(opt.conf) manager.commit(opt.conf)
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False): if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
ckpt_path.unlink(missing_ok=True) ckpt_path.unlink(missing_ok=True)
logger.warning(f"{ckpt_path} deleted") print(f"{ckpt_path} deleted")
def del_config(model_name: str, gen, opt, completer): def del_config(model_name: str, gen, opt, completer):
current_model = gen.model_name current_model = gen.model_name
if model_name == current_model: if model_name == current_model:
logger.warning("Can't delete active model. !switch to another model first. **") print("** Can't delete active model. !switch to another model first. **")
return return
if model_name not in gen.model_manager.config: if model_name not in gen.model_manager.config:
logger.warning(f"Unknown model {model_name}") print(f"** Unknown model {model_name}")
return return
if not click.confirm( if not click.confirm(
@@ -808,17 +814,17 @@ def del_config(model_name: str, gen, opt, completer):
) )
gen.model_manager.del_model(model_name, delete_files=delete_completely) gen.model_manager.del_model(model_name, delete_files=delete_completely)
gen.model_manager.commit(opt.conf) gen.model_manager.commit(opt.conf)
logger.warning(f"{model_name} deleted") print(f"** {model_name} deleted")
completer.update_models(gen.model_manager.list_models()) completer.update_models(gen.model_manager.list_models())
def edit_model(model_name: str, gen, opt, completer): def edit_model(model_name: str, gen, opt, completer):
manager = gen.model_manager manager = gen.model_manager
if not (info := manager.model_info(model_name)): if not (info := manager.model_info(model_name)):
logger.warning(f"** Unknown model {model_name}") print(f"** Unknown model {model_name}")
return return
print()
logger.info(f"Editing model {model_name} from configuration file {opt.conf}") print(f"\n>> Editing model {model_name} from configuration file {opt.conf}")
new_name = _get_model_name(manager.list_models(), completer, model_name) new_name = _get_model_name(manager.list_models(), completer, model_name)
for attribute in info.keys(): for attribute in info.keys():
@@ -856,7 +862,7 @@ def edit_model(model_name: str, gen, opt, completer):
manager.set_default_model(new_name) manager.set_default_model(new_name)
manager.commit(opt.conf) manager.commit(opt.conf)
completer.update_models(manager.list_models()) completer.update_models(manager.list_models())
logger.info("Model successfully updated") print(">> Model successfully updated")
def _get_model_name(existing_names, completer, default_name: str = "") -> str: def _get_model_name(existing_names, completer, default_name: str = "") -> str:
@@ -867,11 +873,11 @@ def _get_model_name(existing_names, completer, default_name: str = "") -> str:
if len(model_name) == 0: if len(model_name) == 0:
model_name = default_name model_name = default_name
if not re.match("^[\w._+:/-]+$", model_name): if not re.match("^[\w._+:/-]+$", model_name):
logger.warning( print(
'model name must contain only words, digits and the characters "._+:/-" **' '** model name must contain only words, digits and the characters "._+:/-" **'
) )
elif model_name != default_name and model_name in existing_names: elif model_name != default_name and model_name in existing_names:
logger.warning(f"the name {model_name} is already in use. Pick another.") print(f"** the name {model_name} is already in use. Pick another.")
else: else:
done = True done = True
return model_name return model_name
@@ -938,10 +944,11 @@ def do_postprocess(gen, opt, callback):
opt=opt, opt=opt,
) )
except OSError: except OSError:
logger.error(f"{file_path}: file could not be read",exc_info=True) print(traceback.format_exc(), file=sys.stderr)
print(f"** {file_path}: file could not be read")
return return
except (KeyError, AttributeError): except (KeyError, AttributeError):
logger.error(f"an error occurred while applying the {tool} postprocessor",exc_info=True) print(traceback.format_exc(), file=sys.stderr)
return return
return opt.last_operation return opt.last_operation
@@ -996,13 +1003,13 @@ def prepare_image_metadata(
try: try:
filename = opt.fnformat.format(**wildcards) filename = opt.fnformat.format(**wildcards)
except KeyError as e: except KeyError as e:
logger.error( print(
f"The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead" f"** The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
) )
filename = f"{prefix}.{seed}.png" filename = f"{prefix}.{seed}.png"
except IndexError: except IndexError:
logger.error( print(
"The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead" "** The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
) )
filename = f"{prefix}.{seed}.png" filename = f"{prefix}.{seed}.png"
@@ -1091,14 +1098,14 @@ def split_variations(variations_string) -> list:
for part in variations_string.split(","): for part in variations_string.split(","):
seed_and_weight = part.split(":") seed_and_weight = part.split(":")
if len(seed_and_weight) != 2: if len(seed_and_weight) != 2:
logger.warning(f'Could not parse with_variation part "{part}"') print(f'** Could not parse with_variation part "{part}"')
broken = True broken = True
break break
try: try:
seed = int(seed_and_weight[0]) seed = int(seed_and_weight[0])
weight = float(seed_and_weight[1]) weight = float(seed_and_weight[1])
