Compare commits

..

3 Commits

Author SHA1 Message Date
Lincoln Stein
3c50448ccf Merge branch 'main' into dev/pytorch2 2023-04-06 21:47:46 -04:00
Lincoln Stein
5dec5b6f51 Merge branch 'main' into dev/pytorch2 2023-03-23 23:31:21 -04:00
Kevin Turner
e158ad8534 deps: upgrade to PyTorch 2.0 (replaces xformers) 2023-03-15 15:45:48 -07:00
576 changed files with 7107 additions and 23835 deletions

14
.github/CODEOWNERS vendored
View File

@@ -1,16 +1,16 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant
/.github/workflows/ @mauwii @lstein @blessedcoolant
# documentation
/docs/ @lstein @tildebyte @blessedcoolant
/mkdocs.yml @lstein @blessedcoolant
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant
/pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
@@ -22,11 +22,11 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation, model management, postprocessing
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant

19
.github/stale.yaml vendored
View File

@@ -1,19 +0,0 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

2
.gitignore vendored
View File

@@ -9,8 +9,6 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh

View File

@@ -33,8 +33,6 @@
</div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
@@ -86,7 +84,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models.
select a set of starting image generaiton models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
@@ -150,11 +148,6 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh

View File

@@ -1,18 +1,10 @@
# Invocations
Invocations represent a single operation, its inputs, and its outputs. These
operations and their outputs can be chained together to generate and modify
images.
Invocations represent a single operation, its inputs, and its outputs. These operations and their outputs can be chained together to generate and modify images.
## Creating a new invocation
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
To create a new invocation, either find the appropriate module file in `/ldm/invoke/app/invocations` to add your invocation to, or create a new one in that folder. All invocations in that folder will be discovered and made available to the CLI and API automatically. Invocations make use of [typing](https://docs.python.org/3/library/typing.html) and [pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration into the CLI and API.
An invocation looks like this:
@@ -49,54 +41,34 @@ class UpscaleInvocation(BaseInvocation):
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
All invocations must derive from `BaseInvocation`. They should have a docstring that declares what they do in a single, short line. They should also have a `type` with a type hint that's `Literal["command_name"]`, where `command_name` is what the user will type on the CLI or use in the API to create this invocation. The `command_name` must be unique. The `type` must be assigned to the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default, description, and validation information. For example:
| Part | Value | Description |
| ---- | ----- | ----------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this field to be parsed with `None` as a value, which enables linking to previous invocations. All fields should either provide a default value or allow `None` as a value, so that they can be overwritten with a linked output from another invocation.
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
The special type `ImageField` is also used here. All images are passed as `ImageField`, which protects them from pydantic validation errors (since images only ever come from links).
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
Finally, note that for all linking, the `type` of the linked fields must match. If the `name` also matches, then the field can be **automatically linked** to a previous invocation by name and matching.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
@@ -116,22 +88,13 @@ previous invocation by name and matching.
image = ImageField(image_type = image_type, image_name = image_name)
)
```
The `invoke` function is the last portion of an invocation. It is provided an `InvocationContext` which contains services to perform work as well as a `session_id` for use as needed. It should return a class with output values that derives from `BaseInvocationOutput`.
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from defaults, inputs, and finally links (overriding in that order).
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
Assume that this invocation may be running simultaneously with other invocations, may be running on another machine, or in other interesting scenarios. If you need functionality, please provide it as a service in the `InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
@@ -139,64 +102,4 @@ class ImageOutput(BaseInvocationOutput):
image: ImageField = Field(default=None, description="The output image")
```
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
```
The generated OpenAPI schema, and all clients/types generated from it, will have
the `type` and `image` properties marked as optional, even though we know they
will always have a value by the time we can interact with them via the API.
Here's the same class, but with the schema customisation added:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
```
The resultant schema (and any API client or types generated from it) will now
have see `type` as string literal `"image"` and `image` as an `ImageField`
object.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>
Output classes look like an invocation class without the invoke method. Prefer to use an existing output class if available, and prefer to name inputs the same as outputs when possible, to promote automatic invocation linking.

View File

@@ -32,7 +32,7 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually
`invokeai.init` in your home directory). You can change the default at any
`.invokeai` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.

View File

@@ -50,7 +50,7 @@ subset that are currently installed are found in
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |

View File

@@ -461,8 +461,7 @@ def get_torch_source() -> (Union[str, None],str):
url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda':
url = 'https://download.pytorch.org/whl/cu117'
optional_modules = '[xformers]'
url = 'https://download.pytorch.org/whl/cu118'
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -3,17 +3,12 @@
import os
from argparse import Namespace
from invokeai.app.services.metadata import PngMetadataService, MetadataServiceBase
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend.globals import Globals, copy_conf_to_globals
from ..services.config import InvokeAIWebConfig
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
@@ -46,7 +41,11 @@ class ApiDependencies:
@staticmethod
def initialize(config, event_handler_id: int):
copy_conf_to_globals(config)
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
@@ -59,9 +58,7 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
images = DiskImageStorage(f'{output_folder}/images')
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
@@ -71,21 +68,14 @@ class ApiDependencies:
events=events,
latents=latents,
images=images,
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
configuration=config,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
@staticmethod

View File

@@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
)
except Empty:
await asyncio.sleep(0.1)
await asyncio.sleep(0.001)
pass
except asyncio.CancelledError as e:

View File

@@ -1,40 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
"""The response type for images"""
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class SavedImage(BaseModel):
image_name: str = Field(description="The name of the saved image")
thumbnail_name: str = Field(description="The name of the saved thumbnail")
created: int = Field(description="The created timestamp of the saved image")

View File

@@ -1,20 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import Body, HTTPException, Path, Query, Request, UploadFile
from datetime import datetime, timezone
from fastapi import Path, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
@@ -26,123 +17,50 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
) -> FileResponse:
"""Gets an image"""
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.delete("/{image_type}/{image_name}", operation_id="delete_image")
async def delete_image(
image_type: ImageType = Path(description="The type of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image and its thumbnail"""
ApiDependencies.invoker.services.images.delete(
image_type=image_type, image_name=image_name
)
@images_router.get(
"/{thumbnail_type}/thumbnails/{thumbnail_name}", operation_id="get_thumbnail"
)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
async def get_thumbnail(
thumbnail_type: ImageType = Path(description="The type of thumbnail to get"),
thumbnail_name: str = Path(description="The name of the thumbnail to get"),
) -> FileResponse | Response:
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a thumbnail"""
path = ApiDependencies.invoker.services.images.get_path(
image_type=thumbnail_type, image_name=thumbnail_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {
"description": "The image was uploaded successfully",
"model": ImageResponse,
},
415: {"description": "Image upload failed"},
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
},
status_code=201,
)
async def upload_image(
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
async def upload_image(file: UploadFile, request: Request):
if not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
return Response(status_code=415)
contents = await file.read()
try:
img = Image.open(io.BytesIO(contents))
im = Image.open(contents)
except:
# Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image")
return Response(status_code=415)
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
saved_image = ApiDependencies.invoker.services.images.save(
ImageType.UPLOAD, filename, img
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
},
)
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
image_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name
)
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name, True
)
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=saved_image.image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
metadata=ImageResponseMetadata(
created=saved_image.created,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = image_url
return res
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
)
async def list_images(
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result

View File

@@ -1,12 +1,10 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter, HTTPException
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
@@ -17,9 +15,11 @@ class VaeRepo(BaseModel):
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
@@ -29,6 +29,7 @@ class CkptModelInfo(ModelInfo):
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
@@ -36,29 +37,12 @@ class DiffusersModelInfo(ModelInfo):
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
@@ -70,61 +54,108 @@ async def list_models() -> ModelsList:
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
@models_router.post(
"/",
operation_id="update_model",
responses={200: {"status": "success"}},
)
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
return model_response
# print(f">> Adding New Model: {model_name}")
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
@models_router.delete(
"/{model_name}",
operation_id="del_model",
responses={
204: {
"description": "Model deleted successfully"
},
404: {
"description": "Model not found"
}
},
)
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
model_exists = model_name in model_names
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# check if model exists
print(f">> Checking for model {model_name}...")
if model_exists:
print(f">> Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
print(f">> Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
print(f">> Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
@@ -245,3 +276,4 @@ async def delete_model(model_name: str) -> None:
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)

View File

@@ -2,7 +2,8 @@
from typing import Annotated, List, Optional, Union
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
@@ -75,7 +76,7 @@ async def get_session(
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
else:
return session
@@ -98,7 +99,7 @@ async def add_node(
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
try:
session.add_node(node)
@@ -107,9 +108,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
raise HTTPException(status_code=400)
return Response(status_code=400)
except IndexError:
raise HTTPException(status_code=400)
return Response(status_code=400)
@session_router.put(
@@ -131,7 +132,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
try:
session.update_node(node_path, node)
@@ -140,9 +141,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
raise HTTPException(status_code=400)
return Response(status_code=400)
except IndexError:
raise HTTPException(status_code=400)
return Response(status_code=400)
@session_router.delete(
@@ -161,7 +162,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
try:
session.delete_node(node_path)
@@ -170,9 +171,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
raise HTTPException(status_code=400)
return Response(status_code=400)
except IndexError:
raise HTTPException(status_code=400)
return Response(status_code=400)
@session_router.post(
@@ -191,7 +192,7 @@ async def add_edge(
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
try:
session.add_edge(edge)
@@ -200,9 +201,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
raise HTTPException(status_code=400)
return Response(status_code=400)
except IndexError:
raise HTTPException(status_code=400)
return Response(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@@ -225,7 +226,7 @@ async def delete_edge(
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
try:
edge = Edge(
@@ -238,9 +239,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
raise HTTPException(status_code=400)
return Response(status_code=400)
except IndexError:
raise HTTPException(status_code=400)
return Response(status_code=400)
@session_router.put(
@@ -258,14 +259,14 @@ async def invoke_session(
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> Response:
) -> None:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
return Response(status_code=404)
if session.is_complete():
raise HTTPException(status_code=400)
return Response(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@@ -280,7 +281,7 @@ async def invoke_session(
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> Response:
) -> None:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@@ -12,11 +12,12 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.schema import schema
from ..backend import Args
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.config import InvokeAIWebConfig
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
@@ -32,15 +33,30 @@ app.add_middleware(
middleware_id=event_handler_id,
)
# Add CORS
# TODO: use configuration for this
origins = []
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
socket_io = SocketIO(app)
web_config = {}
config = {}
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
config = Args()
config.parse_args()
ApiDependencies.initialize(
config=web_config, event_handler_id=event_handler_id
config=config, event_handler_id=event_handler_id
)
@@ -130,21 +146,12 @@ def overridden_redoc():
def invoke_api():
# parse command-line settings, environment and the init file
# (this is a module global)
global web_config
web_config = InvokeAIWebConfig()
app.add_middleware(
CORSMiddleware,
allow_origins=web_config.allow_origins,
allow_credentials=web_config.allow_credentials,
allow_methods=web_config.allow_methods,
allow_headers=web_config.allow_headers,
)
# Start our own event loop for eventing usage
# TODO: determine if there's a better way to do this
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host=web_config.host, port=web_config.port, loop=loop)
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())

