Compare commits

...

762 Commits

Author SHA1 Message Date
psychedelicious
7c8891c3bf chore: bump version 2023-07-09 23:01:39 +10:00
blessedcoolant
344d87c9f1 Add Cancel Button button to nodes tab (#3706)
Just a small thing now, as nodes are all still wip, but since
@psychedelicious was nice enough to add the progress image node for me,
what I noticed was missing now is the cancel button on nodes tab
2023-07-09 15:13:19 +12:00
mickr777
5b876bd646 Add Stop button to nodes tab 2023-07-09 11:48:31 +10:00
blessedcoolant
be6f366f6b fix(api): fix for borked windows mimetypes registry (#3705)
It's possible for the Windows mimetypes for js to be changed and cause
content-type errors when running the app.

Explicitly set the mimetypes to rectify this. Note that the root cause
is a misconfiguration on the client - not our end.

See
https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
2023-07-09 13:11:24 +12:00
psychedelicious
4640969037 fix(api): fix for borked windows mimetypes registry
It's possible for the Windows mimetypes for js to be changed and cause content-type errors when running the app.

Explicitly set the mimetypes to rectify this. Note that the root cause is a misconfiguration on the client - not our end.

See https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
2023-07-09 11:05:01 +10:00
psychedelicious
d7218d44d7 feat(ui): add progress image node
it is excluded from graph, so you can add it without affecting generation
2023-07-09 10:51:08 +10:00
psychedelicious
2454b51d51 fix(ui): escape on embedding popup closes it 2023-07-09 10:47:30 +10:00
blessedcoolant
9cee861b4c add load more images to the right arrow (#3694)
@psychedelicious @blessedcoolant Somehow i deleted the branch the other
version of this pull request was on. 🤭

Just an idea, if you think its worth while please make changes ( I did
what I could)
I added a load more to the right arrow to avoid having to open gallery
to load more images,

I am not sure about the icon i used, maybe it should just be the normal
arrow, so you don't even need to show its loading more images.

there is an issue with it not disappearing once all images have been
loaded, (I did play around for a while to try and fix that)
2023-07-09 11:56:55 +12:00
blessedcoolant
df27218f96 Merge branch 'main' into main 2023-07-09 11:56:17 +12:00
blessedcoolant
e6a84c5ae5 fix: Rearrange Model Select to take full width (#3701)
Some users want the model select to take full width coz their model
names might be long. As this is a more frequently used feature,
rearrange it to do that.

Followed by VAE (as it is related to the model) and the Sampler next to
it.
2023-07-09 11:01:26 +12:00
blessedcoolant
5fb24197cd fix: Rearrange Model Select to take full width 2023-07-09 07:23:31 +12:00
Lincoln Stein
f7968ef8ce feat: Upgrade Diffusers to 0.18.1 (#3699) 2023-07-08 12:07:09 -04:00
blessedcoolant
6c17607a2b feat: Upgrade Diffusers to 0.18.1 2023-07-09 03:54:20 +12:00
blessedcoolant
0cceb81ec2 Version of _find_root() that works in conda environment (#3696)
I made a recent change to the function that finds the default root
directory locatoin that broke it when run under Conda (where VIRTUAL_ENV
is not set). This revision fixes the issue.
2023-07-09 02:51:27 +12:00
blessedcoolant
9af61d3ff5 Merge branch 'main' into lstein/find-root-works-under-conda 2023-07-09 02:42:59 +12:00
psychedelicious
3001e4c947 feat(ui): update right arrow gallery load more
- add hotkey support
- add loading state
- only show if there are more images to load
2023-07-08 10:29:31 -04:00
mickr777
2c956806d7 Update NextPrevImageButtons.tsx 2023-07-08 10:29:31 -04:00
psychedelicious
be06d4c0af fix(ui): fix selection on dropdowns
Mantine's multiselect does not let you edit the search box with mouse, paste into it, etc. Normal select is fine.

I can't remember why I made Lora etc multiselects, but everything seems to work with normal selects, so I've change to that.
2023-07-08 10:29:19 -04:00
psychedelicious
81817532f8 fix(ui): fix tab translations
model manager was using the wrong key due to the tabs render func subbing values in. made translation key a prop of a tab item.
2023-07-08 10:29:05 -04:00
Lincoln Stein
f6ecee926f version of _find_root() that works in conda environment 2023-07-08 09:02:17 -04:00
blessedcoolant
0f33a98e95 feat: Add App Version to UI (#3692)
![opera_jpFG2RBO0c](https://github.com/invoke-ai/InvokeAI/assets/54517381/4a3a1da4-efbd-470c-9870-cfeab5fb7580)
2023-07-08 22:16:26 +12:00
blessedcoolant
b27bf7bb0c Merge branch 'main' into add-app-version 2023-07-08 21:58:17 +12:00
psychedelicious
0c528f22a7 fix(ui): improve initial gallery loading logic
- `isLoading` - now `true` *only* on first load
- added `isFetching` - `true` whenever gallery images are fetching
- on first load, show a spinner instead of skeletons. this prevents an awkward flash of skeletons into empty gallery when the gallery doesn't have enough images to fill it.
- removed `imageCategoriesChanged` listener, bc now on app start, both images and assets will be populated. leaving this in caused jank flashes of skeletons when switching gallery tabs when gallery doesn't have images to load
2023-07-08 19:57:36 +10:00
psychedelicious
d418e763ce fix(ui): fix controlnet processing fallback dimensions
Just made it a spinner, getting it to be styled correctly otherwise is a pain
2023-07-08 19:57:36 +10:00
psychedelicious
07ce53678b fix(ui): fix drag preview image dimensions 2023-07-08 19:57:36 +10:00
psychedelicious
173d3e6918 fix(ui): ensure initial gallery fetch happens once, fix skeleton count for initial fetch 2023-07-08 19:57:36 +10:00
psychedelicious
18b6c1a24b feat(ui): fill up gallery on app start
taking the coward's way out on this and just fetching 100 images & 100 assets on app start...

- add `appStarted` action, dispatched once on mount in App.tsx. listener fetches 100 images & 100 assets
- fix bug with selectedBoardId & assets tab
2023-07-08 19:57:36 +10:00
Mary Hipp
cbecf3cb89 handle case where user has no images 2023-07-08 19:57:36 +10:00
Mary Hipp
84645495a9 load images for whichever tab youre on 2023-07-08 19:57:36 +10:00
Mary Hipp
6399055f7f make sure images tab is active if auto-switch to new images is on 2023-07-08 19:57:36 +10:00
psychedelicious
078a829b3a feat(ui): add hover show/hide to appVersion 2023-07-08 19:55:19 +10:00
blessedcoolant
3333805821 feat: Add App Version to UI 2023-07-08 21:31:17 +12:00
blessedcoolant
1cd09a5a53 fix(ui): fix inconsistent shift modifier capture (#3691)
The shift key listener didn't catch pressed when focused in a textarea
or input field, causing jank on slider number inputs.

Add keydown and keyup listeners to all such fields, which ensures that
the `shift` state is always correct.

Also add the action tracking it to `actionsDenylist` to not clutter up
devtools.
2023-07-08 21:13:04 +12:00
psychedelicious
a0ccb4385f fix(ui): fix inconsistent shift modifier capture
The shift key listener didn't catch pressed when focused in a textarea or input field, causing jank on slider number inputs.

Add keydown and keyup listeners to all such fields, which ensures that the `shift` state is always correct.

Also add the action tracking it to `actionsDenylist` to not clutter up devtools.
2023-07-08 18:52:37 +10:00
blessedcoolant
26cea7b13d fix(ui): do not diable show progress toggle while generating (#3690) 2023-07-08 20:25:09 +12:00
blessedcoolant
2c78ac4a13 Merge branch 'main' into fix/ui/fix-progress-toggle 2023-07-08 20:24:23 +12:00
blessedcoolant
018cd00b2f fix(ui): fix readonly inputs (#3689)
There was a props on IAISlider to make the input component readonly - I
didn't know this existed and at some point used a component with that
prop as a template for other sliders, copying the flag over.

It's not actually used anywhere, so I removed the prop entirely,
enabling the number inputs everywhere.
2023-07-08 20:24:01 +12:00
blessedcoolant
e715aa075d Merge branch 'main' into fix/ui/fix-inputs-readonly 2023-07-08 20:23:33 +12:00
blessedcoolant
681470e508 ui: add cpu noise (#3688)
![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/a6a61cd1-5ac8-4a6b-b6bc-7eb31777571a)
2023-07-08 20:23:22 +12:00
psychedelicious
5146e92463 fix(ui): do not diable show progress toggle while generating 2023-07-08 17:23:36 +10:00
psychedelicious
e7370e5ef3 fix(ui): fix readonly inputs
There was a props on IAISlider to make the input component readonly - I didn't know this existed and at some point used a component with that prop as a template for other sliders, copying the flag over.

It's not actually used anywhere, so I removed the prop entirely, enabling the number inputs everywhere.
2023-07-08 17:16:34 +10:00
psychedelicious
a73206c105 feat(ui): add cpu noise to linear graphs 2023-07-08 14:52:19 +10:00
psychedelicious
0138f52220 feat(ui): add ui for cpu noise
not hooked up to graphs
2023-07-08 14:15:13 +10:00
Lincoln Stein
2bc99f5b6c Revert "get uploads working again" 2023-07-08 12:22:10 +10:00
Lincoln Stein
92a83da416 get uploads working again (#3679)
I'm not sure if this was just my local install, but even after a fresh
`yarn install` my upload network request was failing because no file was
passed in. I don't think the `bodySerializer` part is getting run
2023-07-07 21:34:51 -04:00
Lincoln Stein
e1c7012125 Merge branch 'main' into maryhipp/restore-upload-functionality 2023-07-07 21:34:28 -04:00
Lincoln Stein
10d3bccf32 Mac MPS FP16 fixes (#3641)
This PR is to allow FP16 precision to work on Macs with MPS. In
addition, it centralizes the torch fixes/workarounds required for MPS
into a new backend utility `mps_fixes.py`. This is conditionally
imported in `api_app.py`/`cli_app.py`.

Many MANY thanks to @StAlKeR7779 for patiently working to debug and fix
these issues.
2023-07-07 17:43:23 -04:00
Lincoln Stein
fefe56599f fixes ImportError described in #3658. (#3668)
The issue was introduced by a new release of torchmetrics.
2023-07-07 17:23:37 -04:00
Lincoln Stein
235c14ca2c Merge branch 'main' into maryhipp/restore-upload-functionality 2023-07-07 17:17:27 -04:00
Lincoln Stein
6259142078 Merge branch 'main' into patch-1 2023-07-07 17:16:37 -04:00
blessedcoolant
f32a2f135c Merge branch 'release/invokeai-3-0-alpha' of https://github.com/invoke-ai/InvokeAI into release/invokeai-3-0-alpha 2023-07-08 06:30:04 +12:00
blessedcoolant
f4fe878781 cleanup: No longer used. 2023-07-08 06:27:11 +12:00
Eugene Brodsky
97b2ec58e2 Merge branch 'main' into release/invokeai-3-0-alpha 2023-07-07 14:18:12 -04:00
blessedcoolant
3ddbb70bd7 prop to hide toggle for advanced settings (#3681) 2023-07-08 06:13:19 +12:00
Mary Hipp
3dc42869f4 prop to hide toggle for advanced settings 2023-07-07 14:03:37 -04:00
blessedcoolant
bdbdcabcdf add ability to disable lora, ti, dynamic prompts, vae selection (#3677) 2023-07-08 06:00:34 +12:00
Mary Hipp
294336b046 switch wording to embeddings 2023-07-07 13:58:07 -04:00
Mary Hipp
fd51edfc81 remove log 2023-07-07 12:04:41 -04:00
Mary Hipp
fbac11a521 get uploads working again 2023-07-07 12:02:22 -04:00
Mary Hipp
01b27a03a8 Merge branch 'maryhipp/hide-some-things' of https://github.com/invoke-ai/InvokeAI into maryhipp/hide-some-things 2023-07-07 11:45:05 -04:00
Mary Hipp
d9acb0eea6 fix bug 2023-07-07 11:44:58 -04:00
Mary Hipp Rogers
1ed72cdbed Merge branch 'main' into maryhipp/hide-some-things 2023-07-07 11:34:32 -04:00
blessedcoolant
d368a1de0c feat(ui): improve embed button styles (#3676)
![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/33bfc9c1-f554-459c-934b-c02d2817525f)

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7ee2d020-ebea-437c-8b92-f13e4cb148b9)
2023-07-08 03:24:04 +12:00
Mary Hipp
2933d81118 cleanup 2023-07-07 11:16:23 -04:00
Mary Hipp
888c47d37b add ability to disable lora, ti, dynamic prompts, vae selection 2023-07-07 11:13:42 -04:00
Lincoln Stein
8d88ad3b8d restore ability to launch web server with invokeai --web 2023-07-07 10:07:15 -04:00
Lincoln Stein
56f4712814 fix checkpoint VAE handling in migrate script 2023-07-07 09:34:42 -04:00
psychedelicious
78bcaec4da feat(ui): improve embed button styles 2023-07-07 23:14:31 +10:00
psychedelicious
2cbe98b1b1 fix(ui): resolve merge conflicts 2023-07-07 22:50:22 +10:00
psychedelicious
8457fcf7d3 feat(ui): finalize base model compatibility for lora, ti, vae 2023-07-07 22:50:22 +10:00
Mary Hipp
a9a4081f51 add modelSelected middleware to clear submodels on base_model change 2023-07-07 22:50:22 +10:00
Mary Hipp
b9a1aa38e3 disable submodels that have incompatible base models 2023-07-07 22:50:22 +10:00
Mary Hipp
6356dc335f change model store to object, update main model and vae dropdowns 2023-07-07 22:50:22 +10:00
Lincoln Stein
9f58ed35cf improve user migration experience
- No longer fail root directory probing if invokeai.yaml is missing
  (test is now whether a `models/core` directory exists).
- Migrate script does not overwrite previously-installed models.
- Can run migrate script on an existing 2.3 version directory
  with --from and --to pointing to same 2.3 root.
2023-07-07 08:18:46 -04:00
blessedcoolant
909fe047e4 fix: Adjust clip skip layer count based on model (#3675)
Clip Skip breaks when you supply a number greater than the number of
layers for the model type. So capping this out based on the model on the
frontend

- `sd-1` at 12
- `sd-2` at 24
- Will update later to whatever SDXL needs if it is different.

- Also fixes LoRA's breaking with Clip Skip.
2023-07-07 23:46:09 +12:00
psychedelicious
a8fc75b6d0 feat(ui): make clipSkip activeLabel "Clip Skip"
we know its active if it displays
2023-07-07 21:42:16 +10:00
blessedcoolant
74557c8b6e fix: Loras breaking with clip skip 2023-07-07 23:27:21 +12:00
blessedcoolant
53cb200f85 fix: Clamp clipskip value when model changes 2023-07-07 19:29:11 +12:00
blessedcoolant
a4dec53b4d fix: Adjust clip skip layer count based on model 2023-07-07 19:05:10 +12:00
psychedelicious
803e1aaa17 feat(ui): update openapi-fetch; fix upload issue
My PR to fix an issue with the handling of formdata in `openapi-fetch` is released. This means we no longer need to patch the package (no patches at all now!).

This PR bumps its version and adds a transformer to our typegen script to handle typing binary form fields correctly as `Blob`.

Also regens types.
2023-07-07 16:36:42 +10:00
blessedcoolant
7481508282 feat: Add Clip Skip (#3666) 2023-07-07 16:28:17 +12:00
blessedcoolant
7aa918677e Merge branch 'main' into feat/clip_skip 2023-07-07 16:21:53 +12:00
blessedcoolant
c6d6b33e3c feat: Reset clipSkip when advanced options is turned off 2023-07-07 16:21:16 +12:00
Lincoln Stein
54f3686e3b merge with main, fix conflicts 2023-07-06 15:21:45 -04:00
Lincoln Stein
f78f10bef6 Merge branch 'lstein/model-manager-router-api' 2023-07-06 15:13:41 -04:00
Lincoln Stein
e9352227f3 add merge api 2023-07-06 15:12:34 -04:00
Lincoln Stein
80575344fc Merge branch 'main' into patch-1 2023-07-06 15:11:40 -04:00
Lincoln Stein
6cb7df75de Add REACT API routes for model manager (#3639)
This is PR adds the following API methods for managing models:

* list_models (GET)
* update_model (PATCH)
* import_model (POST)
* delete_model (DELETE)
* convert_model (PUT)
* merge_models (PUT)
2023-07-06 15:10:37 -04:00
blessedcoolant
1ac787f3c1 feat: Change Clip Skip to Slider & Add Collapse Active Text 2023-07-07 06:37:07 +12:00
blessedcoolant
bc5371eeee Merge branch 'main' into feat/clip_skip 2023-07-07 06:03:39 +12:00
blessedcoolant
ce7803231b feat: Add Clip Skip To Linear UI 2023-07-07 05:57:39 +12:00
Lincoln Stein
e573a533ae remove redundant import 2023-07-06 13:24:58 -04:00
Lincoln Stein
581be42c75 Merge branch 'main' into lstein/model-manager-router-api 2023-07-06 13:20:36 -04:00
Lincoln Stein
90c66aab3d merge with upstream 2023-07-06 13:17:02 -04:00
Lincoln Stein
3e925fbf34 model merging API ready for testing 2023-07-06 13:15:15 -04:00
Lincoln Stein
ec7c2f07c6 model merge backend, CLI and TUI working 2023-07-06 12:21:42 -04:00
Mary Hipp Rogers
d5f90b1a02 Improved loading for UI (#3667)
* load images on gallery render

* wait for models to be loaded before you can invoke

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-06 14:48:42 +00:00
Sergey Borisov
a9e77675a8 Move clip skip to separate node 2023-07-06 17:39:49 +03:00
Zadagu
94faa5de14 fixes ImportError described in #3658.
The issue was introduced by a new release of torchmetrics.
2023-07-06 16:16:02 +02:00
blessedcoolant
7a0154a7b8 expose max_cache_size to invokeai-configure interface (#3664)
This PR allows the user to set the model manager cache size from within
the `invokeia-configure` TUI.
2023-07-07 01:58:22 +12:00
blessedcoolant
b229fe19aa Merge branch 'main' into lstein/configure-max-cache-size 2023-07-07 01:52:12 +12:00
Sergey Borisov
04b57c408f Add clip skip option to prompt node 2023-07-06 16:09:40 +03:00
blessedcoolant
2595c1d86f LoRA model loading fixes (#3663)
This PR enables model manager importation of diffusers-style .bin LoRAs.
However, since there is no backend support for this type of LoRA yet,
attempts to use them will result in an unimplemented error.

It closes #3636 and #3637
2023-07-07 01:09:13 +12:00
blessedcoolant
c2eb6c33b9 Merge branch 'main' into lstein/more-model-loading-fixes 2023-07-07 01:00:02 +12:00
psychedelicious
94e38e9769 feat(ui): remove delete image button in gallery
it was really easy to accidentally click, just commented out, easy to add back or add a setting for it in the future
2023-07-06 22:35:50 +10:00
Mary Hipp
984121d682 only show delete icon if big enough 2023-07-06 22:35:50 +10:00
blessedcoolant
6f1268e2b1 Merge branch 'main' into lstein/more-model-loading-fixes 2023-07-07 00:32:22 +12:00
blessedcoolant
405054d802 feat: Add Embedding Picker to Linear UI (#3654) 2023-07-07 00:29:19 +12:00
psychedelicious
a901a37433 feat(ui): improve no loaded loras UI 2023-07-06 22:26:54 +10:00
psychedelicious
e09c07a97d fix(ui): fix board auto-add 2023-07-06 22:25:05 +10:00
psychedelicious
87feae959d feat(ui): improve no loaded embeddings UI 2023-07-06 22:24:50 +10:00
psychedelicious
c21245f590 fix(api): make list models params querys, make path /, remove defaults
The list models route should just be the base route path, and should use query parameters as opposed to path parameters (which cannot be optional)

Removed defaults for update model route - for the purposes of the API, we should always be explicit with this
2023-07-06 15:34:50 +10:00
psychedelicious
fbd6b25b4d feat(ui): improve ux on TI autcomplete
- cursor reinserts at the end of the trigger
- `enter` closes the select
- popover styling
2023-07-06 14:56:37 +10:00
psychedelicious
2415dc1235 feat(ui): refactor embedding ui; now is autocomplete 2023-07-06 13:40:13 +10:00
Lincoln Stein
8f5fcb188c Merge branch 'main' into lstein/model-manager-router-api 2023-07-05 23:16:43 -04:00
Lincoln Stein
f7daa6e71d all methods now return OPENAPI_MODEL_CONFIGS; convert uses PUT 2023-07-05 23:13:01 -04:00
Lincoln Stein
3691b55565 fix autoimport crash 2023-07-05 21:53:08 -04:00
Lincoln Stein
1ee41822bc restore .gitignore treatment of frontend/web 2023-07-05 21:30:56 -04:00
Lincoln Stein
fbad839d23 add missing .js files 2023-07-05 21:09:13 -04:00
Lincoln Stein
f610045a14 Merge branch 'main' into mps-fp16-fixes 2023-07-05 21:01:48 -04:00
Lincoln Stein
a7cbcae176 expose max_cache_size to invokeai-configure interface 2023-07-05 20:59:57 -04:00
Lincoln Stein
0a6dccd607 expose max_cache_size to invokeai-configure interface 2023-07-05 20:59:14 -04:00
Lincoln Stein
43c51ff157 Merge branch 'main' into lstein/more-model-loading-fixes 2023-07-05 20:48:15 -04:00
Lincoln Stein
bf25818d76 rebuild front end; bump version 2023-07-05 20:33:28 -04:00
Lincoln Stein
cfa3b2419c partial implementation of merge 2023-07-05 20:25:47 -04:00
Lincoln Stein
d4550b3059 clean up lint errors in lora.py 2023-07-05 19:18:25 -04:00
Lincoln Stein
83d3a043da merge latest changes from main 2023-07-05 19:15:53 -04:00
gogurtenjoyer
169ff6368b Update mps_fixes.py - additional torch op for nodes
This fixes scaling in the nodes UI.
2023-07-05 17:47:23 -04:00
Lincoln Stein
71dad6d404 Merge branch 'main' into ti-ui 2023-07-05 16:57:31 -04:00
Lincoln Stein
c21bd806f0 default LoRA weight to 0.75 2023-07-05 16:54:23 -04:00
Lincoln Stein
685a47cc7d fix crash during lora application 2023-07-05 16:40:47 -04:00
Lincoln Stein
52498cc0b9 Put tokenizer and text encoder in same clip-vit-large-patch14 (#3662)
This PR fixes the migrate script so that it uses the same directory for
both the tokenizer and text encoder CLIP models. This will fix a crash
that occurred during checkpoint->diffusers conversions

This PR also removes the check for an existing models directory in the
target root directory when `invokeai-migrate3` is run.
2023-07-05 16:29:33 -04:00
Lincoln Stein
cb947bcbf0 Merge branch 'main' into lstein/fix-migrate3-textencoder 2023-07-05 16:23:00 -04:00
Lincoln Stein
bbfb5bb1d4 Remove hardcoded cuda device in model manager init (#3624)
There was a line in model_manager.py in which the GPU device was
hardcoded to "cuda". This has now been removed.
2023-07-05 16:22:45 -04:00
Lincoln Stein
f8bbec8572 Recognize and load diffusers-style LoRAs (.bin)
Prevent double-reporting of autoimported models
- closes #3636

Allow autoimport of diffusers-style LoRA models
- closes #3637
2023-07-05 16:21:23 -04:00
Lincoln Stein
863336acbb Recognize and load diffusers-style LoRAs (.bin)
Prevent double-reporting of autoimported models
- closes #3636

Allow autoimport of diffusers-style LoRA models
- closes #3637
2023-07-05 16:19:16 -04:00
Lincoln Stein
90ae8ce26a prevent model install crash "torch needs to be restarted with spawn" 2023-07-05 16:18:20 -04:00
Lincoln Stein
ad5d90aca8 prevent model install crash "torch needs to be restarted with spawn" 2023-07-05 15:38:07 -04:00
Lincoln Stein
5b6dd47b9f add API for model convert 2023-07-05 15:13:21 -04:00
Lincoln Stein
5027d0a603 accept @psychedelicious suggestions above 2023-07-05 14:50:57 -04:00
Lincoln Stein
9f9ce08e44 Merge branch 'main' into lstein/remove-hardcoded-cuda-device 2023-07-05 13:38:33 -04:00
Lincoln Stein
17c5568661 build: remove web ui dist from gitignore (#3650)
The web UI should manage its own .gitignore