except ValueError: except ValueError:
logger.warning(f'Could not parse with_variation part "{part}"') print(f'** Could not parse with_variation part "{part}"')
broken = True broken = True
break break
parts.append([seed, weight]) parts.append([seed, weight])
@@ -1122,23 +1129,23 @@ def load_face_restoration(opt):
opt.gfpgan_model_path opt.gfpgan_model_path
) )
else: else:
logger.info("Face restoration disabled") print(">> Face restoration disabled")
if opt.esrgan: if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile) esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else: else:
logger.info("Upscaling disabled") print(">> Upscaling disabled")
else: else:
logger.info("Face restoration and upscaling disabled") print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError): except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
logger.info("You may need to install the ESRGAN and/or GFPGAN modules") print(">> You may need to install the ESRGAN and/or GFPGAN modules")
return gfpgan, codeformer, esrgan return gfpgan, codeformer, esrgan
def make_step_callback(gen, opt, prefix): def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir, "intermediates", prefix) destination = os.path.join(opt.outdir, "intermediates", prefix)
os.makedirs(destination, exist_ok=True) os.makedirs(destination, exist_ok=True)
logger.info(f"Intermediate images will be written into {destination}") print(f">> Intermediate images will be written into {destination}")
def callback(state: PipelineIntermediateState): def callback(state: PipelineIntermediateState):
latents = state.latents latents = state.latents
@@ -1180,20 +1187,21 @@ def retrieve_dream_command(opt, command, completer):
try: try:
cmd = dream_cmd_from_png(path) cmd = dream_cmd_from_png(path)
except OSError: except OSError:
logger.error(f"{tokens[0]}: file could not be read") print(f"## {tokens[0]}: file could not be read")
except (KeyError, AttributeError, IndexError): except (KeyError, AttributeError, IndexError):
logger.error(f"{tokens[0]}: file has no metadata") print(f"## {tokens[0]}: file has no metadata")
except: except:
logger.error(f"{tokens[0]}: file could not be processed") print(f"## {tokens[0]}: file could not be processed")
if len(cmd) > 0: if len(cmd) > 0:
completer.set_line(cmd) completer.set_line(cmd)
def write_commands(opt, file_path: str, outfilepath: str): def write_commands(opt, file_path: str, outfilepath: str):
dir, basename = os.path.split(file_path) dir, basename = os.path.split(file_path)
try: try:
paths = sorted(list(Path(dir).glob(basename))) paths = sorted(list(Path(dir).glob(basename)))
except ValueError: except ValueError:
logger.error(f'"{basename}": unacceptable pattern') print(f'## "{basename}": unacceptable pattern')
return return
commands = [] commands = []
@@ -1202,9 +1210,9 @@ def write_commands(opt, file_path: str, outfilepath: str):
try: try:
cmd = dream_cmd_from_png(path) cmd = dream_cmd_from_png(path)
except (KeyError, AttributeError, IndexError): except (KeyError, AttributeError, IndexError):
logger.error(f"{path}: file has no metadata") print(f"## {path}: file has no metadata")
except: except:
logger.error(f"{path}: file could not be processed") print(f"## {path}: file could not be processed")
if cmd: if cmd:
commands.append(f"# {path}") commands.append(f"# {path}")
commands.append(cmd) commands.append(cmd)
@@ -1214,18 +1222,18 @@ def write_commands(opt, file_path: str, outfilepath: str):
outfilepath = os.path.join(opt.outdir, basename) outfilepath = os.path.join(opt.outdir, basename)
with open(outfilepath, "w", encoding="utf-8") as f: with open(outfilepath, "w", encoding="utf-8") as f:
f.write("\n".join(commands)) f.write("\n".join(commands))
logger.info(f"File {outfilepath} with commands created") print(f">> File {outfilepath} with commands created")
def report_model_error(opt: Namespace, e: Exception): def report_model_error(opt: Namespace, e: Exception):
logger.warning(f'An error occurred while attempting to initialize the model: "{str(e)}"') print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
logger.warning( print(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models." "** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
) )
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE") yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all: if yes_to_all:
logger.warning( print(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE" "** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
) )
else: else:
if not click.confirm( if not click.confirm(
@@ -1234,7 +1242,7 @@ def report_model_error(opt: Namespace, e: Exception):
): ):
return return
logger.info("invokeai-configure is launching....\n") print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI # Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed # only the arguments accepted by the configuration script are parsed
@@ -1251,7 +1259,7 @@ def report_model_error(opt: Namespace, e: Exception):
from ..install import invokeai_configure from ..install import invokeai_configure
invokeai_configure() invokeai_configure()
logger.warning("InvokeAI will now restart") print("** InvokeAI will now restart")
sys.argv = previous_args sys.argv = previous_args
main() # would rather do a os.exec(), but doesn't exist? main() # would rather do a os.exec(), but doesn't exist?
sys.exit(0) sys.exit(0)