View File

@@ -1,97 +1,89 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_type_hints
from pydantic import Field
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
from ..invocations.baseinvocation import BaseInvocation
from ..services.config import InvokeAISettings
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.graph import GraphExecutionState
from ..services.invoker import Invoker
def add_parsers(
subparsers,
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
"""Adds parsers for each command to the subparsers"""
# Create subparsers for each command
for command in commands:
name = command.cmd_name()
command_parser = subparsers.add_parser(name, help=command.__doc__)
hints = get_type_hints(command)
cmd_name = get_args(hints[command_field])[0]
command_parser = subparsers.add_parser(cmd_name, help=command.__doc__)
if add_arguments is not None:
add_arguments(command_parser)
command.add_parser_arguments(command_parser)
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
graph.add_parser_arguments(command_parser)
# Convert all fields to arguments
fields = command.__fields__ # type: ignore
for name, field in fields.items():
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description,
)
# Add arguments for inputs
for exposed_input in graph.exposed_inputs:
node = graph.graph.get_node(exposed_input.node_path)
field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
graph.add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext:
invoker: Invoker
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception):
"""Exception to exit the CLI"""
pass
class BaseCommand(ABC, InvokeAISettings):
class BaseCommand(ABC, BaseModel):
"""A CLI command"""
# All commands must include a type name like this:

View File

@@ -10,10 +10,9 @@ import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager
from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
from ..services.invocation_services import InvocationServices
# singleton object, class variable
completer = None
@@ -131,13 +130,13 @@ class Completer(object):
readline.redisplay()
self.linebuffer = None
def set_autocompleter(services: InvocationServices) -> Completer:
def set_autocompleter(model_manager: ModelManager) -> Completer:
global completer
if completer:
return completer
completer = Completer(services.model_manager)
completer = Completer(model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
@@ -153,7 +152,7 @@ def set_autocompleter(services: InvocationServices) -> Completer:
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(services.configuration.root_dir / ".invoke_history")
histfile = Path(Globals.root, ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)

View File

@@ -13,29 +13,24 @@ from typing import (
from pydantic import BaseModel
from pydantic.fields import Field
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
from .services.config import InvokeAIAppConfig
from ..backend.globals import copy_conf_to_globals # temporary workaround for code depending on Globals
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
@@ -63,7 +58,7 @@ def add_invocation_args(command_parser):
)
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
def get_command_parser() -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
@@ -81,72 +76,20 @@ def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation, context: CliContext
a: BaseInvocation, b: BaseInvocation
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
matching_fields = set(afields.keys()).intersection(bfields.keys())
@@ -155,14 +98,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
edges = [
Edge(
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
)
for alias in matching_fields
for field in matching_fields
]
return edges
@@ -190,19 +133,21 @@ def invoke_all(context: CliContext):
def invoke_cli():
config = InvokeAIAppConfig()
copy_conf_to_globals(config) # temporary workaround
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
events = EventServiceBase()
output_folder = config.output_path
metadata = PngMetadataService()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
@@ -211,26 +156,18 @@ def invoke_cli():
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
images=DiskImageStorage(f'{output_folder}/images'),
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser(services)
parser = get_command_parser()
re_negid = re.compile('^-[0-9]+$')
@@ -239,8 +176,6 @@ def invoke_cli():
context = CliContext(invoker, session, parser)
set_autocompleter(services)
while True:
try:
cmd_input = input("invoke> ")
@@ -250,12 +185,11 @@ def invoke_cli():
try:
# Refresh the state of the session
#history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
history = list(get_graph_execution_history(context.session))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(context.nodes_added)
start_id = len(history)
current_id = start_id
new_invocations = list()
for cmd in cmds:
@@ -271,33 +205,8 @@ def invoke_cli():
args[field_name] = field_default
# Parse invocation
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
if "id" in args:
args["id"] = args["id"] or current_id
# remove extraneous fields from initialization
exclude = ['link','link_node']
command_args = dict()
for key,value in args.items():
if key not in exclude:
command_args[key]=value
command = CliCommand(command=command_args)
if command is None:
continue
args["id"] = current_id
command = CliCommand(command=args)
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
@@ -308,7 +217,6 @@ def invoke_cli():
command.command.run(context)
continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
@@ -321,7 +229,7 @@ def invoke_cli():
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command, context
from_node, command.command
)
edges.extend(matching_edges)
@@ -334,7 +242,7 @@ def invoke_cli():
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command, context
link_node, command.command
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
@@ -348,14 +256,12 @@ def invoke_cli():
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append(
Edge(
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
)
)
@@ -364,10 +270,10 @@ def invoke_cli():
current_id = current_id + 1
# Add the node to the session
context.add_node(command.command)
context.session.add_node(command.command)
for edge in edges:
print(edge)
context.add_edge(edge)
context.session.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
@@ -379,7 +285,7 @@ def invoke_cli():
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.reset()
context.session = context.invoker.create_execution_state()
except ExitCli:
break

View File

@@ -2,12 +2,12 @@
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict
from typing import get_args, get_type_hints
from pydantic import BaseModel, BaseSettings, Field
from pydantic import BaseModel, Field
from ..services.invocation_services import InvocationServices
from ..services.config import InvokeAISettings
class InvocationContext:
services: InvocationServices
@@ -36,7 +36,7 @@ class BaseInvocationOutput(BaseModel):
return tuple(subclasses)
class BaseInvocation(ABC, InvokeAISettings):
class BaseInvocation(ABC, BaseModel):
"""A node to process inputs and produce outputs.
May use dependency injection in __init__ to receive providers.
"""
@@ -76,56 +76,3 @@ class BaseInvocation(ABC, InvokeAISettings):
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseSettings.Config):
"""Customizes pydantic's BaseSettings.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
"""
schema_extra: CustomisedSchemaExtra

View File

@@ -1,17 +1,16 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from typing import Literal
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
)
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
class IntCollectionOutput(BaseInvocationOutput):
@@ -34,9 +33,7 @@ class RangeInvocation(BaseInvocation):
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
class RandomRangeInvocation(BaseInvocation):
@@ -46,19 +43,8 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))

View File

@@ -5,26 +5,14 @@ from typing import Literal
import cv2 as cv
import numpy
from PIL import Image, ImageOps
from pydantic import BaseModel, Field
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class CvInvocationConfig(BaseModel):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
class CvInpaintInvocation(BaseInvocation):
"""Simple inpaint using opencv."""
#fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
@@ -56,14 +44,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@@ -6,36 +6,21 @@ from typing import Literal, Optional, Union
import numpy as np
from torch import Tensor
from pydantic import BaseModel, Field
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.step_callback import stable_diffusion_step_callback
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
from ..util.util import diffusers_step_callback_adapter, CanceledException
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
class TextToImageInvocation(BaseInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
@@ -49,7 +34,7 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
@@ -57,31 +42,35 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context, source_node_id),
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
@@ -97,18 +86,9 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
@@ -128,17 +108,20 @@ class ImageToImageInvocation(TextToImageInvocation):
)
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@@ -151,23 +134,18 @@ class ImageToImageInvocation(TextToImageInvocation):
mask = None
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@@ -182,19 +160,11 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
@@ -210,17 +180,20 @@ class InpaintInvocation(ImageToImageInvocation):
)
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@@ -237,23 +210,18 @@ class InpaintInvocation(ImageToImageInvocation):
)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@@ -268,14 +236,7 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,97 +1,70 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
#fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# fmt: on
#fmt: on
class Config:
schema_extra = {
"required": ["type", "image", "width", "height", "mode"]
}
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
'required': [
'type',
'image',
]
}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output."""
# fmt: off
"""Load an image from a filename and provide it as output."""
#fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image_type, self.image_name)
#fmt: on
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
)
@@ -112,17 +85,16 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure?
return build_image_output(
image_type=self.image.image_type,
image_name=self.image.image_name,
image=image,
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
)
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
class CropImageInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
# fmt: off
#fmt: off
type: Literal["crop"] = "crop"
# Inputs
@@ -131,7 +103,7 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@@ -147,23 +119,15 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
class PasteImageInvocation(BaseInvocation):
"""Pastes an image into another image."""
# fmt: off
#fmt: off
type: Literal["paste"] = "paste"
# Inputs
@@ -172,7 +136,7 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
@@ -185,7 +149,7 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
None
if self.mask is None
else ImageOps.invert(
context.services.images.get(self.mask.image_type, self.mask.image_name)
services.images.get(self.mask.image_type, self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@@ -205,29 +169,21 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
# fmt: off
#fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
@@ -242,27 +198,22 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
context.services.images.save(image_type, image_name, image_mask)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation, PILInvocationConfig):
class BlurInvocation(BaseInvocation):
"""Blurs an image"""
# fmt: off
#fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@@ -279,28 +230,22 @@ class BlurInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class LerpInvocation(BaseInvocation, PILInvocationConfig):
class LerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
# fmt: off
#fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@@ -316,29 +261,23 @@ class LerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
class InverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
# fmt: off
#fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@@ -358,12 +297,7 @@ class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,26 +1,25 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput, build_image_output
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
@@ -31,8 +30,6 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
@@ -102,31 +99,18 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
return x
def random_seed():
return random.randint(0, np.iinfo(np.uint32).max)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
device = torch.device(CUDA_DEVICE)
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
@@ -146,48 +130,54 @@ class TextToLatentsInvocation(BaseInvocation):
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_info = model_manager.get_model(self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
scheduler_name=self.sampler_name
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
@@ -223,12 +213,8 @@ class TextToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
@@ -258,17 +244,6 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model"
}
},
}
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
@@ -277,12 +252,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
@@ -292,7 +263,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
@@ -328,23 +299,12 @@ class LatentsToImageInvocation(BaseInvocation):
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model_info = context.services.model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
@@ -355,79 +315,7 @@ class LatentsToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
torch.cuda.empty_cache()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=image
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))

View File

@@ -1,22 +1,15 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class IntOutput(BaseInvocationOutput):
@@ -27,7 +20,7 @@ class IntOutput(BaseInvocationOutput):
#fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig):
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
#fmt: off
type: Literal["add"] = "add"
@@ -39,7 +32,7 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
#fmt: off
type: Literal["sub"] = "sub"
@@ -51,7 +44,7 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
#fmt: off
type: Literal["mul"] = "mul"
@@ -63,7 +56,7 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation, MathInvocationConfig):
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
#fmt: off
type: Literal["div"] = "div"

View File

@@ -1,18 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)

View File

@@ -1,11 +1,12 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
@@ -17,14 +18,6 @@ class RestoreFaceInvocation(BaseInvocation):
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["restoration", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@@ -43,14 +36,7 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@@ -1,12 +1,14 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class UpscaleInvocation(BaseInvocation):
@@ -20,15 +22,6 @@ class UpscaleInvocation(BaseInvocation):
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@@ -47,14 +40,7 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@@ -1,14 +0,0 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
if model_manager.valid_model(model_name):
model = model_manager.get_model(model_name)
else:
model = model_manager.get_model()
print(
f"* Warning: '{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead."
)
return model

View File

@@ -1,3 +0,0 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@@ -1,29 +0,0 @@
from enum import Enum
from typing import Optional
from pydantic import BaseModel, Field
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: ImageType = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_type", "image_name"]}