I think would explain why certain files were not making it into the pypi
release
2023-07-05 13:36:16 -04:00
Lincoln Stein
94740e440d Merge branch 'main' into build/gitignore 2023-07-05 13:35:54 -04:00
Lincoln Stein
021e1eca8e Merge branch 'main' into mps-fp16-fixes 2023-07-05 13:19:52 -04:00
Lincoln Stein
5fe722900d allow clip-vit-large-patch14 text encoder to coexist with tokenizer in same directory 2023-07-05 13:15:08 -04:00
Lincoln Stein
cf173b522b allow clip-vit-large-patch14 text encoder to coexist with tokenizer in same directory 2023-07-05 13:14:41 -04:00
Mary Hipp Rogers
ea81ce9489 close modal when user clicks cancel (#3656)
* close modal when user clicks cancel

* close modal when delete image context cleared

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-07-05 17:12:27 +00:00
blessedcoolant
8283b80b58 Fix ckpt scanning on conversion (#3653) 2023-07-06 05:09:13 +12:00
blessedcoolant
9e2d63ef97 Merge branch 'main' into fix/ckpt_convert_scan 2023-07-06 05:01:34 +12:00
blessedcoolant
dd946790ec Fix loading diffusers ti (#3661) 2023-07-06 05:01:11 +12:00
Sergey Borisov
0ac9dca926 Fix loading diffusers ti 2023-07-05 19:46:00 +03:00
psychedelicious
acd3b1a512 build: remove web ui dist from gitignore
The web UI should manage its own .gitignore
2023-07-06 00:39:36 +10:00
Lincoln Stein
bd82c4ace0 model installer confirms deletion of models 2023-07-05 09:57:23 -04:00
blessedcoolant
e4d92da3a9 fix: Make space for icons in prompt box 2023-07-06 01:48:50 +12:00
blessedcoolant
9204b72383 feat: Make Embedding Picker a mini toggle 2023-07-06 01:45:00 +12:00
Lincoln Stein
9edf78dd2e merge with main 2023-07-05 09:12:54 -04:00
Lincoln Stein
5d31703224 Merge branch 'release/invokeai-3-0-alpha' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-alpha 2023-07-05 09:05:59 -04:00
Lincoln Stein
6112197edf convert implemented; need router 2023-07-05 09:05:05 -04:00
Lincoln Stein
44d5bef7e4 bump version number 2023-07-05 09:02:35 -04:00
blessedcoolant
a556bf45bb Merge branch 'main' into ti-ui 2023-07-05 23:42:48 +12:00
blessedcoolant
818616a0c5 fix(ui): fix prompt resize & style resizer (#3652) 2023-07-05 23:42:23 +12:00
blessedcoolant
8c9266359d feat: Add Embedding Select To Linear UI 2023-07-05 23:41:15 +12:00
blessedcoolant
3b324a7d0a Merge branch 'main' into fix/ui/fix-prompt-resize 2023-07-05 23:40:47 +12:00
blessedcoolant
c8cb43ff2d Fix clip path in migrate script (#3651)
Update path for clip model according to path used in ckpt conversion and
invokeai-configure
2023-07-05 23:38:45 +12:00
gogurtenjoyer
ba7345deb4 Merge branch 'main' into mps-fp16-fixes 2023-07-05 07:38:41 -04:00
Sergey Borisov
ee042ab76d Fix ckpt scanning on conversion 2023-07-05 14:18:30 +03:00
psychedelicious
596c791844 fix(ui): fix prompt resize & style resizer 2023-07-05 21:02:31 +10:00
blessedcoolant
780e77d2ae Merge branch 'main' into fix/clip_path 2023-07-05 22:45:52 +12:00
Sergey Borisov
e3fc1b3816 Fix clip path in migrate script 2023-07-05 13:43:09 +03:00
Lincoln Stein
9ad9e91a06 Detect invalid model names when migrating 2.3->3.0 (#3623)
A user discovered that 2.3 models whose symbolic names contain the "/"
character are not imported properly by the `migrate-models-3` script.
This fixes the issue by changing "/" to underscore at import time.
2023-07-05 06:35:54 -04:00
Lincoln Stein
307a01d604 when migrating models, changes / to _ in model names to avoid breaking model name keys 2023-07-05 20:27:03 +10:00
psychedelicious
56d4ea3252 fix(api): improve mm routes 2023-07-05 20:08:47 +10:00
psychedelicious
5d4d0e795c fix(mm): fix up mm service types 2023-07-05 20:07:10 +10:00
blessedcoolant
0981a7d049 fix(ui): fix dnd on nodes (#3649)
I had broken this earlier today
2023-07-05 21:09:36 +12:00
psychedelicious
2a7dee17be fix(ui): fix dnd on nodes
I had broken this earlier today
2023-07-05 19:06:40 +10:00
blessedcoolant
6c6d600cea fix(ui): deleting image selects first image (#3648)
@mickr777
2023-07-05 21:00:01 +12:00
blessedcoolant
1c7166d2c6 Merge branch 'main' into fix/ui/delete-image-select 2023-07-05 20:57:34 +12:00
blessedcoolant
07d7959dc0 feat(ui): improve accordion ux (#3647)
- Accordions now may be opened or closed regardless of whether or not
their contents are enabled or active
- Accordions have a short text indicator alerting the user if their
contents are enabled, either a simple `Enabled` or, for accordions like
LoRA or ControlNet, `X Active` if any are active



https://github.com/invoke-ai/InvokeAI/assets/4822129/43db63bd-7ef3-43f2-8dad-59fc7200af2e
2023-07-05 20:57:23 +12:00
psychedelicious
9ebab013c1 fix(ui): deleting image selects first image 2023-07-05 18:21:46 +10:00
psychedelicious
e41e8606b5 feat(ui): improve accordion ux
- Accordions now may be opened or closed regardless of whether or not their contents are enabled or active
- Accordions have a short text indicator alerting the user if their contents are enabled, either a simple `Enabled` or, for accordions like LoRA or ControlNet, `X Active` if any are active
2023-07-05 17:33:03 +10:00
blessedcoolant
6ce867feb4 Fix model detection (#3646) 2023-07-05 19:00:31 +12:00
blessedcoolant
bc8cfc2baa Merge branch 'main' into fix/model_detect 2023-07-05 18:52:11 +12:00
Eugene Brodsky
7170e82f73 expose max_cache_size in config 2023-07-05 02:44:15 -04:00
Sergey Borisov
2beb8f049e Fix model detection 2023-07-05 09:43:46 +03:00
blessedcoolant
66c10cc2f7 fix: Change Lora weight bounds to -1 to 2 (#3645) 2023-07-05 18:23:06 +12:00
blessedcoolant
1fb317243d fix: Change Lora weight bounds to -1 to 2 2023-07-05 18:12:45 +12:00
blessedcoolant
71310a180d feat: Add Lora to Canvas (#3643)
- Add Loras to Canvas
- Revert inference_mode to no_grad coz inference tensors fail with
latent to latent.
2023-07-05 17:15:28 +12:00
blessedcoolant
1a29a3fe39 feat: Add Lora to Canvas 2023-07-05 16:39:28 +12:00
blessedcoolant
639d88afd6 revert: inference_mode to no_grad 2023-07-05 16:39:15 +12:00
psychedelicious
f155887b7d fix(ui): change multi image drop to not have selection as payload
This caused a lot of re-rendering whenever the selection changed, which caused a huge performance hit. It also made changing the current image lag a bit.

Instead of providing an array of image names as a multi-select dnd payload, there is now no multi-select dnd payload at all - instead, the payload types are used by the `imageDropped` listener to pull the selection out of redux.

Now, the only big re-renders are when the selectionCount changes. In the future I'll figure out a good way to do image names as payload without incurring re-renders.
2023-07-05 13:25:07 +10:00
psychedelicious
1358c5eb7d fix(ui): fix selector memoization
Every `GalleryImage` was rerendering any time the app rerendered bc the selector function itself was not memoized. This resulted in the memoization cache inside the selector constantly being reset.

Same for `BatchImage`.

Also updated memoization for a few other selectors.
2023-07-05 13:25:07 +10:00
blessedcoolant
c0501ed5c2 fix: Slow loading of Loras
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-07-05 12:47:34 +10:00
psychedelicious
0f0336b6ef fix(ui): fix incorrect lora id processing 2023-07-05 12:47:34 +10:00
psychedelicious
52a09422c7 feat(ui): create rtk-query hooks for individual model types
Eg `useGetMainModelsQuery()`, `useGetLoRAModelsQuery()` instead of `useListModelsQuery({base_type})`.

Add specific adapters for each model type. Just more organised and easier to consume models now.

Also updated LoRA UI to use the model name.
2023-07-05 12:47:34 +10:00
psychedelicious
c21b56ba31 fix(ui): fix mantine disabled styles 2023-07-05 12:47:34 +10:00
blessedcoolant
bf895221c2 fix: Tab index not being correct
This probably needs to be updated to an object over an array so the index of item in the array doesnt break the rest of it.
2023-07-05 12:47:34 +10:00
psychedelicious
db8862d860 feat(ui): add LoRA ui & update graphs 2023-07-05 12:47:34 +10:00
psychedelicious
d537b9f0cb chore(ui): regen types 2023-07-05 12:47:34 +10:00
psychedelicious
08d428a5e7 feat(nodes): add lora field, update lora loader 2023-07-05 12:47:34 +10:00
gogurtenjoyer
233869b56a Mac MPS FP16 fixes
This PR is to allow FP16 precision to work on Macs with MPS. In addition, it centralizes the torch fixes/workarounds
required for MPS into a new backend utility file `mps_fixes.py`. This is conditionally imported in `api_app.py`/`cli_app.py`.

Many MANY thanks to StAlKeR7779 for patiently working to debug and fix these issues.
2023-07-04 18:10:53 -04:00
Lincoln Stein
5d099f4a49 update_model working 2023-07-04 17:26:57 -04:00
Lincoln Stein
752b4d50cf model_delete method now working 2023-07-04 10:40:32 -04:00
Lincoln Stein
c1c49d9a76 import model returns 404 for invalid path, 409 for duplicate model 2023-07-04 10:08:10 -04:00
blessedcoolant
92b163e95c (wip) Model Manager 3.0 UI (#3586)
...
2023-07-04 17:34:06 +12:00
psychedelicious
af728b4b1d chore(ui): regen types 2023-07-04 15:04:01 +10:00
psychedelicious
099082abc1 feat(ui): model manager tab naming tweaks 2023-07-04 14:52:00 +10:00
Lincoln Stein
96bf92ead4 add the import model router 2023-07-04 14:35:47 +10:00
blessedcoolant
0988725c1b fix: Floating gallery button showing up in Model Manager 2023-07-04 14:35:47 +10:00
blessedcoolant
089d95baeb fix: Change graph id vals to constants 2023-07-04 14:35:47 +10:00
blessedcoolant
511978979e feat: Add Custom VAE Support to Linear UI 2023-07-04 14:35:47 +10:00
blessedcoolant
7e18814dd0 Add standard names for Model Loader Nodes 2023-07-04 14:35:06 +10:00
blessedcoolant
bd5a764988 Remove 'automatic' from VAE Loader in Nodes 2023-07-04 14:35:06 +10:00
Lincoln Stein
a8a2209560 VAE loader is loading proper VAE. Unclear if it is changing the image 2023-07-04 14:35:06 +10:00
Lincoln Stein
fa8a5838d3 add vae lodaer 2023-07-04 14:35:06 +10:00
blessedcoolant
630f3c8b0b fix: Missing VAE Loader stuff 2023-07-04 14:34:41 +10:00
blessedcoolant
6c6299ce49 fix: Style fixes to the MM edit forms 2023-07-04 14:34:41 +10:00
blessedcoolant
6684e00f0a wip: Move Merge Models to new panel & use new model fetch 2023-07-04 14:34:41 +10:00
blessedcoolant
2f8f558df3 wip: Move Add Model from Modal to new Panel 2023-07-04 14:34:41 +10:00
blessedcoolant
de7b059e67 feat: Port Checkpoint Edit to Mantine Form 2023-07-04 14:34:41 +10:00
blessedcoolant
33db4e27a0 feat: Update DiffusersEdit Component to use Mantine Form 2023-07-04 14:34:41 +10:00
blessedcoolant
009c20bfea feat: Add Mantine Form 2023-07-04 14:34:41 +10:00
blessedcoolant
d61b3818fe feat: Add VAE Select to Linea UI Panels (non func) 2023-07-04 14:34:41 +10:00
blessedcoolant
51db4d1269 fix: Minor fixes to the VAESelect components 2023-07-04 14:34:41 +10:00
blessedcoolant
38660a2162 feat: Addvae_model input type front end 2023-07-04 14:34:41 +10:00
blessedcoolant
5ad6b64721 cleanup: merge conflicts 2023-07-04 14:34:22 +10:00
blessedcoolant
0da4f4bb6f fix: Add missing Unet, Clip, VAE Field Template types 2023-07-04 14:34:22 +10:00
blessedcoolant
8d5a953dcb feat: Add VAESelect Component 2023-07-04 14:33:56 +10:00
blessedcoolant
6c62f41f2e chore: Change PipelineModels to MainModels 2023-07-04 14:33:56 +10:00
blessedcoolant
2ad5a4ea46 feat: Initial port of Model Manager to new tab 2023-07-04 14:31:48 +10:00
blessedcoolant
9e35643911 feat: Make new tab for Model Manager 2023-07-04 14:31:24 +10:00
blessedcoolant
0bb668b8a8 feat: hook up model edit forms 2023-07-04 14:29:42 +10:00
blessedcoolant
e73f774920 fix: Restore Model display and select functionality 2023-07-04 14:29:42 +10:00
blessedcoolant
b4b760d9e9 Quash memory leak when compel invocation called (#3633)
This commit prevents each image generation from leaking ~160 MB of VRAM.
Thanks to @damian0815 and @StAlKeR7779 for helping to sort this out.
2023-07-04 06:33:56 +12:00
Lincoln Stein
4d2c7806fc quash memory leak when compel invocation called 2023-07-03 14:12:35 -04:00
Lincoln Stein
3937428563 Merge branch 'release/invokeai-3-0-alpha' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-alpha 2023-07-03 14:11:28 -04:00
Lincoln Stein
fc419546bc Merge branch 'main' into lstein/remove-hardcoded-cuda-device 2023-07-03 14:10:47 -04:00
Lincoln Stein
252c790969 Add runtime root path to relative vaes and other submodels (#3631)
This PR fixes a crash that would occur when VAEs and other submodels
have a relative path in the config file.
2023-07-03 14:10:33 -04:00
Lincoln Stein
cfd09214d3 Merge branch 'main' into lstein/fix-vae-conversion-crash 2023-07-03 14:03:13 -04:00
Lincoln Stein
b128ba81db Merge branch 'main' into lstein/remove-hardcoded-cuda-device 2023-07-03 13:58:14 -04:00
Lincoln Stein
78857bf5ad Make unit tests work again (#3575)
This PR is for adjusting the unit tests in the `tests` directory so that
they no longer throw errors.

I've removed two tests that were obsoleted by the shift to latent nodes,
but `test_graph_execution_state.py` and `test_invoker.py` are throwing
this validation error:

```
TypeError: InvocationServices.__init__() missing 2 required positional arguments: 'boards' and 'board_images'
```
2023-07-03 12:53:04 -04:00
Lincoln Stein
9c83a4eada Merge branch 'main' into dev/fix-unit-tests 2023-07-03 12:44:02 -04:00
Lincoln Stein
c314b17f5c Add missing k-* legacy sampler names to init file migrate list (#3625)
The `invokeai-configure` script migrates the old invokeai.init file to
the new invokeai.yaml format. However, the parser for the invokeai.init
file was missing the names of the k* samplers and was giving a parser
error on any invokeai.init file that referred to one of these samplers.
This PR fixes the problem.

Ironically, there is no longer the concept of the preferred scheduler in
3.0, and so these sampler names are simply ignored and not written into
`invokeai.yaml`
2023-07-03 12:41:33 -04:00
Lincoln Stein
27088610ed Merge branch 'main' into dev/fix-unit-tests 2023-07-03 12:38:42 -04:00
Lincoln Stein
ebcbfc8a12 Merge branch 'main' into lstein/recognize-legacy-sampler-names 2023-07-03 12:36:00 -04:00
Lincoln Stein
d6de11bd56 resolve merge conflict 2023-07-03 12:19:11 -04:00
Lincoln Stein
ed86d0b708 Union[foo, None]=>Optional[foo] 2023-07-03 12:17:45 -04:00
Lincoln Stein
fb2b2a371d Merge branch 'lstein/fix-vae-conversion-crash' into release/invokeai-3-0-alpha 2023-07-03 11:21:16 -04:00
Lincoln Stein
10d513c5f7 add runtime root path to relative vaes and other submodels 2023-07-03 11:19:33 -04:00
Lincoln Stein
877b187a1b Merge branch 'lstein/restore-3.9-compatibility' into release/invokeai-3-0-alpha 2023-07-03 11:01:34 -04:00
Lincoln Stein
ac9ec4e75a restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:57:40 -04:00
Lincoln Stein
2465c7987b Revert "restore 3.9 compatibility by replacing | with Union[]"
This reverts commit 76bafeb99e.
2023-07-03 10:56:41 -04:00
Lincoln Stein
73a27918c6 Merge branch 'main' of github.com:invoke-ai/InvokeAI into main 2023-07-03 10:55:12 -04:00
Lincoln Stein
76bafeb99e restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:55:04 -04:00
psychedelicious
c33f0ae055 feat(ui): hide batch ui pending logic implementation 2023-07-04 00:26:58 +10:00
psychedelicious
90aa97edd4 feat(ui): add multi-select and batch capabilities
This introduces the core functionality for batch operations on images and multiple selection in the gallery/batch manager.

A number of other substantial changes are included:
- `imagesSlice` is consolidated into `gallerySlice`, allowing for simpler selection of filtered images
- `batchSlice` is added to manage the batch
- The wonky context pattern for image deletion has been changed, much simpler now using a `imageDeletionSlice` and redux listeners; this needs to be implemented still for the other image modals
- Minimum gallery size in px implemented as a hook
- Many style fixes & several bug fixes

TODO:
- The UI and UX need to be figured out, especially for controlnet
- Batch processing is not hooked up; generation does not do anything with batch
- Routes to support batch image operations, specifically delete and add/remove to/from boards
2023-07-04 00:18:27 +10:00
psychedelicious
fa169b5517 feat(nodes): add ImageCollection node in prep for batch processing 2023-07-04 00:18:27 +10:00
Lincoln Stein
aae60b6142 quash memory leak when compel invocation called 2023-07-03 10:08:10 -04:00
Lincoln Stein
b79740d61d back out torch.no_grad() 2023-07-02 23:03:24 -04:00
Lincoln Stein
8c93c8dda8 add web dist files to enable network pip install 2023-07-02 22:02:53 -04:00
Lincoln Stein
176504a475 add .js, .woff2 and .css files to web/dist/assets 2023-07-02 21:50:29 -04:00
Lincoln Stein
fa8ccd2a94 add no_grad() to compel node invoke() method 2023-07-02 18:20:16 -04:00
Lincoln Stein
6935858ef3 add debugging messages to aid in memory leak tracking 2023-07-02 13:34:53 -04:00
Lincoln Stein
2b67509061 bump version; rebuild frontend 2023-07-02 13:02:31 -04:00
Lincoln Stein
fa1f9939cc adjust invokeai-configure TUI vertical height to show NEXT button on Mac 2023-07-02 09:44:16 -04:00
Lincoln Stein
2d314d2b3d another fix to repo_id loading 2023-07-02 09:18:11 -04:00
blessedcoolant
42f537f655 Fix Invoke Progress Bar (#3626)
@blessedcoolant it looks like with the new theme buttons not being
transparent the progress bar was completely hidden, I moved to be on
top, however it was not transparent so it hid the invoke text, after
trying for a while couldn't get it to be transparent, so I just made the
height 15%,
2023-07-02 19:12:23 +12:00
blessedcoolant
f399b36ae6 fix: Progress Bar being broken 2023-07-02 18:49:24 +12:00
mickr777
a6334750cb Update InvokeButton.tsx 2023-07-02 15:07:01 +10:00
mickr777
45a551125d Update NodeInvokeButton.tsx 2023-07-02 15:06:32 +10:00
mickr777
72d64513d0 add borderBottomRadius: '5px', 2023-07-02 15:05:32 +10:00
psychedelicious
0e50005643 fix(ui): show skeletons only for currently loading images 2023-07-02 11:55:51 +10:00
Mary Hipp
19c632e793 remove width 2023-07-02 11:55:51 +10:00
Mary Hipp
85a4d37883 remove long loading state, introduce loading to gallery and model list 2023-07-02 11:55:51 +10:00
Lincoln Stein
b2775d6b4c Merge branch 'lstein/recognize-legacy-sampler-names' into release/invokeai-3-0-alpha 2023-07-01 21:45:39 -04:00
Lincoln Stein
06694d465d add missing k-* legacy sampler names to init file migrate list 2023-07-01 21:45:14 -04:00
Lincoln Stein
3c2ce51f10 Merge branch 'lstein/remove-hardcoded-cuda-device' into release/invokeai-3-0-alpha 2023-07-01 21:15:58 -04:00
Lincoln Stein
0f02915012 remove hardcoded cuda device in model manager init 2023-07-01 21:15:42 -04:00
Lincoln Stein
0016236889 Merge branch 'lstein/fix-imported-model-names' into release/invokeai-3-0-alpha 2023-07-01 21:09:29 -04:00
Lincoln Stein
f4bd5bb986 when migrating models, changes / to _ in model names to avoid breaking model name keys 2023-07-01 21:08:59 -04:00
Lincoln Stein
1cf61feead print GPU device at startup 2023-07-01 20:47:11 -04:00
Lincoln Stein
5de820f2dc fix updater and model installer 2023-07-01 20:13:28 -04:00
Lincoln Stein
f1fb1c9a60 Merge branch 'lstein/fix-update-script' into release/invokeai-3-0-alpha 2023-07-01 20:13:04 -04:00
Lincoln Stein
9724143ab7 rolled back changes to package.json 2023-07-01 20:05:00 -04:00
Lincoln Stein
ecc5b6eec5 change single to double quotes so that pip install works on windows 2023-07-01 19:56:18 -04:00
Lincoln Stein
4ac9be115e rebuild frontend 2023-07-01 14:48:23 -04:00
Lincoln Stein
7d64a5849f merge draft docs 2023-07-01 14:45:00 -04:00
Lincoln Stein
054b5f484a resolve conflicts with main 2023-07-01 14:42:48 -04:00
Lincoln Stein
3458f45a2b Merge branch 'lstein/improve-model-install-stability' into release/invokeai-3-0-alpha 2023-07-01 14:35:35 -04:00
Lincoln Stein
6c80620c25 Merge branch 'main' into release/invokeai-3-0-alpha 2023-07-01 14:34:38 -04:00
Lincoln Stein
f1928d2588 prevent crashes on malformed models 2023-07-01 14:32:58 -04:00
blessedcoolant
96212bb35f feat(ui): gallery minSize tweak (#3618)
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width
and this was sometimes happening during window resize)
2023-07-01 22:37:08 +12:00
psychedelicious
f46c50f69a feat(ui): gallery minSize tweak
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width and this was sometimes happening during window resize)
2023-07-01 20:27:52 +10:00
psychedelicious
3aa6a7e7df feat(ui): minimum gallery size
Add `useMinimumPanelSize()` hook to provide minimum resizable panel sizes (in pixels).

The library we are using for the gallery panel uses percentages only. To provide a minimum size in pixels, we need to do some math to calculate the percentage of window size that corresponds to the desired min width in pixels.
2023-07-01 18:29:55 +10:00
blessedcoolant
d9ac36df1d fix incorrect VAE config file path during conversion of ckpts (#3616)
This fixes a "config file not found" error when loading VAE checkpoints.
2023-07-01 11:26:36 +12:00
blessedcoolant
c74bb5cdbf Merge branch 'main' into lstein/fix-vae-convert 2023-07-01 11:18:21 +12:00
Lincoln Stein
1347fc2f00 fix incorrect VAE config file path during conversion of ckpts 2023-06-30 19:14:06 -04:00
Mary Hipp Rogers
d0834cfa19 export new ColorModeButton component (#3614)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-06-30 09:07:36 -04:00
blessedcoolant
2b6c9c93e0 fix(ui): fix canvas crash by rolling back swagger-parser (#3611)
The node polyfills needed to run the `swagger-parser` library (used to
dereference the OpenAPI schema) cause the canvas tab to immediately
crash when the package build is used in another react application.

I'm sure this is fixable but it's not clear what is causing the issue
and troubleshooting is very time consuming.

