Compare commits

..

1 Commits

Author SHA1 Message Date
Lincoln Stein
a6efcca78c illustration of two generate alternatives 2023-02-26 12:22:32 -05:00
810 changed files with 37646 additions and 30629 deletions

6
.coveragerc Normal file
View File

@@ -0,0 +1,6 @@
[run]
omit='.env/*'
source='.'
[report]
show_missing = true

View File

@@ -4,22 +4,22 @@
!ldm
!pyproject.toml
# ignore frontend/web but whitelist dist
invokeai/frontend/web/
!invokeai/frontend/web/dist/
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# ignore frontend but whitelist dist
invokeai/frontend/
!invokeai/frontend/dist/
# ignore invokeai/assets but whitelist invokeai/assets/web
invokeai/assets/
!invokeai/assets/web/
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# Byte-compiled / optimized / DLL files
**/__pycache__/
**/*.py[cod]
# Distribution / packaging
**/*.egg-info/
**/*.egg
*.egg-info/
*.egg

View File

@@ -1 +0,0 @@
b3dccfaeb636599c02effc377cdd8a87d658256c

53
.github/CODEOWNERS vendored
View File

@@ -3,32 +3,49 @@
# documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
mkdocs.yml @lstein @mauwii @blessedcoolant
# installation and configuration
/pyproject.toml @mauwii @lstein @blessedcoolant
/pyproject.toml @mauwii @lstein @ebr @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
/invokeai/configs @lstein
/invokeai/version @lstein @blessedcoolant
/scripts/ @ebr @lstein @blessedcoolant
/installer/ @ebr @lstein @tildebyte @blessedcoolant
ldm/invoke/config @lstein @ebr @blessedcoolant
invokeai/assets @lstein @ebr @blessedcoolant
invokeai/configs @lstein @ebr @blessedcoolant
/ldm/invoke/_version.py @lstein @blessedcoolant
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein
/invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
# generation and model management
/ldm/*.py @lstein @blessedcoolant
/ldm/generate.py @lstein @keturn @blessedcoolant
/ldm/invoke/args.py @lstein @blessedcoolant
/ldm/invoke/ckpt* @lstein @blessedcoolant
/ldm/invoke/ckpt_generator @lstein @blessedcoolant
/ldm/invoke/CLI.py @lstein @blessedcoolant
/ldm/invoke/config @lstein @ebr @mauwii @blessedcoolant
/ldm/invoke/generator @keturn @damian0815 @blessedcoolant
/ldm/invoke/globals.py @lstein @blessedcoolant
/ldm/invoke/merge_diffusers.py @lstein @blessedcoolant
/ldm/invoke/model_manager.py @lstein @blessedcoolant
/ldm/invoke/txt2mask.py @lstein @blessedcoolant
/ldm/invoke/patchmatch.py @Kyle0654 @blessedcoolant @lstein
/ldm/invoke/restoration @lstein @blessedcoolant
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant
# attention, textual inversion, model configuration
/ldm/models @damian0815 @keturn @lstein @blessedcoolant
/ldm/modules @damian0815 @keturn @lstein @blessedcoolant
# Nodes
apps/ @Kyle0654 @lstein @blessedcoolant
# legacy REST API
# is CapableWeb still engaged?
/ldm/invoke/pngwriter.py @CapableWeb @lstein @blessedcoolant
/ldm/invoke/server_legacy.py @CapableWeb @lstein @blessedcoolant
/scripts/legacy_api.py @CapableWeb @lstein @blessedcoolant
/tests/legacy_tests.sh @CapableWeb @lstein @blessedcoolant

View File

@@ -65,16 +65,6 @@ body:
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: What version did you experience this issue on?
description: |
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: textarea
id: what-happened

View File

@@ -5,20 +5,17 @@ on:
- 'main'
- 'update/ci/docker/*'
- 'update/docker/*'
- 'dev/ci/docker/*'
- 'dev/docker/*'
paths:
- 'pyproject.toml'
- '.dockerignore'
- 'invokeai/**'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
- 'docker/Dockerfile'
tags:
- 'v*.*.*'
workflow_dispatch:
permissions:
contents: write
packages: write
jobs:
docker:
@@ -27,11 +24,11 @@ jobs:
fail-fast: false
matrix:
flavor:
- rocm
- amd
- cuda
- cpu
include:
- flavor: rocm
- flavor: amd
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
- flavor: cuda
pip-extra-index-url: ''
@@ -57,9 +54,9 @@ jobs:
tags: |
type=ref,event=branch
type=ref,event=tag
type=pep440,pattern={{version}}
type=pep440,pattern={{major}}.{{minor}}
type=pep440,pattern={{major}}
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=sha,enable=true,prefix=sha-,format=short
flavor: |
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}
@@ -95,7 +92,7 @@ jobs:
context: .
file: ${{ env.DOCKERFILE }}
platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
push: ${{ github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}

View File

@@ -1,27 +0,0 @@
name: Close inactive issues
on:
schedule:
- cron: "00 6 * * *"
env:
DAYS_BEFORE_ISSUE_STALE: 14
DAYS_BEFORE_ISSUE_CLOSE: 28
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
stale-issue-label: "Inactive Issue"
stale-issue-message: "There has been no activity in this issue for ${{ env.DAYS_BEFORE_ISSUE_STALE }} days. If this issue is still being experienced, please reply with an updated confirmation that the issue is still being experienced with the latest release."
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
days-before-pr-stale: -1
days-before-pr-close: -1
repo-token: ${{ secrets.GITHUB_TOKEN }}
operations-per-run: 500

View File

@@ -3,22 +3,14 @@ name: Lint frontend
on:
pull_request:
paths:
- 'invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
- 'invokeai/frontend/**'
push:
branches:
- 'main'
paths:
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
- 'invokeai/frontend/**'
defaults:
run:
working-directory: invokeai/frontend/web
working-directory: invokeai/frontend
jobs:
lint-frontend:
@@ -31,7 +23,7 @@ jobs:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'
- run: 'yarn tsc'
- run: 'yarn run madge'
- run: 'yarn run lint --max-warnings=0'
- run: 'yarn run prettier --check'

View File

@@ -5,9 +5,6 @@ on:
- 'main'
- 'development'
permissions:
contents: write
jobs:
mkdocs-material:
if: github.event.pull_request.draft == false

View File

@@ -3,7 +3,7 @@ name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
- 'ldm/invoke/_version.py'
workflow_dispatch:
jobs:

View File

@@ -1,11 +1,12 @@
name: Test invoke.py pip
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- 'invokeai/frontend/web/**'
paths-ignore:
- 'pyproject.toml'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
merge_group:
workflow_dispatch:

View File

@@ -5,13 +5,17 @@ on:
- 'main'
paths:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
pull_request:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'ldm/**'
- 'invokeai/backend/**'
- 'invokeai/configs/**'
- 'invokeai/frontend/dist/**'
types:
- 'ready_for_review'
- 'opened'
@@ -108,7 +112,7 @@ jobs:
- name: set INVOKEAI_OUTDIR
run: >
python -c
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
"import os;from ldm.invoke.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
>> ${{ matrix.github-env }}
- name: run invokeai-configure

12
.gitignore vendored
View File

@@ -63,7 +63,6 @@ pip-delete-this-directory.txt
htmlcov/
.tox/
.nox/
.coveragerc
.coverage
.coverage.*
.cache
@@ -74,7 +73,6 @@ cov.xml
*.py,cover
.hypothesis/
.pytest_cache/
.pytest.ini
cover/
junit/
@@ -200,7 +198,7 @@ checkpoints
.DS_Store
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*
!invokeai/frontend/*
# Scratch folder
.scratch/
@@ -215,6 +213,11 @@ gfpgan/
# config file (will be created by installer)
configs/models.yaml
# weights (will be created by installer)
models/ldm/stable-diffusion-v1/*.ckpt
models/clipseg
models/gfpgan
# ignore initfile
.invokeai
@@ -229,3 +232,6 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
# no longer stored in source directory
models

5
.pytest.ini Normal file
View File

@@ -0,0 +1,5 @@
[pytest]
DJANGO_SETTINGS_MODULE = webtas.settings
; python_files = tests.py test_*.py *_tests.py
addopts = --cov=. --cov-config=.coveragerc --cov-report xml:cov.xml