View File

@@ -1,9 +1,10 @@
''' """
Minimalist updater script. Prompts user for the tag or branch to update to and runs Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>. pip install <path_to_git_source>.
''' """
import os import os
import platform import platform
import requests import requests
from rich import box, print from rich import box, print
from rich.console import Console, Group, group from rich.console import Console, Group, group
@@ -16,8 +17,6 @@ from rich.text import Text
from invokeai.version import __version__ from invokeai.version import __version__
INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive" INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_TAG="https://github.com/invoke-ai/InvokeAI/archive/refs/tags"
INVOKE_AI_BRANCH="https://github.com/invoke-ai/InvokeAI/archive/refs/heads"
INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases" INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system OS = platform.uname().system
@@ -29,22 +28,22 @@ if OS == "Windows":
else: else:
console = Console(style=Style(color="grey74", bgcolor="grey19")) console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions() -> dict: def get_versions() -> dict:
return requests.get(url=INVOKE_AI_REL).json() return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict):
def welcome(versions: dict):
@group() @group()
def text(): def text():
yield f'InvokeAI Version: [bold yellow]{__version__}' yield f"InvokeAI Version: [bold yellow]{__version__}"
yield '' yield ""
yield 'This script will update InvokeAI to the latest release, or to a development version of your choice.' yield "This script will update InvokeAI to the latest release, or to a development version of your choice."
yield '' yield ""
yield '[bold yellow]Options:' yield "[bold yellow]Options:"
yield f'''[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic]) yield f"""[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
[2] Update to the bleeding-edge development version ([italic]main[/italic]) [2] Update to the bleeding-edge development version ([italic]main[/italic])
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to [3] Manually enter the tag or branch name you wish to update"""
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to'''
console.rule() console.rule()
print( print(
@@ -60,41 +59,33 @@ def welcome(versions: dict):
) )
console.line() console.line()
def main(): def main():
versions = get_versions() versions = get_versions()
welcome(versions) welcome(versions)
tag = None tag = None
branch = None choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
release = None
choice = Prompt.ask('Choice:',choices=['1','2','3','4'],default='1')
if choice=='1': if choice == "1":
release = versions[0]['tag_name'] tag = versions[0]["tag_name"]
elif choice=='2': elif choice == "2":
release = 'main' tag = "main"
elif choice=='3': elif choice == "3":
tag = Prompt.ask('Enter an InvokeAI tag name') tag = Prompt.ask("Enter an InvokeAI tag or branch name")
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]') print(f":crossed_fingers: Upgrading to [yellow]{tag}[/yellow]")
if release: cmd = f"pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517"
cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade' print("")
elif tag: print("")
cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
else:
cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd) == 0: if os.system(cmd) == 0:
print(f':heavy_check_mark: Upgrade successful') print(f":heavy_check_mark: Upgrade successful")
else: else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]') print(f":exclamation: [bold red]Upgrade failed[/red bold]")
if __name__ == "__main__": if __name__ == "__main__":
try: try:
main() main()
except KeyboardInterrupt: except KeyboardInterrupt:
pass pass