Selectively rolling back the implementation of `swagger-parser`.
2023-06-30 23:34:06 +12:00
blessedcoolant
9a123ed662 Merge branch 'main' into fix/ui/fix-canvas-crash 2023-06-30 23:31:42 +12:00
blessedcoolant
a9bc45b8af feat(ui): tweak light mode colors, buttons pop (#3612)
the light mode button colors were way off, much improved
2023-06-30 23:31:30 +12:00
psychedelicious
d6cfbe982f feat(ui): tweak light mode colors, buttons pop 2023-06-30 13:15:58 +10:00
psychedelicious
30464f4fe1 fix(ui): fix canvas crash by rolling back swagger-parser
The node polyfills needed to run the `swagger-parser` library (used to dereference the OpenAPI schema) cause the canvas tab to immediately crash when the package build is used in another react application.

I'm sure this is fixable but it's not clear what is causing the issue and troubleshooting is very time consuming.

Selectively rolling back the implementation of `swagger-parser`.
2023-06-30 12:24:28 +10:00
blessedcoolant
877483093a ui: support dark mode (#3592)
[feat(ui): remove themes, add hand-crafted dark and light
modes](032c7e68d0)

[032c7e6](032c7e68d0)

Themes are very fun but due to the differences in perceived saturation
and lightness across the
the color spectrum, it's impossible to have have multiple themes that
look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK
themes (well, 3, because the
light theme was pretty bad).

I've removed the themes and added color mode support. There is now a
single dark and light mode,
each with their own color palette and the classic grey / purple / yellow
invoke colors that
@blessedcoolant first designed.

I've re-styled almost everything except the model manager and lightbox,
which I keep forgetting
to work on.

One new concept is the Chakra `layerStyle`. This lets us define "layers"
- think body, first layer,
second layer, etc - that can be applied on various components. By
defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
2023-06-30 06:13:43 +12:00
blessedcoolant
295444c730 cleanup: Minor theme related cleanup 2023-06-30 06:09:14 +12:00
blessedcoolant
fb015332f2 feat: Add tooltips to color mode switcher 2023-06-30 06:05:08 +12:00
blessedcoolant
6e917dcbb0 chore: More colors to own files + small color tweaks 2023-06-30 06:04:42 +12:00
psychedelicious
032c7e68d0 feat(ui): remove themes, add hand-crafted dark and light modes
Themes are very fun but due to the differences in perceived saturation and lightness across the
the color spectrum, it's impossible to have have multiple themes that look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK themes (well, 3, because the
light theme was pretty bad).

I've removed the themes and added color mode support. There is now a single dark and light mode,
each with their own color palette and the classic grey / purple / yellow invoke colors that
@blessedcoolant first designed.

I've re-styled almost everything except the model manager and lightbox, which I keep forgetting
to work on.

One new concept is the Chakra `layerStyle`. This lets us define "layers" - think body, first layer,
second layer, etc - that can be applied on various components. By defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
2023-06-30 03:24:36 +10:00
psychedelicious
c00aea7a6c tests(nodes): fix nodes tests 2023-06-29 23:11:48 +10:00
Lincoln Stein
28d78a8fb4 Add image board support to invokeai-node-cli (#3594)
This PR corrects a crash during startup of `invokeai-node-cli` due to
failure to initialize the image board service.
2023-06-29 08:20:07 -04:00
Lincoln Stein
2c5b050d82 add image board support to invokeai-node-cli 2023-06-29 22:12:34 +10:00
Mary Hipp
723d68e496 add image usage for board images and listener to handle actual deletion 2023-06-29 21:14:53 +10:00
Mary Hipp
ba67e57a7e (wip) delete images along with board 2023-06-29 21:14:53 +10:00
maryhipp
45935caf1d fix query 2023-06-29 21:14:53 +10:00
Mary Hipp
73f2092ec5 (api) add option to board delete route and logic to services 2023-06-29 21:14:53 +10:00
blessedcoolant
8297b7e1ae Fix duplicate model key addition when root directory is a relative path (#3607)
This fixes model directory scanning so that it works properly when the
root is a relative path (e.g. ".").
2023-06-29 18:01:22 +12:00
blessedcoolant
5be1e71d1b Merge branch 'main' into lstein/fix-model-scan-on-rel-root 2023-06-29 17:54:12 +12:00
blessedcoolant
e65e635944 Fix Typo in migrate_to_3.py (#3610)
this caused the vae in the models.yaml to point to the wrong folder
2023-06-29 17:53:50 +12:00
mickr777
30a917f70c Fix Typo in migrate_to_3.py 2023-06-29 14:45:55 +10:00
psychedelicious
4308d593c3 fix(ui): improve IDE TS performance by not resolving JSON
The TS Language Server slows down immensely with our translation JSON, which is used to provide kinda-type-safe translation keys. I say "kinda", because you don't get autocomplete - you only get red squigglies when the key is incorrect.

To improve the performance, we can opt out of this process entirely, at the cost of no red squigglies for translation keys. Hopefully we can resolve this in the future.

It's not clear why this became an issue only recently (like past couple weeks). We've tried rolling back the app dependencies, VSCode extensions, VSCode itself, and the TS version to before the time when the issue started, but nothing seems to improve the performance.

1. Disable `resolveJsonModule` in `tsconfig.json`
2. Ignore TS in `i18n.ts` when importing the JSON
3. Comment out the custom types in `i18.d.ts` entirely

It's possible that only `3` is needed to fix the issue.

I've tested building the app and running the build - it works fine, and translation works fine.
2023-06-28 23:55:44 -04:00
Brandon Rising
8f6b3660c5 Set use-credentials on commercial deployment if authToken is set on canvas image calls, comment out the UpdateImageUrls on connect listener 2023-06-29 13:55:03 +10:00
Lincoln Stein
fe5e0b103f update README; chnage default root directory to invokeai-3 2023-06-28 17:47:04 -04:00
Lincoln Stein
218eb8522f tweak launcher option wording 2023-06-28 17:10:07 -04:00
Lincoln Stein
1e97ba3628 merge with fix needed to run installer 2023-06-28 17:04:44 -04:00
Lincoln Stein
ace4f6d586 fix duplicate model key addition when root directory is a relative path 2023-06-28 17:02:03 -04:00
Lincoln Stein
261ca823c0 bump version number 2023-06-28 17:00:38 -04:00
Lincoln Stein
8a90e51408 Apply lora by model patching (#3583)
Rewrite lora to be applied by model patching as it gives us benefits:
1) On model execution calculates result only on model weight, while with
hooks we need to calculate on model and each lora
2) As lora now patched in model weights, there no need to store lora in
vram

Results:
Speed:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~4.92 it/s | ~4.92 it/s |
| 1 | ~3.51 it/s | ~4.89 it/s |
| 2 | ~2.76 it/s | ~4.92 it/s |

VRAM:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~3.6 gb | ~3.6 gb |
| 1 | ~4.0 gb | ~3.6 gb |
| 2 | ~4.4 gb | ~3.7 gb |

As based on #3547 wait to merge.
2023-06-28 15:48:57 -04:00
StAlKeR7779
ac46b129bf Merge branch 'main' into feat/lora_model_patch 2023-06-28 22:43:58 +03:00
Lincoln Stein
ff2ae683d1 Update 060_INSTALL_PATCHMATCH.md (#3591)
installing the package 'blas' is needed in Archlinux, otherwise
patchmatch fails initializing with a "libblas.so.3 missing" error.
2023-06-28 15:40:45 -04:00
Lincoln Stein
2714138af2 Merge branch 'main' into patch-1 2023-06-28 15:40:22 -04:00
Lincoln Stein
2d85f9a123 Configuration and model installer for new model layout (#3547)
# Restore invokeai-configure and invokeai-model-install

This PR updates invokeai-configure and invokeai-model-install to work
with the new model manager file layout. It addresses a naming issue for
`ModelType.Main` (was `ModelType.Pipeline`) requested by
@blessedcoolant, and adds back the feature that allows users to dump
models into an `autoimport` directory for discovery at startup time.
2023-06-28 15:31:46 -04:00
Lincoln Stein
79fc708580 warn but do not crash when model scan finds random cruft in models directory 2023-06-28 15:26:42 -04:00
Lincoln Stein
72209d0cc3 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-28 14:49:37 -04:00
blessedcoolant
fffeb6f7f5 nodes: default to CPU noise (#3598)
this provides reproducible results across platforms.
we can expose this in the app.
2023-06-28 18:24:47 +12:00
blessedcoolant
75614bbba3 Merge branch 'main' into feat/nodes/cpu-noise 2023-06-28 18:22:08 +12:00
blessedcoolant
201b8430e4 Feat/controlnet extras (#3596)
Trying to get a few ControlNet extras in before 3.0 release:

- SegmentAnything ControlNet preprocessor node
- LeResDepth ControlNet preprocessor node (but commented out till
controlnet_aux v0.0.6 is released & required by InvokeAI)
- TileResampler ControlNet preprocessor node (should be equivalent to
Mikubill/sd-webui-controlnet extension tile_resampler)
- fix for Midas ControlNet preprocessor error with images that have
alpha channel

Example usage of SegmentAnything preprocessor node:
![Screenshot from 2023-06-26
16-53-44](https://github.com/invoke-ai/InvokeAI/assets/303100/c6278f9a-5f6b-44bd-98b1-fcaf77251a76)
2023-06-28 17:56:24 +12:00
blessedcoolant
32883adf6e Merge branch 'main' into feat/controlnet_extras 2023-06-28 17:36:21 +12:00
blessedcoolant
00c78b1cbc feat(ui): use max prompts for combinatorial, iterations for non-combi… (#3600)
…natorial
2023-06-28 17:35:45 +12:00
blessedcoolant
1ea3160594 Merge branch 'main' into feat/ui/dynamic-prompts-ux 2023-06-28 17:34:36 +12:00
Kent Keirsey
fc322aa9f7 Update controlnet-aux to 0.0.6 and add LeReS 2023-06-27 23:45:47 -04:00
Lincoln Stein
e12dbef18f fix(nodes): use context for logger in param_easing (#3529) 2023-06-27 23:36:01 -04:00
psychedelicious
73f63853ba fix(nodes): use context for logger in param_easing 2023-06-27 23:30:10 -04:00
Lincoln Stein
e8ed0fad6c autoimport from embedding/controlnet/lora folders designated in startup file 2023-06-27 12:30:53 -04:00
psychedelicious
1f3e5582f4 feat(ui): add type extraction helpers 2023-06-28 01:17:34 +10:00
psychedelicious
642db657c2 feat(ui): use max prompts for combinatorial, iterations for non-combinatorial 2023-06-27 20:29:41 +10:00
psychedelicious
246298d1d6 chore(ui): regen types 2023-06-27 13:57:41 +10:00
psychedelicious
2e14528e4c feat(nodes): default to CPU noise 2023-06-27 13:57:31 +10:00
Lincoln Stein
f15d28d141 improved wording of v2 selection prompt 2023-06-26 20:30:08 -04:00
user1
862bfa2c36 Merge branch 'main' of github.com:invoke-ai/InvokeAI into feat/controlnet_extras 2023-06-26 16:39:31 -07:00
Lincoln Stein
044fe6bb20 remove dangling debug statement 2023-06-26 17:48:06 -04:00
Lincoln Stein
8c74f49a18 Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-26 16:31:00 -04:00
Lincoln Stein
823e098b7c prompt user for prediction type when autoimporting a v2 model without .yaml file
don't ask user for prediction type of a config.yaml provided
2023-06-26 16:30:34 -04:00
Eugene Brodsky
b7e9d09537 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 16:22:23 -04:00
Lincoln Stein
3c30368c62 Configure and model install TUI tweaks (#3519)
The installer TUI requires a minimum window width and height to provide
a satisfactory user experience. If, after trying and exhausting all
means of enlarging the window (on Linux, Mac and Windows) the window is
still too small, this PR generates a message telling the user to enlarge
the window and pausing until they do so. If the user fails to enlarge
the window the program will proceed, and either issue an error message
that it can't continue (on Windows), or show a clipped display that the
user can remedy by enlarging the window.
2023-06-26 16:08:56 -04:00
Lincoln Stein
ea15d037f9 Merge branch 'main' into lstein/tweak-installer-ui 2023-06-26 15:05:16 -04:00
Lincoln Stein
f67dec7f0c Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 15:03:22 -04:00
user1
10d2d85c83 Started to add ControlNet resize_crop and resize_fill options, but commented out, not ready to deploy yet. 2023-06-26 12:03:05 -07:00
Lincoln Stein
4208766e19 Merge branch 'main' into patch-1 2023-06-26 15:00:50 -04:00
Lincoln Stein
bf1f2eb128 Bypass failing tests (#3593)
"Fixes" the test suite generally so it doesn't fail CI, but some tests
needed to be skipped/xfailed due to recent refactor.

- ignore three test suites that broke following the model manager
refactor
- move `InvocationServices` fixture to `conftest.py`
- add `boards` items to the `InvocationServices`  fixture

This PR makes the unit tests work, but end-to-end tests are temporarily
commented out due to `invokeai-configure` being broken in `main` -
pending #3547

Looks like a lot of the tests need to be rewritten as they reference
`TextToImageInvocation` / `ImageToImageInvocation`
2023-06-26 14:41:56 -04:00
Lincoln Stein
16829682c8 Merge branch 'main' into ebr/make-tests-pass 2023-06-26 14:27:31 -04:00
Lincoln Stein
011adfc958 merge with main 2023-06-26 13:53:59 -04:00
Lincoln Stein
befd95eb19 rename root_dir to root_path attributes to emphasize return of a Path 2023-06-26 13:52:25 -04:00
Lincoln Stein
a2ddb3823b fix add_model() logic 2023-06-26 13:33:38 -04:00
Eugene Brodsky
cc400c9fa5 (ci) temporarily comment out end-to-end tests 2023-06-26 13:08:43 -04:00
Eugene Brodsky
4eb7a5fc60 (ci) clean up pip tests 2023-06-26 13:08:43 -04:00
Eugene Brodsky
587203d589 (tests) make fixture reusable; support boards
fixes the test suite generally, but some tests needed to be
skipped/xfailed due to recent refactor

- ignore three test suites that broke following the model manager
  refactor
- move InvocationServices fixture to conftest.py
- add `boards` InvocationServices to the fixture
2023-06-26 13:08:34 -04:00
sammyf
e3f136cdda Update 060_INSTALL_PATCHMATCH.md
installing the packaged 'blas' is needed in Archlinux, otherwise patchmatch fails initializing with a "libblas.so.3 missing" error.
2023-06-26 14:23:10 +02:00
user1
af566adf56 For MediapipeFace ControlNet preprocessor, if input image is RGBA format then convert to RGB (otherwise MediapipeFace image processing throws an error) 2023-06-26 04:29:43 -07:00
user1
873c18bc4b Added TileResampler ControlNet preprocessor node.
Also fixes to SegmentAnything ControlNet preprocessor node.
2023-06-26 04:27:26 -07:00
blessedcoolant
d905d0e42a feat(ui): only show canvas image fallback on loading error (#3589) 2023-06-26 21:40:10 +12:00
psychedelicious
6ccf62a863 feat(ui): only show canvas image fallback on loading error 2023-06-26 19:20:05 +10:00
psychedelicious
6390af229d feat(ui): add dynamic prompts to t2i tab
- add param accordion for dynamic prompts
- update graphs
2023-06-26 19:15:54 +10:00
Eugene Brodsky
47e651225d query for 'main' model type when populating UI lists
to support renaming of 'pipeline' models to 'main'
2023-06-26 01:39:46 -04:00
blessedcoolant
9cfac4175f feat(ui): improved node parsing (#3584)
- use `swagger-parser` to dereference openapi schema
- tidy vite plugins
- use mantine select for node add menu
2023-06-26 17:38:23 +12:00
blessedcoolant
3a19be1606 fix: Add missing IAIMantineSelect disabled styles 2023-06-26 17:37:47 +12:00
blessedcoolant
b51ab056f2 Merge branch 'main' into feat/ui/update-node-parsing 2023-06-26 17:32:44 +12:00
blessedcoolant
e206fad22a fix(ui): fix controlnet image size (#3585) 2023-06-26 17:32:07 +12:00
Eugene Brodsky
7b97639961 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 01:24:30 -04:00
psychedelicious
60780e990d fix(ui): fix controlnet image size 2023-06-26 12:03:11 +10:00
psychedelicious
8d43cf92f6 feat(ui): update action santizer for schema actions 2023-06-26 12:00:38 +10:00
psychedelicious
862bf7546c feat(ui): improved node parsing
- use `swagger-parser` to dereference openapi schema
- tidy vite plugins
- use mantine select for node add menu
2023-06-26 11:53:54 +10:00
Sergey Borisov
91c3a58fb6 Fix lycoris layers init 2023-06-26 04:33:37 +03:00
Sergey Borisov
5cebf67ee4 Apply lora by patching lora instead of hooks 2023-06-26 03:57:33 +03:00
Sergey Borisov
1ba94a92b3 Fixes 2023-06-26 03:54:42 +03:00
Sergey Borisov
23c22ac933 Refactor logic/small fixes 2023-06-26 03:07:54 +03:00
Lincoln Stein
160b5d7992 add support for an autoimport models directory scanned at startup time 2023-06-25 18:50:15 -04:00
user1
10e8389fa4 Commenting out LeReS ControlNet image preprocessor until release of controlnet_aux v0.0.6 (supported on controlnet_aux current main, but not on latest release v0.0.5) 2023-06-25 14:25:14 -07:00
user1
45aa338a98 Changed pyproject.toml to require controlnet_aux >= 0.0.5 (to enable use of SAM ControlNet preprocessor) 2023-06-25 14:22:34 -07:00
user1
414a04774c Added LeReS ControlNet image preprocessor. 2023-06-25 14:19:55 -07:00
Lincoln Stein
c91d1eacba Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-25 16:04:48 -04:00
Lincoln Stein
60b37b7ff4 fix model manager documentation 2023-06-25 16:04:43 -04:00
user1
b872e7a5e0 Simplifying ControlNet SAM preprocessor segmentation color mapping. 2023-06-25 12:54:48 -07:00
user1
de4064bdac Fixed problem with with non-reproducible results from ControlNet SegmentAnything preprocessor. Cause was controlnet_aux randomization of segmentation coloring, which seems to lead to some randomization of resulting images using ControlNet seg model. Switched to using deterministic ADE20K color palette instead, which solved the problem. 2023-06-25 12:38:17 -07:00
user1
10c3753d7f Added SAM preprocessor 2023-06-25 11:16:39 -07:00
Sergey Borisov
a3c22b5fe6 Remove upcast_attention and prediction_type from stable diffusion model logic, fix ckpt conversion according to this 2023-06-25 21:06:22 +03:00
blessedcoolant
922468b836 Add control_mode parameter to ControlNet (#3535)
This PR adds the "control_mode" option to ControlNet implementation. 
Possible control_mode options are: 

- balanced -- this is the default, same as previous implementation
without control_mode
- more_prompt -- pays more attention to the prompt
- more _control -- pays more attention to the ControlNet (in earlier
implementations this was called "guess_mode")
- unbalanced -- pays even more attention to the ControlNet 

balanced, more_prompt, and more_control should be nearly identical to
the equivalent options in the [auto1111 sd-webui-controlnet
extension](https://github.com/Mikubill/sd-webui-controlnet#more-control-modes-previously-called-guess-mode)

The changes to enable balanced, more_prompt, and more_control are
managed deeper in the code by two booleans, "soft_injection" and
"cfg_injection". The three control mode options in sd-webui-controlnet
map to these booleans like:
 
!soft_injection && !cfg_injection ⇒  BALANCED            
 soft_injection &&  cfg_injection ⇒  MORE_CONTROL 
 soft_injection && !cfg_injection ⇒  MORE_PROMPT   
 
The "unbalanced" option simply exposes the fourth possible combination
of these two booleans:
!soft_injection &&  cfg_injection ⇒ UNBALANCED

With "unbalanced" mode it is very easy to overdrive the controlnet
inputs. It's recommended to use a cfg_scale between 2 and 4 to mitigate
this, along with lowering controlnet weight and possibly lowering "end
step percent". With those caveats, "unbalanced" can yield interesting
results.

Example of all four modes using Canny edge detection ControlNet with
prompt "old man", identical params except for control_mode:

![Screenshot from 2023-06-11
23-53-00](https://github.com/invoke-ai/InvokeAI/assets/303100/c9e31e7f-50de-4d85-94f2-b5a4af3d067b)
Top middle:       BALANCED
Top right:          MORE_CONTROL
Bottom middle: MORE_PROMPT
Bottom right :    UNBALANCED

I kind of chose this seed because it shows pretty rough results with
BALANCED (the default), but in my opinion better results with both
MORE_CONTROL and MORE_PROMPT. And you can definitely see how MORE_PROMPT
pays more attention to the prompt, and MORE_CONTROL pays more attention
to the control image. And shows that UNBALANCED with default cfg_scale
etc is unusable.

But here are four examples from same series (same seed etc), all have
control_mode = UNBALANCED but now cfg_scale is set to 3.
![Screenshot from 2023-06-11
23-48-44](https://github.com/invoke-ai/InvokeAI/assets/303100/5a495306-2164-40aa-9cc8-ce737d7671e7)
And param differences are:
Top middle: prompt="old man", control_weight=0.3, end_step_percent=0.5
Top right: prompt="old man", control_weight=0.4, end_step_percent=1.0
Bottom middle: prompt=None, control_weight=0.3, end_step_percent=0.5
Bottom right: prompt=None, control_weight=0.4, end_step_percent=1.0

So with the right settings UNBALANCED seems useful.
2023-06-25 16:09:26 +12:00
psychedelicious
57e719702d fix(ui): add missing ControlNetInvocation type; tidy schema-derived types 2023-06-25 14:04:53 +10:00
psychedelicious
11378a9236 chore(ui): regen api schema 2023-06-25 14:04:16 +10:00
psychedelicious
132829c88f fix(ui): fix path of generated schema types 2023-06-25 14:04:00 +10:00
blessedcoolant
4d4b5b56dc Merge branch 'main' into feat/controlnet-control-modes 2023-06-25 15:48:07 +12:00
blessedcoolant
a9334128c9 chore(ui): bump all packages (#3579)
Everything seems to be working.

- Due to a change to `reactflow`, I regenerated `yarn.lock`
- New chakra CLI fixes issue I had made a patch for; removed the patch
- Change to fontsource changed how we import that font
- Change to fontawesome means we lost the txt2img tab icon, just chose a
similar one
2023-06-25 15:45:39 +12:00
psychedelicious
6b276587d8 chore(ui): bump all packages
Everything seems to be working.

- Due to a change to `reactflow`, I regenerated `yarn.lock`
- New chakra CLI fixes issue I had made a patch for; removed the patch
- Change to fontsource changed how we import that font
- Change to fontawesome means we lost the txt2img tab icon, just chose a similar one
2023-06-25 13:44:10 +10:00
user1
c5faffc18b Merge branch 'main' of github.com:invoke-ai/InvokeAI into feat/controlnet-control-modes
Only "real" conflicts were in:
     invokeai/frontend/web/src/features/controlNet/components/ControlNet.tsx
     invokeai/frontend/web/src/features/controlNet/store/controlNetSlice.ts
2023-06-24 17:05:57 -07:00
Lincoln Stein
c3c4a71173 implemented Stalker's suggested improvements 2023-06-24 12:37:26 -04:00
Lincoln Stein
d5f742620f Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-24 11:58:06 -04:00
Lincoln Stein
ba1371a88f rename ModelType.Pipeline to ModelType.Main 2023-06-24 11:45:49 -04:00
psychedelicious
3ae996ebcb fix(ui): fix metadata viewer too stronk 2023-06-24 18:15:49 +10:00
psychedelicious
3d16605762 fix(ui): fix controlnet upload button 2023-06-24 18:15:49 +10:00
psychedelicious
b6dec2b826 fix(ui): fix controlnet dnd overlay not showing on dragover 2023-06-24 18:15:49 +10:00
psychedelicious
013e2aa2a1 fix(ui): fix control image sizes
they were all weird
2023-06-24 18:15:49 +10:00
psychedelicious
8f9fa15fc8 fix(ui): fix image fetching query string 2023-06-24 18:15:49 +10:00
psychedelicious
dde497404b fix(ui): fix init image display buttons
- Reset and Upload buttons along top of initial image
- Also had to mess around with the control net & DnD image stuff after changing the styles
- Abstract image upload logic into hook - does not handle native HTML drag and drop upload - only the button click upload
2023-06-24 18:15:49 +10:00
psychedelicious
0472b33164 fix(ui): fix duplicate is_intermediate query param when fetching images 2023-06-24 17:57:39 +10:00
psychedelicious
a6c615a98c fix(ui): fix canvas staging area
Missed some of the `imageUpdated` stuff
2023-06-24 17:57:39 +10:00
psychedelicious
bab3a9504e fix(nodes): fix LatentsToImage not using is_intermediate when creating images
Appears this was removed during a merge conflict resolution.
2023-06-24 17:57:39 +10:00
psychedelicious
13f25edb1e fix(ui): fix incorrect boards endpoint matchers being used
Should fix some stale-data issues with the auto-adding of images to selected boards, and deleting images from boards.
2023-06-24 17:57:39 +10:00
psychedelicious
8bacee115a fix(ui): fix thunks not using configured api client 2023-06-24 17:57:39 +10:00
psychedelicious
3619c86f07 fix(ui): fix deleting image does not refresh board
I had some some wonkiness in the thunks
2023-06-24 17:57:39 +10:00
psychedelicious
8e724b5abe fix(ui): fix image upload
`openapi-fetch` does not handle non-JSON `body`s, always stringifying them, and sets the `content-type` to `application/json`.

