Compare commits

..

104 Commits

Author SHA1 Message Date
Lincoln Stein
e4b61923ae fix InvokeAI download URLs (#1910)
- This fixes the .bat and .sh file URLs for the InvokeAI source
  code.
2022-12-11 07:10:17 -05:00
psychedelicious
aa68e4e0da Adds polyfill for Array.prototype.findLast() (#1909) 2022-12-11 06:54:15 -05:00
blessedcoolant
09365d6d2e Fix GUI not working (#1916) 2022-12-11 06:53:40 -05:00
AdamOStark
b77f34998c Responsive for devices under 600px
This doesn't not work for the Canvas Painting yet, but works on img2img and text2img
2022-12-11 22:10:46 +13:00
Lincoln Stein
0439b51a26 Simple Installer for Unified Directory Structure, Initial Implementation (#1819)
* partially working simple installer

* works on linux

* fix linux requirements files

* read root environment variable in right place

* fix cat invokeai.init in test workflows

* fix classical cp error in test-invoke-pip.yml

* respect --root argument now

* untested bat installers added

* windows install.bat now working

fix logic to find frontend files

* rename simple_install to "installer"

1. simple_install => 'installer'
2. source and binary install directories are removed

* enable update scripts to update requirements

- Also pin requirements to known working commits.
- This may be a breaking change; exercise with caution
- No functional testing performed yet!

* update docs and installation requirements

NOTE: This may be a breaking commit! Due to the way the installer
works, I have to push to a public branch in order to do full end-to-end
testing.

- Updated installation docs, removing binary and source installers and
  substituting the "simple" unified installer.
- Pin requirements for the "http:" downloads to known working commits.
- Removed as much as possible the invoke-ai forks of others' repos.

* fix directory path for installer

* correct requirement/environment errors

* exclude zip files in .gitignore

* possible fix for dockerbuild

* ready for torture testing

- final Windows bat file tweaks
- copy environments-and-requirements to the runtime directory so that
  the `update.sh` script can run.

  This is not ideal, since we lose control over the
  requirements. Better for the update script to pull the proper
  updated requirements script from the repository.

* allow update.sh/update.bat to install arbitrary InvokeAI versions

- Can pass the zip file path to any InvokeAI release, branch, commit or tag,
  and the installer will try to install it.
- Updated documentation
- Added Linux Python install hints.

* use binary installer's :err_exit function

* user diffusers 0.10.0

* added logic for CPPFLAGS on mac

* improve windows install documentation

- added information on a couple of gotchas I experienced during
  windows installation, including DLL loading errors experienced
  when Visual Studio C++ Redistributable was not present.

* tagged to pull from 2.2.4-rc1

- also fix error of shell window closing immediately if suitable
  python not found

Co-authored-by: mauwii <Mauwii@outlook.de>
2022-12-11 00:37:08 -05:00
blessedcoolant
ef6870c714 Fix Inpainting Model entry in models.yaml.example 2022-12-10 23:52:24 -05:00
Damian Stewart
8cbb50c204 avoid further crash under low-memory conditions 2022-12-10 15:32:11 -05:00
blessedcoolant
12a8d7fc14 Fix crash introduced in #1866 2022-12-10 15:32:11 -05:00
Matthias Wild
3d2b497eb0 Run more tests for PRs (#1895)
* run 3 tests for PR with different samplers
reduce tests for PR to do only 5 Iterations

* use correct txt file - delete unused old file
2022-12-10 20:07:14 +01:00
Damian Stewart
786b8878d6 Save and display per-token attention maps (#1866)
* attention maps saving to /tmp

* tidy up diffusers branch backporting of cross attention refactoring

* base64-encoding the attention maps image for generationResult

* cleanup/refactor conditioning.py

* attention maps and tokens being sent to web UI

* attention maps: restrict count to actual token count and improve robustness

* add argument type hint to image_to_dataURL function

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

Co-authored-by: damian <git@damianstewart.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2022-12-10 15:57:41 +01:00
Lincoln Stein
55132f6463 pin diffusers to 0.9.0 2022-12-09 09:09:22 -05:00
Matthias Wild
ed9186b099 Add windows to test workflows (#1809)
* add windows to test runners

* disable fail-fast for debugging

* re-enable login shell for conda workflow
also fix expression to exclude windows from run tests

* enable fail-fast again

* fix condition, pin runner verisons

* remove feature branch from push trigger
since already being triggered now via PR

* use gfpgan from pypi for windows
curious if this would fix the installation here as well
since worked for #1802

* unpin basicsr for windows

* for curiosity enabling testing for windows as well

* disable pip cache
since windows failed with a memory error now
but was working before it had a cache

* use matrix.github-env

* set platform specific root and outdir

* disable tests for windows since memory error
I guess the windows installation uses more space than linux
and for this they have less swap memory
2022-12-09 14:21:38 +01:00
wfng92
d2026d0509 Fix error when init_mask=None and invert_mask=True
In the event where no `init_mask` is given and `invert_mask` is set to True, the script will raise the following error:

```bash
AttributeError: 'NoneType' object has no attribute 'mode'
```

The new implementation will only run inversion when both variables are valid.
2022-12-08 22:37:11 -05:00
Artur
0bc4ed14cd Prompt placeholder changed in PromptInput.tsx
Syntax examples were added
2022-12-08 22:35:41 -05:00
Jonathan
06369d07c0 Update CLI.py 2022-12-08 22:34:49 -05:00
Jonathan
4e61069821 Update embiggen.py 2022-12-08 22:34:49 -05:00
Daya Adianto
d7ba041007 Enable force free GPU memory in img2img 2022-12-07 19:25:21 -05:00
Sammy
3859302f1c Remove -e from "INSTALL_PATCHMATCH.md
The -e flag does NOT work in this case and results in a RemoteNotFound Error
2022-12-07 19:24:31 -05:00
Sammy
865439114b Arch Specific Patchmatch Instructions + Fixing linux conda installation 2022-12-07 19:24:31 -05:00
Lynne Whitehorn
4d76116152 Update invoke.bat.in isolate environment variables
Without locally scoped (to the script) environment variables, this script can only be run once and then you need to start a new cmd session to get a clean environment.

Surrounding the script with setlocal/endlocal achieves this.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/setlocal
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/endlocal
2022-12-07 17:45:19 -05:00
spezialspezial
42f5bd4e12 Account for flat models
Merged models from auto11 merge board are flat for some reason. Current behavior of invoke is not changed by this modification.
2022-12-07 12:11:37 -05:00
Vedant Madane
04e77f3858 Fix Broken Link To Notebook
* The link pointed to https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable-Diffusion-local-Windows.ipynb which does not exist so it has been replaced with https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb

* Add buttons for running on Colab 

* Tried adding running InvokeAI on Binder but the error was:
ERROR: Ignored the following versions that require a different python version: 0.55.2 Requires-Python <3.5
ERROR: Could not find a version that satisfies the requirement clipseg (from invokeai) (from versions: none)
ERROR: No matching distribution found for clipseg
Removing intermediate container 25be65428187
The command '/bin/sh -c ${KERNEL_PYTHON_PREFIX}/bin/pip install --no-cache-dir .' returned a non-zero code: 1

`## Running Online On JupyterHub Binder
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/invoke-ai/InvokeAI/main?labpath=https%3A%2F%2Fgithub.com%2Finvoke-ai%2FInvokeAI%2Fblob%2Fmain%2Fnotebooks%2FStable_Diffusion_AI_Notebook.ipynb)`

This will have to be added for having the Launch | Binder button after it runs properly.
2022-12-07 08:28:14 -05:00
Eugene Brodsky
1fc1eeec38 Fix docker push github action and expand with additional metadata (#1837)
* update docker build (cloud) action with additional metadata, new labels

* (docker) also add aarch64 cloud build and remove arch suffix

* (docker) architecture suffix is needed for now

* (docker) don't build aarch64 for now
2022-12-07 14:03:33 +01:00
Matthias Wild
556081695a disable pushing the cloud container (#1831) 2022-12-06 18:06:48 +01:00
Eugene Brodsky
ad7917c7aa Optimized Docker build with support for external working directory (#1544)
* add docker build optimized for size; do not copy models to image

useful for cloud deployments. attempts to utilize docker layer
caching as effectively as possible. also some quick tools to help with
building

* add workflow to build cloud img in ci

* push cloud image in addition to building

* (ci) also tag docker images with git SHA

* (docker) rework Makefile for easy cache population and local use

* support the new conda-less install; further optimize docker build

* (ci) clean up the build-cloud-img action

* improve the Makefile for local use

* move execution of invoke script from entrypoint to cmd, allows overriding the cmd if needed (e.g. in Runpod

* remove unnecessary copyright statements

* (docs) add a section on running InvokeAI in the cloud using Docker

* (docker) add patchmatch to the cloud image; improve build caching; simplify Makefile

* (docker) fix pip requirements path to use binary_installer directory
2022-12-06 13:28:07 +01:00
Kent Keirsey
39cca8139f Clean up readme 2022-12-06 06:58:26 -05:00
blessedcoolant
1d1988683b Fix Embedding Dir not working 2022-12-05 22:24:31 -05:00
Lincoln Stein
44a0055571 correct regression in loading of PaperCut and VoxelArt models (#1730)
This corrects a regression in loading of these models due to
a change of the embedding_manager parameter `num_vectors_per_token`

Fixes #1718
2022-12-05 19:04:34 +01:00
Lincoln Stein
0cc01143d8 invoke script cds to its location before running (#1805) 2022-12-05 19:03:20 +01:00
spezialspezial
1c0247d58a Eventually update APP_VERSION to 2.2.3
Not sure what the procedure is for the version number. Is this supposed to match every git tag or just major versions? Same question for setup.py
2022-12-04 14:33:16 -05:00
Damian Stewart
d335f51e5f fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).

based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
2022-12-04 11:41:03 +01:00
Lincoln Stein
38cd968130 stability and use improvements to binary & source installers
- Pass command-line arguments through to invoke.py via the .bat and .sh scripts.
- Remove obsolete warning message from binary install.bat
- Make sure that current working directory matches where .bat file is installed
2022-12-03 21:25:12 -05:00
tildebyte
0111304982 fix(srcinstall) shell installer: cp scripts instead of linking 2022-12-03 21:24:18 -05:00
Eugene Brodsky
c607d4fe6c (config) clarify why we're setting the env var 2022-12-03 14:33:21 -05:00
Eugene Brodsky
6d6076d3c7 (config) fix permissions on configure_invokeai.py, improve documentation in globals.py comment 2022-12-03 14:33:21 -05:00
Eugene Brodsky
485fcc7fcb (config) do not cache HF token when using the non-canonical env var
this mirrors the behaviour when using the officially supported env var
2022-12-03 14:33:21 -05:00
Eugene Brodsky
76633f500a (config) make user aware of any problems downloading models
also implement a generic way of reporting issues at the end of installation
2022-12-03 14:33:21 -05:00
Eugene Brodsky
ed6194351c (config) try to authenticate to Huggingface more eagerly, using env vars 2022-12-03 14:33:21 -05:00
Eugene Brodsky
f237744ab1 (config) fix f-string in prompt for output location 2022-12-03 14:33:21 -05:00
ofirkris
678cf8519e typo fix 2022-12-03 14:30:48 -05:00
Damian Stewart
ee9de75b8d Make install instructions discoverable in readme (#1752)
also "Macintosh" → "macOS" to improve "We Support macOS Properly And Not Halfassed Like Other OSS Projects" signalling

Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
2022-12-03 14:20:50 -05:00
Andy Bearman
50f3847ef8 Fix Linux source URL in installation docs 2022-12-03 14:19:58 -05:00
Lincoln Stein
8596e3586c add documentation warning about 1650/60 cards
Several users have been trying to run InvokeAI on GTX 1650 and 1660
cards. They really can't because these cards don't work with
half-precision and only have 4-6GB of memory. Added a warning to
the docs (in two places) about this problem.
2022-12-03 13:16:22 -05:00
Lincoln Stein
5ef1e0714b Merge branch 'main' of github.com:/invoke-ai/InvokeAI into main 2022-12-03 12:25:30 +00:00
Lincoln Stein
be871c3ab3 Merge branch 'ebr-gh-link-src-installer' into main 2022-12-03 12:24:03 +00:00
Lincoln Stein
dec40d9b04 Update source_installer/install.sh.in
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2022-12-03 07:20:32 -05:00
Lincoln Stein
fe5c008dd5 Update docs/installation/INSTALL_SOURCE.md
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2022-12-03 07:20:32 -05:00
Lincoln Stein
72def2ae13 documentation fixes for 2.2.3
- Add Xcode installation instructions to source installer walkthrough
- Fix link to source installer page from installer overview
- If OSX install crashes, script will tell Mac users to go to the docs
  to learn how to install Xcode
2022-12-03 07:20:32 -05:00
Eugene Brodsky
31cd76a2af (docs) install ux: link directly to release zip files
NB: if we remove the version from the zip file names, we can link
directly to assets in the latest GH release from documentation without
the need to keep the links updated
2022-12-03 00:24:49 -05:00
Eugene Brodsky
00c78263ce (docs) install ux: link main README directly to source installer 2022-12-03 00:19:45 -05:00
Lincoln Stein
5c31feb3a1 Remove reference to binary installer 2022-12-02 22:02:51 -05:00
Shawn Zhong
26f129cef8 Fix broken link 2022-12-02 22:02:30 -05:00
Lincoln Stein
292ee06751 Fix description of source code installer
The mkdocs version of INSTALL_SOURCE.md has disappeared and I am patching this in
so that users find the correct installer.
2022-12-02 17:16:29 -05:00
Lincoln Stein
c00d53fcce fix link in documentation 2022-12-02 15:50:34 -05:00
Daya Adianto
a78a8728fe Fix FlaskUI initialization 2022-12-02 15:50:14 -05:00
Kevin Turner
6b5d19347a fix(invoke.sh.in): remove additional mystery character 2022-12-02 15:43:59 -05:00
Eugene Brodsky
26671d8eed (installer) fix syntax error in invoke.sh.in 2022-12-02 15:43:59 -05:00
Lincoln Stein
b487fa4391 fix basicsr conflict on windows 2022-12-02 12:53:13 -05:00
Lincoln Stein
12b98ba4ec make invoke.sh executable 2022-12-02 12:53:13 -05:00
Lincoln Stein
fa25a64d37 remove references to binary installer from docs 2022-12-02 12:48:26 -05:00
Lincoln Stein
29540452f2 fix bad naming of invoke.sh.in 2022-12-02 11:25:37 -05:00
Lincoln Stein
c7960f930a fix regression in copy function 2022-12-02 10:53:42 -05:00
Lincoln Stein
c1c8b5026a apply current directory patch to binary installer .sh file 2022-12-02 10:53:42 -05:00
Lincoln Stein
5da42e0ad2 add back PYTORCH_ENABLE_MPS_FALLBACK 2022-12-02 10:53:42 -05:00
Lincoln Stein
34d6f35408 run .bat file in directory potentially containing spaces
- The previous fix for the "install in Windows system directory" error would fail
   if the path includes directories with spaces in them. This fixes that.

- In addition, addressing the same issue in source installer, although not
	yet reported in wild.
2022-12-02 10:53:42 -05:00
mauwii
401165ba35 correctly link current core team 2022-12-02 09:33:19 -05:00
mauwii
6d8057c84f fix POSTPROCESS ToC 2022-12-02 09:33:19 -05:00
mauwii
3f23dee6f4 add title 2022-12-02 09:33:19 -05:00
mauwii
8cdd961ad2 update IMG2IMG.md 2022-12-02 09:33:19 -05:00
mauwii
470b267939 update CONEPTS.md
- use table with correct syntax for screenshots
- switch Title and first Headline to look better in ToC
2022-12-02 09:33:19 -05:00
mauwii
bf399e303c add index.md to features
to prevent the menu being occupied from the expanded CLI ToC
Should maybe be fleshed out a bit
2022-12-02 09:33:19 -05:00
mauwii
b3d7ad7461 a lot of formatting updates to CLI.md 2022-12-02 09:33:19 -05:00
mauwii
cd66b2c76d fix links in older_docs_to_be_removed 2022-12-02 09:33:19 -05:00
psychedelicious
6b406e2b5e Adds tip for importing models on Windows 2022-12-02 09:25:36 -05:00
Lincoln Stein
6737cc1443 recompile for linux 2022-12-02 09:11:17 -05:00
Lincoln Stein
7fd0eeb9f9 update darwin requirements 2022-12-02 09:11:17 -05:00
Lincoln Stein
16e3b45fa2 update linux reuqirements file 2022-12-02 09:11:17 -05:00
Lincoln Stein
2f07ea03a9 binary installer fix
- bat file changes to directory it lives in rather than user's current directory
- restore incorrect requirements and compiled Darwin requirements file
2022-12-02 09:11:17 -05:00
Lincoln Stein
b563d75c58 restored mac requirements file 2022-12-02 09:11:17 -05:00
psychedelicious
a7b7b20d16 Updates docs release link to latest 2022-12-02 06:20:16 -05:00
Lincoln Stein
a47ef3ded9 change download links to release candidate 2022-12-01 23:24:23 -05:00
Lincoln Stein
7cb9b654f3 add compiled windows file 2022-12-01 23:07:48 -05:00
Lincoln Stein
8819e12a86 configure script changed from preload_models.py to configure_invokeai.py
This makes a cosmetic change. Instead of calling preload_models.py
(deprecated) it calls configure_invokeai.py. Currently the two do
the same thing.
2022-12-01 22:51:05 -05:00
Lincoln Stein
967eb60ea9 added the linux py3.10* file 2022-12-01 22:51:05 -05:00
psychedelicious
b1091ecda1 Fixes failed canvas generation when gallery is empty
There was some old logic from before Unified Canvas which aborted generation when there was no currentImage. 

If you have an image in the gallery, there is always a currentImage. But if gallery is empty, there is no currentImage. Generation would silently fail in this case.

We apparently never tested with an empty gallery and thus never ran into the issue. This removes this old and now-unused logic.
2022-12-01 22:29:56 -05:00
Lincoln Stein
2723dd9051 remove bad characters from end of user input
Some users were leaving whitespace at the end of their root
directories or ending them with a backslash. This caused the root
directory to become unusable. This removes whitespace and backslashes
from the end of the directory names.

Note that more needs to be done to cleanse the input, but for now
this will cover the cases we have seen so far in the wild.
2022-12-01 22:15:39 -05:00
Lincoln Stein
8f050d992e documentation fixes for release 2022-12-01 22:02:50 -05:00
Lincoln Stein
0346095876 fix incorrect syntax for .bat 2022-12-01 22:02:27 -05:00
Lincoln Stein
f9bbc55f74 Merge branch 'source-installer-improvements' into main 2022-12-01 23:18:54 +00:00
Lincoln Stein
878a3907e9 defer loading of Hugging Face concepts until needed
Some users have been complaining that the CLI "freezes" for a while
before the invoke> prompt appears. I believe this is due to internet
delay while the concepts library names are downloaded by the autocompleter.
I have changed logic so that the concepts are downloaded the first time
the user types a < and tabs.
2022-12-01 17:56:18 -05:00
Lincoln Stein
4cfb41d9ae configure_invokeai.py enhancement
- Adds a new option to download <a>ll the models, in addition
  to <r>ecommended and <c>ustomized.
2022-12-01 15:59:14 -05:00
Lincoln Stein
6ec64ecb3c fix commit conflict markers 2022-12-01 15:07:54 -05:00
Lincoln Stein
540315edaa rename to binary_installer in build docs 2022-12-01 14:58:07 -05:00
Lincoln Stein
cf10a1b736 Merge branch 'main' into source-installer-improvements 2022-12-01 19:45:47 +00:00
Lincoln Stein
9fb2a43780 rename "installer" to "binary_installer"
- Fix up internal names so scripts run properly
2022-12-01 19:40:47 +00:00
Lincoln Stein
1b743f7d9b source installer improvements and documentation
- Source installer provides more context for what it is doing, and
  sends user to help/troubleshooting pages when something goes wrong.

- install.sh and install.bat are renamed to install.sh.in and install.bat.in
  to discourage users from running them from within the

- Documentation updated
2022-12-01 19:40:13 +00:00
Damian Stewart
d7bf3f7d7b make .sh/.bat files inside installer/ non executable (#1664)
* make binary installer executables non-executable inside the repo

* update docs to match previous commit
2022-12-01 19:35:21 +01:00
Lincoln Stein
eba31e7caf Documentation updates for 2.2 release 2022-12-01 08:09:31 -05:00
Lincoln Stein
bde456f9fa fix startup messages and a startup crash
- make the warnings about patchmatch less redundant
- only warn about being unable to load concepts from Hugging Face
  library once
- do not crash when unable to load concepts from Hugging Face
  due to network connectivity issues
2022-12-01 07:42:31 -05:00
Lincoln Stein
9ee83380e6 fix missig history file in output director 2022-12-01 07:39:26 -05:00
Lincoln Stein
6982e6a469 rebuilt frontend 2022-11-30 19:20:57 -05:00
Lincoln Stein
0f4d71ed63 Merge dev into main for 2.2.0 (#1642)
* Fixes inpainting + code cleanup

* Disable stage info in Inpainting Tab

* Mask Brush Preview now always at 0.5 opacity

The new mask is only visible properly at max opacity but at max opacity the brush preview becomes fully opaque blocking the view. So the mask brush preview no remains at 0.5 no matter what the Brush opacity is.

* Remove save button from Canvas Controls (cleanup)

* Implements invert mask

* Changes "Invert Mask" to "Preserve Masked Areas"

* Fixes (?) spacebar issues

* Patches redux-persist and redux-deep-persist with debounced persists

Our app changes redux state very, very often. As our undo/redo history grows, the calls to persist state start to take in the 100ms range, due to a the deep cloning of the history. This causes very noticeable performance lag.

The deep cloning is required because we need to blacklist certain items in redux from being persisted (e.g. the app's connection status).

Debouncing the whole process of persistence is a simple and effective solution. Unfortunately, `redux-persist` dropped `debounce` between v4 and v5, replacing it with `throttle`. `throttle`, instead of delaying the expensive action until a period of X ms of inactivity, simply ensures the action is executed at least every X ms. Of course, this does not fix our performance issue. 

The patch is very simple. It adds a `debounce` argument - a number of milliseconds - and debounces `redux-persist`'s `update()` method (provided by `createPersistoid`) by that many ms.

Before this, I also tried writing a custom storage adapter for `redux-persist` to debounce the calls to `localStorage.setItem()`. While this worked and was far less invasive, it doesn't actually address the issue. It turns out `setItem()` is a very fast part of the process.

We use `redux-deep-persist` to simplify the `redux-persist` configuration, which can get complicated when you need to blacklist or whitelist deeply nested state. There is also a patch here for that library because it uses the same types as `redux-persist`.

Unfortunately, the last release of `redux-persist` used a package `flat-stream` which was malicious and has been removed from npm. The latest commits to `redux-persist` (about 1 year ago) do not build; we cannot use the master branch. And between the last release and last commit, the changes have all been breaking.

Patching this last release (about 3 years old at this point) directly is far simpler than attempting to fix the upstream library's master branch or figuring out an alternative to the malicious and now non-existent dependency.

* Adds debouncing

* Fixes AttributeError: 'dict' object has no attribute 'invert_mask'

* Updates package.json to use redux-persist patches

* Attempts to fix redux-persist debounce patch

* Fixes undo/redo

* Fixes invert mask

* Debounce > 300ms

* Limits history to 256 for each of undo and redo

* Canvas styling

* Hotkeys improvement

* Add Metadata To Viewer

* Increases CFG Scale max to 200

* Fix gallery width size for Outpainting

Also fixes the canvas resizing failing n fast pushes

* Fixes disappearing canvas grid lines

* Adds staging area

* Fixes "use all" not setting variationAmount

Now sets to 0 when the image had variations.

* Builds fresh bundle

* Outpainting tab loads to empty canvas instead of upload

* Fixes wonky canvas layer ordering & compositing

* Fixes error on inpainting paste back

`TypeError: 'float' object cannot be interpreted as an integer`

* Hides staging area outline on mouseover prev/next

* Fixes inpainting not doing img2img when no mask

* Fixes bbox not resizing in outpainting if partially off screen

* Fixes crashes during iterative outpaint. Still doesn't work correctly though.

* Fix iterative outpainting by restoring original images

* Moves image uploading to HTTP

- It all seems to work fine
- A lot of cleanup is still needed
- Logging needs to be added
- May need types to be reviewed

* Fixes: outpainting temp images show in gallery

* WIP refactor to unified canvas

* Removes console.log from redux-persist patch

* Initial unification of canvas

* Removes all references to split inpainting/outpainting canvas

* Add patchmatch and infill_method parameter to prompt2image (options are 'patchmatch' or 'tile').

* Fixes app after removing in/out-painting refs

* Rebases on dev, updates new env files w/ patchmatch

* Organises features/canvas

* Fixes bounding box ending up offscreen

* Organises features/canvas

* Stops unnecessary canvas rescales on gallery state change

* Fixes 2px layout shift on toggle canvas lock

* Clips lines drawn while canvas locked

When drawing with the locked canvas, if a brush stroke gets too close to the edge of the canvas and its stroke would extend past the edge of the canvas, the edge of that stroke will be seen after unlocking the canvas.

This could cause a problem if you unlock the canvas and now have a bunch of strokes just outside the init image area, which are far back in undo history and you cannot easily erase.

With this change, lines drawn while the canvas is locked get clipped to the initial image bbox, fixing this issue.

Additionally, the merge and save to gallery functions have been updated to respect the initial image bbox so they function how you'd expect.

* Fixes reset canvas view when locked

* Fixes send to buttons

* Fixes bounding box not being rounded to 64

* Abandons "inpainting" canvas lock

* Fixes save to gallery including empty area, adds download and copy image

* Fix Current Image display background going over image bounds

* Sets status immediately when clicking Invoke

* Adds hotkeys and refactors sharing of konva instances

Adds hotkeys to canvas. As part of this change, the access to konva instance objects was refactored:

Previously closure'd refs were used to indirectly get access to the konva instances outside of react components.

Now, a  getter and setter function are used to provide access directly to the konva objects.

* Updates hotkeys

* Fixes canvas showing spinner on first load

Also adds good default canvas scale and positioning when no image is on it

* Fixes possible hang on MaskCompositer

* Improves behaviour when setting init canvas image/reset view

* Resets bounding box coords/dims when no image present

* Disables canvas actions which cannot be done during processing

* Adds useToastWatcher hook

- Dispatch an `addToast` action with standard Chakra toast options object to add a toast to the toastQueue
- The hook is called in App.tsx and just useEffect's w/ toastQueue as dependency to create the toasts
- So now you can add toasts anywhere you have access to `dispatch`, which includes middleware and thunks
- Adds first usage of this for the save image buttons in canvas

* Update Hotkey Info

Add missing tooltip hotkeys and update the hotkeys modal to reflect the new hotkeys for the Unified Canvas.

* Fix theme changer not displaying current theme on page refresh

* Fix tab count in hotkeys panel

* Unify Brush and Eraser Sizes

* Fix staging area display toggle not working

* Staging Area delete button is now red

So it doesnt feel blended into to the rest of them.

* Revert "Fix theme changer not displaying current theme on page refresh"

This reverts commit 903edfb803e743500242589ff093a8a8a0912726.

* Add arguments to use SSL to webserver

* Integrates #1487 - touch events

Need to add:
- Pinch zoom
- Touch-specific handling (some things aren't quite right)

* Refactors upload-related async thunks

- Now standard thunks instead of RTK createAsyncThunk()
- Adds toasts for all canvas upload-related actions

* Reorganises app file structure

* Fixes Canvas Auto Save to Gallery

* Fixes staging area outline

* Adds staging area hotkeys, disables gallery left/right when staging

* Fixes Use All Parameters

* Fix metadata viewer image url length when viewing intermediate

* Fixes intermediate images being tiny in txt2img/img2img

* Removes stale code

* Improves canvas status text and adds option to toggle debug info

* Fixes paste image to upload

* Adds model drop-down to site header

* Adds theme changer popover

* Fix missing key on ThemeChanger map

* Fixes stage position changing on zoom

* Hotkey Cleanup

- Viewer is now Z
- Canvas Move tool is V - sync with PS
- Removed some unused hotkeys

* Fix canvas resizing when both options and gallery are unpinned

* Implements thumbnails for gallery

- Thumbnails are saved whenever an image is saved, and when gallery requests images from server
- Thumbnails saved at original image aspect ratio with width of 128px as WEBP
- If the thumbnail property of an image is unavailable for whatever reason, the image's full size URL is used instead

* Saves thumbnails to separate thumbnails directory

* Thumbnail size = 256px

* Fix Lightbox Issues

* Disables canvas image saving functions when processing

* Fix index error on going past last image in Gallery

* WIP - Lightbox Fixes

Still need to fix the images not being centered on load when the image res changes

* Fixes another similar index error, simplifies logic

* Reworks canvas toolbar

* Fixes canvas toolbar upload button

* Cleans up IAICanvasStatusText

* Improves metadata handling, fixes #1450

- Removes model list from metadata
- Adds generation's specific model to metadata
- Displays full metadata in JSON viewer

* Gracefully handles corrupted images; fixes #1486

- App does not crash if corrupted image loaded
- Error is displayed in the UI console and CLI output if an image cannot be loaded

* Adds hotkey to reset canvas interaction state

If the canvas' interaction state (e.g. isMovingBoundingBox, isDrawing, etc) get stuck somehow, user can press Escape to reset the state.

* Removes stray console.log()

* Fixes bug causing gallery to close on context menu open

* Minor bugfixes

- When doing long-running canvas image exporting actions, display indeterminate progress bar
- Fix staging area image outline not displaying after committing/discarding results

* Removes unused imports

* Fixes repo root .gitignore ignoring frontend things

* Builds fresh bundle

* Styling updates

* Removes reasonsWhyNotReady

The popover doesn't play well with the button being disabled, and I don't think adds any value.

* Image gallery resize/style tweaks

* Styles buttons for clearing canvas history and mask

* First pass on Canvas options panel

* Fixes bug where discarding staged images results in loss of history

* Adds Save to Gallery button to staging toolbar

* Rearrange some canvas toolbar icons

Put brush stuff together and canvas movement stuff together

* Fix gallery maxwidth on unified canvas

* Update Layer hotkey display to UI

* Adds option to crop to bounding box on save

* Masking option tweaks

* Crop to Bounding Box > Save Box Region Only

* Adds clear temp folder

* Updates mask options popover behavior

* Builds fresh bundle

* Fix styling on alert modals

* Fix input checkbox styling being incorrect on light theme

* Styling fixes

* Improves gallery resize behaviour

* Cap gallery size on canvas tab so it doesnt overflow

* Fixes bug when postprocessing image with no metadata

* Adds IAIAlertDialog component

* Moves Loopback to app settings

* Fixes metadata viewer not showing metadata after refresh

Also adds Dream-style prompt to metadata

* Adds outpainting specific options

* Linting

* Fixes gallery width on lightbox, fixes gallery button expansion

* Builds fresh bundle

* Fix Lightbox images of different res not centering

* Update feature tooltip text

* Highlight mask icon when on mask layer

* Fix gallery not resizing correctly on open and close

* Add loopback to just img2img. Remove from settings.

* Fix to gallery resizing

* Removes Advanced checkbox, cleans up options panel for unified canvas

* Minor styling fixes to new options panel layout

* Styling Updates

* Adds infill method

* Tab Styling Fixes

* memoize outpainting options

* Fix unnecessary gallery re-renders

* Isolate Cursor Pos debug text on canvas to prevent rerenders

* Fixes missing postprocessed image metadata before refresh

* Builds fresh bundle

* Fix rerenders on model select

* Floating panel re-render fix

* Simplify fullscreen hotkey selector

* Add Training WIP Tab

* Adds Training icon

* Move full screen hotkey to floating to prevent tab rerenders

* Adds single-column gallery layout

* Fixes crash on cancel with intermediates enabled, fixes #1416

* Updates npm dependencies

* Fixes img2img attempting inpaint when init image has transparency

* Fixes missing threshold and perlin parameters in metadata viewer

* Renames "Threshold" > "Noise Threshold"

* Fixes postprocessing not being disabled when clicking use all

* Builds fresh bundle

* Adds color picker

* Lints & builds fresh bundle

* Fixes iterations being disabled when seed random & variations are off

* Un-floors cursor position

* Changes color picker preview to circles

* Fixes variation params not set correctly when recalled

* Fixes invoke hotkey not working in input fields

* Simplifies Accordion

Prep for adding reset buttons for each section

* Fixes mask brush preview color

* Committing color picker color changes tool to brush

* Color picker does not overwrite user-selected alpha

* Adds brush color alpha hotkey

* Lints

* Removes force_outpaint param

* Add inpaint size options to inpaint at a larger size than the actual inpaint image, then scale back down for recombination

* Bug fix for inpaint size

* Adds inpaint size (as scale bounding box) to UI

* Adds auto-scaling for inpaint size

* Improves scaled bbox display logic

* Fixes bug with clear mask and history

* Fixes shouldShowStagingImage not resetting to true on commit

* Builds fresh bundle

* Fixes canvas failing to scale on first run

* Builds fresh bundle

* Fixes unnecessary canvas scaling

* Adds gallery drag and drop to img2img/canvas

* Builds fresh bundle

* Fix desktop mode being broken with new versions of flaskwebgui

* Fixes canvas dimensions not setting on first load

* Builds fresh bundle

* stop crash on !import_models call on model inside rootdir

- addresses bug report #1546

* prevent "!switch state gets confused if model switching fails"

- If !switch were to fail on a particular model, then generate got
  confused and wouldn't try again until you switch to a different working
  model and back again.

- This commit fixes and closes #1547

* Revert "make the docstring more readable and improve the list_models logic"

This reverts commit 248068fe5d.

* fix model cache path

* also set fail-fast to it's default (true)
in this way the whole action fails if one job fails
this should unblock the runners!!!

* fix output path for Archive results

* disable checks for python 3.9

* Update-requirements and test-invoke-pip workflow (#1574)

* update requirements files

* update test-invoke-pip workflow

* move requirements-mkdocs.txt to docs folder (#1575)

* move requirements-mkdocs.txt to docs folder

* update copyright

* Fixes outpainting with resized inpaint size

* Interactive configuration (#1517)

* Update scripts/configure_invokeai.py

prevent crash if output exists

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* implement changes requested by reviews

* default to correct root and output directory on Windows systems

- Previously the script was relying on the readline buffer editing
  feature to set up the correct default. But this feature doesn't
  exist on windows.

- This commit detects when user typed return with an empty directory
  value and replaces with the default directory.

* improved readability of directory choices

* Update scripts/configure_invokeai.py

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* better error reporting at startup

- If user tries to run the script outside of the repo or runtime directory,
  a more informative message will appear explaining the problem.

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* Embedding merging (#1526)

* add whole <style token> to vocab for concept library embeddings

* add ability to load multiple concept .bin files

* make --log_tokenization respect custom tokens

* start working on concept downloading system

* preliminary support for dynamic loading and merging of multiple embedded models

- The embedding_manager is now enhanced with ldm.invoke.concepts_lib,
  which handles dynamic downloading and caching of embedded models from
  the Hugging Face concepts library (https://huggingface.co/sd-concepts-library)

- Downloading of a embedded model is triggered by the presence of one or more
  <concept> tags in the prompt.

- Once the embedded model is downloaded, its trigger phrase will be loaded
  into the embedding manager and the prompt's <concept> tag will be replaced
  with the <trigger_phrase>

- The downloaded model stays on disk for fast loading later.

- The CLI autocomplete will complete partial <concept> tags for you. Type a
  '<' and hit tab to get all ~700 concepts.

BUGS AND LIMITATIONS:

- MODEL NAME VS TRIGGER PHRASE

  You must use the name of the concept embed model from the SD
  library, and not the trigger phrase itself. Usually these are the
  same, but not always. For example, the model named "hoi4-leaders"
  corresponds to the trigger "<HOI4-Leader>"

  One reason for this design choice is that there is no apparent
  constraint on the uniqueness of the trigger phrases and one trigger
  phrase may map onto multiple models. So we use the model name
  instead.

  The second reason is that there is no way I know of to search
  Hugging Face for models with certain trigger phrases. So we'd have
  to download all 700 models to index the phrases.

  The problem this presents is that this may confuse users, who will
  want to reuse prompts from distributions that use the trigger phrase
  directly. Usually this will work, but not always.

- WON'T WORK ON A FIREWALLED SYSTEM

  If the host running IAI has no internet connection, it can't
  download the concept libraries. I will add a script that allows
  users to preload a list of concept models.

- BUG IN PROMPT REPLACEMENT WHEN MODEL NOT FOUND

  There's a small bug that occurs when the user provides an invalid
  model name. The <concept> gets replaced with <None> in the prompt.