View File

@@ -1,379 +0,0 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein)
'''Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has top-level keys corresponding to an invocation name, a command, or
"globals" for global values such as `xformers_enabled`. Currently
graphs cannot be configured this way, but their constituents can be.
[file: invokeai.yaml]
globals:
nsfw_checker: False
max_loaded_models: 5
txt2img:
steps: 20
scheduler: k_heun
width: 768
img2img:
width: 1024
height: 1024
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can use any OmegaConf dictionary by passing it
to the config object at initialization time:
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
By default, InvokeAIAppConfig will parse the contents of argv at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
It is also possible to set a value at initialization time. This value
has highest priority.
conf = InvokeAIAppConfig(xformers_enabled=True)
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<command>_<value>", as in:
export INVOKEAI_txt2img_steps=30
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage:
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.invocations.generate import TextToImageInvocation
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
# get the text2image invocation and print its step value
text2image = TextToImageInvocation()
print(text2image.steps)
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
'''
import argparse
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import Any, ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
LEGACY_INIT_FILE = Path('invokeai.init')
class InvokeAISettings(BaseSettings):
'''
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]):
parser = self.get_parser()
opt, _ = parser.parse_known_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
@classmethod
def add_parser_arguments(cls, parser):
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else 'INVOKEAI_'
if 'type' in get_type_hints(cls):
default_settings_stanza = get_args(get_type_hints(cls)['type'])[0]
else:
default_settings_stanza = 'globals'
initconf = cls.initconf.get(default_settings_stanza) if cls.initconf and default_settings_stanza in cls.initconf else None
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
env_name = env_prefix+f'{cls.cmd_name()}_{name}'
if initconf and name in initconf:
field.default = initconf.get(name)
if env_name in os.environ:
field.default = os.environ[env_name]
cls.add_field_argument(parser, name, field)
@classmethod
def cmd_name(self, command_field: str='type')->str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'globals'
@classmethod
def get_parser(cls)->ArgumentParser:
parser = ArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->List[str]:
return ['type','initconf']
class Config:
env_file_encoding = 'utf-8'
arbitrary_types_allowed = True
env_prefix = 'INVOKEAI_'
case_sensitive = True
@classmethod
def customise_sources(
cls,
init_settings,
env_settings,
file_secret_settings,
):
return (
init_settings,
cls._omegaconf_settings_source,
env_settings,
file_secret_settings,
)
@classmethod
def _omegaconf_settings_source(cls, settings: BaseSettings) -> dict[str, Any]:
if initconf := InvokeAISettings.initconf:
return initconf.get(settings.cmd_name(),{})
else:
return {}
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
def _find_root()->Path:
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
Application-wide settings.
'''
#fmt: off
type: Literal["globals"] = "globals"
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
infile : Path = Field(default=None, description='Path to a file of prompt commands to bulk generate from', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
#fmt: on
def __init__(self, conf: DictConfig = None, argv: List[str]=None, **kwargs):
'''
Initialize InvokeAIAppconfig.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param **kwargs: attributes to initialize with
'''
super().__init__(**kwargs)
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
self.parse_args(argv)
if not conf:
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
self.parse_args(argv)
# restore initialization values
hints = get_type_hints(self)
for k in kwargs:
setattr(self,k,parse_obj_as(hints[k],kwargs[k]))
@property
def root_path(self)->Path:
'''
Path to the runtime root directory
'''
if self.root:
return self.root.expanduser()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
Alias for above.
'''
return self.root_path
def _resolve(self,partial_path:Path)->Path:
return (self.root_path / partial_path).resolve()
@property
def output_path(self)->Path:
'''
Path to defaults outputs directory.
'''
return self._resolve(self.outdir)
@property
def model_conf_path(self)->Path:
'''
Path to models configuration file.
'''
return self._resolve(self.conf_path)
@property
def conf(self)->Path:
'''
Path to models configuration file (alias for model_conf_path).
'''
return self.model_conf_path
@property
def embedding_path(self)->Path:
'''
Path to the textual inversion embeddings directory.
'''
return self._resolve(self.embedding_dir) if self.embedding_dir else None
@property
def lora_path(self)->Path:
'''
Path to the LoRA models directory.
'''
return self._resolve(self.lora_dir) if self.lora_dir else None
@property
def autoconvert_path(self)->Path:
'''
Path to the directory containing models to be imported automatically at startup.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
@property
def gfpgan_model_path(self)->Path:
'''
Path to the GFPGAN model.
'''
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
@staticmethod
def find_root()->Path:
'''
Choose the runtime root directory when not specified on command line or
init file.
'''
return _find_root()
class InvokeAIWebConfig(InvokeAIAppConfig):
'''
Web-specific settings
'''
#fmt: off
type : Literal["web"] = "web"
allow_origins : List = Field(default=[], description="Allowed CORS origins", category='Cross-Origin Resource Sharing')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Cross-Origin Resource Sharing')
allow_methods : List = Field(default=["*"], description="Methods allowed for CORS", category='Cross-Origin Resource Sharing')
allow_headers : List = Field(default=["*"], description="Headers allowed for CORS", category='Cross-Origin Resource Sharing')
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
#fmt: on

View File

@@ -1,56 +0,0 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'3': NoiseInvocation(id='3'),
'4': TextToLatentsInvocation(id='4'),
'5': LatentsToImageInvocation(id='5')
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='4', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='4', field='height')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='4', field='noise')),
Edge(source=EdgeConnection(node_id='4', field='latents'), destination=EdgeConnection(node_id='5', field='latents')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height')
],
exposed_outputs=[
ExposedNodeOutput(node_path='5', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
graphs: list[LibraryGraph] = list()
text_to_image = graph_library.get(default_text_to_image_graph_id)
# TODO: Check if the graph is the same as the default one, and if not, update it
#if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@@ -1,9 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict, Union
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
from typing import Any, Dict, TypedDict
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
@@ -13,8 +14,7 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
@@ -25,8 +25,7 @@ class EventServiceBase:
def emit_generator_progress(
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
invocation_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
@@ -36,60 +35,48 @@ class EventServiceBase:
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
invocation_id=invocation_id,
progress_image=progress_image,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
self, graph_execution_state_id: str, invocation_id: str, result: Dict
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
invocation_id=invocation_id,
result=result,
),
)
def emit_invocation_error(
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
self, graph_execution_state_id: str, invocation_id: str, error: str
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
invocation_id=invocation_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, node: dict, source_node_id: str
self, graph_execution_state_id: str, invocation_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
invocation_id=invocation_id,
),
)
@@ -97,7 +84,5 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
payload=dict(graph_execution_state_id=graph_execution_state_id),
)

View File

@@ -2,7 +2,9 @@
import copy
import itertools
import traceback
import uuid
from types import NoneType
from typing import (
Annotated,
Any,
@@ -13,10 +15,9 @@ from typing import (
get_origin,
get_type_hints,
)
NoneType = type(None)
import networkx as nx
from pydantic import BaseModel, root_validator, validator, Extra
from pydantic import BaseModel, validator
from pydantic.fields import Field
from ..invocations import *
@@ -25,7 +26,7 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationContext,
)
from .config import InvokeAISettings
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel):
@@ -212,10 +213,9 @@ class CollectInvocation(BaseInvocation):
InvocationsUnion = Union[BaseInvocation.get_invocations()] # type: ignore
InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()] # type: ignore
class Graph(InvokeAISettings):
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
type: Literal["graph"] = "graph"
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict
@@ -283,8 +283,7 @@ class Graph(InvokeAISettings):
:raises InvalidEdgeError: the provided edge is invalid.
"""
self._validate_edge(edge)
if edge not in self.edges:
if self._is_edge_valid(edge) and edge not in self.edges:
self.edges.append(edge)
else:
raise InvalidEdgeError()
@@ -355,7 +354,7 @@ class Graph(InvokeAISettings):
return True
def _validate_edge(self, edge: Edge):
def _is_edge_valid(self, edge: Edge) -> bool:
"""Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@@ -363,53 +362,54 @@ class Graph(InvokeAISettings):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
raise InvalidEdgeError("One or both nodes don't exist")
return False
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
return False
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph')
return False
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
raise InvalidEdgeError(f'Fields are incompatible')
return False
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
return False
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
return False
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Collector output type does not match collector input type')
return False
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Collector input type does not match collector output type')
return False
return True
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@@ -733,7 +733,7 @@ class Graph(InvokeAISettings):
for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
@@ -750,8 +750,10 @@ class Graph(InvokeAISettings):
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
id: str = Field(
description="The id of the execution state", default_factory=uuid.uuid4
)
# TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed")
@@ -792,6 +794,9 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
# Declare all fields as required; necessary for OpenAPI schema generation build.
# Technically only fields without a `default_factory` need to be listed here.
# See: https://github.com/pydantic/pydantic/discussions/4577
class Config:
schema_extra = {
'required': [
@@ -807,7 +812,7 @@ class GraphExecutionState(BaseModel):
]
}
def next(self) -> Union[BaseInvocation, None]:
def next(self) -> BaseInvocation | None:
"""Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes
@@ -856,8 +861,7 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool:
"""Returns true if the graph is complete"""
node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids))
return self.has_error() or all((k in self.executed for k in self.graph.nodes))
def has_error(self) -> bool:
"""Returns true if the graph has any errors"""
@@ -945,11 +949,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph_flat()
g = self.graph.nx_graph()
collectors = (
n
for n in self.graph.nodes
if isinstance(self.graph.get_node(n), CollectInvocation)
if isinstance(self.graph.nodes[n], CollectInvocation)
)
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
@@ -961,7 +965,7 @@ class GraphExecutionState(BaseModel):
iterators = [
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.get_node(n), IterateInvocation)
if isinstance(self.graph.nodes[n], IterateInvocation)
]
return iterators
@@ -1097,9 +1101,7 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:
try:
self.graph._validate_edge(edge)
except InvalidEdgeError:
if not self._is_edge_valid(edge):
return False
# Invalid if destination has already been prepared or executed
@@ -1145,55 +1147,4 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(InvokeAISettings):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
class Config:
extra='allow'
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs()

View File

@@ -1,29 +1,23 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os
from glob import glob
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict, List
from typing import Dict
from PIL.Image import Image
import PIL.Image as PILImage
from send2trash import send2trash
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
SavedImage,
)
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from invokeai.app.util.save_thumbnail import save_thumbnail
from invokeai.backend.image_util import PngWriter
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
class ImageStorageBase(ABC):
@@ -31,74 +25,40 @@ class ImageStorageBase(ABC):
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the internal path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the external URI to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
def get_path(self, image_type: ImageType, image_name: str) -> str:
pass
@abstractmethod
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
def create_name(self, context_id: str, node_id: str) -> str:
"""Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
def __init__(self, output_folder: str):
self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True)
@@ -111,155 +71,43 @@ class DiskImageStorage(ImageStorageBase):
parents=True, exist_ok=True
)
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
dir_path = os.path.join(self.__output_folder, image_type)
image_paths = glob(f"{dir_path}/*.png")
count = len(image_paths)
sorted_image_paths = sorted(
glob(f"{dir_path}/*.png"), key=os.path.getctime, reverse=True
)
page_of_image_paths = sorted_image_paths[
page * per_page : (page + 1) * per_page
]
page_of_images: List[ImageResponse] = []
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=self.get_uri(image_type, filename),
thumbnail_url=self.get_uri(image_type, filename, True),
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
page_count_trunc = int(count / per_page)
page_count_mod = count % per_page
page_count = page_count_trunc if page_count_mod == 0 else page_count_trunc + 1
return PaginatedResults[ImageResponse](
items=page_of_images,
page=page,
pages=page_count,
per_page=per_page,
total=count,
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = PILImage.open(image_path)
image = Image.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
def get_path(self, image_type: ImageType, image_name: str) -> str:
path = os.path.join(self.__output_folder, image_type, image_name)
return path
if is_thumbnail:
path = os.path.join(
self.__output_folder, image_type, "thumbnails", basename
)
else:
path = os.path.join(self.__output_folder, image_type, basename)
abspath = os.path.abspath(path)
return abspath
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
thumbnail_basename = get_thumbnail_name(basename)
uri = f"api/v1/images/{image_type.value}/thumbnails/{thumbnail_basename}"
else:
uri = f"api/v1/images/{image_type.value}/{basename}"
return uri
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return SavedImage(
image_name=image_name,
thumbnail_name=thumbnail_name,
created=int(os.path.getctime(image_path)),
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
)
image_path = self.get_path(image_type, image_name)
self.__set_cache(image_path, image)
def delete(self, image_type: ImageType, image_name: str) -> None:
basename = os.path.basename(image_name)
image_path = self.get_path(image_type, basename)
image_path = self.get_path(image_type, image_name)
if os.path.exists(image_path):
send2trash(image_path)
os.remove(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, True)
if os.path.exists(thumbnail_path):
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image | None:
def __get_cache(self, image_name: str) -> Image:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image):