The patch here does two things:
- Do not stringify `body` if it is one of the types that should not be stringified (https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch#body)
- Do not add `content-type: application/json` unless it really is stringified JSON.

Upstream issue: https://github.com/drwpow/openapi-typescript/issues/1123

I'm not a bit lost on fixing the types and adding tests, so not raising a PR upstream.
2023-06-24 17:57:39 +10:00
psychedelicious
e076231398 fix(ui): fix node editor image fields
I had broken this when converting to rtk-query
2023-06-24 17:57:39 +10:00
psychedelicious
e386b5dc53 feat(ui): api layer refactor
*migrate from `openapi-typescript-codegen` to `openapi-typescript` and `openapi-fetch`*

`openapi-typescript-codegen` is not very actively maintained - it's been over a year since the last update.
`openapi-typescript` and `openapi-fetch` are part of the actively maintained repo. key differences:

- provides a `fetch` client instead of `axios`, which means we need to be a bit more verbose with typing thunks
- fetch client is created at runtime and has a very nice typescript DX
- generates a single file with all types in it, from which we then extract individual types. i don't like how verbose this is, but i do like how it is more explicit.
- removed npm api generation scripts - now we have a single `typegen` script

overall i have more confidence in this new library.

*use nanostores for api base and token*

very simple reactive store for api base url and token. this was suggested in the `openapi-fetch` docs and i quite like the strategy.

*organise rtk-query api*

split out each endpoint (models, images, boards, boardImages) into their own api extensions. tidy!
2023-06-24 17:57:39 +10:00
Mary Hipp
8137a99981 simplify 2023-06-24 17:57:39 +10:00
Mary Hipp
878847defd use BASE and TOKEN from OpenAPI if they are set 2023-06-24 17:57:39 +10:00
Lincoln Stein
539d1f3bde remove redundant prediction_type and attention_upscaling flags 2023-06-23 16:54:52 -04:00
Lincoln Stein
466ec3ab5e add router API support for model manager heuristic_import()` 2023-06-23 16:35:39 -04:00
Lincoln Stein
54b74427f4 adjust for change in list_models() API 2023-06-23 14:13:37 -04:00
Lincoln Stein
58d1857ab6 merge with main 2023-06-23 13:57:25 -04:00
Lincoln Stein
3043af4620 implement vae passthru 2023-06-23 13:56:30 -04:00
Lincoln Stein
9de54b2266 Fix vae conversion (#3555)
Unsure at which moment it broke, but now I can't convert vae(and model
as vae it's part) without this fix.
Need further research - maybe it's breaking change in `transformers`?
2023-06-23 15:55:26 +01:00
Lincoln Stein
afd19ab61a merge 2023-06-23 10:53:48 -04:00
Lincoln Stein
56bd873d7a make relative model paths work in model manager 2023-06-23 10:52:59 -04:00
Sergey Borisov
5aaaaf64a1 Fix ckpt conversion 2023-06-23 17:29:54 +03:00
StAlKeR7779
9140e2c0f2 Merge branch 'main' into fix/vae_conversion 2023-06-23 15:03:59 +03:00
Lincoln Stein
65d0e80e96 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-23 02:18:34 +01:00
Lincoln Stein
83e2b7578b fix(linux): installer script prints maximum python version usable (#3546)
Changes:
* Linux `install.sh` now prints the maximum python version to use in
case no installed python version matches

Commits:
fix(linux): installer script prints maximum python version usable
2023-06-23 02:16:01 +01:00
Lincoln Stein
df1907e849 Merge branch 'main' into install-script-python-version-error-prompt-fix 2023-06-23 02:15:36 +01:00
Lincoln Stein
a910403003 correctly migrate models that have relative paths 2023-06-22 21:10:31 -04:00
Lincoln Stein
c7b7e087e4 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-23 01:45:05 +01:00
Lincoln Stein
d65c833b90 migration now integrated into invokeai-configure 2023-06-22 16:44:55 -04:00
Lincoln Stein
33b04f6386 migration script working well 2023-06-22 15:47:12 -04:00
blessedcoolant
22c337b1aa Update UI To Use New Model Manager (#3548)
PR for the Model Manager UI work related to 3.0

[DONE]

- Update ModelType Config names to be specific so that the front end can
parse them correctly.
- Rebuild frontend schema to reflect these changes.
- Update Linear UI Text To Image and Image to Image to work with the new
model loader.
- Updated the ModelInput component in the Node Editor to work with the
new changes.

[TODO REMEMBER]

- Add proper types for ModelLoaderType in `ModelSelect.tsx`

[TODO] 

- Everything else.
2023-06-22 22:06:26 +12:00
psychedelicious
339e7ce213 feat(ui): initial implementation of model loading
- Update model listing code to use `rtk-query`
- Update all graph generation to use new `pipeline_model_loader` node
2023-06-22 17:48:57 +10:00
psychedelicious
2a178f5a25 chore(ui): regen api client 2023-06-22 17:48:13 +10:00
psychedelicious
1bc170727b tidy(nodes): rename sd_model_loader to pipeline_model_loader
this is more accurate bc it can do eg kandinsky also
2023-06-22 17:47:58 +10:00
psychedelicious
3722cdf5d6 chore(ui): regen api client 2023-06-22 17:36:20 +10:00
psychedelicious
42a59aa147 feat(nodes): add sd_model_loader node
Loads any pipeline model.

Also introduced is `PipelineModelField`, which includes a model name and base model.
2023-06-22 17:36:05 +10:00
psychedelicious
b937b7da01 feat(models): update model manager service & route to return list of models 2023-06-22 17:34:12 +10:00
Sergey Borisov
21245a0fb2 Set model type to const value in openapi schema, add model format enums to model schema(as they not not referenced in case of Literal definition) 2023-06-22 16:51:53 +10:00
Sergey Borisov
da566b59e8 Update model format field to use enums 2023-06-22 16:51:53 +10:00
Sergey Borisov
e4dc9c5a04 Rename format to model_format(still named format when work with config) 2023-06-22 16:51:53 +10:00
Sergey Borisov
aceadacad4 Remove default model logic 2023-06-22 16:51:53 +10:00
blessedcoolant
d3dec59cc3 tweal: UI colors 2023-06-22 16:51:53 +10:00
blessedcoolant
6c98700740 fix: Adjust the Schedular select width
So the long names do not get cut off.
2023-06-22 16:51:53 +10:00
blessedcoolant
c4c3c96062 Revert "feat: Port Schedulers to Mantine"
This reverts commit e0c105f413.
2023-06-22 16:51:35 +10:00
blessedcoolant
6256be480c fix: Remove type from Model type name 2023-06-22 16:48:35 +10:00
blessedcoolant
7033071934 fix: Unserialization key issue 2023-06-22 16:48:35 +10:00
blessedcoolant
e48528bbef revert: getModels to receivedModels 2023-06-22 16:48:35 +10:00
blessedcoolant
6bdf68dd4c feat: Port Schedulers to Mantine 2023-06-22 16:48:35 +10:00
blessedcoolant
0c3616229e cleanup: Updated model slice names to be more descriptive
Basically updated all slices to be more descriptive in their names. Did so in order to make sure theres good naming scheme available for secondary models.
2023-06-22 16:43:14 +10:00
blessedcoolant
604cc1adcd wip: Move Model Selector to own file 2023-06-22 16:43:14 +10:00
blessedcoolant
4847212d5b feat: Enable 2.x Model Generation in Linear UI 2023-06-22 16:43:14 +10:00
blessedcoolant
727293d722 fix: 2.1 models breaking generation
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-06-22 16:42:59 +10:00
blessedcoolant
d2f3500e1b chore: Rebuild API - base_model and type added 2023-06-22 16:42:59 +10:00
Sergey Borisov
ef83a2fffe Add name, base_mode, type fields to model info 2023-06-22 16:42:51 +10:00
blessedcoolant
f8d7477c7a wip: Add 2.x Models to the Model List 2023-06-22 16:42:51 +10:00
blessedcoolant
e374211313 chore: Rebuild API with new Model API names 2023-06-22 16:41:31 +10:00
Sergey Borisov
01d17601b8 Generate config names for openapi 2023-06-22 16:41:19 +10:00
blessedcoolant
bf0d5f4cfc fix: Update missing name types to new names 2023-06-22 16:41:02 +10:00
blessedcoolant
663f4935f5 chore: Rebuild API 2023-06-22 16:41:02 +10:00
blessedcoolant
9838dda1b7 chore: Update model config type names 2023-06-22 16:40:40 +10:00
psychedelicious
2d889e133d chore(ui): regen api client 2023-06-22 16:25:49 +10:00
psychedelicious
6779f1a5ad fix(db): update models for boards w/ nullable deleted_at 2023-06-22 16:25:49 +10:00
psychedelicious
19a6e5dad8 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
psychedelicious
285195bf72 feat(api): add get_board route 2023-06-22 16:25:49 +10:00
psychedelicious
10008859a4 tidy(ui): remove all refs to boards thunks 2023-06-22 16:25:49 +10:00
psychedelicious
3c04340f3f tidy(ui): tidy up update image board modal 2023-06-22 16:25:49 +10:00
psychedelicious
79f0c4d3c4 feat(ui): add remove from board to image context menu 2023-06-22 16:25:49 +10:00
psychedelicious
37d4e05838 fix(ui): fix board's image list not updating when image removed from board 2023-06-22 16:25:49 +10:00
psychedelicious
a00ad6ac03 feat(ui): dropping image on All Images board removes it from board 2023-06-22 16:25:49 +10:00
psychedelicious
2ffead000c tidy(ui): remove console.log() 2023-06-22 16:25:49 +10:00
psychedelicious
922319cb84 fix(ui): fix first added board doesn't show until refresh
Had incorrect `invalidatesTags` array for the mutation.
2023-06-22 16:25:49 +10:00
psychedelicious
6ee0e197bb feat(db): add deleted_at to board_images 2023-06-22 16:25:49 +10:00
psychedelicious
d3e6f0130c fix(ui): fix issue with gallery not letting you load more images
To determine whether the Load More button should work, we need to keep track of how many images are left to load for a given board or category.

The Assets tab doesn't work, though. Need to figure out a better way to handle this.
2023-06-22 16:25:49 +10:00
psychedelicious
421c23d3ea fix(ui): fix gallery image fetching for board categories 2023-06-22 16:25:49 +10:00
psychedelicious
4545f3209f fix(ui): fix bug with image deletion not removing image from gallery 2023-06-22 16:25:49 +10:00
psychedelicious
e2ee8102c2 tidy(db): tidy image_record_storage.py 2023-06-22 16:25:49 +10:00
psychedelicious
083a0fc4cf tidy(ui): remove references to boardsAdapter 2023-06-22 16:25:49 +10:00
psychedelicious
26b75b85f7 fix(ui): if deleting selected board, deselect it 2023-06-22 16:25:49 +10:00
psychedelicious
f560a462a0 feat(ui): rudimentary categorized gallery image fetching 2023-06-22 16:25:49 +10:00
psychedelicious
d501986610 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
psychedelicious
67a75f6895 feat(api, db): support board_id filter on images service get_many() 2023-06-22 16:25:49 +10:00
psychedelicious
3c032c0767 feat(ui): only auto-add image to board if is not intermediate 2023-06-22 16:25:49 +10:00
psychedelicious
abd6561140 feat(ui): just fetch all boards instead of paginating them 2023-06-22 16:25:49 +10:00
psychedelicious
bd533426fc feat(ui): first pass at boards styling 2023-06-22 16:25:49 +10:00
psychedelicious
2489d5459f chore(ui): regen api client 2023-06-22 16:25:49 +10:00
psychedelicious
ac477cf5d6 fix(ui): improve image deletion handling 2023-06-22 16:25:49 +10:00
psychedelicious
be3bdae847 fix: resolve rebase conflicts 2023-06-22 16:25:49 +10:00
psychedelicious
3e0ee838cf fix(ui): add initial image dimensions to state
We need to access the initial image dimensions during the creation of the `ImageToImage` graph to determine if we need to resize the image.

Because the `initialImage` is now just an image name, we need to either store (easy) or dynamically retrieve its dimensions during graph creation (a bit less easy).

Took the easiest path. May need to revise this in the future.
2023-06-22 16:25:49 +10:00
psychedelicious
8d3bec57d5 feat(ui): store only image name in parameters
Images that are used as parameters (e.g. init image, canvas images) are stored as full `ImageDTO` objects in state, separate from and duplicating any object representing those same objects in the `imagesSlice`.

We cannot store only image names as parameters, then pull the full `ImageDTO` from `imagesSlice`, because if an image is not on a loaded page, it doesn't exist in `imagesSlice`. For example, if you scroll down a few pages in the gallery and send that image to canvas, on reloading the app, the canvas will be unable to load that image.

We solved this temporarily by storing the full `ImageDTO` object wherever it was needed, but this is both inefficient and allows for stale `ImageDTO`s across the app.

One other possible solution was to just fetch the `ImageDTO` for all images at startup, and insert them into the `imagesSlice`, but then we run into an issue where we are displaying images in the gallery totally out of context.

For example, if an image from several pages into the gallery was sent to canvas, and the user refreshes, we'd display the first 20 images in gallery. Then to populate the canvas, we'd fetch that image we sent to canvas and add it to `imagesSlice`. Now we'd have 21 images in the gallery: 1 to 20 and whichever image we sent to canvas. Weird.

Using `rtk-query` solves this by allowing us to very easily fetch individual images in the components that need them, and not directly interact with `imagesSlice`.

This commit changes all references to images-as-parameters to store only the name of the image, and not the full `ImageDTO` object. Then, we use an `rtk-query` generated `useGetImageDTOQuery()` hook in each of those components to fetch the image.

We can use cache invalidation when we mutate any image to trigger automated re-running of the query and all the images are automatically kept up to date.

This also obviates the need for the convoluted URL fetching scheme for images that are used as parameters. The `imagesSlice` still need this handling unfortunately.
2023-06-22 16:25:49 +10:00
psychedelicious
cfda128e06 feat(ui): wip boards via rtk-query 2023-06-22 16:25:49 +10:00
psychedelicious
661a94b3de feat(db): add get_all() method for boards
This is needed to show the full list of boards in the update boards modal.
2023-06-22 16:25:49 +10:00
psychedelicious
9ef64016c7 feat(db): sort board by created_at 2023-06-22 16:25:49 +10:00
psychedelicious
21f0d0b0c1 fix(db): fix deserialize_board_record()
It was not adding `cover_image_name`
2023-06-22 16:25:49 +10:00
psychedelicious
8bce234542 feat(db): update image-board relationships on add
Functionally, `add_image_to_board()` now moves images between boards.
2023-06-22 16:25:49 +10:00
psychedelicious
daadf6ebfd feat(ui): add board image count badge 2023-06-22 16:25:49 +10:00
Mary Hipp
fe10a9f747 render cover image based on URL in image entities 2023-06-22 16:25:49 +10:00
Mary Hipp
7a2d3f628a add boardToAddTo state so that result can be added to board when generation is complete 2023-06-22 16:25:49 +10:00
Mary Hipp
4defb92105 handle long board names 2023-06-22 16:25:49 +10:00
Mary Hipp
f9f3c91a83 drag and drop to move image to board, a bit of board list UI 2023-06-22 16:25:49 +10:00
maryhipp
95b9c8e505 return cover_image_name since urls change, override one from db for now 2023-06-22 16:25:49 +10:00
psychedelicious
49a02c157b feat(ui): fix UpdateImageBoardModal select 2023-06-22 16:25:49 +10:00
psychedelicious
d604d986f9 feat(db, api): update get_board_for_image & service dependencies
- previously was `get_boards_for_image`, returning a list of `BoardDTO`, now returns a single `board_id`
2023-06-22 16:25:49 +10:00
psychedelicious
70cc037a9c fix(ui): do not persist boards 2023-06-22 16:25:49 +10:00
psychedelicious
e4893e4031 fix(db): return board records from CRUD methods 2023-06-22 16:25:49 +10:00
maryhipp
4a0a718b96 foiled by a comma 2023-06-22 16:25:49 +10:00
maryhipp
ca8f1a7828 (api) use most recently generated image for cover photo 2023-06-22 16:25:49 +10:00
Mary Hipp
2e41af2109 [half-baked] adding image to board modal 2023-06-22 16:25:49 +10:00
Mary Hipp
bd29e5e655 UI tweaks 2023-06-22 16:25:49 +10:00
Mary Hipp
dcfee2e1e4 add searching to boards list 2023-06-22 16:25:49 +10:00
Mary Hipp
8aac683319 can delete and rename boards 2023-06-22 16:25:49 +10:00
psychedelicious
d306a84447 feat(ui): rough out boards UI 2023-06-22 16:25:49 +10:00
psychedelicious
5865ecd530 feat(db): add FK for boards.cover_image_name 2023-06-22 16:25:49 +10:00
psychedelicious
e1f9685b02 feat(db): add index for boards 2023-06-22 16:25:49 +10:00
psychedelicious
498bf0d0ba feat(db): add indices for board_images 2023-06-22 16:25:49 +10:00
psychedelicious
163ef2c941 feat(ui): remove refs to BoardRecord in UI
UI should only work w/ BoardDTO
2023-06-22 16:25:49 +10:00
psychedelicious
48193b7fa7 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
psychedelicious
dd1b3c9f35 fix(api): update API models to use BoardDTOs 2023-06-22 16:25:49 +10:00
psychedelicious
4b32322a58 feat(nodes): make board <> images a one-to-many relationship
we can extend this to many-to-many in the future if desired.
2023-06-22 16:25:49 +10:00
Mary Hipp
e06c43adc8 lint fix 2023-06-22 16:25:49 +10:00
Mary Hipp
c009f46b00 regenerate api schema 2023-06-22 16:25:49 +10:00
maryhipp
748016bdab routes working 2023-06-22 16:25:49 +10:00
psychedelicious
72e9ced889 feat(nodes): add boards and board_images services 2023-06-22 16:25:49 +10:00
maryhipp
3833304f57 [WIP] board list endpoint w cover photos 2023-06-22 16:25:49 +10:00
maryhipp
4bfaae6617 fix type 2023-06-22 16:25:49 +10:00
maryhipp
499a174832 some more 2023-06-22 16:25:49 +10:00
maryhipp
6ca5ad9075 filter images by board_id 2023-06-22 16:25:49 +10:00
maryhipp
a121e6b3a0 add board_id association to image 2023-06-22 16:25:49 +10:00
maryhipp
207602f425 remove unused 2023-06-22 16:25:49 +10:00
maryhipp
a1671519d5 board CRUD 2023-06-22 16:25:49 +10:00
Lincoln Stein
1c31efa57c punctuation fix in user message 2023-06-21 09:37:24 -04:00
Lincoln Stein
b727442f84 better window size behavior under alacritty & terminator 2023-06-21 09:32:58 -04:00
Lincoln Stein
90df316835 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-20 22:50:41 +01:00
Lincoln Stein
257e972599 fix failing pytest for config module 2023-06-20 13:26:01 -04:00
Lincoln Stein
8639794c12 Merge branch 'main' into install-script-python-version-error-prompt-fix 2023-06-20 18:24:54 +01:00
Lincoln Stein
2fc19d9afa suppress description in "other models" tab for space reasons 2023-06-20 11:45:37 -04:00
Lincoln Stein
ac6403f877 address some of ebr issues 2023-06-20 11:08:27 -04:00
Lincoln Stein
678bb4fe10 Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-20 09:42:21 -04:00
Lincoln Stein
294b1e83e6 test and fix edge cases 2023-06-20 09:42:10 -04:00
blessedcoolant
d339c8627f feat: Upgrade to Diffusers 0.17.1 (#3545)
Just syncing up with diffusers upstream.
2023-06-19 23:25:22 +12:00
blessedcoolant
a53e0dce6c Merge branch 'upgrade-diffusers' of https://github.com/blessedcoolant/InvokeAI into upgrade-diffusers 2023-06-19 23:21:06 +12:00
blessedcoolant
0ae6325353 chore: Add torchsde as a dependency for the SDE schedulers 2023-06-19 23:20:53 +12:00
blessedcoolant
12299120ab Merge branch 'main' into upgrade-diffusers 2023-06-19 23:16:39 +12:00
blessedcoolant
1a7fe172ca Fix inpaint node to new manager (#3550)
Inpaint node still used by canvas, so fixed it to new model manager api.
Other old generation code deleted.
2023-06-19 23:01:05 +12:00
blessedcoolant
4f5693040e Merge branch 'main' into fix/inpaint_new_manager 2023-06-19 22:55:00 +12:00
blessedcoolant
bb2df88c06 Add dpmpp_sde and dpmpp_2m_sde schedulers(with karras) (#3554)
Added sde schedulers.
Problem - they add random on each step, to get consistent image we need
to provide seed or generator.
I done it, but if you think that it better do in other way - feel free
to change.

Also made ancestral schedulers reproducible, this done same way as for
sde scheduler.
2023-06-19 22:52:33 +12:00
psychedelicious
41442eb7f6 feat(ui): convert canvas txt2img & img2img to latents
- Add graph builders for canvas txt2img & img2img - they are mostly copy and paste from the linear graph builders but different in a few ways that are very tricky to work around. Just made totally new functions for them.
- Canvas txt2img and img2img support ControlNet (not inpaint/outpaint). There's no way to determine in real-time which mode the canvas is in just yet, so we cannot disable the ControlNet UI when the mode will be inpaint/outpaint - it will always display. It's possible to determine this in near-real-time, will add this at some point.
- Canvas inpaint/outpaint migrated to use model loader, though inpaint/outpaint are still using the non-latents nodes.
2023-06-19 15:57:28 +10:00
psychedelicious
223a679ac1 chore(ui): regen api client 2023-06-19 15:57:28 +10:00
psychedelicious
3c60616b4d feat(ui): simplify linear graph creation logic
Instead of manually creating every node and edge, we can simply copy/paste the base graph from node editor, then sub in parameters.