* fix loading .pt embeddings; allow multi-vector embeddings; warn on dupes

* simplify replacement logic and remove cuda assumption

* download list of concepts from hugging face

* remove misleading customization of '*' placeholder

the existing code as-is did not do anything; unclear what it was supposed to do.

the obvious alternative -- setting using 'placeholder_strings' instead of
'placeholder_tokens' to match model.params.personalization_config.params.placeholder_strings --
caused a crash. i think this is because the passed string also needed to be handed over
on init of the PersonalizedBase as the 'placeholder_token' argument.
this is weird config dict magic and i don't want to touch it. put a
breakpoint in personalzied.py line 116 (top of PersonalizedBase.__init__) if
you want to have a crack at it yourself.

* address all the issues raised by damian0815 in review of PR #1526

* actually resize the token_embeddings

* multiple improvements to the concept loader based on code reviews

1. Activated the --embedding_directory option (alias --embedding_path)
   to load a single embedding or an entire directory of embeddings at
   startup time.

2. Can turn off automatic loading of embeddings using --no-embeddings.

3. Embedding checkpoints are scanned with the pickle scanner.

4. More informative error messages when a concept can't be loaded due
   either to a 404 not found error or a network error.

* autocomplete terms end with ">" now

* fix startup error and network unreachable

1. If the .invokeai file does not contain the --root and --outdir options,
  invoke.py will now fix it.

2. Catch and handle network problems when downloading hugging face textual
   inversion concepts.

* fix misformatted error string

Co-authored-by: Damian Stewart <d@damianstewart.com>

* model_cache.py: fix list_models

Signed-off-by: devops117 <55235206+devops117@users.noreply.github.com>

* add statement of values (#1584)

* this adds the Statement of Values

Google doc source = https://docs.google.com/document/d/1-PrUKDJcxy8OyNGc8CyiHhv2VgLvjt7LRGlEpbg1nmQ/edit?usp=sharing

* Fix heading

* Update InvokeAI_Statement_of_Values.md

* Update InvokeAI_Statement_of_Values.md

* Update InvokeAI_Statement_of_Values.md

* Update InvokeAI_Statement_of_Values.md

* Update InvokeAI_Statement_of_Values.md

* add keturn and mauwii to the team member list

* Fix punctuation

* this adds the Statement of Values

Google doc source = https://docs.google.com/document/d/1-PrUKDJcxy8OyNGc8CyiHhv2VgLvjt7LRGlEpbg1nmQ/edit?usp=sharing

* add keturn and mauwii to the team member list

* fix formating
- make sub bullets use * (decide to all use - or *)
- indent sub bullets
Sorry, first only looked at the code version and found this only after
looking at the markdown rendered version

* use multiparagraph numbered sections

* Break up Statement Of Values as per comments on #1584

* remove duplicated word, reduce vagueness

it's important not to overstate how many artists we are consulting.

* fix typo (sorry blessedcoolant)

Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: damian <git@damianstewart.com>

* update dockerfile (#1551)

* update dockerfile

* remove not existing file from .dockerignore

* remove bloat and unecesary step
also use --no-cache-dir for pip install
image is now close to 2GB

* make Dockerfile a variable

* set base image to `ubuntu:22.10`

* add build-essential

* link outputs folder for persistence

* update tag variable

* update docs

* fix not customizeable build args, add reqs output

* !model_import autocompletes in ROOTDIR

* Adds psychedelicious to statement of values signature (#1602)

* add a --no-patchmatch option to disable patchmatch loading (#1598)

This feature was added to prevent the CI Macintosh tests from erroring
out when patchmatch is unable to retrieve its shared library from
github assets.

* Fix #1599 by relaxing the `match_trigger` regex (#1601)

* Fix #1599 by relaxing the `match_trigger` regex

Also simplify logic and reduce duplication.

* restrict trigger regex again (but not so far)

* make concepts library work with Web UI

This PR makes it possible to include a Hugging Face concepts library
<style-or-subject-trigger> in the WebUI prompt. The metadata seems
to be correctly handled.

* documentation enhancements (#1603)

- Add documentation for the Hugging Face concepts library and TI embedding.

- Fixup index.md to point to each of the feature documentation files,
  including ones that are pending.

* tweak setup and environment files for linux & pypatchmatch (#1580)

* tweak setup and environment files for linux & pypatchmatch

- Downgrade python requirements to 3.9 because 3.10 is not supported
  on Ubuntu 20.04 LTS (widely-used distro)
- Use our github pypatchmatch 0.1.3 in order to install Makefile
  where it needs to be.
- Restored "-e ." as the last install step on pip installs. Hopefully
  this will not trigger the high-CPU hang we've previously experienced.

* keep windows on basicsr 1.4.1

* keep windows on basicsr 1.4.1

* bump pypatchmatch requirement to 0.1.4

- This brings in a version of pypatchmatch that will gracefully
  handle internet connection not available at startup time.
- Also refactors and simplifies the handling of gfpgan's basicsr requirement
  across various platforms.

* revert to older version of list_models() (#1611)

This restores the correct behavior of list_models() and quenches
the bug of list_models() returning a single model entry named "name".

I have not investigated what was wrong with the new version, but I
think it may have to do with changes to the behavior in dict.update()

* Fixes for #1604 (#1605)

* Converts ESRGAN image input to RGB

- Also adds typing for image input.
- Partially resolves #1604

* ensure there are unmasked pixels before color matching

Co-authored-by: Kyle Schouviller <kyle0654@hotmail.com>

* update index.md (#1609)

- comment out non existing link
- fix indention
- add seperator between feature categories

* Debloat-docker (#1612)

* debloat Dockerfile
- less options more but more userfriendly
- better Entrypoint to simulate CLI usage
- without command the container still starts the web-host

* debloat build.sh

* better syntax in run.sh

* update Docker docs
- fix description of VOLUMENAME
- update run script example to reflect new entrypoint

* Test installer (#1618)

* test linux install

* try removing http from parsed requirements

* pip install confirmed working on linux

* ready for linux testing

- rebuilt py3.10-linux-x86_64-cuda-reqs.txt to include pypatchmatch
  dependency.
- point install.sh and install.bat to test-installer branch.

* Updates MPS reqs

* detect broken readline history files

* fix download.pytorch.org URL

* Test installer (Win 11) (#1620)

Co-authored-by: Cyrus Chan <cyruswkc@hku.hk>

* Test installer (MacOS 13.0.1 w/ torch==1.12.0) (#1621)

* Test installer (Win 11)

* Test installer (MacOS 13.0.1 w/ torch==1.12.0)

Co-authored-by: Cyrus Chan <cyruswkc@hku.hk>

* change sourceball to development for testing

* Test installer (MacOS 13.0.1 w/ torch==1.12.1 & torchvision==1.13.1) (#1622)

* Test installer (Win 11)

* Test installer (MacOS 13.0.1 w/ torch==1.12.0)

* Test installer (MacOS 13.0.1 w/ torch==1.12.1 & torchvision==1.13.1)

Co-authored-by: Cyrus Chan <cyruswkc@hku.hk>

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Cyrus Chan <82143712+cyruschan360@users.noreply.github.com>
Co-authored-by: Cyrus Chan <cyruswkc@hku.hk>

* 2.2 Doc Updates (#1589)

* Unified Canvas Docs & Assets

Unified Canvas draft

Advanced Tools Updates

Doc Updates (lstein feedback)

* copy edits to Unified Canvas docs

- consistent capitalisation and feature naming
- more intimate address (replace "the user" with "you") for improved User
  Engagement(tm)
- grammatical massaging and *poesie*

Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: damian <git@damianstewart.com>

* include a step after config to `cat ~/.invokeai` (#1629)

* disable patchmatch in CI actions (#1626)

* disable patchmatch in CI actions

* fix indention

* replace tab with spaces

Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>

* Fix installer script for macOS. (#1630)

* refer to the platform as 'osx' instead of 'mac', otherwise the
composed URL to micromamba is wrong.
* move the `-O` option to `tar` to be grouped with the other tar flags
to avoid the `-O` being interpreted as something to unarchive.

* Removes symlinked environment.yaml (#1631)

Was unintentionally added in #1621

* Fix inpainting with iterations (#1635)

* fix error when inpainting using runwayml inpainting model (#1634)

- error was "Omnibus object has no attribute pil_image"
- closes #1596

* add k_dpmpp_2_a and k_dpmpp_2 solvers options (#1389)

* add k_dpmpp_2_a and k_dpmpp_2 solvers options

* update frontend

Co-authored-by: Victor <victorca25@users.noreply.github.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>

* add .editorconfig (#1636)

* Web UI 2.2 bugfixes (#1572)

* Fixes bug preventing multiple images from being generated

* Fixes valid seam strength value range

* Update Delete Alert Text

Indicates to the user that images are not permanently deleted.

* Fixes left/right arrows not working on gallery

* Fixes initial image on load erroneously set to a user uploaded image

Should be a result gallery image.

* Lightbox Fixes

- Lightbox is now a button in the current image buttons
- Lightbox is also now available in the gallery context menu
- Lightbox zoom issues fixed
- Lightbox has a fade in animation.

* Fix image display wrapper in current preview not overflow bounds

* Revert "Fix image display wrapper in current preview not overflow bounds"

This reverts commit 5511c82714dbf1d1999d64e8bc357bafa34ddf37.

* Change Staging Area discard icon from Bin to X

* Expose Snap Threshold and Move Snap Settings to BBox Panel

* Changes img2img strength default to 0.75

* Fixes drawing triggering when mouse enters canvas w/ button down

When we only supported inpainting and no zoom, this was useful. It allowed the cursor to leave the canvas (which was easy to do given the limited canvas dimensions) and without losing the "I am drawing" state. 

With a zoomable canvas this is no longer as useful.

Additionally, we have more popovers and tools (like the color pickers) which result in unexpected brush strokes. This fixes that issue.

* Revert "Expose Snap Threshold and Move Snap Settings to BBox Panel"

We will handle this a bit differently - by allowing the grid origin to be moved. I will dig in at some point.

This reverts commit 33c92ecf4da724c2f17d9d91c7ea31a43a2f6deb.

* Adds Limit Strokes to Box

* Adds fill bounding box button

* Adds erase bounding box button

* Changes Staging area discard icon to match others

* Fixes right click breaking move tool

* Fixes brush preview visibility issue with "darken outside box"

* Fixes history bugs with addFillRect, addEraseRect, and other actions

* Adds missing `key`

* Fixes postprocessing being applied to canvas generations

* Fixes bbox not getting scaled in various situations

* Fixes staging area show image toggle not resetting on accept/discard

* Locks down canvas while generating/staging

* Fixes move tool breaking when canvas loses focus during move/transform

* Hides cursor when restrict strokes is on and mouse outside bbox

* Lints

* Builds fresh bundle

* Fix overlapping hotkey for Fill Bounding Box

* Build Fresh Bundle

* Fixes bug with mask and bbox overlay

* Builds fresh bundle

Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>

* disable NSFW checker loading during the CI tests (#1641)

* disable NSFW checker loading during the CI tests

The NSFW filter apparently causes invoke.py to crash during CI testing,
possibly due to out of memory errors. This workaround disables NSFW
model loading.

* doc change

* fix formatting errors in yml files

* Configure the NSFW checker at install time with default on (#1624)

* configure the NSFW checker at install time with default on

1. Changes the --safety_checker argument to --nsfw_checker and
--no-nsfw_checker. The original argument is recognized for backward
compatibility.

2. The configure script asks users whether to enable the checker
(default yes). Also offers users ability to select default sampler and
number of generation steps.

3.Enables the pasting of the caution icon on blurred images when
InvokeAI is installed into the package directory.

4. Adds documentation for the NSFW checker, including caveats about
accuracy, memory requirements, and intermediate image dispaly.

* use better fitting icon

* NSFW defaults false for testing

* set default back to nsfw active

Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>

Signed-off-by: devops117 <55235206+devops117@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Kyle Schouviller <kyle0654@hotmail.com>
Co-authored-by: javl <mail@jaspervanloenen.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: DevOps117 <55235206+devops117@users.noreply.github.com>
Co-authored-by: damian <git@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Cyrus Chan <82143712+cyruschan360@users.noreply.github.com>
Co-authored-by: Cyrus Chan <cyruswkc@hku.hk>
Co-authored-by: Andre LaBranche <dre@mac.com>
Co-authored-by: victorca25 <41912303+victorca25@users.noreply.github.com>
Co-authored-by: Victor <victorca25@users.noreply.github.com>
2022-11-30 16:12:23 -05:00
Lincoln Stein
8f3f64b22e prevent crash that occurs when changing models.yaml on windows systems
Windows does not support an atomic `os.rename()` operation. This
PR changes it to `os.replace()`, which does the same thing.
2022-11-25 16:59:31 -05:00
slashtechno
dba0280790 Fix Colab requirements (again) (#1505) 2022-11-24 20:41:31 -05:00
108 changed files with 4385 additions and 2529 deletions

View File

@@ -1,12 +1,26 @@
*
!backend
!configs
!environments-and-requirements
!frontend
!installer
!binary_installer
!ldm
!main.py
!scripts
!server
!static
!setup.py
!docker-build
!docs
docker-build/Dockerfile
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
# unignore configs, but only ignore the custom models.yaml, in case it exists
!configs
configs/models.yaml
# unignore environment dirs/files, but ignore the environment.yml file or symlink in case it exists
!environment*
environment.yml
**/__pycache__

87
.github/workflows/build-cloud-img.yml vendored Normal file
View File

@@ -0,0 +1,87 @@
name: Build and push cloud image
on:
workflow_dispatch:
push:
branches:
- main
tags:
- v*
# we will NOT push the image on pull requests, only test buildability.
pull_request:
branches:
- main
permissions:
contents: read
packages: write
env:
REGISTRY: ghcr.io
IMAGE_NAME: ${{ github.repository }}
jobs:
docker:
strategy:
fail-fast: false
matrix:
arch:
- x86_64
# requires resolving a patchmatch issue
# - aarch64
runs-on: ubuntu-latest
name: ${{ matrix.arch }}
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
if: matrix.arch == 'aarch64'
- name: Docker meta
id: meta
uses: docker/metadata-action@v4
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
# see https://github.com/docker/metadata-action
# will push the following tags:
# :edge
# :main (+ any other branches enabled in the workflow)
# :<tag>
# :1.2.3 (for semver tags)
# :1.2 (for semver tags)
# :<sha>
tags: |
type=edge,branch=main
type=ref,event=branch
type=ref,event=tag
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=sha
# suffix image tags with architecture
flavor: |
latest=auto
suffix=-${{ matrix.arch }},latest=true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
# do not login to container registry on PRs
- if: github.event_name != 'pull_request'
name: Docker login
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Build and push cloud image
uses: docker/build-push-action@v3
with:
context: .
file: docker-build/Dockerfile.cloud
platforms: Linux/${{ matrix.arch }}
# do not push the image on PRs
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@@ -4,7 +4,6 @@ on:
branches:
- 'main'
- 'development'
- 'fix-gh-actions-fork'
pull_request:
branches:
- 'main'
@@ -20,16 +19,28 @@ jobs:
- environment-lin-amd.yml
- environment-lin-cuda.yml
- environment-mac.yml
- environment-win-cuda.yml
include:
- environment-yaml: environment-lin-amd.yml
os: ubuntu-latest
os: ubuntu-22.04
curl-command: curl
github-env: $GITHUB_ENV
default-shell: bash -l {0}
- environment-yaml: environment-lin-cuda.yml
os: ubuntu-latest
os: ubuntu-22.04
curl-command: curl
github-env: $GITHUB_ENV
default-shell: bash -l {0}
- environment-yaml: environment-mac.yml
os: macos-12
curl-command: curl
github-env: $GITHUB_ENV
default-shell: bash -l {0}
- environment-yaml: environment-win-cuda.yml
os: windows-2022
curl-command: curl.exe
github-env: $env:GITHUB_ENV
default-shell: pwsh
- stable-diffusion-model: stable-diffusion-1.5
stable-diffusion-model-url: https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1
@@ -72,15 +83,15 @@ jobs:
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to development branch validation
if: ${{ github.ref == 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/dev_prompts.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/dev_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' && github.ref != 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: Use Cached Stable Diffusion Model
id: cache-sd-model
@@ -96,22 +107,20 @@ jobs:
if: ${{ steps.cache-sd-model.outputs.cache-hit != 'true' }}
run: |
mkdir -p "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}"
curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}/${{ matrix.stable-diffusion-model-dl-name }}" \
-L ${{ matrix.stable-diffusion-model-url }}
${{ matrix.curl-command }} -H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" -o "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}/${{ matrix.stable-diffusion-model-dl-name }}" -L ${{ matrix.stable-diffusion-model-url }}
- name: run configure_invokeai.py
id: run-preload-models
run: |
python scripts/configure_invokeai.py --no-interactive --yes
- name: cat ~/.invokeai
- name: cat invokeai.init
id: cat-invokeai
run: cat ~/.invokeai
run: cat ${{ env.INVOKEAI_ROOT }}/invokeai.init
- name: Run the tests
id: run-tests
if: matrix.os != 'windows-2022'
run: |
time python scripts/invoke.py \
--no-patchmatch \
@@ -123,11 +132,13 @@ jobs:
- name: export conda env
id: export-conda-env
if: matrix.os != 'windows-2022'
run: |
mkdir -p outputs/img-samples
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}-${{ runner.arch }}.yml
conda env export --name ${{ env.CONDA_ENV_NAME }} > ${{ env.INVOKEAI_ROOT }}/outputs/environment-${{ runner.os }}-${{ runner.arch }}.yml
- name: Archive results
if: matrix.os != 'windows-2022'
id: archive-results
uses: actions/upload-artifact@v3
with:

View File

@@ -19,35 +19,50 @@ jobs:
- requirements-lin-cuda.txt
- requirements-lin-amd.txt
- requirements-mac-mps-cpu.txt
- requirements-win-colab-cuda.txt
python-version:
# - '3.9'
- '3.10'
include:
- requirements-file: requirements-lin-cuda.txt
os: ubuntu-latest
default-shell: bash -l {0}
os: ubuntu-22.04
curl-command: curl
github-env: $GITHUB_ENV
- requirements-file: requirements-lin-amd.txt
os: ubuntu-latest
default-shell: bash -l {0}
os: ubuntu-22.04
curl-command: curl
github-env: $GITHUB_ENV
- requirements-file: requirements-mac-mps-cpu.txt
os: macOS-12
default-shell: bash -l {0}
curl-command: curl
github-env: $GITHUB_ENV
- requirements-file: requirements-win-colab-cuda.txt
os: windows-2022
curl-command: curl.exe
github-env: $env:GITHUB_ENV
- stable-diffusion-model: stable-diffusion-1.5
stable-diffusion-model-url: https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
stable-diffusion-model-dl-path: models/ldm/stable-diffusion-v1
stable-diffusion-model-dl-name: v1-5-pruned-emaonly.ckpt
name: ${{ matrix.requirements-file }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
defaults:
run:
shell: ${{ matrix.default-shell }}
env:
INVOKEAI_ROOT: '${{ github.workspace }}/invokeai'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: set INVOKEAI_ROOT Windows
if: matrix.os == 'windows-2022'
run: |
echo "INVOKEAI_ROOT=${{ github.workspace }}\invokeai" >> ${{ matrix.github-env }}
echo "INVOKEAI_OUTDIR=${{ github.workspace }}\invokeai\outputs" >> ${{ matrix.github-env }}
- name: set INVOKEAI_ROOT others
if: matrix.os != 'windows-2022'
run: |
echo "INVOKEAI_ROOT=${{ github.workspace }}/invokeai" >> ${{ matrix.github-env }}
echo "INVOKEAI_OUTDIR=${{ github.workspace }}/invokeai/outputs" >> ${{ matrix.github-env }}
- name: create models.yaml from example
run: |
mkdir -p ${{ env.INVOKEAI_ROOT }}/configs
@@ -55,15 +70,15 @@ jobs:
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to development branch validation
if: ${{ github.ref == 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/dev_prompts.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/dev_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' && github.ref != 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> $GITHUB_ENV
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: create requirements.txt
run: cp 'environments-and-requirements/${{ matrix.requirements-file }}' '${{ matrix.requirements-file }}'
@@ -72,14 +87,14 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: ${{ matrix.requirements-file }}
# cache: 'pip'
# cache-dependency-path: ${{ matrix.requirements-file }}
# - name: install dependencies
# run: ${{ env.pythonLocation }}/bin/pip install --upgrade pip setuptools wheel
- name: install requirements
run: ${{ env.pythonLocation }}/bin/pip install -r '${{ matrix.requirements-file }}'
run: pip3 install -r '${{ matrix.requirements-file }}'
- name: Use Cached Stable Diffusion Model
id: cache-sd-model
@@ -95,33 +110,20 @@ jobs:
if: ${{ steps.cache-sd-model.outputs.cache-hit != 'true' }}
run: |
mkdir -p "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}"
curl \
-H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" \
-o "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}/${{ matrix.stable-diffusion-model-dl-name }}" \
-L ${{ matrix.stable-diffusion-model-url }}
${{ matrix.curl-command }} -H "Authorization: Bearer ${{ secrets.HUGGINGFACE_TOKEN }}" -o "${{ env.INVOKEAI_ROOT }}/${{ matrix.stable-diffusion-model-dl-path }}/${{ matrix.stable-diffusion-model-dl-name }}" -L ${{ matrix.stable-diffusion-model-url }}
- name: run configure_invokeai.py
id: run-preload-models
run: |
${{ env.pythonLocation }}/bin/python scripts/configure_invokeai.py --no-interactive --yes
- name: cat ~/.invokeai
id: cat-invokeai
run: cat ~/.invokeai
run: python3 scripts/configure_invokeai.py --no-interactive --yes
- name: Run the tests
id: run-tests
run: |
time ${{ env.pythonLocation }}/bin/python scripts/invoke.py \
--no-patchmatch \
--no-nsfw_checker \
--model ${{ matrix.stable-diffusion-model }} \
--from_file ${{ env.TEST_PROMPTS }} \
--root="${{ env.INVOKEAI_ROOT }}" \
--outdir="${{ env.INVOKEAI_ROOT }}/outputs"
if: matrix.os != 'windows-2022'
run: python3 scripts/invoke.py --no-patchmatch --no-nsfw_checker --model ${{ matrix.stable-diffusion-model }} --from_file ${{ env.TEST_PROMPTS }} --root="${{ env.INVOKEAI_ROOT }}" --outdir="${{ env.INVOKEAI_OUTDIR }}"
- name: Archive results
id: archive-results
if: matrix.os != 'windows-2022'
uses: actions/upload-artifact@v3
with:
name: results_${{ matrix.requirements-file }}_${{ matrix.python-version }}

11
.gitignore vendored
View File

@@ -222,12 +222,11 @@ environment.yml
requirements.txt
# source installer files
source_installer/*zip
source_installer/invokeAI
install.bat
install.sh
update.bat
update.sh
installer/*zip
installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
# this may be present if the user created a venv
invokeai

View File

@@ -1,11 +1,9 @@
<div align="center">
![project logo](docs/assets/invoke_ai_banner.png)
# InvokeAI: A Stable Diffusion Toolkit
_Formerly known as lstein/stable-diffusion_
![project logo](docs/assets/logo.png)
[![discord badge]][discord link]
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
@@ -38,18 +36,33 @@ This is a fork of
[CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion),
the open source text-to-image generator. It provides a streamlined
process with various new features and options to aid the image
generation process. It runs on Windows, Mac and Linux machines, with
generation process. It runs on Windows, macOS and Linux machines, with
GPU cards with as little as 4 GB of RAM. It provides both a polished
Web interface (see below), and an easy-to-use command-line interface.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
**Quick links**: [[How to Install](#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
_Note: InvokeAI is rapidly evolving. Please use the
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
requests. Be sure to use the provided templates. They will help us diagnose issues faster._
# Getting Started with InvokeAI
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/tag/v2.2.3)
2. Download the .zip file for your OS (Windows/macOS/Linux).
3. Unzip the file.
4. If you are on Windows, double-click on the `install.bat` script. On macOS, open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press return. On Linux, run `install.sh`.
5. Wait a while, until it is done.
6. The folder where you ran the installer from will now be filled with lots of files. If you are on Windows, double-click on the `invoke.bat` file. On macOS, open a Terminal window, drag `invoke.sh` from the folder into the Terminal, and press return. On Linux, run `invoke.sh`
7. Press 2 to open the "browser-based UI", press enter/return, wait a minute or two for Stable Diffusion to start up, then open your browser and go to http://localhost:9090.
8. Type `banana sushi` in the box on the top left and click `Invoke`:
<div align="center"><img src="docs/assets/invoke-web-server-1.png" width=640></div>
_Note: This fork is rapidly evolving. Please use the
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
requests. Be sure to use the provided templates. They will help aid diagnose issues faster._
## Table of Contents
@@ -69,10 +82,13 @@ This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
### Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver).
#### System
You wil need one of the following:
@@ -80,6 +96,10 @@ You wil need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- An Apple computer with an M1 chip.
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
#### Memory
- At least 12 GB Main Memory RAM.
@@ -97,11 +117,12 @@ Similarly, specify full-precision mode on Apple M1 hardware.
Precision is auto configured based on the device. If however you encounter
errors like 'expected type Float but found Half' or 'not implemented for Half'
you can try starting `invoke.py` with the `--precision=float32` flag:
you can try starting `invoke.py` with the `--precision=float32` flag to your initialization command
```bash
(invokeai) ~/InvokeAI$ python scripts/invoke.py --precision=float32
```
Or by updating your InvokeAI configuration file with this argument.
### Features
@@ -130,39 +151,7 @@ you can try starting `invoke.py` with the `--precision=float32` flag:
### Latest Changes
- v2.0.1 (13 October 2022)
- fix noisy images at high step count when using k* samplers
- dream.py script now calls invoke.py module directly rather than
via a new python process (which could break the environment)
- v2.0.0 (9 October 2022)
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains
for backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/INPAINTING/">inpainting</a> and <a href="https://invoke-ai.github.io/InvokeAI/features/OUTPAINTING/">outpainting</a>
- img2img runs on all k* samplers
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#negative-and-unconditioned-prompts">negative prompts</a>
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for <a href="https://invoke-ai.github.io/InvokeAI/features/POSTPROCESS/">post-processing of previously-generated images</a>
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/#txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/">command-line completion behavior</a>.
New commands added:
- List command-line history with `!history`
- Search command-line history with `!search`
- Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
For older changelogs, please visit the **[CHANGELOG](https://invoke-ai.github.io/InvokeAI/CHANGELOG#v114-11-september-2022)**.
For our latest changes, view our [Release Notes](https://github.com/invoke-ai/InvokeAI/releases)
### Troubleshooting
@@ -172,8 +161,9 @@ problems and other issues.
# Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so. To join, just raise your hand on the InvokeAI
Discord server or discussion board.
cleanup, testing, or code reviews, is very much encouraged to do so.
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
If you are unfamiliar with how
to contribute to GitHub projects, here is a

View File

@@ -18,9 +18,11 @@ from PIL.Image import Image as ImageType
from uuid import uuid4
from threading import Event
from ldm.generate import Generate
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.conditioning import get_tokens_for_prompt, get_prompt_structure
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
from ldm.invoke.prompt_parser import split_weighted_subprompts
from ldm.invoke.prompt_parser import split_weighted_subprompts, Blend
from ldm.invoke.generator.inpaint import infill_methods
from backend.modules.parameters import parameters_to_command
@@ -39,7 +41,7 @@ if not os.path.isabs(args.outdir):
class InvokeAIWebServer:
def __init__(self, generate, gfpgan, codeformer, esrgan) -> None:
def __init__(self, generate: Generate, gfpgan, codeformer, esrgan) -> None:
self.host = args.host
self.port = args.port
@@ -243,14 +245,16 @@ class InvokeAIWebServer:
def find_frontend(self):
my_dir = os.path.dirname(__file__)
for candidate in (os.path.join(my_dir,'..','frontend','dist'), # pip install -e .
os.path.join(my_dir,'../../../../frontend','dist') # pip install .
# LS: setup.py seems to put the frontend in different places on different systems, so
# this is fragile and needs to be replaced with a better way of finding the front end.
for candidate in (os.path.join(my_dir,'..','frontend','dist'), # pip install -e .
os.path.join(my_dir,'../../../../frontend','dist'), # pip install . (Linux, Mac)
os.path.join(my_dir,'../../../frontend','dist'), # pip install . (Windows)
):
if os.path.exists(candidate):
return candidate
assert "Frontend files cannot be found. Cannot continue"
def setup_app(self):
self.result_url = "outputs/"
self.init_image_url = "outputs/init-images/"
@@ -775,10 +779,10 @@ class InvokeAIWebServer:
).convert("RGBA")
"""
The outpaint image and mask are pre-cropped by the UI, so the bounding box we pass
The outpaint image and mask are pre-cropped by the UI, so the bounding box we pass
to the generator should be:
{
"x": 0,
"x": 0,
"y": 0,
"width": original_bounding_box["width"],
"height": original_bounding_box["height"]
@@ -798,7 +802,7 @@ class InvokeAIWebServer:
)
"""
Apply the mask to the init image, creating a "mask" image with
Apply the mask to the init image, creating a "mask" image with
transparency where inpainting should occur. This is the kind of
mask that prompt2image() needs.
"""
@@ -904,16 +908,13 @@ class InvokeAIWebServer:
},
)
if generation_parameters["progress_latents"]:
image = self.generate.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = "data:image/png;base64," + base64.b64encode(
buffered.getvalue()
).decode("UTF-8")
img_base64 = image_to_dataURL(image)
self.socketio.emit(
"intermediateResult",
{
@@ -931,7 +932,7 @@ class InvokeAIWebServer:
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
def image_done(image, seed, first_seed):
def image_done(image, seed, first_seed, attention_maps_image=None):
if self.canceled.is_set():
raise CanceledException
@@ -1093,6 +1094,12 @@ class InvokeAIWebServer:
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
parsed_prompt, _ = get_prompt_structure(generation_parameters["prompt"])
tokens = None if type(parsed_prompt) is Blend else \
get_tokens_for_prompt(self.generate.model, parsed_prompt)
attention_maps_image_base64_url = None if attention_maps_image is None \
else image_to_dataURL(attention_maps_image)
self.socketio.emit(
"generationResult",
{
@@ -1105,6 +1112,8 @@ class InvokeAIWebServer:
"height": height,
"boundingBox": original_bounding_box,
"generationMode": generation_parameters["generation_mode"],
"attentionMaps": attention_maps_image_base64_url,
"tokens": tokens,
},
)
eventlet.sleep(0)
@@ -1116,7 +1125,7 @@ class InvokeAIWebServer:
self.generate.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done,
image_callback=image_done
)
except KeyboardInterrupt:
@@ -1563,6 +1572,19 @@ def dataURL_to_image(dataURL: str) -> ImageType:
)
return image
"""
Converts an image into a base64 image dataURL.
"""
def image_to_dataURL(image: ImageType) -> str:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_base64 = "data:image/png;base64," + base64.b64encode(
buffered.getvalue()
).decode("UTF-8")
return image_base64
"""
Converts a base64 image dataURL into bytes.

Binary file not shown.

View File

@@ -10,21 +10,21 @@
@rem This enables a user to install this project without manually installing git or Python
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
echo ***** Installing InvokeAI.. *****
echo "USING development BRANCH. REMEMBER TO CHANGE TO main BEFORE RELEASE"
@rem Config
set INSTALL_ENV_DIR=%cd%\installer_files\env
@rem https://mamba.readthedocs.io/en/latest/installation.html
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
#set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
# RELEASE_SOURCEBALL=/archive/refs/heads/test-installer.tar.gz
RELEASE_SOURCEBALL=/archive/refs/heads/development.tar.gz
set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
set PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
set PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-x86_64-pc-windows-msvc-shared-install_only.tar.gz
@@ -127,7 +127,7 @@ if %errorlevel% neq 0 goto err_exit
echo ***** Updated pip and wheel *****
set err_msg=----- requirements file copy failed -----
copy installer\py3.10-windows-x86_64-cuda-reqs.txt requirements.txt
copy binary_installer\py3.10-windows-x86_64-cuda-reqs.txt requirements.txt
if %errorlevel% neq 0 goto err_exit
set err_msg=----- main pip install failed -----
@@ -140,11 +140,11 @@ set err_msg=----- InvokeAI setup failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location -e .
if %errorlevel% neq 0 goto err_exit
copy installer\invoke.bat .\invoke.bat
copy binary_installer\invoke.bat.in .\invoke.bat
echo ***** Installed invoke launcher script ******
@rem more cleanup
rd /s /q installer installer_files
rd /s /q binary_installer installer_files
@rem preload the models
call .venv\Scripts\python scripts\configure_invokeai.py

View File

@@ -1,5 +1,9 @@
#!/usr/bin/env bash
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
set -euo pipefail
IFS=$'\n\t'
@@ -22,6 +26,8 @@ function _err_exit {
# This enables a user to install this project without manually installing git or Python
echo -e "\n***** Installing InvokeAI into $(pwd)... *****\n"
export no_cache_dir="--no-cache-dir"
if [ $# -ge 1 ]; then
if [ "$1" = "use-cache" ]; then
@@ -29,10 +35,6 @@ if [ $# -ge 1 ]; then
fi
fi
echo "$no_cache_dir"
echo -e "\n***** Installing InvokeAI... *****\n"
OS_NAME=$(uname -s)
case "${OS_NAME}" in
@@ -80,19 +82,17 @@ if [ "$OS_NAME" == "darwin" ] && [ "$OS_ARCH" == "arm64" ]; then
fi
# config
echo "USING development BRANCH. REMEMBER TO CHANGE TO main BEFORE RELEASE"
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${MAMBA_OS_NAME}-${MAMBA_ARCH}/latest"
RELEASE_URL=https://github.com/invoke-ai/InvokeAI
# RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
# RELEASE_SOURCEBALL=/archive/refs/heads/test-installer.tar.gz
RELEASE_SOURCEBALL=/archive/refs/heads/development.tar.gz
RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
if [ "$OS_NAME" == "darwin" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-apple-darwin-install_only.tar.gz
elif [ "$OS_NAME" == "linux" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-unknown-linux-gnu-install_only.tar.gz
fi
echo "INSTALLING $RELEASE_SOURCEBALL FROM $RELEASE_URL"
PACKAGES_TO_INSTALL=""
@@ -192,32 +192,33 @@ echo -e "We're running under"
_err_exit $? _err_msg
_err_msg="\n----- pip update failed -----\n"
.venv/bin/python3 -m pip install "$no_cache_dir" --no-warn-script-location --upgrade pip wheel
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location --upgrade pip
_err_exit $? _err_msg
echo -e "\n***** Updated pip and wheel *****\n"
echo -e "\n***** Updated pip *****\n"
_err_msg="\n----- requirements file copy failed -----\n"
cp installer/py3.10-${OS_NAME}-"${OS_ARCH}"-${CD}-reqs.txt requirements.txt
cp binary_installer/py3.10-${OS_NAME}-"${OS_ARCH}"-${CD}-reqs.txt requirements.txt
_err_exit $? _err_msg
_err_msg="\n----- main pip install failed -----\n"
.venv/bin/python3 -m pip install "$no_cache_dir" --no-warn-script-location -r requirements.txt
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -r requirements.txt
_err_exit $? _err_msg
echo -e "\n***** Installed Python dependencies *****\n"
_err_msg="\n----- InvokeAI setup failed -----\n"
.venv/bin/python3 -m pip install "$no_cache_dir" --no-warn-script-location -e .
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -e .
_err_exit $? _err_msg
echo -e "\n***** Installed InvokeAI *****\n"
cp installer/invoke.sh .
cp binary_installer/invoke.sh.in ./invoke.sh
chmod a+rx ./invoke.sh
echo -e "\n***** Installed invoke launcher script ******\n"
# more cleanup
rm -rf installer/ installer_files/
rm -rf binary_installer/ installer_files/
# preload the models
.venv/bin/python3 scripts/configure_invokeai.py
@@ -227,6 +228,8 @@ deactivate
echo -e "\n***** Finished downloading models *****\n"
echo "All done! Run the command './invoke.sh' to start InvokeAI."
echo "All done! Run the command"
echo " $scriptdir/invoke.sh"
echo "to start InvokeAI."
read -p "Press any key to exit..."
exit

View File

@@ -1,5 +1,6 @@
@echo off
PUSHD "%~dp0"
call .venv\Scripts\activate.bat
echo Do you want to generate images using the
@@ -10,10 +11,10 @@ echo 3. open the developer console
set /p choice="Please enter 1, 2 or 3: "
if /i "%choice%" == "1" (
echo Starting the InvokeAI command-line.
.venv\Scripts\python scripts\invoke.py
.venv\Scripts\python scripts\invoke.py %*
) else if /i "%choice%" == "2" (
echo Starting the InvokeAI browser-based UI.
.venv\Scripts\python scripts\invoke.py --web
.venv\Scripts\python scripts\invoke.py --web %*
) else if /i "%choice%" == "3" (
echo Developer Console
echo Python command is:

9
installer/invoke.sh → binary_installer/invoke.sh.in Executable file → Normal file
View File

@@ -4,6 +4,11 @@ set -eu
. .venv/bin/activate
# set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
echo "Do you want to generate images using the"
echo "1. command-line"
echo "2. browser-based UI"
@@ -15,11 +20,11 @@ read choice
case $choice in
1)
printf "\nStarting the InvokeAI command-line..\n";
.venv/bin/python scripts/invoke.py;
.venv/bin/python scripts/invoke.py $*;
;;
2)
printf "\nStarting the InvokeAI browser-based UI..\n";
.venv/bin/python scripts/invoke.py --web;
.venv/bin/python scripts/invoke.py --web $*;
;;
3)
printf "\nDeveloper Console:\n";

View File

@@ -4,7 +4,7 @@
#
# pip-compile --allow-unsafe --generate-hashes --output-file=installer/py3.10-darwin-x86_64-cpu-reqs.txt installer/requirements.in
#
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https
absl-py==1.3.0 \
@@ -987,7 +987,6 @@ numpy==1.23.4 \
# pandas
# pyarrow
# pydeck
# pypatchmatch
# pytorch-lightning
# pywavelets
# qudida
@@ -1160,7 +1159,6 @@ pillow==9.3.0 \
# imageio
# k-diffusion
# matplotlib
# pypatchmatch
# realesrgan
# scikit-image
# streamlit
@@ -1296,9 +1294,6 @@ pyparsing==3.0.9 \
# via
# matplotlib
# packaging
pypatchmatch @ https://github.com/invoke-ai/PyPatchMatch/archive/129863937a8ab37f6bbcec327c994c0f932abdbc.zip \
--hash=sha256:4ad6ec95379e7d122d494ff76633cc7cf9b71330d5efda147fceba81e3dc6cd2
# via -r installer/requirements.in
pyreadline3==3.4.1 \
--hash=sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae \
--hash=sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb
@@ -1831,27 +1826,27 @@ toolz==0.12.0 \
--hash=sha256:2059bd4148deb1884bb0eb770a3cde70e7f954cfbbdc2285f1f2de01fd21eb6f \
--hash=sha256:88c570861c440ee3f2f6037c4654613228ff40c93a6c25e0eba70d17282c6194
# via altair
torch==1.12.1 ; platform_system == "Darwin" \
--hash=sha256:03e31c37711db2cd201e02de5826de875529e45a55631d317aadce2f1ed45aa8 \
--hash=sha256:0b44601ec56f7dd44ad8afc00846051162ef9c26a8579dda0a02194327f2d55e \
--hash=sha256:42e115dab26f60c29e298559dbec88444175528b729ae994ec4c65d56fe267dd \
--hash=sha256:42f639501928caabb9d1d55ddd17f07cd694de146686c24489ab8c615c2871f2 \
--hash=sha256:4e1b9c14cf13fd2ab8d769529050629a0e68a6fc5cb8e84b4a3cc1dd8c4fe541 \
--hash=sha256:68104e4715a55c4bb29a85c6a8d57d820e0757da363be1ba680fa8cc5be17b52 \
--hash=sha256:69fe2cae7c39ccadd65a123793d30e0db881f1c1927945519c5c17323131437e \
--hash=sha256:6cf6f54b43c0c30335428195589bd00e764a6d27f3b9ba637aaa8c11aaf93073 \
--hash=sha256:743784ccea0dc8f2a3fe6a536bec8c4763bd82c1352f314937cb4008d4805de1 \
--hash=sha256:8a34a2fbbaa07c921e1b203f59d3d6e00ed379f2b384445773bd14e328a5b6c8 \
--hash=sha256:976c3f997cea38ee91a0dd3c3a42322785414748d1761ef926b789dfa97c6134 \
--hash=sha256:9b356aea223772cd754edb4d9ecf2a025909b8615a7668ac7d5130f86e7ec421 \
--hash=sha256:9c038662db894a23e49e385df13d47b2a777ffd56d9bcd5b832593fab0a7e286 \
--hash=sha256:a8320ba9ad87e80ca5a6a016e46ada4d1ba0c54626e135d99b2129a4541c509d \
--hash=sha256:b5dbcca369800ce99ba7ae6dee3466607a66958afca3b740690d88168752abcf \
--hash=sha256:bfec2843daa654f04fda23ba823af03e7b6f7650a873cdb726752d0e3718dada \
--hash=sha256:cd26d8c5640c3a28c526d41ccdca14cf1cbca0d0f2e14e8263a7ac17194ab1d2 \
--hash=sha256:e9c8f4a311ac29fc7e8e955cfb7733deb5dbe1bdaabf5d4af2765695824b7e0d \
--hash=sha256:f00c721f489089dc6364a01fd84906348fe02243d0af737f944fddb36003400d \
--hash=sha256:f3b52a634e62821e747e872084ab32fbcb01b7fa7dbb7471b6218279f02a178a
torch==1.12.0 ; platform_system == "Darwin" \
--hash=sha256:0399746f83b4541bcb5b219a18dbe8cade760aba1c660d2748a38c6dc338ebc7 \
--hash=sha256:0986685f2ec8b7c4d3593e8cfe96be85d462943f1a8f54112fc48d4d9fbbe903 \
--hash=sha256:13c7cca6b2ea3704d775444f02af53c5f072d145247e17b8cd7813ac57869f03 \
--hash=sha256:201abf43a99bb4980cc827dd4b38ac28f35e4dddac7832718be3d5479cafd2c1 \
--hash=sha256:2143d5fe192fd908b70b494349de5b1ac02854a8a902bd5f47d13d85b410e430 \
--hash=sha256:2568f011dddeb5990d8698cc375d237f14568ffa8489854e3b94113b4b6b7c8b \
--hash=sha256:3322d33a06e440d715bb214334bd41314c94632d9a2f07d22006bf21da3a2be4 \
--hash=sha256:349ea3ba0c0e789e0507876c023181f13b35307aebc2e771efd0e045b8e03e84 \
--hash=sha256:44a3804e9bb189574f5d02ccc2dc6e32e26a81b3e095463b7067b786048c6072 \
--hash=sha256:5ed69d5af232c5c3287d44cef998880dadcc9721cd020e9ae02f42e56b79c2e4 \
--hash=sha256:60d06ee2abfa85f10582d205404d52889d69bcbb71f7e211cfc37e3957ac19ca \
--hash=sha256:63341f96840a223f277e498d2737b39da30d9f57c7a1ef88857b920096317739 \
--hash=sha256:72207b8733523388c49d43ffcc4416d1d8cd64c40f7826332e714605ace9b1d2 \
--hash=sha256:7ddb167827170c4e3ff6a27157414a00b9fef93dea175da04caf92a0619b7aee \
--hash=sha256:844f1db41173b53fe40c44b3e04fcca23a6ce00ac328b7099f2800e611766845 \
--hash=sha256:a1325c9c28823af497cbf443369bddac9ac59f67f1e600f8ab9b754958e55b76 \
--hash=sha256:abbdc5483359b9495dc76e3bd7911ccd2ddc57706c117f8316832e31590af871 \
--hash=sha256:c0313438bc36448ffd209f5fb4e5f325b3af158cdf61c8829b8ddaf128c57816 \
--hash=sha256:e3e8348edca3e3cee5a67a2b452b85c57712efe1cc3ffdb87c128b3dde54534e \
--hash=sha256:fb47291596677570246d723ee6abbcbac07eeba89d8f83de31e3954f21f44879
# via
# -r installer/requirements.in
# accelerate
@@ -1882,26 +1877,26 @@ torchmetrics==0.10.2 \
--hash=sha256:43757d82266969906fc74b6e80766fcb2a0d52d6c3d09e3b7c98cf3b733fd20c \
--hash=sha256:daa29d96bff5cff04d80eec5b9f5076993d6ac9c2d2163e88b6b31f8d38f7c25
# via pytorch-lightning
torchvision==0.13.1 ; platform_system == "Darwin" \
--hash=sha256:0298bae3b09ac361866088434008d82b99d6458fe8888c8df90720ef4b347d44 \
--hash=sha256:08f592ea61836ebeceb5c97f4d7a813b9d7dc651bbf7ce4401563ccfae6a21fc \
--hash=sha256:099874088df104d54d8008f2a28539ca0117b512daed8bf3c2bbfa2b7ccb187a \
--hash=sha256:0e77706cc90462653620e336bb90daf03d7bf1b88c3a9a3037df8d111823a56e \
--hash=sha256:19286a733c69dcbd417b86793df807bd227db5786ed787c17297741a9b0d0fc7 \
--hash=sha256:3567fb3def829229ec217c1e38f08c5128ff7fb65854cac17ebac358ff7aa309 \
--hash=sha256:4d8bf321c4380854ef04613935fdd415dce29d1088a7ff99e06e113f0efe9203 \
--hash=sha256:5e631241bee3661de64f83616656224af2e3512eb2580da7c08e08b8c965a8ac \
--hash=sha256:7552e80fa222252b8b217a951c85e172a710ea4cad0ae0c06fbb67addece7871 \
--hash=sha256:7cb789ceefe6dcd0dc8eeda37bfc45efb7cf34770eac9533861d51ca508eb5b3 \
--hash=sha256:83e9e2457f23110fd53b0177e1bc621518d6ea2108f570e853b768ce36b7c679 \
--hash=sha256:87c137f343197769a51333076e66bfcd576301d2cd8614b06657187c71b06c4f \
--hash=sha256:899eec0b9f3b99b96d6f85b9aa58c002db41c672437677b553015b9135b3be7e \
--hash=sha256:8e4d02e4d8a203e0c09c10dfb478214c224d080d31efc0dbf36d9c4051f7f3c6 \
--hash=sha256:b167934a5943242da7b1e59318f911d2d253feeca0d13ad5d832b58eed943401 \
--hash=sha256:c5ed609c8bc88c575226400b2232e0309094477c82af38952e0373edef0003fd \
--hash=sha256:e9a563894f9fa40692e24d1aa58c3ef040450017cfed3598ff9637f404f3fe3b \
--hash=sha256:ef5fe3ec1848123cd0ec74c07658192b3147dcd38e507308c790d5943e87b88c \
--hash=sha256:f230a1a40ed70d51e463ce43df243ec520902f8725de2502e485efc5eea9d864
torchvision==0.13.0 ; platform_system == "Darwin" \
--hash=sha256:01e9e7b2e7724e66561e8d98f900985d80191e977c5c0b3f33ed31800ba0210c \
--hash=sha256:0e28740bd5695076f7c449af650fc474d6566722d446461c2ceebf9c9599b37f \
--hash=sha256:1b703701f0b99f307ad925b1abda2b3d5bdbf30643ff02102b6aeeb8840ae278 \
--hash=sha256:1e2049f1207631d42d743205f663f1d2235796565be3f18b0339d479626faf30 \
--hash=sha256:253eb0c67bf88cef4a79ec69058c3e94f9fde28b9e3699ad1afc0b3ed50f8075 \
--hash=sha256:42d95ab197d090efc5669fec02fbc603d05c859e50ca2c60180d1a113aa9b3e2 \
--hash=sha256:5c31e9b3004142dbfdf32adc4cf2d4fd709b820833e9786f839ae3a91ff65ef0 \
--hash=sha256:61d5093a50b7923a4e5bf9e0271001c29e01abec2348b7dd93370a0a9d15836c \
--hash=sha256:667cac55afb13cda7d362466e7eba3119e529b210e55507d231bead09aca5e1f \
--hash=sha256:6c4c35428c758adc485ff8f239b5ed68c1b6c26efa261a52e431cab0f7f22aec \
--hash=sha256:83a4d9d50787d1e886c94486b63b15978391f6cf1892fce6a93132c09b14e128 \
--hash=sha256:a20662c11dc14fd4eff102ceb946a7ee80b9f98303bb52435cc903f2c4c1fe10 \
--hash=sha256:acb72a40e5dc0cd454d28514dbdd589a5057afd9bb5c785b87a54718b999bfa1 \
--hash=sha256:ad458146aca15f652f9b0c227bebd5403602c7341f15f68f20ec119fa8e8f4a5 \
--hash=sha256:ada295dbfe55017b02acfab960a997387f5addbadd28ee5e575e24f692992ce4 \
--hash=sha256:b620a43df4131ad09f5761c415a016a9ea95aaf8ec8c91d030fb59bad591094a \
--hash=sha256:b7a2c9aebc7ef265777fe7e82577364288d98cf6b8cf0a63bb2621df78a7af1a \
--hash=sha256:c2278a189663087bb8e65915062aa7a25b8f8e5a3cfaa5879fe277e23e4bbf40 \
--hash=sha256:df16abf31e7a5fce8db1f781bf1e4f20c8bc730c7c3f657e946cc5820c04e465
# via
# -r installer/requirements.in
# basicsr

View File

@@ -1,9 +1,10 @@
#
# This file is autogenerated by pip-compile with python 3.9
# To update, run:
# This file is autogenerated by pip-compile with Python 3.9
# by the following command:
#
# pip-compile --allow-unsafe --generate-hashes --output-file=installer/py3.10-linux-x86_64-cuda-reqs.txt installer/requirements.in
# pip-compile --allow-unsafe --generate-hashes --output-file=binary_installer/py3.10-linux-x86_64-cuda-reqs.txt binary_installer/requirements.in
#
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https
@@ -17,7 +18,7 @@ accelerate==0.14.0 \
--hash=sha256:31c5bcc40564ef849b5bc1c4424a43ccaf9e26413b7df89c2e36bf81f070fd44 \
--hash=sha256:b15d562c0889d0cf441b01faa025dfc29b163d061b6cc7d489c2c83b0a55ffab
# via
# -r installer/requirements.in
# -r binary_installer/requirements.in
# k-diffusion
addict==2.4.0 \
--hash=sha256:249bb56bbfd3cdc2a004ea0ff4c2b6ddc84d53bc2194761636eb314d5cfa5dfc \
@@ -119,7 +120,7 @@ aiosignal==1.2.0 \
albumentations==1.3.0 \
--hash=sha256:294165d87d03bc8323e484927f0a5c1a3c64b0e7b9c32a979582a6c93c363bdf \
--hash=sha256:be1af36832c8893314f2a5550e8ac19801e04770734c1b70fa3c996b41f37bed
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
altair==4.2.0 \
--hash=sha256:0c724848ae53410c13fa28be2b3b9a9dcb7b5caa1a70f7f217bd663bb419935a \
--hash=sha256:d87d9372e63b48cd96b2a6415f0cf9457f50162ab79dc7a31cd7e024dd840026
@@ -150,6 +151,10 @@ blinker==1.5 \
--hash=sha256:1eb563df6fdbc39eeddc177d953203f99f097e9bf0e2b8f9f3cf18b6ca425e36 \
--hash=sha256:923e5e2f69c155f2cc42dafbbd70e16e3fde24d2d4aa2ab72fbe386238892462
# via streamlit
boltons==21.0.0 \
--hash=sha256:65e70a79a731a7fe6e98592ecfb5ccf2115873d01dbc576079874629e5c90f13 \
--hash=sha256:b9bb7b58b2b420bbe11a6025fdef6d3e5edc9f76a42fb467afe7ca212ef9948b
# via torchsde
cachetools==5.2.0 \
--hash=sha256:6a94c6402995a99c3970cc7e4884bb60b4a8639938157eeed436098bf9831757 \
--hash=sha256:f9f17d2aec496a9aa6b76f53e3b614c965223c061982d434d160f930c698a9db
@@ -183,11 +188,11 @@ click==8.1.3 \
clip @ https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip \
--hash=sha256:b5842c25da441d6c581b53a5c60e0c2127ebafe0f746f8e15561a006c6c3be6a
# via
# -r installer/requirements.in
# -r binary_installer/requirements.in
# clipseg
clipseg @ https://github.com/invoke-ai/clipseg/archive/1f754751c85d7d4255fa681f4491ff5711c1c288.zip \
--hash=sha256:14f43ed42f90be3fe57f06de483cb8be0f67f87a6f62a011339d45a39f4b4189
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
commonmark==0.9.1 \
--hash=sha256:452f9dc859be7f06631ddcb328b6919c67984aca654e5fefb3914d54691aed60 \
--hash=sha256:da2f38c92590f83de410ba1a3cbceafbc74fee9def35f9251ba9a971d6d66fd9
@@ -274,7 +279,7 @@ decorator==5.1.1 \
diffusers==0.7.2 \
--hash=sha256:4a5f8b3a5fbd936bba7d459611cb35ec62875030367be32b232f9e19543e25a9 \
--hash=sha256:fb814ffd150cc6f470380b8c6a521181a77beb2f44134d2aad2e4cd8aa2ced0e
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
dnspython==2.2.1 \
--hash=sha256:0f7569a4a6ff151958b64304071d370daa3243d15941a7beedf0c9fe5105603e \
--hash=sha256:a851e51367fb93e9e1361732c1d60dab63eff98712e503ea7d92e6eccb109b4f
@@ -294,7 +299,7 @@ entrypoints==0.4 \
eventlet==0.33.1 \
--hash=sha256:a085922698e5029f820cf311a648ac324d73cec0e4792877609d978a4b5bbf31 \
--hash=sha256:afbe17f06a58491e9aebd7a4a03e70b0b63fd4cf76d8307bae07f280479b1515
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
facexlib==0.2.5 \
--hash=sha256:31e20cc4ed5d63562d380e4564bae14ac0d5d1899a079bad87621e13564567e4 \
--hash=sha256:cc7ceb56c5424319c47223cf75eef6828c34c66082707c6eb35b95d39779f02d
@@ -320,15 +325,15 @@ flask==2.2.2 \
flask-cors==3.0.10 \
--hash=sha256:74efc975af1194fc7891ff5cd85b0f7478be4f7f59fe158102e91abb72bb4438 \
--hash=sha256:b60839393f3b84a0f3746f6cdca56c1ad7426aa738b70d6c61375857823181de
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
flask-socketio==5.3.1 \
--hash=sha256:fd0ed0fc1341671d92d5f5b2f5503916deb7aa7e2940e6636cfa2c087c828bf9 \
--hash=sha256:ff0c721f20bff1e2cfba77948727a8db48f187e89a72fe50c34478ce6efb3353
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
flaskwebgui==0.3.7 \
--hash=sha256:4a69955308eaa8bb256ba04a994dc8f58a48dcd6f9599694ab1bcd9f43d88a5d \
--hash=sha256:535974ce2672dcc74787c254de24cceed4101be75d96952dae82014dd57f061e
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
fonttools==4.38.0 \
--hash=sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1 \
--hash=sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb
@@ -412,11 +417,11 @@ future==0.18.2 \
getpass-asterisk==1.0.1 \
--hash=sha256:20d45cafda0066d761961e0919728526baf7bb5151fbf48a7d5ea4034127d857 \
--hash=sha256:7cc357a924cf62fa4e15b73cb4e5e30685c9084e464ffdc3fd9000a2b54ea9e9
# via -r installer/requirements.in
gfpgan @ https://github.com/TencentARC/GFPGAN/archive/2eac2033893ca7f427f4035d80fe95b92649ac56.zip \
--hash=sha256:79e6d71c8f1df7c7ccb0ac6b9a2ccb615ad5cde818c8b6f285a8711c05aebf85
# via -r binary_installer/requirements.in
gfpgan @ https://github.com/invoke-ai/GFPGAN/archive/c796277a1cf77954e5fc0b288d7062d162894248.zip ; platform_system == "Linux" or platform_system == "Darwin" \
--hash=sha256:4155907b8b7db3686324554df7007eedd245cdf8656c21da9d9a3f44bef2fcaa
# via
# -r installer/requirements.in
# -r binary_installer/requirements.in
# realesrgan
gitdb==4.0.9 \
--hash=sha256:8033ad4e853066ba6ca92050b9df2f89301b8fc8bf7e9324d412a63f8bf1a8fd \
@@ -577,7 +582,7 @@ imageio-ffmpeg==0.4.7 \
--hash=sha256:7a08838f97f363e37ca41821b864fd3fdc99ab1fe2421040c78eb5f56a9e723e \
--hash=sha256:8e724d12dfe83e2a6eb39619e820243ca96c81c47c2648e66e05f7ee24e14312 \
--hash=sha256:fc60686ef03c2d0f842901b206223c30051a6a120384458761390104470846fd
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
importlib-metadata==5.0.0 \
--hash=sha256:da31db32b304314d044d3c12c79bd59e307889b287ad12ff387b3500835fc2ab \
--hash=sha256:ddb0e35065e8938f867ed4928d0ae5bf2a53b7773871bfe6bcc7e4fcdc7dea43
@@ -610,9 +615,9 @@ jsonschema==4.17.0 \
# via
# altair
# jsonmerge
k-diffusion @ https://github.com/invoke-ai/k-diffusion/archive/7f16b2c33411f26b3eae78d10648d625cb0c1095.zip \
--hash=sha256:c3f2c84036aa98c3abf4552fafab04df5ca472aa639982795e05bb1db43ce5e4
# via -r installer/requirements.in
k-diffusion @ https://github.com/Birch-san/k-diffusion/archive/363386981fee88620709cf8f6f2eea167bd6cd74.zip \
--hash=sha256:8eac5cdc08736e6d61908a1b2948f2b2f62691b01dc1aab978bddb3451af0d66
# via -r binary_installer/requirements.in
kiwisolver==1.4.4 \
--hash=sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b \
--hash=sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166 \
@@ -1005,6 +1010,7 @@ numpy==1.23.4 \
# tifffile
# torch-fidelity
# torchmetrics
# torchsde
# torchvision
# transformers
oauthlib==3.2.2 \
@@ -1091,7 +1097,7 @@ pathtools==0.1.2 \
picklescan==0.0.5 \
--hash=sha256:368cf1b9a075bc1b6460ad82b694f260532b836c82f99d13846cd36e1bbe7f9a \
--hash=sha256:57153eca04d5df5009f2cdd595aef261b8a6f27e03046a1c84f672aa6869c592
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
pillow==9.3.0 \
--hash=sha256:03150abd92771742d4a8cd6f2fa6246d847dcd2e332a18d0c15cc75bf6703040 \
--hash=sha256:073adb2ae23431d3b9bcbcff3fe698b62ed47211d0716b067385538a1b0f28b8 \
@@ -1300,11 +1306,11 @@ pyparsing==3.0.9 \
# packaging
pypatchmatch @ https://github.com/invoke-ai/PyPatchMatch/archive/129863937a8ab37f6bbcec327c994c0f932abdbc.zip \
--hash=sha256:4ad6ec95379e7d122d494ff76633cc7cf9b71330d5efda147fceba81e3dc6cd2
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
pyreadline3==3.4.1 \
--hash=sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae \
--hash=sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
pyrsistent==0.19.2 \
--hash=sha256:055ab45d5911d7cae397dc418808d8802fb95262751872c841c170b0dbf51eed \
--hash=sha256:111156137b2e71f3a9936baf27cb322e8024dac3dc54ec7fb9f0bcf3249e68bb \
@@ -1441,7 +1447,7 @@ qudida==0.0.4 \
realesrgan==0.3.0 \
--hash=sha256:0d36da96ab9f447071606e91f502ccdfb08f80cc82ee4f8caf720c7745ccec7e \
--hash=sha256:59336c16c30dd5130eff350dd27424acb9b7281d18a6810130e265606c9a6088
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
regex==2022.10.31 \
--hash=sha256:052b670fafbe30966bbe5d025e90b2a491f85dfe5b2583a163b5e60a85a321ad \
--hash=sha256:0653d012b3bf45f194e5e6a41df9258811ac8fc395579fa82958a8b76286bea4 \
@@ -1656,6 +1662,7 @@ scipy==1.9.3 \
# scikit-learn
# torch-fidelity
# torchdiffeq
# torchsde
semver==2.13.0 \
--hash=sha256:ced8b23dceb22134307c1b8abfa523da14198793d9787ac838e70e29e77458d4 \
--hash=sha256:fa0fe2722ee1c3f57eac478820c3a5ae2f624af8264cbdf9000c980ff7f75e3f
@@ -1663,7 +1670,7 @@ semver==2.13.0 \
send2trash==1.8.0 \
--hash=sha256:d2c24762fd3759860a0aff155e45871447ea58d2be6bdd39b5c8f966a0c99c2d \
--hash=sha256:f20eaadfdb517eaca5ce077640cb261c7d2698385a6a0f072a4a5447fd49fa08
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
sentry-sdk==1.10.1 \
--hash=sha256:06c0fa9ccfdc80d7e3b5d2021978d6eb9351fa49db9b5847cf4d1f2a473414ad \
--hash=sha256:105faf7bd7b7fa25653404619ee261527266b14103fe1389e0ce077bd23a9691
@@ -1754,11 +1761,11 @@ smmap==5.0.0 \
streamlit==1.14.0 \
--hash=sha256:62556d873567e1b3427bcd118a57ee6946619f363bd6bba38df2d1f8225ecba0 \
--hash=sha256:e078b8143d150ba721bdb9194218e311c5fe1d6d4156473a2dea6cc848a6c9fc
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
taming-transformers-rom1504==0.0.6 \
--hash=sha256:051b5804c58caa247bcd51d17ddb525b4d5f892a29d42dc460f40e3e9e34e5d8 \
--hash=sha256:73fe5fc1108accee4236ee6976e0987ab236afad0af06cb9f037641a908d2c32
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
tb-nightly==2.11.0a20221106 \
--hash=sha256:8940457ee42db92f01da8bcdbbea1a476735eda559dde5976f5728919960af4a
# via
@@ -1783,7 +1790,7 @@ tensorboard-plugin-wit==1.8.1 \
# tensorboard
test-tube==0.7.5 \
--hash=sha256:1379c33eb8cde3e9b36610f87da0f16c2e06496b1cfebac473df4e7be2faa124
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
threadpoolctl==3.1.0 \
--hash=sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b \
--hash=sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380
@@ -1843,7 +1850,7 @@ torch==1.12.0+cu116 ; platform_system == "Linux" or platform_system == "Windows"
--hash=sha256:aa43d7b54b86f723f17c5c44df1078c59a6149fc4d42fbef08aafab9d61451c9 \
--hash=sha256:f772be831447dd01ebd26cbedf619e668d1b269d69bf6b4ff46b1378362bff26
# via
# -r installer/requirements.in
# -r binary_installer/requirements.in
# accelerate
# basicsr
# clean-fid
@@ -1859,11 +1866,12 @@ torch==1.12.0+cu116 ; platform_system == "Linux" or platform_system == "Windows"
# torch-fidelity
# torchdiffeq
# torchmetrics
# torchsde
# torchvision
torch-fidelity==0.3.0 \
--hash=sha256:3d3e33db98919759cc4f3f24cb27e1e74bdc7c905d90a780630e4e1c18492b66 \
--hash=sha256:d01284825595feb7dc3eae3dc9a0d8ced02be764813a3483f109bc142b52a1d3
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
torchdiffeq==0.2.3 \
--hash=sha256:b5b01ec1294a2d8d5f77e567bf17c5de1237c0573cb94deefa88326f0e18c338 \
--hash=sha256:fe75f434b9090ac0c27702e02bed21472b0f87035be6581f51edc5d4013ea31a
@@ -1872,6 +1880,10 @@ torchmetrics==0.10.2 \
--hash=sha256:43757d82266969906fc74b6e80766fcb2a0d52d6c3d09e3b7c98cf3b733fd20c \
--hash=sha256:daa29d96bff5cff04d80eec5b9f5076993d6ac9c2d2163e88b6b31f8d38f7c25
# via pytorch-lightning
torchsde==0.2.5 \
--hash=sha256:222be9e15610d37a4b5a71cfa0c442178f9fd9ca02f6522a3e11c370b3d0906b \
--hash=sha256:4c34373a94a357bdf60bbfee00c850f3563d634491555820b900c9a4f7eff300
# via k-diffusion
torchvision==0.13.0+cu116 ; platform_system == "Linux" or platform_system == "Windows" \
--hash=sha256:1696feadf1921c8fa1549bad774221293298288ebedaa14e44bc3e57e964a369 \
--hash=sha256:572544b108eaf12638f3dca0f496a453c4b8d8256bcc8333d5355df641c0380c \
@@ -1882,7 +1894,7 @@ torchvision==0.13.0+cu116 ; platform_system == "Linux" or platform_system == "Wi
--hash=sha256:cb6bf0117b8f4b601baeae54e8a6bb5c4942b054835ba997f438ddcb7adcfb90 \
--hash=sha256:d1a3c124645e3460b3e50b54eb89a2575a5036bfa618f15dc4f5d635c716069d
# via
# -r installer/requirements.in
# -r binary_installer/requirements.in
# basicsr
# clean-fid
# clip
@@ -1921,10 +1933,13 @@ tqdm==4.64.1 \
# taming-transformers-rom1504
# torch-fidelity
# transformers
trampoline==0.1.2 \
--hash=sha256:36cc9a4ff9811843d177fc0e0740efbd7da39eadfe6e50c9e2937cbc06d899d9
# via torchsde
transformers==4.24.0 \
--hash=sha256:486f353a8e594002e48be0e2aba723d96eda839e63bfe274702a4b5eda85559b \
--hash=sha256:b7ab50039ef9bf817eff14ab974f306fd20a72350bdc9df3a858fd009419322e
# via -r installer/requirements.in
# via -r binary_installer/requirements.in
typing-extensions==4.4.0 \
--hash=sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa \
--hash=sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e

View File

@@ -4,6 +4,7 @@
#
# pip-compile --allow-unsafe --generate-hashes --output-file=installer/py3.10-windows-x86_64-cuda-reqs.txt installer/requirements.in
#
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https
@@ -150,6 +151,10 @@ blinker==1.5 \
--hash=sha256:1eb563df6fdbc39eeddc177d953203f99f097e9bf0e2b8f9f3cf18b6ca425e36 \
--hash=sha256:923e5e2f69c155f2cc42dafbbd70e16e3fde24d2d4aa2ab72fbe386238892462
# via streamlit
boltons==21.0.0 \
--hash=sha256:65e70a79a731a7fe6e98592ecfb5ccf2115873d01dbc576079874629e5c90f13 \
--hash=sha256:b9bb7b58b2b420bbe11a6025fdef6d3e5edc9f76a42fb467afe7ca212ef9948b
# via torchsde
cachetools==5.2.0 \
--hash=sha256:6a94c6402995a99c3970cc7e4884bb60b4a8639938157eeed436098bf9831757 \
--hash=sha256:f9f17d2aec496a9aa6b76f53e3b614c965223c061982d434d160f930c698a9db
@@ -614,8 +619,8 @@ jsonschema==4.17.0 \
# via
# altair
# jsonmerge
k-diffusion @ https://github.com/invoke-ai/k-diffusion/archive/7f16b2c33411f26b3eae78d10648d625cb0c1095.zip \
--hash=sha256:c3f2c84036aa98c3abf4552fafab04df5ca472aa639982795e05bb1db43ce5e4
k-diffusion @ https://github.com/Birch-san/k-diffusion/archive/363386981fee88620709cf8f6f2eea167bd6cd74.zip \
--hash=sha256:8eac5cdc08736e6d61908a1b2948f2b2f62691b01dc1aab978bddb3451af0d66
# via -r installer/requirements.in
kiwisolver==1.4.4 \
--hash=sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b \
@@ -1009,6 +1014,7 @@ numpy==1.23.4 \
# tifffile
# torch-fidelity
# torchmetrics
# torchsde
# torchvision
# transformers
oauthlib==3.2.2 \
@@ -1660,6 +1666,7 @@ scipy==1.9.3 \
# scikit-learn
# torch-fidelity
# torchdiffeq
# torchsde
semver==2.13.0 \
--hash=sha256:ced8b23dceb22134307c1b8abfa523da14198793d9787ac838e70e29e77458d4 \
--hash=sha256:fa0fe2722ee1c3f57eac478820c3a5ae2f624af8264cbdf9000c980ff7f75e3f
@@ -1863,6 +1870,7 @@ torch==1.12.0+cu116 ; platform_system == "Linux" or platform_system == "Windows"
# torch-fidelity
# torchdiffeq
# torchmetrics
# torchsde
# torchvision
torch-fidelity==0.3.0 \
--hash=sha256:3d3e33db98919759cc4f3f24cb27e1e74bdc7c905d90a780630e4e1c18492b66 \
@@ -1876,6 +1884,10 @@ torchmetrics==0.10.2 \
--hash=sha256:43757d82266969906fc74b6e80766fcb2a0d52d6c3d09e3b7c98cf3b733fd20c \
--hash=sha256:daa29d96bff5cff04d80eec5b9f5076993d6ac9c2d2163e88b6b31f8d38f7c25
# via pytorch-lightning
torchsde==0.2.5 \
--hash=sha256:222be9e15610d37a4b5a71cfa0c442178f9fd9ca02f6522a3e11c370b3d0906b \
--hash=sha256:4c34373a94a357bdf60bbfee00c850f3563d634491555820b900c9a4f7eff300
# via k-diffusion
torchvision==0.13.0+cu116 ; platform_system == "Linux" or platform_system == "Windows" \
--hash=sha256:1696feadf1921c8fa1549bad774221293298288ebedaa14e44bc3e57e964a369 \
--hash=sha256:572544b108eaf12638f3dca0f496a453c4b8d8256bcc8333d5355df641c0380c \
@@ -1925,6 +1937,9 @@ tqdm==4.64.1 \
# taming-transformers-rom1504
# torch-fidelity
# transformers
trampoline==0.1.2 \
--hash=sha256:36cc9a4ff9811843d177fc0e0740efbd7da39eadfe6e50c9e2937cbc06d899d9
# via torchsde
transformers==4.24.0 \
--hash=sha256:486f353a8e594002e48be0e2aba723d96eda839e63bfe274702a4b5eda85559b \
--hash=sha256:b7ab50039ef9bf817eff14ab974f306fd20a72350bdc9df3a858fd009419322e

View File

@@ -0,0 +1,17 @@
InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Installation on Windows:
NOTE: You might need to enable Windows Long Paths. If you're not sure,
then you almost certainly need to. Simply double-click the 'WinLongPathsEnabled.reg'
file. Note that you will need to have admin privileges in order to
do this.
Please double-click the 'install.bat' file (while keeping it inside the invokeAI folder).
Installation on Linux and Mac:
Please open the terminal, and run './install.sh' (while keeping it inside the invokeAI folder).
After installation, please run the 'invoke.bat' file (on Windows) or 'invoke.sh'
file (on Linux/Mac) to start InvokeAI.