View File

@@ -139,13 +139,13 @@ not supported.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
```
_For Macintoshes, either Intel or M1/M2:_

4
coverage/.gitignore vendored
View File

@@ -1,4 +0,0 @@
# Ignore everything in this directory
*
# Except this file
!.gitignore

View File

@@ -4,15 +4,15 @@ ARG PYTHON_VERSION=3.9
##################
## base image ##
##################
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
FROM python:${PYTHON_VERSION}-slim AS python-base
LABEL org.opencontainers.image.authors="mauwii@outlook.de"
# Prepare apt for buildkit cache
# prepare for buildkit cache
RUN rm -f /etc/apt/apt.conf.d/docker-clean \
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache
# Install dependencies
# Install necessary packages
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
@@ -23,7 +23,7 @@ RUN \
libglib2.0-0=2.66.* \
libopencv-dev=4.5.*
# Set working directory and env
# set working directory and env
ARG APPDIR=/usr/src
ARG APPNAME=InvokeAI
WORKDIR ${APPDIR}
@@ -32,7 +32,7 @@ ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
ENV PYTHONDONTWRITEBYTECODE 1
# Turns off buffering for easier container logging
ENV PYTHONUNBUFFERED 1
# Don't fall back to legacy build system
# don't fall back to legacy build system
ENV PIP_USE_PEP517=1
#######################
@@ -40,7 +40,7 @@ ENV PIP_USE_PEP517=1
#######################
FROM python-base AS pyproject-builder
# Install build dependencies
# Install dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
@@ -51,30 +51,26 @@ RUN \
gcc=4:10.2.* \
python3-dev=3.9.*
# Prepare pip for buildkit cache
# prepare pip for buildkit cache
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR}
RUN mkdir -p ${PIP_CACHE_DIR}
# Create virtual environment
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
# create virtual environment
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
python3 -m venv "${APPNAME}" \
--upgrade-deps
# Install requirements
COPY --link pyproject.toml .
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
# copy sources
COPY --link . .
# install pyproject.toml
ARG PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}"/bin/pip install .
# Install pyproject.toml
COPY --link . .
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
RUN --mount=type=cache,target=${PIP_CACHE_DIR},sharing=locked \
"${APPNAME}/bin/pip" install .
# Build patchmatch
# build patchmatch
RUN python3 -c "from patchmatch import patch_match"
#####################
@@ -90,14 +86,14 @@ RUN useradd \
-U \
"${UNAME}"
# Create volume directory
# create volume directory
ARG VOLUME_DIR=/data
RUN mkdir -p "${VOLUME_DIR}" \
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
&& chown -R "${UNAME}" "${VOLUME_DIR}"
# Setup runtime environment
USER ${UNAME}:${UNAME}
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
# setup runtime environment
USER ${UNAME}
COPY --chown=${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
ENV INVOKEAI_ROOT ${VOLUME_DIR}
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"

View File

@@ -41,7 +41,7 @@ else
fi
# Build Container
docker build \
DOCKER_BUILDKIT=1 docker build \
--platform="${PLATFORM:-linux/amd64}" \
--tag="${CONTAINER_IMAGE:-invokeai}" \
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \

View File

@@ -49,6 +49,3 @@ CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
# enable docker buildkit
export DOCKER_BUILDKIT=1

View File

@@ -21,10 +21,10 @@ docker run \
--tty \
--rm \
--platform="${PLATFORM}" \
--name="${REPOSITORY_NAME}" \
--hostname="${REPOSITORY_NAME}" \
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
--name="${REPOSITORY_NAME,,}" \
--hostname="${REPOSITORY_NAME,,}" \
--mount=source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs,target=/data/outputs \
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
--publish=9090:9090 \
@@ -32,7 +32,7 @@ docker run \
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
"${CONTAINER_IMAGE}" ${@:+$@}
echo -e "\nCleaning trash folder ..."
# Remove Trash folder
for f in outputs/.Trash*; do
if [ -e "$f" ]; then
rm -Rf "$f"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 470 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 457 KiB

View File

@@ -1,83 +0,0 @@
# Local Development
If you are looking to contribute you will need to have a local development
environment. See the
[Developer Install](../installation/020_INSTALL_MANUAL.md#developer-install) for
full details.
Broadly this involves cloning the repository, installing the pre-reqs, and
InvokeAI (in editable form). Assuming this is working, choose your area of
focus.
## Documentation
We use [mkdocs](https://www.mkdocs.org) for our documentation with the
[material theme](https://squidfunk.github.io/mkdocs-material/). Documentation is
written in markdown files under the `./docs` folder and then built into a static
website for hosting with GitHub Pages at
[invoke-ai.github.io/InvokeAI](https://invoke-ai.github.io/InvokeAI).
To contribute to the documentation you'll need to install the dependencies. Note
the use of `"`.
```zsh
pip install ".[docs]"
```
Now, to run the documentation locally with hot-reloading for changes made.
```zsh
mkdocs serve
```
You'll then be prompted to connect to `http://127.0.0.1:8080` in order to
access.
## Backend
The backend is contained within the `./invokeai/backend` folder structure. To
get started however please install the development dependencies.
From the root of the repository run the following command. Note the use of `"`.
```zsh
pip install ".[test]"
```
This in an optional group of packages which is defined within the
`pyproject.toml` and will be required for testing the changes you make the the
code.
### Running Tests
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
be found under the `./tests` folder and can be run with a single `pytest`
command. Optionally, to review test coverage you can append `--cov`.
```zsh
pytest --cov
```
Test outcomes and coverage will be reported in the terminal. In addition a more
detailed report is created in both XML and HTML format in the `./coverage`
folder. The HTML one in particular can help identify missing statements
requiring tests to ensure coverage. This can be run by opening
`./coverage/html/index.html`.
For example.
```zsh
pytest --cov; open ./coverage/html/index.html
```
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)
## Front End
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->
--8<-- "invokeai/frontend/web/README.md"

View File

@@ -168,15 +168,11 @@ used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that looks like
this one:
```yml
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
```
inpainting-1.5: weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5 config:
configs/stable-diffusion/v1-inpainting-inference.yaml vae:
models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt width: 512
height: 512
As shown in the example, you may include a VAE fine-tuning weights file as well.
This is strongly recommended.

View File

@@ -268,7 +268,7 @@ model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdog
invoke> a fluffy cat eating a hotdot
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat

View File

@@ -17,7 +17,7 @@ notebooks.
You will need a GPU to perform training in a reasonable length of
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
library](../installation/070_INSTALL_XFORMERS) to accelerate the
training process further. During training, about ~8 GB is temporarily
needed in order to store intermediate models, checkpoints and logs.

View File

@@ -417,7 +417,7 @@ Then type the following commands:
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.2
```
### Corrupted configuration file

View File

@@ -148,13 +148,13 @@ manager, please follow these steps:
=== "CUDA (NVidia)"
```bash
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
```
=== "ROCm (AMD)"
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
```
=== "CPU (Intel Macs & non-GPU systems)"
@@ -315,7 +315,7 @@ installation protocol (important!)
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.2
```
=== "CPU (Intel Macs & non-GPU systems)"

View File

@@ -110,7 +110,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
https://download.pytorch.org/whl/rocm5.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer

View File

@@ -24,7 +24,7 @@ You need to have opencv installed so that pypatchmatch can be built:
brew install opencv
```
The next time you start `invoke`, after successfully installing opencv, pypatchmatch will be built.
The next time you start `invoke`, after sucesfully installing opencv, pypatchmatch will be built.
## Linux
@@ -56,7 +56,7 @@ Prior to installing PyPatchMatch, you need to take the following steps:
5. Confirm that pypatchmatch is installed. At the command-line prompt enter
`python`, and then at the `>>>` line type
`from patchmatch import patch_match`: It should look like the following:
`from patchmatch import patch_match`: It should look like the follwing:
```py
Python 3.9.5 (default, Nov 23 2021, 15:27:38)
@@ -108,4 +108,4 @@ Prior to installing PyPatchMatch, you need to take the following steps:
[**Next, Follow Steps 4-6 from the Debian Section above**](#linux)
If you see no errors you're ready to go!
If you see no errors, then you're ready to go!

View File

@@ -11,10 +11,10 @@ if [[ -v "VIRTUAL_ENV" ]]; then
exit -1
fi
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
VERSION=$(cd ..; python -c "from ldm.invoke import __version__ as version; print(version)")
PATCH=""
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v3.0-latest"
LATEST_TAG="v2.3-latest"
echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."

View File

@@ -291,7 +291,7 @@ class InvokeAiInstance:
src = Path(__file__).parents[1].expanduser().resolve()
# if the above directory contains one of these files, we'll do a source install
next(src.glob("pyproject.toml"))
next(src.glob("invokeai"))
next(src.glob("ldm"))
except StopIteration:
print("Unable to find a wheel or perform a source install. Giving up.")
@@ -342,14 +342,14 @@ class InvokeAiInstance:
introduction()
from invokeai.frontend.install import invokeai_configure
from ldm.invoke.config import invokeai_configure
# NOTE: currently the config script does its own arg parsing! this means the command-line switches
# from the installer will also automatically propagate down to the config script.
# this may change in the future with config refactoring!
succeeded = False
try:
invokeai_configure()
invokeai_configure.main()
succeeded = True
except requests.exceptions.ConnectionError as e:
print(f'\nA network error was encountered during configuration and download: {str(e)}')
@@ -456,12 +456,13 @@ def get_torch_source() -> (Union[str, None],str):
optional_modules = None
if OS == "Linux":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.4.2"
url = "https://download.pytorch.org/whl/rocm5.2"
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"
if device == 'cuda':
url = 'https://download.pytorch.org/whl/cu118'
url = 'https://download.pytorch.org/whl/cu117'
optional_modules = '[xformers]'
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -24,9 +24,9 @@ if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
while true
do
if [ "$0" != "bash" ]; then
while true
do
echo "Do you want to generate images using the"
echo "1. command-line interface"
echo "2. browser-based UI"
@@ -67,29 +67,29 @@ if [ "$0" != "bash" ]; then
;;
7)
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
echo "Developer Console:"
;;
8)
echo "Developer Console:"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
echo "Update:"
echo "Update:"
invokeai-update
;;
10)
invokeai --help
;;
[qQ])
[qQ])
exit 0
;;
*)
echo "Invalid selection"
exit;;
esac
done
else # in developer console
python --version
echo "Press ^D to exit"
export PS1="(InvokeAI) \u@\h \w> "
fi
done

View File

@@ -1,11 +1,3 @@
Organization of the source tree:
app -- Home of nodes invocations and services
assets -- Images and other data files used by InvokeAI
backend -- Non-user facing libraries, including the rendering
core.
configs -- Configuration files used at install and run times
frontend -- User-facing scripts, including the CLI and the WebUI
version -- Current InvokeAI version string, stored
in version/invokeai_version.py
After version 2.3 is released, the ldm/invoke modules will be migrated to this location
so that we have a proper invokeai distribution. Currently it is only being used for
data files.

View File

@@ -1,84 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from argparse import Namespace
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from .events import FastAPIEventService
# TODO: is there a better way to achieve this?
def check_internet() -> bool:
"""
Return true if the internet is reachable.
It does this by pinging huggingface.co.
"""
import urllib.request
host = "http://huggingface.co"
try:
urllib.request.urlopen(host, timeout=1)
return True
except:
return False
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=get_model_manager(config),
events=events,
latents=latents,
images=images,
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
)
ApiDependencies.invoker = Invoker(services)
@staticmethod
def shutdown():
if ApiDependencies.invoker:
ApiDependencies.invoker.stop()

View File

@@ -1,66 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from fastapi import Path, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
},
)
async def upload_image(file: UploadFile, request: Request):
if not file.content_type.startswith("image"):
return Response(status_code=415)
contents = await file.read()
try:
im = Image.open(contents)
except:
# Error opening the image
return Response(status_code=415)
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
},
)

View File

@@ -1,279 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
# @socketio.on("requestSystemConfig")
# def handle_request_capabilities():
# print(">> System config requested")
# config = self.get_system_config()
# config["model_list"] = self.generate.model_manager.list_models()
# config["infill_methods"] = infill_methods()
# socketio.emit("systemConfig", config)
# @socketio.on("searchForModels")
# def handle_search_models(search_folder: str):
# try:
# if not search_folder:
# socketio.emit(
# "foundModels",
# {"search_folder": None, "found_models": None},
# )
# else:
# (
# search_folder,
# found_models,
# ) = self.generate.model_manager.search_models(search_folder)
# socketio.emit(
# "foundModels",
# {"search_folder": search_folder, "found_models": found_models},
# )
# except Exception as e:
# self.handle_exceptions(e)
# print("\n")
# @socketio.on("addNewModel")
# def handle_add_model(new_model_config: dict):
# try:
# model_name = new_model_config["name"]
# del new_model_config["name"]
# model_attributes = new_model_config
# if len(model_attributes["vae"]) == 0:
# del model_attributes["vae"]
# update = False
# current_model_list = self.generate.model_manager.list_models()
# if model_name in current_model_list:
# update = True
# print(f">> Adding New Model: {model_name}")
# self.generate.model_manager.add_model(
# model_name=model_name,
# model_attributes=model_attributes,
# clobber=True,
# )
# self.generate.model_manager.commit(opt.conf)
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "newModelAdded",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": update,
# },
# )
# print(f">> New Model Added: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("deleteModel")
# def handle_delete_model(model_name: str):
# try:
# print(f">> Deleting Model: {model_name}")
# self.generate.model_manager.del_model(model_name)
# self.generate.model_manager.commit(opt.conf)
# updated_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelDeleted",
# {
# "deleted_model_name": model_name,
# "model_list": updated_model_list,
# },
# )
# print(f">> Model Deleted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("requestModelChange")
# def handle_set_model(model_name: str):
# try:
# print(f">> Model change requested: {model_name}")
# model = self.generate.set_model(model_name)
# model_list = self.generate.model_manager.list_models()
# if model is None:
# socketio.emit(
# "modelChangeFailed",
# {"model_name": model_name, "model_list": model_list},
# )
# else:
# socketio.emit(
# "modelChanged",
# {"model_name": model_name, "model_list": model_list},
# )
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# self.handle_exceptions(e)