View File

@@ -22,7 +22,6 @@ import torch
from npyscreen import widget from npyscreen import widget
from omegaconf import OmegaConf from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_config_dir from invokeai.backend.globals import Globals, global_config_dir
from ...backend.config.model_install_backend import ( from ...backend.config.model_install_backend import (
@@ -200,6 +199,17 @@ class addModelsForm(npyscreen.FormMultiPage):
relx=4, relx=4,
scroll_exit=True, scroll_exit=True,
) )
self.nextrely += 1
self.convert_models = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==",
values=["Keep original format", "Convert to diffusers"],
value=0,
begin_entry_at=4,
max_height=4,
hidden=True, # will appear when imported models box is edited
scroll_exit=True,
)
self.cancel = self.add_widget_intelligent( self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress, npyscreen.ButtonPress,
name="CANCEL", name="CANCEL",
@@ -234,6 +244,8 @@ class addModelsForm(npyscreen.FormMultiPage):
self.show_directory_fields.addVisibleWhenSelected(i) self.show_directory_fields.addVisibleWhenSelected(i)
self.show_directory_fields.when_value_edited = self._clear_scan_directory self.show_directory_fields.when_value_edited = self._clear_scan_directory
self.import_model_paths.when_value_edited = self._show_hide_convert
self.autoload_directory.when_value_edited = self._show_hide_convert
def resize(self): def resize(self):
super().resize() super().resize()
@@ -244,6 +256,13 @@ class addModelsForm(npyscreen.FormMultiPage):
if not self.show_directory_fields.value: if not self.show_directory_fields.value:
self.autoload_directory.value = "" self.autoload_directory.value = ""
def _show_hide_convert(self):
model_paths = self.import_model_paths.value or ""
autoload_directory = self.autoload_directory.value or ""
self.convert_models.hidden = (
len(model_paths) == 0 and len(autoload_directory) == 0
)
def _get_starter_model_labels(self) -> List[str]: def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size() window_width, window_height = get_terminal_size()
label_width = 25 label_width = 25
@@ -303,6 +322,7 @@ class addModelsForm(npyscreen.FormMultiPage):
.scan_directory: Path to a directory of models to scan and import .scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time .autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import .import_model_paths: list of URLs, repo_ids and file paths to import
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
""" """
# we're using a global here rather than storing the result in the parentapp # we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost # due to some bug in npyscreen that is causing attributes to be lost
@@ -339,6 +359,7 @@ class addModelsForm(npyscreen.FormMultiPage):
# URLs and the like # URLs and the like
selections.import_model_paths = self.import_model_paths.value.split() selections.import_model_paths = self.import_model_paths.value.split()
selections.convert_to_diffusers = self.convert_models.value[0] == 1
class AddModelApplication(npyscreen.NPSAppManaged): class AddModelApplication(npyscreen.NPSAppManaged):
@@ -351,6 +372,7 @@ class AddModelApplication(npyscreen.NPSAppManaged):
scan_directory=None, scan_directory=None,
autoscan_on_startup=None, autoscan_on_startup=None,
import_model_paths=None, import_model_paths=None,
convert_to_diffusers=None,
) )
def onStart(self): def onStart(self):
@@ -371,6 +393,7 @@ def process_and_execute(opt: Namespace, selections: Namespace):
directory_to_scan = selections.scan_directory directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths potential_models_to_install = selections.import_model_paths
convert_to_diffusers = selections.convert_to_diffusers
install_requested_models( install_requested_models(
install_initial_models=models_to_install, install_initial_models=models_to_install,
@@ -378,6 +401,7 @@ def process_and_execute(opt: Namespace, selections: Namespace):
scan_directory=Path(directory_to_scan) if directory_to_scan else None, scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install, external_models=potential_models_to_install,
scan_at_startup=scan_at_startup, scan_at_startup=scan_at_startup,
convert_to_diffusers=convert_to_diffusers,
precision="float32" precision="float32"
if opt.full_precision if opt.full_precision
else choose_precision(torch.device(choose_torch_device())), else choose_precision(torch.device(choose_torch_device())),
@@ -456,8 +480,8 @@ def main():
Globals.root = os.path.expanduser(get_root(opt.root) or "") Globals.root = os.path.expanduser(get_root(opt.root) or "")
if not global_config_dir().exists(): if not global_config_dir().exists():
logger.info( print(
"Your InvokeAI root directory is not set up. Calling invokeai-configure." ">> Your InvokeAI root directory is not set up. Calling invokeai-configure."
) )
from invokeai.frontend.install import invokeai_configure from invokeai.frontend.install import invokeai_configure
@@ -467,18 +491,18 @@ def main():
try: try:
select_and_download_models(opt) select_and_download_models(opt)
except AssertionError as e: except AssertionError as e:
logger.error(e) print(str(e))
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
logger.info("Goodbye! Come back soon.") print("\nGoodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e: except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
logger.error( print(
"Insufficient vertical space for the interface. Please make your window taller and try again" "** Insufficient vertical space for the interface. Please make your window taller and try again"
) )
elif str(e).startswith("addwstr"): elif str(e).startswith("addwstr"):
logger.error( print(
"Insufficient horizontal space for the interface. Please make your window wider and try again." "** Insufficient horizontal space for the interface. Please make your window wider and try again."
) )