This is a much more intelligible process. We still need to handle seed, img2img fit and controlnet separately.
2023-06-19 15:57:28 +10:00
Sergey Borisov
a01998d095 Remove more old logic 2023-06-19 15:57:28 +10:00
Sergey Borisov
7b35162b9e Remove old logic except for inpaint, add support for lora and ti to inpaint node 2023-06-19 15:57:28 +10:00
Sergey Borisov
c26e1a9271 Rewrite inpaint node to new model manager, remove TextToImage and ImageToImage nodes 2023-06-19 15:57:28 +10:00
Sergey Borisov
9b32407744 Provide generator to all schedulers step function to make both ancestral and sde schedulers reproducible 2023-06-19 00:34:01 +03:00
Sergey Borisov
82091b9a66 Fix vae conversion 2023-06-18 23:46:07 +03:00
Sergey Borisov
f3d9797ebe Add dpmpp_sde and dpmpp_2m_sde schedulers(with karras) 2023-06-18 23:38:15 +03:00
DrGunnarMallon
f312e1448f Update index.md
fixed typo
2023-06-18 10:39:02 -04:00
blessedcoolant
a11946f0ad feat: Port Schedulers to Mantine (#3552)
- Ports Schedulers to use IAIMantineSelect.
- Adds ability to favorite schedulers in Settings. Favorited schedulers
show up at the top of the list.
- Adds IAIMantineMultiSelect component.
- Change SettingsSchedulers component to use IAIMantineMultiSelect
instead of Chakra Menus.
2023-06-18 22:22:03 +12:00
blessedcoolant
80a8d3ef28 style: Theme placeholder style for IAIMantineMultiSelect 2023-06-18 22:17:09 +12:00
blessedcoolant
f4ca9d0e09 Merge branch 'scheduler-select' of https://github.com/blessedcoolant/InvokeAI into scheduler-select 2023-06-18 22:05:12 +12:00
blessedcoolant
a960fa009d fix: Fix some styling issues with IAIMantineMultiSelect 2023-06-18 22:04:12 +12:00
psychedelicious
b96b95bc95 feat(ui): enabledSchedulers -> favoriteSchedulers 2023-06-18 20:01:05 +10:00
psychedelicious
450641c414 fix(ui): enable all schedulers by default 2023-06-18 19:39:31 +10:00
psychedelicious
94cfcdc411 feat(ui): improve scheduler selection logic
- remove UI-specific state (the enabled schedulers) from redux, instead derive it in a selector
- simplify logic by putting schedulers in an object instead of an array
- rename `activeSchedulers` to `enabledSchedulers`
- remove need for `useEffect()` when `enabledSchedulers` changes by adding a listener for the `enabledSchedulersChanged` action/event to `generationSlice`
- increase type safety by making `enabledSchedulers` an array of `SchedulerParam`, which is created by the zod schema for scheduler
2023-06-18 19:34:37 +10:00
psychedelicious
150059f704 fix(ui): create all scheduler constants up-front 2023-06-18 18:49:10 +10:00
psychedelicious
f1a8b9daee fix(ui): clarify scheduler logic
- use full conditional syntax with `{}`
- do not mutate `action.payload` in a reducer
2023-06-18 18:47:59 +10:00
blessedcoolant
be8c0bb952 feat: Use Labels for Schedulers 2023-06-18 20:17:51 +12:00
blessedcoolant
dae5b9b259 fix: Minor styling fix to the IAIMantineMultiSelect component 2023-06-18 20:06:56 +12:00
blessedcoolant
06428fac67 fix: Revert scheduler back to zod validation 2023-06-18 20:02:36 +12:00
blessedcoolant
59b5dfc3e0 feat: Port Schedulers to Mantine 2023-06-18 19:47:27 +12:00
blessedcoolant
fd981a90be Add lms and dpmpp2_s karras scheduler (#3551)
Karras sigmas support added to lms and dpmpp2_s schedulers in 0.17.0
diffusers.
2023-06-18 17:36:47 +12:00
Lincoln Stein
e1d53b86f3 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-17 16:26:56 -07:00
Lincoln Stein
ddb3f4b02b make configure script work properly on empty rootdir 2023-06-17 19:26:35 -04:00
Sergey Borisov
6b7cf3f3be Add lms and dpmpp2_s karras scheduler 2023-06-17 21:00:16 +03:00
Lincoln Stein
15f8132e17 add direct-call script for model installer 2023-06-16 22:57:53 -04:00
Lincoln Stein
f28d50070e configure/install basically working; needs edge case testing 2023-06-16 22:54:36 -04:00
Kent Keirsey
f6f66307fc WIP README.md Updates 2023-06-16 17:27:02 -04:00
Stephan Koglin-Fischer
469dae8c88 fix(linux): installer script prints maximum python version usable 2023-06-16 15:18:23 +02:00
blessedcoolant
9d4b84ef68 feat: Upgrade to Diffusers 0.17.1 2023-06-16 23:57:57 +12:00
Lincoln Stein
ada7399753 rewrite of widget display - marshalling needs rewrite 2023-06-15 23:32:33 -04:00
blessedcoolant
4cbc802e36 Model manager fixes (#3541)
Fix lora import
Fix sd2 config - `variant` field not added
Fix list models api - `base_model` arg not provided, redundant assert
check
2023-06-16 06:43:00 +12:00
Sergey Borisov
5f2d07917d Fix lora import, fix sd2 config, fix list models api 2023-06-15 21:30:15 +03:00
Lincoln Stein
5c740452f6 Model Manager rewrite (#3335) 2023-06-14 08:44:04 -07:00
Lincoln Stein
82c2498043 Merge branch 'main' into lstein/new-model-manager 2023-06-14 08:41:40 -07:00
blessedcoolant
4ca325e8e6 chore: Rebuild API 2023-06-15 03:20:49 +12:00
blessedcoolant
6b8e88ad7f Merge branch 'main' into feat/controlnet-control-modes 2023-06-15 03:18:41 +12:00
psychedelicious
0497bea264 fix: add dynamicprompts to pyproject.toml 2023-06-15 01:05:16 +10:00
psychedelicious
b8e32fa459 chore(ui): regen api client 2023-06-15 01:05:16 +10:00
psychedelicious
34ebee67b7 fix(nodes): fix revert conflict 2023-06-15 01:05:16 +10:00
psychedelicious
e0c998d192 Revert "feat(ui): add warning socket event handling"
This reverts commit e7a61e631a42190e4b64e0d5e22771c669c5b30c.
2023-06-15 01:05:16 +10:00
psychedelicious
b51e9a6bdb Revert "feat(nodes): add warning socket event"
This reverts commit cefdd9d634e515239bd85666c872a0d64bb9d772.
2023-06-15 01:05:16 +10:00
psychedelicious
09f396ce84 feat(ui): add warning socket event handling 2023-06-15 01:05:16 +10:00
psychedelicious
abee37eab3 feat(nodes): add warning socket event 2023-06-15 01:05:16 +10:00
psychedelicious
42e48b2bef feat(nodes): add dynamic prompt node 2023-06-15 01:05:16 +10:00
blessedcoolant
70ece4364c refactor(minor): Image & Latent File Storage (#3538)
- `DiskImageStorage` and `DiskLatentsStorage` have now both been updated
to exclusively work with `Path` objects and not rely on the `os` lib to
handle pathing related functions.
- We now also validate the existence of the required image output
folders and latent output folders to ensure that the app does not break
in case the required folders get tampered with mid-session.
- Just overall general cleanup.

Tested it. Don't seem to be any thing breaking.
2023-06-15 02:43:27 +12:00
psychedelicious
f9d5f9d52c fix(nodes): minor fixes for folder validation
- fix type for `__output_folder`
- prefix `validate_storage_folders()` with `__` to indicate private method
2023-06-15 00:40:39 +10:00
StAlKeR7779
d0ee3558d1 Merge branch 'main' into lstein/new-model-manager 2023-06-14 17:29:01 +03:00
blessedcoolant
587297878a refactor(minor): Latent Disk Storage 2023-06-15 02:21:49 +12:00
blessedcoolant
b4c998a9ae refactor(minor): Image File Storage 2023-06-15 01:58:58 +12:00
psychedelicious
88e8e3977b feat(ui): update UI to not use image_origin
see commit `8ad8de8: feat(nodes): remove `image_origin` from most places` for details.
2023-06-14 23:08:27 +10:00
psychedelicious
24b86cffe9 chore(ui): regen api client & types 2023-06-14 23:08:27 +10:00
psychedelicious
a1773197e9 feat(nodes): remove image_origin from most places
- remove `image_origin` from most places where we interact with images
- consolidate image file storage into a single `images/` dir

Images have an `image_origin` attribute but it is not actually used when retrieving images, nor will it ever be. It is still used when creating images and helps to differentiate between internally generated images and uploads.

It was included in eg API routes and image service methods as a holdover from the previous app implementation where images were not managed in a database. Now that we have images in a db, we can do away with this and simplify basically everything that touches images.

The one potentially controversial change is to no longer separate internal and external images on disk. If we retain this separation, we have to keep `image_origin` around in a number of spots and it getting image paths on disk painful.

So, I am have gotten rid of this organisation. Images are now all stored in `images`, regardless of their origin. As we improve the image management features, this change will hopefully become transparent.
2023-06-14 23:08:27 +10:00
blessedcoolant
6c53abc034 feat: Add ControlMode to Linear UI 2023-06-14 20:01:17 +12:00
blessedcoolant
eb7047b21d chore: Rebuild WebAPI 2023-06-14 19:26:02 +12:00
blessedcoolant
43419ac761 Merge branch 'main' into feat/controlnet-control-modes 2023-06-14 19:04:42 +12:00
user1
5cd0e90816 Renamed ControlNet control_mode option "even_more_control" to "unbalanced" 2023-06-13 22:30:17 -07:00
user1
cfd49e3921 Removing vestigial comments. 2023-06-13 21:33:15 -07:00
user1
a8e0490133 Merge branch 'feat/controlnet-control-modes' of https://github.com/invoke-ai/InvokeAI into feat/controlnet-control-modes 2023-06-13 21:21:13 -07:00
psychedelicious
1e08d865c9 chore: dummy commit to trigger actions 2023-06-14 14:14:24 +10:00
blessedcoolant
f8bb650cc1 revert: IAIScrollArea 2023-06-14 14:14:24 +10:00
psychedelicious
2cee8bebb2 fix(ui): revert offset scrollbars
The wonky padding is too janky. Just overlay for now.
2023-06-14 14:14:24 +10:00
psychedelicious
ade4ec5fd8 fix(ui): fix crash when toggling pinned parameters panel 2023-06-14 14:14:24 +10:00
psychedelicious
70ffd6b03f fix(ui): fix controlnet selects data types 2023-06-14 14:14:24 +10:00
psychedelicious
6c551df311 fix(ui): fix rebase conflicts 2023-06-14 14:14:24 +10:00
blessedcoolant
24f605629e cleanup: Remove OverlayScrollable component 2023-06-14 14:14:24 +10:00
blessedcoolant
2af1ec9d02 fix: Minor padding issue in unpinned drawer 2023-06-14 14:14:24 +10:00
blessedcoolant
79d53341de fix: Stretch scroll area so it retains parent width 2023-06-14 14:14:24 +10:00
blessedcoolant
e40b3506c4 fix: Options squishing on accordion collapse 2023-06-14 14:14:24 +10:00
blessedcoolant
33912382e3 feat: Introduce Mantine's ScrollArea 2023-06-14 14:14:24 +10:00
blessedcoolant
d282810e53 cleanup: Remove IAICustomSelect and port types 2023-06-14 14:14:24 +10:00
psychedelicious
9df502fc77 fix(ui): fix mantine select props 2023-06-14 14:14:24 +10:00
psychedelicious
705573f0a8 feat(ui): even more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
blessedcoolant
1878ea94f6 feat: Port Canvas Layer Select to IAIMantineSelect 2023-06-14 14:14:24 +10:00
psychedelicious
4ba5086b9a feat(ui): add tooltip to IAIMantineSelect 2023-06-14 14:14:24 +10:00
psychedelicious
4a991b4daa feat(ui): more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
psychedelicious
80474d26f9 feat(ui): mantine scrollbar theming 2023-06-14 14:14:24 +10:00
blessedcoolant
9a77bd9140 feat: Port IAISelect's to IAIMantineSelect's
Ported everything except Model Manager selects and the Canvas Layer Select (this needs tooltip support)
2023-06-14 14:14:24 +10:00
psychedelicious
14cdc800c3 feat(ui): pedantic mantine select theming 2023-06-14 14:14:24 +10:00
blessedcoolant
9cfbea4c25 feat: Match styling of Mantine Select with InvokeAI 2023-06-14 14:14:24 +10:00
blessedcoolant
5fe674e223 feat: Standardize IAIMantineSelect Component 2023-06-14 14:14:24 +10:00
blessedcoolant
32200efce8 feat: Change default font to Inter 2023-06-14 14:14:24 +10:00
blessedcoolant
68a02da990 feat: Use Mantine Select for Scheduler 2023-06-14 14:14:24 +10:00
blessedcoolant
5b20766ea3 chore: Move Mantine Theme Override to own file 2023-06-14 14:14:24 +10:00
blessedcoolant
9a914250a0 feat: Change Model Select To Mantine 2023-06-14 14:14:24 +10:00
blessedcoolant
0e3106f631 feat: Add Mantine Support 2023-06-14 14:14:24 +10:00
user1
de3e6cdb02 Switched over to ControlNet control_mode with 4 options: balanced, more_prompt, more_control, even_more_control. Based on True/False combinations of internal booleans cfg_injection and soft_injection 2023-06-13 21:08:34 -07:00
Sergey Borisov
6c5954f9d1 Add controlnet to model manager, fixes 2023-06-14 04:26:21 +03:00
Sergey Borisov
740c05a0bb Save models on rescan, uncache model on edit/delete, fixes 2023-06-14 03:12:12 +03:00
Sergey Borisov
26090011c4 Fix conflict resolve, add model configs to type annotation 2023-06-14 00:26:37 +03:00
Kent Keirsey
0ee0c16a3b Update CONTROLNET.md 2023-06-13 16:46:58 -04:00
StAlKeR7779
c9ae26a176 Merge branch 'main' into lstein/new-model-manager 2023-06-13 23:37:52 +03:00
Sergey Borisov
e7db6d8120 Fix ckpt and vae conversion, migrate script, remove sd2-base 2023-06-13 18:05:12 +03:00
user1
8495764d45 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-13 00:41:36 -07:00
user1
8b7fac75ed First pass at ControlNet "guess mode" implementation. 2023-06-13 00:41:36 -07:00
user1
9e0e26f4c4 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-12 23:57:57 -07:00
Lincoln Stein
a6af7e8824 use format "diffusers" rather than format "folder" in models.yaml 2023-06-13 01:43:05 -04:00
Lincoln Stein
87ba17a1f5 add migration script and update convert and face restoration paths 2023-06-13 01:27:51 -04:00
Lincoln Stein
c7ea46a5da use latest version of transformers to avoid deprecation warnings 2023-06-12 16:07:39 -04:00
Lincoln Stein
1439dc7712 Add SchedulerPredictionType and ModelVariantType enums 2023-06-12 16:07:04 -04:00
blessedcoolant
46cac6468e Upgrade to Diffusers 0.17.0 (#3514)
Diffusers is due for an update soon. #3512

Opening up a PR now with the required changes for when the new version
is live.

I've tested it out on Windows and nothing has broken from what I could
tell. I'd like someone to run some tests on Linux / Mac just to make
sure. Refer to the PR above on how to test it or install the release
branch.

```
pip install diffusers[torch]==0.17.0
```

Feel free to push any other changes to this PR you see fit.
2023-06-13 07:11:02 +12:00
blessedcoolant
2a814d886b Merge branch 'main' into diffusers-upgrade 2023-06-13 05:29:15 +12:00
Sergey Borisov
36eb1bd893 Fixes 2023-06-12 16:14:09 +03:00
Sergey Borisov
9fa78443de Fixes, add sd variant detection 2023-06-12 05:52:30 +03:00
Lincoln Stein
893f776f1d model_probe working; model_install incomplete 2023-06-11 19:51:53 -04:00
Lincoln Stein
085ab54124 remove modified models.py and migrate code to models/base.py 2023-06-11 16:10:15 -04:00
Lincoln Stein
8e1a56875e remove defunct code 2023-06-11 12:57:06 -04:00
Lincoln Stein
000626ab2e move all installation code out of model_manager 2023-06-11 12:51:50 -04:00
Sergey Borisov
694fd0c92f Fixes, first runable version 2023-06-11 16:42:40 +03:00
user1
fd715026a7 First pass at ControlNet "guess mode" implementation. 2023-06-11 02:00:39 -07:00
Sergey Borisov
738ba40f51 Fixes 2023-06-11 06:12:21 +03:00
Sergey Borisov
3ce3a7ee72 Rewrite model configs, separate models 2023-06-11 04:49:09 +03:00
Lincoln Stein
74b43c9bdf fix incorrect variable/typenames in model_cache 2023-06-10 10:41:48 -04:00
Lincoln Stein
3d2ff7755e resolve conflicts 2023-06-10 10:13:54 -04:00
Lincoln Stein
a87d52a389 resolve conflicts between lstein & sttalker changes 2023-06-10 09:59:19 -04:00
Lincoln Stein
959e64c9b3 start removing repo_id support 2023-06-10 09:57:23 -04:00
Sergey Borisov
2c056ead42 New models structure draft 2023-06-10 03:14:10 +03:00
blessedcoolant
7bce455d16 Merge branch 'main' into diffusers-upgrade 2023-06-09 16:27:52 +12:00
Lincoln Stein
887576d217 add directory scanning for loras, controlnets and textual_inversions 2023-06-08 23:11:53 -04:00
Lincoln Stein
6652f3405b merge with main 2023-06-08 21:08:43 -04:00
Lincoln Stein
27b5e43ea4 add messages to the user to tell them to enlarge window 2023-06-08 16:37:10 -04:00
blessedcoolant
68405910ba Upgrade to Diffusers 0.17.0 2023-06-08 04:42:52 +12:00
Lincoln Stein
04f9757f8d prevent crash when trying to calculate size of missing safety_checker
- Also fixed up order in which logger is created in invokeai-web
  so that handlers are installed after command-line options are
  parsed (and not before!)
2023-06-06 22:57:49 -04:00
Lincoln Stein
1f9e1eb964 merge with main 2023-06-06 22:18:41 -04:00
Lincoln Stein
8285fbb0b1 Merge branch 'lstein/new-model-manager' of github.com:invoke-ai/InvokeAI into lstein/new-model-manager 2023-06-02 22:48:00 -04:00
Lincoln Stein
951e6b746c remove model cache test; should be replaced with something else 2023-06-02 22:47:48 -04:00
Lincoln Stein
44a6623094 Merge branch 'main' into lstein/new-model-manager 2023-06-02 22:40:51 -04:00
Lincoln Stein
98773b20ac merge with main 2023-06-01 18:09:49 -04:00
Lincoln Stein
3c40e7fc1c most (all?) references to CLI deprecated 2023-05-31 21:29:52 -04:00
Sergey Borisov
b47786e846 First working TI draft 2023-05-31 02:12:27 +03:00
Sergey Borisov
69ccd3a0b5 Fixes for checkpoint models 2023-05-30 19:12:47 +03:00
Sergey Borisov
420a76ecdd Add lora loader node 2023-05-30 02:12:33 +03:00
Sergey Borisov
79de9047b5 First working lora implementation 2023-05-30 01:11:00 +03:00
Lincoln Stein
a0b6654f6a updated postprocessing, prompts, img2img and web docs 2023-05-29 10:55:57 -04:00
Lincoln Stein
00cb8a0c64 Merge branch 'main' into doc_updates_23 2023-05-29 08:13:12 -04:00
Lincoln Stein
10c55310c0 index.md, features and concepts documents updated 2023-05-28 19:51:18 -04:00
Lincoln Stein
f50293920e correct typo in tiled_vae field definition 2023-05-25 23:29:16 -04:00
Lincoln Stein
1e2db3a17f hook tiled_decode up to configuration 2023-05-25 23:28:15 -04:00
Lincoln Stein
5f8f51436a merge with main; fix conflicts 2023-05-25 22:40:45 -04:00
Kent Keirsey
cf12c7b1d9 Rename contributing.md to CONTRIBUTING.md 2023-05-24 16:33:25 -04:00
Kent Keirsey
1f4a9365a0 Create contributing.md 2023-05-24 16:33:10 -04:00
Kent Keirsey
bf94a48a6c Update CHANGELOG.md 2023-05-24 16:29:06 -04:00
Sergey Borisov
8e419a4f97 Revert weak references as can be done without it 2023-05-23 04:29:40 +03:00
Sergey Borisov
2533209326 Rewrite cache to weak references 2023-05-23 03:48:22 +03:00
StAlKeR7779
165c1adcf8 Merge branch 'main' into lstein/new-model-manager 2023-05-22 21:51:07 +03:00
Lincoln Stein
bdf33f13b3 fix bad merge in compel 2023-05-18 18:08:45 -04:00
Lincoln Stein
27241cdde1 port more globals changes over 2023-05-18 17:17:45 -04:00
Lincoln Stein
259d6ec90d fixup cachedir call 2023-05-18 14:52:16 -04:00
Lincoln Stein
a77c4c87b2 fixed logic error in resolution of model path 2023-05-18 14:35:34 -04:00
Lincoln Stein
d96175d127 resolve some undefined symbols in model_cache 2023-05-18 14:31:47 -04:00
Lincoln Stein
b1a99d772c added method to convert vaes 2023-05-18 13:31:11 -04:00
Sergey Borisov
fd82763412 Model manager draft 2023-05-18 03:56:52 +03:00
Lincoln Stein
e971a7f35c when migrating models.yaml, rename original models.yaml.orig 2023-05-16 22:37:53 -04:00
psychedelicious
6ab84741a0 fix(nodes): make ModelsList an enum-keyed dict
The `ModelsList` OpenAPI schema is generated as being keyed by plain strings. This means that API consumers do not know the shape of the dict. It _should_ be keyed by the `SDModelType` enum.

Unfortunately, `fastapi` does not actually handle this correctly yet; it still generates the schema with plain string keys.

Adding this anyways though in hopes that it will be resolved upstream and we can get the correct schema. Until then, I'll implement the (simple but annoying) logic on the frontend.

https://github.com/pydantic/pydantic/issues/4393
2023-05-16 15:02:58 +10:00
Lincoln Stein
cd16857f38 fix None in model_type 2023-05-16 00:13:44 -04:00
Lincoln Stein
1442f1cb8d change model filter to None in second place 2023-05-16 00:03:57 -04:00
Lincoln Stein
eea0d6f7bc default to no filter in list_models() 2023-05-15 23:52:29 -04:00
Lincoln Stein
4fe94a9315 list_models() now returns a dict of {type,{name: info}} 2023-05-15 23:44:08 -04:00
Lincoln Stein
c8f765cc06 improve debugging messages 2023-05-14 18:29:55 -04:00
Lincoln Stein
b9e9087dbe do not manage GPU for pipelines if sequential_offloading is True 2023-05-14 18:09:38 -04:00
Lincoln Stein
63e465eb5c tweaks to get_model() behavior
1. If an external VAE is specified in config file, then
   get_model(submodel=vae) will return the external VAE, not the one
   burnt into the parent diffusers pipeline.

2. The mechanism in (1) is generalized such that you can now have
   "unet:", "text_encoder:" and similar stanzas in the config file.
   Valid formats of these subsections:

       unet:
          repo_id: foo/bar

       unet:
          path: /path/to/local/folder

       unet:
          repo_id: foo/bar
	  subfolder: unet

    In the near future, these will also be used to attach external
    parts to the pipeline, generalizing VAE behavior.

3. Accommodate callers (i.e. the WebUI) that are passing the
   model key ("diffusers/stable-diffusion-1.5") to get_model()
   instead of the tuple of model_name and model_type.