View File

@@ -1,287 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
from ...invocations import *
from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import (
Edge,
EdgeConnection,
Graph,
GraphExecutionState,
NodeAlreadyExecutedError,
)
from ...services.item_storage import PaginatedResults
from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
@session_router.post(
"/",
operation_id="create_session",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid json"},
},
)
async def create_session(
graph: Optional[Graph] = Body(
default=None, description="The graph to initialize the session with"
)
) -> GraphExecutionState:
"""Creates a new session, optionally initializing it with an invocation graph"""
session = ApiDependencies.invoker.create_execution_state(graph)
return session
@session_router.get(
"/",
operation_id="list_sessions",
responses={200: {"model": PaginatedResults[GraphExecutionState]}},
)
async def list_sessions(
page: int = Query(default=0, description="The page of results to get"),
per_page: int = Query(default=10, description="The number of results per page"),
query: str = Query(default="", description="The query string to search for"),
) -> PaginatedResults[GraphExecutionState]:
"""Gets a list of sessions, optionally searching"""
if query == "":
result = ApiDependencies.invoker.services.graph_execution_manager.list(
page, per_page
)
else:
result = ApiDependencies.invoker.services.graph_execution_manager.search(
query, page, per_page
)
return result
@session_router.get(
"/{session_id}",
operation_id="get_session",
responses={
200: {"model": GraphExecutionState},
404: {"description": "Session not found"},
},
)
async def get_session(
session_id: str = Path(description="The id of the session to get"),
) -> GraphExecutionState:
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
else:
return session
@session_router.post(
"/{session_id}/nodes",
operation_id="add_node",
responses={
200: {"model": str},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def add_node(
session_id: str = Path(description="The id of the session"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The node to add"),
) -> str:
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.add_node(node)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.put(
"/{session_id}/nodes/{node_path}",
operation_id="update_node",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def update_node(
session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node in the graph"),
node: Annotated[
Union[BaseInvocation.get_invocations()], Field(discriminator="type") # type: ignore
] = Body(description="The new node"),
) -> GraphExecutionState:
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.update_node(node_path, node)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.delete(
"/{session_id}/nodes/{node_path}",
operation_id="delete_node",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def delete_node(
session_id: str = Path(description="The id of the session"),
node_path: str = Path(description="The path to the node to delete"),
) -> GraphExecutionState:
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.delete_node(node_path)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.post(
"/{session_id}/edges",
operation_id="add_edge",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def add_edge(
session_id: str = Path(description="The id of the session"),
edge: Edge = Body(description="The edge to add"),
) -> GraphExecutionState:
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
session.add_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@session_router.delete(
"/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}",
operation_id="delete_edge",
responses={
200: {"model": GraphExecutionState},
400: {"description": "Invalid node or link"},
404: {"description": "Session not found"},
},
)
async def delete_edge(
session_id: str = Path(description="The id of the session"),
from_node_id: str = Path(description="The id of the node the edge is coming from"),
from_field: str = Path(description="The field of the node the edge is coming from"),
to_node_id: str = Path(description="The id of the node the edge is going to"),
to_field: str = Path(description="The field of the node the edge is going to"),
) -> GraphExecutionState:
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
try:
edge = Edge(
source=EdgeConnection(node_id=from_node_id, field=from_field),
destination=EdgeConnection(node_id=to_node_id, field=to_field)
)
session.delete_edge(edge)
ApiDependencies.invoker.services.graph_execution_manager.set(
session
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
except IndexError:
return Response(status_code=400)
@session_router.put(
"/{session_id}/invoke",
operation_id="invoke_session",
responses={
200: {"model": None},
202: {"description": "The invocation is queued"},
400: {"description": "The session has no invocations ready to invoke"},
404: {"description": "Session not found"},
},
)
async def invoke_session(
session_id: str = Path(description="The id of the session to invoke"),
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
if session.is_complete():
return Response(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@session_router.delete(
"/{session_id}/invoke",
operation_id="cancel_session_invoke",
responses={
202: {"description": "The invocation is canceled"}
},
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@@ -1,239 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState
from ..services.invoker import Invoker
def add_parsers(
subparsers,
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
"""Adds parsers for each command to the subparsers"""
# Create subparsers for each command
for command in commands:
hints = get_type_hints(command)
cmd_name = get_args(hints[command_field])[0]
command_parser = subparsers.add_parser(cmd_name, help=command.__doc__)
if add_arguments is not None:
add_arguments(command_parser)
# Convert all fields to arguments
fields = command.__fields__ # type: ignore
for name, field in fields.items():
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default if field.default_factory is None else field.default_factory(),
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default if field.default_factory is None else field.default_factory(),
help=field.field_info.description,
)
class CliContext:
invoker: Invoker
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
class ExitCli(Exception):
"""Exception to exit the CLI"""
pass
class BaseCommand(ABC, BaseModel):
"""A CLI command"""
# All commands must include a type name like this:
# type: Literal['your_command_name'] = 'your_command_name'
@classmethod
def get_all_subclasses(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return subclasses
@classmethod
def get_commands(cls):
return tuple(BaseCommand.get_all_subclasses())
@classmethod
def get_commands_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseCommand.get_all_subclasses()))
@abstractmethod
def run(self, context: CliContext) -> None:
"""Run the command. Raise ExitCli to exit."""
pass
class ExitCommand(BaseCommand):
"""Exits the CLI"""
type: Literal['exit'] = 'exit'
def run(self, context: CliContext) -> None:
raise ExitCli()
class HelpCommand(BaseCommand):
"""Shows help"""
type: Literal['help'] = 'help'
def run(self, context: CliContext) -> None:
context.parser.print_help()
def get_graph_execution_history(
graph_execution_state: GraphExecutionState,
) -> Iterable[str]:
"""Gets the history of fully-executed invocations for a graph execution"""
return (
n
for n in reversed(graph_execution_state.executed_history)
if n in graph_execution_state.graph.nodes
)
def get_invocation_command(invocation) -> str:
fields = invocation.__fields__.items()
type_hints = get_type_hints(type(invocation))
command = [invocation.type]
for name, field in fields:
if name in ["id", "type"]:
continue
# TODO: add links
# Skip image fields when serializing command
type_hint = type_hints.get(name) or None
if type_hint is ImageField or ImageField in get_args(type_hint):
continue
field_value = getattr(invocation, name)
field_default = field.default
if field_value != field_default:
if type_hint is str or str in get_args(type_hint):
command.append(f'--{name} "{field_value}"')
else:
command.append(f"--{name} {field_value}")
return " ".join(command)
class HistoryCommand(BaseCommand):
"""Shows the invocation history"""
type: Literal['history'] = 'history'
# Inputs
# fmt: off
count: int = Field(default=5, gt=0, description="The number of history entries to show")
# fmt: on
def run(self, context: CliContext) -> None:
history = list(get_graph_execution_history(context.get_session()))
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
"""Sets a default value for a field"""
type: Literal['default'] = 'default'
# Inputs
# fmt: off
field: str = Field(description="The field to set the default for")
value: str = Field(description="The value to set the default to, or None to clear the default")
# fmt: on
def run(self, context: CliContext) -> None:
if self.value is None:
if self.field in context.defaults:
del context.defaults[self.field]
else:
context.defaults[self.field] = self.value
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.execution_graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()

View File

@@ -1,167 +0,0 @@
"""
Readline helper functions for cli_app.py
You may import the global singleton `completer` to get access to the
completer object.
"""
import atexit
import readline
import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
# singleton object, class variable
completer = None
class Completer(object):
def __init__(self, model_manager: ModelManager):
self.commands = self.get_commands()
self.matches = None
self.linebuffer = None
self.manager = model_manager
return
def complete(self, text, state):
"""
Complete commands and switches fromm the node CLI command line.
Switches are determined in a context-specific manner.
"""
buffer = readline.get_line_buffer()
if state == 0:
options = None
try:
current_command, current_switch = self.get_current_command(buffer)
options = self.get_command_options(current_command, current_switch)
except IndexError:
pass
options = options or list(self.parse_commands().keys())
if not text: # first time
self.matches = options
else:
self.matches = [s for s in options if s and s.startswith(text)]
try:
match = self.matches[state]
except IndexError:
match = None
return match
@classmethod
def get_commands(self)->List[object]:
"""
Return a list of all the client commands and invocations.
"""
return BaseCommand.get_commands() + BaseInvocation.get_invocations()
def get_current_command(self, buffer: str)->tuple[str, str]:
"""
Parse the readline buffer to find the most recent command and its switch.
"""
if len(buffer)==0:
return None, None
tokens = shlex.split(buffer)
command = None
switch = None
for t in tokens:
if t[0].isalpha():
if switch is None:
command = t
else:
switch = t
# don't try to autocomplete switches that are already complete
if switch and buffer.endswith(' '):
switch=None
return command or '', switch or ''
def parse_commands(self)->Dict[str, List[str]]:
"""
Return a dict in which the keys are the command name
and the values are the parameters the command takes.
"""
result = dict()
for command in self.commands:
hints = get_type_hints(command)
name = get_args(hints['type'])[0]
result.update({name:hints})
return result
def get_command_options(self, command: str, switch: str)->List[str]:
"""
Return all the parameters that can be passed to the command as
command-line switches. Returns None if the command is unrecognized.
"""
parsed_commands = self.parse_commands()
if command not in parsed_commands:
return None
# handle switches in the format "-foo=bar"
argument = None
if switch and '=' in switch:
switch, argument = switch.split('=')
parameter = switch.strip('-')
if parameter in parsed_commands[command]:
if argument is None:
return self.get_parameter_options(parameter, parsed_commands[command][parameter])
else:
return [f"--{parameter}={x}" for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])]
else:
return [f"--{x}" for x in parsed_commands[command].keys()]
def get_parameter_options(self, parameter: str, typehint)->List[str]:
"""
Given a parameter type (such as Literal), offers autocompletions.
"""
if get_origin(typehint) == Literal:
return get_args(typehint)
if parameter == 'model':
return self.manager.model_names()
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
readline.redisplay()
self.linebuffer = None
def set_autocompleter(model_manager: ModelManager) -> Completer:
global completer
if completer:
return completer
completer = Completer(model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
try:
readline.set_auto_history(True)
except:
pass
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")
readline.parse_and_bind("tab: complete")
readline.parse_and_bind("set print-completions-horizontally off")
readline.parse_and_bind("set page-completions on")
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(Globals.root, ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
except FileNotFoundError:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@@ -1,300 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import argparse
import os
import re
import shlex
import time
from typing import (
Union,
get_type_hints,
)
from pydantic import BaseModel
from pydantic.fields import Field
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
"--link",
"-l",
action="append",
nargs=3,
help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
)
command_parser.add_argument(
"--link_node",
"-ln",
action="append",
help="A link from all fields in the specified node. Node can be relative to history (e.g. -1)",
)
def get_command_parser() -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
def exit(*args, **kwargs):
raise InvalidArgs
parser.exit = exit
subparsers = parser.add_subparsers(dest="type")
# Create subparsers for each invocation
invocations = BaseInvocation.get_all_subclasses()
add_parsers(subparsers, invocations, add_arguments=add_invocation_args)
# Create subparsers for each command
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
return parser
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
matching_fields = set(afields.keys()).intersection(bfields.keys())
# Remove invalid fields
invalid_fields = set(["type", "id"])
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])]
edges = [
Edge(
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
)
for field in matching_fields
]
return edges
class SessionError(Exception):
"""Raised when a session error has occurred"""
pass
def invoke_all(context: CliContext):
"""Runs all invocations in the specified session"""
context.invoker.invoke(context.session, invoke_all=True)
while not context.get_session().is_complete():
# Wait some time
time.sleep(0.1)
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
events = EventServiceBase()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
queue=MemoryInvocationQueue(),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser()
re_negid = re.compile('^-[0-9]+$')
# Uncomment to print out previous sessions at startup
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
while True:
try:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
try:
# Refresh the state of the session
history = list(get_graph_execution_history(context.session))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(history)
current_id = start_id
new_invocations = list()
for cmd in cmds:
if cmd is None or cmd.strip() == "":
raise InvalidArgs("Empty command")
# Parse args to create invocation
args = vars(context.parser.parse_args(shlex.split(cmd.strip())))
# Override defaults
for field_name, field_default in context.defaults.items():
if field_name in args:
args[field_name] = field_default
# Parse invocation
args["id"] = current_id
command = CliCommand(command=args)
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
# Invoke all current nodes to preserve operation order
invoke_all(context)
# Run the command
command.command.run(context)
continue
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
from_id = (
history[0] if current_id == start_id else str(current_id - 1)
)
from_node = (
next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
if current_id != start_id
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command
)
edges.extend(matching_edges)
# Parse provided links
if "link_node" in args and args["link_node"]:
for link in args["link_node"]:
node_id = link
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
edges.extend(matching_edges)
if "link" in args and args["link"]:
for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]]
node_id = link[0]
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
edges.append(
Edge(
source=EdgeConnection(node_id=node_id, field=link[1]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
)
)
new_invocations.append((command.command, edges))
current_id = current_id + 1
# Add the node to the session
context.session.add_node(command.command)
for edge in edges:
print(edge)
context.session.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
continue
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.session = context.invoker.create_execution_state()
except ExitCli:
break
except SystemExit:
continue
invoker.stop()
if __name__ == "__main__":
invoke_cli()