View File

@@ -27,8 +27,6 @@ from ...backend.globals import (
global_models_dir, global_models_dir,
global_set_root, global_set_root,
) )
import invokeai.backend.util.logging as logger
from ...backend.model_management import ModelManager from ...backend.model_management import ModelManager
from ...frontend.install.widgets import FloatTitleSlider from ...frontend.install.widgets import FloatTitleSlider
@@ -115,7 +113,7 @@ def merge_diffusion_models_and_commit(
model_name=merged_model_name, description=f'Merge of models {", ".join(models)}' model_name=merged_model_name, description=f'Merge of models {", ".join(models)}'
) )
if vae := model_manager.config[models[0]].get("vae", None): if vae := model_manager.config[models[0]].get("vae", None):
logger.info(f"Using configured VAE assigned to {models[0]}") print(f">> Using configured VAE assigned to {models[0]}")
import_args.update(vae=vae) import_args.update(vae=vae)
model_manager.import_diffuser_model(dump_path, **import_args) model_manager.import_diffuser_model(dump_path, **import_args)
model_manager.commit(config_file) model_manager.commit(config_file)
@@ -393,8 +391,10 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
for name in self.model_manager.model_names() for name in self.model_manager.model_names()
if self.model_manager.model_info(name).get("format") == "diffusers" if self.model_manager.model_info(name).get("format") == "diffusers"
] ]
print(model_names)
return sorted(model_names) return sorted(model_names)
class Mergeapp(npyscreen.NPSAppManaged): class Mergeapp(npyscreen.NPSAppManaged):
def __init__(self): def __init__(self):
super().__init__() super().__init__()
@@ -414,7 +414,7 @@ def run_gui(args: Namespace):
args = mergeapp.merge_arguments args = mergeapp.merge_arguments
merge_diffusion_models_and_commit(**args) merge_diffusion_models_and_commit(**args)
logger.info(f'Models merged into new model: "{args["merged_model_name"]}".') print(f'>> Models merged into new model: "{args["merged_model_name"]}".')
def run_cli(args: Namespace): def run_cli(args: Namespace):
@@ -425,8 +425,8 @@ def run_cli(args: Namespace):
if not args.merged_model_name: if not args.merged_model_name:
args.merged_model_name = "+".join(args.models) args.merged_model_name = "+".join(args.models)
logger.info( print(
f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"' f'>> No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
) )
model_manager = ModelManager(OmegaConf.load(global_config_file())) model_manager = ModelManager(OmegaConf.load(global_config_file()))
@@ -435,7 +435,7 @@ def run_cli(args: Namespace):
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.' ), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
merge_diffusion_models_and_commit(**vars(args)) merge_diffusion_models_and_commit(**vars(args))
logger.info(f'Models merged into new model: "{args.merged_model_name}".') print(f'>> Models merged into new model: "{args.merged_model_name}".')
def main(): def main():
@@ -455,16 +455,17 @@ def main():
run_cli(args) run_cli(args)
except widget.NotEnoughSpaceForWidget as e: except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
logger.error( print(
"You need to have at least two diffusers models defined in models.yaml in order to merge" "** You need to have at least two diffusers models defined in models.yaml in order to merge"
) )
else: else:
logger.error( print(
"Not enough room for the user interface. Try making this window larger." "** Not enough room for the user interface. Try making this window larger."
) )
sys.exit(-1) sys.exit(-1)
except Exception as e: except Exception:
logger.error(e) print(">> An error occurred:")
traceback.print_exc()
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
sys.exit(-1) sys.exit(-1)