4. Fixed bug in VAE model attaching code.

5. Rebuilt web front end.
2023-05-14 16:50:59 -04:00
Lincoln Stein
426f4eaf7e adjusted regression tests to work with new SDModelTypes 2023-05-13 22:29:33 -04:00
Lincoln Stein
baf5451fa0 Merge branch 'main' into lstein/new-model-manager 2023-05-13 22:01:34 -04:00
Lincoln Stein
b31a6ff605 fix reversed args in _model_key() call 2023-05-13 21:11:06 -04:00
Sergey Borisov
1f602e6143 Fix - apply precision to text_encoder 2023-05-14 03:46:13 +03:00
Sergey Borisov
039fa73269 Change SDModelType enum to string, fixes(model unload negative locks count, scheduler load error, saftensors convert, wrong logic in del_model, wrong parse metadata in web) 2023-05-14 03:06:26 +03:00
Lincoln Stein
2204e47596 allow submodels to be fetched independent of parent pipeline 2023-05-13 16:54:47 -04:00
Lincoln Stein
d8b1f29066 proxy SDModelInfo so that it can be used directly as context 2023-05-13 16:29:18 -04:00
Lincoln Stein
b23c9f1da5 get Tuple type hint syntax right 2023-05-13 14:59:21 -04:00
Lincoln Stein
5e8e3cf464 correct typos in model_manager_service 2023-05-13 14:55:59 -04:00
Lincoln Stein
72967bf118 convert add_model(), del_model(), list_models() etc to use bifurcated names 2023-05-13 14:44:44 -04:00
Sergey Borisov
bc96727cbe Rewrite latent nodes to new model manager 2023-05-13 16:08:03 +03:00
Sergey Borisov
3b2a054f7a Add model loader node; unet, clip, vae fields; change compel node to clip field 2023-05-13 04:37:20 +03:00
Sergey Borisov
131145eab1 A big refactor of model manager(according to IMHO) 2023-05-12 23:13:34 +03:00
Sergey Borisov
4492044d29 Redo compel node to separate model loading 2023-05-12 23:09:33 +03:00
Sergey Borisov
5431dd5f50 Fix event args 2023-05-12 23:08:03 +03:00
Sergey Borisov
79fecba274 Fix model manager initialization in web ui 2023-05-12 23:05:08 +03:00
Lincoln Stein
2ef79b8bf3 fix bug in persistent model scheme 2023-05-12 00:14:56 -04:00
Lincoln Stein
11ecf438f5 latents.py converted to use model manager service; events emitted 2023-05-11 23:33:24 -04:00
Lincoln Stein
df5b968954 model manager now running as a service 2023-05-11 21:24:29 -04:00
Lincoln Stein
8ad8c5c67a resolve conflicts with main 2023-05-11 00:19:20 -04:00
Lincoln Stein
590942edd7 Merge branch 'main' into lstein/new-model-manager 2023-05-11 00:16:03 -04:00
Lincoln Stein
4627910c5d added a wrapper model_manager_service and model events 2023-05-11 00:09:19 -04:00
Lincoln Stein
fa6a580452 merge with main 2023-05-10 00:03:32 -04:00
Lincoln Stein
99c692f397 check that model name matches format 2023-05-09 23:46:59 -04:00
Lincoln Stein
3d85e769ce clean up ckpt handling
- remove legacy ckpt loading code from model_cache
- added placeholders for lora and textual inversion model loading
2023-05-09 22:44:58 -04:00
Lincoln Stein
9cb962cad7 ckpt model conversion now done in ModelCache 2023-05-08 23:39:44 -04:00
Lincoln Stein
a108155544 added StALKeR779's great model size calculating routine 2023-05-08 21:47:03 -04:00
Lincoln Stein
c15b49c805 implement StALKeR7779 requested API for fetching submodels 2023-05-07 23:18:17 -04:00
Lincoln Stein
fd63e36822 optimize subfolder so that it returns submodel if parent is in RAM 2023-05-07 21:39:11 -04:00
Lincoln Stein
4649920074 adjust t2i to work with new model structure 2023-05-07 19:06:49 -04:00
Lincoln Stein
667171ed90 cap model cache size using bytes, not # models 2023-05-07 18:07:28 -04:00
Lincoln Stein
647ffb2a0f defined abstract baseclass for model manager service 2023-05-06 22:41:19 -04:00
Lincoln Stein
05a27bda5e generalize model loading support, include loras/embeds 2023-05-06 15:58:44 -04:00
Lincoln Stein
a8cfa3565c Merge branch 'lstein/new-model-manager' of github.com:invoke-ai/InvokeAI into lstein/new-model-manager 2023-05-06 08:14:15 -04:00
Lincoln Stein
e0214a32bc mostly ported to new manager API; needs testing 2023-05-06 00:44:12 -04:00
Lincoln Stein
af8c7c7d29 model manager rewritten to use model_cache; API changed! 2023-05-05 19:32:28 -04:00
Lincoln Stein
a4e36bc02a when model is forcibly moved into RAM update loaded_models set 2023-05-04 23:28:03 -04:00
Lincoln Stein
2e9bec15e7 Merge branch 'main' into lstein/new-model-manager 2023-05-04 23:19:38 -04:00
Lincoln Stein
68bc0112fa implement lazy GPU offloading and ref counting 2023-05-04 23:15:32 -04:00
Lincoln Stein
a273bdbdc1 Merge branch 'main' into lstein/new-model-manager 2023-05-03 18:09:29 -04:00
Lincoln Stein
8a0ec0fa0f Merge branch 'main' into lstein/new-model-manager 2023-05-03 13:30:50 -04:00
Lincoln Stein
e1fed52c66 work on model cache and its regression test finished 2023-05-03 12:38:18 -04:00
Lincoln Stein
bb959448c1 implement hashing for local & remote models 2023-05-02 16:52:27 -04:00
Lincoln Stein
2e2abf6ea6 caching of subparts working 2023-05-01 22:57:30 -04:00
Lincoln Stein
956ad6bcf5 add redesigned model cache for diffusers & transformers 2023-04-28 00:41:52 -04:00
665 changed files with 32636 additions and 27971 deletions

View File

@@ -1,10 +1,16 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
@@ -19,48 +25,26 @@ jobs:
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- run: 'echo "No build required"'
- name: skip
run: echo "no build required"

View File

@@ -11,6 +11,7 @@ on:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
@@ -32,19 +33,12 @@ jobs:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
@@ -62,14 +56,6 @@ jobs:
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
@@ -100,40 +86,38 @@ jobs:
id: run-pytest
run: pytest
- name: run invokeai-configure
id: run-preload-models
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
run: >
invokeai-configure
--yes
--default_only
--full-precision
# can't use fp16 weights without a GPU
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
- name: run invokeai
id: run-invokeai
env:
# Set offline mode to make sure configure preloaded successfully.
HF_HUB_OFFLINE: 1
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
run: >
invokeai
--no-patchmatch
--no-nsfw_checker
--precision=float32
--always_use_cpu
--use_memory_db
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
--from_file ${{ env.TEST_PROMPTS }}
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
- name: Archive results
id: archive-results
env:
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
uses: actions/upload-artifact@v3
with:
name: results
path: ${{ env.INVOKEAI_OUTDIR }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

6
.gitignore vendored
View File

@@ -34,7 +34,7 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
@@ -79,6 +79,7 @@ cov.xml
.pytest.ini
cover/
junit/
notes/
# Translations
*.mo
@@ -201,7 +202,8 @@ checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/web/dist/*
invokeai/frontend/yarn.lock
invokeai/frontend/node_modules
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*

186
README.md
View File

@@ -1,8 +1,11 @@
<div align="center">
![project logo](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/invoke_ai_banner.png)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke AI - Generative AI for Professional Creatives
## Image Generation for Stable Diffusion, Custom-Trained Models, and more.
Learn more about us and get started instantly at [invoke.ai](https://invoke.ai)
# InvokeAI: A Stable Diffusion Toolkit
[![discord badge]][discord link]
@@ -33,15 +36,32 @@
</div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
_**Note: This is an alpha release. Bugs are expected and not all
features are fully implemented. Please use the GitHub [Issues
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
to report unexpected problems. Also note that InvokeAI root directory
which contains models, outputs and configuration files, has changed
between the 2.x and 3.x release. If you wish to use your v2.3 root
directory with v3.0, please follow the directions in [Migrating a 2.3
root directory to 3.0](#migrating-to-3).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
_Note: InvokeAI is rapidly evolving. Please use the
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
requests. Be sure to use the provided templates. They will help us diagnose issues faster._
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/">Code and
Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
<div align="center">
@@ -51,22 +71,30 @@ requests. Be sure to use the provided templates. They will help us diagnose issu
## Table of Contents
1. [Quick Start](#getting-started-with-invokeai)
2. [Installation](#detailed-installation-instructions)
3. [Hardware Requirements](#hardware-requirements)
4. [Features](#features)
5. [Latest Changes](#latest-changes)
6. [Troubleshooting](#troubleshooting)
7. [Contributing](#contributing)
8. [Contributors](#contributors)
9. [Support](#support)
10. [Further Reading](#further-reading)
Table of Contents 📝
## Getting Started with InvokeAI
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
@@ -75,9 +103,8 @@ For full installation and upgrade instructions, please see:
3. Unzip the file.
4. If you are on Windows, double-click on the `install.bat` script. On
macOS, open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. On Linux, run `install.sh`.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
@@ -103,7 +130,7 @@ and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for users familiar with Terminals)
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.9 or 3.10 installed on your machine. Earlier or later versions are
not supported.
@@ -179,7 +206,7 @@ not supported.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
### Detailed Installation Instructions
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
@@ -187,6 +214,87 @@ AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. The recipe is as follows>
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3a. During the alpha release phase, select option [3] and manually
enter the tag name `v3.0.0+a2`.
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
#### Migration Caveats
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. The released
version of 3.0 is expected to have an interface for importing an
entire directory of image files as a batch.
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
@@ -205,13 +313,9 @@ We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
### Memory
**Memory** - At least 12 GB Main Memory RAM.
- At least 12 GB Main Memory RAM.
### Disk
- At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
@@ -227,7 +331,7 @@ The Unified Canvas is a fully integrated canvas implementation with support for
### *Advanced Prompt Syntax*
InvokeAI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
Invoke AI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
### *Command Line Interface*
@@ -237,16 +341,12 @@ For users utilizing a terminal-based environment, or who want to take advantage
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1 support*
- *Noise Control & Tresholding*
- *Popular Sampler Support*
- *Upscaling & Face Restoration Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
### Coming Soon
- *Node-Based Architecture & UI*
- And more...
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
- *Boards & Gallery Management
### Latest Changes
@@ -254,12 +354,12 @@ For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
## Troubleshooting
### Troubleshooting
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
## Contributing
## 🤝 Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
@@ -278,14 +378,12 @@ to become part of our community.
Welcome to InvokeAI!
### Contributors
### 👥 Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
Thanks to [Weblate](https://weblate.org/) for generously providing translation services to this project.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the Discord.

View File

@@ -4,6 +4,236 @@ title: Changelog
# :octicons-log-16: **Changelog**
## v2.3.5 <small>(22 May 2023)</small>
This release (along with the post1 and post2 follow-on releases) expands support for additional LoRA and LyCORIS models, upgrades diffusers versions, and fixes a few bugs.
### LoRA and LyCORIS Support Improvement
A number of LoRA/LyCORIS fine-tune files (those which alter the text encoder as well as the unet model) were not having the desired effect in InvokeAI. This bug has now been fixed. Full documentation of LoRA support is available at InvokeAI LoRA Support.
Previously, InvokeAI did not distinguish between LoRA/LyCORIS models based on Stable Diffusion v1.5 vs those based on v2.0 and 2.1, leading to a crash when an incompatible model was loaded. This has now been fixed. In addition, the web pulldown menus for LoRA and Textual Inversion selection have been enhanced to show only those files that are compatible with the currently-selected Stable Diffusion model.
Support for the newer LoKR LyCORIS files has been added.
### Library Updates and Speed/Reproducibility Advancements
The major enhancement in this version is that NVIDIA users no longer need to decide between speed and reproducibility. Previously, if you activated the Xformers library, you would see improvements in speed and memory usage, but multiple images generated with the same seed and other parameters would be slightly different from each other. This is no longer the case. Relative to 2.3.5 you will see improved performance when running without Xformers, and even better performance when Xformers is activated. In both cases, images generated with the same settings will be identical.
Here are the new library versions:
Library Version
Torch 2.0.0
Diffusers 0.16.1
Xformers 0.0.19
Compel 1.1.5
Other Improvements
### Performance Improvements
When a model is loaded for the first time, InvokeAI calculates its checksum for incorporation into the PNG metadata. This process could take up to a minute on network-mounted disks and WSL mounts. This release noticeably speeds up the process.
### Bug Fixes
The "import models from directory" and "import from URL" functionality in the console-based model installer has now been fixed.
When running the WebUI, we have reduced the number of times that InvokeAI reaches out to HuggingFace to fetch the list of embeddable Textual Inversion models. We have also caught and fixed a problem with the updater not correctly detecting when another instance of the updater is running
## v2.3.4 <small>(7 April 2023)</small>
What's New in 2.3.4
This features release adds support for LoRA (Low-Rank Adaptation) and LyCORIS (Lora beYond Conventional) models, as well as some minor bug fixes.
### LoRA and LyCORIS Support
LoRA files contain fine-tuning weights that enable particular styles, subjects or concepts to be applied to generated images. LyCORIS files are an extended variant of LoRA. InvokeAI supports the most common LoRA/LyCORIS format, which ends in the suffix .safetensors. You will find numerous LoRA and LyCORIS models for download at Civitai, and a small but growing number at Hugging Face. Full documentation of LoRA support is available at InvokeAI LoRA Support.( Pre-release note: this page will only be available after release)
To use LoRA/LyCORIS models in InvokeAI:
Download the .safetensors files of your choice and place in /path/to/invokeai/loras. This directory was not present in earlier version of InvokeAI but will be created for you the first time you run the command-line or web client. You can also create the directory manually.
Add withLora(lora-file,weight) to your prompts. The weight is optional and will default to 1.0. A few examples, assuming that a LoRA file named loras/sushi.safetensors is present:
family sitting at dinner table eating sushi withLora(sushi,0.9)
family sitting at dinner table eating sushi withLora(sushi, 0.75)
family sitting at dinner table eating sushi withLora(sushi)
Multiple withLora() prompt fragments are allowed. The weight can be arbitrarily large, but the useful range is roughly 0.5 to 1.0. Higher weights make the LoRA's influence stronger. Negative weights are also allowed, which can lead to some interesting effects.
Generate as you usually would! If you find that the image is too "crisp" try reducing the overall CFG value or reducing individual LoRA weights. As is the case with all fine-tunes, you'll get the best results when running the LoRA on top of the model similar to, or identical with, the one that was used during the LoRA's training. Don't try to load a SD 1.x-trained LoRA into a SD 2.x model, and vice versa. This will trigger a non-fatal error message and generation will not proceed.
You can change the location of the loras directory by passing the --lora_directory option to `invokeai.
### New WebUI LoRA and Textual Inversion Buttons
This version adds two new web interface buttons for inserting LoRA and Textual Inversion triggers into the prompt as shown in the screenshot below.
Clicking on one or the other of the buttons will bring up a menu of available LoRA/LyCORIS or Textual Inversion trigger terms. Select a menu item to insert the properly-formatted withLora() or <textual-inversion> prompt fragment into the positive prompt. The number in parentheses indicates the number of trigger terms currently in the prompt. You may click the button again and deselect the LoRA or trigger to remove it from the prompt, or simply edit the prompt directly.
Currently terms are inserted into the positive prompt textbox only. However, some textual inversion embeddings are designed to be used with negative prompts. To move a textual inversion trigger into the negative prompt, simply cut and paste it.
By default the Textual Inversion menu only shows locally installed models found at startup time in /path/to/invokeai/embeddings. However, InvokeAI has the ability to dynamically download and install additional Textual Inversion embeddings from the HuggingFace Concepts Library. You may choose to display the most popular of these (with five or more likes) in the Textual Inversion menu by going to Settings and turning on "Show Textual Inversions from HF Concepts Library." When this option is activated, the locally-installed TI embeddings will be shown first, followed by uninstalled terms from Hugging Face. See The Hugging Face Concepts Library and Importing Textual Inversion files for more information.
### Minor features and fixes
This release changes model switching behavior so that the command-line and Web UIs save the last model used and restore it the next time they are launched. It also improves the behavior of the installer so that the pip utility is kept up to date.
### Known Bugs in 2.3.4
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.3 <small>(28 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.2 the following bugs have been fixed:
Bugs
When using legacy checkpoints with an external VAE, the VAE file is now scanned for malware prior to loading. Previously only the main model weights file was scanned.
Textual inversion will select an appropriate batchsize based on whether xformers is active, and will default to xformers enabled if the library is detected.
The batch script log file names have been fixed to be compatible with Windows.
Occasional corruption of the .next_prefix file (which stores the next output file name in sequence) on Windows systems is now detected and corrected.
Support loading of legacy config files that have no personalization (textual inversion) section.
An infinite loop when opening the developer's console from within the invoke.sh script has been corrected.
Documentation fixes, including a recipe for detecting and fixing problems with the AMD GPU ROCm driver.
Enhancements
It is now possible to load and run several community-contributed SD-2.0 based models, including the often-requested "Illuminati" model.
The "NegativePrompts" embedding file, and others like it, can now be loaded by placing it in the InvokeAI embeddings directory.
If no --model is specified at launch time, InvokeAI will remember the last model used and restore it the next time it is launched.
On Linux systems, the invoke.sh launcher now uses a prettier console-based interface. To take advantage of it, install the dialog package using your package manager (e.g. sudo apt install dialog).
When loading legacy models (safetensors/ckpt) you can specify a custom config file and/or a VAE by placing like-named files in the same directory as the model following this example:
my-favorite-model.ckpt
my-favorite-model.yaml
my-favorite-model.vae.pt # or my-favorite-model.vae.safetensors
### Known Bugs in 2.3.3
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.2 <small>(11 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.1 the following bugs have been fixed:
Black images appearing for potential NSFW images when generating with legacy checkpoint models and both --no-nsfw_checker and --ckpt_convert turned on.
Black images appearing when generating from models fine-tuned on Stable-Diffusion-2-1-base. When importing V2-derived models, you may be asked to select whether the model was derived from a "base" model (512 pixels) or the 768-pixel SD-2.1 model.
The "Use All" button was not restoring the Hi-Res Fix setting on the WebUI
When using the model installer console app, models failed to import correctly when importing from directories with spaces in their names. A similar issue with the output directory was also fixed.
Crashes that occurred during model merging.
Restore previous naming of Stable Diffusion base and 768 models.
Upgraded to latest versions of diffusers, transformers, safetensors and accelerate libraries upstream. We hope that this will fix the assertion NDArray > 2**32 issue that MacOS users have had when generating images larger than 768x768 pixels. Please report back.
As part of the upgrade to diffusers, the location of the diffusers-based models has changed from models/diffusers to models/hub. When you launch InvokeAI for the first time, it will prompt you to OK a one-time move. This should be quick and harmless, but if you have modified your models/diffusers directory in some way, for example using symlinks, you may wish to cancel the migration and make appropriate adjustments.
New "Invokeai-batch" script
### Invoke AI Batch
2.3.2 introduces a new command-line only script called invokeai-batch that can be used to generate hundreds of images from prompts and settings that vary systematically. This can be used to try the same prompt across multiple combinations of models, steps, CFG settings and so forth. It also allows you to template prompts and generate a combinatorial list like:
a shack in the mountains, photograph
a shack in the mountains, watercolor
a shack in the mountains, oil painting
a chalet in the mountains, photograph
a chalet in the mountains, watercolor
a chalet in the mountains, oil painting
a shack in the desert, photograph
...
If you have a system with multiple GPUs, or a single GPU with lots of VRAM, you can parallelize generation across the combinatorial set, reducing wait times and using your system's resources efficiently (make sure you have good GPU cooling).
To try invokeai-batch out. Launch the "developer's console" using the invoke launcher script, or activate the invokeai virtual environment manually. From the console, give the command invokeai-batch --help in order to learn how the script works and create your first template file for dynamic prompt generation.
### Known Bugs in 2.3.2
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise a Trojan alert for the codeformer.pth face restoration model. As far as we have been able to determine, this is a false positive and can be safely whitelisted.
## v2.3.1 <small>(22 February 2023)</small>
This is primarily a bugfix release, but it does provide several new features that will improve the user experience.
### Enhanced support for model management
InvokeAI now makes it convenient to add, remove and modify models. You can individually import models that are stored on your local system, scan an entire folder and its subfolders for models and import them automatically, and even directly import models from the internet by providing their download URLs. You also have the option of designating a local folder to scan for new models each time InvokeAI is restarted.
There are three ways of accessing the model management features:
From the WebUI, click on the cube to the right of the model selection menu. This will bring up a form that allows you to import models individually from your local disk or scan a directory for models to import.
Using the Model Installer App
Choose option (5) download and install models from the invoke launcher script to start a new console-based application for model management. You can use this to select from a curated set of starter models, or import checkpoint, safetensors, and diffusers models from a local disk or the internet. The example below shows importing two checkpoint URLs from popular SD sites and a HuggingFace diffusers model using its Repository ID. It also shows how to designate a folder to be scanned at startup time for new models to import.
Command-line users can start this app using the command invokeai-model-install.
Using the Command Line Client (CLI)
The !install_model and !convert_model commands have been enhanced to allow entering of URLs and local directories to scan and import. The first command installs .ckpt and .safetensors files as-is. The second one converts them into the faster diffusers format before installation.
Internally InvokeAI is able to probe the contents of a .ckpt or .safetensors file to distinguish among v1.x, v2.x and inpainting models. This means that you do not need to include "inpaint" in your model names to use an inpainting model. Note that Stable Diffusion v2.x models will be autoconverted into a diffusers model the first time you use it.
Please see INSTALLING MODELS for more information on model management.
### An Improved Installer Experience
The installer now launches a console-based UI for setting and changing commonly-used startup options:
After selecting the desired options, the installer installs several support models needed by InvokeAI's face reconstruction and upscaling features and then launches the interface for selecting and installing models shown earlier. At any time, you can edit the startup options by launching invoke.sh/invoke.bat and entering option (6) change InvokeAI startup options
Command-line users can launch the new configure app using invokeai-configure.
This release also comes with a renewed updater. To do an update without going through a whole reinstallation, launch invoke.sh or invoke.bat and choose option (9) update InvokeAI . This will bring you to a screen that prompts you to update to the latest released version, to the most current development version, or any released or unreleased version you choose by selecting the tag or branch of the desired version.
Command-line users can run this interface by typing invokeai-configure
### Image Symmetry Options
There are now features to generate horizontal and vertical symmetry during generation. The way these work is to wait until a selected step in the generation process and then to turn on a mirror image effect. In addition to generating some cool images, you can also use this to make side-by-side comparisons of how an image will look with more or fewer steps. Access this option from the WebUI by selecting Symmetry from the image generation settings, or within the CLI by using the options --h_symmetry_time_pct and --v_symmetry_time_pct (these can be abbreviated to --h_sym and --v_sym like all other options).
### A New Unified Canvas Look
This release introduces a beta version of the WebUI Unified Canvas. To try it out, open up the settings dialogue in the WebUI (gear icon) and select Use Canvas Beta Layout:
Refresh the screen and go to to Unified Canvas (left side of screen, third icon from the top). The new layout is designed to provide more space to work in and to keep the image controls close to the image itself:
Model conversion and merging within the WebUI
The WebUI now has an intuitive interface for model merging, as well as for permanent conversion of models from legacy .ckpt/.safetensors formats into diffusers format. These options are also available directly from the invoke.sh/invoke.bat scripts.
An easier way to contribute translations to the WebUI
We have migrated our translation efforts to Weblate, a FOSS translation product. Maintaining the growing project's translations is now far simpler for the maintainers and community. Please review our brief translation guide for more information on how to contribute.
Numerous internal bugfixes and performance issues
### Bug Fixes
This releases quashes multiple bugs that were reported in 2.3.0. Major internal changes include upgrading to diffusers 0.13.0, and using the compel library for prompt parsing. See Detailed Change Log for a detailed list of bugs caught and squished.
Summary of InvokeAI command line scripts (all accessible via the launcher menu)
Command Description
invokeai Command line interface
invokeai --web Web interface
invokeai-model-install Model installer with console forms-based front end
invokeai-ti --gui Textual inversion, with a console forms-based front end
invokeai-merge --gui Model merging, with a console forms-based front end
invokeai-configure Startup configuration; can also be used to reinstall support models
invokeai-update InvokeAI software updater
### Known Bugs in 2.3.1
These are known bugs in the release.
MacOS users generating 768x768 pixel images or greater using diffusers models may experience a hard crash with assertion NDArray > 2**32 This appears to be an issu...
## v2.3.0 <small>(15 January 2023)</small>
**Transition to diffusers
@@ -264,7 +494,7 @@ sections describe what's new for InvokeAI.
[Manual Installation](installation/020_INSTALL_MANUAL.md).
- The ability to save frequently-used startup options (model to load, steps,
sampler, etc) in a `.invokeai` file. See
[Client](features/CLI.md)
[Client](deprecated/CLI.md)
- Support for AMD GPU cards (non-CUDA) on Linux machines.
- Multiple bugs and edge cases squashed.
@@ -387,7 +617,7 @@ sections describe what's new for InvokeAI.
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](features/INPAINTING.md) and
- Support for [inpainting](deprecated/INPAINTING.md) and
[outpainting](features/OUTPAINTING.md)
- img2img runs on all k\* samplers
- Support for
@@ -399,7 +629,7 @@ sections describe what's new for InvokeAI.
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E
infinite canvas), and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows
[larger images to be created without duplicating elements](features/CLI.md#this-is-an-example-of-txt2img),
[larger images to be created without duplicating elements](deprecated/CLI.md#this-is-an-example-of-txt2img),
at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control
variation during image generation (see
@@ -408,7 +638,7 @@ sections describe what's new for InvokeAI.
of images and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac
platforms.
- Improved [command-line completion behavior](features/CLI.md) New commands
- Improved [command-line completion behavior](deprecated/CLI.md) New commands
added:
- List command-line history with `!history`
- Search command-line history with `!search`

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 MiB

View File

@@ -0,0 +1,54 @@
## Welcome to Invoke AI
We're thrilled to have you here and we're excited for you to contribute.
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
Here are some guidelines to help you get started:
### Technical Prerequisites
Front-end: You'll need a working knowledge of React and TypeScript.
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
### How to Submit Contributions
To start contributing, please follow these steps:
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
### Types of Contributions We're Looking For
We welcome all contributions that improve the project. Right now, we're especially looking for:
1. Quality of life (QOL) enhancements on the front-end.
2. New backend capabilities added through nodes.
3. Incorporating additional optimizations from the broader open-source software community.
### Communication and Decision-making Process
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
### Code of Conduct and Contribution Expectations
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:
1. The contribution was created in whole or in part by you and you have the right to submit it under the open-source license indicated in this projects GitHub repository; or
2. The contribution is based upon previous work that, to the best of your knowledge, is covered under an appropriate open-source license and you have the right under that license to submit that work with modifications, whether created in whole or in part by you, under the same open-source license (unless you are permitted to submit under a different license); or
3. The contribution was provided directly to you by some other person who certified (1) or (2) and you have not modified it; or
4. You understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information you submit with it, including your sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open-source license(s) involved.
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
---
Remember, your contributions help make this project great. We're excited to see what you'll bring to our community!