View File

@@ -1,50 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
class IntCollectionOutput(BaseInvocationOutput):
"""A collection of integers"""
type: Literal["int_collection"] = "int_collection"
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class RangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["range"] = "range"
# Inputs
start: int = Field(default=0, description="The start of the range")
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))

View File

@@ -1,242 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union
import numpy as np
from torch import Tensor
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.util import diffusers_step_callback_adapter, CanceledException
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
fit: bool = Field(
default=True,
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = None
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
le=1.0,
description="The amount by which to replace masked areas with latent noise",
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = (
None
if self.mask is None
else context.services.images.get(self.mask.image_type, self.mask.image_name)
)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,321 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from pydantic import BaseModel, Field
from torch import Tensor
import torch
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import CUDA_DEVICE, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
import numpy as np
from accelerate.utils import set_seed
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from ...backend.generator import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latent_output"] = "latent_output"
latents: LatentsField = Field(default=None, description="The output latents")
#fmt: on
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
noise: LatentsField = Field(default=None, description="The output noise")
#fmt: on
# TODO: this seems like a hack
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(scheduler_map.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(CUDA_DEVICE)
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return NoiseOutput(
noise=LatentsField(latents_name=name)
)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, sample: Tensor, step: int
) -> None:
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
self.id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
self.steps,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = model_manager.get_model(self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.sampler_name
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
return conditioning_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state.latents, state.step)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
device=model.device,
)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = context.services.model_manager.get_model(self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,68 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
class IntOutput(BaseInvocationOutput):
"""An integer output"""
#fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
#fmt: on
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
#fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
#fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
#fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
#fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))

View File

@@ -1,42 +0,0 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
#fmt: off
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=None,
strength=self.strength, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,46 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
#fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
)

View File

@@ -1,88 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
"""Basic event bus, to have an empty stand-in when not needed"""
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
) -> None:
"""Emitted when there is generation progress"""
self.__emit_session_event(
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
),
)
def emit_graph_execution_complete(self, graph_execution_state_id: str) -> None:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
)

View File

@@ -1,81 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from queue import Queue
import time
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: InvocationQueueItem | None) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass
class MemoryInvocationQueue(InvocationQueueABC):
__queue: Queue
__cancellations: dict[str, float]
def __init__(self):
self.__queue = Queue()
self.__cancellations = dict()
def get(self) -> InvocationQueueItem:
item = self.__queue.get()
while isinstance(item, InvocationQueueItem) \
and item.graph_execution_state_id in self.__cancellations \
and self.__cancellations[item.graph_execution_state_id] > item.timestamp:
item = self.__queue.get()
# Clear old items
for graph_execution_state_id in list(self.__cancellations.keys()):
if self.__cancellations[graph_execution_state_id] < item.timestamp:
del self.__cancellations[graph_execution_state_id]
return item
def put(self, item: InvocationQueueItem | None) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:
if graph_execution_state_id not in self.__cancellations:
self.__cancellations[graph_execution_state_id] = time.time()
def is_canceled(self, graph_execution_state_id: str) -> bool:
return graph_execution_state_id in self.__cancellations

View File

@@ -1,43 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.backend import ModelManager
from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
class InvocationServices:
"""Services that can be used by invocations"""
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC"
def __init__(
self,
model_manager: ModelManager,
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
queue: InvocationQueueABC,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
):
self.model_manager = model_manager
self.events = events
self.latents = latents
self.images = images
self.queue = queue
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration

View File

@@ -1,93 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if not name in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)

View File

@@ -1,120 +0,0 @@
import os
import sys
import torch
from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
import invokeai.version
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = config.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# creating the model manager
try:
device = torch.device(choose_torch_device())
precision = 'float16' if config.precision=='float16' \
else 'float32' if config.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.conf),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=config.conf,
weights_directory=path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)

View File

@@ -1,124 +0,0 @@
import traceback
from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..util.util import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
def start(self, invoker) -> None:
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
name="invoker_processor",
target=self.__process,
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads?
)
self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None:
self.__stop_event.set()
def __process(self, stop_event: Event):
try:
while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
if not queue_item: # Probably stopping
continue
graph_execution_state = (
self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
)
invocation = graph_execution_state.execution_graph.get_node(
queue_item.invocation_id
)
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
)
# Invoke
try:
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
result=outputs.dict(),
)
except KeyboardInterrupt:
pass
except CanceledException:
pass
except Exception as e:
error = traceback.format_exc()
# Save error
graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(
graph_execution_state
)
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
):
continue
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
graph_execution_state.id
)
except KeyboardInterrupt:
... # Log something?

View File

@@ -1,109 +0,0 @@
import sys
import traceback
import torch
from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
# This should be a real base class for postprocessing functions,
# but right now we just instantiate the existing gfpgan, esrgan
# and codeformer functions.
class RestorationServices:
'''Face restoration and upscaling'''
def __init__(self,args):
try:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
restoration = Restoration()
if args.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
args.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
# note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling
# TO DO: refactor into separate methods
def upscale_and_reconstruct(
self,
image_list,
facetool="gfpgan",
upscale=None,
upscale_denoise_str=0.75,
strength=0.0,
codeformer_fidelity=0.75,
save_original=False,
image_callback=None,
prefix=None,
):
results = []
for r in image_list:
image, seed = r
try:
if strength > 0:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
CPU_DEVICE if self.device == MPS_DEVICE else self.device
)
image = self.codeformer.process(
image=image,
strength=strength,
device=cf_device,
seed=seed,
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
upscale.append(0.75)
image = self.esrgan.process(
image,
upscale[1],
seed,
int(upscale[0]),
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:
image_callback(image, seed, upscaled=True, use_prefix=prefix)
else:
r[0] = image
results.append([image, seed])
return results

View File

@@ -1,25 +0,0 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@@ -1,42 +0,0 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@@ -1,16 +1,5 @@
"""
'''
Initialization file for invokeai.backend
"""
from .generate import Generate
from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint
)
from .model_management import ModelManager
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals
'''
from .invoke_ai_web_server import InvokeAIWebServer

View File

@@ -1,13 +0,0 @@
"""
Initialization file for the invokeai.generator package
"""
from .base import (
InvokeAIGenerator,
InvokeAIGeneratorBasicParams,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint,
Generator,
)
from .inpaint import infill_methods