View File

@@ -1,5 +1,6 @@
--prefer-binary
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https://download.pytorch.org
accelerate~=0.14
albumentations
@@ -7,7 +8,7 @@ diffusers
eventlet
flask_cors
flask_socketio
flaskwebgui
flaskwebgui==1.0.3
getpass_asterisk
imageio-ffmpeg
pyreadline3
@@ -25,6 +26,7 @@ transformers
picklescan
https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip
https://github.com/invoke-ai/clipseg/archive/1f754751c85d7d4255fa681f4491ff5711c1c288.zip
https://github.com/TencentARC/GFPGAN/archive/2eac2033893ca7f427f4035d80fe95b92649ac56.zip
https://github.com/invoke-ai/k-diffusion/archive/7f16b2c33411f26b3eae78d10648d625cb0c1095.zip
https://github.com/invoke-ai/GFPGAN/archive/3f5d2397361199bc4a91c08bb7d80f04d7805615.zip ; platform_system=='Windows'
https://github.com/invoke-ai/GFPGAN/archive/c796277a1cf77954e5fc0b288d7062d162894248.zip ; platform_system=='Linux' or platform_system=='Darwin'
https://github.com/Birch-san/k-diffusion/archive/363386981fee88620709cf8f6f2eea167bd6cd74.zip
https://github.com/invoke-ai/PyPatchMatch/archive/129863937a8ab37f6bbcec327c994c0f932abdbc.zip

View File

@@ -25,3 +25,5 @@ inpainting-1.5:
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
description: RunwayML SD 1.5 model optimized for inpainting
width: 512
height: 512

View File

@@ -32,7 +32,7 @@ model:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
per_image_tokens: false
num_vectors_per_token: 8
num_vectors_per_token: 1
progressive_words: False
unet_config:

View File

@@ -0,0 +1,86 @@
#######################
#### Builder stage ####
FROM library/ubuntu:22.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
git \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
python3-opencv \
libopencv-dev
# This is needed for patchmatch support
RUN cd /usr/lib/x86_64-linux-gnu/pkgconfig/ &&\
ln -sf opencv4.pc opencv.pc
ARG WORKDIR=/invokeai
WORKDIR ${WORKDIR}
ENV VIRTUAL_ENV=${WORKDIR}/.venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m venv ${VIRTUAL_ENV} &&\
pip install --extra-index-url https://download.pytorch.org/whl/cu116 \
torch==1.12.0+cu116 \
torchvision==0.13.0+cu116 &&\
pip install -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.3#egg=pypatchmatch
COPY . .
RUN --mount=type=cache,target=/root/.cache/pip \
cp environments-and-requirements/requirements-lin-cuda.txt requirements.txt && \
pip install -r requirements.txt &&\
pip install -e .
#######################
#### Runtime stage ####
FROM library/ubuntu:22.04 as runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt install -y --no-install-recommends \
git \
curl \
ncdu \
iotop \
bzip2 \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
python3-opencv \
libopencv-dev &&\
apt-get clean && apt-get autoclean
ARG WORKDIR=/invokeai
WORKDIR ${WORKDIR}
ENV INVOKEAI_ROOT=/mnt/invokeai
ENV VIRTUAL_ENV=${WORKDIR}/.venv
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
COPY --from=builder ${WORKDIR} ${WORKDIR}
COPY --from=builder /usr/lib/x86_64-linux-gnu/pkgconfig /usr/lib/x86_64-linux-gnu/pkgconfig
# build patchmatch
RUN python -c "from patchmatch import patch_match"
## workaround for non-existent initfile when runtime directory is mounted; see #1613
RUN touch /root/.invokeai
ENTRYPOINT ["bash"]
CMD ["-c", "python3 scripts/invoke.py --web --host 0.0.0.0"]

44
docker-build/Makefile Normal file
View File

@@ -0,0 +1,44 @@
# Directory in the container where the INVOKEAI_ROOT (runtime dir) will be mounted
INVOKEAI_ROOT=/mnt/invokeai
# Host directory to contain the runtime dir. Will be mounted at INVOKEAI_ROOT path in the container
HOST_MOUNT_PATH=${HOME}/invokeai
IMAGE=local/invokeai:latest
USER=$(shell id -u)
GROUP=$(shell id -g)
# All downloaded models, config, etc will end up in ${HOST_MOUNT_PATH} on the host.
# This is consistent with the expected non-Docker behaviour.
# Contents can be moved to a persistent storage and used to prime the cache on another host.
build:
DOCKER_BUILDKIT=1 docker build -t local/invokeai:latest -f Dockerfile.cloud ..
configure:
docker run --rm -it --runtime=nvidia --gpus=all \
-v ${HOST_MOUNT_PATH}:${INVOKEAI_ROOT} \
-e INVOKEAI_ROOT=${INVOKEAI_ROOT} \
${IMAGE} -c "python scripts/configure_invokeai.py"
# Run the container with the runtime dir mounted and the web server exposed on port 9090
web:
docker run --rm -it --runtime=nvidia --gpus=all \
-v ${HOST_MOUNT_PATH}:${INVOKEAI_ROOT} \
-e INVOKEAI_ROOT=${INVOKEAI_ROOT} \
-p 9090:9090 \
${IMAGE} -c "python scripts/invoke.py --web --host 0.0.0.0"
# Run the cli with the runtime dir mounted
cli:
docker run --rm -it --runtime=nvidia --gpus=all \
-v ${HOST_MOUNT_PATH}:${INVOKEAI_ROOT} \
-e INVOKEAI_ROOT=${INVOKEAI_ROOT} \
${IMAGE} -c "python scripts/invoke.py"
# Run the container with the runtime dir mounted and open a bash shell
shell:
docker run --rm -it --runtime=nvidia --gpus=all \
-v ${HOST_MOUNT_PATH}:${INVOKEAI_ROOT} ${IMAGE} --
.PHONY: build configure web cli shell

View File

@@ -171,12 +171,12 @@ title: Changelog
- Integrate sd-v1-5 model into test matrix (easily expandable), remove
unecesarry caches by @mauwii in
https://github.com/invoke-ai/InvokeAI/pull/1293
- add --no-interactive to preload_models step by @mauwii in
- add --no-interactive to configure_invokeai step by @mauwii in
https://github.com/invoke-ai/InvokeAI/pull/1302
- 1-click installer and updater. Uses micromamba to install git and conda into a
contained environment (if necessary) before running the normal installation
script by @cmdr2 in https://github.com/invoke-ai/InvokeAI/pull/1253
- preload_models.py script downloads the weight files by @lstein in
- configure_invokeai.py script downloads the weight files by @lstein in
https://github.com/invoke-ai/InvokeAI/pull/1290
## v2.0.1 <small>(13 October 2022)</small>

View File

@@ -130,20 +130,34 @@ file should contain the startup options as you would type them on the
command line (`--steps=10 --grid`), one argument per line, or a
mixture of both using any of the accepted command switch formats:
!!! example ""
!!! example "my unmodified initialization file"
```bash
--web
--steps=28
--grid
-f 0.6 -C 11.0 -A k_euler_a
```bash title="~/.invokeai" linenums="1"
# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running configure_invokeai.py again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="/Users/mauwii/invokeai"
# the --outdir option controls the default location of image files.
--outdir="/Users/mauwii/invokeai/outputs"
# You may place other frequently-used startup commands here, one or more per line.
# Examples:
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
```
Note that the initialization file only accepts the command line arguments.
There are additional arguments that you can provide on the `invoke>` command
line (such as `-n` or `--iterations`) that cannot be entered into this file.
Also be alert for empty blank lines at the end of the file, which will cause
an arguments error at startup time.
!!! note
The initialization file only accepts the command line arguments.
There are additional arguments that you can provide on the `invoke>` command
line (such as `-n` or `--iterations`) that cannot be entered into this file.
Also be alert for empty blank lines at the end of the file, which will cause
an arguments error at startup time.
## List of prompt arguments
@@ -195,15 +209,17 @@ Here are the invoke> command that apply to txt2img:
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
Note that the width and height of the image must be multiples of 64. You can
provide different values, but they will be rounded down to the nearest multiple
of 64.
!!! note
### This is an example of img2img:
the width and height of the image must be multiples of 64. You can
provide different values, but they will be rounded down to the nearest multiple
of 64.
```
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
!!! example "This is a example of img2img"
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
This will modify the indicated vacation photograph by making it more like the
prompt. Results will vary greatly depending on what is in the image. We also ask
@@ -253,7 +269,7 @@ description of the part of the image to replace. For example, if you have an
image of a breakfast plate with a bagel, toast and scrambled eggs, you can
selectively mask the bagel and replace it with a piece of cake this way:
```
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
```
@@ -265,7 +281,7 @@ are getting too much or too little masking you can adjust the threshold down (to
get more mask), or up (to get less). In this example, by passing `-tm` a higher
value, we are insisting on a more stringent classification.
```
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
```
@@ -275,16 +291,16 @@ You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](CONCEPTS.md) for more details.
# Other Commands
## Other Commands
The CLI offers a number of commands that begin with "!".
## Postprocessing images
### Postprocessing images
To postprocess a file using face restoration or upscaling, use the `!fix`
command.
### `!fix`
#### `!fix`
This command runs a post-processor on a previously-generated image. It takes a
PNG filename or path and applies your choice of the `-U`, `-G`, or `--embiggen`
@@ -311,19 +327,19 @@ Some examples:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
```
### !mask
#### `!mask`
This command takes an image, a text prompt, and uses the `clipseg` algorithm to
automatically generate a mask of the area that matches the text prompt. It is
useful for debugging the text masking process prior to inpainting with the
`--text_mask` argument. See [INPAINTING.md] for details.
## Model selection and importation
### Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch among them
rapidly without leaving the script.
### !models
#### `!models`
This prints out a list of the models defined in `config/models.yaml'. The active
model is bold-faced
@@ -336,7 +352,7 @@ laion400m not loaded <no description>
waifu-diffusion not loaded Waifu Diffusion v1.3
</pre>
### !switch <model>
#### `!switch <model>`
This quickly switches from one model to another without leaving the CLI script.
`invoke.py` uses a memory caching system; once a model has been loaded,
@@ -361,7 +377,7 @@ invoke> !switch waifu-diffusion
| Making attention of type 'vanilla' with 512 in_channels
| Using faster float16 precision
>> Model loaded in 18.24s
>> Max VRAM used to load the model: 2.17G
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Setting Sampler to k_lms
@@ -381,7 +397,7 @@ laion400m not loaded <no description>
waifu-diffusion cached Waifu Diffusion v1.3
</pre>
### !import_model <path/to/model/weights>
#### `!import_model <path/to/model/weights>`
This command imports a new model weights file into InvokeAI, makes it available
for image generation within the script, and writes out the configuration for the
@@ -428,10 +444,10 @@ OK to import [n]? <b>y</b>
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
| Making attention of type 'vanilla' with 512 in_channels
| Using faster float16 precision
invoke>
invoke>
</pre>
###!edit_model <name_of_model>
#### `!edit_model <name_of_model>`
The `!edit_model` command can be used to modify a model that is already defined
in `config/models.yaml`. Call it with the short name of the model you wish to
@@ -468,12 +484,12 @@ text... Outputs: [2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix
"outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512
-H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25 ```
## History processing
### History processing
The CLI provides a series of convenient commands for reviewing previous actions,
retrieving them, modifying them, and re-running them.
### !history
#### `!history`
The invoke script keeps track of all the commands you issue during a session,
allowing you to re-run them. On Mac and Linux systems, it also writes the
@@ -485,20 +501,22 @@ during the session (Windows), or the most recent 1000 commands (Mac|Linux). You
can then repeat a command by using the command `!NNN`, where "NNN" is the
history line number. For example:
```bash
invoke> !history
...
[14] happy woman sitting under tree wearing broad hat and flowing garment
[15] beautiful woman sitting under tree wearing broad hat and flowing garment
[18] beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6
[20] watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
...
invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
!!! example ""
### !fetch
```bash
invoke> !history
...
[14] happy woman sitting under tree wearing broad hat and flowing garment
[15] beautiful woman sitting under tree wearing broad hat and flowing garment
[18] beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6
[20] watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
...
invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
####`!fetch`
This command retrieves the generation parameters from a previously generated
image and either loads them into the command line (Linux|Mac), or prints them
@@ -508,33 +526,36 @@ a folder with image png files, and wildcard \*.png to retrieve the dream command
used to generate the images, and save them to a file commands.txt for further
processing.
This example loads the generation command for a single png file:
!!! example "load the generation command for a single png file"
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
This one fetches the generation commands from a batch of files and stores them
into `selected.txt`:
!!! example "fetch the generation commands from a batch of files and store them into `selected.txt`"
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
### !replay
#### `!replay`
This command replays a text file generated by !fetch or created manually
```
invoke> !replay outputs\selected-imgs\selected.txt
```
!!! example
Note that these commands may behave unexpectedly if given a PNG file that was
not generated by InvokeAI.
```bash
invoke> !replay outputs\selected-imgs\selected.txt
```
### !search <search string>
!!! note
These commands may behave unexpectedly if given a PNG file that was
not generated by InvokeAI.
#### `!search <search string>`
This is similar to !history but it only returns lines that contain
`search string`. For example:
@@ -544,7 +565,7 @@ invoke> !search surreal
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
### `!clear`
#### `!clear`
This clears the search history from memory and disk. Be advised that this
operation is irreversible and does not issue any warnings!

View File

@@ -1,130 +1,110 @@
---
title: The Hugging Face Concepts Library and Importing Textual Inversion files
title: Concepts Library
---
# :material-file-document: Concepts Library
# :material-library-shelves: The Hugging Face Concepts Library and Importing Textual Inversion files
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
Stable Diffusion image generation. They can augment SD with
specialized subjects and artistic styles. They are also known as
"embeds" in the machine learning world.
Stable Diffusion image generation. They can augment SD with specialized subjects
and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD
model. These are known in InvokeAI as "triggers." Triggers are often,
but not always, denoted using angle brackets as in
"&lt;trigger-phrase&gt;". The two most common type of TI files that you'll
encounter are `.pt` and `.bin` files, which are produced by different
TI training packages. InvokeAI supports both formats, but its [built-in
TI training system](TEXTUAL_INVERSION.md) produces `.pt`.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are often, but not always, denoted
using angle brackets as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TEXTUAL_INVERSION.md) produces `.pt`.
The [Hugging Face company](https://huggingface.co/sd-concepts-library)
has amassed a large ligrary of &gt;800 community-contributed TI files
covering a broad range of subjects and styles. InvokeAI has built-in
support for this library which downloads and merges TI files
automatically upon request. You can also install your own or others'
TI files by placing them in a designated directory.
The [Hugging Face company](https://huggingface.co/sd-concepts-library) has
amassed a large ligrary of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. InvokeAI has built-in support for this
library which downloads and merges TI files automatically upon request. You can
also install your own or others' TI files by placing them in a designated
directory.
### An Example
Here are a few examples to illustrate how it works. All these images
were generated using the command-line client and the Stable Diffusion
1.5 model:
Here are a few examples to illustrate how it works. All these images were
generated using the command-line client and the Stable Diffusion 1.5 model:
Japanese gardener
<br>
<img src="../assets/concepts/image1.png">
Japanese gardener &lt;ghibli-face&gt;
<br>
<img src="../assets/concepts/image2.png">
Japanese gardener &lt;hoi4-leaders&gt;
<br>
<img src="../assets/concepts/image3.png">
Japanese gardener &lt;cartoona-animals&gt;
<br>
<img src="../assets/concepts/image4.png">
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
| ![](../assets/concepts/image1.png) | ![](../assets/concepts/image2.png) | ![](../assets/concepts/image3.png) | ![](../assets/concepts/image4.png) |
You can also combine styles and concepts:
A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style
<br>
<img src="../assets/concepts/image5.png">
<figure markdown>
![](../assets/concepts/image5.png)
<figcaption>A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style</figcaption>
</figure>
## Using a Hugging Face Concept
Hugging Face TI concepts are downloaded and installed automatically as
you require them. This requires your machine to be connected to the
Internet. To find out what each concept is for, you can browse the
[Hugging Face concepts
library](https://huggingface.co/sd-concepts-library) and look at
examples of what each concept produces.
Hugging Face TI concepts are downloaded and installed automatically as you
require them. This requires your machine to be connected to the Internet. To
find out what each concept is for, you can browse the
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
look at examples of what each concept produces.
When you have an idea of a concept you wish to try, go to the
command-line client (CLI) and type a "&lt;" character and the beginning
of the Hugging Face concept name you wish to load. Press the Tab key,
and the CLI will show you all matching concepts. You can also type "&lt;"
and Tab to get a listing of all ~800 concepts, but be prepared to
scroll up to see them all! If there is more than one match you can
continue to type and Tab until the concept is completed.
When you have an idea of a concept you wish to try, go to the command-line
client (CLI) and type a "&lt;" character and the beginning of the Hugging Face
concept name you wish to load. Press the Tab key, and the CLI will show you all
matching concepts. You can also type "&lt;" and Tab to get a listing of all ~800
concepts, but be prepared to scroll up to see them all! If there is more than
one match you can continue to type and Tab until the concept is completed.
For example if you type "&lt;x" and Tab, you'll be prompted with the completions:
For example if you type "&lt;x" and Tab, you'll be prompted with the
completions:
```
<xatu2> <xatu> <xbh> <xi> <xidiversity> <xioboma> <xuna> <xyz>
<xatu2> <xatu> <xbh> <xi> <xidiversity> <xioboma> <xuna> <xyz>
```
Now type "id" and press Tab. It will be autocompleted to
"&lt;xidiversity&gt;" because this is a unique match.
Now type "id" and press Tab. It will be autocompleted to "&lt;xidiversity&gt;"
because this is a unique match.
Finish your prompt and generate as usual. You may include multiple
concept terms in the prompt.
Finish your prompt and generate as usual. You may include multiple concept terms
in the prompt.
If you have never used this concept before, you will see a message
that the TI model is being downloaded and installed. After this, the
concept will be saved locally (in the `models/sd-concepts-library`
directory) for future use.
If you have never used this concept before, you will see a message that the TI
model is being downloaded and installed. After this, the concept will be saved
locally (in the `models/sd-concepts-library` directory) for future use.
Several steps happen during downloading and
installation, including a scan of the file for malicious code. Should
any errors occur, you will be warned and the concept will fail to
load. Generation will then continue treating the trigger term as a
normal string of characters (e.g. as literal "&lt;ghibli-face&gt;").
Several steps happen during downloading and installation, including a scan of
the file for malicious code. Should any errors occur, you will be warned and the
concept will fail to load. Generation will then continue treating the trigger
term as a normal string of characters (e.g. as literal "&lt;ghibli-face&gt;").
Currently auto-installation of concepts is a feature only available on
the command-line client. Support for the WebUI is a work in progress.
Currently auto-installation of concepts is a feature only available on the
command-line client. Support for the WebUI is a work in progress.
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying
them into the `embeddings` directory of the InvokeAI runtime directory
(usually `invokeai` in your home directory). You may create
subdirectories in order to organize the files in any way you wish. Be
careful not to overwrite one file with another. For example, TI files
generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can use subdirectories to keep them
distinct.
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embeddings` directory of the InvokeAI runtime directory (usually `invokeai`
in your home directory). You may create subdirectories in order to organize the
files in any way you wish. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the `embeddings` directory and
load any TI files it finds there. At startup you will see a message
similar to this one:
At startup time, InvokeAI will scan the `embeddings` directory and load any TI
files it finds there. At startup you will see a message similar to this one:
```
```bash
>> Current embedding manager terms: *, <HOI4-Leader>, <princess-knight>
```
Note the "*" trigger term. This is a placeholder term that many early
TI tutorials taught people to use rather than a more descriptive
term. Unfortunately, if you have multiple TI files that all use this
term, only the first one loaded will be triggered by use of the term.
Note the `*` trigger term. This is a placeholder term that many early TI
tutorials taught people to use rather than a more descriptive term.
Unfortunately, if you have multiple TI files that all use this term, only the
first one loaded will be triggered by use of the term.
To avoid this problem, you can use the `merge_embeddings.py` script to
merge two or more TI files together. If it encounters a collision of
terms, the script will prompt you to select new terms that do not
collide. See [Textual Inversion](TEXTUAL_INVERSION.md) for details.
To avoid this problem, you can use the `merge_embeddings.py` script to merge two
or more TI files together. If it encounters a collision of terms, the script
will prompt you to select new terms that do not collide. See
[Textual Inversion](TEXTUAL_INVERSION.md) for details.
## Further Reading

View File

@@ -12,21 +12,19 @@ stable diffusion to build the prompt on top of the image you provide, preserving
the original's basic shape and layout. To use it, provide the `--init_img`
option as shown here:
```commandline
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
!!! example ""
This will take the original image shown here:
```commandline
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
<figure markdown>
![original-image](https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png){ width=320 }
</figure>
<figure markdown>
and generate a new image based on it as shown here:
| original image | generated image |
| :------------: | :-------------: |
| ![original-image](https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png){ width=320 } | ![generated-image](https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png){ width=320 } |
<figure markdown>
![generated-image](https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png){ width=320 }
</figure>
</figure>
The `--init_img` (`-I`) option gives the path to the seed picture. `--strength`
(`-f`) controls how much the original will be modified, ranging from `0.0` (keep
@@ -88,13 +86,15 @@ from a prompt. If the step count is 10, then the "latent space" (Stable
Diffusion's internal representation of the image) for the prompt "fire" with
seed `1592514025` develops something like this:
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
!!! example ""
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png)
</figure>
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png){ width=720 }
</figure>
Put simply: starting from a frame of fuzz/static, SD finds details in each frame
that it thinks look like "fire" and brings them a little bit more into focus,
@@ -109,25 +109,23 @@ into the sequence at the appropriate point, with just the right amount of noise.
### A concrete example
I want SD to draw a fire based on this hand-drawn image:
!!! example "I want SD to draw a fire based on this hand-drawn image"
<figure markdown>
![drawing of a fireplace](../assets/img2img/fire-drawing.png)
</figure>
![drawing of a fireplace](../assets/img2img/fire-drawing.png){ align=left }
Let's only do 10 steps, to make it easier to see what's happening. If strength
is `0.7`, this is what the internal steps the algorithm has to take will look
like:
Let's only do 10 steps, to make it easier to see what's happening. If strength
is `0.7`, this is what the internal steps the algorithm has to take will look
like:
<figure markdown>
![gravity32](../assets/img2img/000032.steps.gravity.png)
</figure>
<figure markdown>
![gravity32](../assets/img2img/000032.steps.gravity.png)
</figure>
With strength `0.4`, the steps look more like this:
With strength `0.4`, the steps look more like this:
<figure markdown>
![gravity30](../assets/img2img/000030.steps.gravity.png)
</figure>
<figure markdown>
![gravity30](../assets/img2img/000030.steps.gravity.png)
</figure>
Notice how much more fuzzy the starting image is for strength `0.7` compared to
`0.4`, and notice also how much longer the sequence is with `0.7`:

View File

@@ -120,7 +120,7 @@ A number of caveats:
(`--iterations`) argument.
3. Your results will be _much_ better if you use the `inpaint-1.5` model
released by runwayML and installed by default by `scripts/preload_models.py`.
released by runwayML and installed by default by `scripts/configure_invokeai.py`.
This model was trained specifically to harmoniously fill in image gaps. The
standard model will work as well, but you may notice color discontinuities at
the border.

View File

@@ -28,21 +28,17 @@ should "just work" without further intervention. Simply pass the `--upscale`
the popup in the Web GUI.
**GFPGAN** requires a series of downloadable model files to work. These are
loaded when you run `scripts/preload_models.py`. If GFPAN is failing with an
loaded when you run `scripts/configure_invokeai.py`. If GFPAN is failing with an
error, please run the following from the InvokeAI directory:
```bash
python scripts/preload_models.py
python scripts/configure_invokeai.py
```
If you do not run this script in advance, the GFPGAN module will attempt to
download the models files the first time you try to perform facial
reconstruction.
## Usage
You will now have access to two new prompt arguments.
### Upscaling
`-U : <upscaling_factor> <upscaling_strength>`
@@ -110,7 +106,7 @@ This repo also allows you to perform face restoration using
[CodeFormer](https://github.com/sczhou/CodeFormer).
In order to setup CodeFormer to work, you need to download the models like with
GFPGAN. You can do this either by running `preload_models.py` or by manually
GFPGAN. You can do this either by running `configure_invokeai.py` or by manually
downloading the
[model file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
and saving it to `ldm/invoke/restoration/codeformer/weights` folder.
@@ -119,7 +115,7 @@ You can use `-ft` prompt argument to swap between CodeFormer and the default
GFPGAN. The above mentioned `-G` prompt argument will allow you to control the
strength of the restoration effect.
### Usage
### CodeFormer Usage
The following command will perform face restoration with CodeFormer instead of
the default gfpgan.
@@ -160,7 +156,7 @@ A new file named `000044.2945021133.fixed.png` will be created in the output
directory. Note that the `!fix` command does not replace the original file,
unlike the behavior at generate time.
### Disabling
## How to disable
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
you can disable them on the invoke.py command line with the `--no_restore` and

5
docs/features/index.md Normal file
View File

@@ -0,0 +1,5 @@
---
title: Overview
---
Here you can find the documentation for different features.

View File

@@ -82,9 +82,18 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM.
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
AMD card (using the ROCm driver).
First time users, please see [Automated
Installer](installation/INSTALL_AUTOMATED.md) for a walkthrough of
getting InvokeAI up and running on your system. For alternative
installation and upgrade instructions, please see: [InvokeAI
Installation Overview](installation/)
Linux users who wish to make use of the PyPatchMatch inpainting
functions will need to perform a bit of extra work to enable this
module. Instructions can be found at [Installing
PyPatchMatch](installation/INSTALL_PATCHMATCH.md).
## :fontawesome-solid-computer: Hardware Requirements
@@ -96,22 +105,25 @@ You wil need one of the following:
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
We do **not recommend** the following video cards due to issues with
their running in half-precision mode and having insufficient VRAM to
render 512x512 images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
### :fontawesome-solid-memory: Memory
- At least 12 GB Main Memory RAM.
### :fontawesome-regular-hard-drive: Disk
- At least 12 GB of free disk space for the machine learning model, Python, and
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
!!! info
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the invoke script in
full-precision mode as shown below.
Similarly, specify full-precision mode on Apple M1 hardware.
Precision is auto configured based on the device. If however you encounter errors like
`expected type Float but found Half` or `not implemented for Half` you can try starting
`invoke.py` with the `--precision=float32` flag:
@@ -123,7 +135,8 @@ You wil need one of the following:
- [The InvokeAI Web Interface](features/WEB.md)
- [WebGUI hotkey reference guide](features/WEBUIHOTKEYS.md)
<!-- this link does not exist - [WebGUI Unified Canvas for Img2Img, inpainting and outpainting](features/UNIFIED_CANVAS.md) -->
- [WebGUI Unified Canvas for Img2Img, inpainting and outpainting](features/UNIFIED_CANVAS.md)
<!-- seperator -->
- [The Command Line Interace](features/CLI.md)
- [Image2Image](features/IMG2IMG.md)
- [Inpainting](features/INPAINTING.md)
@@ -136,6 +149,7 @@ You wil need one of the following:
- [Prompt Engineering](features/PROMPTS.md)
<!-- seperator -->
- Miscellaneous
- [NSFW Checker](features/NSFW.md)
- [Embiggen upscaling](features/EMBIGGEN.md)
- [Other](features/OTHER.md)
@@ -160,7 +174,7 @@ You wil need one of the following:
- You can now load
[multiple models and switch among them quickly](https://docs.google.com/presentation/d/1WywGA1rny7bpFh7CLSdTr4nNpVKdlUeT0Bj0jCsILyU/edit?usp=sharing)
without leaving the CLI.
- The installation process (via `scripts/preload_models.py`) now lets you select
- The installation process (via `scripts/configure_invokeai.py`) now lets you select
among several popular
[Stable Diffusion models](https://invoke-ai.github.io/InvokeAI/installation/INSTALLING_MODELS/)
and downloads and installs them on your behalf. Among other models, this

View File

@@ -0,0 +1,89 @@
---
title: build binary installers
---
# :simple-buildkite: How to build "binary" installers (InvokeAI-mac/windows/linux_on_*.zip)
## 1. Ensure `installers/requirements.in` is correct
and up to date on the branch to be installed.
## <a name="step-2"></a> 2. Run `pip-compile` on each platform.
On each target platform, in the branch that is to be installed, and
inside the InvokeAI git root folder, run the following commands:
```commandline
conda activate invokeai # or however you activate python
pip install pip-tools
pip-compile --allow-unsafe --generate-hashes --output-file=binary_installer/<reqsfile>.txt binary_installer/requirements.in
```
where `<reqsfile>.txt` is whichever of
```commandline
py3.10-darwin-arm64-mps-reqs.txt
py3.10-darwin-x86_64-reqs.txt
py3.10-linux-x86_64-cuda-reqs.txt
py3.10-windows-x86_64-cuda-reqs.txt
```
matches the current OS and architecture.
> There is no way to cross-compile these. They must be done on a system matching the target OS and arch.
## <a name="step-3"></a> 3. Set github repository and branch
Once all reqs files have been collected and committed **to the branch
to be installed**, edit `binary_installer/install.sh.in` and `binary_installer/install.bat.in` so that `RELEASE_URL`
and `RELEASE_SOURCEBALL` point to the github repo and branch that is
to be installed.
For example, to install `main` branch of `InvokeAI`, they should be
set as follows:
`install.sh.in`:
```commandline
RELEASE_URL=https://github.com/invoke-ai/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
```
`install.bat.in`:
```commandline
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
```
Or, to install `damians-cool-feature` branch of `damian0815`, set them
as follows:
`install.sh.in`:
```commandline
RELEASE_URL=https://github.com/damian0815/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/damians-cool-feature.tar.gz
```
`install.bat.in`:
```commandline
set RELEASE_URL=https://github.com/damian0815/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/damians-cool-feature.tar.gz
```
The branch and repo specified here **must** contain the correct reqs
files. The installer zip files **do not** contain requirements files,
they are pulled from the specified branch during the installation
process.
## 4. Create zip files.
cd into the `installers/` folder and run
`./create_installers.sh`. This will create
`InvokeAI-mac_on_<branch>.zip`,
`InvokeAI-windows_on_<branch>.zip` and
`InvokeAI-linux_on_<branch>.zip`. These files can be distributed to end users.
These zips will continue to function as installers for all future
pushes to those branches, as long as necessary changes to
`requirements.in` are propagated in a timely manner to the
`py3.10-*-reqs.txt` files using pip-compile as outlined in [step
2](#step-2).
To actually install, users should unzip the appropriate zip file into an empty
folder and run `install.sh` on macOS/Linux or `install.bat` on
Windows.

View File

@@ -56,7 +56,7 @@ unofficial Stable Diffusion models and where they can be obtained.
There are three ways to install weights files:
1. During InvokeAI installation, the `preload_models.py` script can download
1. During InvokeAI installation, the `configure_invokeai.py` script can download
them for you.
2. You can use the command-line interface (CLI) to import, configure and modify
@@ -65,13 +65,13 @@ There are three ways to install weights files:
3. You can download the files manually and add the appropriate entries to
`models.yaml`.
### Installation via `preload_models.py`
### Installation via `configure_invokeai.py`
This is the most automatic way. Run `scripts/preload_models.py` from the
This is the most automatic way. Run `scripts/configure_invokeai.py` from the
console. It will ask you to select which models to download and lead you through
the steps of setting up a Hugging Face account if you haven't done so already.
To start, run `python scripts/preload_models.py` from within the InvokeAI:
To start, run `python scripts/configure_invokeai.py` from within the InvokeAI:
directory
!!! example ""
@@ -162,6 +162,12 @@ the command-line client's `!import_model` command.
Type a bit of the path name and hit ++tab++ in order to get a choice of
possible completions.
!!! tip "on Windows, you can drag model files onto the command-line"
Once you have typed in `!import_model `, you can drag the model `.ckpt` file
onto the command-line to insert the model path. This way, you don't need to
type it or copy/paste.
4. Follow the wizard's instructions to complete installation as shown in the
example here:
@@ -238,7 +244,7 @@ arabian-nights-1.0:
| arabian-nights-1.0 | This is the name of the model that you will refer to from within the CLI and the WebGUI when you need to load and use the model. |
| description | Any description that you want to add to the model to remind you what it is. |
| weights | Relative path to the .ckpt weights file for this model. |
| config | This is the confusingly-named configuration file for the model itself. Use `./configs/stable-diffusion/v1-inference.yaml` unless the model happens to need a custom configuration, in which case the place you downloaded it from will tell you what to use instead. For example, the runwayML custom inpainting model requires the file `configs/stable-diffusion/v1-inpainting-inference.yaml`. This is already inclued in the InvokeAI distribution and is configured automatically for you by the `preload_models.py` script. |
| config | This is the confusingly-named configuration file for the model itself. Use `./configs/stable-diffusion/v1-inference.yaml` unless the model happens to need a custom configuration, in which case the place you downloaded it from will tell you what to use instead. For example, the runwayML custom inpainting model requires the file `configs/stable-diffusion/v1-inpainting-inference.yaml`. This is already inclued in the InvokeAI distribution and is configured automatically for you by the `configure_invokeai.py` script. |
| vae | If you want to add a VAE file to the model, then enter its path here. |
| width, height | This is the width and height of the images used to train the model. Currently they are always 512 and 512. |

View File

@@ -0,0 +1,310 @@
---
title: InvokeAI Automated Installation
---
# InvokeAI Automated Installation
## Introduction
The automated installer is a shell script that attempts to automate
every step needed to install and run InvokeAI on a stock computer
running recent versions of Linux, MacOS or Windows. It will leave you
with a version that runs a stable version of InvokeAI with the option
to upgrade to experimental versions later.
## Walk through
1. Make sure that your system meets the [hardware
requirements](../index.md#hardware-requirements) and has the
appropriate GPU drivers installed. In particular, if you are a Linux
user with an AMD GPU installed, you may need to install the [ROCm
driver](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html).
- Installation requires roughly 18G of free disk space to load the libraries and
recommended model weights files.
2. Check that your system has an up-to-date Python installed. To do
this, open up a command-line window ("Terminal" on Linux and
Macintosh, "Command" or "Powershell" on Windows) and type `python
--version`. If Python is installed, it will print out the version
number. If it is version `3.9.1` or higher, you meet requirements.
- If you see an older version, or you get a command not found
error, then go to [Python
Downloads](https://www.python.org/downloads/) and download the
appropriate installer package for your platform. We recommend
[Version
3.10.9](https://www.python.org/downloads/release/python-3109/),
which has been extensively tested with InvokeAI.
-**Windows users**: During the Python configuration process,
Please look out for a checkbox to add Python to your PATH
and select it. If the install script complains that it can't
find python, then open the Python installer again and choose
"Modify" existing installation.
- **Mac users**: After installing Python, you may need to run the
following command from the Terminal in order to install the Web
certificates needed to download model data from https sites. If
you see lots of CERTIFICATE ERRORS during the last part of the
install, this is the problem:
`/Applications/Python\ 3.10/Install\ Certificates.command`
Do not use Python 3.11 at this time due to poor performance
of the underlying pytorch machine learning library.
- **Linux users**: See [Installing Python in Ubuntu](#installing-python-in-ubuntu) for some
platform-specific tips.
3. The source installer is distributed in ZIP files. Go to the
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest), and
look for a series of files named:
- [InvokeAI-installer-2.2.4-mac.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/InvokeAI-installer-2.2.4-mac.zip)
- [InvokeAI-installer-2.2.4-windows.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/InvokeAI-installer-2.2.4-windows.zip)
- [InvokeAI-installer-2.2.4-linux.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/InvokeAI-installer-2.2.4-linux.zip)
Download the one that is appropriate for your operating system.
4. If you are a macOS user, you may need to install the Xcode command line tools.
These are a set of tools that are needed to run certain applications in a Terminal,
including InvokeAI. This package is provided directly by Apple.
- To install, open a terminal window and run `xcode-select
--install`. You will get a macOS system popup guiding you through
the install. If you already have them installed, you will instead
see some output in the Terminal advising you that the tools are
already installed.
- More information can be found here:
https://www.freecodecamp.org/news/install-xcode-command-line-tools/
5. If you are a Windows users, there is a slight possibility that you
will encountered DLL load errors at the very end of the installation
process. This is caused by not having up to date Visual C++
redistributable libraries. If this happens to you, you can install
the C++ libraries from this site:
https://learn.microsoft.com/en-us/cpp/windows/deploying-native-desktop-applications-visual-cpp?view=msvc-170
6. Unpack the zip file into a convenient directory. This will create
a new directory named "InvokeAI-Installer". This example shows how
this would look using the `unzip` command-line tool, but you may
use any graphical or command-line Zip extractor:
```cmd
C:\Documents\Linco> unzip InvokeAI-installer-2.2.4-windows.zip
Archive: C: \Linco\Downloads\InvokeAI-installer-2.2.4-windows.zip
creating: InvokeAI-Installer\
inflating: InvokeAI-Installer\install.bat
inflating: InvokeAI-Installer\readme.txt
...
```
After successful installation, you can delete the
`InvokeAI-Installer` directory.
7. Windows users should now double-click on the file WinLongPathsEnabled.reg
and accept the dialog box that asks you if you wish to modify your
registry. This activates long filename support on your system and will
prevent mysterious errors during installation.
8. If you are using a desktop GUI, double-click the installer file. It will be
named `install.bat` on Windows systems and `install.sh` on Linux and
Macintosh systems.
On Windows systems you will probably get an "Untrusted Publisher" warning.
Click on "More Info" and select "Run Anyway." You trust us, right?
9. Alternatively, from the command line, run the shell script or .bat file:
```cmd
C:\Documents\Linco> cd InvokeAI-Installer
C:\Documents\Linco\invokeAI> install.bat
```
10. The script will ask you to choose where to install InvokeAI. Select
a directory with at least 18G of free space for a full
install. InvokeAI and all its support files will be installed into
a new directory named `invokeai` located at the location you specify.
- The default is to install the `invokeai` directory in your home
directory, usually `C:\Users\YourName\invokeai` on Windows systems,
`/home/YourName/invokeai` on Linux systems, and
`/Users/YourName/invokeai` on Macintoshes, where "YourName" is your
login name.
- The script uses tab autocompletion to suggest directory path
completions. Type part of the path (e.g. "C:\Users") and press
&lt;tab&gt; repeatedly to suggest completions.
11. Sit back and let the install script work. It will install the
third-party libraries needed by InvokeAI, then download the
current InvokeAI release and install it.
Be aware that some of the library download and install steps take
a long time. In particular, the `pytorch` package is quite large
and often appears to get "stuck" at 99.9%. Have patience and the
installation step will eventually resume. However, there are
occasions when the library install does legitimately get stuck. If
you have been waiting for more than ten minutes and nothing is
happening, you can interrupt the script with ^C. You may restart
it and it will pick up where it left off.
12. After installation completes, the installer will launch a script
called `configure_invokeai.py`, which will guide you through the
first-time process of selecting one or more Stable Diffusion model
weights files, downloading and configuring them. We provide a list
of popular models that InvokeAI performs well with. However, you
can add more weight files later on using the command-line client
or the Web UI. See [Installing Models](INSTALLING_MODELS.md) for details.
Note that the main Stable Diffusion weights file is protected by a license
agreement that you must agree to in order to use. The script will list the
steps you need to take to create an account on the official site that hosts
the weights files, accept the agreement, and provide an access token that
allows InvokeAI to legally download and install the weights files.
If you have already downloaded the weights file(s) for another Stable
Diffusion distribution, you may skip this step (by selecting "skip" when
prompted) and configure InvokeAI to use the previously-downloaded files. The
process for this is described in [Installing Models](INSTALLING_MODELS.md).
13. The script will now exit and you'll be ready to generate some
images. Look for the directory `invokeai` installed in the
location you chose at the beginning of the install session. Look
for a shell script named `invoke.sh` (Linux/Mac) or `invoke.bat`
(Windows). Launch the script by double-clicking it or typing its
name at the command-line:
```cmd
C:\Documents\Linco> cd invokeai
C:\Documents\Linco\invokeAI> invoke.bat
```
- The `invoke.bat` (`invoke.sh`) script will give you the choice of starting (1)
the command-line interface, or (2) the web GUI. If you start the latter, you can
load the user interface by pointing your browser at http://localhost:9090.
- The script also offers you a third option labeled "open the developer
console". If you choose this option, you will be dropped into a
command-line interface in which you can run python commands directly,
access developer tools, and launch InvokeAI with customized options.
14. You can launch InvokeAI with several different command-line arguments
that customize its behavior. For example, you can change the location
of the inage output directory, or select your favorite sampler. See
the [Command-Line Interface](../features/CLI.md) for a full list of
the options.
- To set defaults that will take effect every time you launch InvokeAI,
use a text editor (e.g. Notepad) to exit the file
`invokeai\invokeai.init`. It contains a variety of examples that you can
follow to add and modify launch options.
!!! warning "The `invokeai` directory contains the `invoke` application, its configuration files, the model weight files, and outputs of image generation. Once InvokeAI is installed, do not move or remove this directory."
## Troubleshooting
_Package dependency conflicts_ If you have previously installed
InvokeAI or another Stable Diffusion package, the installer may
occasionally pick up outdated libraries and either the installer or
`invoke` will fail with complaints about library conflicts. You can
address this by entering the `invokeai` directory and running
`update.sh`, which will bring InvokeAI up to date with the latest
libraries.
!!! warning "Some users have tried to correct dependency problems by installing the `ldm` package from PyPi.org. Unfortunately this is an unrelated package that has nothing to do with the 'latent diffusion model' used by InvokeAI. Installing ldm will make matters worse. If you've installed ldm, uninstall it with `pip uninstall ldm`."
_"Corrupted configuration file."__ Everything seems to install ok, but
`invoke` complains of a corrupted configuration file and goes back
into the configuration process (asking you to download models, etc),
but this doesn't fix the problem.
This issue is often caused by a misconfigured configuration directive
in the `invokeai\invokeai.init` initialization file that contains
startup settings. The easiest way to fix the problem is to move the
file out of the way and re-run `configure_invokeai.py`. Enter the
developer's console (option 3 of the launcher script) and run this
command:
```cmd
configure_invokeai.py --root=.
```
Note the dot (.) after `--root`. It is part of the command.
_If none of these maneuvers fixes the problem_ then please report the
problem to the [InvokeAI
Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive assistance.
## Updating to newer versions
This distribution is changing rapidly, and we add new features on a daily basis.
To update to the latest released version (recommended), run the `update.sh`
(Linux/Mac) or `update.bat` (Windows) scripts. This will fetch the latest
release and re-run the `configure_invokeai` script to download any updated models
files that may be needed. You can also use this to add additional models that
you did not select at installation time.
You can now close the developer console and run `invoke` as before. If you get
complaints about missing models, then you may need to do the additional step of
running `configure_invokeai.py`. This happens relatively infrequently. To do this,
simply open up the developer's console again and type
`python scripts/configure_invokeai.py`.
You may also use the `update` script to install any selected version
of InvokeAI. From https://github.com/invoke-ai/InvokeAI, navigate to
the zip file link of the version you wish to install. You can find the
zip links by going to the one of the release pages and looking for the
**Assets** section at the bottom. Alternatively, you can browse
"branches" and "tags" at the top of the big code directory on the
InvokeAI welcome page. When you find the version you want to install,
go to the green "&lt;&gt; Code" button at the top, and copy the
"Download ZIP" link.
Now run `update.sh` (or `update.bat`) with the URL of the desired
InvokeAI version as its argument. For example, this will install the
old 2.2.0 release.
```cmd
update.sh https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v2.2.0.zip
```
## Troubleshooting
If you run into problems during or after installation, the InvokeAI team is
available to help you. Either create an
[Issue](https://github.com/invoke-ai/InvokeAI/issues) at our GitHub site, or
make a request for help on the "bugs-and-support" channel of our
[Discord server](https://discord.gg/ZmtBAhwWhy). We are a 100% volunteer
organization, but typically somebody will be available to help you within 24
hours, and often much sooner.
## Installing Python in Ubuntu
For reasons that are not entirely clear, installing the correct
version of Python can be a bit of a challenge on Ubuntu, Linux Mint, and
other Ubuntu-derived distributions.
In particular, Ubuntu version 20.04 LTS comes with an old version of
Python, does not come with the PIP package manager installed, and to
make matters worse, the `python` command points to Python2, not
Python3.
Here is the quick recipe for bringing your system up to date:
```
sudo apt update
sudo apt install python3.9
sudo apt install python3-pip
cd /usr/bin
sudo ln -sf python3.9 python3
sudo ln -sf python3 python
```
You can still access older versions of Python by calling `python2`,
`python3.8`, etc.