View File

@@ -20,7 +20,6 @@ import npyscreen
from npyscreen import widget from npyscreen import widget
from omegaconf import OmegaConf from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_set_root from invokeai.backend.globals import Globals, global_set_root
from ...backend.training import do_textual_inversion_training, parse_args from ...backend.training import do_textual_inversion_training, parse_args
@@ -369,14 +368,14 @@ def copy_to_embeddings_folder(args: dict):
dest_dir_name = args["placeholder_token"].strip("<>") dest_dir_name = args["placeholder_token"].strip("<>")
destination = Path(Globals.root, "embeddings", dest_dir_name) destination = Path(Globals.root, "embeddings", dest_dir_name)
os.makedirs(destination, exist_ok=True) os.makedirs(destination, exist_ok=True)
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}") print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
shutil.copy(source, destination) shutil.copy(source, destination)
if ( if (
input("Delete training logs and intermediate checkpoints? [y] ") or "y" input("Delete training logs and intermediate checkpoints? [y] ") or "y"
).startswith(("y", "Y")): ).startswith(("y", "Y")):
shutil.rmtree(Path(args["output_dir"])) shutil.rmtree(Path(args["output_dir"]))
else: else:
logger.info(f'Keeping {args["output_dir"]}') print(f'>> Keeping {args["output_dir"]}')
def save_args(args: dict): def save_args(args: dict):
@@ -423,10 +422,10 @@ def do_front_end(args: Namespace):
do_textual_inversion_training(**args) do_textual_inversion_training(**args)
copy_to_embeddings_folder(args) copy_to_embeddings_folder(args)
except Exception as e: except Exception as e:
logger.error("An exception occurred during training. The exception was:") print("** An exception occurred during training. The exception was:")
logger.error(str(e)) print(str(e))
logger.error("DETAILS:") print("** DETAILS:")
logger.error(traceback.format_exc()) print(traceback.format_exc())
def main(): def main():
@@ -438,21 +437,21 @@ def main():
else: else:
do_textual_inversion_training(**vars(args)) do_textual_inversion_training(**vars(args))
except AssertionError as e: except AssertionError as e:
logger.error(e) print(str(e))
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
pass pass
except (widget.NotEnoughSpaceForWidget, Exception) as e: except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
logger.error( print(
"You need to have at least one diffusers models defined in models.yaml in order to train" "** You need to have at least one diffusers models defined in models.yaml in order to train"
) )
elif str(e).startswith("addwstr"): elif str(e).startswith("addwstr"):
logger.error( print(
"Not enough window space for the interface. Please make your window larger and try again." "** Not enough window space for the interface. Please make your window larger and try again."
) )
else: else:
logger.error(e) print(f"** An error has occurred: {str(e)}")
sys.exit(-1) sys.exit(-1)