View File

@@ -1,649 +0,0 @@
"""
Base class for invokeai.backend.generator.*
including img2img, txt2img, and inpaint
"""
from __future__ import annotations
import itertools
import dataclasses
import diffusers
import os
import random
import traceback
from abc import ABCMeta
from argparse import Namespace
from contextlib import nullcontext
import cv2
import numpy as np
import torch
from PIL import Image, ImageChops, ImageFilter
from accelerate.utils import set_seed
from diffusers import DiffusionPipeline
from tqdm import trange
from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
downsampling = 8
@dataclass
class InvokeAIGeneratorBasicParams:
seed: Optional[int]=None
width: int=512
height: int=512
cfg_scale: float=7.5
steps: int=20
ddim_eta: float=0.0
scheduler: str='ddim'
precision: str='float16'
perlin: float=0.0
threshold: float=0.0
seamless: bool=False
seamless_axes: List[str]=field(default_factory=lambda: ['x', 'y'])
h_symmetry_time_pct: Optional[float]=None
v_symmetry_time_pct: Optional[float]=None
variation_amount: float = 0.0
with_variations: list=field(default_factory=list)
safety_checker: Optional[SafetyChecker]=None
@dataclass
class InvokeAIGeneratorOutput:
'''
InvokeAIGeneratorOutput is a dataclass that contains the outputs of a generation
operation, including the image, its seed, the model name used to generate the image
and the model hash, as well as all the generate() parameters that went into
generating the image (in .params, also available as attributes)
'''
image: Image.Image
seed: int
model_hash: str
attention_maps_images: List[Image.Image]
params: Namespace
# we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta):
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def __init__(self,
model_info: dict,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
):
self.model_info=model_info
self.params=params
def generate(self,
prompt: str='',
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
'''
Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput
object. Use like this:
outputs = txt2img.generate(prompt='banana sushi', iterations=5)
for result in outputs:
print(result.image, result.seed)
In the typical case of wanting to get just a single image, iterations
defaults to 1 and do:
output = next(txt2img.generate(prompt='banana sushi')
Pass None to get an infinite iterator.
outputs = txt2img.generate(prompt='banana sushi', iterations=None)
for o in outputs:
print(o.image, o.seed)
'''
generator_args = dataclasses.asdict(self.params)
generator_args.update(keyword_args)
model_info = self.model_info
model_name = model_info['model_name']
model:StableDiffusionGeneratorPipeline = model_info['model']
model_hash = model_info['hash']
scheduler: Scheduler = self.get_scheduler(
model=model,
scheduler_name=generator_args.get('scheduler')
)
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt,model=model)
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(prompt,
conditioning=(uc, c, extra_conditioning_info),
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
yield output
@classmethod
def schedulers(self)->List[str]:
'''
Return list of all the schedulers that we currently handle.
'''
return list(self.scheduler_map.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@classmethod
def _generator_class(cls)->Type[Generator]:
'''
In derived classes return the name of the generator to apply.
If you don't override will return the name of the derived
class, which nicely parallels the generator class names.
'''
return Generator
# ------------------------------------
class Txt2Img(InvokeAIGenerator):
@classmethod
def _generator_class(cls):
from .txt2img import Txt2Img
return Txt2Img
# ------------------------------------
class Img2Img(InvokeAIGenerator):
def generate(self,
init_image: Image.Image | torch.FloatTensor,
strength: float=0.75,
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(init_image=init_image,
strength=strength,
**keyword_args
)
@classmethod
def _generator_class(cls):
from .img2img import Img2Img
return Img2Img
# ------------------------------------
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img):
def generate(self,
mask_image: Image.Image | torch.FloatTensor,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_strength: float = 0.7,
seam_steps: int = 10,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(
mask_image=mask_image,
seam_size=seam_size,
seam_blur=seam_blur,
seam_strength=seam_strength,
seam_steps=seam_steps,
tile_size=tile_size,
inpaint_replace=inpaint_replace,
infill_method=infill_method,
inpaint_width=inpaint_width,
inpaint_height=inpaint_height,
inpaint_fill=inpaint_fill,
**keyword_args
)
@classmethod
def _generator_class(cls):
from .inpaint import Inpaint
return Inpaint
# ------------------------------------
class Embiggen(Txt2Img):
def generate(
self,
embiggen: list=None,
embiggen_tiles: list = None,
strength: float=0.75,
**kwargs)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
strength=strength,
**kwargs)
@classmethod
def _generator_class(cls):
from .embiggen import Embiggen
return Embiggen
class Generator:
downsampling_factor: int
latent_channels: int
precision: str
model: DiffusionPipeline
def __init__(self, model: DiffusionPipeline, precision: str):
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
self.with_variations = []
self.use_mps_noise = False
self.free_gpu_mem = None
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self, prompt, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
raise NotImplementedError(
"image_iterator() must be implemented in a descendent class"
)
def set_variation(self, seed, variation_amount, with_variations):
self.seed = seed
self.variation_amount = variation_amount
self.with_variations = with_variations
def generate(
self,
prompt,
width,
height,
sampler,
init_image=None,
iterations=1,
seed=None,
image_callback=None,
step_callback=None,
threshold=0.0,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
safety_checker: SafetyChecker=None,
free_gpu_mem: bool = False,
**kwargs,
):
scope = nullcontext
self.safety_checker = safety_checker
self.free_gpu_mem = free_gpu_mem
attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append(
saver.get_stacked_maps_image()
)
make_image = self.get_make_image(
prompt,
sampler=sampler,
init_image=init_image,
width=width,
height=height,
step_callback=step_callback,
threshold=threshold,
perlin=perlin,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
attention_maps_callback=attention_maps_callback,
**kwargs,
)
results = []
seed = seed if seed is not None and seed >= 0 else self.new_seed()
first_seed = seed
seed, initial_noise = self.generate_initial_noise(seed, width, height)
# There used to be an additional self.model.ema_scope() here, but it breaks
# the inpaint-1.5 model. Not sure what it did.... ?
with scope(self.model.device.type):
for n in trange(iterations, desc="Generating"):
x_T = None
if self.variation_amount > 0:
set_seed(seed)
target_noise = self.get_noise(width, height)
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
elif initial_noise is not None:
# i.e. we specified particular variations
x_T = initial_noise
else:
set_seed(seed)
try:
x_T = self.get_noise(width, height)
except:
print("** An error occurred while getting initial noise **")
print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
image = make_image(x_T, seed)
if self.safety_checker is not None:
image = self.safety_checker.check(image)
results.append([image, seed, attention_maps_images])
if image_callback is not None:
attention_maps_image = (
None
if len(attention_maps_images) == 0
else attention_maps_images[-1]
)
image_callback(
image,
seed,
first_seed=first_seed,
attention_maps_image=attention_maps_image,
)
seed = self.new_seed()
# Free up memory from the last generation.
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
if clear_cuda_cache is not None:
clear_cuda_cache()
return results
def sample_to_image(self, samples) -> Image.Image:
"""
Given samples returned from a sampler, converts
it into a PIL Image
"""
with torch.inference_mode():
image = self.model.decode_latents(samples)
return self.model.numpy_to_pil(image)[0]
def repaste_and_color_correct(
self,
result: Image.Image,
init_image: Image.Image,
init_mask: Image.Image,
mask_blur_radius: int = 8,
) -> Image.Image:
if init_image is None or init_mask is None:
return result
# Get the original alpha channel of the mask if there is one.
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
pil_init_mask = (
init_mask.getchannel("A")
if init_mask.mode == "RGBA"
else init_mask.convert("L")
)
pil_init_image = init_image.convert(
"RGBA"
) # Add an alpha channel if one doesn't exist
# Build an image with only visible pixels from source to use as reference for color-matching.
init_rgb_pixels = np.asarray(init_image.convert("RGB"), dtype=np.uint8)
init_a_pixels = np.asarray(pil_init_image.getchannel("A"), dtype=np.uint8)
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
# Get numpy version of result
np_image = np.asarray(result, dtype=np.uint8)
# Mask and calculate mean and standard deviation
mask_pixels = init_a_pixels * init_mask_pixels > 0
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
np_image_masked = np_image[mask_pixels, :]
if np_init_rgb_pixels_masked.size > 0:
init_means = np_init_rgb_pixels_masked.mean(axis=0)
init_std = np_init_rgb_pixels_masked.std(axis=0)
gen_means = np_image_masked.mean(axis=0)
gen_std = np_image_masked.std(axis=0)
# Color correct
np_matched_result = np_image.copy()
np_matched_result[:, :, :] = (
(
(
(
np_matched_result[:, :, :].astype(np.float32)
- gen_means[None, None, :]
)
/ gen_std[None, None, :]
)
* init_std[None, None, :]
+ init_means[None, None, :]
)
.clip(0, 255)
.astype(np.uint8)
)
matched_result = Image.fromarray(np_matched_result, mode="RGB")
else:
matched_result = Image.fromarray(np_image, mode="RGB")
# Blur the mask out (into init image) by specified amount
if mask_blur_radius > 0:
nm = np.asarray(pil_init_mask, dtype=np.uint8)
nmd = cv2.erode(
nm,
kernel=np.ones((3, 3), dtype=np.uint8),
iterations=int(mask_blur_radius / 2),
)
pmd = Image.fromarray(nmd, mode="L")
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
else:
blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply(
blurred_init_mask, self.pil_image.split()[-1]
)
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask)
return matched_result
@staticmethod
def sample_to_lowres_estimated_image(samples):
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
v1_5_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
],
dtype=samples.dtype,
device=samples.device,
)
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()
).cpu()
return Image.fromarray(latents_ubyte.numpy())
def generate_initial_noise(self, seed, width, height):
initial_noise = None
if self.variation_amount > 0 or len(self.with_variations) > 0:
# use fixed initial noise plus random noise per iteration
set_seed(seed)
initial_noise = self.get_noise(width, height)
for v_seed, v_weight in self.with_variations:
seed = v_seed
set_seed(seed)
next_noise = self.get_noise(width, height)
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
if self.variation_amount > 0:
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
seed = random.randrange(0, np.iinfo(np.uint32).max)
return (seed, initial_noise)
def get_perlin_noise(self, width, height):
fixdevice = "cpu" if (self.model.device.type == "mps") else self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
# round up to the nearest block of 8
temp_width = int((width + 7) / 8) * 8
temp_height = int((height + 7) / 8) * 8
noise = torch.stack(
[
rand_perlin_2d(
(temp_height, temp_width), (8, 8), device=self.model.device
).to(fixdevice)
for _ in range(input_channels)
],
dim=0,
).to(self.model.device)
return noise[0:4, 0:height, 0:width]
def new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
return self.seed
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(self.model.device)
return v2
# this is a handy routine for debugging use. Given a generated sample,
# convert it into a PNG image and store it at the indicated path
def save_sample(self, sample, filepath):
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname):
print(f"** creating directory {dirname}")
os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG")
def torch_dtype(self) -> torch.dtype:
return torch.float16 if self.precision == "float16" else torch.float32
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self, width, height):
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
if self.use_mps_noise or device.type == "mps":
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device="cpu",
).to(device)
else:
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(
width // self.downsampling_factor, height // self.downsampling_factor
)
x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x

View File

@@ -1,101 +0,0 @@
"""
invokeai.backend.generator.img2img descends from .generator
"""
from typing import Optional
import torch
from accelerate.utils import set_seed
from diffusers import logging
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
StableDiffusionGeneratorPipeline,
)
from .base import Generator
class Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # by get_noise()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_image,
strength,
step_callback=None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=warmup,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, seed: int):
# FIXME: use x_T for initial seeded noise
# We're not at the moment because the pipeline automatically resizes init_image if
# necessary, which the x_T input might not match.
# In the meantime, reset the seed prior to generating pipeline output so we at least get the same result.
logging.set_verbosity_error() # quench safety check warnings
pipeline_output = pipeline.img2img_from_embeddings(
init_image,
strength,
steps,
conditioning_data,
noise_func=self.get_noise_like,
callback=step_callback,
seed=seed,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == "mps":
x = torch.randn_like(like, device="cpu").to(device)
else:
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
return x

View File

@@ -1,81 +0,0 @@
"""
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
"""
import PIL.Image
import torch
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
StableDiffusionGeneratorPipeline,
)
from .base import Generator
class Txt2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
width,
height,
step_callback=None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=warmup,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, _: int) -> PIL.Image.Image:
pipeline_output = pipeline.image_from_embeddings(
latents=torch.zeros_like(x_T, dtype=self.torch_dtype()),
noise=x_T,
num_inference_steps=steps,
conditioning_data=conditioning_data,
callback=step_callback,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image

View File

@@ -1,24 +0,0 @@
"""
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata
from .seamless import configure_model_padding
from .txt2mask import Txt2Mask
from .util import InitImageResizer, make_grid
def debug_image(
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
):
if not debug_status:
return
image_copy = debug_image.copy().convert("RGBA")
ImageDraw.Draw(image_copy).text((5, 5), debug_text, (255, 0, 0))
if debug_show:
image_copy.show()
if debug_result:
return image_copy

View File

@@ -1,59 +0,0 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(
input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"]
)
working = nn.functional.pad(
working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"]
)
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = (
"circular" if ("x" in seamless_axes) else "constant"
)
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = (
"circular" if ("y" in seamless_axes) else "constant"
)
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding

View File

@@ -12,28 +12,27 @@ from threading import Event
from uuid import uuid4
import eventlet
from compel.prompt_parser import Blend
from flask import Flask, make_response, redirect, request, send_from_directory
from flask_socketio import SocketIO
import invokeai.frontend.dist as frontend
from PIL import Image
from PIL.Image import Image as ImageType
from compel.prompt_parser import Blend
from flask import Flask, redirect, send_from_directory, request, make_response
from flask_socketio import SocketIO
from werkzeug.utils import secure_filename
import invokeai.frontend.web.dist as frontend
from .. import Generate
from ..args import APP_ID, APP_VERSION, Args, calculate_init_img_hash
from ..generator import infill_methods
from ..globals import Globals, global_converted_ckpts_dir, global_models_dir
from ..image_util import PngWriter, retrieve_metadata
from ...frontend.merge.merge_diffusers import merge_diffusion_models
from ..prompting import (
get_prompt_structure,
get_tokens_for_prompt_object,
from invokeai.backend.modules.get_canvas_generation_mode import (
get_canvas_generation_mode,
)
from ..stable_diffusion import PipelineIntermediateState
from .modules.get_canvas_generation_mode import get_canvas_generation_mode
from .modules.parameters import parameters_to_command
from invokeai.backend.modules.parameters import parameters_to_command
from ldm.generate import Generate
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.conditioning import get_tokens_for_prompt_object, get_prompt_structure, get_tokenizer
from ldm.invoke.generator.diffusers_pipeline import PipelineIntermediateState
from ldm.invoke.generator.inpaint import infill_methods
from ldm.invoke.globals import Globals, global_converted_ckpts_dir
from ldm.invoke.globals import global_models_dir
from ldm.invoke.merge_diffusers import merge_diffusion_models
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
# Loading Arguments
opt = Args()
@@ -193,7 +192,8 @@ class InvokeAIWebServer:
(width, height) = pil_image.size
thumbnail_path = save_thumbnail(
pil_image, os.path.basename(file_path), self.thumbnail_image_path
pil_image, os.path.basename(
file_path), self.thumbnail_image_path
)
response = {
@@ -223,7 +223,7 @@ class InvokeAIWebServer:
server="flask_socketio",
width=1600,
height=1000,
port=self.port,
port=self.port
).run()
except KeyboardInterrupt:
import sys
@@ -231,7 +231,7 @@ class InvokeAIWebServer:
sys.exit(0)
else:
useSSL = args.certfile or args.keyfile
print(">> Started Invoke AI Web Server")
print(">> Started Invoke AI Web Server!")
if self.host == "0.0.0.0":
print(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
@@ -264,14 +264,16 @@ class InvokeAIWebServer:
# location for "finished" images
self.result_path = args.outdir
# temporary path for intermediates
self.intermediate_path = os.path.join(self.result_path, "intermediates/")
self.intermediate_path = os.path.join(
self.result_path, "intermediates/")
# path for user-uploaded init images and masks
self.init_image_path = os.path.join(self.result_path, "init-images/")
self.mask_image_path = os.path.join(self.result_path, "mask-images/")
# path for temp images e.g. gallery generations which are not committed
self.temp_image_path = os.path.join(self.result_path, "temp-images/")
# path for thumbnail images
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
self.thumbnail_image_path = os.path.join(
self.result_path, "thumbnails/")
# txt log
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
# make all output paths
@@ -296,22 +298,21 @@ class InvokeAIWebServer:
config["infill_methods"] = infill_methods()
socketio.emit("systemConfig", config)
@socketio.on("searchForModels")
@socketio.on('searchForModels')
def handle_search_models(search_folder: str):
try:
if not search_folder:
socketio.emit(
"foundModels",
{"search_folder": None, "found_models": None},
{'search_folder': None, 'found_models': None},
)
else:
(
search_folder,
found_models,
) = self.generate.model_manager.search_models(search_folder)
search_folder, found_models = self.generate.model_manager.search_models(
search_folder)
socketio.emit(
"foundModels",
{"search_folder": search_folder, "found_models": found_models},
{'search_folder': search_folder,
'found_models': found_models},
)
except Exception as e:
self.handle_exceptions(e)
@@ -320,11 +321,11 @@ class InvokeAIWebServer:
@socketio.on("addNewModel")
def handle_add_model(new_model_config: dict):
try:
model_name = new_model_config["name"]
del new_model_config["name"]
model_name = new_model_config['name']
del new_model_config['name']
model_attributes = new_model_config
if len(model_attributes["vae"]) == 0:
del model_attributes["vae"]
if len(model_attributes['vae']) == 0:
del model_attributes['vae']
update = False
current_model_list = self.generate.model_manager.list_models()
if model_name in current_model_list:
@@ -333,20 +334,14 @@ class InvokeAIWebServer:
print(f">> Adding New Model: {model_name}")
self.generate.model_manager.add_model(
model_name=model_name,
model_attributes=model_attributes,
clobber=True,
)
model_name=model_name, model_attributes=model_attributes, clobber=True)
self.generate.model_manager.commit(opt.conf)
new_model_list = self.generate.model_manager.list_models()
socketio.emit(
"newModelAdded",
{
"new_model_name": model_name,
"model_list": new_model_list,
"update": update,
},
{"new_model_name": model_name,
"model_list": new_model_list, 'update': update},
)
print(f">> New Model Added: {model_name}")
except Exception as e:
@@ -361,10 +356,8 @@ class InvokeAIWebServer:
updated_model_list = self.generate.model_manager.list_models()
socketio.emit(
"modelDeleted",
{
"deleted_model_name": model_name,
"model_list": updated_model_list,
},
{"deleted_model_name": model_name,
"model_list": updated_model_list},
)
print(f">> Model Deleted: {model_name}")
except Exception as e:
@@ -389,48 +382,41 @@ class InvokeAIWebServer:
except Exception as e:
self.handle_exceptions(e)
@socketio.on("convertToDiffusers")
@socketio.on('convertToDiffusers')
def convert_to_diffusers(model_to_convert: dict):
try:
if model_info := self.generate.model_manager.model_info(
model_name=model_to_convert["model_name"]
):
if "weights" in model_info:
ckpt_path = Path(model_info["weights"])
original_config_file = Path(model_info["config"])
model_name = model_to_convert["model_name"]
model_description = model_info["description"]
if (model_info := self.generate.model_manager.model_info(model_name=model_to_convert['model_name'])):
if 'weights' in model_info:
ckpt_path = Path(model_info['weights'])
original_config_file = Path(model_info['config'])
model_name = model_to_convert['model_name']
model_description = model_info['description']
else:
self.socketio.emit(
"error", {"message": "Model is not a valid checkpoint file"}
)
"error", {"message": "Model is not a valid checkpoint file"})
else:
self.socketio.emit(
"error", {"message": "Could not retrieve model info."}
)
"error", {"message": "Could not retrieve model info."})
if not ckpt_path.is_absolute():
ckpt_path = Path(Globals.root, ckpt_path)
if original_config_file and not original_config_file.is_absolute():
original_config_file = Path(Globals.root, original_config_file)
original_config_file = Path(
Globals.root, original_config_file)
diffusers_path = Path(
ckpt_path.parent.absolute(), f"{model_name}_diffusers"
ckpt_path.parent.absolute(),
f'{model_name}_diffusers'
)
if model_to_convert["save_location"] == "root":
if model_to_convert['save_location'] == 'root':
diffusers_path = Path(
global_converted_ckpts_dir(), f"{model_name}_diffusers"
)
global_converted_ckpts_dir(), f'{model_name}_diffusers')
if (
model_to_convert["save_location"] == "custom"
and model_to_convert["custom_location"] is not None
):
if model_to_convert['save_location'] == 'custom' and model_to_convert['custom_location'] is not None:
diffusers_path = Path(
model_to_convert["custom_location"], f"{model_name}_diffusers"
)
model_to_convert['custom_location'], f'{model_name}_diffusers')
if diffusers_path.exists():
shutil.rmtree(diffusers_path)
@@ -448,67 +434,54 @@ class InvokeAIWebServer:
new_model_list = self.generate.model_manager.list_models()
socketio.emit(
"modelConverted",
{
"new_model_name": model_name,
"model_list": new_model_list,
"update": True,
},
{"new_model_name": model_name,
"model_list": new_model_list, 'update': True},
)
print(f">> Model Converted: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@socketio.on("mergeDiffusersModels")
@socketio.on('mergeDiffusersModels')
def merge_diffusers_models(model_merge_info: dict):
try:
models_to_merge = model_merge_info["models_to_merge"]
models_to_merge = model_merge_info['models_to_merge']
model_ids_or_paths = [
self.generate.model_manager.model_name_or_path(x)
for x in models_to_merge
]
self.generate.model_manager.model_name_or_path(x) for x in models_to_merge]
merged_pipe = merge_diffusion_models(
model_ids_or_paths,
model_merge_info["alpha"],
model_merge_info["interp"],
model_merge_info["force"],
)
model_ids_or_paths, model_merge_info['alpha'], model_merge_info['interp'], model_merge_info['force'])
dump_path = global_models_dir() / "merged_models"
if model_merge_info["model_merge_save_path"] is not None:
dump_path = Path(model_merge_info["model_merge_save_path"])
dump_path = global_models_dir() / 'merged_models'
if model_merge_info['model_merge_save_path'] is not None:
dump_path = Path(model_merge_info['model_merge_save_path'])
os.makedirs(dump_path, exist_ok=True)
dump_path = dump_path / model_merge_info["merged_model_name"]
dump_path = dump_path / model_merge_info['merged_model_name']
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
merged_model_config = dict(
model_name=model_merge_info["merged_model_name"],
model_name=model_merge_info['merged_model_name'],
description=f'Merge of models {", ".join(models_to_merge)}',
commit_to_conf=opt.conf,
commit_to_conf=opt.conf
)
if vae := self.generate.model_manager.config[models_to_merge[0]].get(
"vae", None
):
print(f">> Using configured VAE assigned to {models_to_merge[0]}")
if vae := self.generate.model_manager.config[models_to_merge[0]].get("vae", None):
print(
f">> Using configured VAE assigned to {models_to_merge[0]}")
merged_model_config.update(vae=vae)
self.generate.model_manager.import_diffuser_model(
dump_path, **merged_model_config
)
dump_path, **merged_model_config)
new_model_list = self.generate.model_manager.list_models()
socketio.emit(
"modelsMerged",
{
"merged_models": models_to_merge,
"merged_model_name": model_merge_info["merged_model_name"],
"model_list": new_model_list,
"update": True,
},
{"merged_models": models_to_merge,
"merged_model_name": model_merge_info['merged_model_name'],
"model_list": new_model_list, 'update': True},
)
print(f">> Models Merged: {models_to_merge}")
print(f">> New Model Added: {model_merge_info['merged_model_name']}")
print(
f">> New Model Added: {model_merge_info['merged_model_name']}")
except Exception as e:
self.handle_exceptions(e)
@@ -526,8 +499,7 @@ class InvokeAIWebServer:
os.remove(thumbnail_path)
except Exception as e:
socketio.emit(
"error", {"message": f"Unable to delete {f}: {str(e)}"}
)
"error", {"message": f"Unable to delete {f}: {str(e)}"})
pass
socketio.emit("tempFolderEmptied")
@@ -538,7 +510,8 @@ class InvokeAIWebServer:
def save_temp_image_to_gallery(url):
try:
image_path = self.get_image_path_from_url(url)
new_path = os.path.join(self.result_path, os.path.basename(image_path))
new_path = os.path.join(
self.result_path, os.path.basename(image_path))
shutil.copy2(image_path, new_path)
if os.path.splitext(new_path)[1] == ".png":
@@ -551,7 +524,8 @@ class InvokeAIWebServer:
(width, height) = pil_image.size
thumbnail_path = save_thumbnail(
pil_image, os.path.basename(new_path), self.thumbnail_image_path
pil_image, os.path.basename(
new_path), self.thumbnail_image_path
)
image_array = [
@@ -610,7 +584,8 @@ class InvokeAIWebServer:
(width, height) = pil_image.size
thumbnail_path = save_thumbnail(
pil_image, os.path.basename(path), self.thumbnail_image_path
pil_image, os.path.basename(
path), self.thumbnail_image_path
)
image_array.append(
@@ -629,8 +604,7 @@ class InvokeAIWebServer:
)
except Exception as e:
socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"}
)
"error", {"message": f"Unable to load {path}: {str(e)}"})
pass
socketio.emit(
@@ -680,7 +654,8 @@ class InvokeAIWebServer:
(width, height) = pil_image.size
thumbnail_path = save_thumbnail(
pil_image, os.path.basename(path), self.thumbnail_image_path
pil_image, os.path.basename(
path), self.thumbnail_image_path
)
image_array.append(
@@ -700,8 +675,7 @@ class InvokeAIWebServer:
except Exception as e:
print(f">> Unable to load {path}")
socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"}
)
"error", {"message": f"Unable to load {path}: {str(e)}"})
pass
socketio.emit(
@@ -735,9 +709,10 @@ class InvokeAIWebServer:
printable_parameters["init_mask"][:64] + "..."
)
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
print(f">> ESRGAN Parameters: {esrgan_parameters}")
print(f">> Facetool Parameters: {facetool_parameters}")
print(
f'\n>> Image Generation Parameters:\n\n{printable_parameters}\n')
print(f'>> ESRGAN Parameters: {esrgan_parameters}')
print(f'>> Facetool Parameters: {facetool_parameters}')
self.generate_images(
generation_parameters,
@@ -774,9 +749,11 @@ class InvokeAIWebServer:
if postprocessing_parameters["type"] == "esrgan":
progress.set_current_status("common.statusUpscalingESRGAN")
elif postprocessing_parameters["type"] == "gfpgan":
progress.set_current_status("common.statusRestoringFacesGFPGAN")
progress.set_current_status(
"common.statusRestoringFacesGFPGAN")
elif postprocessing_parameters["type"] == "codeformer":
progress.set_current_status("common.statusRestoringFacesCodeFormer")
progress.set_current_status(
"common.statusRestoringFacesCodeFormer")
socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
@@ -941,7 +918,8 @@ class InvokeAIWebServer:
init_img_url = generation_parameters["init_img"]
original_bounding_box = generation_parameters["bounding_box"].copy()
original_bounding_box = generation_parameters["bounding_box"].copy(
)
initial_image = dataURL_to_image(
generation_parameters["init_img"]
@@ -1018,11 +996,10 @@ class InvokeAIWebServer:
elif generation_parameters["generation_mode"] == "img2img":
init_img_url = generation_parameters["init_img"]
init_img_path = self.get_image_path_from_url(init_img_url)
generation_parameters["init_img"] = Image.open(init_img_path).convert(
"RGB"
)
generation_parameters["init_img"] = Image.open(
init_img_path).convert('RGB')
def image_progress(intermediate_state: PipelineIntermediateState):
def image_progress(sample, step):
if self.canceled.is_set():
raise CanceledException
@@ -1030,14 +1007,6 @@ class InvokeAIWebServer:
nonlocal generation_parameters
nonlocal progress
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
generation_messages = {
"txt2img": "common.statusGeneratingTextToImage",
"img2img": "common.statusGeneratingImageToImage",
@@ -1088,7 +1057,8 @@ class InvokeAIWebServer:
)
if generation_parameters["progress_latents"]:
image = self.generate.sample_to_lowres_estimated_image(sample)
image = self.generate.sample_to_lowres_estimated_image(
sample)
(width, height) = image.size
width *= 8
height *= 8
@@ -1107,7 +1077,8 @@ class InvokeAIWebServer:
},
)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
def image_done(image, seed, first_seed, attention_maps_image=None):
@@ -1134,7 +1105,8 @@ class InvokeAIWebServer:
progress.set_current_status("common.statusGenerationComplete")
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
all_parameters = generation_parameters
@@ -1145,7 +1117,8 @@ class InvokeAIWebServer:
and all_parameters["variation_amount"] > 0
):
first_seed = first_seed or seed
this_variation = [[seed, all_parameters["variation_amount"]]]
this_variation = [
[seed, all_parameters["variation_amount"]]]
all_parameters["with_variations"] = (
prior_variations + this_variation
)
@@ -1161,13 +1134,14 @@ class InvokeAIWebServer:
if esrgan_parameters:
progress.set_current_status("common.statusUpscaling")
progress.set_current_status_has_steps(False)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
image = self.esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["level"],
denoise_str=esrgan_parameters["denoise_str"],
denoise_str=esrgan_parameters['denoise_str'],
strength=esrgan_parameters["strength"],
seed=seed,
)
@@ -1175,7 +1149,7 @@ class InvokeAIWebServer:
postprocessing = True
all_parameters["upscale"] = [
esrgan_parameters["level"],
esrgan_parameters["denoise_str"],
esrgan_parameters['denoise_str'],
esrgan_parameters["strength"],
]
@@ -1184,14 +1158,15 @@ class InvokeAIWebServer:
if facetool_parameters:
if facetool_parameters["type"] == "gfpgan":
progress.set_current_status("common.statusRestoringFacesGFPGAN")
progress.set_current_status(
"common.statusRestoringFacesGFPGAN")
elif facetool_parameters["type"] == "codeformer":
progress.set_current_status(
"common.statusRestoringFacesCodeFormer"
)
"common.statusRestoringFacesCodeFormer")
progress.set_current_status_has_steps(False)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
if facetool_parameters["type"] == "gfpgan":
@@ -1221,7 +1196,8 @@ class InvokeAIWebServer:
all_parameters["facetool_type"] = facetool_parameters["type"]
progress.set_current_status("common.statusSavingImage")
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
# restore the stashed URLS and discard the paths, we are about to send the result to client
@@ -1238,7 +1214,8 @@ class InvokeAIWebServer:
if generation_parameters["generation_mode"] == "unifiedCanvas":
all_parameters["bounding_box"] = original_bounding_box
metadata = self.parameters_to_generated_image_metadata(all_parameters)
metadata = self.parameters_to_generated_image_metadata(
all_parameters)
command = parameters_to_command(all_parameters)
@@ -1268,27 +1245,22 @@ class InvokeAIWebServer:
if progress.total_iterations > progress.current_iteration:
progress.set_current_step(1)
progress.set_current_status("common.statusIterationComplete")
progress.set_current_status(
"common.statusIterationComplete")
progress.set_current_status_has_steps(False)
else:
progress.mark_complete()
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
self.socketio.emit(
"progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
parsed_prompt, _ = get_prompt_structure(generation_parameters["prompt"])
tokens = (
None
if type(parsed_prompt) is Blend
else get_tokens_for_prompt_object(
self.generate.model.tokenizer, parsed_prompt
)
)
attention_maps_image_base64_url = (
None
if attention_maps_image is None
parsed_prompt, _ = get_prompt_structure(
generation_parameters["prompt"])
tokens = None if type(parsed_prompt) is Blend else \
get_tokens_for_prompt_object(get_tokenizer(self.generate.model), parsed_prompt)
attention_maps_image_base64_url = None if attention_maps_image is None \
else image_to_dataURL(attention_maps_image)
)
self.socketio.emit(
"generationResult",
@@ -1310,10 +1282,17 @@ class InvokeAIWebServer:
progress.set_current_iteration(progress.current_iteration + 1)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return image_progress(progress_state.latents, progress_state.step)
else:
return image_progress(*cb_args, **kwargs)
self.generate.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done,
step_callback=diffusers_step_callback_adapter,
image_callback=image_done
)
except KeyboardInterrupt:
@@ -1436,7 +1415,8 @@ class InvokeAIWebServer:
self, parameters, original_image_path
):
try:
current_metadata = retrieve_metadata(original_image_path)["sd-metadata"]
current_metadata = retrieve_metadata(
original_image_path)["sd-metadata"]
postprocessing_metadata = {}
"""
@@ -1476,7 +1456,8 @@ class InvokeAIWebServer:
postprocessing_metadata
)
else:
current_metadata["image"]["postprocessing"] = [postprocessing_metadata]
current_metadata["image"]["postprocessing"] = [
postprocessing_metadata]
return current_metadata
@@ -1572,7 +1553,8 @@ class InvokeAIWebServer:
)
elif "thumbnails" in url:
return os.path.abspath(
os.path.join(self.thumbnail_image_path, os.path.basename(url))
os.path.join(self.thumbnail_image_path,
os.path.basename(url))
)
else:
return os.path.abspath(
@@ -1618,7 +1600,7 @@ class InvokeAIWebServer:
except Exception as e:
self.handle_exceptions(e)
def handle_exceptions(self, exception, emit_key: str = "error"):
def handle_exceptions(self, exception, emit_key: str = 'error'):
self.socketio.emit(emit_key, {"message": (str(exception))})
print("\n")
traceback.print_exc()
@@ -1732,7 +1714,7 @@ def dataURL_to_image(dataURL: str) -> ImageType:
return image
def image_to_dataURL(image: ImageType, image_format: str = "PNG") -> str:
def image_to_dataURL(image: ImageType, image_format:str="PNG") -> str:
"""
Converts an image into a base64 image dataURL.
"""