View File

@@ -1,17 +1,30 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod
from queue import Queue
from typing import Union
from pydantic import BaseModel, Field
import time
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueABC(ABC):
@@ -22,7 +35,7 @@ class InvocationQueueABC(ABC):
pass
@abstractmethod
def put(self, item: Union[InvocationQueueItem, None]) -> None:
def put(self, item: InvocationQueueItem | None) -> None:
pass
@abstractmethod
@@ -57,7 +70,7 @@ class MemoryInvocationQueue(InvocationQueueABC):
return item
def put(self, item: Union[InvocationQueueItem, None]) -> None:
def put(self, item: InvocationQueueItem | None) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:

View File

@@ -1,5 +1,4 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager
from .events import EventServiceBase
@@ -8,7 +7,6 @@ from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
from .config import InvokeAISettings
class InvocationServices:
"""Services that can be used by invocations"""
@@ -16,14 +14,11 @@ class InvocationServices:
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
configuration: InvokeAISettings
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC"
@@ -33,22 +28,16 @@ class InvocationServices:
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
configuration: InvokeAISettings=None,
):
self.model_manager = model_manager
self.events = events
self.latents = latents
self.images = images
self.metadata = metadata
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration
self.configuration = configuration

View File

@@ -2,7 +2,6 @@
from abc import ABC
from threading import Event, Thread
from typing import Union
from ..invocations.baseinvocation import InvocationContext
from .graph import Graph, GraphExecutionState
@@ -22,7 +21,7 @@ class Invoker:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> Union[str, None]:
) -> str | None:
"""Determines the next node to invoke and returns the id of the invoked node, or None if there are no nodes to execute"""
# Get the next invocation
@@ -45,7 +44,7 @@ class Invoker:
return invocation.id
def create_execution_state(self, graph: Union[Graph, None] = None) -> GraphExecutionState:
def create_execution_state(self, graph: Graph | None = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)

View File

@@ -4,7 +4,7 @@ import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Union
from typing import Dict
import torch
@@ -56,7 +56,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> Union[torch.Tensor,None]:
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
@@ -90,4 +90,4 @@ class DiskLatentsStorage(LatentsStorageBase):
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)

View File

@@ -1,96 +0,0 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@@ -7,20 +7,21 @@ from omegaconf import OmegaConf
from pathlib import Path
import invokeai.version
from .config import InvokeAISettings
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config:InvokeAISettings) -> ModelManager:
model_config = config.model_conf_path
if not model_config.exists():
report_model_error(
config, FileNotFoundError(f"The file {model_config} could not be found.")
)
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{config.root_dir}"')
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
@@ -30,7 +31,20 @@ def get_model_manager(config:InvokeAISettings) -> ModelManager:
import diffusers
diffusers.logging.set_verbosity_error()
embedding_path = config.embedding_path
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = config.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
@@ -43,11 +57,11 @@ def get_model_manager(config:InvokeAISettings) -> ModelManager:
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(model_config),
OmegaConf.load(config.conf),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = embedding_path,
embedding_path = Path(embedding_path),
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
@@ -57,10 +71,12 @@ def get_model_manager(config:InvokeAISettings) -> ModelManager:
# try to autoconvert new models
# autoimport new .ckpt files
if config.autoconvert_path:
model_manager.heuristic_import(
config.autoconvert_path,
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=config.conf,
weights_directory=path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception):

View File

@@ -4,7 +4,7 @@ from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException
from ..util.util import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
@@ -43,14 +43,10 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id
)
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id
invocation_id=invocation.id,
)
# Invoke
@@ -79,8 +75,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
invocation_id=invocation.id,
result=outputs.dict(),
)
@@ -104,8 +99,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
invocation_id=invocation.id,
error=error,
)

View File

@@ -1,5 +0,0 @@
import datetime
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())

View File

@@ -0,0 +1,25 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@@ -1,55 +0,0 @@
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)

View File

@@ -1,15 +0,0 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

42
invokeai/app/util/util.py Normal file
View File

@@ -0,0 +1,42 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@@ -10,7 +10,7 @@ from .generator import (
Img2Img,
Inpaint
)
from .model_management import ModelManager, SDModelComponent
from .model_management import ModelManager
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals

View File

@@ -561,7 +561,7 @@ class Args(object):
"--autoimport",
default=None,
type=str,
help="(DEPRECATED - NONFUNCTIONAL). Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
help="Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly",
)
model_group.add_argument(
"--autoconvert",

View File

@@ -67,6 +67,7 @@ def install_requested_models(
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
@@ -112,6 +113,7 @@ def install_requested_models(
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path,
)
except KeyboardInterrupt:
@@ -120,7 +122,7 @@ def install_requested_models(
pass
if scan_at_startup and scan_directory.is_dir():
argument = "--autoconvert"
argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f"{Globals.initfile}.new")
directory = str(scan_directory).replace("\\", "/")

View File

@@ -16,7 +16,6 @@ import os.path as osp
from argparse import Namespace
from pathlib import Path
from typing import Union
from pydantic import BaseSettings
Globals = Namespace()
@@ -121,15 +120,3 @@ def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
return Path(home, subdir)
else:
return Path(Globals.root, "models", subdir)
def copy_conf_to_globals(conf: Union[dict,BaseSettings]):
'''
Given a dict or dict-like object, copy its keys and
values into the Globals Namespace. This is a transitional
workaround until we remove Globals entirely.
'''
if isinstance(conf,BaseSettings):
conf = conf.dict()
for key in conf.keys():
if key is not None:
setattr(Globals,key,conf[key])

View File

@@ -5,7 +5,5 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager,SDModelComponent
from .model_manager import ModelManager

View File

@@ -1,4 +1,4 @@
"""enum
"""
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
@@ -15,7 +15,7 @@ import sys
import textwrap
import time
import warnings
from enum import Enum, auto
from enum import Enum
from pathlib import Path
from shutil import move, rmtree
from typing import Any, Optional, Union, Callable
@@ -24,12 +24,8 @@ import safetensors
import safetensors.torch
import torch
import transformers
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
logging as dlogging,
)
from diffusers import AutoencoderKL
from diffusers import logging as dlogging
from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
@@ -37,58 +33,37 @@ from picklescan.scanner import scan_file_path
from invokeai.backend.globals import Globals, global_cache_dir
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPFeatureExtractor,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from ..stable_diffusion import (
StableDiffusionGeneratorPipeline,
)
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..util import CUDA_DEVICE, ask_user, download_with_resume
class SDLegacyType(Enum):
V1 = auto()
V1_INPAINT = auto()
V2 = auto()
V2_e = auto()
V2_v = auto()
UNKNOWN = auto()
V1 = 1
V1_INPAINT = 2
V2 = 3
V2_e = 4
V2_v = 5
UNKNOWN = 99
class SDModelComponent(Enum):
vae="vae"
text_encoder="text_encoder"
tokenizer="tokenizer"
unet="unet"
scheduler="scheduler"
safety_checker="safety_checker"
feature_extractor="feature_extractor"
DEFAULT_MAX_MODELS = 2
class ModelManager(object):
"""
'''
Model manager handles loading, caching, importing, deleting, converting, and editing models.
"""
'''
def __init__(
self,
config: OmegaConf | Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path = None,
self,
config: OmegaConf|Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path=None,
):
"""
Initialize with the path to the models.yaml config file or
an initialized OmegaConf dictionary. Optional parameters
are the torch device type, precision, max_loaded_models,
and sequential_offload boolean. Note that the default device
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
# prevent nasty-looking CLIP log message
@@ -112,25 +87,15 @@ class ModelManager(object):
"""
return model_name in self.config
def get_model(self, model_name: str = None) -> dict:
"""Given a model named identified in models.yaml, return a dict
containing the model object and some of its key features. If
in RAM will load into GPU VRAM. If on disk, will load from
there.
The dict has the following keys:
'model': The StableDiffusionGeneratorPipeline object
'model_name': The name of the model in models.yaml
'width': The width of images trained by this model
'height': The height of images trained by this model
'hash': A unique hash of this model's files on disk.
def get_model(self, model_name: str=None)->dict:
"""
Given a model named identified in models.yaml, return
the model object. If in RAM will load into GPU VRAM.
If on disk, will load from there.
"""
if not model_name:
return (
self.get_model(self.current_model)
if self.current_model
else self.get_model(self.default_model())
)
return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model())
if not self.valid_model(model_name):
print(
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
@@ -170,81 +135,6 @@ class ModelManager(object):
"hash": hash,
}
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned VAE as an
AutoencoderKL object. If no model name is provided, return the
vae from the model currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.vae)
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTokenizer. If no
model name is provided, return the tokenizer from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned UNet2DConditionModel. If no model
name is provided, return the UNet from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.unet)
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTextModel. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned scheduler. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.scheduler)
def _get_sub_model(
self,
model_name: str=None,
model_part: SDModelComponent=SDModelComponent.vae,
) -> Union[
AutoencoderKL,
CLIPTokenizer,
CLIPFeatureExtractor,
UNet2DConditionModel,
CLIPTextModel,
StableDiffusionSafetyChecker,
]:
"""Given a model name identified in models.yaml, and the part of the
model you wish to retrieve, return that part. Parts are in an Enum
class named SDModelComponent, and consist of:
SDModelComponent.vae
SDModelComponent.text_encoder
SDModelComponent.tokenizer
SDModelComponent.unet
SDModelComponent.scheduler
SDModelComponent.safety_checker
SDModelComponent.feature_extractor
"""
model_dict = self.get_model(model_name)
model = model_dict["model"]
return getattr(model, model_part.value)
def default_model(self) -> str | None:
"""
Returns the name of the default model, or None
@@ -470,7 +360,7 @@ class ModelManager(object):
f"Unknown model format {model_name}: {model_format}"
)
self._add_embeddings_to_model(model)
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
@@ -543,7 +433,7 @@ class ModelManager(object):
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width
print(f" | Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash
def _load_ckpt_model(self, model_name, mconfig):
@@ -564,18 +454,14 @@ class ModelManager(object):
from . import load_pipeline_from_original_stable_diffusion_ckpt
try:
if self.list_models()[self.current_model]["status"] == "active":
if self.list_models()[self.current_model]['status'] == 'active':
self.offload_model(self.current_model)
except Exception as e:
pass
vae_path = None
if vae:
vae_path = (
vae
if os.path.isabs(vae)
else os.path.normpath(os.path.join(Globals.root, vae))
)
vae_path = vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae))
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@@ -685,7 +571,9 @@ class ModelManager(object):
models.yaml file.
"""
model_name = model_name or Path(repo_or_path).stem
model_description = description or f"Imported diffusers model {model_name}"
model_description = (
description or f"Imported diffusers model {model_name}"
)
new_config = dict(
description=model_description,
vae=vae,
@@ -714,7 +602,7 @@ class ModelManager(object):
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN
"""
global_step = checkpoint.get("global_step")
global_step = checkpoint.get('global_step')
state_dict = checkpoint.get("state_dict") or checkpoint
try:
@@ -740,13 +628,13 @@ class ModelManager(object):
return SDLegacyType.UNKNOWN
def heuristic_import(
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
) -> str:
"""Accept a string which could be:
- a HF diffusers repo_id
@@ -850,8 +738,8 @@ class ModelManager(object):
# another round of heuristics to guess the correct config file.
checkpoint = None
if model_path.suffix in [".ckpt", ".pt"]:
self.scan_model(model_path, model_path)
if model_path.suffix in [".ckpt",".pt"]:
self.scan_model(model_path,model_path)
checkpoint = torch.load(model_path)
else:
checkpoint = safetensors.torch.load_file(model_path)
@@ -873,16 +761,19 @@ class ModelManager(object):
elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml",
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
)
elif model_type == SDLegacyType.V2_v:
print(" | SD-v2-v model detected")
print(
" | SD-v2-v model detected"
)
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
)
elif model_type == SDLegacyType.V2_e:
print(" | SD-v2-e model detected")
print(
" | SD-v2-e model detected"
)
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
)
@@ -929,16 +820,16 @@ class ModelManager(object):
return model_name
def convert_and_import(
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae: dict = None,
vae_path: Path = None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool = True,
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae:dict=None,
vae_path:Path=None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool=True,
) -> str:
"""
Convert a legacy ckpt weights file to diffuser model and import
@@ -966,10 +857,10 @@ class ModelManager(object):
try:
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model = None
vae_model=None
if vae:
vae_model = self._load_vae(vae)
vae_path = None
vae_model=self._load_vae(vae)
vae_path=None
convert_ckpt_to_diffusers(
ckpt_path,
diffusers_path,
@@ -1085,16 +976,16 @@ class ModelManager(object):
legacy_locations = [
Path(
models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker",
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
),
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
Path(
models_dir,
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
),
]
legacy_locations.extend(list(global_cache_dir("diffusers").glob("*")))
legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
legacy_layout = False
for model in legacy_locations:
legacy_layout = legacy_layout or model.exists()
@@ -1112,7 +1003,7 @@ class ModelManager(object):
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue."""
)
input("continue> ")
input('continue> ')
# transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present():
@@ -1199,12 +1090,12 @@ class ModelManager(object):
print(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
)
def _has_cuda(self) -> bool:
return self.device.type == "cuda"
def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=16777216
self, name_or_path: Union[str, Path], chunksize=4096
) -> Union[str, bytes]:
path = None
if isinstance(name_or_path, Path):