View File

@@ -6,5 +6,3 @@ stats.html
index.html index.html
.yarn/ .yarn/
*.scss *.scss
src/services/api/
src/services/fixtures/*

View File

@@ -3,8 +3,4 @@ dist/
node_modules/ node_modules/
patches/ patches/
stats.html stats.html
index.html
.yarn/ .yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@@ -1,16 +1,10 @@
# InvokeAI Web UI # InvokeAI Web UI
- [InvokeAI Web UI](#invokeai-web-ui)
- [Stack](#stack)
- [Contributing](#contributing)
- [Dev Environment](#dev-environment)
- [Production builds](#production-builds)
The UI is a fairly straightforward Typescript React app. The only really fancy stuff is the Unified Canvas. The UI is a fairly straightforward Typescript React app. The only really fancy stuff is the Unified Canvas.
Code in `invokeai/frontend/web/` if you want to have a look. Code in `invokeai/frontend/web/` if you want to have a look.
## Stack ## Details
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a custom redux middleware to help). State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a custom redux middleware to help).
@@ -38,7 +32,7 @@ Start everything in dev mode:
1. Start the dev server: `yarn dev` 1. Start the dev server: `yarn dev`
2. Start the InvokeAI UI per usual: `invokeai --web` 2. Start the InvokeAI UI per usual: `invokeai --web`
3. Point your browser to the dev server address e.g. <http://localhost:5173/> 3. Point your browser to the dev server address e.g. `http://localhost:5173/`
### Production builds ### Production builds

View File

@@ -1,40 +0,0 @@
import react from '@vitejs/plugin-react-swc';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const appConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
],
build: {
chunkSizeWarningLimit: 1500,
},
server: {
// Proxy HTTP requests to the flask server
proxy: {
// Proxy socket.io to the nodes socketio server
'/ws/socket.io': {
target: 'ws://127.0.0.1:9090',
ws: true,
},
// Proxy openapi schema definiton
'/openapi.json': {
target: 'http://127.0.0.1:9090/openapi.json',
rewrite: (path) => path.replace(/^\/openapi.json/, ''),
changeOrigin: true,
},
// proxy nodes api
'/api/v1': {
target: 'http://127.0.0.1:9090/api/v1',
rewrite: (path) => path.replace(/^\/api\/v1/, ''),
changeOrigin: true,
},
},
},
};

View File

@@ -1,47 +0,0 @@
import react from '@vitejs/plugin-react-swc';
import path from 'path';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import dts from 'vite-plugin-dts';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const packageConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
dts({
insertTypesEntry: true,
}),
],
build: {
chunkSizeWarningLimit: 1500,
lib: {
entry: path.resolve(__dirname, '../src/index.ts'),
name: 'InvokeAIUI',
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
output: {
globals: {
react: 'React',
'react-dom': 'ReactDOM',
},
},
},
},
resolve: {
alias: {
app: path.resolve(__dirname, '../src/app'),
assets: path.resolve(__dirname, '../src/assets'),
common: path.resolve(__dirname, '../src/common'),
features: path.resolve(__dirname, '../src/features'),
services: path.resolve(__dirname, '../src/services'),
theme: path.resolve(__dirname, '../src/theme'),
},
},
};

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{j as y,cO as Ie,r as _,cP as bt,q as Lr,cQ as o,cR as b,cS as v,cT as S,cU as Vr,cV as ut,cW as vt,cN as ft,cX as mt,n as gt,cY as ht,E as pt}from"./index-e53e8108.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-5cde7d31.js";var Or=` import{j as y,cN as Ie,r as _,cO as bt,q as Lr,cP as o,cQ as b,cR as v,cS as S,cT as Vr,cU as ut,cV as vt,cM as ft,cW as mt,n as gt,cX as ht,E as pt}from"./index-f7f41e1f.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-eaf47ae3.js";var Or=`
:root { :root {
--chakra-vh: 100vh; --chakra-vh: 100vh;
} }