View File

@@ -1,9 +0,0 @@
"""
Initialization file for invokeai.backend.model_management
"""
from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager

View File

@@ -1,7 +1,6 @@
import argparse
import os
from ...args import PRECISION_CHOICES
from ldm.invoke.args import PRECISION_CHOICES
def create_cmd_parser():
@@ -47,10 +46,10 @@ def create_cmd_parser():
default="auto",
)
parser.add_argument(
"--free_gpu_mem",
dest="free_gpu_mem",
action="store_true",
help="Force free gpu memory before final decoding",
'--free_gpu_mem',
dest='free_gpu_mem',
action='store_true',
help='Force free gpu memory before final decoding',
)
return parser

View File

@@ -1,8 +1,6 @@
from typing import Literal, Union
from PIL import Image, ImageChops
from PIL.Image import Image as ImageType
from typing import Union, Literal
# https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
def check_for_any_transparency(img: Union[ImageType, str]) -> bool:
@@ -87,7 +85,9 @@ def main():
print(
"IMAGE WITH TRANSPARENCY, NO MASK, expect outpainting, got ",
get_canvas_generation_mode(init_img_partial_transparency, init_mask_no_mask),
get_canvas_generation_mode(
init_img_partial_transparency, init_mask_no_mask
),
)
print(
@@ -102,7 +102,9 @@ def main():
print(
"IMAGE WITH TRANSPARENCY, WITH MASK, expect outpainting, got ",
get_canvas_generation_mode(init_img_partial_transparency, init_mask_has_mask),
get_canvas_generation_mode(
init_img_partial_transparency, init_mask_has_mask
),
)
print(

View File

@@ -1,7 +1,6 @@
from invokeai.backend.modules.parse_seed_weights import parse_seed_weights
import argparse
from .parse_seed_weights import parse_seed_weights
SAMPLER_CHOICES = [
"ddim",
"k_dpm_2_a",

View File

Before

Width:  |  Height:  |  Size: 2.7 KiB

After

Width:  |  Height:  |  Size: 2.7 KiB

View File

Before

Width:  |  Height:  |  Size: 292 KiB

After

Width:  |  Height:  |  Size: 292 KiB

View File

Before

Width:  |  Height:  |  Size: 9.5 KiB

After

Width:  |  Height:  |  Size: 9.5 KiB

View File

Before

Width:  |  Height:  |  Size: 3.4 KiB

After

Width:  |  Height:  |  Size: 3.4 KiB

View File

@@ -1,9 +0,0 @@
"""
Initialization file for invokeai.backend.prompting
"""
from .conditioning import (
get_prompt_structure,
get_tokens_for_prompt_object,
get_uc_and_c_and_ec,
split_weighted_subprompts,
)