View File

@@ -57,7 +57,7 @@ class HuggingFaceConceptsLibrary(object):
self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list
return self.concept_list
elif Globals.internet_available is True:
else:
try:
models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/")
@@ -73,8 +73,6 @@ class HuggingFaceConceptsLibrary(object):
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
)
return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str:
"""

View File

@@ -445,15 +445,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config))
submodels = []
for name in module_names.keys():
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
values = [getattr(self, name) for name in module_names.keys()]
return [m for m in values if isinstance(m, torch.nn.Module)]
def image_from_embeddings(
self,
@@ -538,7 +531,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id: str = None,
additional_guidance: List[Callable] = None,
):
self._adjust_memory_efficient_attention(latents)
# FIXME: do we still use any slicing now that PyTorch 2.0 has scaled dot-product attention on all platforms?
# self._adjust_memory_efficient_attention(latents)
if run_id is None:
run_id = secrets.token_urlsafe(self.ID_LENGTH)
if additional_guidance is None:
@@ -551,7 +545,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
yield PipelineIntermediateState(
run_id=run_id,
step=-1,
timestep=self.scheduler.config.num_train_timesteps,
timestep=self.scheduler.num_train_timesteps,
latents=latents,
)
@@ -922,7 +916,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.config.in_channels
return self.unet.in_channels
def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@@ -10,7 +10,8 @@ import diffusers
import psutil
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.cross_attention import AttnProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from torch import nn
from ...util import torch_dtype
@@ -187,7 +188,7 @@ class Context:
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
@@ -208,7 +209,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current Attention module for which the callback is being invoked.
`module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@@ -344,11 +345,11 @@ class InvokeAICrossAttentionMixin:
def restore_default_cross_attention(
model,
is_running_diffusers: bool,
restore_attention_processor: Optional[AttentionProcessor] = None,
restore_attention_processor: Optional[AttnProcessor] = None,
):
if is_running_diffusers:
unet = model
unet.set_attn_processor(restore_attention_processor or AttnProcessor())
unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor())
else:
remove_attention_function(model)
@@ -407,9 +408,12 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
def get_cross_attention_modules(
model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
cross_attention_class: type = (
InvokeAIDiffusersCrossAttention
if isinstance(model, UNet2DConditionModel)
else CrossAttention
)
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [
@@ -424,10 +428,10 @@ def get_cross_attention_modules(
print(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
+ "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ "work properly until it is fixed."
+ f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ f"work properly until it is fixed."
)
return attention_module_tuples
@@ -546,7 +550,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention(
diffusers.models.attention.Attention, InvokeAICrossAttentionMixin
diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin
):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@@ -568,8 +572,8 @@ class InvokeAIDiffusersCrossAttention(
"""
# base implementation
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@@ -597,9 +601,9 @@ class AttnProcessor:
from dataclasses import dataclass, field
import torch
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
from diffusers.models.cross_attention import (
CrossAttention,
CrossAttnProcessor,
SlicedAttnProcessor,
)
@@ -649,7 +653,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
def __call__(
self,
attn: Attention,
attn: CrossAttention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,

View File

@@ -5,7 +5,7 @@ from typing import Any, Callable, Dict, Optional, Union
import numpy as np
import torch
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.cross_attention import AttnProcessor
from typing_extensions import TypeAlias
from invokeai.backend.globals import Globals
@@ -101,7 +101,7 @@ class InvokeAIDiffuserComponent:
def override_cross_attention(
self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttentionProcessor]:
) -> Dict[str, AttnProcessor]:
"""
setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later.
@@ -118,7 +118,7 @@ class InvokeAIDiffuserComponent:
)
def restore_default_cross_attention(
self, restore_attention_processor: Optional["AttentionProcessor"] = None
self, restore_attention_processor: Optional["AttnProcessor"] = None
):
self.conditioning = None
self.cross_attention_control_context = None
@@ -262,7 +262,7 @@ class InvokeAIDiffuserComponent:
# TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None:
raise ValueError(
"Either step_index or sigma is required when doing cross attention control, but both are None."
f"Either step_index or sigma is required when doing cross attention control, but both are None."
)
percent_through = self.estimate_percent_through(step_index, sigma)
return percent_through
@@ -599,6 +599,7 @@ class InvokeAIDiffuserComponent:
)
# below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = ceil(len(conditionings) / 2)

View File

@@ -158,9 +158,14 @@ def main():
report_model_error(opt, e)
# try to autoconvert new models
if path := opt.autoimport:
gen.model_manager.heuristic_import(
str(path), convert=False, commit_to_conf=opt.conf
)
if path := opt.autoconvert:
gen.model_manager.heuristic_import(
str(path), commit_to_conf=opt.conf
str(path), convert=True, commit_to_conf=opt.conf
)
# web server loops forever
@@ -576,7 +581,6 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!replay"):
file_path = command.replace("!replay", "", 1).strip()
file_path = os.path.join(opt.outdir, file_path)
if infile is None and os.path.isfile(file_path):
infile = open(file_path, "r", encoding="utf-8")
completer.add_history(command)

View File

@@ -1,9 +1,10 @@
'''
"""
Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>.
'''
"""
import os
import platform
import requests
from rich import box, print
from rich.console import Console, Group, group
@@ -15,10 +16,8 @@ from rich.text import Text
from invokeai.version import __version__
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_TAG="https://github.com/invoke-ai/InvokeAI/archive/refs/tags"
INVOKE_AI_BRANCH="https://github.com/invoke-ai/InvokeAI/archive/refs/heads"
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system
ARCH = platform.uname().machine
@@ -29,22 +28,22 @@ if OS == "Windows":
else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions()->dict:
def get_versions() -> dict:
return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict):
@group()
def text():
yield f'InvokeAI Version: [bold yellow]{__version__}'
yield ''
yield 'This script will update InvokeAI to the latest release, or to a development version of your choice.'
yield ''
yield '[bold yellow]Options:'
yield f'''[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
yield f"InvokeAI Version: [bold yellow]{__version__}"
yield ""
yield "This script will update InvokeAI to the latest release, or to a development version of your choice."
yield ""
yield "[bold yellow]Options:"
yield f"""[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
[2] Update to the bleeding-edge development version ([italic]main[/italic])
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to'''
[3] Manually enter the tag or branch name you wish to update"""
console.rule()
print(
@@ -60,41 +59,33 @@ def welcome(versions: dict):
)
console.line()
def main():
versions = get_versions()
welcome(versions)
tag = None
branch = None
release = None
choice = Prompt.ask('Choice:',choices=['1','2','3','4'],default='1')
if choice=='1':
release = versions[0]['tag_name']
elif choice=='2':
release = 'main'
elif choice=='3':
tag = Prompt.ask('Enter an InvokeAI tag name')
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]')
if release:
cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade'
elif tag:
cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
if choice == "1":
tag = versions[0]["tag_name"]
elif choice == "2":
tag = "main"
elif choice == "3":
tag = Prompt.ask("Enter an InvokeAI tag or branch name")
print(f":crossed_fingers: Upgrading to [yellow]{tag}[/yellow]")
cmd = f"pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517"
print("")
print("")
if os.system(cmd) == 0:
print(f":heavy_check_mark: Upgrade successful")
else:
cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd)==0:
print(f':heavy_check_mark: Upgrade successful')
else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
print(f":exclamation: [bold red]Upgrade failed[/red bold]")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass

View File

@@ -199,6 +199,17 @@ class addModelsForm(npyscreen.FormMultiPage):
relx=4,
scroll_exit=True,
)
self.nextrely += 1
self.convert_models = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==",
values=["Keep original format", "Convert to diffusers"],
value=0,
begin_entry_at=4,
max_height=4,
hidden=True, # will appear when imported models box is edited
scroll_exit=True,
)
self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress,
name="CANCEL",
@@ -233,6 +244,8 @@ class addModelsForm(npyscreen.FormMultiPage):
self.show_directory_fields.addVisibleWhenSelected(i)
self.show_directory_fields.when_value_edited = self._clear_scan_directory
self.import_model_paths.when_value_edited = self._show_hide_convert
self.autoload_directory.when_value_edited = self._show_hide_convert
def resize(self):
super().resize()
@@ -243,6 +256,13 @@ class addModelsForm(npyscreen.FormMultiPage):
if not self.show_directory_fields.value:
self.autoload_directory.value = ""
def _show_hide_convert(self):
model_paths = self.import_model_paths.value or ""
autoload_directory = self.autoload_directory.value or ""
self.convert_models.hidden = (
len(model_paths) == 0 and len(autoload_directory) == 0
)
def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size()
label_width = 25
@@ -302,6 +322,7 @@ class addModelsForm(npyscreen.FormMultiPage):
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
@@ -338,6 +359,7 @@ class addModelsForm(npyscreen.FormMultiPage):
# URLs and the like
selections.import_model_paths = self.import_model_paths.value.split()
selections.convert_to_diffusers = self.convert_models.value[0] == 1
class AddModelApplication(npyscreen.NPSAppManaged):
@@ -350,6 +372,7 @@ class AddModelApplication(npyscreen.NPSAppManaged):
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
def onStart(self):
@@ -370,6 +393,7 @@ def process_and_execute(opt: Namespace, selections: Namespace):
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
convert_to_diffusers = selections.convert_to_diffusers
install_requested_models(
install_initial_models=models_to_install,
@@ -377,6 +401,7 @@ def process_and_execute(opt: Namespace, selections: Namespace):
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
convert_to_diffusers=convert_to_diffusers,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),