View File

@@ -12,7 +12,7 @@
margin: 0; margin: 0;
} }
</style> </style>
<script type="module" crossorigin src="./assets/index-e53e8108.js"></script> <script type="module" crossorigin src="./assets/index-f7f41e1f.js"></script>
<link rel="stylesheet" href="./assets/index-5483945c.css"> <link rel="stylesheet" href="./assets/index-5483945c.css">
</head> </head>

View File

@@ -8,6 +8,7 @@
"darkTheme": "داكن", "darkTheme": "داكن",
"lightTheme": "فاتح", "lightTheme": "فاتح",
"greenTheme": "أخضر", "greenTheme": "أخضر",
"text2img": "نص إلى صورة",
"img2img": "صورة إلى صورة", "img2img": "صورة إلى صورة",
"unifiedCanvas": "لوحة موحدة", "unifiedCanvas": "لوحة موحدة",
"nodes": "عقد", "nodes": "عقد",

View File

@@ -7,6 +7,7 @@
"darkTheme": "Dunkel", "darkTheme": "Dunkel",
"lightTheme": "Hell", "lightTheme": "Hell",
"greenTheme": "Grün", "greenTheme": "Grün",
"text2img": "Text zu Bild",
"img2img": "Bild zu Bild", "img2img": "Bild zu Bild",
"nodes": "Knoten", "nodes": "Knoten",
"langGerman": "Deutsch", "langGerman": "Deutsch",

View File

@@ -505,9 +505,7 @@
"info": "Info", "info": "Info",
"deleteImage": "Delete Image", "deleteImage": "Delete Image",
"initialImage": "Initial Image", "initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel", "showOptionsPanel": "Show Options Panel"
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
}, },
"settings": { "settings": {
"models": "Models", "models": "Models",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Oscuro", "darkTheme": "Oscuro",
"lightTheme": "Claro", "lightTheme": "Claro",
"greenTheme": "Verde", "greenTheme": "Verde",
"text2img": "Texto a Imagen",
"img2img": "Imagen a Imagen", "img2img": "Imagen a Imagen",
"unifiedCanvas": "Lienzo Unificado", "unifiedCanvas": "Lienzo Unificado",
"nodes": "Nodos", "nodes": "Nodos",
@@ -69,11 +70,7 @@
"langHebrew": "Hebreo", "langHebrew": "Hebreo",
"pinOptionsPanel": "Pin del panel de opciones", "pinOptionsPanel": "Pin del panel de opciones",
"loading": "Cargando", "loading": "Cargando",
"loadingInvokeAI": "Cargando invocar a la IA", "loadingInvokeAI": "Cargando invocar a la IA"
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar"
}, },
"gallery": { "gallery": {
"generations": "Generaciones", "generations": "Generaciones",
@@ -407,8 +404,7 @@
"none": "ninguno", "none": "ninguno",
"pickModelType": "Elige el tipo de modelo", "pickModelType": "Elige el tipo de modelo",
"v2_768": "v2 (768px)", "v2_768": "v2 (768px)",
"addDifference": "Añadir una diferencia", "addDifference": "Añadir una diferencia"
"scanForModels": "Buscar modelos"
}, },
"parameters": { "parameters": {
"images": "Imágenes", "images": "Imágenes",
@@ -578,7 +574,7 @@
"autoSaveToGallery": "Guardar automáticamente en galería", "autoSaveToGallery": "Guardar automáticamente en galería",
"saveBoxRegionOnly": "Guardar solo región dentro de la caja", "saveBoxRegionOnly": "Guardar solo región dentro de la caja",
"limitStrokesToBox": "Limitar trazos a la caja", "limitStrokesToBox": "Limitar trazos a la caja",
"showCanvasDebugInfo": "Mostrar la información adicional del lienzo", "showCanvasDebugInfo": "Mostrar información de depuración de lienzo",
"clearCanvasHistory": "Limpiar historial de lienzo", "clearCanvasHistory": "Limpiar historial de lienzo",
"clearHistory": "Limpiar historial", "clearHistory": "Limpiar historial",
"clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.", "clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",

Some files were not shown because too many files have changed in this diff Show More