View File

@@ -6,7 +6,7 @@ title: Docker
!!! warning "For end users"
We highly recommend to Install InvokeAI locally using [these instructions](index.md)"
We highly recommend to Install InvokeAI locally using [these instructions](index.md)
!!! tip "For developers"
@@ -16,6 +16,10 @@ title: Docker
For general use, install locally to leverage your machine's GPU.
!!! tip "For running on a cloud instance/service"
Check out the [Running InvokeAI in the cloud with Docker](#running-invokeai-in-the-cloud-with-docker) section below
## Why containers?
They provide a flexible, reliable way to build and deploy InvokeAI. You'll also
@@ -36,7 +40,7 @@ development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud.
## Installation on a Linux container
## Installation in a Linux container (desktop)
### Prerequisites
@@ -117,12 +121,91 @@ also do so.
./docker-build/run.sh "banana sushi" -Ak_lms -S42 -s10
```
This would generate the legendary "banana sushi" with Seed 42, k_lms Sampler and 10 steps.
This would generate the legendary "banana sushi" with Seed 42, k_lms Sampler and 10 steps.
Find out more about available CLI-Parameters at [features/CLI.md](../../features/CLI/#arguments)
---
## Running InvokeAI in the cloud with Docker
We offer an optimized Ubuntu-based image that has been well-tested in cloud deployments. Note: it also works well locally on Linux x86_64 systems with an Nvidia GPU. It *may* also work on Windows under WSL2 and on Intel Mac (not tested).
An advantage of this method is that it does not need any local setup or additional dependencies.
See the `docker-build/Dockerfile.cloud` file to familizarize yourself with the image's content.
### Prerequisites
- a `docker` runtime
- `make` (optional but helps for convenience)
- Huggingface token to download models, or an existing InvokeAI runtime directory from a previous installation
Neither local Python nor any dependencies are required. If you don't have `make` (part of `build-essentials` on Ubuntu), or do not wish to install it, the commands from the `docker-build/Makefile` are readily adaptable to be executed directly.
### Building and running the image locally
1. Clone this repo and `cd docker-build`
1. `make build` - this will build the image. (This does *not* require a GPU-capable system).
1. _(skip this step if you already have a complete InvokeAI runtime directory)_
- `make configure` (This does *not* require a GPU-capable system)
- this will create a local cache of models and configs (a.k.a the _runtime dir_)
- enter your Huggingface token when prompted
1. `make web`
1. Open the `http://localhost:9090` URL in your browser, and enjoy the banana sushi!
To use InvokeAI on the cli, run `make cli`. To open a Bash shell in the container for arbitraty advanced use, `make shell`.
#### Building and running without `make`
(Feel free to adapt paths such as `${HOME}/invokeai` to your liking, and modify the CLI arguments as necessary).
!!! example "Build the image and configure the runtime directory"
```Shell
cd docker-build
DOCKER_BUILDKIT=1 docker build -t local/invokeai:latest -f Dockerfile.cloud ..
docker run --rm -it -v ${HOME}/invokeai:/mnt/invokeai local/invokeai:latest -c "python scripts/configure_invokeai.py"
```
!!! example "Run the web server"
```Shell
docker run --runtime=nvidia --gpus=all --rm -it -v ${HOME}/invokeai:/mnt/invokeai -p9090:9090 local/invokeai:latest
```
Access the Web UI at http://localhost:9090
!!! example "Run the InvokeAI interactive CLI"
```
docker run --runtime=nvidia --gpus=all --rm -it -v ${HOME}/invokeai:/mnt/invokeai local/invokeai:latest -c "python scripts/invoke.py"
```
### Running the image in the cloud
This image works anywhere you can run a container with a mounted Docker volume. You may either build this image on a cloud instance, or build and push it to your Docker registry. To manually run this on a cloud instance (such as AWS EC2, GCP or Azure VM):
1. build this image either in the cloud (you'll need to pull the repo), or locally
1. `docker tag` it as `your-registry/invokeai` and push to your registry (i.e. Dockerhub)
1. `docker pull` it on your cloud instance
1. configure the runtime directory as per above example, using `docker run ... configure_invokeai.py` script
1. use either one of the `docker run` commands above, substituting the image name for your own image.
To run this on Runpod, please refer to the following Runpod template: https://www.runpod.io/console/gpu-secure-cloud?template=vm19ukkycf (you need a Runpod subscription). When launching the template, feel free to set the image to pull your own build.
The template's `README` provides ample detail, but at a high level, the process is as follows:
1. create a pod using this Docker image
1. ensure the pod has an `INVOKEAI_ROOT=<path_to_your_persistent_volume>` environment variable, and that it corresponds to the path to your pod's persistent volume mount
1. Run the pod with `sleep infinity` as the Docker command
1. Use Runpod basic SSH to connect to the pod, and run `python scripts/configure_invokeai.py` script
1. Stop the pod, and change the Docker command to `python scripts/invoke.py --web --host 0.0.0.0`
1. Run the pod again, connect to your pod on HTTP port 9090, and enjoy the banana sushi!
Running on other cloud providers such as Vast.ai will likely work in a similar fashion.
---
!!! warning "Deprecated"
From here on you will find the the previous Docker-Docs, which will still
@@ -135,12 +218,12 @@ also do so.
If you're on a **Linux container** the `invoke` script is **automatically
started** and the output dir set to the Docker volume you created earlier.
If you're **directly on macOS follow these startup instructions**.
If you're **directly on macOS follow these startup instructions**.
With the Conda environment activated (`conda activate ldm`), run the interactive
interface that combines the functionality of the original scripts `txt2img` and
`img2img`:
`img2img`:
Use the more accurate but VRAM-intensive full precision math because
half-precision requires autocast and won't work.
half-precision requires autocast and won't work.
By default the images are saved in `outputs/img-samples/`.
```Shell
@@ -157,8 +240,8 @@ invoke> q
### Text to Image
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
image. This will let you know that everything is set up correctly.
Then increase steps to 100 or more for good (but slower) results.
image. This will let you know that everything is set up correctly.
Then increase steps to 100 or more for good (but slower) results.
The prompt can be in quotes or not.
```Shell
@@ -172,8 +255,8 @@ You'll need to experiment to see if face restoration is making it better or
worse for your specific prompt.
If you're on a container the output is set to the Docker volume. You can copy it
wherever you want.
You can download it from the Docker Desktop app, Volumes, my-vol, data.
wherever you want.
You can download it from the Docker Desktop app, Volumes, my-vol, data.
Or you can copy it from your Mac terminal. Keep in mind `docker cp` can't expand
`*.png` so you'll need to specify the image file name.

View File

@@ -1,8 +1,8 @@
---
title: InvokeAI Installer
title: InvokeAI Binary Installer
---
The InvokeAI installer is a shell script that will install InvokeAI onto a stock
The InvokeAI binary installer is a shell script that will install InvokeAI onto a stock
computer running recent versions of Linux, MacOSX or Windows. It will leave you
with a version that runs a stable version of InvokeAI. When a new version of
InvokeAI is released, you will download and reinstall the new version.
@@ -36,7 +36,7 @@ recommended model weights files.
1. Download the
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) of
InvokeAI's installer for your platform
InvokeAI's installer for your platform. Look for a file named `InvokeAI-binary-<your platform>.zip`
2. Place the downloaded package someplace where you have plenty of HDD space,
and have full permissions (i.e. `~/` on Lin/Mac; your home folder on Windows)

View File

@@ -2,12 +2,10 @@
title: Running InvokeAI on Google Colab using a Jupyter Notebook
---
# THIS NEEDS TO BE FLESHED OUT
## Introduction
We have a [Jupyter
notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable-Diffusion-local-Windows.ipynb)
notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb)
with cell-by-cell installation steps. It will download the code in
this repo as one of the steps, so instead of cloning this repo, simply
download the notebook from the link above and load it up in VSCode
@@ -16,12 +14,19 @@ start running the cells one-by-one.
!!! Note "you will need NVIDIA drivers, Python 3.10, and Git installed beforehand"
## Walkthrough
## Running Online On Google Colabotary
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb)
## Updating to newer versions
## Running Locally (Cloning)
### Updating the stable version
1. Install the Jupyter Notebook python library (one-time):
pip install jupyter
### Updating to the development version
## Troubleshooting
2. Clone the InvokeAI repository:
git clone https://github.com/invoke-ai/InvokeAI.git
cd invoke-ai
3. Create a virtual environment using conda:
conda create -n invoke jupyter
4. Activate the environment and start the Jupyter notebook:
conda activate invoke
jupyter notebook

View File

@@ -8,7 +8,7 @@ title: Manual Installation
!!! warning "This is for advanced Users"
who are already expirienced with using conda or pip
who are already experienced with using conda or pip
## Introduction
@@ -155,10 +155,10 @@ command-line completion.
process for this is described in [here](INSTALLING_MODELS.md).
```bash
python scripts/preload_models.py
python scripts/configure_invokeai.py
```
The script `preload_models.py` will interactively guide you through the
The script `configure_invokeai.py` will interactively guide you through the
process of downloading and installing the weights files needed for InvokeAI.
Note that the main Stable Diffusion weights file is protected by a license
agreement that you have to agree to. The script will list the steps you need
@@ -220,7 +220,7 @@ greatest version, launch the Anaconda window, enter `InvokeAI` and type:
```bash
git pull
conda env update
python scripts/preload_models.py --no-interactive #optional
python scripts/configure_invokeai.py --no-interactive #optional
```
This will bring your local copy into sync with the remote one. The last step may
@@ -359,7 +359,7 @@ brew install llvm
If brew config has Clang installed, update to the latest llvm and try creating the environment again.
#### `preload_models.py` or `invoke.py` crashes at an early stage
#### `configure_invokeai.py` or `invoke.py` crashes at an early stage
This is usually due to an incomplete or corrupted Conda install. Make sure you
have linked to the correct environment file and run `conda update` again.

View File

@@ -0,0 +1,115 @@
---
title: Installing PyPatchMatch
---
# :octicons-paintbrush-16: Installing PyPatchMatch
pypatchmatch is a Python module for inpainting images. It is not
needed to run InvokeAI, but it greatly improves the quality of
inpainting and outpainting and is recommended.
Unfortunately, it is a C++ optimized module and installation
can be somewhat challenging. This guide leads you through the steps.
## Windows
You're in luck! On Windows platforms PyPatchMatch will install
automatically on Windows systems with no extra intervention.
## Macintosh
PyPatchMatch is not currently supported, but the team is working on
it.
## Linux
Prior to installing PyPatchMatch, you need to take the following
steps:
### Debian Based Distros
1. Install the `build-essential` tools:
```
sudo apt update
sudo apt install build-essential
```
2. Install `opencv`:
```
sudo apt install python3-opencv libopencv-dev
```
3. Fix the naming of the `opencv` package configuration file:
```
cd /usr/lib/x86_64-linux-gnu/pkgconfig/
ln -sf opencv4.pc opencv.pc
```
4. Activate the environment you use for invokeai, either with
`conda` or with a virtual environment.
5. Do a "develop" install of pypatchmatch:
```
pip install "git+https://github.com/invoke-ai/PyPatchMatch@0.1.3#egg=pypatchmatch"
```
6. Confirm that pypatchmatch is installed.
At the command-line prompt enter `python`, and
then at the `>>>` line type `from patchmatch import patch_match`:
It should look like the follwing:
```
Python 3.9.5 (default, Nov 23 2021, 15:27:38)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from patchmatch import patch_match
Compiling and loading c extensions from "/home/lstein/Projects/InvokeAI/.invokeai-env/src/pypatchmatch/patchmatch".
rm -rf build/obj libpatchmatch.so
mkdir: created directory 'build/obj'
mkdir: created directory 'build/obj/csrc/'
[dep] csrc/masked_image.cpp ...
[dep] csrc/nnf.cpp ...
[dep] csrc/inpaint.cpp ...
[dep] csrc/pyinterface.cpp ...
[CC] csrc/pyinterface.cpp ...
[CC] csrc/inpaint.cpp ...
[CC] csrc/nnf.cpp ...
[CC] csrc/masked_image.cpp ...
[link] libpatchmatch.so ...
```
### Arch Based Distros
1. Install the `base-devel` package:
```
sudo pacman -Syu
sudo pacman -S --needed base-devel
```
2. Install `opencv`:
```
sudo pacman -S opencv
```
or for CUDA support
```
sudo pacman -S opencv-cuda
```
3. Fix the naming of the `opencv` package configuration file:
```
cd /usr/lib/pkgconfig/
ln -sf opencv4.pc opencv.pc
```
**Next, Follow Steps 4-6 from the Debian Section above**
If you see no errors, then you're ready to go!

View File

@@ -10,7 +10,6 @@ The source installer is a shell script that attempts to automate every step
needed to install and run InvokeAI on a stock computer running recent versions
of Linux, MacOS or Windows. It will leave you with a version that runs a stable
version of InvokeAI with the option to upgrade to experimental versions later.
It is not as foolproof as the [InvokeAI installer](INSTALL_INVOKE.md)
Before you begin, make sure that you meet the
[hardware requirements](index.md#Hardware_Requirements) and has the appropriate
@@ -30,9 +29,9 @@ off the process.
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest), and
look for a series of files named:
- invokeAI-src-installer-mac.zip
- invokeAI-src-installer-windows.zip
- invokeAI-src-installer-linux.zip
- [invokeAI-src-installer-2.2.3-mac.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-mac.zip)
- [invokeAI-src-installer-2.2.3-windows.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-windows.zip)
- [invokeAI-src-installer-2.2.3-linux.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-linux.zip)
Download the one that is appropriate for your operating system.
@@ -51,23 +50,44 @@ off the process.
inflating: invokeAI\readme.txt
```
3. If you are using a desktop GUI, double-click the installer file. It will be
3. If you are a macOS user, you may need to install the Xcode command line tools.
These are a set of tools that are needed to run certain applications in a Terminal,
including InvokeAI. This package is provided directly by Apple.
To install, open a terminal window and run `xcode-select --install`. You will get
a macOS system popup guiding you through the install. If you already have them
installed, you will instead see some output in the Terminal advising you that the
tools are already installed.
More information can be found here:
https://www.freecodecamp.org/news/install-xcode-command-line-tools/
4. If you are using a desktop GUI, double-click the installer file. It will be
named `install.bat` on Windows systems and `install.sh` on Linux and
Macintosh systems.
4. Alternatively, form the command line, run the shell script or .bat file:
5. Alternatively, from the command line, run the shell script or .bat file:
```cmd
C:\Documents\Linco> cd invokeAI
C:\Documents\Linco\invokeAI> install.bat
```
5. Sit back and let the install script work. It will install various binary
6. Sit back and let the install script work. It will install various binary
requirements including Conda, Git and Python, then download the current
InvokeAI code and install it along with its dependencies.
6. After installation completes, the installer will launch a script called
`preload_models.py`, which will guide you through the first-time process of
Be aware that some of the library download and install steps take a long time.
In particular, the `pytorch` package is quite large and often appears to get
"stuck" at 99.9%. Similarly, the `pip installing requirements` step may
appear to hang. Have patience and the installation step will eventually
resume. However, there are occasions when the library install does
legitimately get stuck. If you have been waiting for more than ten minutes
and nothing is happening, you can interrupt the script with ^C. You may restart
it and it will pick up where it left off.
7. After installation completes, the installer will launch a script called
`configure_invokeai.py`, which will guide you through the first-time process of
selecting one or more Stable Diffusion model weights files, downloading and
configuring them.
@@ -82,7 +102,7 @@ off the process.
prompted) and configure InvokeAI to use the previously-downloaded files. The
process for this is described in [Installing Models](INSTALLING_MODELS.md).
7. The script will now exit and you'll be ready to generate some images. The
8. The script will now exit and you'll be ready to generate some images. The
invokeAI directory will contain numerous files. Look for a shell script
named `invoke.sh` (Linux/Mac) or `invoke.bat` (Windows). Launch the script
by double-clicking it or typing its name at the command-line:
@@ -110,6 +130,71 @@ python scripts/invoke.py --web --max_load_models=3 \
These options are described in detail in the
[Command-Line Interface](../features/CLI.md) documentation.
## Troubleshooting
_Package dependency conflicts_ If you have previously installed
InvokeAI or another Stable Diffusion package, the installer may
occasionally pick up outdated libraries and either the installer or
`invoke` will fail with complaints out library conflicts. There are
two steps you can take to clear this problem. Both of these are done
from within the "developer's console", which you can get to by
launching `invoke.sh` (or `invoke.bat`) and selecting launch option
#3:
1. Remove the previous `invokeai` environment completely. From within
the developer's console, give the command `conda env remove -n
invokeai`. This will delete previous files installed by `invoke`.
Then exit from the developer's console and launch the script
`update.sh` (or `update.bat`). This will download the most recent
InvokeAI (including bug fixes) and reinstall the environment.
You should then be able to run `invoke.sh`/`invoke.bat`.
2. If this doesn't work, you can try cleaning your system's conda
cache. This is slightly more extreme, but won't interfere with
any other python-based programs installed on your computer.
From the developer's console, run the command `conda clean -a`
and answer "yes" to all prompts.
After this is done, run `update.sh` and try again as before.
_"Corrupted configuration file."__ Everything seems to install ok, but
`invoke` complains of a corrupted configuration file and goes calls
`configure_invokeai.py` to fix, but this doesn't fix the problem.
This issue is often caused by a misconfigured configuration directive
in the `.invokeai` initialization file that contains startup settings.
This can be corrected by fixing the offending line.
First find `.invokeai`. It is a small text file located in your home
directory, `~/.invokeai` on Mac and Linux systems, and `C:\Users\*your
name*\.invokeai` on Windows systems. Open it with a text editor
(e.g. Notepad on Windows, TextEdit on Macs, or `nano` on Linux)
and look for the lines starting with `--root` and `--outdir`.
An example is here:
```cmd
--root="/home/lstein/invokeai"
--outdir="/home/lstein/invokeai/outputs"
```
There should not be whitespace before or after the directory paths,
and the paths should not end with slashes:
```cmd
--root="/home/lstein/invokeai " # wrong! no whitespace here
--root="/home\lstein\invokeai\" # wrong! shouldn't end in a slash
```
Fix the problem with your text editor and save as a **plain text**
file. This should clear the issue.
_If none of these maneuvers fixes the problem_ then please report the
problem to the [InvokeAI
Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive assistance.
## Updating to newer versions
This section describes how to update InvokeAI to new versions of the software.
@@ -119,31 +204,15 @@ This section describes how to update InvokeAI to new versions of the software.
This distribution is changing rapidly, and we add new features on a daily basis.
To update to the latest released version (recommended), run the `update.sh`
(Linux/Mac) or `update.bat` (Windows) scripts. This will fetch the latest
release and re-run the `preload_models` script to download any updated models
release and re-run the `configure_invokeai` script to download any updated models
files that may be needed. You can also use this to add additional models that
you did not select at installation time.
### Updating to the development version
There may be times that there is a feature in the `development` branch of
InvokeAI that you'd like to take advantage of. Or perhaps there is a branch that
corrects an annoying bug. To do this, you will use the developer's console.
From within the invokeAI directory, run the command `invoke.sh` (Linux/Mac) or
`invoke.bat` (Windows) and selection option (3) to open the developers console.
Then run the following command to get the `development branch`:
```bash
git checkout development
git pull
conda env update
```
You can now close the developer console and run `invoke` as before. If you get
complaints about missing models, then you may need to do the additional step of
running `preload_models.py`. This happens relatively infrequently. To do this,
running `configure_invokeai.py`. This happens relatively infrequently. To do this,
simply open up the developer's console again and type
`python scripts/preload_models.py`.
`python scripts/configure_invokeai.py`.
## Troubleshooting

View File

@@ -5,58 +5,30 @@ title: Overview
We offer several ways to install InvokeAI, each one suited to your
experience and preferences.
1. [InvokeAI installer](INSTALL_INVOKE.md)
1. [Automated Installer](INSTALL_AUTOMATED.md)
This is a installer script that installs InvokeAI and all the
third party libraries it depends on. When a new version of
InvokeAI is released, you will download and reinstall the new
version.
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
give you to access experimental features.
This installer is designed for people who want the system to "just
work", don't have an interest in tinkering with it, and do not
care about upgrading to unreleased experimental features.
**Important Caveats**
- This script does not support AMD GPUs. For Linux AMD support,
please use the manual or source code installer methods.
- This script has difficulty on some Macintosh machines
that have previously been used for Python development due to
conflicting development tools versions. Mac developers may wish
to try the source code installer or one of the manual methods instead.
2. [Source code installer](INSTALL_SOURCE.md)
This is a script that will install InvokeAI and all its essential
third party libraries. In contrast to the previous installer, it
includes access to a "developer console" which will allow you to
access experimental features on the development branch.
This method is recommended for individuals who are wish to stay
on the cutting edge of InvokeAI development and are not afraid
of occasional breakage.
3. [Manual Installation](INSTALL_MANUAL.md)
2. [Manual Installation](INSTALL_MANUAL.md)
In this method you will manually run the commands needed to install
InvokeAI and its dependencies. We offer two recipes: one suited to
those who prefer the `conda` tool, and one suited to those who prefer
`pip` and Python virtual environments.
`pip` and Python virtual environments. In our hands the pip install
is faster and more reliable, but your mileage may vary.
This method is recommended for users who have previously used `conda`
or `pip` in the past, developers, and anyone who wishes to remain on
the cutting edge of future InvokeAI development and is willing to put
up with occasional glitches and breakage.
4. [Docker Installation](INSTALL_DOCKER.md)
3. [Docker Installation](INSTALL_DOCKER.md)
We also offer a method for creating Docker containers containing
InvokeAI and its dependencies. This method is recommended for
individuals with experience with Docker containers and understand
the pluses and minuses of a container-based install.
5. [Jupyter Notebooks Installation](INSTALL_JUPYTER.md)
This method is suitable for running InvokeAI on a Google Colab
account. It is recommended for individuals who have previously
worked on the Colab and are comfortable with the Jupyter notebook
environment.

View File

@@ -69,7 +69,7 @@ title: Manual Installation, Linux
machine-learning models:
```bash
(invokeai) ~/InvokeAI$ python3 scripts/preload_models.py
(invokeai) ~/InvokeAI$ python3 scripts/configure_invokeai.py
```
!!! note
@@ -79,7 +79,7 @@ title: Manual Installation, Linux
and obtaining an access token for downloading. It will then download and
install the weights files for you.
Please look [here](INSTALLING_MODELS.md) for a manual process for doing
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing
the same thing.
7. Start generating images!
@@ -112,7 +112,7 @@ title: Manual Installation, Linux
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../features/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
8. Subsequently, to relaunch the script, be sure to run "conda activate

View File

@@ -111,7 +111,7 @@ will do our best to help.
!!! todo "Download the model weight files"
The `preload_models.py` script downloads and installs the model weight
The `configure_invokeai.py` script downloads and installs the model weight
files for you. It will lead you through the process of getting a Hugging Face
account, accepting the Stable Diffusion model weight license agreement, and
creating a download token:
@@ -119,7 +119,7 @@ will do our best to help.
```bash
# This will take some time, depending on the speed of your internet connection
# and will consume about 10GB of space
python scripts/preload_models.py
python scripts/configure_invokeai.py
```
!!! todo "Run InvokeAI!"
@@ -150,7 +150,7 @@ will do our best to help.
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../features/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
---
@@ -220,8 +220,8 @@ There are several causes of these errors:
with "(invokeai)" then you activated it. If it begins with "(base)" or
something else you haven't.
2. You might've run `./scripts/preload_models.py` or `./scripts/invoke.py`
instead of `python ./scripts/preload_models.py` or
2. You might've run `./scripts/configure_invokeai.py` or `./scripts/invoke.py`
instead of `python ./scripts/configure_invokeai.py` or
`python ./scripts/invoke.py`. The cause of this error is long so it's below.
<!-- I could not find out where the error is, otherwise would have marked it as a footnote -->
@@ -359,7 +359,7 @@ python ./scripts/txt2img.py \
### OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'
```bash
python scripts/preload_models.py
python scripts/configure_invokeai.py
```
---

View File

@@ -7,7 +7,7 @@ title: Manual Installation, Windows
## **Notebook install (semi-automated)**
We have a
[Jupyter notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable-Diffusion-local-Windows.ipynb)
[Jupyter notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb)
with cell-by-cell installation steps. It will download the code in this repo as
one of the steps, so instead of cloning this repo, simply download the notebook
from the link above and load it up in VSCode (with the appropriate extensions
@@ -65,7 +65,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
7. Load the big stable diffusion weights files and a couple of smaller machine-learning models:
```bash
python scripts/preload_models.py
python scripts/configure_invokeai.py
```
!!! note
@@ -75,7 +75,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
obtaining an access token for downloading. It will then download and install the
weights files for you.
Please look [here](INSTALLING_MODELS.md) for a manual process for doing the
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing the
same thing.
8. Start generating images!
@@ -108,7 +108,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../features/CLI.md#model-selection-and-importation). The
Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
9. Subsequently, to relaunch the script, first activate the Anaconda

View File

@@ -15,16 +15,16 @@ We thank them for all of their time and hard work.
## **Current core team**
* lstein (Lincoln Stein) - Co-maintainer
* blessedcoolant - Co-maintainer
* hipsterusername (Kent Keirsey) - Product Manager
* psychedelicious - Web Team Leader
* Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* damian0815 - Attention Systems and Gameplay Engineer
* mauwii (Matthias Wild) - Continuous integration and product maintenance engineer
* Netsvetaev (Artur Netsvetaev) - UI/UX Developer
* tildebyte - general gadfly and resident (self-appointed) know-it-all
* keturn - Lead for Diffusers port
* @lstein (Lincoln Stein) - Co-maintainer
* @blessedcoolant - Co-maintainer
* @hipsterusername (Kent Keirsey) - Product Manager
* @psychedelicious - Web Team Leader
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @damian0815 - Attention Systems and Gameplay Engineer
* @mauwii (Matthias Wild) - Continuous integration and product maintenance engineer
* @Netsvetaev (Artur Netsvetaev) - UI/UX Developer
* @tildebyte - general gadfly and resident (self-appointed) know-it-all
* @keturn - Lead for Diffusers port
## **Contributions by**

View File

@@ -42,5 +42,5 @@ dependencies:
- git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k_diffusion
- git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
- git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.2#egg=gfpgan
- -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- -e .

View File

@@ -44,5 +44,5 @@ dependencies:
- git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k-diffusion
- git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
- git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.2#egg=gfpgan
- -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- -e .

View File

@@ -43,5 +43,5 @@ dependencies:
- git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k-diffusion
- git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
- git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.2#egg=gfpgan
- -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- -e .

View File

@@ -59,7 +59,7 @@ dependencies:
- git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k-diffusion
- git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
- git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.2#egg=gfpgan
- -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- -e .
variables:
PYTORCH_ENABLE_MPS_FALLBACK: 1

View File

@@ -13,7 +13,6 @@ dependencies:
- cudatoolkit=11.6
- pip:
- albumentations==0.4.3
- basicsr==1.4.1
- dependency_injector==4.40.0
- diffusers==0.6.0
- einops==0.3.0
@@ -44,5 +43,5 @@ dependencies:
- git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k_diffusion
- git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
- git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.1#egg=gfpgan
- -e git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
- -e .

View File

@@ -1,15 +1,16 @@
# pip will resolve the version which matches torch
albumentations
dependency_injector==4.40.0
diffusers
diffusers==0.10.*
einops
eventlet
facexlib
flask==2.1.3
flask_cors==3.0.10
flask_socketio==5.3.0
flaskwebgui==0.3.7
flaskwebgui==1.0.3
getpass_asterisk
gfpgan==1.3.8
huggingface-hub
imageio
imageio-ffmpeg
@@ -17,6 +18,7 @@ kornia
numpy
omegaconf
opencv-python
picklescan
pillow
pip>=22
pudb
@@ -31,11 +33,8 @@ taming-transformers-rom1504
test-tube>=0.7.5
torch-fidelity
torchmetrics
transformers==4.21.*
picklescan
git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.1#egg=gfpgan ; platform_system == 'Windows'
git+https://github.com/invoke-ai/GFPGAN@basicsr-1.4.2#egg=gfpgan ; platform_system != 'Windows'
git+https://github.com/openai/CLIP.git@main#egg=clip
git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k-diffusion
git+https://github.com/invoke-ai/clipseg.git@relaxed-python-requirement#egg=clipseg
git+https://github.com/invoke-ai/PyPatchMatch@0.1.4#egg=pypatchmatch
transformers==4.25.*
https://github.com/Birch-san/k-diffusion/archive/refs/heads/mps.zip#egg=k-diffusion
https://github.com/invoke-ai/PyPatchMatch/archive/refs/tags/0.1.4.zip#egg=pypatchmatch
https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip#egg=clip
https://github.com/invoke-ai/clipseg/archive/relaxed-python-requirement.zip#egg=clipseg

View File

@@ -1,2 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu116 --trusted-host https://download.pytorch.org
-r environments-and-requirements/requirements-base.txt
torch
torchvision
-e .

View File

@@ -1,7 +1,6 @@
-r environments-and-requirements/requirements-base.txt
# Get hardware-appropriate torch/torchvision
--extra-index-url https://download.pytorch.org/whl/cu116 --trusted-host https://download.pytorch.org
basicsr==1.4.1
torch==1.12.1
torchvision==0.13.1
-e .