View File

@@ -205,14 +205,14 @@ Here are the invoke> command that apply to txt2img:
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--seamless_axes` | | `x,y` | Specify which axes to use circular convolution on. |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](../features/OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75` | Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--facetool_strength <float>` | `-G <float> ` | `-G0` | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
@@ -257,7 +257,7 @@ additional options:
by `-M`. You may also supply just a single initial image with the areas
to overpaint made transparent, but you must be careful not to destroy
the pixels underneath when you create the transparent areas. See
[Inpainting](./INPAINTING.md) for details.
[Inpainting](INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as well as
the --mask (-M) and --text_mask (-tm) arguments:
@@ -297,7 +297,7 @@ invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](CONCEPTS.md) for more details.
see [Concepts Library](../features/CONCEPTS.md) for more details.
## Other Commands

View File

@@ -65,39 +65,21 @@ find out what each concept is for, you can browse the
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
look at examples of what each concept produces.
When you have an idea of a concept you wish to try, go to the command-line
client (CLI) and type a `<` character and the beginning of the Hugging Face
concept name you wish to load. Press ++tab++, and the CLI will show you all
matching concepts. You can also type `<` and hit ++tab++ to get a listing of all
~800 concepts, but be prepared to scroll up to see them all! If there is more
than one match you can continue to type and ++tab++ until the concept is
completed.
To load concepts, you will need to open the Web UI's configuration
dialogue and activate "Show Textual Inversions from HF Concepts
Library". This will then add a list of HF Concepts to the dropdown
"Add Textual Inversion" menu. Select the concept(s) of your choice and
they will be incorporated into the positive prompt. A few concepts are
designed for the negative prompt, in which case you can add them to
the negative prompt box by select the down arrow icon next to the
textual inversion menu.
!!! example
if you type in `<x` and hit ++tab++, you'll be prompted with the completions:
```py
<xatu2> <xatu> <xbh> <xi> <xidiversity> <xioboma> <xuna> <xyz>
```
Now type `id` and press ++tab++. It will be autocompleted to `<xidiversity>`
because this is a unique match.
Finish your prompt and generate as usual. You may include multiple concept terms
in the prompt.
If you have never used this concept before, you will see a message that the TI
model is being downloaded and installed. After this, the concept will be saved
locally (in the `models/sd-concepts-library` directory) for future use.
Several steps happen during downloading and installation, including a scan of
the file for malicious code. Should any errors occur, you will be warned and the
concept will fail to load. Generation will then continue treating the trigger
term as a normal string of characters (e.g. as literal `<ghibli-face>`).
You can also use `<concept-names>` in the WebGUI's prompt textbox. There is no
autocompletion at this time.
There are nearly 1000 HF concepts, more than will fit into a menu. For
this reason we only show the most popular concepts (those which have
received 5 or more likes). If you wish to use a concept that is not on
the list, you may simply type its name surrounded by brackets. For
example, to load the concept named "xidiversity", add `<xidiversity>`
to the positive or negative prompt text.
## Installing your Own TI Files
@@ -112,18 +94,11 @@ At startup time, InvokeAI will scan the `embeddings` directory and load any TI
files it finds there. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: *, <HOI4-Leader>, <princess-knight>
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
Note the `*` trigger term. This is a placeholder term that many early TI
tutorials taught people to use rather than a more descriptive term.
Unfortunately, if you have multiple TI files that all use this term, only the
first one loaded will be triggered by use of the term.
To avoid this problem, you can use the `merge_embeddings.py` script to merge two
or more TI files together. If it encounters a collision of terms, the script
will prompt you to select new terms that do not collide. See
[Textual Inversion](TEXTUAL_INVERSION.md) for details.
The terms you can use will appear in the "Add Textual Inversion"
dropdown menu above the HF Concepts.
## Further Reading

View File

@@ -0,0 +1,92 @@
---
title: ControlNet
---
# :material-loupe: ControlNet
## ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source community (notably, Stanford researcher [**@ilyasviel**](https://github.com/lllyasviel)) that allows you to apply a secondary neural network model to your image generation process in Invoke.
With ControlNet, you can get more control over the output of your image generation, providing you with a way to direct the network towards generating images that better fit your desired style or outcome.
### How it works
ControlNet works by analyzing an input image, pre-processing that image to identify relevant information that can be interpreted by each specific ControlNet model, and then inserting that control information into the generation process. This can be used to adjust the style, composition, or other aspects of the image to better achieve a specific result.
### Models
As part of the model installation, ControlNet models can be selected including a variety of pre-trained models that have been added to achieve different effects or styles in your generated images. Further ControlNet models may require additional code functionality to also be incorporated into Invoke's Invocations folder. You should expect to follow any installation instructions for ControlNet models loaded outside the default models provided by Invoke. The default models include:
**Canny**:
When the Canny model is used in ControlNet, Invoke will attempt to generate images that match the edges detected.
Canny edge detection works by detecting the edges in an image by looking for abrupt changes in intensity. It is known for its ability to detect edges accurately while reducing noise and false edges, and the preprocessor can identify more information by decreasing the thresholds.
**M-LSD**:
M-LSD is another edge detection algorithm used in ControlNet. It stands for Multi-Scale Line Segment Detector.
It detects straight line segments in an image by analyzing the local structure of the image at multiple scales. It can be useful for architectural imagery, or anything where straight-line structural information is needed for the resulting output.
**Lineart**:
The Lineart model in ControlNet generates line drawings from an input image. The resulting pre-processed image is a simplified version of the original, with only the outlines of objects visible.The Lineart model in ControlNet is known for its ability to accurately capture the contours of the objects in an input sketch.
**Lineart Anime**:
A variant of the Lineart model that generates line drawings with a distinct style inspired by anime and manga art styles.
**Depth**:
A model that generates depth maps of images, allowing you to create more realistic 3D models or to simulate depth effects in post-processing.
**Normal Map (BAE):**
A model that generates normal maps from input images, allowing for more realistic lighting effects in 3D rendering.
**Image Segmentation**:
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
**Tile (experimental)**:
The Tile model fills out details in the image to match the image, rather than the prompt. The Tile Model is a versatile tool that offers a range of functionalities. Its primary capabilities can be boiled down to two main behaviors:
- It can reinterpret specific details within an image and create fresh, new elements.
- It has the ability to disregard global instructions if there's a discrepancy between them and the local context or specific parts of the image. In such cases, it uses the local context to guide the process.
The Tile Model can be a powerful tool in your arsenal for enhancing image quality and details. If there are undesirable elements in your images, such as blurriness caused by resizing, this model can effectively eliminate these issues, resulting in cleaner, crisper images. Moreover, it can generate and add refined details to your images, improving their overall quality and appeal.
**Pix2Pix (experimental)**
With Pix2Pix, you can input an image into the controlnet, and then "instruct" the model to change it using your prompt. For example, you can say "Make it winter" to add more wintry elements to a scene.
**Inpaint**: Coming Soon - Currently this model is available but not functional on the Canvas. An upcoming release will provide additional capabilities for using this model when inpainting.
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
## Using ControlNet
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
Each ControlNet has two settings that are applied to the ControlNet.
Weight - Strength of the Controlnet model applied to the generation for the section, defined by start/end.
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.

View File

@@ -4,86 +4,13 @@ title: Image-to-Image
# :material-image-multiple: Image-to-Image
Both the Web and command-line interfaces provide an "img2img" feature
that lets you seed your creations with an initial drawing or
photo. This is a really cool feature that tells stable diffusion to
build the prompt on top of the image you provide, preserving the
original's basic shape and layout.
InvokeAI provides an "img2img" feature that lets you seed your
creations with an initial drawing or photo. This is a really cool
feature that tells stable diffusion to build the prompt on top of the
image you provide, preserving the original's basic shape and layout.
See the [WebUI Guide](WEB.md) for a walkthrough of the img2img feature
in the InvokeAI web server. This document describes how to use img2img
in the command-line tool.
## Basic Usage
Launch the command-line client by launching `invoke.sh`/`invoke.bat`
and choosing option (1). Alternative, activate the InvokeAI
environment and issue the command `invokeai`.
Once the `invoke> ` prompt appears, you can start an img2img render by
pointing to a seed file with the `-I` option as shown here:
!!! example ""
```commandline
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
<figure markdown>
| original image | generated image |
| :------------: | :-------------: |
| ![original-image](https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png){ width=320 } | ![generated-image](https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png){ width=320 } |
</figure>
The `--init_img` (`-I`) option gives the path to the seed picture. `--strength`
(`-f`) controls how much the original will be modified, ranging from `0.0` (keep
the original intact), to `1.0` (ignore the original completely). The default is
`0.75`, and ranges from `0.25-0.90` give interesting results. Other relevant
options include `-C` (classification free guidance scale), and `-s` (steps).
Unlike `txt2img`, adding steps will continuously change the resulting image and
it will not converge.
You may also pass a `-v<variation_amount>` option to generate `-n<iterations>`
count variants on the original image. This is done by passing the first
generated image back into img2img the requested number of times. It generates
interesting variants.
Note that the prompt makes a big difference. For example, this slight variation
on the prompt produces a very different image:
<figure markdown>
![](https://user-images.githubusercontent.com/111189/194135220-16b62181-b60c-4248-8989-4834a8fd7fbd.png){ width=320 }
<caption markdown>photograph of a tree on a hill with a river</caption>
</figure>
!!! tip
When designing prompts, think about how the images scraped from the internet were
captioned. Very few photographs will be labeled "photograph" or "photorealistic."
They will, however, be captioned with the publication, photographer, camera model,
or film settings.
If the initial image contains transparent regions, then Stable Diffusion will
only draw within the transparent regions, a process called
[`inpainting`](./INPAINTING.md#creating-transparent-regions-for-inpainting).
However, for this to work correctly, the color information underneath the
transparent needs to be preserved, not erased.
!!! warning "**IMPORTANT ISSUE** "
`img2img` does not work properly on initial images smaller
than 512x512. Please scale your image to at least 512x512 before using it.
Larger images are not a problem, but may run out of VRAM on your GPU card. To
fix this, use the --fit option, which downscales the initial image to fit within
the box specified by width x height:
```
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
```
## How does it actually work, though?
For a walkthrough of using Image-to-Image in the Web UI, see [InvokeAI
Web Server](./WEB.md#image-to-image).
The main difference between `img2img` and `prompt2img` is the starting point.
While `prompt2img` always starts with pure gaussian noise and progressively
@@ -99,10 +26,6 @@ seed `1592514025` develops something like this:
!!! example ""
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png){ width=720 }
</figure>
@@ -157,17 +80,8 @@ Diffusion has less chance to refine itself, so the result ends up inheriting all
the problems of my bad drawing.
If you want to try this out yourself, all of these are using a seed of
`1592514025` with a width/height of `384`, step count `10`, the default sampler
(`k_lms`), and the single-word prompt `"fire"`:
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch
[document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) -
run `invoke.py` and check your `outputs/img-samples/intermediates` folder while
generating an image.
`1592514025` with a width/height of `384`, step count `10`, the
`k_lms` sampler, and the single-word prompt `"fire"`.
### Compensating for the reduced step count
@@ -180,10 +94,6 @@ give each generation 20 steps.
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD
does `20` steps from my image):
```bash
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
```
<figure markdown>
![000035.1592514025](../assets/img2img/000035.1592514025.png)
</figure>
@@ -191,10 +101,6 @@ invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
and here is strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to
make sure SD does `20` steps from my image):
```commandline
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
```
<figure markdown>
![000046.1592514025](../assets/img2img/000046.1592514025.png)
</figure>

View File

@@ -71,6 +71,3 @@ under the selected name and register it with InvokeAI.
use InvokeAI conventions - only alphanumeric letters and the
characters ".+-".
## Caveats
This is a new script and may contain bugs.

View File

@@ -31,10 +31,22 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually
`invokeai.init` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.
response is stored in the InvokeAI initialization file
(`invokeai.yaml` in the InvokeAI root directory). You can change the
default at any time by opening this file in a text editor and
changing the line `nsfw_checker:` from true to false or vice-versa:
```
...
Features:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: true
patchmatch: true
restore: true
```
## Caveats
@@ -79,11 +91,3 @@ generates. However, it does write metadata into the PNG data area,
including the prompt used to generate the image and relevant parameter
settings. These fields can be examined using the `sd-metadata.py`
script that comes with the InvokeAI package.
Note that several other Stable Diffusion distributions offer
wavelet-based "invisible" watermarking. We have experimented with the
library used to generate these watermarks and have reached the
conclusion that while the watermarking library may be adding
watermarks to PNG images, the currently available version is unable to
retrieve them successfully. If and when a functioning version of the
library becomes available, we will offer this feature as well.

View File

@@ -18,43 +18,16 @@ Output Example:
## **Seamless Tiling**
The seamless tiling mode causes generated images to seamlessly tile with itself. To use it, add the
`--seamless` option when starting the script which will result in all generated images to tile, or
for each `invoke>` prompt as shown here:
The seamless tiling mode causes generated images to seamlessly tile
with itself creating repetitive wallpaper-like patterns. To use it,
activate the Seamless Tiling option in the Web GUI and then select
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
will then be active for the next set of generations.
A nice prompt to test seamless tiling with is:
```python
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**
Since it is so common to reuse seeds while refining a prompt, there is now a shortcut as of version
1.11. Provide a `-S` (or `--seed`) switch of `-1` to use the seed of the most recent image
generated. If you produced multiple images with the `-n` switch, then you can go back further
using `-2`, `-3`, etc. up to the first image generated by the previous command. Sorry, but you can't go
back further than one command.
Here's an example of using this to do a quick refinement. It also illustrates using the new `-G`
switch to turn on upscaling and face enhancement (see previous section):
```bash
invoke> a cute child playing hopscotch -G0.5
[...]
outputs/img-samples/000039.3498014304.png: "a cute child playing hopscotch" -s50 -W512 -H512 -C7.5 -mk_lms -S3498014304
# I wonder what it will look like if I bump up the steps and set facial enhancement to full strength?
invoke> a cute child playing hopscotch -G1.0 -s100 -S -1
reusing previous seed 3498014304
[...]
outputs/img-samples/000040.3498014304.png: "a cute child playing hopscotch" -G1.0 -s100 -W512 -H512 -C7.5 -mk_lms -S3498014304
pond garden with lotus by claude monet"
```
---
@@ -73,66 +46,27 @@ This will tell the sampler to invest 25% of its effort on the tabby cat aspect o
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
combination of integers and floating point numbers, and they do not need to add up to 1.
---
## **Filename Format**
The argument `--fnformat` allows to specify the filename of the
image. Supported wildcards are all arguments what can be set such as
`perlin`, `seed`, `threshold`, `height`, `width`, `gfpgan_strength`,
`sampler_name`, `steps`, `model`, `upscale`, `prompt`, `cfg_scale`,
`prefix`.
The following prompt
```bash
dream> a red car --steps 25 -C 9.8 --perlin 0.1 --fnformat {prompt}_steps.{steps}_cfg.{cfg_scale}_perlin.{perlin}.png
```
generates a file with the name: `outputs/img-samples/a red car_steps.25_cfg.9.8_perlin.0.1.png`
---
## **Thresholding and Perlin Noise Initialization Options**
Two new options are the thresholding (`--threshold`) and the perlin noise initialization (`--perlin`) options. Thresholding limits the range of the latent values during optimization, which helps combat oversaturation with higher CFG scale values. Perlin noise initialization starts with a percentage (a value ranging from 0 to 1) of perlin noise mixed into the initial noise. Both features allow for more variations and options in the course of generating images.
Under the Noise section of the Web UI, you will find two options named
Perlin Noise and Noise Threshold. [Perlin
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
structured noise used to simulate terrain and other natural
textures. The slider controls the percentage of perlin noise that will
be mixed into the image at the beginning of generation. Adding a little
perlin noise to a generation will alter the image substantially.
The noise threshold limits the range of the latent values during
sampling and helps combat the oversharpening seem with higher CFG
scale values.
For better intuition into what these options do in practice:
![here is a graphic demonstrating them both](../assets/truncation_comparison.jpg)
In generating this graphic, perlin noise at initialization was programmatically varied going across on the diagram by values 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied going down from
0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are fixed, so the initial prompt is as follows (no thresholding or perlin noise):
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 0 --perlin 0
```
Here's an example of another prompt used when setting the threshold to 5 and perlin noise to 0.2:
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 5 --perlin 0.2
```
!!! note
currently the thresholding feature is only implemented for the k-diffusion style samplers, and empirically appears to work best with `k_euler_a` and `k_dpm_2_a`. Using 0 disables thresholding. Using 0 for perlin noise disables using perlin noise for initialization. Finally, using 1 for perlin noise uses only perlin noise for initialization.
---
## **Simplified API**
For programmers who wish to incorporate stable-diffusion into other products, this repository
includes a simplified API for text to image generation, which lets you create images from a prompt
in just three lines of code:
```bash
from ldm.generate import Generate
g = Generate()
outputs = g.txt2img("a unicorn in manhattan")
```
Outputs is a list of lists in the format [filename1,seed1],[filename2,seed2]...].
Please see the documentation in ldm/generate.py for more information.
---
In generating this graphic, perlin noise at initialization was
programmatically varied going across on the diagram by values 0.0,
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
20, 100 steps, and a seed of 1950357039.

View File

@@ -8,12 +8,6 @@ title: Postprocessing
This extension provides the ability to restore faces and upscale images.
Face restoration and upscaling can be applied at the time you generate the
images, or at any later time against a previously-generated PNG file, using the
[!fix](#fixing-previously-generated-images) command.
[Outpainting and outcropping](OUTPAINTING.md) can only be applied after the
fact.
## Face Fixing
The default face restoration module is GFPGAN. The default upscale is
@@ -23,8 +17,7 @@ Real-ESRGAN. For an alternative face restoration module, see
As of version 1.14, environment.yaml will install the Real-ESRGAN package into
the standard install location for python packages, and will put GFPGAN into a
subdirectory of "src" in the InvokeAI directory. Upscaling with Real-ESRGAN
should "just work" without further intervention. Simply pass the `--upscale`
(`-U`) option on the `invoke>` command line, or indicate the desired scale on
should "just work" without further intervention. Simply indicate the desired scale on
the popup in the Web GUI.
**GFPGAN** requires a series of downloadable model files to work. These are
@@ -41,48 +34,75 @@ reconstruction.
### Upscaling
`-U : <upscaling_factor> <upscaling_strength>`
Open the upscaling dialog by clicking on the "expand" icon located
above the image display area in the Web UI:
The upscaling prompt argument takes two values. The first value is a scaling
factor and should be set to either `2` or `4` only. This will either scale the
image 2x or 4x respectively using different models.
<figure markdown>
![upscale1](../assets/features/upscale-dialog.png)
</figure>
You can set the scaling stength between `0` and `1.0` to control intensity of
the of the scaling. This is handy because AI upscalers generally tend to smooth
out texture details. If you wish to retain some of those for natural looking
results, we recommend using values between `0.5 to 0.8`.
There are three different upscaling parameters that you can
adjust. The first is the scale itself, either 2x or 4x.
If you do not explicitly specify an upscaling_strength, it will default to 0.75.
The second is the "Denoising Strength." Higher values will smooth out
the image and remove digital chatter, but may lose fine detail at
higher values.
Third, "Upscale Strength" allows you to adjust how the You can set the
scaling stength between `0` and `1.0` to control the intensity of the
scaling. AI upscalers generally tend to smooth out texture details. If
you wish to retain some of those for natural looking results, we
recommend using values between `0.5 to 0.8`.
[This figure](../assets/features/upscaling-montage.png) illustrates
the effects of denoising and strength. The original image was 512x512,
4x scaled to 2048x2048. The "original" version on the upper left was
scaled using simple pixel averaging. The remainder use the ESRGAN
upscaling algorithm at different levels of denoising and strength.
<figure markdown>
![upscaling](../assets/features/upscaling-montage.png){ width=720 }
</figure>
Both denoising and strength default to 0.75.
### Face Restoration
`-G : <facetool_strength>`
InvokeAI offers alternative two face restoration algorithms,
[GFPGAN](https://github.com/TencentARC/GFPGAN) and
[CodeFormer](https://huggingface.co/spaces/sczhou/CodeFormer). These
algorithms improve the appearance of faces, particularly eyes and
mouths. Issues with faces are less common with the latest set of
Stable Diffusion models than with the original 1.4 release, but the
restoration algorithms can still make a noticeable improvement in
certain cases. You can also apply restoration to old photographs you
upload.
This prompt argument controls the strength of the face restoration that is being
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
To access face restoration, click the "smiley face" icon in the
toolbar above the InvokeAI image panel. You will be presented with a
dialog that offers a choice between the two algorithm and sliders that
allow you to adjust their parameters. Alternatively, you may open the
left-hand accordion panel labeled "Face Restoration" and have the
restoration algorithm of your choice applied to generated images
automatically.
You can use either one or both without any conflicts. In cases where you use
both, the image will be first upscaled and then the face restoration process
will be executed to ensure you get the highest quality facial features.
`--save_orig`
Like upscaling, there are a number of parameters that adjust the face
restoration output. GFPGAN has a single parameter, `strength`, which
controls how much the algorithm is allowed to adjust the
image. CodeFormer has two parameters, `strength`, and `fidelity`,
which together control the quality of the output image as described in
the [CodeFormer project
page](https://shangchenzhou.com/projects/CodeFormer/). Default values
are 0.75 for both parameters, which achieves a reasonable balance
between changing the image too much and not enough.
When you use either `-U` or `-G`, the final result you get is upscaled or face
modified. If you want to save the original Stable Diffusion generation, you can
use the `-save_orig` prompt argument to save the original unaffected version
too.
[This figure](../assets/features/restoration-montage.png) illustrates
the effects of adjusting GFPGAN and CodeFormer parameters.
### Example Usage
```bash
invoke> "superman dancing with a panda bear" -U 2 0.6 -G 0.4
```
This also works with img2img:
```bash
invoke> "a man wearing a pineapple hat" -I path/to/your/file.png -U 2 0.5 -G 0.6
```
<figure markdown>
![upscaling](../assets/features/restoration-montage.png){ width=720 }
</figure>
!!! note
@@ -95,69 +115,8 @@ invoke> "a man wearing a pineapple hat" -I path/to/your/file.png -U 2 0.5 -G 0.6
process is complete. While the image generation is taking place, you will still be able to preview
the base images.
If you wish to stop during the image generation but want to upscale or face
restore a particular generated image, pass it again with the same prompt and
generated seed along with the `-U` and `-G` prompt arguments to perform those
actions.
## CodeFormer Support
This repo also allows you to perform face restoration using
[CodeFormer](https://github.com/sczhou/CodeFormer).
In order to setup CodeFormer to work, you need to download the models like with
GFPGAN. You can do this either by running `invokeai-configure` or by manually
downloading the
[model file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
and saving it to `ldm/invoke/restoration/codeformer/weights` folder.
You can use `-ft` prompt argument to swap between CodeFormer and the default
GFPGAN. The above mentioned `-G` prompt argument will allow you to control the
strength of the restoration effect.
### CodeFormer Usage
The following command will perform face restoration with CodeFormer instead of
the default gfpgan.
`<prompt> -G 0.8 -ft codeformer`
### Other Options
- `-cf` - cf or CodeFormer Fidelity takes values between `0` and `1`. 0 produces
high quality results but low accuracy and 1 produces lower quality results but
higher accuacy to your original face.
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is closely matching to the input face.
`<prompt> -G 1.0 -ft codeformer -cf 0.9`
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is the best restoration possible. This may deviate
slightly from the original face. This is an excellent option to use in
situations when there is very little facial data to work with.
`<prompt> -G 1.0 -ft codeformer -cf 0.1`
## Fixing Previously-Generated Images
It is easy to apply face restoration and/or upscaling to any
previously-generated file. Just use the syntax
`!fix path/to/file.png <options>`. For example, to apply GFPGAN at strength 0.8
and upscale 2X for a file named `./outputs/img-samples/000044.2945021133.png`,
just run:
```bash
invoke> !fix ./outputs/img-samples/000044.2945021133.png -G 0.8 -U 2
```
A new file named `000044.2945021133.fixed.png` will be created in the output
directory. Note that the `!fix` command does not replace the original file,
unlike the behavior at generate time.
## How to disable
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
you can disable them on the invoke.py command line with the `--no_restore` and
`--no_upscale` options, respectively.
`--no_esrgan` options, respectively.