View File

@@ -1,4 +0,0 @@
"""
Initialization file for the invokeai.backend.restoration package
"""
from .base import Restoration

View File

@@ -1,118 +0,0 @@
import math
from PIL import Image
class Outcrop(object):
def __init__(
self,
image,
generate, # current generate object
):
self.image = image
self.generate = generate
def process(
self,
extents: dict,
opt, # current options
orig_opt, # ones originally used to generate the image
image_callback=None,
prefix=None,
):
# grow and mask the image
extended_image = self._extend_all(extents)
# switch samplers temporarily
curr_sampler = self.generate.sampler
self.generate.sampler_name = opt.sampler_name
self.generate._set_scheduler()
def wrapped_callback(img, seed, **kwargs):
preferred_seed = (
orig_opt.seed
if orig_opt.seed is not None and orig_opt.seed >= 0
else seed
)
image_callback(img, preferred_seed, use_prefix=prefix, **kwargs)
result = self.generate.prompt2image(
opt.prompt,
seed=opt.seed or orig_opt.seed,
sampler=self.generate.sampler,
steps=opt.steps,
cfg_scale=opt.cfg_scale,
ddim_eta=self.generate.ddim_eta,
width=extended_image.width,
height=extended_image.height,
init_img=extended_image,
strength=0.90,
image_callback=wrapped_callback if image_callback else None,
seam_size=opt.seam_size or 96,
seam_blur=opt.seam_blur or 16,
seam_strength=opt.seam_strength or 0.7,
seam_steps=20,
tile_size=32,
color_match=True,
force_outpaint=True, # this just stops the warning about erased regions
)
# swap sampler back
self.generate.sampler = curr_sampler
return result
def _extend_all(
self,
extents: dict,
) -> Image:
"""
Extend the image in direction ('top','bottom','left','right') by
the indicated value. The image canvas is extended, and the empty
rectangular section will be filled with a blurred copy of the
adjacent image.
"""
image = self.image
for direction in extents:
assert direction in [
"top",
"left",
"bottom",
"right",
], 'Direction must be one of "top", "left", "bottom", "right"'
pixels = extents[direction]
# round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64
print(f">> extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction)
image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True)
return image
def _rotate(self, image: Image, direction: str, reverse=False) -> Image:
"""
Rotates image so that the area to extend is always at the top top.
Simplifies logic later. The reverse argument, if true, will undo the
previous transpose.
"""
transposes = {
"right": ["ROTATE_90", "ROTATE_270"],
"bottom": ["ROTATE_180", "ROTATE_180"],
"left": ["ROTATE_270", "ROTATE_90"],
}
if direction not in transposes:
return image
transpose = transposes[direction][1 if reverse else 0]
return image.transpose(Image.Transpose.__dict__[transpose])
def _extend(self, image: Image, pixels: int) -> Image:
extended_img = Image.new("RGBA", (image.width, image.height + pixels))
extended_img.paste((0, 0, 0), [0, 0, image.width, image.height + pixels])
extended_img.paste(image, box=(0, pixels))
# now make the top part transparent to use as a mask
alpha = extended_img.getchannel("A")
alpha.paste(0, (0, 0, extended_img.width, pixels))
extended_img.putalpha(alpha)
return extended_img

View File

@@ -1,82 +0,0 @@
'''
SafetyChecker class - checks images against the StabilityAI NSFW filter
and blurs images that contain potential NSFW content.
'''
import diffusers
import numpy as np
import torch
import traceback
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from pathlib import Path
from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets
from .globals import global_cache_dir
from .util import CPU_DEVICE
class SafetyChecker(object):
CAUTION_IMG = "caution.png"
def __init__(self, device: torch.device):
path = Path(web_assets.__path__[0]) / self.CAUTION_IMG
caution = Image.open(path)
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
self.device = device
try:
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_model_path = global_cache_dir("hub")
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained(
safety_model_id,
local_files_only=True,
cache_dir=safety_model_path,
)
except Exception:
print(
"** An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
def check(self, image: Image.Image):
"""
Check provided image against the StabilityAI safety checker and return
"""
self.safety_checker.to(self.device)
features = self.safety_feature_extractor([image], return_tensors="pt")
features.to(self.device)
# unfortunately checker requires the numpy version, so we have to convert back
x_image = np.array(image).astype(np.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
diffusers.logging.set_verbosity_error()
checked_image, has_nsfw_concept = self.safety_checker(
images=x_image, clip_input=features.pixel_values
)
self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]:
print(
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
)
return self.blur(image)
else:
return image
def blur(self, input):
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
try:
if caution := self.caution_img:
blurry.paste(caution, (0, 0), caution)
except FileNotFoundError:
pass
return blurry

View File

@@ -1,13 +0,0 @@
"""
Initialization file for the invokeai.backend.stable_diffusion package
"""
from .concepts_lib import HuggingFaceConceptsLibrary
from .diffusers_pipeline import (
ConditioningData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from .diffusion import InvokeAIDiffuserComponent
from .diffusion.cross_attention_map_saving import AttentionMapSaver
from .diffusion.shared_invokeai_diffusion import PostprocessingSettings
from .textual_inversion_manager import TextualInversionManager

View File

@@ -1,6 +0,0 @@
"""
Initialization file for invokeai.models.diffusion
"""
from .cross_attention_control import InvokeAICrossAttentionMixin
from .cross_attention_map_saving import AttentionMapSaver
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent, PostprocessingSettings

View File

@@ -1,4 +0,0 @@
"""
Initialization file for invokeai.backend.training
"""
from .textual_inversion_training import do_textual_inversion_training, parse_args

View File

@@ -1,19 +0,0 @@
"""
Initialization file for invokeai.backend.util
"""
from .devices import (
CPU_DEVICE,
CUDA_DEVICE,
MPS_DEVICE,
choose_precision,
choose_torch_device,
normalize_device,
torch_dtype,
)
from .log import write_log
from .util import (
ask_user,
download_with_resume,
instantiate_from_config,
url_attachment_name,
)

View File

@@ -1,4 +0,0 @@
"""
Initialization file for the web backend.
"""
from .invoke_ai_web_server import InvokeAIWebServer

View File

@@ -20,7 +20,7 @@ stable-diffusion-2.1:
recommended: True
sd-inpainting-2.0:
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-inpainting
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
recommended: False
analog-diffusion-1.0:

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 5.0e-03
target: invokeai.backend.stable_diffusion.diffusion.ddpm.LatentDiffusion
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
@@ -19,7 +19,7 @@ model:
embedding_reg_weight: 0.0
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ["sculpture"]
@@ -28,7 +28,7 @@ model:
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
@@ -45,7 +45,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -68,7 +68,7 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.FrozenCLIPEmbedder
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
@@ -77,14 +77,14 @@ data:
num_workers: 2
wrap: false
train:
target: invokeai.backend.stable_diffusion.data.personalized.PersonalizedBase
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: train
per_image_tokens: false
repeats: 100
validation:
target: invokeai.backend.stable_diffusion.data.personalized.PersonalizedBase
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: val

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 5.0e-03
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
@@ -19,7 +19,7 @@ model:
embedding_reg_weight: 0.0
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ["painting"]
@@ -27,7 +27,7 @@ model:
num_vectors_per_token: 1
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
@@ -44,7 +44,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -67,7 +67,7 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.FrozenCLIPEmbedder
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
@@ -76,14 +76,14 @@ data:
num_workers: 16
wrap: false
train:
target: invokeai.backend.stable_diffusion.data.personalized_style.PersonalizedBase
target: ldm.data.personalized_style.PersonalizedBase
params:
size: 512
set: train
per_image_tokens: false
repeats: 100
validation:
target: invokeai.backend.stable_diffusion.data.personalized_style.PersonalizedBase
target: ldm.data.personalized_style.PersonalizedBase
params:
size: 512
set: val

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 1.0e-04
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
@@ -18,7 +18,7 @@ model:
use_ema: False
scheduler_config: # 10000 warmup steps
target: invokeai.backend.stable_diffusion.lr_scheduler.LambdaLinearScheduler
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
@@ -27,7 +27,7 @@ model:
f_min: [ 1. ]
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
@@ -36,7 +36,7 @@ model:
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
@@ -53,7 +53,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -76,4 +76,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.WeightedFrozenCLIPEmbedder
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 7.5e-05
target: invokeai.backend.models.diffusion.ddpm.LatentInpaintDiffusion
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
@@ -18,7 +18,7 @@ model:
finetune_keys: null
scheduler_config: # 10000 warmup steps
target: invokeai.backend.stable_diffusion.lr_scheduler.LambdaLinearScheduler
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
@@ -27,7 +27,7 @@ model:
f_min: [ 1. ]
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
@@ -36,7 +36,7 @@ model:
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
@@ -53,7 +53,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -76,4 +76,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.WeightedFrozenCLIPEmbedder
target: ldm.modules.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 5.0e-03
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
@@ -19,7 +19,7 @@ model:
embedding_reg_weight: 0.0
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
target: ldm.modules.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
@@ -28,7 +28,7 @@ model:
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
@@ -45,7 +45,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -68,7 +68,7 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.FrozenCLIPEmbedder
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
@@ -77,14 +77,14 @@ data:
num_workers: 2
wrap: false
train:
target: invokeai.backend.stable_diffusion.data.personalized.PersonalizedBase
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: train
per_image_tokens: false
repeats: 100
validation:
target: invokeai.backend.stable_diffusion.data.personalized.PersonalizedBase
target: ldm.data.personalized.PersonalizedBase
params:
size: 512
set: val

View File

@@ -1,6 +1,6 @@
model:
base_learning_rate: 1.0e-4
target: invokeai.backend.stable_diffusion.diffusion.ddpm.LatentDiffusion
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
@@ -19,7 +19,7 @@ model:
use_ema: False # we set this to false because this is an inference only config
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
use_fp16: True
@@ -38,7 +38,7 @@ model:
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
@@ -62,7 +62,7 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.FrozenOpenCLIPEmbedder
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"

View File

@@ -1,67 +0,0 @@
model:
base_learning_rate: 1.0e-4
target: invokeai.backend.stable_diffusion.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False # we set this to false because this is an inference only config
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
use_fp16: True
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"

View File

@@ -3,6 +3,3 @@ dist/
node_modules/
patches/
stats.html
index.html
.yarn/
*.scss

View File

@@ -30,12 +30,8 @@ module.exports = {
radix: 'error',
'space-before-blocks': 'error',
'import/prefer-default-export': 'off',
'@typescript-eslint/no-unused-vars': [
'warn',
{ varsIgnorePattern: '^_', argsIgnorePattern: '^_' },
],
'@typescript-eslint/no-unused-vars': ['warn', { varsIgnorePattern: '_+' }],
'prettier/prettier': ['error', { endOfLine: 'auto' }],
'@typescript-eslint/ban-ts-comment': 'warn',
},
settings: {
react: {

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env sh
. "$(dirname -- "$0")/_/husky.sh"
cd invokeai/frontend/web/ && npm run lint-staged
cd invokeai/frontend/ && npm run lint-staged

View File

@@ -3,4 +3,3 @@ dist/
node_modules/
patches/
stats.html
.yarn/

View File

@@ -3,7 +3,6 @@ module.exports = {
tabWidth: 2,
semi: true,
singleQuote: true,
endOfLine: 'auto',
overrides: [
{
files: ['public/locales/*.json'],

Some files were not shown because too many files have changed in this diff Show More