View File

@@ -6,5 +6,3 @@ stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@@ -3,8 +3,4 @@ dist/
node_modules/
patches/
stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@@ -1,16 +1,10 @@
# InvokeAI Web UI
- [InvokeAI Web UI](#invokeai-web-ui)
- [Stack](#stack)
- [Contributing](#contributing)
- [Dev Environment](#dev-environment)
- [Production builds](#production-builds)
The UI is a fairly straightforward Typescript React app. The only really fancy stuff is the Unified Canvas.
Code in `invokeai/frontend/web/` if you want to have a look.
## Stack
## Details
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a custom redux middleware to help).
@@ -38,7 +32,7 @@ Start everything in dev mode:
1. Start the dev server: `yarn dev`
2. Start the InvokeAI UI per usual: `invokeai --web`
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
3. Point your browser to the dev server address e.g. `http://localhost:5173/`
### Production builds

View File

@@ -1,40 +0,0 @@
import react from '@vitejs/plugin-react-swc';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const appConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
],
build: {
chunkSizeWarningLimit: 1500,
},
server: {
// Proxy HTTP requests to the flask server
proxy: {
// Proxy socket.io to the nodes socketio server
'/ws/socket.io': {
target: 'ws://127.0.0.1:9090',
ws: true,
},
// Proxy openapi schema definiton
'/openapi.json': {
target: 'http://127.0.0.1:9090/openapi.json',
rewrite: (path) => path.replace(/^\/openapi.json/, ''),
changeOrigin: true,
},
// proxy nodes api
'/api/v1': {
target: 'http://127.0.0.1:9090/api/v1',
rewrite: (path) => path.replace(/^\/api\/v1/, ''),
changeOrigin: true,
},
},
},
};

View File

@@ -1,47 +0,0 @@
import react from '@vitejs/plugin-react-swc';
import path from 'path';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import dts from 'vite-plugin-dts';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const packageConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
dts({
insertTypesEntry: true,
}),
],
build: {
chunkSizeWarningLimit: 1500,
lib: {
entry: path.resolve(__dirname, '../src/index.ts'),
name: 'InvokeAIUI',
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
output: {
globals: {
react: 'React',
'react-dom': 'ReactDOM',
},
},
},
},
resolve: {
alias: {
app: path.resolve(__dirname, '../src/app'),
assets: path.resolve(__dirname, '../src/assets'),
common: path.resolve(__dirname, '../src/common'),
features: path.resolve(__dirname, '../src/features'),
services: path.resolve(__dirname, '../src/services'),
theme: path.resolve(__dirname, '../src/theme'),
},
},
};

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{j as y,cO as Ie,r as _,cP as bt,q as Lr,cQ as o,cR as b,cS as v,cT as S,cU as Vr,cV as ut,cW as vt,cN as ft,cX as mt,n as gt,cY as ht,E as pt}from"./index-e53e8108.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-5cde7d31.js";var Or=`
import{j as y,cN as Ie,r as _,cO as bt,q as Lr,cP as o,cQ as b,cR as v,cS as S,cT as Vr,cU as ut,cV as vt,cM as ft,cW as mt,n as gt,cX as ht,E as pt}from"./index-f7f41e1f.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-eaf47ae3.js";var Or=`
:root {
--chakra-vh: 100vh;
}

View File

@@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-e53e8108.js"></script>
<script type="module" crossorigin src="./assets/index-f7f41e1f.js"></script>
<link rel="stylesheet" href="./assets/index-5483945c.css">
</head>

View File

@@ -8,6 +8,7 @@
"darkTheme": "داكن",
"lightTheme": "فاتح",
"greenTheme": "أخضر",
"text2img": "نص إلى صورة",
"img2img": "صورة إلى صورة",
"unifiedCanvas": "لوحة موحدة",
"nodes": "عقد",

View File

@@ -7,6 +7,7 @@
"darkTheme": "Dunkel",
"lightTheme": "Hell",
"greenTheme": "Grün",
"text2img": "Text zu Bild",
"img2img": "Bild zu Bild",
"nodes": "Knoten",
"langGerman": "Deutsch",

View File

@@ -505,9 +505,7 @@
"info": "Info",
"deleteImage": "Delete Image",
"initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
"showOptionsPanel": "Show Options Panel"
},
"settings": {
"models": "Models",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Oscuro",
"lightTheme": "Claro",
"greenTheme": "Verde",
"text2img": "Texto a Imagen",
"img2img": "Imagen a Imagen",
"unifiedCanvas": "Lienzo Unificado",
"nodes": "Nodos",
@@ -69,11 +70,7 @@
"langHebrew": "Hebreo",
"pinOptionsPanel": "Pin del panel de opciones",
"loading": "Cargando",
"loadingInvokeAI": "Cargando invocar a la IA",
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar"
"loadingInvokeAI": "Cargando invocar a la IA"
},
"gallery": {
"generations": "Generaciones",
@@ -407,8 +404,7 @@
"none": "ninguno",
"pickModelType": "Elige el tipo de modelo",
"v2_768": "v2 (768px)",
"addDifference": "Añadir una diferencia",
"scanForModels": "Buscar modelos"
"addDifference": "Añadir una diferencia"
},
"parameters": {
"images": "Imágenes",
@@ -578,7 +574,7 @@
"autoSaveToGallery": "Guardar automáticamente en galería",
"saveBoxRegionOnly": "Guardar solo región dentro de la caja",
"limitStrokesToBox": "Limitar trazos a la caja",
"showCanvasDebugInfo": "Mostrar la información adicional del lienzo",
"showCanvasDebugInfo": "Mostrar información de depuración de lienzo",
"clearCanvasHistory": "Limpiar historial de lienzo",
"clearHistory": "Limpiar historial",
"clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Sombre",
"lightTheme": "Clair",
"greenTheme": "Vert",
"text2img": "Texte en image",
"img2img": "Image en image",
"unifiedCanvas": "Canvas unifié",
"nodes": "Nœuds",
@@ -46,19 +47,7 @@
"statusLoadingModel": "Chargement du modèle",
"statusModelChanged": "Modèle changé",
"discordLabel": "Discord",
"githubLabel": "Github",
"accept": "Accepter",
"statusMergingModels": "Mélange des modèles",
"loadingInvokeAI": "Chargement de Invoke AI",
"cancel": "Annuler",
"langEnglish": "Anglais",
"statusConvertingModel": "Conversion du modèle",
"statusModelConverted": "Modèle converti",
"loading": "Chargement",
"pinOptionsPanel": "Épingler la page d'options",
"statusMergedModels": "Modèles mélangés",
"txt2img": "Texte vers image",
"postprocessing": "Post-Traitement"
"githubLabel": "Github"
},
"gallery": {
"generations": "Générations",
@@ -529,15 +518,5 @@
"betaDarkenOutside": "Assombrir à l'extérieur",
"betaLimitToBox": "Limiter à la boîte",
"betaPreserveMasked": "Conserver masqué"
},
"accessibility": {
"uploadImage": "Charger une image",
"reset": "Réinitialiser",
"nextImage": "Image suivante",
"previousImage": "Image précédente",
"useThisParameter": "Utiliser ce paramètre",
"zoomIn": "Zoom avant",
"zoomOut": "Zoom arrière",
"showOptionsPanel": "Montrer la page d'options"
}
}

View File

@@ -125,6 +125,7 @@
"langSimplifiedChinese": "סינית",
"langUkranian": "אוקראינית",
"langSpanish": "ספרדית",
"text2img": "טקסט לתמונה",
"img2img": "תמונה לתמונה",
"unifiedCanvas": "קנבס מאוחד",
"nodes": "צמתים",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Scuro",
"lightTheme": "Chiaro",
"greenTheme": "Verde",
"text2img": "Testo a Immagine",
"img2img": "Immagine a Immagine",
"unifiedCanvas": "Tela unificata",
"nodes": "Nodi",
@@ -69,11 +70,7 @@
"loading": "Caricamento in corso",
"oceanTheme": "Oceano",
"langHebrew": "Ebraico",
"loadingInvokeAI": "Caricamento Invoke AI",
"postprocessing": "Post Elaborazione",
"txt2img": "Testo a Immagine",
"accept": "Accetta",
"cancel": "Annulla"
"loadingInvokeAI": "Caricamento Invoke AI"
},
"gallery": {
"generations": "Generazioni",
@@ -407,8 +404,7 @@
"v2_768": "v2 (768px)",
"none": "niente",
"addDifference": "Aggiungi differenza",
"pickModelType": "Scegli il tipo di modello",
"scanForModels": "Cerca modelli"
"pickModelType": "Scegli il tipo di modello"
},
"parameters": {
"images": "Immagini",
@@ -578,7 +574,7 @@
"autoSaveToGallery": "Salvataggio automatico nella Galleria",
"saveBoxRegionOnly": "Salva solo l'area di selezione",
"limitStrokesToBox": "Limita i tratti all'area di selezione",
"showCanvasDebugInfo": "Mostra ulteriori informazioni sulla Tela",
"showCanvasDebugInfo": "Mostra informazioni di debug della Tela",
"clearCanvasHistory": "Cancella cronologia Tela",
"clearHistory": "Cancella la cronologia",
"clearCanvasHistoryMessage": "La cancellazione della cronologia della tela lascia intatta la tela corrente, ma cancella in modo irreversibile la cronologia degli annullamenti e dei ripristini.",
@@ -616,7 +612,7 @@
"copyMetadataJson": "Copia i metadati JSON",
"exitViewer": "Esci dal visualizzatore",
"zoomIn": "Zoom avanti",
"zoomOut": "Zoom indietro",
"zoomOut": "Zoom Indietro",
"rotateCounterClockwise": "Ruotare in senso antiorario",
"rotateClockwise": "Ruotare in senso orario",
"flipHorizontally": "Capovolgi orizzontalmente",

View File

@@ -11,6 +11,7 @@
"langArabic": "العربية",
"langEnglish": "English",
"langDutch": "Nederlands",
"text2img": "텍스트->이미지",
"unifiedCanvas": "통합 캔버스",
"langFrench": "Français",
"langGerman": "Deutsch",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Donker",
"lightTheme": "Licht",
"greenTheme": "Groen",
"text2img": "Tekst naar afbeelding",
"img2img": "Afbeelding naar afbeelding",
"unifiedCanvas": "Centraal canvas",
"nodes": "Knooppunten",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Ciemny",
"lightTheme": "Jasny",
"greenTheme": "Zielony",
"text2img": "Tekst na obraz",
"img2img": "Obraz na obraz",
"unifiedCanvas": "Tryb uniwersalny",
"nodes": "Węzły",

View File

@@ -20,6 +20,7 @@
"langSpanish": "Espanhol",
"langRussian": "Русский",
"langUkranian": "Украї́нська",
"text2img": "Texto para Imagem",
"img2img": "Imagem para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nós",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Noite",
"lightTheme": "Dia",
"greenTheme": "Verde",
"text2img": "Texto Para Imagem",
"img2img": "Imagem Para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nódulos",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Темная",
"lightTheme": "Светлая",
"greenTheme": "Зеленая",
"text2img": "Изображение из текста (text2img)",
"img2img": "Изображение в изображение (img2img)",
"unifiedCanvas": "Универсальный холст",
"nodes": "Ноды",

View File

@@ -8,6 +8,7 @@
"darkTheme": "Темна",
"lightTheme": "Світла",
"greenTheme": "Зелена",
"text2img": "Зображення із тексту (text2img)",
"img2img": "Зображення із зображення (img2img)",
"unifiedCanvas": "Універсальне полотно",
"nodes": "Вузли",

View File

@@ -8,6 +8,7 @@
"darkTheme": "暗色",
"lightTheme": "亮色",
"greenTheme": "绿色",
"text2img": "文字到图像",
"img2img": "图像到图像",
"unifiedCanvas": "统一画布",
"nodes": "节点",

View File

@@ -33,6 +33,7 @@
"langBrPortuguese": "巴西葡萄牙語",
"langRussian": "俄語",
"langSpanish": "西班牙語",
"text2img": "文字到圖像",
"unifiedCanvas": "統一畫布"
}
}