File diff suppressed because one or more lines are too long

623
frontend/dist/assets/index.6f857312.js vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -2,17 +2,24 @@
<html lang="en">
<head>
<script type="module" crossorigin src="./assets/polyfills.1ff60148.js"></script>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="./assets/favicon.0d253ced.ico" />
<script type="module" crossorigin src="./assets/index.faf4c870.js"></script>
<script type="module" crossorigin src="./assets/index.6f857312.js"></script>
<link rel="stylesheet" href="./assets/index.c609c0c8.css">
<script type="module">try{import.meta.url;import("_").catch(()=>1);}catch(e){}window.__vite_is_modern_browser=true;</script>
<script type="module">!function(){if(window.__vite_is_modern_browser)return;console.warn("vite: loading legacy build because dynamic import or import.meta.url is unsupported, syntax error above should be ignored");var e=document.getElementById("vite-legacy-polyfill"),n=document.createElement("script");n.src=e.src,n.onload=function(){System.import(document.getElementById('vite-legacy-entry').getAttribute('data-src'))},document.body.appendChild(n)}();</script>
</head>
<body>
<div id="root"></div>
<script nomodule>!function(){var e=document,t=e.createElement("script");if(!("noModule"in t)&&"onbeforeload"in t){var n=!1;e.addEventListener("beforeload",(function(e){if(e.target===t)n=!0;else if(!e.target.hasAttribute("nomodule")||!n)return;e.preventDefault()}),!0),t.type="module",t.src=".",e.head.appendChild(t),t.remove()}}();</script>
<script nomodule crossorigin id="vite-legacy-polyfill" src="./assets/polyfills-legacy-dde3a68a.js"></script>
<script nomodule crossorigin id="vite-legacy-entry" data-src="./assets/index-legacy-4f120d5f.js">System.import(document.getElementById('vite-legacy-entry').getAttribute('data-src'))</script>
</body>
</html>

View File

@@ -53,6 +53,7 @@
"@types/react-transition-group": "^4.4.5",
"@typescript-eslint/eslint-plugin": "^5.36.2",
"@typescript-eslint/parser": "^5.36.2",
"@vitejs/plugin-legacy": "^3.0.1",
"@vitejs/plugin-react": "^2.0.1",
"eslint": "^8.23.0",
"eslint-plugin-prettier": "^4.2.1",
@@ -60,6 +61,7 @@
"patch-package": "^6.5.0",
"postinstall-postinstall": "^2.1.0",
"sass": "^1.55.0",
"terser": "^5.16.1",
"tsc-watch": "^5.0.3",
"typescript": "^4.6.4",
"vite": "^3.0.7",

View File

@@ -42,7 +42,6 @@ const makeSocketIOEmitters = (
options: optionsState,
system: systemState,
canvas: canvasState,
gallery: galleryState,
} = state;
const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
@@ -55,13 +54,6 @@ const makeSocketIOEmitters = (
dispatch(generationRequested());
if (!['txt2img', 'img2img'].includes(generationMode)) {
if (!galleryState.currentImage?.url) return;
frontendToBackendParametersConfig.imageToProcessUrl =
galleryState.currentImage.url;
}
const { generationParameters, esrganParameters, facetoolParameters } =
frontendToBackendParameters(frontendToBackendParametersConfig);

View File

@@ -30,13 +30,7 @@ export const frontendToBackendParameters = (
): { [key: string]: any } => {
const canvasBaseLayer = getCanvasBaseLayer();
const {
generationMode,
optionsState,
canvasState,
systemState,
imageToProcessUrl,
} = config;
const { generationMode, optionsState, canvasState, systemState } = config;
const {
cfgScale,
@@ -164,7 +158,6 @@ export const frontendToBackendParameters = (
generationParameters.fit = false;
generationParameters.init_img = imageToProcessUrl;
generationParameters.strength = img2imgStrength;
generationParameters.invert_mask = shouldPreserveMaskedArea;

View File

@@ -62,7 +62,7 @@ const PromptInput = () => {
<Textarea
id="prompt"
name="prompt"
placeholder="I'm dreaming of..."
placeholder="Type prompt here. [negative tokens], (upweight)++, (downweight)--, swap and blend are available (see docs)"
size={'lg'}
value={prompt}
onChange={handleChangePrompt}

View File

@@ -0,0 +1,159 @@
@media (max-width: 600px) {
#root{
.app-content{
padding: 5px;
.site-header {
position: fixed;
display: flex;
height: 100px;
z-index: 1;
.site-header-left-side{
position: absolute;
display: flex;
min-width: 145px;
float: left;
padding-left: 0;
}
.site-header-right-side{
display: grid;
grid-template-columns: 1fr 1fr 1fr 1fr 1fr 1fr;
grid-template-rows: 25px 25px 25px;
grid-template-areas: 'logoSpace logoSpace logoSpace sampler sampler sampler'
'status status status status status status'
'btn1 btn2 btn3 btn4 btn5 btn6';
row-gap: 15px;
.chakra-popover__popper{
grid-area: logoSpace;
}
> :nth-child(1).chakra-text{
grid-area: status;
width: 100%;
display: flex;
justify-content: center;
}
> :nth-child(2){
grid-area: sampler;
display: flex;
justify-content: center;
align-items: center;
select{
width: 185px;
margin-top: 10px;
}
.chakra-select__icon-wrapper{
right:10px;
svg{
margin-top: 10px;
}
}
}
> :nth-child(3){
grid-area: btn1;
}
> :nth-child(4){
grid-area: btn2;
}
> :nth-child(6){
grid-area: btn3;
}
> :nth-child(7){
grid-area: btn4;
}
> :nth-child(8){
grid-area: btn5;
}
> :nth-child(9){
grid-area: btn6;
}
}
}
.app-tabs{
position: fixed;
display: flex;
flex-direction: column;
row-gap: 15px;
max-width: 100%;
overflow: hidden;
margin-top: 120px;
.app-tabs-list{
display: flex;
justify-content: space-between;
}
.app-tabs-panels{
overflow: hidden;
overflow-y: scroll;
.workarea-main{
display: grid;
grid-template-areas: 'workarea'
'options'
'gallery';
row-gap: 15px;
.options-panel-wrapper{
grid-area: options;
width: 100%;
max-width: 100%;
height: inherit;
overflow: inherit;
padding: 0 10px;
.main-options-row{
max-width: 100%;
}
.advanced-settings-item{
max-width: 100%;
}
}
.workarea-children-wrapper{
grid-area: workarea;
.workarea-split-view{
display: flex;
flex-direction: column;
}
.current-image-options{
column-gap: 3px;
}
.text-to-image-area{
padding: 0;
}
.current-image-preview {
height: 430px;
}
//image 2 image
.image-upload-button {
row-gap: 10px;
padding: 5px;
svg {
width: 2rem;
height: 2rem;
margin-top: 10px;
}
}
//Cavas Painting
.inpainting-settings{
display: flex;
flex-wrap: wrap;
row-gap: 10px;
}
.inpainting-canvas-area{
.konvajs-content{
height: 400px !important;
}
}
}
.image-gallery-wrapper{
grid-area: gallery;
min-height: 400px;
.image-gallery-popup{
width: 100% !important;
max-width: 100% !important;
}
}
}
}
}
}
}
}

View File

@@ -1,3 +1,4 @@
@forward './Shared';
@forward './Buttons';
@forward './Variables';
@forward './Responsive';

View File

@@ -2,12 +2,20 @@ import { defineConfig } from 'vite';
import react from '@vitejs/plugin-react';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
import legacy from '@vitejs/plugin-legacy';
// https://vitejs.dev/config/
export default defineConfig(({ mode }) => {
const common = {
base: '',
plugins: [react(), eslint(), tsconfigPaths()],
plugins: [
react(),
eslint(),
tsconfigPaths(),
legacy({
modernPolyfills: ['es.array.find-last'],
}),
],
server: {
// Proxy HTTP requests to the flask server
proxy: {
@@ -35,7 +43,11 @@ export default defineConfig(({ mode }) => {
},
},
build: {
target: 'esnext',
/**
* We need to polyfill for Array.prototype.findLast(); the polyfill plugin above
* overrides any target specified here.
*/
// target: 'esnext',
chunkSizeWarningLimit: 1500, // we don't really care about chunk size
},
};

View File

@@ -213,6 +213,11 @@
dependencies:
regenerator-runtime "^0.13.10"
"@babel/standalone@^7.20.6":
version "7.20.6"
resolved "https://registry.yarnpkg.com/@babel/standalone/-/standalone-7.20.6.tgz#7deb7ad244176414c3cbde020aad0607afdbe2fe"
integrity sha512-u5at/CbBLETf7kx2LOY4XdhseD79Y099WZKAOMXeT8qvd9OSR515my2UNBBLY4qIht/Qi9KySeQHQwQwxJN4Sw==
"@babel/template@^7.18.10":
version "7.18.10"
resolved "https://registry.yarnpkg.com/@babel/template/-/template-7.18.10.tgz#6f9134835970d1dbf0835c0d100c9f38de0c5e71"
@@ -1204,7 +1209,7 @@
"@jridgewell/set-array" "^1.0.0"
"@jridgewell/sourcemap-codec" "^1.4.10"
"@jridgewell/gen-mapping@^0.3.2":
"@jridgewell/gen-mapping@^0.3.0", "@jridgewell/gen-mapping@^0.3.2":
version "0.3.2"
resolved "https://registry.yarnpkg.com/@jridgewell/gen-mapping/-/gen-mapping-0.3.2.tgz#c1aedc61e853f2bb9f5dfe6d4442d3b565b253b9"
integrity sha512-mh65xKQAzI6iBcFzwv28KVWSmCkdRBWoOh+bYQGW3+6OZvbbN3TqMGo5hqYxQniRcH9F2VZIoJCm4pa3BPDK/A==
@@ -1223,7 +1228,15 @@
resolved "https://registry.yarnpkg.com/@jridgewell/set-array/-/set-array-1.1.2.tgz#7c6cf998d6d20b914c0a55a91ae928ff25965e72"
integrity sha512-xnkseuNADM0gt2bs+BvhO0p78Mk762YnZdsuzFV018NoG1Sj1SCQvpSqa7XUaTam5vAGasABV9qXASMKnFMwMw==
"@jridgewell/sourcemap-codec@1.4.14", "@jridgewell/sourcemap-codec@^1.4.10":
"@jridgewell/source-map@^0.3.2":
version "0.3.2"
resolved "https://registry.yarnpkg.com/@jridgewell/source-map/-/source-map-0.3.2.tgz#f45351aaed4527a298512ec72f81040c998580fb"
integrity sha512-m7O9o2uR8k2ObDysZYzdfhb08VuEml5oWGiosa1VdaPZ/A6QyPkAJuwN0Q1lhULOf6B7MtQmHENS743hWtCrgw==
dependencies:
"@jridgewell/gen-mapping" "^0.3.0"
"@jridgewell/trace-mapping" "^0.3.9"
"@jridgewell/sourcemap-codec@1.4.14", "@jridgewell/sourcemap-codec@^1.4.10", "@jridgewell/sourcemap-codec@^1.4.13":
version "1.4.14"
resolved "https://registry.yarnpkg.com/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.4.14.tgz#add4c98d341472a289190b424efbdb096991bb24"
integrity sha512-XPSJHWmi394fuUuzDnGz1wiKqWfo1yXecHQMRf2l6hztTO+nPru658AyDngaBe7isIxEkRsPR3FZh+s7iVa4Uw==
@@ -1838,6 +1851,17 @@
"@typescript-eslint/types" "5.44.0"
eslint-visitor-keys "^3.3.0"
"@vitejs/plugin-legacy@^3.0.1":
version "3.0.1"
resolved "https://registry.yarnpkg.com/@vitejs/plugin-legacy/-/plugin-legacy-3.0.1.tgz#bccc0eaf15a64e1854313acebec879854e413deb"
integrity sha512-XCtEjxoR3rmy000ujYRBp5kggWqzHz9+F20/yIMUWOzbvu0+KW1e14Fvb8h7SpNn+bfjGW1RiAs1Vrgb7Js+iQ==
dependencies:
"@babel/standalone" "^7.20.6"
core-js "^3.26.1"
magic-string "^0.27.0"
regenerator-runtime "^0.13.11"
systemjs "^6.13.0"
"@vitejs/plugin-react@^2.0.1":
version "2.2.0"
resolved "https://registry.yarnpkg.com/@vitejs/plugin-react/-/plugin-react-2.2.0.tgz#1b9f63b8b6bc3f56258d20cd19b33f5cc761ce6e"
@@ -1879,7 +1903,7 @@ acorn-jsx@^5.3.2:
resolved "https://registry.yarnpkg.com/acorn-jsx/-/acorn-jsx-5.3.2.tgz#7ed5bb55908b3b2f1bc55c6af1653bada7f07937"
integrity sha512-rq9s+JNhf0IChjtDXxllJ7g41oZk5SlXtp0LHwyA5cejwn7vKmKp4pPri6YEePv2PU65sAsegbXtIinmDFDXgQ==
acorn@^8.8.0:
acorn@^8.5.0, acorn@^8.8.0:
version "8.8.1"
resolved "https://registry.yarnpkg.com/acorn/-/acorn-8.8.1.tgz#0a3f9cbecc4ec3bea6f0a80b66ae8dd2da250b73"
integrity sha512-7zFpHzhnqYKrkYdUjF1HI1bzd0VygEGX8lFk4k5zVMqHEoES+P+7TKI+EvLO9WVMJ8eekdO0aDEK044xTXwPPA==
@@ -2002,6 +2026,11 @@ browserslist@^4.21.3:
node-releases "^2.0.6"
update-browserslist-db "^1.0.9"
buffer-from@^1.0.0:
version "1.1.2"
resolved "https://registry.yarnpkg.com/buffer-from/-/buffer-from-1.1.2.tgz#2b146a6fd72e80b4f55d255f35ed59a3a9a41bd5"
integrity sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==
callsites@^3.0.0:
version "3.1.0"
resolved "https://registry.yarnpkg.com/callsites/-/callsites-3.1.0.tgz#b3630abd8943432f54b3f0519238e33cd7df2f73"
@@ -2073,6 +2102,11 @@ color-name@~1.1.4:
resolved "https://registry.yarnpkg.com/color-name/-/color-name-1.1.4.tgz#c2a09a87acbde69543de6f63fa3995c826c536a2"
integrity sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==
commander@^2.20.0:
version "2.20.3"
resolved "https://registry.yarnpkg.com/commander/-/commander-2.20.3.tgz#fd485e84c03eb4881c20722ba48035e8531aeb33"
integrity sha512-GpVkmM8vF2vQUkj2LvZmD35JxeJOLCwJ9cUkugyk2nuhbv3+mJvpLYYt+0+USMxE+oj+ey/lJEnhZw75x/OMcQ==
commander@^4.0.0:
version "4.1.1"
resolved "https://registry.yarnpkg.com/commander/-/commander-4.1.1.tgz#9fd602bd936294e9e9ef46a3f4d6964044b18068"
@@ -2105,6 +2139,11 @@ copy-to-clipboard@3.3.1:
dependencies:
toggle-selection "^1.0.6"
core-js@^3.26.1:
version "3.26.1"
resolved "https://registry.yarnpkg.com/core-js/-/core-js-3.26.1.tgz#7a9816dabd9ee846c1c0fe0e8fcad68f3709134e"
integrity sha512-21491RRQVzUn0GGM9Z1Jrpr6PNPxPi+Za8OM9q4tksTSnlbXXGKK1nXNg/QvwFYettXvSX6zWKCtHHfjN4puyA==
cors@~2.8.5:
version "2.8.5"
resolved "https://registry.yarnpkg.com/cors/-/cors-2.8.5.tgz#eac11da51592dd86b9f06f6e7ac293b3df875d29"
@@ -3052,6 +3091,13 @@ magic-string@^0.26.7:
dependencies:
sourcemap-codec "^1.4.8"
magic-string@^0.27.0:
version "0.27.0"
resolved "https://registry.yarnpkg.com/magic-string/-/magic-string-0.27.0.tgz#e4a3413b4bab6d98d2becffd48b4a257effdbbf3"
integrity sha512-8UnnX2PeRAPZuN12svgR9j7M1uWMovg/CEnIwIG0LFkXSJJe4PdfUGiTGl8V9bsBHFUtfVINcSyYxd7q+kx9fA==
dependencies:
"@jridgewell/sourcemap-codec" "^1.4.13"
map-stream@~0.1.0:
version "0.1.0"
resolved "https://registry.yarnpkg.com/map-stream/-/map-stream-0.1.0.tgz#e56aa94c4c8055a16404a0674b78f215f7c8e194"
@@ -3555,7 +3601,7 @@ redux@^4.2.0:
dependencies:
"@babel/runtime" "^7.9.2"
regenerator-runtime@^0.13.10:
regenerator-runtime@^0.13.10, regenerator-runtime@^0.13.11:
version "0.13.11"
resolved "https://registry.yarnpkg.com/regenerator-runtime/-/regenerator-runtime-0.13.11.tgz#f6dca3e7ceec20590d07ada785636a90cdca17f9"
integrity sha512-kY1AZVr2Ra+t+piVaJ4gxaFaReZVH40AKNo7UCX6W+dEwBo/2oZJzqfuN1qLq1oL45o56cPaTXELwrTh8Fpggg==
@@ -3724,11 +3770,24 @@ socket.io@^4.5.2:
resolved "https://registry.yarnpkg.com/source-map-js/-/source-map-js-1.0.2.tgz#adbc361d9c62df380125e7f161f71c826f1e490c"
integrity sha512-R0XvVJ9WusLiqTCEiGCmICCMplcCkIwwR11mOSD9CR5u+IXYdiseeEuXCVAjS54zqwkLcPNnmU4OeJ6tUrWhDw==
source-map-support@~0.5.20:
version "0.5.21"
resolved "https://registry.yarnpkg.com/source-map-support/-/source-map-support-0.5.21.tgz#04fe7c7f9e1ed2d662233c28cb2b35b9f63f6e4f"
integrity sha512-uBHU3L3czsIyYXKX88fdrGovxdSCoTGDRZ6SYXtSRxLZUzHg5P/66Ht6uoUlHu9EZod+inXhKo3qQgwXUT/y1w==
dependencies:
buffer-from "^1.0.0"
source-map "^0.6.0"
source-map@^0.5.7:
version "0.5.7"
resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.5.7.tgz#8a039d2d1021d22d1ea14c80d8ea468ba2ef3fcc"
integrity sha512-LbrmJOMUSdEVxIKvdcJzQC+nQhe8FUZQTXQy6+I75skNgn3OoQ0DZA8YnFa7gp8tqtL3KPf1kmo0R5DoApeSGQ==
source-map@^0.6.0:
version "0.6.1"
resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.6.1.tgz#74722af32e9614e9c287a8d0bbde48b5e2f1a263"
integrity sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==
sourcemap-codec@^1.4.8:
version "1.4.8"
resolved "https://registry.yarnpkg.com/sourcemap-codec/-/sourcemap-codec-1.4.8.tgz#ea804bd94857402e6992d05a38ef1ae35a9ab4c4"
@@ -3814,6 +3873,21 @@ supports-preserve-symlinks-flag@^1.0.0:
resolved "https://registry.yarnpkg.com/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz#6eda4bd344a3c94aea376d4cc31bc77311039e09"
integrity sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==
systemjs@^6.13.0:
version "6.13.0"
resolved "https://registry.yarnpkg.com/systemjs/-/systemjs-6.13.0.tgz#7b28e74b44352e1650e8652499f42de724c3fc7f"
integrity sha512-P3cgh2bpaPvAO2NE3uRp/n6hmk4xPX4DQf+UzTlCAycssKdqhp6hjw+ENWe+aUS7TogKRFtptMosTSFeC6R55g==
terser@^5.16.1:
version "5.16.1"
resolved "https://registry.yarnpkg.com/terser/-/terser-5.16.1.tgz#5af3bc3d0f24241c7fb2024199d5c461a1075880"
integrity sha512-xvQfyfA1ayT0qdK47zskQgRZeWLoOQ8JQ6mIgRGVNwZKdQMU+5FkCBjmv4QjcrTzyZquRw2FVtlJSRUmMKQslw==
dependencies:
"@jridgewell/source-map" "^0.3.2"
acorn "^8.5.0"
commander "^2.20.0"
source-map-support "~0.5.20"
text-table@^0.2.0:
version "0.2.0"
resolved "https://registry.yarnpkg.com/text-table/-/text-table-0.2.0.tgz#7f5ee823ae805207c00af2df4a84ec3fcfa570b4"

48
installer/create_installer.sh Executable file
View File

@@ -0,0 +1,48 @@
#!/bin/bash
cd "$(dirname "$0")"
VERSION=$(grep ^VERSION ../setup.py | awk '{ print $3 }' | sed "s/'//g" )
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
echo Building installer zip fles for InvokeAI v$VERSION
# get rid of any old ones
rm *.zip
rm -rf InvokeAI-Installer
mkdir InvokeAI-Installer
cp -pr ../environments-and-requirements templates readme.txt InvokeAI-Installer/
mkdir InvokeAI-Installer/templates/rootdir
cp -pr ../configs InvokeAI-Installer/templates/rootdir/
mkdir InvokeAI-Installer/templates/rootdir/{outputs,embeddings,models}
cp install.sh.in InvokeAI-Installer/install.sh
chmod a+rx InvokeAI-Installer/install.sh
zip -r InvokeAI-installer-$VERSION-linux.zip InvokeAI-Installer
zip -r InvokeAI-installer-$VERSION-mac.zip InvokeAI-Installer
# now do the windows installer
rm InvokeAI-Installer/install.sh
cp install.bat.in InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# this gets rid of the "-e ." at the end of the windows requirements file
# because it is easier to do it now than in the .bat install script
egrep -v '^-e .' InvokeAI-Installer/environments-and-requirements/requirements-win-colab-cuda.txt >requirements.txt
mv requirements.txt InvokeAI-Installer/environments-and-requirements/requirements-win-colab-cuda.txt
zip -r InvokeAI-installer-$VERSION-windows.zip InvokeAI-Installer
# clean up
rm -rf InvokeAI-Installer
exit 0

View File

@@ -1,29 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
IFS=$'\n\t'
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
# make the installer zip for linux and mac
rm -rf InvokeAI
mkdir -p InvokeAI
cp install.sh InvokeAI
cp readme.txt InvokeAI
zip -r InvokeAI-linux.zip InvokeAI
zip -r InvokeAI-mac.zip InvokeAI
# make the installer zip for windows
rm -rf InvokeAI
mkdir -p InvokeAI
cp install.bat InvokeAI
cp readme.txt InvokeAI
cp WinLongPathsEnabled.reg InvokeAI
zip -r InvokeAI-windows.zip InvokeAI
rm -rf InvokeAI
echo "The installer zips are ready for distribution."

215
installer/install.bat.in Normal file
View File

@@ -0,0 +1,215 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
@rem This script requires the user to install Python 3.9 or higher. All other
@rem requirements are downloaded as needed.
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
@rem Config
@rem this should be changed to the tagged release!
@rem set INVOKE_AI_SRC=https://github.com/invoke-ai/InvokeAI/archive/main.zip
set INVOKE_AI_SRC=https://github.com/invoke-ai/InvokeAI/archive/refs/tags/2.2.4-rc1.zip
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
set PYTHON_URL=https://www.python.org/downloads/windows/
set MINIMUM_PYTHON_VERSION=3.9.0
set PYTHON_URL=https://www.python.org/downloads/release/python-3109/
set err_msg=An error has occurred and the script could not continue.
@rem --------------------------- Intro -------------------------------
echo This script will install InvokeAI and its dependencies. Before you start,
echo please make sure to do the following:
echo 1. Install python 3.9 or higher.
echo 2. Double-click on the file WinLongPathsEnabled.reg in order to
echo enable long path support on your system.
echo 3. Some users have found they need to install the Visual C++ core
echo libraries or else they experience DLL loading problems at the end of the install.
echo Visual C++ is very likely already installed on your system, but if you get DLL
echo issues, please download and install the libraries by going to:
echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
echo.
echo See %INSTRUCTIONS% for more details.
echo.
pause
@rem ---------------------------- check Python version ---------------
echo ***** Checking and Updating Python *****
call python --version >.tmp1 2>.tmp2
if %errorlevel% == 1 (
set err_msg=Please install Python 3.9 or higher. See %INSTRUCTIONS% for details.
goto err_exit
)
for /f "tokens=2" %%i in (.tmp1) do set python_version=%%i
if "%python_version%" == "" (
set err_msg=No python was detected on your system. Please install Python version %MINIMUM_PYTHON_VERSION% or higher. We recommend Python 3.10.9 from %PYTHON_URL%
goto err_exit
)
call :compareVersions %MINIMUM_PYTHON_VERSION% %python_version%
if %errorlevel% == 1 (
set err_msg=Your version of Python is too low. You need at least %MINIMUM_PYTHON_VERSION% but you have %python_version%. We recommend Python 3.10.9 from %PYTHON_URL%
goto err_exit
)
@rem Cleanup
del /q .tmp1 .tmp2
echo Updating PIP...
call python -m pip install --no-warn-script-location -q --upgrade pip
@rem --------------------- Get the requirements file ------------
echo.
echo Setting up requirements file for your system.
copy /y environments-and-requirements\requirements-win-colab-cuda.txt .\requirements.txt
@rem --------------------- Get the root directory for installation ------------
set rootdir=""
set response=""
set selection=""
:pick_rootdir
if %rootdir% neq "" goto :done
set /p selection=Select the path to install InvokeAI's directory into [%UserProfile%]:
if %selection% == "" set selection=%UserProfile%
set dest=%selection%\invokeai
if exist %dest% (
set response=y
set /p response=The directory %dest% exists. Do you wish to resume install from a previous attempt? [Y/n]:
if !response! == "" set response=y
if /I !response! == y (set rootdir=%dest%) else (goto :pick_rootdir)
) else (
set rootdir=!dest!
)
set response=y
set /p response="You have chosen to install InvokeAI into %rootdir%. OK? [Y/n]: "
if !response! == "" set response=y
if /I !response! neq y set rootdir=""
goto :pick_rootdir
:done
@rem ---------------------- Initialize the runtime directory ---------------------
echo.
echo *** Creating Runtime Directory %rootdir% ***
if not exist %rootdir% mkdir %rootdir%
@rem for unknown reasons the mkdir works but returns an error code
if not exist %rootdir% (
set err_msg=Could not create the directory %rootdir%. Please check the directory's permissions and try again.
goto :err_exit
)
echo Successful.
@rem --------------------------- Create and populate .venv ---------------------------
echo.
echo ** Creating Virtual Environment for InvokeAI **
call python -mvenv %rootdir%\.venv
if %errorlevel% neq 0 (
set err_msg=Could not create virtual environment %rootdir%\.venv. Please check the directory's permissions and try again.
goto :err_exit
)
echo Successful.
echo.
echo *** Installing InvokeAI Requirements ***
call %rootdir%\.venv\Scripts\activate.bat
copy environments-and-requirements\requirements-win-colab-cuda.txt .\requirements.txt
call python -mpip install -r requirements.txt
if %errorlevel% neq 0 (
set err_msg=Installation of requirements failed. See above for errors and check %TROUBLESHOOTING% for potential solutions.
goto :err_exit
)
echo Installation successful.
echo.
echo *** Installing InvokeAI Modules and Executables ***
call python -mpip install %INVOKE_AI_SRC%
if %errorlevel% neq 0 (
set err_msg=Installation of InvokeAI failed. See above for errors and check %TROUBLESHOOTING% for potential solutions.
goto :err_exit
)
echo Installation successful.
@rem --------------------------- Set up the root directory ---------------------------
xcopy /E /Y .\templates\rootdir %rootdir%
PUSHD "%rootdir%"
call .venv\Scripts\python .venv\Scripts\configure_invokeai.py --root="%rootdir%"
if %errorlevel% neq 0 (
set err_msg=Configuration failed. See above for error messages and check %TROUBLESHOOTING% for potential solutions.
goto :err_exit
)
POPD
copy .\templates\invoke.bat.in %rootdir%\invoke.bat
copy .\templates\update.bat.in %rootdir%\update.bat
@rem so that update.bat works
mkdir %rootdir%\environments-and-requirements
xcopy /I /Y .\environments-and-requirements %rootdir%\environments-and-requirements
copy .\requirements.txt %rootdir%\requirements.txt
echo.
echo ***** Finished configuration *****
echo All done. Execute the file %rootdir%\invoke.bat to start InvokeAI.
pause
deactivate
exit
@rem ------------------------ Subroutines ---------------
@rem routine to do comparison of semantic version numbers
@rem found at https://stackoverflow.com/questions/15807762/compare-version-numbers-in-batch-file
:compareVersions
::
:: Compares two version numbers and returns the result in the ERRORLEVEL
::
:: Returns 1 if version1 > version2
:: 0 if version1 = version2
:: -1 if version1 < version2
::
:: The nodes must be delimited by . or , or -
::
:: Nodes are normally strictly numeric, without a 0 prefix. A letter suffix
:: is treated as a separate node
::
setlocal enableDelayedExpansion
set "v1=%~1"
set "v2=%~2"
call :divideLetters v1
call :divideLetters v2
:loop
call :parseNode "%v1%" n1 v1
call :parseNode "%v2%" n2 v2
if %n1% gtr %n2% exit /b 1
if %n1% lss %n2% exit /b -1
if not defined v1 if not defined v2 exit /b 0
if not defined v1 exit /b -1
if not defined v2 exit /b 1
goto :loop
:parseNode version nodeVar remainderVar
for /f "tokens=1* delims=.,-" %%A in ("%~1") do (
set "%~2=%%A"
set "%~3=%%B"
)
exit /b
:divideLetters versionVar
for %%C in (a b c d e f g h i j k l m n o p q r s t u v w x y z) do set "%~1=!%~1:%%C=.%%C!"
exit /b
:err_exit
echo %err_msg%
echo The installer will exit now.
pause
exit /b

216
installer/install.sh.in Normal file
View File

@@ -0,0 +1,216 @@
#!/usr/bin/env bash
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
# make sure we are not already in a venv
# (don't need to check status)
deactivate >/dev/null 2>&1
# this should be changed to the tagged release!
INVOKE_AI_SRC=https://github.com/invoke-ai/InvokeAI/archive/refs/tags/2.2.4-rc1.zip
INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
MINIMUM_PYTHON_VERSION=3.9.0
set -euo pipefail
IFS=$'\n\t'
function _err_exit {
if test "$1" -ne 0
then
echo -e "Error code $1; Error caught was '$2'"
if [ "$OS_NAME" == "osx" ]; then
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "You may need to use the Xcode command line tools to proceed. See step number 3 of"
echo "https://invoke-ai.github.io/InvokeAI/INSTALL_SOURCE#walk_through for"
echo "installation instructions and then run this script again."
else
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "See https://invoke-ai.github.io/InvokeAI/INSTALL_SOURCE#troubleshooting for troubleshooting"
echo "tips, or visit https://invoke-ai.github.io/InvokeAI/#installation for alternative"
echo "installation methods"
fi
read -p "Press any key to exit..."
exit
fi
}
function readinput() {
local CLEAN_ARGS=""
while [[ $# -gt 0 ]]; do
local i="$1"
case "$i" in
"-i")
if read -i "default" 2>/dev/null <<< "test"; then
CLEAN_ARGS="$CLEAN_ARGS -i \"$2\""
fi
shift
shift
;;
"-p")
CLEAN_ARGS="$CLEAN_ARGS -p \"$2\""
shift
shift
;;
*)
CLEAN_ARGS="$CLEAN_ARGS $1"
shift
;;
esac
done
eval read $CLEAN_ARGS
}
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
echo "InvokeAI simple installer..."
echo ""
echo "Some of the installation steps take a long time to run. Please be patient."
echo "If the script appears to hang for more than 10 minutes, please interrupt with control-C and retry."
read -n 1 -s -r -p "<Press any key to start the install>"
echo ""
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="osx";;
*) echo "Unknown OS: $OS_NAME! This script runs only on Linux or Mac" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="64";;
arm64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64" && exit
esac
echo "Installing for $OS_NAME-$OS_ARCH"
# confirm that python is installed and is up to date
PYTHON=""
for candidate in python3.10 python3.9 python3 python python3.11 ; do
if ppath=`which $candidate`; then
python_version=$($ppath -V | awk '{ print $2 }')
if [ $(version $python_version) -ge $(version "$MINIMUM_PYTHON_VERSION") ]; then
PYTHON=$ppath
echo Python $python_version found at $PYTHON
break
fi
fi
done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python 3.9 or higher before running this script. See instructions at $INSTRUCTIONS for help."
read -p "Press any key to exit"
exit -1
fi
if [ "$OS_NAME" == "osx" ]; then
xcode_path=$(xcode-select --print-path)
_err_exit $? "xcode_path command not found"
export CPPFLAGS="-I$xcode_path/Library/Frameworks/Python3.framework/Versions/Current/Headers"
echo "Will compile wheels with CPPFLAGS=$CPPFLAGS"
fi
ROOTDIR=""
while [ "$ROOTDIR" == "" ]
do
echo
readinput -e -p "Select your preferred location for the 'invokeai' directory [$HOME]: " -i $HOME input
ROOTDIR=${input:=$HOME}/invokeai
read -e -p "InvokeAI will be installed into $ROOTDIR. OK? [y]: " input
RESPONSE=${input:='y'}
if [ "$RESPONSE" == 'y' ]; then
if [ -e $ROOTDIR ]; then
echo
read -e -p "Directory $ROOTDIR already exists. Do you want to resume an interrupted install? [y]: " input
RESPONSE=${input:='y'}
if [ "$RESPONSE" != 'y' ]; then
ROOTDIR=""
fi
else
mkdir -p $ROOTDIR
if [ $? -ne 0 ]; then
echo "Could not create $ROOTDIR. Try again with a different install location."
ROOTDIR=""
fi
fi
else
ROOTDIR=""
fi
done
#--------------------------------------------------------------------------------
echo
echo "** Creating Virtual Environment for InvokeAI **"
$PYTHON -mpip install --upgrade pip
$PYTHON -mvenv $ROOTDIR/.venv
_err_exit $? "Python failed to create virtual environment $ROOTDIR/.venv. Please see $TROUBLESHOOTING for help."
#--------------------------------------------------------------------------------
echo
echo "** Activating Virtual Environment for InvokeAI **"
source $ROOTDIR/.venv/bin/activate
_err_exit $? "Failed to activate virtual evironment $ROOTDIR/.venv. Please see $TROUBLESHOOTING for help."
PYTHON=$ROOTDIR/.venv/bin/python
#--------------------------------------------------------------------------------
echo
echo "*** Installing InvokeAI Dependencies ***"
if [ "$OS_NAME" == "osx" ]; then
echo "macOS detected. Installing MPS and CPU support."
egrep -v '^-e .' environments-and-requirements/requirements-mac-mps-cpu.txt >requirements.txt
else
if (lsmod | grep amdgpu) &>/dev/null ; then
echo "Linux system with AMD GPU driver detected. Installing ROCm and CPU support"
egrep -v '^-e .' environments-and-requirements/requirements-lin-amd.txt >requirements.txt
else
echo "Linux system detected. Installing CUDA and CPU support."
egrep -v '^-e .' environments-and-requirements/requirements-lin-cuda.txt >requirements.txt
fi
fi
$PYTHON -mpip install -r requirements.txt
_err_exit $? "Failed to install InvokeAI's dependencies."
#--------------------------------------------------------------------------------
echo
echo "*** Installing InvokeAI Modules and Executables ***"
$PYTHON -mpip install $INVOKE_AI_SRC
_err_exit $? "Installation of InvokeAI failed."
#--------------------------------------------------------------------------------
echo " *** Setting Up Root Directory $ROOTDIR *** "
cp -pr templates/rootdir/* $ROOTDIR/
cp templates/invoke.sh.in $ROOTDIR/invoke.sh
chmod a+rx $ROOTDIR/invoke.sh
cp templates/update.sh.in $ROOTDIR/update.sh
chmod a+rx $ROOTDIR/update.sh
# This allows the updater to work!
cp -pr environments-and-requirements requirements.txt $ROOTDIR/
#--------------------------------------------------------------------------------
echo
echo "*** Confguring InvokeAI ***"
pushd $ROOTDIR
./.venv/bin/configure_invokeai.py --root=$ROOTDIR
_err_exit $? "Initial configuration failed. Please see above error messages and $TROUBLESHOOTING for help."
#--------------------------------------------------------------------------------
popd
cp templates/invoke.sh.in $ROOTDIR/invoke.sh
chmod a+rx $ROOTDIR/invoke.sh
cp templates/update.sh.in $ROOTDIR/update.sh
chmod a+rx $ROOTDIR/update.sh
echo "You may now run InvokeAI by entering the directory $ROOTDIR and running invoke.sh"

View File

@@ -2,16 +2,51 @@ InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Installation on Windows:
NOTE: You might need to enable Windows Long Paths. If you're not sure,
then you almost certainly need to. Simply double-click the 'WinLongPathsEnabled.reg'
file. Note that you will need to have admin privileges in order to
do this.
Preparations:
Please double-click the 'install.bat' file (while keeping it inside the invokeAI folder).
You will need to install Python 3.9 or higher for this installer
to work. Instructions are given here:
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
Installation on Linux and Mac:
Please open the terminal, and run './install.sh' (while keeping it inside the invokeAI folder).
Before you start the installer, please open up your system's command
line window (Terminal or Command) and type the commands:
After installation, please run the 'invoke.bat' file (on Windows) or 'invoke.sh'
file (on Linux/Mac) to start InvokeAI.
python --version
If all is well, it will print "Python 3.X.X", where the version number
is at least 3.9.1
If this works, check the version of the Python package manager, pip:
pip --version
You should get a message that indicates that the pip package
installer was derived from Python 3.9 or 3.10. For example:
"pip 22.3.1 from /usr/bin/pip (python 3.9)"
Long Paths on Windows:
If you are on Windows, you will need to enable Windows Long Paths to
run InvokeAI successfully. If you're not sure what this is, you
almost certainly need to do this.
Simply double-click the "WinLongPathsEnabled.reg" file located in
this directory, and approve the Windows warnings. Note that you will
need to have admin privileges in order to do this.
Launching the installer:
Windows: double-click the 'install.bat' file (while keeping it inside
the InvokeAI-Installer folder).
Linux and Mac: Please open the terminal application and run
'./install.sh' (while keeping it inside the InvokeAI-Installer
folder).
The installer will create a directory named "invokeai" in the folder
of your choice. This directory contains everything you need to run
invokeai. Once InvokeAI is up and running, you may delete the
InvokeAI-Installer folder at your convenience.
For more information, please see
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/

View File

@@ -0,0 +1,37 @@
@echo off
PUSHD "%~dp0"
setlocal
call .venv\Scripts\activate.bat
set INVOKEAI_ROOT=.
echo Do you want to generate images using the
echo 1. command-line
echo 2. browser-based UI
echo 3. open the developer console
set /P restore="Please enter 1, 2 or 3: "
IF /I "%restore%" == "1" (
echo Starting the InvokeAI command-line..
python .venv\Scripts\invoke.py %*
) ELSE IF /I "%restore%" == "2" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invoke.py --web %*
) ELSE IF /I "%restore%" == "3" (
echo Developer Console
echo Python command is:
where python
echo Python version is:
python --version
echo *************************
echo You are now in the system shell, with the local InvokeAI Python virtual environment activated,
echo so that you can troubleshoot this InvokeAI installation as necessary.
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE (
echo Invalid selection
pause
exit /b
)
endlocal

View File

@@ -1,14 +1,19 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
set -eu
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
if [ -e "$INSTALL_ENV_DIR" ]; then export PATH="$INSTALL_ENV_DIR/bin:$PATH"; fi
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # otherwise conda complains about 'shell not initialized' (needed when running in a script)
. .venv/bin/activate
conda activate invokeai
export INVOKEAI_ROOT="$scriptdir"
# set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
if [ "$0" != "bash" ]; then
echo "Do you want to generate images using the"
@@ -17,8 +22,8 @@ if [ "$0" != "bash" ]; then
echo "3. open the developer console"
read -p "Please enter 1, 2, or 3: " yn
case $yn in
1 ) printf "\nStarting the InvokeAI command-line..\n"; python scripts/invoke.py;;
2 ) printf "\nStarting the InvokeAI browser-based UI..\n"; python scripts/invoke.py --web;;
1 ) printf "\nStarting the InvokeAI command-line..\n"; .venv/bin/python .venv/bin/invoke.py $*;;
2 ) printf "\nStarting the InvokeAI browser-based UI..\n"; .venv/bin/python .venv/bin/invoke.py --web $*;;
3 ) printf "\nDeveloper Console:\n"; file_name=$(basename "${BASH_SOURCE[0]}"); bash --init-file "$file_name";;
* ) echo "Invalid selection"; exit;;
esac

View File

@@ -0,0 +1,52 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
PUSHD "%~dp0"
set INVOKE_AI_SRC=https://github.com/invoke-ai/InvokeAI/archive/main.zip
set arg=%1
if "%arg%" neq "" (
if "%arg:~0,4%" neq "http" (
echo Usage: update.bat ^<release URL^>.zip
echo Updates InvokeAI to use the indicated version of the code base.
echo Find the zip file for the release you want, and pass it as the argument.
echo For example update.sh https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v2.2.4.zip
echo.
echo If no argument provided then will install the most recent development version, equivalent to
echo update.bat https://github.com/invoke-ai/InvokeAI/archive/main.zip
exit /b
) else (
set INVOKE_AI_SRC=%arg%
)
)
call .venv\Scripts\activate.bat
echo This script will update InvokeAI and all its dependencies to !INVOKE_AI_SRC!.
echo If you do not want to do this, press control-C now!
pause
call pip install -r requirements.txt
if %errorlevel% neq 0 (
echo Installation of requirements failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
exit /b
)
call pip install !INVOKE_AI_SRC!
if %errorlevel% neq 0 (
echo Installation of InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
exit /b
)
call .venv\Scripts\python .venv\Scripts\configure_invokeai.py --root="%rootdir%"
if %errorlevel% neq 0 (
echo Configuration InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
exit /b
)
echo "Press any key to continue"
pause
endlocal

View File

@@ -0,0 +1,52 @@
#!/bin/bash
set -eu
if [ $# -ge 1 ] && [ "${1:0:4}" != "http" ]; then
echo "Usage: update.sh <release URL>.zip"
echo "Updates InvokeAI to use the indicated version of the code base."
echo "Find the zip file for the release you want, and pass it as the argument."
echo "For example update.sh https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v2.2.3.zip"
echo ""
echo "If no argument provided then will install the most recent development version, equivalent to"
echo "update.sh https://github.com/invoke-ai/InvokeAI/archive/main.zip"
exit -1
fi
INVOKE_AI_SRC=${1:-https://github.com/invoke-ai/InvokeAI/archive/main.zip}
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
function _err_exit {
if test "$1" -ne 0
then
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "Update cannot continue. Please report this error to https://github.com/invoke-ai/InvokeAI/issues"
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
echo This script will update InvokeAI and all its dependencies from $INVOKE_AI_SRC.
echo If you do not want to do this, press control-C now!
read -p "Press any key to continue, or CTRL-C to exit..."
. .venv/bin/activate
pip install -r requirements.txt
_err_exit $? "The pip program failed to install InvokeAI's requirements."
pip install $INVOKE_AI_SRC
_err_exit $? "The pip program failed to install InvokeAI."
python .venv/bin/configure_invoke.py
_err_exit $? "The configure script failed to run successfully."