View File

@@ -1,87 +0,0 @@
# Generated axios API client
- [Generated axios API client](#generated-axios-api-client)
- [Generation](#generation)
- [Generate the API client from the nodes web server](#generate-the-api-client-from-the-nodes-web-server)
- [Generate the API client from JSON](#generate-the-api-client-from-json)
- [Getting the JSON from the nodes web server](#getting-the-json-from-the-nodes-web-server)
- [Getting the JSON with a python script](#getting-the-json-with-a-python-script)
- [Generate the API client](#generate-the-api-client)
- [The generated client](#the-generated-client)
- [API client customisation](#api-client-customisation)
This API client is generated by an [openapi code generator](https://github.com/ferdikoomen/openapi-typescript-codegen).
All files in `invokeai/frontend/web/src/services/api/` are made by the generator.
## Generation
The axios client may be generated by from the OpenAPI schema from the nodes web server, or from JSON.
### Generate the API client from the nodes web server
We need to start the nodes web server, which serves the OpenAPI schema to the generator.
1. Start the nodes web server.
```bash
# from the repo root
python scripts/invoke-new.py --web
```
2. Generate the API client.
```bash
# from invokeai/frontend/web/
yarn api:web
```
### Generate the API client from JSON
The JSON can be acquired from the nodes web server, or with a python script.
#### Getting the JSON from the nodes web server
Start the nodes web server as described above, then download the file.
```bash
# from invokeai/frontend/web/
curl http://localhost:9090/openapi.json -o openapi.json
```
#### Getting the JSON with a python script
Run this python script from the repo root, so it can access the nodes server modules.
The script will output `openapi.json` in the repo root. Then we need to move it to `invokeai/frontend/web/`.
```bash
# from the repo root
python invokeai/app/util/generate_openapi_json.py
mv invokeai/app/util/openapi.json invokeai/frontend/web/services/fixtures/
```
#### Generate the API client
Now we can generate the API client from the JSON.
```bash
# from invokeai/frontend/web/
yarn api:file
```
## The generated client
The client will be written to `invokeai/frontend/web/services/api/`:
- `axios` client
- TS types
- An easily parseable schema, which we can use to generate UI
## API client customisation
The generator has a default `request.ts` file that implements a base `axios` client. The generated client uses this base client.
One shortcoming of this is base client is it does not provide response headers unless the response body is empty. To fix this, we provide our own lightly-patched `request.ts`.
To access the headers, call `getHeaders(response)` on any response from the generated api client. This function is exported from `invokeai/frontend/web/src/services/util/getHeaders.ts`.

View File

@@ -1,21 +0,0 @@
# Events
Events via `socket.io`
## `actions.ts`
Redux actions for all socket events. Payloads all include a timestamp, and optionally some other data.
Any reducer (or middleware) can respond to the actions.
## `middleware.ts`
Redux middleware for events.
Handles dispatching the event actions. Only put logic here if it can't really go anywhere else.
For example, on connect we want to load images to the gallery if it's not populated. This requires dispatching a thunk, so we need to directly dispatch this in the middleware.
## `types.ts`
Hand-written types for the socket events. Cannot generate these from the server, but fortunately they are few and simple.

View File

@@ -1,17 +0,0 @@
# Node Editor Design
WIP
nodes
everything in `src/features/nodes/`
have a look at `state.nodes.invocation`
- on socket connect, if no schema saved, fetch `localhost:9090/openapi.json`, save JSON to `state.nodes.schema`
- on fulfilled schema fetch, `parseSchema()` the schema. this outputs a `Record<string, Invocation>` which is saved to `state.nodes.invocations` - `Invocation` is like a template for the node
- when you add a node, the the `Invocation` template is passed to `InvocationComponent.tsx` to build the UI component for that node
- inputs/outputs have field types - and each field type gets an `FieldComponent` which includes a dispatcher to write state changes to redux `nodesSlice`
- `reactflow` sends changes to nodes/edges to redux
- to invoke, `buildNodesGraph()` state, then send this
- changed onClick Invoke button actions to build the schema, then when schema builds it dispatches the actual network request to create the session - see `session.ts`

View File

@@ -1,29 +0,0 @@
# Package Scripts
WIP walkthrough of `package.json` scripts.
## `theme` & `theme:watch`
These run the Chakra CLI to generate types for the theme, or watch for code change and re-generate the types.
The CLI essentially monkeypatches Chakra's files in `node_modules`.
## `postinstall`
The `postinstall` script patches a few packages and runs the Chakra CLI to generate types for the theme.
### Patch `@chakra-ui/cli`
See: <https://github.com/chakra-ui/chakra-ui/issues/7394>
### Patch `redux-persist`
We want to persist the canvas state to `localStorage` but many canvas operations change data very quickly, so we need to debounce the writes to `localStorage`.
`redux-persist` is unfortunately unmaintained. The repo's current code is nonfunctional, but the last release's code depends on a package that was removed from `npm` for being malware, so we cannot just fork it.
So, we have to patch it directly. Perhaps a better way would be to write a debounced storage adapter, but I couldn't figure out how to do that.
### Patch `redux-deep-persist`
This package makes blacklisting and whitelisting persist configs very simple, but we have to patch it to match `redux-persist` for the types to work.

78
invokeai/frontend/web/index.d.ts vendored Normal file
View File

@@ -0,0 +1,78 @@
import React, { PropsWithChildren } from 'react';
import { IAIPopoverProps } from '../web/src/common/components/IAIPopover';
import { IAIIconButtonProps } from '../web/src/common/components/IAIIconButton';
export {};
declare module 'redux-socket.io-middleware';
declare global {
/* eslint-disable @typescript-eslint/no-explicit-any */
interface Array<T> {
/**
* Returns the value of the last element in the array where predicate is true, and undefined
* otherwise.
* @param predicate findLast calls predicate once for each element of the array, in descending
* order, until it finds one where predicate returns true. If such an element is found, findLast
* immediately returns that element value. Otherwise, findLast returns undefined.
* @param thisArg If provided, it will be used as the this value for each invocation of
* predicate. If it is not provided, undefined is used instead.
*/
findLast<S extends T>(
predicate: (value: T, index: number, array: T[]) => value is S,
thisArg?: any
): S | undefined;
findLast(
predicate: (value: T, index: number, array: T[]) => unknown,
thisArg?: any
): T | undefined;
/**
* Returns the index of the last element in the array where predicate is true, and -1
* otherwise.
* @param predicate findLastIndex calls predicate once for each element of the array, in descending
* order, until it finds one where predicate returns true. If such an element is found,
* findLastIndex immediately returns that element index. Otherwise, findLastIndex returns -1.
* @param thisArg If provided, it will be used as the this value for each invocation of
* predicate. If it is not provided, undefined is used instead.
*/
findLastIndex(
predicate: (value: T, index: number, array: T[]) => unknown,
thisArg?: any
): number;
}
/* eslint-enable @typescript-eslint/no-explicit-any */
}
declare module '@invoke-ai/invoke-ai-ui' {
declare class ThemeChanger extends React.Component<ThemeChangerProps> {
public constructor(props: ThemeChangerProps);
}
declare class InvokeAiLogoComponent extends React.Component<InvokeAILogoComponentProps> {
public constructor(props: InvokeAILogoComponentProps);
}
declare class IAIPopover extends React.Component<IAIPopoverProps> {
public constructor(props: IAIPopoverProps);
}
declare class IAIIconButton extends React.Component<IAIIconButtonProps> {
public constructor(props: IAIIconButtonProps);
}
declare class SettingsModal extends React.Component<SettingsModalProps> {
public constructor(props: SettingsModalProps);
}
}
declare function Invoke(props: PropsWithChildren): JSX.Element;
export {
ThemeChanger,
InvokeAiLogoComponent,
IAIPopover,
IAIIconButton,
SettingsModal,
};
export = Invoke;

View File

@@ -1,31 +1,11 @@
{
"name": "@invoke-ai/invoke-ai-ui",
"name": "invoke-ai-ui",
"private": true,
"version": "0.0.1",
"publishConfig": {
"access": "restricted",
"registry": "https://npm.pkg.github.com"
},
"main": "./dist/invoke-ai-ui.umd.js",
"module": "./dist/invoke-ai-ui.es.js",
"exports": {
".": {
"import": "./dist/invoke-ai-ui.es.js",
"require": "./dist/invoke-ai-ui.umd.js"
}
},
"types": "./dist/index.d.ts",
"files": [
"dist"
],
"scripts": {
"prepare": "cd ../../../ && husky install invokeai/frontend/web/.husky",
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
"dev:nodes": "concurrently \"vite dev --mode nodes\" \"yarn run theme:watch\"",
"dev:host": "concurrently \"vite dev --host\" \"yarn run theme:watch\"",
"build": "yarn run lint && vite build",
"api:web": "openapi -i http://localhost:9090/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"api:file": "openapi -i src/services/fixtures/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"preview": "vite preview",
"lint:madge": "madge --circular src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
@@ -56,93 +36,70 @@
},
"dependencies": {
"@chakra-ui/anatomy": "^2.1.1",
"@chakra-ui/icons": "^2.0.19",
"@chakra-ui/react": "^2.6.0",
"@chakra-ui/styled-system": "^2.9.0",
"@chakra-ui/cli": "^2.3.0",
"@chakra-ui/icons": "^2.0.17",
"@chakra-ui/react": "^2.5.1",
"@chakra-ui/styled-system": "^2.6.1",
"@chakra-ui/theme-tools": "^2.0.16",
"@dagrejs/graphlib": "^2.1.12",
"@emotion/react": "^11.10.6",
"@emotion/styled": "^11.10.6",
"@fontsource/inter": "^4.5.15",
"@reduxjs/toolkit": "^1.9.5",
"@roarr/browser-log-writer": "^1.1.5",
"@reduxjs/toolkit": "^1.9.2",
"chakra-ui-contextmenu": "^1.0.5",
"dateformat": "^5.0.3",
"formik": "^2.2.9",
"framer-motion": "^10.12.4",
"fuse.js": "^6.6.2",
"i18next": "^22.4.15",
"framer-motion": "^9.0.4",
"i18next": "^22.4.10",
"i18next-browser-languagedetector": "^7.0.1",
"i18next-http-backend": "^2.2.0",
"konva": "^9.0.1",
"lodash-es": "^4.17.21",
"patch-package": "^7.0.0",
"i18next-http-backend": "^2.1.1",
"konva": "^8.4.2",
"lodash": "^4.17.21",
"patch-package": "^6.5.1",
"re-resizable": "^6.9.9",
"react": "^18.2.0",
"react-colorful": "^5.6.1",
"react-dom": "^18.2.0",
"react-dropzone": "^14.2.3",
"react-hotkeys-hook": "4.4.0",
"react-i18next": "^12.2.2",
"react-hotkeys-hook": "4.3.5",
"react-i18next": "^12.1.5",
"react-icons": "^4.7.1",
"react-konva": "^18.2.7",
"react-konva-utils": "^1.0.4",
"react-konva": "^18.2.4",
"react-konva-utils": "^0.3.2",
"react-redux": "^8.0.5",
"react-rnd": "^10.4.1",
"react-transition-group": "^4.4.5",
"react-use": "^17.4.0",
"react-zoom-pan-pinch": "^3.0.7",
"reactflow": "^11.7.0",
"react-zoom-pan-pinch": "^2.6.1",
"redux-deep-persist": "^1.0.7",
"redux-dynamic-middlewares": "^2.2.0",
"redux-persist": "^6.0.0",
"roarr": "^7.15.0",
"serialize-error": "^11.0.0",
"socket.io-client": "^4.6.0",
"use-image": "^1.1.0",
"uuid": "^9.0.0"
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
},
"devDependencies": {
"@chakra-ui/cli": "^2.4.0",
"@fontsource/inter": "^4.5.15",
"@types/dateformat": "^5.0.0",
"@types/lodash-es": "^4.14.194",
"@types/node": "^18.16.2",
"@types/react": "^18.2.0",
"@types/react-dom": "^18.2.1",
"@types/react": "^18.0.28",
"@types/react-dom": "^18.0.11",
"@types/react-transition-group": "^4.4.5",
"@types/uuid": "^9.0.0",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"@typescript-eslint/parser": "^5.59.1",
"@vitejs/plugin-react-swc": "^3.3.0",
"axios": "^1.4.0",
"@typescript-eslint/eslint-plugin": "^5.52.0",
"@typescript-eslint/parser": "^5.52.0",
"@vitejs/plugin-react-swc": "^3.2.0",
"babel-plugin-transform-imports": "^2.0.0",
"concurrently": "^8.0.1",
"eslint": "^8.39.0",
"eslint-config-prettier": "^8.8.0",
"concurrently": "^7.6.0",
"eslint": "^8.34.0",
"eslint-config-prettier": "^8.6.0",
"eslint-plugin-prettier": "^4.2.1",
"eslint-plugin-react": "^7.32.2",
"eslint-plugin-react-hooks": "^4.6.0",
"form-data": "^4.0.0",
"husky": "^8.0.3",
"lint-staged": "^13.2.2",
"lint-staged": "^13.1.2",
"madge": "^6.0.0",
"openapi-types": "^12.1.0",
"openapi-typescript-codegen": "^0.24.0",
"postinstall-postinstall": "^2.1.0",
"prettier": "^2.8.8",
"prettier": "^2.8.4",
"rollup-plugin-visualizer": "^5.9.0",
"terser": "^5.17.1",
"ts-toolbelt": "^9.6.0",
"vite": "^4.3.3",
"vite-plugin-dts": "^2.3.0",
"terser": "^5.16.4",
"vite": "^4.1.2",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.2.0",
"vite-tsconfig-paths": "^4.0.5",
"yarn": "^1.22.19"
}
}

View File

@@ -18,7 +18,7 @@
"training": "Training",
"trainingDesc1": "Ein spezieller Arbeitsablauf zum Trainieren Ihrer eigenen Embeddings und Checkpoints mit Textual Inversion und Dreambooth über die Weboberfläche.",
"trainingDesc2": "InvokeAI unterstützt bereits das Training von benutzerdefinierten Embeddings mit Textual Inversion unter Verwendung des Hauptskripts.",
"upload": "Hochladen",
"upload": "Upload",
"close": "Schließen",
"load": "Laden",
"statusConnected": "Verbunden",
@@ -41,34 +41,12 @@
"statusUpscaling": "Hochskalierung",
"statusUpscalingESRGAN": "Hochskalierung (ESRGAN)",
"statusLoadingModel": "Laden des Modells",
"statusModelChanged": "Modell Geändert",
"cancel": "Abbruch",
"accept": "Annehmen",
"back": "Zurück",
"langEnglish": "Englisch",
"langDutch": "Niederländisch",
"langFrench": "Französisch",
"oceanTheme": "Ozean",
"langItalian": "Italienisch",
"langPortuguese": "Portogisisch",
"langRussian": "Russisch",
"langUkranian": "Ukrainisch",
"hotkeysLabel": "Tastenkombinationen",
"githubLabel": "Github",
"discordLabel": "Discord",
"txt2img": "Text zu Bild",
"postprocessing": "Nachbearbeitung",
"langPolish": "Polnisch",
"langJapanese": "Japanisch",
"langArabic": "Arabisch",
"langKorean": "Koreanisch",
"langHebrew": "Hebräisch",
"langSpanish": "Spanisch"
"statusModelChanged": "Modell Geändert"
},
"gallery": {
"generations": "Erzeugungen",
"showGenerations": "Zeige Erzeugnisse",
"uploads": "Hochgelades",
"uploads": "Uploads",
"showUploads": "Zeige Uploads",
"galleryImageSize": "Bildgröße",
"galleryImageResetSize": "Größe zurücksetzen",
@@ -334,11 +312,7 @@
"deleteModel": "Model löschen",
"deleteConfig": "Konfiguration löschen",
"deleteMsg1": "Möchten Sie diesen Model-Eintrag wirklich aus InvokeAI löschen?",
"deleteMsg2": "Dadurch wird die Modellprüfpunktdatei nicht von Ihrer Festplatte gelöscht. Sie können sie bei Bedarf erneut hinzufügen.",
"customConfig": "Benutzerdefinierte Konfiguration",
"invokeRoot": "InvokeAI Ordner",
"formMessageDiffusersVAELocationDesc": "Falls nicht angegeben, sucht InvokeAI nach der VAE-Datei innerhalb des oben angegebenen Modell Speicherortes.",
"checkpointModels": "Kontrollpunkte"
"deleteMsg2": "Dadurch wird die Modellprüfpunktdatei nicht von Ihrer Festplatte gelöscht. Sie können sie bei Bedarf erneut hinzufügen."
},
"parameters": {
"images": "Bilder",
@@ -396,10 +370,7 @@
"useInitImg": "Ausgangsbild verwenden",
"deleteImage": "Bild löschen",
"initialImage": "Ursprüngliches Bild",
"showOptionsPanel": "Optionsleiste zeigen",
"cancel": {
"setType": "Abbruchart festlegen"
}
"showOptionsPanel": "Optionsleiste zeigen"
},
"settings": {
"displayInProgress": "Bilder in Bearbeitung anzeigen",
@@ -518,25 +489,5 @@
"betaDarkenOutside": "Außen abdunkeln",
"betaLimitToBox": "Begrenzung auf das Feld",
"betaPreserveMasked": "Maskiertes bewahren"
},
"accessibility": {
"modelSelect": "Model Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
"copyMetadataJson": "Kopiere metadata JSON",
"zoomIn": "Vergrößern",
"rotateClockwise": "Im Uhrzeigersinn drehen",
"flipHorizontally": "Horizontal drehen",
"flipVertically": "Vertikal drehen",
"modifyConfig": "Optionen einstellen",
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showGallery": "Zeige Galerie",
"showOptionsPanel": "Zeige Optionen",
"reset": "Zurücksetzen",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen"
}
}

View File

@@ -8,7 +8,7 @@
"nextImage": "Next Image",
"useThisParameter": "Use this parameter",
"copyMetadataJson": "Copy metadata JSON",
"exitViewer": "Exit Viewer",
"exitViewer": "ExitViewer",
"zoomIn": "Zoom In",
"zoomOut": "Zoom Out",
"rotateCounterClockwise": "Rotate Counter-Clockwise",
@@ -19,8 +19,7 @@
"toggleAutoscroll": "Toggle autoscroll",
"toggleLogViewer": "Toggle Log Viewer",
"showGallery": "Show Gallery",
"showOptionsPanel": "Show Options Panel",
"menu": "Menu"
"showOptionsPanel": "Show Options Panel"
},
"common": {
"hotkeysLabel": "Hotkeys",
@@ -53,7 +52,6 @@
"txt2img": "Text To Image",
"img2img": "Image To Image",
"unifiedCanvas": "Unified Canvas",
"linear": "Linear",
"nodes": "Nodes",
"postprocessing": "Post Processing",
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
@@ -63,7 +61,7 @@
"postProcessDesc3": "The Invoke AI Command Line Interface offers various other features including Embiggen.",
"training": "Training",
"trainingDesc1": "A dedicated workflow for training your own embeddings and checkpoints using Textual Inversion and Dreambooth from the web interface.",
"trainingDesc2": "InvokeAI already supports training custom embeddourings using Textual Inversion using the main script.",
"trainingDesc2": "InvokeAI already supports training custom embeddings using Textual Inversion using the main script.",
"upload": "Upload",
"close": "Close",
"cancel": "Cancel",
@@ -97,12 +95,7 @@
"statusMergedModels": "Models Merged",
"pinOptionsPanel": "Pin Options Panel",
"loading": "Loading",
"loadingInvokeAI": "Loading Invoke AI",
"random": "Random",
"generate": "Generate",
"openInNewTab": "Open in New Tab",
"dontAskMeAgain": "Don't ask me again",
"areYouSure": "Are you sure?"
"loadingInvokeAI": "Loading Invoke AI"
},
"gallery": {
"generations": "Generations",
@@ -118,10 +111,7 @@
"pinGallery": "Pin Gallery",
"allImagesLoaded": "All Images Loaded",
"loadMore": "Load More",
"noImagesInGallery": "No Images In Gallery",
"deleteImage": "Delete Image",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored."
"noImagesInGallery": "No Images In Gallery"
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@@ -513,10 +503,9 @@
"useAll": "Use All",
"useInitImg": "Use Initial Image",
"info": "Info",
"deleteImage": "Delete Image",
"initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
"showOptionsPanel": "Show Options Panel"
},
"settings": {
"models": "Models",
@@ -527,21 +516,12 @@
"useCanvasBeta": "Use Canvas Beta Layout",
"enableImageDebugging": "Enable Image Debugging",
"useSlidersForAll": "Use Sliders For All Options",
"autoShowProgress": "Auto Show Progress Images",
"resetWebUI": "Reset Web UI",
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
"resetComplete": "Web UI has been reset. Refresh the page to reload.",
"consoleLogLevel": "Log Level",
"shouldLogToConsole": "Console Logging",
"developer": "Developer",
"general": "General"
"resetComplete": "Web UI has been reset. Refresh the page to reload."
},
"toast": {
"serverError": "Server Error",
"disconnected": "Disconnected from Server",
"connected": "Connected to Server",
"canceled": "Processing Canceled",
"tempFoldersEmptied": "Temp Folder Emptied",
"uploadFailed": "Upload failed",
"uploadFailedMultipleImagesDesc": "Multiple images pasted, may only upload one image at a time",
@@ -646,9 +626,5 @@
"betaDarkenOutside": "Darken Outside",
"betaLimitToBox": "Limit To Box",
"betaPreserveMasked": "Preserve Masked"
},
"ui": {
"showProgressImages": "Show Progress Images",
"hideProgressImages": "Hide Progress Images"
}
}

View File

@@ -73,8 +73,7 @@
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar",
"linear": "Lineal"
"cancel": "Cancelar"
},
"gallery": {
"generations": "Generaciones",
@@ -484,9 +483,7 @@
"negativePrompts": "Preguntas negativas",
"imageToImage": "Imagen a imagen",
"denoisingStrength": "Intensidad de la eliminación del ruido",
"hiresStrength": "Alta resistencia",
"showPreview": "Mostrar la vista previa",
"hidePreview": "Ocultar la vista previa"
"hiresStrength": "Alta resistencia"
},
"settings": {
"models": "Modelos",
@@ -532,11 +529,7 @@
"metadataLoadFailed": "Error al cargar metadatos",
"initialImageSet": "Imágen inicial establecida",
"initialImageNotSet": "Imagen inicial no establecida",
"initialImageNotSetDesc": "Error al establecer la imágen inicial",
"serverError": "Error en el servidor",
"disconnected": "Desconectado del servidor",
"canceled": "Procesando la cancelación",
"connected": "Conectado al servidor"
"initialImageNotSetDesc": "Error al establecer la imágen inicial"
},
"tooltip": {
"feature": {
@@ -632,7 +625,6 @@
"toggleAutoscroll": "Activar el autodesplazamiento",
"toggleLogViewer": "Alternar el visor de registros",
"showGallery": "Mostrar galería",
"showOptionsPanel": "Mostrar el panel de opciones",
"menu": "Menú"
"showOptionsPanel": "Mostrar el panel de opciones"
}
}

Some files were not shown because too many files have changed in this diff Show More