View File

@@ -20,6 +20,8 @@ import cv2
import skimage
from omegaconf import OmegaConf
import ldm.invoke.conditioning
from ldm.invoke.generator.base import downsampling
from PIL import Image, ImageOps
from torch import nn
@@ -40,7 +42,7 @@ from ldm.invoke.model_cache import ModelCache
from ldm.invoke.seamless import configure_model_padding
from ldm.invoke.txt2mask import Txt2Mask, SegmentedGrayscale
from ldm.invoke.concepts_lib import Concepts
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
def new_func(*args, **kw):
@@ -129,7 +131,6 @@ gr = Generate(
"""
class Generate:
"""Generate class
Stores default values for multiple configuration items
@@ -235,7 +236,7 @@ class Generate:
except Exception:
print('** An error was encountered while installing the safety checker:')
print(traceback.format_exc())
def prompt2png(self, prompt, outdir, **kwargs):
"""
Takes a prompt and an output directory, writes out the requested number
@@ -329,7 +330,7 @@ class Generate:
infill_method = infill_methods[0], # The infill method to use
force_outpaint: bool = False,
enable_image_debugging = False,
**args,
): # eat up additional cruft
"""
@@ -372,7 +373,7 @@ class Generate:
def process_image(image,seed):
image.save(f{'images/seed.png'})
The code used to save images to a directory can be found in ldm/invoke/pngwriter.py.
The code used to save images to a directory can be found in ldm/invoke/pngwriter.py.
It contains code to create the requested output directory, select a unique informative
name for each image, and write the prompt into the PNG metadata.
"""
@@ -455,7 +456,7 @@ class Generate:
try:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
prompt, model =self.model,
skip_normalize=skip_normalize,
skip_normalize_legacy_blend=skip_normalize,
log_tokens =self.log_tokenization
)
@@ -589,7 +590,7 @@ class Generate:
seed = opt.seed or args.seed
if seed is None or seed < 0:
seed = random.randrange(0, np.iinfo(np.uint32).max)
prompt = opt.prompt or args.prompt or ''
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
@@ -607,8 +608,8 @@ class Generate:
# todo: cross-attention control
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
prompt, model =self.model,
skip_normalize=opt.skip_normalize,
log_tokens =opt.log_tokenization
skip_normalize_legacy_blend=opt.skip_normalize,
log_tokens =ldm.invoke.conditioning.log_tokenization
)
if tool in ('gfpgan','codeformer','upscale'):
@@ -641,7 +642,7 @@ class Generate:
opt.seed = seed
opt.prompt = prompt
if len(extend_instructions) > 0:
restorer = Outcrop(image,self,)
return restorer.process (
@@ -683,7 +684,7 @@ class Generate:
image_callback = callback,
prefix = prefix
)
elif tool is None:
print(f'* please provide at least one postprocessing option, such as -G or -U')
return None
@@ -706,13 +707,13 @@ class Generate:
if embiggen is not None:
return self._make_embiggen()
if inpainting_model_in_use:
return self._make_omnibus()
if ((init_image is not None) and (mask_image is not None)) or force_outpaint:
return self._make_inpaint()
if init_image is not None:
return self._make_img2img()
@@ -743,7 +744,7 @@ class Generate:
if self._has_transparency(image):
self._transparency_check_and_warning(image, mask, force_outpaint)
init_mask = self._create_init_mask(image, width, height, fit=fit)
if (image.width * image.height) > (self.width * self.height) and self.size_matters:
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
self.size_matters = False
@@ -757,9 +758,9 @@ class Generate:
elif text_mask:
init_mask = self._txt2mask(image, text_mask, width, height, fit=fit)
if invert_mask:
if init_mask and invert_mask:
init_mask = ImageOps.invert(init_mask)
return init_image,init_mask
# lots o' repeated code here! Turn into a make_func()
@@ -818,7 +819,7 @@ class Generate:
self.set_model(self.model_name)
def set_model(self,model_name):
"""
"""
Given the name of a model defined in models.yaml, will load and initialize it
and return the model object. Previously-used models will be cached.
"""
@@ -830,7 +831,7 @@ class Generate:
if not cache.valid_model(model_name):
print(f'** "{model_name}" is not a known model name. Please check your models.yaml file')
return self.model
cache.print_vram_usage()
# have to get rid of all references to model in order
@@ -839,7 +840,7 @@ class Generate:
self.sampler = None
self.generators = {}
gc.collect()
model_data = cache.get_model(model_name)
if model_data is None: # restore previous
model_data = cache.get_model(self.model_name)
@@ -852,7 +853,7 @@ class Generate:
# uncache generators so they pick up new models
self.generators = {}
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path is not None:
self.model.embedding_manager.load(
@@ -901,7 +902,7 @@ class Generate:
image_callback = None,
prefix = None,
):
for r in image_list:
image, seed = r
try:
@@ -911,7 +912,7 @@ class Generate:
if self.gfpgan is None:
print('>> GFPGAN not found. Face restoration is disabled.')
else:
image = self.gfpgan.process(image, strength, seed)
image = self.gfpgan.process(image, strength, seed)
if facetool == 'codeformer':
if self.codeformer is None:
print('>> CodeFormer not found. Face restoration is disabled.')

View File

@@ -8,6 +8,7 @@ import time
import traceback
import yaml
from ldm.generate import Generate
from ldm.invoke.globals import Globals
from ldm.invoke.prompt_parser import PromptParser
from ldm.invoke.readline import get_completer, Completer
@@ -27,7 +28,7 @@ def main():
"""Initialize command-line parsers and the diffusion model"""
global infile
print('* Initializing, be patient...')
opt = Args()
args = opt.parse_args()
if not args:
@@ -45,9 +46,8 @@ def main():
args.max_loaded_models = 1
# alert - setting globals here
Globals.root = os.path.expanduser(args.root_dir or os.environ.get('INVOKEAI_ROOT') or os.path.abspath('.'))
Globals.try_patchmatch = args.patchmatch
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# loading here to avoid long delays on startup
@@ -68,6 +68,8 @@ def main():
if opt.embeddings:
if not os.path.isabs(opt.embedding_path):
embedding_path = os.path.normpath(os.path.join(Globals.root,opt.embedding_path))
else:
embedding_path = opt.embedding_path
else:
embedding_path = None
@@ -279,7 +281,7 @@ def main_loop(gen, opt):
prefix = file_writer.unique_prefix()
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None):
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None, prompt_in=None, attention_maps_image=None):
# note the seed is the seed of the current image
# the first_seed is the original seed that noise is added to
# when the -v switch is used to generate variations
@@ -308,7 +310,7 @@ def main_loop(gen, opt):
if use_prefix is not None:
prefix = use_prefix
postprocessed = upscaled if upscaled else operation=='postprocess'
opt.prompt = gen.concept_lib().replace_triggers_with_concepts(opt.prompt) # to avoid the problem of non-unique concept triggers
opt.prompt = gen.concept_lib().replace_triggers_with_concepts(opt.prompt or prompt_in) # to avoid the problem of non-unique concept triggers
filename, formatted_dream_prompt = prepare_image_metadata(
opt,
prefix,
@@ -339,8 +341,8 @@ def main_loop(gen, opt):
filename,
tool,
formatted_dream_prompt,
)
)
if (not postprocessed) or opt.save_original:
# only append to results if we didn't overwrite an earlier output
results.append([path, formatted_dream_prompt])
@@ -430,7 +432,7 @@ def do_command(command:str, gen, opt:Args, completer) -> tuple:
add_embedding_terms(gen, completer)
completer.add_history(command)
operation = None
elif command.startswith('!models'):
gen.model_cache.print_models()
completer.add_history(command)
@@ -531,7 +533,7 @@ def add_weights_to_config(model_path:str, gen, opt, completer):
completer.complete_extensions(('.yaml','.yml'))
completer.linebuffer = 'configs/stable-diffusion/v1-inference.yaml'
done = False
while not done:
new_config['config'] = input('Configuration file for this model: ')
@@ -562,7 +564,7 @@ def add_weights_to_config(model_path:str, gen, opt, completer):
print('** Please enter a valid integer between 64 and 2048')
make_default = input('Make this the default model? [n] ') in ('y','Y')
if write_config_file(opt.conf, gen, model_name, new_config, make_default=make_default):
completer.add_model(model_name)
@@ -575,14 +577,14 @@ def del_config(model_name:str, gen, opt, completer):
gen.model_cache.commit(opt.conf)
print(f'** {model_name} deleted')
completer.del_model(model_name)
def edit_config(model_name:str, gen, opt, completer):
config = gen.model_cache.config
if model_name not in config:
print(f'** Unknown model {model_name}')
return
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
conf = config[model_name]
@@ -595,10 +597,10 @@ def edit_config(model_name:str, gen, opt, completer):
make_default = input('Make this the default model? [n] ') in ('y','Y')
completer.complete_extensions(None)
write_config_file(opt.conf, gen, model_name, new_config, clobber=True, make_default=make_default)
def write_config_file(conf_path, gen, model_name, new_config, clobber=False, make_default=False):
current_model = gen.model_name
op = 'modify' if clobber else 'import'
print('\n>> New configuration:')
if make_default:
@@ -621,7 +623,7 @@ def write_config_file(conf_path, gen, model_name, new_config, clobber=False, mak
gen.model_cache.set_default_model(model_name)
gen.model_cache.commit(conf_path)
do_switch = input(f'Keep model loaded? [y]')
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
pass
@@ -651,7 +653,7 @@ def do_postprocess (gen, opt, callback):
opt.prompt = opt.new_prompt
else:
opt.prompt = None
if os.path.dirname(file_path) == '': #basename given
file_path = os.path.join(opt.outdir,file_path)
@@ -716,7 +718,7 @@ def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command):
)
meta['image']['postprocessing'] = pp
write_metadata(new_file,meta)
def prepare_image_metadata(
opt,
prefix,
@@ -787,28 +789,28 @@ def get_next_command(infile=None) -> str: # command string
print(f'#{command}')
return command
def invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan):
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
print('\n* --web was specified, starting web server...')
from backend.invoke_ai_web_server import InvokeAIWebServer
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
)
invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan)
try:
invoke_ai_web_server.run()
except KeyboardInterrupt:
pass
def add_embedding_terms(gen,completer):
'''
Called after setting the model, updates the autocompleter with
any terms loaded by the embedding manager.
'''
completer.add_embedding_terms(gen.model.embedding_manager.list_terms())
def split_variations(variations_string) -> list:
# shotgun parsing, woo
parts = []
@@ -865,7 +867,7 @@ def make_step_callback(gen, opt, prefix):
image = gen.sample_to_image(img)
image.save(filename,'PNG')
return callback
def retrieve_dream_command(opt,command,completer):
'''
Given a full or partial path to a previously-generated image file,
@@ -873,7 +875,7 @@ def retrieve_dream_command(opt,command,completer):
and pop it into the readline buffer (linux, Mac), or print out a comment
for cut-and-paste (windows)
Given a wildcard path to a folder with image png files,
Given a wildcard path to a folder with image png files,
will retrieve and format the dream command used to generate the images,
and save them to a file commands.txt for further processing
'''
@@ -909,7 +911,7 @@ def write_commands(opt, file_path:str, outfilepath:str):
except ValueError:
print(f'## "{basename}": unacceptable pattern')
return
commands = []
cmd = None
for path in paths:
@@ -938,7 +940,7 @@ def emergency_model_reconfigure():
print(' After reconfiguration is done, please relaunch invoke.py. ')
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
print('configure_invokeai is launching....\n')
sys.argv = ['configure_invokeai','--interactive']
import configure_invokeai
configure_invokeai.main()

View File

@@ -0,0 +1 @@
__version__='2.2.4'

View File

@@ -119,7 +119,7 @@ PRECISION_CHOICES = [
# is there a way to pick this up during git commits?
APP_ID = 'invoke-ai/InvokeAI'
APP_VERSION = 'v2.2.0'
APP_VERSION = 'v2.2.4'
class ArgFormatter(argparse.RawTextHelpFormatter):
# use defined argument order to display usage
@@ -172,14 +172,20 @@ class Args(object):
'''Parse the shell switches and store.'''
try:
sysargs = sys.argv[1:]
initfile = os.path.expanduser(Globals.initfile)
# pre-parse to get the root directory; ignore the rest
switches = self._arg_parser.parse_args(sysargs)
Globals.root = switches.root_dir or Globals.root
# now use root directory to find the init file
initfile = os.path.expanduser(os.path.join(Globals.root,Globals.initfile))
legacyinit = os.path.expanduser('~/.invokeai')
if os.path.exists(initfile):
print(f'>> Initialization file {initfile} found. Loading...')
sysargs.insert(0,f'@{initfile}')
else:
from ldm.invoke.CLI import emergency_model_reconfigure
emergency_model_reconfigure()
sys.exit(-1)
elif os.path.exists(legacyinit):
print(f'>> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init.')
sysargs.insert(0,f'@{legacyinit}')
self._arg_switches = self._arg_parser.parse_args(sysargs)
return self._arg_switches
except Exception as e:
@@ -411,7 +417,7 @@ class Args(object):
model_group.add_argument(
'--root_dir',
default=None,
help='Path to directory containing "models", "outputs" and "configs". If not present will try to read from ~/.invokeai and then from environment variable INVOKEAI_ROOT. Defaults to the current directory as a last resort.',
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
)
model_group.add_argument(
'--config',

View File

@@ -36,7 +36,7 @@ class Concepts(object):
models = self.hf_api.list_models(filter=ModelFilter(model_name='sd-concepts-library/'))
self.concept_list = [a.id.split('/')[1] for a in models]
except Exception as e:
print(' ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}.')
print(f' ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}.')
print(' ** You may load .bin and .pt file(s) manually using the --embedding_directory argument.')
return self.concept_list

View File

@@ -7,20 +7,46 @@ get_uc_and_c_and_ec() get the conditioned and unconditioned latent, an
'''
import re
from difflib import SequenceMatcher
from typing import Union
import torch
from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment
from ..models.diffusion import cross_attention_control
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_normalize=False):
def get_uc_and_c_and_ec(prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False):
prompt, negative_prompt = get_prompt_structure(prompt_string,
skip_normalize_legacy_blend=skip_normalize_legacy_blend)
conditioning = _get_conditioning_for_prompt(prompt, negative_prompt, model, log_tokens)
return conditioning
def get_prompt_structure(prompt_string, skip_normalize_legacy_blend: bool = False) -> (
Union[FlattenedPrompt, Blend], FlattenedPrompt):
"""
parse the passed-in prompt string and return tuple (positive_prompt, negative_prompt)
"""
prompt, negative_prompt = _parse_prompt_string(prompt_string,
skip_normalize_legacy_blend=skip_normalize_legacy_blend)
return prompt, negative_prompt
def get_tokens_for_prompt(model, parsed_prompt: FlattenedPrompt) -> [str]:
text_fragments = [x.text if type(x) is Fragment else
(" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else
str(x))
for x in parsed_prompt.children]
text = " ".join(text_fragments)
tokens = model.cond_stage_model.tokenizer.tokenize(text)
return tokens
def _parse_prompt_string(prompt_string_uncleaned, skip_normalize_legacy_blend=False) -> Union[FlattenedPrompt, Blend]:
# Extract Unconditioned Words From Prompt
unconditioned_words = ''
unconditional_regex = r'\[(.*?)\]'
@@ -39,7 +65,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
pp = PromptParser()
parsed_prompt: Union[FlattenedPrompt, Blend] = None
legacy_blend: Blend = pp.parse_legacy_blend(prompt_string_cleaned)
legacy_blend: Blend = pp.parse_legacy_blend(prompt_string_cleaned, skip_normalize_legacy_blend)
if legacy_blend is not None:
parsed_prompt = legacy_blend
else:
@@ -47,118 +73,150 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
parsed_prompt = pp.parse_conjunction(prompt_string_cleaned).prompts[0]
parsed_negative_prompt: FlattenedPrompt = pp.parse_conjunction(unconditioned_words).prompts[0]
return parsed_prompt, parsed_negative_prompt
def _get_conditioning_for_prompt(parsed_prompt: Union[Blend, FlattenedPrompt], parsed_negative_prompt: FlattenedPrompt,
model, log_tokens=False) \
-> tuple[torch.Tensor, torch.Tensor, InvokeAIDiffuserComponent.ExtraConditioningInfo]:
"""
Process prompt structure and tokens, and return (conditioning, unconditioning, extra_conditioning_info)
"""
if log_tokens:
print(f">> Parsed prompt to {parsed_prompt}")
print(f">> Parsed negative prompt to {parsed_negative_prompt}")
conditioning = None
cac_args:cross_attention_control.Arguments = None
cac_args: cross_attention_control.Arguments = None
if type(parsed_prompt) is Blend:
blend: Blend = parsed_prompt
embeddings_to_blend = None
for i,flattened_prompt in enumerate(blend.prompts):
this_embedding, _ = build_embeddings_and_tokens_for_flattened_prompt(model,
flattened_prompt,
log_tokens=log_tokens,
log_display_label=f"(blend part {i+1}, weight={blend.weights[i]})" )
embeddings_to_blend = this_embedding if embeddings_to_blend is None else torch.cat(
(embeddings_to_blend, this_embedding))
conditioning = WeightedFrozenCLIPEmbedder.apply_embedding_weights(embeddings_to_blend.unsqueeze(0),
blend.weights,
normalize=blend.normalize_weights)
else:
flattened_prompt: FlattenedPrompt = parsed_prompt
wants_cross_attention_control = type(flattened_prompt) is not Blend \
and any([issubclass(type(x), CrossAttentionControlledFragment) for x in flattened_prompt.children])
if wants_cross_attention_control:
original_prompt = FlattenedPrompt()
edited_prompt = FlattenedPrompt()
# for name, a0, a1, b0, b1 in edit_opcodes: only name == 'equal' is currently parsed
original_token_count = 0
edited_token_count = 0
edit_opcodes = []
edit_options = []
for fragment in flattened_prompt.children:
if type(fragment) is CrossAttentionControlSubstitute:
original_prompt.append(fragment.original)
edited_prompt.append(fragment.edited)
conditioning = _get_conditioning_for_blend(model, parsed_prompt, log_tokens)
elif type(parsed_prompt) is FlattenedPrompt:
if parsed_prompt.wants_cross_attention_control:
conditioning, cac_args = _get_conditioning_for_cross_attention_control(model, parsed_prompt, log_tokens)
to_replace_token_count = get_tokens_length(model, fragment.original)
replacement_token_count = get_tokens_length(model, fragment.edited)
edit_opcodes.append(('replace',
original_token_count, original_token_count + to_replace_token_count,
edited_token_count, edited_token_count + replacement_token_count
))
original_token_count += to_replace_token_count
edited_token_count += replacement_token_count
edit_options.append(fragment.options)
#elif type(fragment) is CrossAttentionControlAppend:
# edited_prompt.append(fragment.fragment)
else:
# regular fragment
original_prompt.append(fragment)
edited_prompt.append(fragment)
count = get_tokens_length(model, [fragment])
edit_opcodes.append(('equal', original_token_count, original_token_count+count, edited_token_count, edited_token_count+count))
edit_options.append(None)
original_token_count += count
edited_token_count += count
original_embeddings, original_tokens = build_embeddings_and_tokens_for_flattened_prompt(model,
original_prompt,
log_tokens=log_tokens,
log_display_label="(.swap originals)")
# naïvely building a single edited_embeddings like this disregards the effects of changing the absolute location of
# subsequent tokens when there is >1 edit and earlier edits change the total token count.
# eg "a cat.swap(smiling dog, s_start=0.5) eating a hotdog.swap(pizza)" - when the 'pizza' edit is active but the
# 'cat' edit is not, the 'pizza' feature vector will nevertheless be affected by the introduction of the extra
# token 'smiling' in the inactive 'cat' edit.
# todo: build multiple edited_embeddings, one for each edit, and pass just the edited fragments through to the CrossAttentionControl functions
edited_embeddings, edited_tokens = build_embeddings_and_tokens_for_flattened_prompt(model,
edited_prompt,
log_tokens=log_tokens,
log_display_label="(.swap replacements)")
conditioning = original_embeddings
edited_conditioning = edited_embeddings
#print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
cac_args = cross_attention_control.Arguments(
edited_conditioning = edited_conditioning,
edit_opcodes = edit_opcodes,
edit_options = edit_options
)
else:
conditioning, _ = build_embeddings_and_tokens_for_flattened_prompt(model,
flattened_prompt,
log_tokens=log_tokens,
log_display_label="(prompt)")
conditioning, _ = _get_embeddings_and_tokens_for_prompt(model,
parsed_prompt,
log_tokens=log_tokens,
log_display_label="(prompt)")
else:
raise ValueError(f"parsed_prompt is '{type(parsed_prompt)}' which is not a supported prompt type")
unconditioning, _ = build_embeddings_and_tokens_for_flattened_prompt(model,
parsed_negative_prompt,
log_tokens=log_tokens,
log_display_label="(unconditioning)")
unconditioning, _ = _get_embeddings_and_tokens_for_prompt(model,
parsed_negative_prompt,
log_tokens=log_tokens,
log_display_label="(unconditioning)")
if isinstance(conditioning, dict):
# hybrid conditioning is in play
unconditioning, conditioning = flatten_hybrid_conditioning(unconditioning, conditioning)
unconditioning, conditioning = _flatten_hybrid_conditioning(unconditioning, conditioning)
if cac_args is not None:
print(">> Hybrid conditioning cannot currently be combined with cross attention control. Cross attention control will be ignored.")
print(
">> Hybrid conditioning cannot currently be combined with cross attention control. Cross attention control will be ignored.")
cac_args = None
eos_token_index = 1
if type(parsed_prompt) is not Blend:
tokens = get_tokens_for_prompt(model, parsed_prompt)
eos_token_index = len(tokens)+1
return (
unconditioning, conditioning, InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=eos_token_index + 1,
cross_attention_control_args=cac_args
)
)
def build_token_edit_opcodes(original_tokens, edited_tokens):
original_tokens = original_tokens.cpu().numpy()[0]
edited_tokens = edited_tokens.cpu().numpy()[0]
def _get_conditioning_for_cross_attention_control(model, prompt: FlattenedPrompt, log_tokens: bool = True):
original_prompt = FlattenedPrompt()
edited_prompt = FlattenedPrompt()
# for name, a0, a1, b0, b1 in edit_opcodes: only name == 'equal' is currently parsed
original_token_count = 0
edited_token_count = 0
edit_options = []
edit_opcodes = []
# beginning of sequence
edit_opcodes.append(
('equal', original_token_count, original_token_count + 1, edited_token_count, edited_token_count + 1))
edit_options.append(None)
original_token_count += 1
edited_token_count += 1
for fragment in prompt.children:
if type(fragment) is CrossAttentionControlSubstitute:
original_prompt.append(fragment.original)
edited_prompt.append(fragment.edited)
return SequenceMatcher(None, original_tokens, edited_tokens).get_opcodes()
to_replace_token_count = _get_tokens_length(model, fragment.original)
replacement_token_count = _get_tokens_length(model, fragment.edited)
edit_opcodes.append(('replace',
original_token_count, original_token_count + to_replace_token_count,
edited_token_count, edited_token_count + replacement_token_count
))
original_token_count += to_replace_token_count
edited_token_count += replacement_token_count
edit_options.append(fragment.options)
# elif type(fragment) is CrossAttentionControlAppend:
# edited_prompt.append(fragment.fragment)
else:
# regular fragment
original_prompt.append(fragment)
edited_prompt.append(fragment)
def build_embeddings_and_tokens_for_flattened_prompt(model, flattened_prompt: FlattenedPrompt, log_tokens: bool=False, log_display_label: str=None):
count = _get_tokens_length(model, [fragment])
edit_opcodes.append(('equal', original_token_count, original_token_count + count, edited_token_count,
edited_token_count + count))
edit_options.append(None)
original_token_count += count
edited_token_count += count
# end of sequence
edit_opcodes.append(
('equal', original_token_count, original_token_count + 1, edited_token_count, edited_token_count + 1))
edit_options.append(None)
original_token_count += 1
edited_token_count += 1
original_embeddings, original_tokens = _get_embeddings_and_tokens_for_prompt(model,
original_prompt,
log_tokens=log_tokens,
log_display_label="(.swap originals)")
# naïvely building a single edited_embeddings like this disregards the effects of changing the absolute location of
# subsequent tokens when there is >1 edit and earlier edits change the total token count.
# eg "a cat.swap(smiling dog, s_start=0.5) eating a hotdog.swap(pizza)" - when the 'pizza' edit is active but the
# 'cat' edit is not, the 'pizza' feature vector will nevertheless be affected by the introduction of the extra
# token 'smiling' in the inactive 'cat' edit.
# todo: build multiple edited_embeddings, one for each edit, and pass just the edited fragments through to the CrossAttentionControl functions
edited_embeddings, edited_tokens = _get_embeddings_and_tokens_for_prompt(model,
edited_prompt,
log_tokens=log_tokens,
log_display_label="(.swap replacements)")
conditioning = original_embeddings
edited_conditioning = edited_embeddings
# print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
cac_args = cross_attention_control.Arguments(
edited_conditioning=edited_conditioning,
edit_opcodes=edit_opcodes,
edit_options=edit_options
)
return conditioning, cac_args
def _get_conditioning_for_blend(model, blend: Blend, log_tokens: bool = False):
embeddings_to_blend = None
for i, flattened_prompt in enumerate(blend.prompts):
this_embedding, _ = _get_embeddings_and_tokens_for_prompt(model,
flattened_prompt,
log_tokens=log_tokens,
log_display_label=f"(blend part {i + 1}, weight={blend.weights[i]})")
embeddings_to_blend = this_embedding if embeddings_to_blend is None else torch.cat(
(embeddings_to_blend, this_embedding))
conditioning = WeightedFrozenCLIPEmbedder.apply_embedding_weights(embeddings_to_blend.unsqueeze(0),
blend.weights,
normalize=blend.normalize_weights)
return conditioning
def _get_embeddings_and_tokens_for_prompt(model, flattened_prompt: FlattenedPrompt, log_tokens: bool = False,
log_display_label: str = None):
if type(flattened_prompt) is not FlattenedPrompt:
raise Exception(f"embeddings can only be made from FlattenedPrompts, got {type(flattened_prompt)} instead")
fragments = [x.text for x in flattened_prompt.children]
@@ -170,12 +228,14 @@ def build_embeddings_and_tokens_for_flattened_prompt(model, flattened_prompt: Fl
return embeddings, tokens
def get_tokens_length(model, fragments: list[Fragment]):
def _get_tokens_length(model, fragments: list[Fragment]):
fragment_texts = [x.text for x in fragments]
tokens = model.cond_stage_model.get_tokens(fragment_texts, include_start_and_end_markers=False)
return sum([len(x) for x in tokens])
def flatten_hybrid_conditioning(uncond, cond):
def _flatten_hybrid_conditioning(uncond, cond):
'''
This handles the choice between a conditional conditioning
that is a tensor (used by cross attention) vs one that has additional
@@ -194,4 +254,29 @@ def flatten_hybrid_conditioning(uncond, cond):
cond_flattened[k] = torch.cat([uncond[k], cond[k]])
return uncond, cond_flattened
def log_tokenization(text, model, display_label=None):
""" shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = model.cond_stage_model.tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
# alternate color
s = (usedTokens % 6) + 1
if i < model.cond_stage_model.max_length:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\n>> Tokens {display_label or ''} ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f">> Tokens Discarded ({totalTokens - usedTokens}):\n{discarded}\x1b[0m"
)

View File

@@ -14,6 +14,7 @@ import cv2 as cv
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from ldm.invoke.devices import choose_autocast
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
from ldm.util import rand_perlin_2d
downsampling = 8
@@ -51,9 +52,12 @@ class Generator():
def generate(self,prompt,init_image,width,height,sampler, iterations=1,seed=None,
image_callback=None, step_callback=None, threshold=0.0, perlin=0.0,
safety_checker:dict=None,
attention_maps_callback = None,
**kwargs):
scope = choose_autocast(self.precision)
self.safety_checker = safety_checker
attention_maps_images = []
attention_maps_callback = lambda saver: attention_maps_images.append(saver.get_stacked_maps_image())
make_image = self.get_make_image(
prompt,
sampler = sampler,
@@ -63,6 +67,7 @@ class Generator():
step_callback = step_callback,
threshold = threshold,
perlin = perlin,
attention_maps_callback = attention_maps_callback,
**kwargs
)
results = []
@@ -98,12 +103,13 @@ class Generator():
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed, first_seed=first_seed)
attention_maps_image = None if len(attention_maps_images)==0 else attention_maps_images[-1]
image_callback(image, seed, first_seed=first_seed, attention_maps_image=attention_maps_image)
seed = self.new_seed()
return results
def sample_to_image(self,samples)->Image.Image:
"""
Given samples returned from a sampler, converts
@@ -166,12 +172,12 @@ class Generator():
blurred_init_mask = pil_init_mask
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, self.pil_image.split()[-1])
# Paste original on color-corrected generation (using blurred mask)
matched_result.paste(init_image, (0,0), mask = multiplied_blurred_init_mask)
return matched_result
def sample_to_lowres_estimated_image(self,samples):
# origingally adapted from code by @erucipe and @keturn here:
@@ -219,11 +225,11 @@ class Generator():
(txt2img) or from the latent image (img2img, inpaint)
"""
raise NotImplementedError("get_noise() must be implemented in a descendent class")
def get_perlin_noise(self,width,height):
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
return torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
def new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
return self.seed
@@ -325,4 +331,4 @@ class Generator():
os.makedirs(dirname, exist_ok=True)
image.save(filepath,'PNG')

View File

@@ -38,7 +38,7 @@ class Embiggen(Generator):
image = make_image()
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed)
image_callback(image, seed, prompt_in=prompt)
seed = self.new_seed()
return results

View File

@@ -48,6 +48,10 @@ class Img2Img(Generator):
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
)
if self.free_gpu_mem and self.model.model.device != self.model.device:
self.model.model.to(self.model.device)
# decode it
samples = sampler.decode(
z_enc,
@@ -61,6 +65,9 @@ class Img2Img(Generator):
all_timesteps_count = steps
)
if self.free_gpu_mem:
self.model.model.to("cpu")
return self.sample_to_image(samples)
return make_image
@@ -87,4 +94,4 @@ class Img2Img(Generator):
image = torch.from_numpy(image)
if normalize:
image = 2.0 * image - 1.0
return image.to(self.model.device)
return image.to(self.model.device)

View File

@@ -27,7 +27,7 @@ if Globals.try_patchmatch:
print('>> Patchmatch initialized')
infill_methods.append('patchmatch')
else:
print('>> Patchmatch not loaded, please see https://github.com/invoke-ai/InvokeAI/blob/patchmatch-install-docs/docs/installation/INSTALL_PATCHMATCH.md')
print('>> Patchmatch not loaded (nonfatal)')
else:
print('>> Patchmatch loading disabled')

View File

@@ -14,7 +14,9 @@ class Txt2Img(Generator):
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,**kwargs):
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,
attention_maps_callback=None,
**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
@@ -33,7 +35,7 @@ class Txt2Img(Generator):
if self.free_gpu_mem and self.model.model.device != self.model.device:
self.model.model.to(self.model.device)
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
samples, _ = sampler.sample(
@@ -49,6 +51,7 @@ class Txt2Img(Generator):
eta = ddim_eta,
img_callback = step_callback,
threshold = threshold,
attention_maps_callback = attention_maps_callback,
)
if self.free_gpu_mem:

View File

@@ -5,7 +5,9 @@ otherwise have to be passed through long and complex call chains.
It defines a Namespace object named "Globals" that contains
the attributes:
- root - the root directory under which "models" and "outputs" can be found
- root - the root directory under which "models" and "outputs" can be found
- initfile - path to the initialization file
- try_patchmatch - option to globally disable loading of 'patchmatch' module
'''
import os
@@ -14,10 +16,10 @@ from argparse import Namespace
Globals = Namespace()
# This is usually overwritten by the command line and/or environment variables
Globals.root = '.'
Globals.root = os.environ.get('INVOKEAI_ROOT') or os.path.expanduser('~/invokeai')
# Where to look for the initialization file
Globals.initfile = os.path.expanduser('~/.invokeai')
Globals.initfile = 'invokeai.init'
# Awkward workaround to disable attempted loading of pypatchmatch
# which is causing CI tests to error out.

View File

@@ -227,7 +227,9 @@ class ModelCache(object):
model_hash = self._cached_sha256(weights,weight_bytes)
sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
del weight_bytes
sd = sd['state_dict']
# merged models from auto11 merge board are flat for some reason
if 'state_dict' in sd:
sd = sd['state_dict']
model = instantiate_from_config(omega_config.model)
model.load_state_dict(sd, strict=False)

View File

@@ -3,7 +3,7 @@ from typing import Union, Optional
import re
import pyparsing as pp
'''
This module parses prompt strings and produces tree-like structures that can be used generate and control the conditioning tensors.
This module parses prompt strings and produces tree-like structures that can be used generate and control the conditioning tensors.
weighted subprompts.
Useful class exports:
@@ -69,6 +69,12 @@ class FlattenedPrompt():
return len(self.children) == 0 or \
(len(self.children) == 1 and len(self.children[0].text) == 0)
@property
def wants_cross_attention_control(self):
return any(
[issubclass(type(x), CrossAttentionControlledFragment) for x in self.children]
)
def __repr__(self):
return f"FlattenedPrompt:{self.children}"
def __eq__(self, other):
@@ -240,6 +246,12 @@ class Blend():
self.weights = weights
self.normalize_weights = normalize_weights
@property
def wants_cross_attention_control(self):
# blends cannot cross-attention control
return False
def __repr__(self):
return f"Blend:{self.prompts} | weights {' ' if self.normalize_weights else '(non-normalized) '}{self.weights}"
def __eq__(self, other):
@@ -277,8 +289,8 @@ class PromptParser():
return self.flatten(root[0])
def parse_legacy_blend(self, text: str) -> Optional[Blend]:
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=False)
def parse_legacy_blend(self, text: str, skip_normalize: bool) -> Optional[Blend]:
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize)
if len(weighted_subprompts) <= 1:
return None
strings = [x[0] for x in weighted_subprompts]
@@ -287,7 +299,7 @@ class PromptParser():
parsed_conjunctions = [self.parse_conjunction(x) for x in strings]
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
return Blend(prompts=flattened_prompts, weights=weights, normalize_weights=True)
return Blend(prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize)
def flatten(self, root: Conjunction, verbose = False) -> Conjunction:
@@ -641,27 +653,3 @@ def split_weighted_subprompts(text, skip_normalize=False)->list:
return [(x[0], equal_weight) for x in parsed_prompts]
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
def log_tokenization(text, model, display_label=None):
tokens = model.cond_stage_model.tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
# alternate color
s = (usedTokens % 6) + 1
if i < model.cond_stage_model.max_length:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\n>> Tokens {display_label or ''} ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
)

View File

@@ -53,7 +53,6 @@ COMMANDS = (
'--codeformer_fidelity','-cf',
'--upscale','-U',
'-save_orig','--save_original',
'--skip_normalize','-x',
'--log_tokenization','-t',
'--hires_fix',
'--inpaint_replace','-r',
@@ -101,7 +100,8 @@ class Completer(object):
self.linebuffer = None
self.auto_history_active = True
self.extensions = None
self.concepts = Concepts().list_concepts()
self.concepts = None
self.embedding_terms = set()
return
def complete(self, text, state):
@@ -116,19 +116,19 @@ class Completer(object):
# extensions defined, so go directly into path completion mode
if self.extensions is not None:
self.matches = self._path_completions(text, state, self.extensions)
# looking for an image file
elif re.search(path_regexp,buffer):
do_shortcut = re.search('^'+'|'.join(IMG_FILE_COMMANDS),buffer)
self.matches = self._path_completions(text, state, IMG_EXTENSIONS,shortcut_ok=do_shortcut)
# looking for a seed
elif re.search('(-S\s*|--seed[=\s])\d*$',buffer):
elif re.search('(-S\s*|--seed[=\s])\d*$',buffer):
self.matches= self._seed_completions(text,state)
elif re.search('<[\w-]*$',buffer):
elif re.search('<[\w-]*$',buffer):
self.matches= self._concept_completions(text,state)
# looking for a model
elif re.match('^'+'|'.join(MODEL_COMMANDS),buffer):
self.matches= self._model_completions(text, state)
@@ -226,7 +226,7 @@ class Completer(object):
if h_len < 1:
print('<empty history>')
return
for i in range(0,h_len):
line = self.get_history_item(i+1)
if match and match not in line:
@@ -270,16 +270,21 @@ class Completer(object):
return matches
def add_embedding_terms(self, terms:list[str]):
self.concepts = Concepts().list_concepts()
self.concepts.extend(terms)
self.embedding_terms = set(terms)
if self.concepts:
self.embedding_terms.update(self.concepts)
def _concept_completions(self, text, state):
if self.concepts is None:
self.concepts = set(Concepts().list_concepts())
self.embedding_terms.update(self.concepts)
partial = text[1:] # this removes the leading '<'
if len(partial) == 0:
return self.concepts # whole dump - think if user wants this!
return list(self.embedding_terms) # whole dump - think if user wants this!
matches = list()
for concept in self.concepts:
for concept in self.embedding_terms:
if concept.startswith(partial):
matches.append(f'<{concept}>')
matches.sort()
@@ -361,7 +366,7 @@ class DummyCompleter(Completer):
def __init__(self,options):
super().__init__(options)
self.history = list()
def add_history(self,line):
self.history.append(line)
@@ -416,7 +421,11 @@ def get_completer(opt:Args, models=[])->Completer:
readline.parse_and_bind('set skip-completed-text on')
readline.parse_and_bind('set show-all-if-ambiguous on')
histfile = os.path.join(os.path.expanduser(opt.outdir), '.invoke_history')
outdir = os.path.expanduser(opt.outdir)
if os.path.isabs(outdir):
histfile = os.path.join(outdir,'.invoke_history')
else:
histfile = os.path.join(Globals.root, outdir, '.invoke_history')
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)

View File

@@ -1,12 +1,14 @@
import enum
from typing import Optional
import math
from typing import Optional, Callable
import psutil
import torch
from torch import nn
# adapted from bloc97's CrossAttentionControl colab
# https://github.com/bloc97/CrossAttentionControl
class Arguments:
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
"""
@@ -63,9 +65,13 @@ class Context:
self.clear_requests(cleanup=True)
def register_cross_attention_modules(self, model):
for name,module in get_attention_modules(model, CrossAttentionType.SELF):
for name,module in get_cross_attention_modules(model, CrossAttentionType.SELF):
if name in self.self_cross_attention_module_identifiers:
assert False, f"name {name} cannot appear more than once"
self.self_cross_attention_module_identifiers.append(name)
for name,module in get_attention_modules(model, CrossAttentionType.TOKENS):
for name,module in get_cross_attention_modules(model, CrossAttentionType.TOKENS):
if name in self.tokens_cross_attention_module_identifiers:
assert False, f"name {name} cannot appear more than once"
self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: CrossAttentionType):
@@ -166,6 +172,135 @@ class Context:
map_dict[offset] = slice.to('cpu')
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
def __init__(self):
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
self.attention_slice_calculated_callback = None
def set_attention_slice_wrangler(self, wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]]):
'''
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
'''
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
self.slicing_strategy_getter = getter
def set_attention_slice_calculated_callback(self, callback: Optional[Callable[[torch.Tensor], None]]):
self.attention_slice_calculated_callback = callback
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
# calculate attention scores
#attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
if self.attention_slice_calculated_callback is not None:
self.attention_slice_calculated_callback(attention_slice, dim, offset, slice_size)
hidden_states = torch.bmm(attention_slice, value)
return hidden_states
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_invokeai_attention_mem_efficient(self, q, k, v):
if q.device.type == 'cuda':
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == 'mps' or q.device.type == 'cpu':
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def remove_cross_attention_control(model):
remove_attention_function(model)
@@ -187,7 +322,7 @@ def setup_cross_attention_control(model, context: Context):
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
mask = torch.zeros(max_length)
indices_target = torch.arange(max_length, dtype=torch.long)
indices = torch.zeros(max_length, dtype=torch.long)
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
@@ -201,10 +336,23 @@ def setup_cross_attention_control(model, context: Context):
inject_attention_function(model, context)
def get_attention_modules(model, which: CrossAttentionType):
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
cross_attention_class: type = InvokeAICrossAttentionMixin
# cross_attention_class: type = InvokeAIDiffusersCrossAttention
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
return [(name,module) for name, module in model.named_modules() if
type(module).__name__ == "CrossAttention" and which_attn in name]
attention_module_tuples = [(name,module) for name, module in model.named_modules() if
isinstance(module, cross_attention_class) and which_attn in name]
cross_attention_modules_in_model_count = len(attention_module_tuples)
expected_count = 16
if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work.
print(f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model " +
f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed " +
f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, " +
f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows " +
f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not " +
f"work properly until it is fixed.")
return attention_module_tuples
def inject_attention_function(unet, context: Context):
@@ -244,19 +392,52 @@ def inject_attention_function(unet, context: Context):
return attention_slice
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.identifier = name
cross_attention_modules = get_cross_attention_modules(unet, CrossAttentionType.TOKENS) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for identifier, module in cross_attention_modules:
module.identifier = identifier
try:
module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
context.get_slicing_strategy(module_identifier))
module.set_slicing_strategy_getter(
lambda module: context.get_slicing_strategy(identifier)
)
except AttributeError as e:
if is_attribute_error_about(e, 'set_attention_slice_wrangler'):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}") # TODO
else:
raise
def remove_attention_function(unet):
# clear wrangler callback
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
cross_attention_modules = get_cross_attention_modules(unet, CrossAttentionType.TOKENS) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for identifier, module in cross_attention_modules:
try:
# clear wrangler callback
module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None)
except AttributeError as e:
if is_attribute_error_about(e, 'set_attention_slice_wrangler'):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}")
else:
raise
def is_attribute_error_about(error: AttributeError, attribute: str):
if hasattr(error, 'name'): # Python 3.10
return error.name == attribute
else: # Python 3.9
return attribute in str(error)
def get_mem_free_total(device):
#only on cuda
if not torch.cuda.is_available():
return None
stats = torch.cuda.memory_stats(device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total

View File

@@ -0,0 +1,95 @@
import math
import PIL
import torch
from torchvision.transforms.functional import resize as tv_resize, InterpolationMode
from ldm.models.diffusion.cross_attention_control import get_cross_attention_modules, CrossAttentionType
class AttentionMapSaver():
def __init__(self, token_ids: range, latents_shape: torch.Size):
self.token_ids = token_ids
self.latents_shape = latents_shape
#self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]])
self.collated_maps = {}
def clear_maps(self):
self.collated_maps = {}
def add_attention_maps(self, maps: torch.Tensor, key: str):
"""
Accumulate the given attention maps and store by summing with existing maps at the passed-in key (if any).
:param maps: Attention maps to store. Expected shape [A, (H*W), N] where A is attention heads count, H and W are the map size (fixed per-key) and N is the number of tokens (typically 77).
:param key: Storage key. If a map already exists for this key it will be summed with the incoming data. In this case the maps sizes (H and W) should match.
:return: None
"""
key_and_size = f'{key}_{maps.shape[1]}'
# extract desired tokens
maps = maps[:, :, self.token_ids]
# merge attention heads to a single map per token
maps = torch.sum(maps, 0)
# store
if key_and_size not in self.collated_maps:
self.collated_maps[key_and_size] = torch.zeros_like(maps, device='cpu')
self.collated_maps[key_and_size] += maps.cpu()
def write_maps_to_disk(self, path: str):
pil_image = self.get_stacked_maps_image()
pil_image.save(path, 'PNG')
def get_stacked_maps_image(self) -> PIL.Image:
"""
Scale all collected attention maps to the same size, blend them together and return as an image.
:return: An image containing a vertical stack of blended attention maps, one for each requested token.
"""
num_tokens = len(self.token_ids)
if num_tokens == 0:
return None
latents_height = self.latents_shape[0]
latents_width = self.latents_shape[1]
merged = None
for key, maps in self.collated_maps.items():
# maps has shape [(H*W), N] for N tokens
# but we want [N, H, W]
this_scale_factor = math.sqrt(maps.shape[0] / (latents_width * latents_height))
this_maps_height = int(float(latents_height) * this_scale_factor)
this_maps_width = int(float(latents_width) * this_scale_factor)
# and we need to do some dimension juggling
maps = torch.reshape(torch.swapdims(maps, 0, 1), [num_tokens, this_maps_height, this_maps_width])
# scale to output size if necessary
if this_scale_factor != 1:
maps = tv_resize(maps, [latents_height, latents_width], InterpolationMode.BICUBIC)
# normalize
maps_min = torch.min(maps)
maps_range = torch.max(maps) - maps_min
#print(f"map {key} size {[this_maps_width, this_maps_height]} range {[maps_min, maps_min + maps_range]}")
maps_normalized = (maps - maps_min) / maps_range
# expand to (-0.1, 1.1) and clamp
maps_normalized_expanded = maps_normalized * 1.1 - 0.05
maps_normalized_expanded_clamped = torch.clamp(maps_normalized_expanded, 0, 1)
# merge together, producing a vertical stack
maps_stacked = torch.reshape(maps_normalized_expanded_clamped, [num_tokens * latents_height, latents_width])
if merged is None:
merged = maps_stacked
else:
# screen blend
merged = 1 - (1 - maps_stacked)*(1 - merged)
if merged is None:
return None
merged_bytes = merged.mul(0xff).byte()
return PIL.Image.fromarray(merged_bytes.numpy(), mode='L')

View File

@@ -4,6 +4,7 @@ import k_diffusion as K
import torch
from torch import nn
from .cross_attention_map_saving import AttentionMapSaver
from .sampler import Sampler
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
@@ -36,6 +37,7 @@ class CFGDenoiser(nn.Module):
self.invokeai_diffuser = InvokeAIDiffuserComponent(model,
model_forward_callback=lambda x, sigma, cond: self.inner_model(x, sigma, cond=cond))
def prepare_to_sample(self, t_enc, **kwargs):
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
@@ -106,12 +108,12 @@ class KSampler(Sampler):
else:
print(f'>> Ksampler using karras noise schedule (steps < {self.karras_max})')
self.sigmas = self.karras_sigmas
# ALERT: We are completely overriding the sample() method in the base class, which
# means that inpainting will not work. To get this to work we need to be able to
# modify the inner loop of k_heun, k_lms, etc, as is done in an ugly way
# in the lstein/k-diffusion branch.
@torch.no_grad()
def decode(
self,
@@ -145,7 +147,7 @@ class KSampler(Sampler):
@torch.no_grad()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
return x0
# Most of these arguments are ignored and are only present for compatibility with
# other samples
@torch.no_grad()
@@ -158,6 +160,7 @@ class KSampler(Sampler):
callback=None,
normals_sequence=None,
img_callback=None,
attention_maps_callback=None,
quantize_x0=False,
eta=0.0,
mask=None,
@@ -171,7 +174,7 @@ class KSampler(Sampler):
log_every_t=100,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
extra_conditioning_info=None,
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None,
threshold = 0,
perlin = 0,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
@@ -204,6 +207,12 @@ class KSampler(Sampler):
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
model_wrap_cfg.prepare_to_sample(S, extra_conditioning_info=extra_conditioning_info)
attention_map_token_ids = range(1, extra_conditioning_info.tokens_count_including_eos_bos - 1)
attention_maps_saver = None if attention_maps_callback is None else AttentionMapSaver(token_ids = attention_map_token_ids, latents_shape=x.shape[-2:])
if attention_maps_callback is not None:
model_wrap_cfg.invokeai_diffuser.setup_attention_map_saving(attention_maps_saver)
extra_args = {
'cond': conditioning,
'uncond': unconditional_conditioning,
@@ -217,6 +226,8 @@ class KSampler(Sampler):
),
None,
)
if attention_maps_callback is not None:
attention_maps_callback(attention_maps_saver)
return sampling_result
# this code will support inpainting if and when ksampler API modified or
@@ -248,7 +259,7 @@ class KSampler(Sampler):
# terrible, confusing names here
steps = self.ddim_num_steps
t_enc = self.t_enc
# sigmas is a full steps in length, but t_enc might
# be less. We start in the middle of the sigma array
# and work our way to the end after t_enc steps.
@@ -280,7 +291,7 @@ class KSampler(Sampler):
return x_T + x
else:
return x
def prepare_to_sample(self,t_enc,**kwargs):
self.t_enc = t_enc
self.model_wrap = None

View File

@@ -5,8 +5,8 @@ from typing import Callable, Optional, Union
import torch
from ldm.models.diffusion.cross_attention_control import Arguments, \
remove_cross_attention_control, setup_cross_attention_control, Context
from ldm.modules.attention import get_mem_free_total
remove_cross_attention_control, setup_cross_attention_control, Context, get_cross_attention_modules, CrossAttentionType
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
class InvokeAIDiffuserComponent:
@@ -21,7 +21,8 @@ class InvokeAIDiffuserComponent:
class ExtraConditioningInfo:
def __init__(self, cross_attention_control_args: Optional[Arguments]):
def __init__(self, tokens_count_including_eos_bos:int, cross_attention_control_args: Optional[Arguments]):
self.tokens_count_including_eos_bos = tokens_count_including_eos_bos
self.cross_attention_control_args = cross_attention_control_args
@property
@@ -52,7 +53,25 @@ class InvokeAIDiffuserComponent:
self.cross_attention_control_context = None
remove_cross_attention_control(self.model)
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:
# sliced tokens attention map saving is not implemented
return
saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for identifier, module in tokens_cross_attention_modules:
key = ('down' if identifier.startswith('down') else
'up' if identifier.startswith('up') else
'mid')
module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key))
def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None)
def do_diffusion_step(self, x: torch.Tensor, sigma: torch.Tensor,
unconditioning: Union[torch.Tensor,dict],

View File

@@ -7,10 +7,9 @@ import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from ldm.models.diffusion.cross_attention_control import InvokeAICrossAttentionMixin
from ldm.modules.diffusionmodules.util import checkpoint
import psutil
def exists(val):
return val is not None
@@ -164,9 +163,10 @@ def get_mem_free_total(device):
return mem_free_total
class CrossAttention(nn.Module):
class CrossAttention(nn.Module, InvokeAICrossAttentionMixin):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
InvokeAICrossAttentionMixin.__init__(self)
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
@@ -182,118 +182,6 @@ class CrossAttention(nn.Module):
nn.Dropout(dropout)
)
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.cached_mem_free_total = None
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
def set_attention_slice_wrangler(self, wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]]):
'''
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
'''
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
self.slicing_strategy_getter = getter
def cache_free_memory_count(self, device):
self.cached_mem_free_total = get_mem_free_total(device)
print("free cuda memory: ", self.cached_mem_free_total)
def clear_cached_free_memory_count(self):
self.cached_mem_free_total = None
def einsum_lowest_level(self, q, k, v, dim, offset, slice_size):
# calculate attention scores
attention_scores = einsum('b i d, b j d -> b i j', q, k)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
return einsum('b i j, b j d -> b i d', attention_slice, v)
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = self.cached_mem_free_total or get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_attention_mem_efficient(self, q, k, v):
if q.device.type == 'cuda':
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def forward(self, x, context=None, mask=None):
h = self.heads
@@ -305,7 +193,11 @@ class CrossAttention(nn.Module):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = self.get_attention_mem_efficient(q, k, v)
# don't apply scale twice
cached_scale = self.scale
self.scale = 1
r = self.get_invokeai_attention_mem_efficient(q, k, v)
self.scale = cached_scale
hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h)
return self.to_out(hidden_states)

View File

@@ -193,7 +193,7 @@ def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.replace(path, new_name)
os.makedirs(path)

View File

@@ -74,8 +74,8 @@
"#@title 3. Install dependencies\n",
"import gc\n",
"\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements.txt\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-lin-win-colab-CUDA.txt\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-base.txt\n",
"!wget https://raw.githubusercontent.com/invoke-ai/InvokeAI/development/environments-and-requirements/requirements-win-colab-cuda.txt\n",
"!pip install colab-xterm\n",
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
"!pip install clean-fid torchtext\n",
@@ -262,17 +262,17 @@
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3.10.4 64-bit",
"display_name": "Python 3.9.12 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.4"
"version": "3.9.12"
},
"vscode": {
"interpreter": {
"hash": "3ad933181bd8a04b432d3370b9dc3b0662ad032c4dfaa4e4f1596c548f763858"
"hash": "4e870c5c5fe42db7e2c5647ae5af656ff3391bf8c2b729cbf7fa0e16ca8cb5af"
}
}
},

152
scripts/configure_invokeai.py Normal file → Executable file
View File

@@ -18,6 +18,7 @@ from tqdm import tqdm
from omegaconf import OmegaConf
from huggingface_hub import HfFolder, hf_hub_url
from pathlib import Path
from typing import Union
from getpass_asterisk import getpass_asterisk
from transformers import CLIPTokenizer, CLIPTextModel
from ldm.invoke.globals import Globals
@@ -39,7 +40,7 @@ Dataset_path = './configs/INITIAL_MODELS.yaml'
Default_config_file = './configs/models.yaml'
SD_Configs = './configs/stable-diffusion'
assert os.path.exists(Dataset_path),"The configs directory cannot be found. Please run this script from within the InvokeAI distribution directory, or from within the invokeai runtime directory."
assert os.path.exists(Dataset_path),"The configs directory cannot be found. Please run this script from within the invokeai runtime directory."
Datasets = OmegaConf.load(Dataset_path)
completer = generic_completer(['yes','no'])
@@ -62,10 +63,10 @@ this program and resume later.\n'''
)
#--------------------------------------------
def postscript():
print(
'''\n** Model Installation Successful **\nYou're all set! You may now launch InvokeAI using one of these two commands:
Web version:
def postscript(errors: None):
if not any(errors):
message='''\n** Model Installation Successful **\nYou're all set! You may now launch InvokeAI using one of these two commands:
Web version:
python scripts/invoke.py --web (connect to http://localhost:9090)
Command-line version:
python scripts/invoke.py
@@ -77,7 +78,14 @@ automated installation script, execute "invoke.sh" (Linux/Mac) or
Have fun!
'''
)
else:
message=f"\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n"
for err in errors:
message += f"\t - {err}\n"
message += "Please check the logs above and correct any issues."
print(message)
#---------------------------------------------
def yes_or_no(prompt:str, default_yes=True):
@@ -108,11 +116,13 @@ completely skip this step.
completer.complete_extensions(None) # turn off path-completion mode
selection = None
while selection is None:
choice = input('Download <r>ecommended models, <c>ustomize the list, or <s>kip this step? [r]: ')
choice = input('Download <r>ecommended models, <a>ll models, <c>ustomized list, or <s>kip this step? [r]: ')
if choice.startswith(('r','R')) or len(choice)==0:
selection = 'recommended'
elif choice.startswith(('c','C')):
selection = 'customized'
elif choice.startswith(('a','A')):
selection = 'all'
elif choice.startswith(('s','S')):
selection = 'skip'
return selection
@@ -127,7 +137,7 @@ def select_datasets(action:str):
if action == 'customized':
print('''
Choose the weight file(s) you wish to download. Before downloading you
Choose the weight file(s) you wish to download. Before downloading you
will be given the option to view and change your selections.
'''
)
@@ -142,7 +152,7 @@ will be given the option to view and change your selections.
if Datasets[ds]['recommended']:
datasets[ds]=counter
counter += 1
print('The following weight files will be downloaded:')
for ds in datasets:
dflt = '*' if dflt is None else ''
@@ -166,11 +176,18 @@ def recommended_datasets()->dict:
if Datasets[ds]['recommended']:
datasets[ds]=True
return datasets
#---------------------------------------------
def all_datasets()->dict:
datasets = dict()
for ds in Datasets.keys():
datasets[ds]=True
return datasets
#-------------------------------Authenticate against Hugging Face
def authenticate():
print('''
To download the Stable Diffusion weight files from the official Hugging Face
To download the Stable Diffusion weight files from the official Hugging Face
repository, you need to read and accept the CreativeML Responsible AI license.
This involves a few easy steps.
@@ -203,23 +220,25 @@ This involves a few easy steps.
access_token = HfFolder.get_token()
if access_token is not None:
print('found')
if access_token is None:
else:
print('not found')
print('''
4. Thank you! The last step is to enter your HuggingFace access token so that
this script is authorized to initiate the download. Go to the access tokens
page of your Hugging Face account and create a token by clicking the
page of your Hugging Face account and create a token by clicking the
"New token" button:
https://huggingface.co/settings/tokens
(You can enter anything you like in the token creation field marked "Name".
(You can enter anything you like in the token creation field marked "Name".
"Role" should be "read").
Now copy the token to your clipboard and paste it here: '''
Now copy the token to your clipboard and paste it at the prompt. Windows
users can paste with right-click or Ctrl-Shift-V.
Token: '''
)
access_token = getpass_asterisk.getpass_asterisk()
HfFolder.save_token(access_token)
return access_token
#---------------------------------------------
@@ -235,7 +254,7 @@ def migrate_models_ckpt():
if rename:
print(f'model.ckpt => {new_name}')
os.replace(os.path.join(model_path,'model.ckpt'),os.path.join(model_path,new_name))
#---------------------------------------------
def download_weight_datasets(models:dict, access_token:str):
migrate_models_ckpt()
@@ -262,9 +281,9 @@ def download_weight_datasets(models:dict, access_token:str):
HfFolder.save_token(access_token)
keys = ', '.join(successful.keys())
print(f'Successfully installed {keys}')
print(f'Successfully installed {keys}')
return successful
#---------------------------------------------
def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_token:str=None)->bool:
model_dest = os.path.join(model_dir, model_name)
@@ -275,7 +294,7 @@ def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_t
header = {"Authorization": f'Bearer {access_token}'} if access_token else {}
open_mode = 'wb'
exist_size = 0
if os.path.exists(model_dest):
exist_size = os.path.getsize(model_dest)
header['Range'] = f'bytes={exist_size}-'
@@ -283,7 +302,7 @@ def hf_download_with_resume(repo_id:str, model_dir:str, model_name:str, access_t
resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get('content-length', 0))
if resp.status_code==416: # "range not satisfiable", which means nothing to return
print(f'* {model_name}: complete file found. Skipping.')
return True
@@ -331,12 +350,12 @@ def download_with_progress_bar(model_url:str, model_dest:str, label:str='the'):
print(f'Error downloading {label} model')
print(traceback.format_exc())
#---------------------------------------------
def update_config_file(successfully_downloaded:dict,opt:dict):
config_file = opt.config_file or Default_config_file
config_file = os.path.normpath(os.path.join(Globals.root,config_file))
yaml = new_config_file_contents(successfully_downloaded,config_file)
try:
@@ -355,8 +374,8 @@ def update_config_file(successfully_downloaded:dict,opt:dict):
print(f'Successfully created new configuration file {config_file}')
#---------------------------------------------
#---------------------------------------------
def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str:
if os.path.exists(config_file):
conf = OmegaConf.load(config_file)
@@ -366,19 +385,19 @@ def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str
# find the VAE file, if there is one
vaes = {}
default_selected = False
for model in successfully_downloaded:
a = Datasets[model]['config'].split('/')
if a[0] != 'VAE':
continue
vae_target = a[1] if len(a)>1 else 'default'
vaes[vae_target] = Datasets[model]['file']
for model in successfully_downloaded:
if Datasets[model]['config'].startswith('VAE'): # skip VAE entries
continue
stanza = conf[model] if model in conf else { }
stanza['description'] = Datasets[model]['description']
stanza['weights'] = os.path.join(Model_dir,Weights_dir,Datasets[model]['file'])
stanza['config'] = os.path.normpath(os.path.join(SD_Configs, Datasets[model]['config']))
@@ -397,7 +416,7 @@ def new_config_file_contents(successfully_downloaded:dict, config_file:str)->str
default_selected = True
conf[model] = stanza
return OmegaConf.to_yaml(conf)
#---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
@@ -467,7 +486,7 @@ def download_clipseg():
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
model_dest = os.path.join(Globals.root,'models/clipseg/clipseg_weights')
weights_zip = 'models/clipseg/weights.zip'
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
if not os.path.exists(f'{model_dest}/rd64-uni-refined.pth'):
@@ -510,22 +529,34 @@ def download_safety_checker():
print('...success',file=sys.stderr)
#-------------------------------------
def download_weights(opt:dict):
def download_weights(opt:dict) -> Union[str, None]:
# Authenticate to Huggingface using environment variables.
# If successful, authentication will persist for either interactive or non-interactive use.
# Default env var expected by HuggingFace is HUGGING_FACE_HUB_TOKEN.
if not (access_token := HfFolder.get_token()):
# If unable to find an existing token or expected environment, try the non-canonical environment variable (widely used in the community and supported as per docs)
if (access_token := os.getenv("HUGGINGFACE_TOKEN")):
# set the environment variable here instead of simply calling huggingface_hub.login(token), to maintain consistent behaviour.
# when calling the .login() method, the token is cached in the user's home directory. When the env var is used, the token is NOT cached.
os.environ['HUGGING_FACE_HUB_TOKEN'] = access_token
if opt.yes_to_all:
models = recommended_datasets()
access_token = HfFolder.get_token()
if len(models)>0 and access_token is not None:
successfully_downloaded = download_weight_datasets(models, access_token)
update_config_file(successfully_downloaded,opt)
return
else:
print('** Cannot download models because no Hugging Face access token could be found. Please re-run without --yes')
return
return "could not download model weights from Huggingface due to missing or invalid access token"
else:
choice = user_wants_to_download_weights()
if choice == 'recommended':
models = recommended_datasets()
elif choice == 'all':
models = all_datasets()
elif choice == 'customized':
models = select_datasets(choice)
if models is None and yes_or_no('Quit?',default_yes=False):
@@ -534,10 +565,13 @@ def download_weights(opt:dict):
return
print('** LICENSE AGREEMENT FOR WEIGHT FILES **')
# We are either already authenticated, or will be asked to provide the token interactively
access_token = authenticate()
print('\n** DOWNLOADING WEIGHTS **')
successfully_downloaded = download_weight_datasets(models, access_token)
update_config_file(successfully_downloaded,opt)
if len(successfully_downloaded) < len(models):
return "some of the model weights downloads were not successful"
#-------------------------------------
def get_root(root:str=None)->str:
@@ -546,22 +580,7 @@ def get_root(root:str=None)->str:
elif os.environ.get('INVOKEAI_ROOT'):
return os.environ.get('INVOKEAI_ROOT')
else:
init_file = os.path.expanduser(Globals.initfile)
if not os.path.exists(init_file):
return None
# if we get here, then we read from initfile
root = None
with open(init_file, 'r') as infile:
lines = infile.readlines()
for l in lines:
if re.search('\s*#',l): # ignore comments
continue
match = re.search('--root\s*=?\s*"?([^"]+)"?',l)
if match:
root = match.groups()[0]
root = root.strip()
return root
return Globals.root
#-------------------------------------
def select_root(root:str, yes_to_all:bool=False):
@@ -571,7 +590,8 @@ def select_root(root:str, yes_to_all:bool=False):
completer.set_default_dir(default)
completer.complete_extensions(())
completer.set_line(default)
return input(f"Select a directory in which to install InvokeAI's models and configuration files [{default}]: ") or default
directory = input(f"Select a directory in which to install InvokeAI's models and configuration files [{default}]: ").strip(' \\')
return directory or default
#-------------------------------------
def select_outputs(root:str,yes_to_all:bool=False):
@@ -581,27 +601,26 @@ def select_outputs(root:str,yes_to_all:bool=False):
completer.set_default_dir(os.path.expanduser('~'))
completer.complete_extensions(())
completer.set_line(default)
return input(f'Select the default directory for image outputs [{default}]: ') or default
directory = input(f'Select the default directory for image outputs [{default}]: ').strip(' \\')
return directory or default
#-------------------------------------
def initialize_rootdir(root:str,yes_to_all:bool=False):
assert os.path.exists('./configs'),'Run this script from within the InvokeAI source code directory, "InvokeAI" or the runtime directory "invokeai".'
print(f'** INITIALIZING INVOKEAI RUNTIME DIRECTORY **')
root_selected = False
while not root_selected:
root = select_root(root,yes_to_all)
outputs = select_outputs(root,yes_to_all)
Globals.root = os.path.abspath(root)
outputs = outputs if os.path.isabs(outputs) else os.path.abspath(os.path.join(Globals.root,outputs))
print(f'\nInvokeAI models and configuration files will be placed into "{root}" and image outputs will be placed into "{outputs}".')
print(f'\nInvokeAI image outputs will be placed into "{outputs}".')
if not yes_to_all:
root_selected = yes_or_no('Accept these locations?')
root_selected = yes_or_no('Accept this location?')
else:
root_selected = True
print(f'\nYou may change the chosen directories at any time by editing the --root and --outdir options in "{Globals.initfile}",')
print(f'\nYou may change the chosen output directory at any time by editing the --outdir options in "{Globals.initfile}",')
print(f'You may also change the runtime directory by setting the environment variable INVOKEAI_ROOT.\n')
enable_safety_checker = True
@@ -615,6 +634,7 @@ def initialize_rootdir(root:str,yes_to_all:bool=False):
print('It can be selectively enabled at run time with --nsfw_checker, and disabled with --no-nsfw_checker.')
print('The following option will set whether the checker is enabled by default. Like other options, you can')
print(f'change this setting later by editing the file {Globals.initfile}.')
print(f'The NSFW checker is a memory hog. If you have less than 6 GB of VRAM answer NO to this option.')
enable_safety_checker = yes_or_no('Enable the NSFW checker by default?',enable_safety_checker)
print('\nThe next choice selects the sampler to use by default. Samplers have different speed/performance')
@@ -643,7 +663,7 @@ def initialize_rootdir(root:str,yes_to_all:bool=False):
shutil.copytree(src,dest,dirs_exist_ok=True)
os.makedirs(outputs, exist_ok=True)
init_file = os.path.expanduser(Globals.initfile)
init_file = os.path.join(Globals.root,Globals.initfile)
print(f'Creating the initialization file at "{init_file}".\n')
with open(init_file,'w') as f:
@@ -652,9 +672,6 @@ def initialize_rootdir(root:str,yes_to_all:bool=False):
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running configure_invokeai.py again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="{Globals.root}"
# the --outdir option controls the default location of image files.
--outdir="{outputs}"
@@ -670,7 +687,7 @@ def initialize_rootdir(root:str,yes_to_all:bool=False):
# -Ak_euler_a -C10.0
#
''')
#-------------------------------------
class ProgressBar():
def __init__(self,model_name='file'):
@@ -721,12 +738,15 @@ def main():
# We check for to see if the runtime directory is correctly initialized.
if Globals.root == '' \
or not os.path.exists(os.path.join(Globals.root,'configs/stable-diffusion/v1-inference.yaml')):
or not os.path.exists(os.path.join(Globals.root,'invokeai.init')):
initialize_rootdir(Globals.root,opt.yes_to_all)
# Optimistically try to download all required assets. If any errors occur, add them and proceed anyway.
errors=set()
if opt.interactive:
print('** DOWNLOADING DIFFUSION WEIGHTS **')
download_weights(opt)
errors.add(download_weights(opt))
print('\n** DOWNLOADING SUPPORT MODELS **')
download_bert()
download_clip()
@@ -735,13 +755,13 @@ def main():
download_codeformer()
download_clipseg()
download_safety_checker()
postscript()
postscript(errors=errors)
except KeyboardInterrupt:
print('\nGoodbye! Come back soon.')
except Exception as e:
print(f'\nA problem occurred during initialization.\nThe error was: "{str(e)}"')
print(traceback.format_exc())
#-------------------------------------
if __name__ == '__main__':
main()

View File

@@ -6,7 +6,7 @@ from setuptools import setup, find_packages
def list_files(directory):
return [os.path.join(directory,x) for x in os.listdir(directory) if os.path.isfile(os.path.join(directory,x))]
VERSION = '2.2.0'
VERSION = '2.2.4'
DESCRIPTION = ('An implementation of Stable Diffusion which provides various new features'
' and options to aid the image generation process')
LONG_DESCRIPTION = ('This version of Stable Diffusion features a slick WebGUI, an'

View File

@@ -1,23 +0,0 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
# make the installer zip for linux and mac
rm -rf invokeAI
mkdir -p invokeAI
cp install.sh invokeAI
cp readme.txt invokeAI
zip -r invokeAI-src-installer-linux.zip invokeAI
zip -r invokeAI-src-installer-mac.zip invokeAI
# make the installer zip for windows
rm -rf invokeAI
mkdir -p invokeAI
cp install.bat invokeAI
cp readme.txt invokeAI
cp WinLongPathsEnabled.reg invokeAI
zip -r invokeAI-src-installer-windows.zip invokeAI
echo "The installer zips are ready to be distributed.."

Some files were not shown because too many files have changed in this diff Show More