View File

@@ -4,77 +4,12 @@ title: Prompting-Features
# :octicons-command-palette-24: Prompting-Features
## **Reading Prompts from a File**
You can automate `invoke.py` by providing a text file with the prompts you want
to run, one line per prompt. The text file must be composed with a text editor
(e.g. Notepad) and not a word processor. Each line should look like what you
would type at the invoke> prompt:
```bash
"a beautiful sunny day in the park, children playing" -n4 -C10
"stormy weather on a mountain top, goats grazing" -s100
"innovative packaging for a squid's dinner" -S137038382
```
Then pass this file's name to `invoke.py` when you invoke it:
```bash
python scripts/invoke.py --from_file "/path/to/prompts.txt"
```
You may also read a series of prompts from standard input by providing
a filename of `-`. For example, here is a python script that creates a
matrix of prompts, each one varying slightly:
```bash
#!/usr/bin/env python
adjectives = ['sunny','rainy','overcast']
samplers = ['k_lms','k_euler_a','k_heun']
cfg = [7.5, 9, 11]
for adj in adjectives:
for samp in samplers:
for cg in cfg:
print(f'a {adj} day -A{samp} -C{cg}')
```
Its output looks like this (abbreviated):
```bash
a sunny day -Aklms -C7.5
a sunny day -Aklms -C9
a sunny day -Aklms -C11
a sunny day -Ak_euler_a -C7.5
a sunny day -Ak_euler_a -C9
...
a overcast day -Ak_heun -C9
a overcast day -Ak_heun -C11
```
To feed it to invoke.py, pass the filename of "-"
```bash
python matrix.py | python scripts/invoke.py --from_file -
```
When the script is finished, each of the 27 combinations
of adjective, sampler and CFG will be executed.
The command-line interface provides `!fetch` and `!replay` commands
which allow you to read the prompts from a single previously-generated
image or a whole directory of them, write the prompts to a file, and
then replay them. Or you can create your own file of prompts and feed
them to the command-line client from within an interactive session.
See [Command-Line Interface](CLI.md) for details.
---
## **Negative and Unconditioned Prompts**
Any words between a pair of square brackets will instruct Stable Diffusion to
attempt to ban the concept from the generated image.
Any words between a pair of square brackets will instruct Stable
Diffusion to attempt to ban the concept from the generated image. The
same effect is achieved by placing words in the "Negative Prompts"
textbox in the Web UI.
```text
this is a test prompt [not really] to make you understand [cool] how this works.
@@ -87,7 +22,9 @@ Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
<figure markdown>
@@ -99,7 +36,8 @@ That image has a woman, so if we want the horse without a rider, we can
influence the image not to have a woman by putting [woman] in the prompt, like
this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
(same parameters as above)
<figure markdown>
@@ -110,7 +48,8 @@ this:
That's nice - but say we also don't want the image to be quite so blue. We can
add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
(same parameters as above)
<figure markdown>
@@ -121,7 +60,8 @@ add "blue" to the list of negative prompts, so it's now [woman blue]:
Getting close - but there's no sense in having a saddle when our horse doesn't
have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
(same parameters as above)
<figure markdown>
@@ -261,19 +201,6 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
Note that `prompt2prompt` is not currently working with the runwayML inpainting
model, and may never work due to the way this model is set up. If you attempt to
use `prompt2prompt` you will get the original image back. However, since this
model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdog
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat
```
### Escaping parantheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its
@@ -374,6 +301,5 @@ summoning up the concept of some sort of scifi creature? Let's find out.
Indeed, removing the word "hybrid" produces an image that is more like what we'd
expect.
In conclusion, prompt blending is great for exploring creative space, but can be
difficult to direct. A forthcoming release of InvokeAI will feature more
deterministic prompt weighting.
In conclusion, prompt blending is great for exploring creative space,
but takes some trial and error to achieve the desired effect.

View File

@@ -46,11 +46,19 @@ start the front end by selecting choice (3):
```sh
Do you want to generate images using the
1. command-line
2. browser-based UI
3. textual inversion training
4. open the developer console
Please enter 1, 2, 3, or 4: [1] 3
1: Browser-based UI
2: Command-line interface
3: Run textual inversion training
4: Merge models (diffusers type only)
5: Download and install models
6: Change InvokeAI startup options
7: Re-run the configure script to fix a broken install
8: Open the developer console
9: Update InvokeAI
10: Command-line help
Q: Quit
Please enter 1-10, Q: [1]
```
From the command line, with the InvokeAI virtual environment active,

View File

@@ -6,9 +6,7 @@ title: Variations
## Intro
Release 1.13 of SD-Dream adds support for image variations.
You are able to do the following:
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
@@ -30,19 +28,7 @@ The prompt we will use throughout is:
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations:
```bash
invoke> lucy lawless as xena, warrior princess, character portrait, high resolution -n6
...
Outputs:
./outputs/Xena/000001.1579445059.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1579445059
./outputs/Xena/000001.1880768722.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1880768722
./outputs/Xena/000001.332057179.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S332057179
./outputs/Xena/000001.2224800325.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S2224800325
./outputs/Xena/000001.465250761.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S465250761
./outputs/Xena/000001.3357757885.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S3357757885
```
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
@@ -53,22 +39,16 @@ Outputs:
## Step 2 - Generating Variations
Let's try to generate some variations. Using the same seed, we pass the argument
`-v0.1` (or --variant_amount), which generates a series of variations each
differing by a variation amount of 0.2. This number ranges from `0` to `1.0`,
with higher numbers being larger amounts of variation.
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
```bash
invoke> "prompt" -n6 -S3357757885 -v0.2
...
Outputs:
./outputs/Xena/000002.784039624.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 784039624:0.2 -S3357757885
./outputs/Xena/000002.3647897225.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.2 -S3357757885
./outputs/Xena/000002.917731034.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 917731034:0.2 -S3357757885
./outputs/Xena/000002.4116285959.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 4116285959:0.2 -S3357757885
./outputs/Xena/000002.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1614299449:0.2 -S3357757885
./outputs/Xena/000002.1335553075.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1335553075:0.2 -S3357757885
```
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**

View File

@@ -299,14 +299,6 @@ initial image" icons are located.
See the [Unified Canvas Guide](UNIFIED_CANVAS.md)
## Parting remarks
This concludes the walkthrough, but there are several more features that you can
explore. Please check out the [Command Line Interface](CLI.md) documentation for
further explanation of the advanced features that were not covered here.
The WebUI is only rapid development. Check back regularly for updates!
## Reference
### Additional Options
@@ -349,11 +341,9 @@ the settings configured in the toolbar.
See below for additional documentation related to each feature:
- [Core Prompt Settings](./CLI.md)
- [Variations](./VARIATIONS.md)
- [Upscaling](./POSTPROCESS.md#upscaling)
- [Image to Image](./IMG2IMG.md)
- [Inpainting](./INPAINTING.md)
- [Other](./OTHER.md)
#### Invocation Gallery

View File

@@ -13,28 +13,16 @@ Build complex scenes by combine and modifying multiple images in a stepwise
fashion. This feature combines img2img, inpainting and outpainting in
a single convenient digital artist-optimized user interface.
### * The [Command Line Interface (CLI)](CLI.md)
Scriptable access to InvokeAI's features.
## Image Generation
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
## * [Post-Processing](POSTPROCESS.md)
Restore mangled faces and make images larger with upscaling. Also see the [Embiggen Upscaling Guide](EMBIGGEN.md).
## * The [Concepts Library](CONCEPTS.md)
Add custom subjects and styles using HuggingFace's repository of embeddings.
### * [Image-to-Image Guide for the CLI](IMG2IMG.md)
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
### * [Inpainting Guide for the CLI](INPAINTING.md)
Selectively erase and replace portions of an existing image in the CLI.
### * [Outpainting Guide for the CLI](OUTPAINTING.md)
Extend the borders of the image with an "outcrop" function within the CLI.
### * [Generating Variations](VARIATIONS.md)
Have an image you like and want to generate many more like it? Variations
are the ticket.

View File

@@ -13,6 +13,7 @@ title: Home
<div align="center" markdown>
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@@ -67,7 +68,7 @@ title: Home
implementation of Stable Diffusion, the open source text-to-image and
image-to-image generator. It provides a streamlined process with various new
features and options to aid the image generation process. It runs on Windows,
Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM.
Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a
@@ -131,17 +132,13 @@ This method is recommended for those familiar with running Docker containers
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
- [WebUI Unified Canvas for Img2Img, inpainting and outpainting](features/UNIFIED_CANVAS.md)
<!-- separator -->
### The InvokeAI Command Line Interface
- [Command Line Interace Reference Guide](features/CLI.md)
<!-- separator -->
### Image Management
- [Image2Image](features/IMG2IMG.md)
- [Inpainting](features/INPAINTING.md)
- [Outpainting](features/OUTPAINTING.md)
- [Adding custom styles and subjects](features/CONCEPTS.md)
- [Upscaling and Face Reconstruction](features/POSTPROCESS.md)
- [Embiggen upscaling](features/EMBIGGEN.md)
- [Other Features](features/OTHER.md)
<!-- separator -->
@@ -156,83 +153,60 @@ This method is recommended for those familiar with running Docker containers
- [Prompt Syntax](features/PROMPTS.md)
- [Generating Variations](features/VARIATIONS.md)
## :octicons-log-16: Latest Changes
## :octicons-log-16: Important Changes Since Version 2.3
### v2.3.0 <small>(9 February 2023)</small>
### Nodes
#### Migration to Stable Diffusion `diffusers` models
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
Previous versions of InvokeAI supported the original model file format introduced with Stable Diffusion 1.4. In the original format, known variously as "checkpoint", or "legacy" format, there is a single large weights file ending with `.ckpt` or `.safetensors`. Though this format has served the community well, it has a number of disadvantages, including file size, slow loading times, and a variety of non-standard variants that require special-case code to handle. In addition, because checkpoint files are actually a bundle of multiple machine learning sub-models, it is hard to swap different sub-models in and out, or to share common sub-models. A new format, introduced by the StabilityAI company in collaboration with HuggingFace, is called `diffusers` and consists of a directory of individual models. The most immediate benefit of `diffusers` is that they load from disk very quickly. A longer term benefit is that in the near future `diffusers` models will be able to share common sub-models, dramatically reducing disk space when you have multiple fine-tune models derived from the same base.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
When you perform a new install of version 2.3.0, you will be offered the option to install the `diffusers` versions of a number of popular SD models, including Stable Diffusion versions 1.5 and 2.1 (including the 768x768 pixel version of 2.1). These will act and work just like the checkpoint versions. Do not be concerned if you already have a lot of ".ckpt" or ".safetensors" models on disk! InvokeAI 2.3.0 can still load these and generate images from them without any extra intervention on your part.
### Command-Line Interface Retired
To take advantage of the optimized loading times of `diffusers` models, InvokeAI offers options to convert legacy checkpoint models into optimized `diffusers` models. If you use the `invokeai` command line interface, the relevant commands are:
The original "invokeai" command-line interface has been retired. The
`invokeai` command will now launch a new command-line client that can
be used by developers to create and test nodes. It is not intended to
be used for routine image generation or manipulation.
* `!convert_model` -- Take the path to a local checkpoint file or a URL that is pointing to one, convert it into a `diffusers` model, and import it into InvokeAI's models registry file.
* `!optimize_model` -- If you already have a checkpoint model in your InvokeAI models file, this command will accept its short name and convert it into a like-named `diffusers` model, optionally deleting the original checkpoint file.
* `!import_model` -- Take the local path of either a checkpoint file or a `diffusers` model directory and import it into InvokeAI's registry file. You may also provide the ID of any diffusers model that has been published on the [HuggingFace models repository](https://huggingface.co/models?pipeline_tag=text-to-image&sort=downloads) and it will be downloaded and installed automatically.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
The WebGUI offers similar functionality for model management.
### ControlNet
For advanced users, new command-line options provide additional functionality. Launching `invokeai` with the argument `--autoconvert <path to directory>` takes the path to a directory of checkpoint files, automatically converts them into `diffusers` models and imports them. Each time the script is launched, the directory will be scanned for new checkpoint files to be loaded. Alternatively, the `--ckpt_convert` argument will cause any checkpoint or safetensors model that is already registered with InvokeAI to be converted into a `diffusers` model on the fly, allowing you to take advantage of future diffusers-only features without explicitly converting the model and saving it to disk.
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
Please see [INSTALLING MODELS](https://invoke-ai.github.io/InvokeAI/installation/050_INSTALLING_MODELS/) for more information on model management in both the command-line and Web interfaces.
### New Schedulers
#### Support for the `XFormers` Memory-Efficient Crossattention Package
The list of schedulers has been completely revamped and brought up to date:
On CUDA (Nvidia) systems, version 2.3.0 supports the `XFormers` library. Once installed, the`xformers` package dramatically reduces the memory footprint of loaded Stable Diffusion models files and modestly increases image generation speed. `xformers` will be installed and activated automatically if you specify a CUDA system at install time.
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
The caveat with using `xformers` is that it introduces slightly non-deterministic behavior, and images generated using the same seed and other settings will be subtly different between invocations. Generally the changes are unnoticeable unless you rapidly shift back and forth between images, but to disable `xformers` and restore fully deterministic behavior, you may launch InvokeAI using the `--no-xformers` option. This is most conveniently done by opening the file `invokeai/invokeai.init` with a text editor, and adding the line `--no-xformers` at the bottom.
#### A Negative Prompt Box in the WebUI
There is now a separate text input box for negative prompts in the WebUI. This is convenient for stashing frequently-used negative prompts ("mangled limbs, bad anatomy"). The `[negative prompt]` syntax continues to work in the main prompt box as well.
To see exactly how your prompts are being parsed, launch `invokeai` with the `--log_tokenization` option. The console window will then display the tokenization process for both positive and negative prompts.
#### Model Merging
Version 2.3.0 offers an intuitive user interface for merging up to three Stable Diffusion models using an intuitive user interface. Model merging allows you to mix the behavior of models to achieve very interesting effects. To use this, each of the models must already be imported into InvokeAI and saved in `diffusers` format, then launch the merger using a new menu item in the InvokeAI launcher script (`invoke.sh`, `invoke.bat`) or directly from the command line with `invokeai-merge --gui`. You will be prompted to select the models to merge, the proportions in which to mix them, and the mixing algorithm. The script will create a new merged `diffusers` model and import it into InvokeAI for your use.
See [MODEL MERGING](https://invoke-ai.github.io/InvokeAI/features/MODEL_MERGING/) for more details.
#### Textual Inversion Training
Textual Inversion (TI) is a technique for training a Stable Diffusion model to emit a particular subject or style when triggered by a keyword phrase. You can perform TI training by placing a small number of images of the subject or style in a directory, and choosing a distinctive trigger phrase, such as "pointillist-style". After successful training, The subject or style will be activated by including `<pointillist-style>` in your prompt.
Previous versions of InvokeAI were able to perform TI, but it required using a command-line script with dozens of obscure command-line arguments. Version 2.3.0 features an intuitive TI frontend that will build a TI model on top of any `diffusers` model. To access training you can launch from a new item in the launcher script or from the command line using `invokeai-ti --gui`.
See [TEXTUAL INVERSION](https://invoke-ai.github.io/InvokeAI/features/TEXTUAL_INVERSION/) for further details.
#### A New Installer Experience
The InvokeAI installer has been upgraded in order to provide a smoother and hopefully more glitch-free experience. In addition, InvokeAI is now packaged as a PyPi project, allowing developers and power-users to install InvokeAI with the command `pip install InvokeAI --use-pep517`. Please see [Installation](#installation) for details.
Developers should be aware that the `pip` installation procedure has been simplified and that the `conda` method is no longer supported at all. Accordingly, the `environments_and_requirements` directory has been deleted from the repository.
#### Command-line name changes
All of InvokeAI's functionality, including the WebUI, command-line interface, textual inversion training and model merging, can all be accessed from the `invoke.sh` and `invoke.bat` launcher scripts. The menu of options has been expanded to add the new functionality. For the convenience of developers and power users, we have normalized the names of the InvokeAI command-line scripts:
* `invokeai` -- Command-line client
* `invokeai --web` -- Web GUI
* `invokeai-merge --gui` -- Model merging script with graphical front end
* `invokeai-ti --gui` -- Textual inversion script with graphical front end
* `invokeai-configure` -- Configuration tool for initializing the `invokeai` directory and selecting popular starter models.
For backward compatibility, the old command names are also recognized, including `invoke.py` and `configure-invokeai.py`. However, these are deprecated and will eventually be removed.
Developers should be aware that the locations of the script's source code has been moved. The new locations are:
* `invokeai` => `ldm/invoke/CLI.py`
* `invokeai-configure` => `ldm/invoke/config/configure_invokeai.py`
* `invokeai-ti`=> `ldm/invoke/training/textual_inversion.py`
* `invokeai-merge` => `ldm/invoke/merge_diffusers`
Developers are strongly encouraged to perform an "editable" install of InvokeAI using `pip install -e . --use-pep517` in the Git repository, and then to call the scripts using their 2.3.0 names, rather than executing the scripts directly. Developers should also be aware that the several important data files have been relocated into a new directory named `invokeai`. This includes the WebGUI's `frontend` and `backend` directories, and the `INITIAL_MODELS.yaml` files used by the installer to select starter models. Eventually all InvokeAI modules will be in subdirectories of `invokeai`.
Please see [2.3.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v2.3.0) for further details.
For older changelogs, please visit the
**[CHANGELOG](CHANGELOG/#v223-2-december-2022)**.
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting
@@ -268,8 +242,3 @@ free to send me an email if you use and like the script.
Original portions of the software are Copyright (c) 2022-23
by [The InvokeAI Team](https://github.com/invoke-ai).
## :octicons-book-24: Further Reading
Please see the original README for more information on this software and
underlying algorithm, located in the file
[README-CompViz.md](other/README-CompViz.md).

View File

@@ -87,18 +87,18 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv`:
2. Install `opencv` and `blas`:
```sh
sudo pacman -S opencv
sudo pacman -S opencv blas
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda
sudo pacman -S opencv-cuda blas
```
3. Fix the naming of the `opencv` package configuration file:
```sh

View File

@@ -38,6 +38,7 @@ echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist
echo.
echo See %INSTRUCTIONS% for more details.
echo.
echo "For the best user experience we suggest enlarging or maximizing this window now."
pause
@rem ---------------------------- check Python version ---------------

View File

@@ -25,7 +25,8 @@ done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python 3.9 or higher before running this script. See instructions at $INSTRUCTIONS for help."
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
echo "For the best user experience we suggest enlarging or maximizing this window now."
read -p "Press any key to exit"
exit -1
fi

View File

@@ -149,7 +149,7 @@ class Installer:
return venv_dir
def install(self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
def install(self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
"""
Install the InvokeAI application into the given runtime path

View File

@@ -293,6 +293,8 @@ def introduction() -> None:
"3. Create initial configuration files.",
"",
"[i]At any point you may interrupt this program and resume later.",
"",
"[b]For the best user experience, please enlarge or maximize this window",
),
)
)

View File

@@ -14,7 +14,7 @@ echo 3. Run textual inversion training
echo 4. Merge models (diffusers type only)
echo 5. Download and install models
echo 6. Change InvokeAI startup options
echo 7. Re-run the configure script to fix a broken install
echo 7. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 8. Open the developer console
echo 9. Update InvokeAI
echo 10. Command-line help

View File

@@ -81,7 +81,7 @@ do_choice() {
;;
7)
clear
printf "Re-run the configure script to fix a broken install\n"
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
@@ -118,12 +118,12 @@ do_choice() {
do_dialog() {
options=(
1 "Generate images with a browser-based interface"
2 "Generate images using a command-line interface"
2 "Explore InvokeAI nodes using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Open the developer console"
9 "Update InvokeAI")

View File

@@ -2,8 +2,17 @@
from logging import Logger
import os
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
@@ -11,7 +20,6 @@ from invokeai.backend.util.logging import InvokeAILogger
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_file_storage import DiskImageFileStorage
@@ -20,6 +28,7 @@ from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService
from .events import FastAPIEventService
@@ -57,7 +66,7 @@ class ApiDependencies:
# TODO: build a file/path manager?
db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True)
db_location.parent.mkdir(parents=True, exist_ok=True)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
@@ -72,21 +81,49 @@ class ApiDependencies:
DiskLatentsStorage(f"{output_folder}/latents")
)
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
model_manager=get_model_manager(config, logger),
model_manager=ModelManagerService(config,logger),
events=events,
latents=latents,
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"

View File

@@ -0,0 +1,18 @@
from fastapi.routing import APIRouter
from pydantic import BaseModel
from invokeai.version import __version__
app_router = APIRouter(prefix="/v1/app", tags=['app'])
class AppVersion(BaseModel):
"""App Version Response"""
version: str
@app_router.get('/version', operation_id="app_version",
status_code=200,
response_model=AppVersion)
async def get_version() -> AppVersion:
return AppVersion(version=__version__)

View File

@@ -0,0 +1,69 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardRecord, BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
@board_images_router.post(
"/",
operation_id="create_board_image",
responses={
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
)
async def create_board_image(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(board_id=board_id, image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
responses={
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
)
async def remove_board_image(
board_id: str = Body(description="The id of the board"),
image_name: str = Body(description="The name of the image to remove"),
):
"""Deletes a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(board_id=board_id, image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@board_images_router.get(
"/{board_id}",
operation_id="list_board_images",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_board_images(
board_id: str = Path(description="The id of the board"),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of boards per page"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of images for a board"""
results = ApiDependencies.invoker.services.board_images.get_images_for_board(
board_id,
)
return results

View File

@@ -0,0 +1,117 @@
from typing import Optional, Union
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@boards_router.post(
"/",
operation_id="create_board",
responses={
201: {"description": "The board was created successfully"},
},
status_code=201,
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
) -> BoardDTO:
"""Creates a board"""
try:
result = ApiDependencies.invoker.services.boards.create(board_name=board_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to create board")
@boards_router.get("/{board_id}", operation_id="get_board", response_model=BoardDTO)
async def get_board(
board_id: str = Path(description="The id of board to get"),
) -> BoardDTO:
"""Gets a board"""
try:
result = ApiDependencies.invoker.services.boards.get_dto(board_id=board_id)
return result
except Exception as e:
raise HTTPException(status_code=404, detail="Board not found")
@boards_router.patch(
"/{board_id}",
operation_id="update_board",
responses={
201: {
"description": "The board was updated successfully",
},
},
status_code=201,
response_model=BoardDTO,
)
async def update_board(
board_id: str = Path(description="The id of board to update"),
changes: BoardChanges = Body(description="The changes to apply to the board"),
) -> BoardDTO:
"""Updates a board"""
try:
result = ApiDependencies.invoker.services.boards.update(
board_id=board_id, changes=changes
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete("/{board_id}", operation_id="delete_board")
async def delete_board(
board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query(
description="Permanently delete all images on the board", default=False
),
) -> None:
"""Deletes a board"""
try:
if include_images is True:
ApiDependencies.invoker.services.images.delete_images_on_board(
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
else:
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
@boards_router.get(
"/",
operation_id="list_boards",
response_model=Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]],
)
async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(
default=None, description="The number of boards per page"
),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:
return ApiDependencies.invoker.services.boards.get_all()
elif offset is not None and limit is not None:
return ApiDependencies.invoker.services.boards.get_many(
offset,
limit,
)
else:
raise HTTPException(
status_code=400,
detail="Invalid request: Must provide either 'all' or both 'offset' and 'limit'",
)

View File

@@ -70,27 +70,25 @@ async def upload_image(
raise HTTPException(status_code=500, detail="Failed to create image")
@images_router.delete("/{image_origin}/{image_name}", operation_id="delete_image")
@images_router.delete("/{image_name}", operation_id="delete_image")
async def delete_image(
image_origin: ResourceOrigin = Path(description="The origin of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image"""
try:
ApiDependencies.invoker.services.images.delete(image_origin, image_name)
ApiDependencies.invoker.services.images.delete(image_name)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
@images_router.patch(
"/{image_origin}/{image_name}",
"/{image_name}",
operation_id="update_image",
response_model=ImageDTO,
)
async def update_image(
image_origin: ResourceOrigin = Path(description="The origin of image to update"),
image_name: str = Path(description="The name of the image to update"),
image_changes: ImageRecordChanges = Body(
description="The changes to apply to the image"
@@ -99,32 +97,29 @@ async def update_image(
"""Updates an image"""
try:
return ApiDependencies.invoker.services.images.update(
image_origin, image_name, image_changes
)
return ApiDependencies.invoker.services.images.update(image_name, image_changes)
except Exception as e:
raise HTTPException(status_code=400, detail="Failed to update image")
@images_router.get(
"/{image_origin}/{image_name}/metadata",
"/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageDTO,
)
async def get_image_metadata(
image_origin: ResourceOrigin = Path(description="The origin of image to get"),
image_name: str = Path(description="The name of image to get"),
) -> ImageDTO:
"""Gets an image's metadata"""
try:
return ApiDependencies.invoker.services.images.get_dto(image_origin, image_name)
return ApiDependencies.invoker.services.images.get_dto(image_name)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_origin}/{image_name}",
"/{image_name}",
operation_id="get_image_full",
response_class=Response,
responses={
@@ -136,15 +131,12 @@ async def get_image_metadata(
},
)
async def get_image_full(
image_origin: ResourceOrigin = Path(
description="The type of full-resolution image file to get"
),
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> FileResponse:
"""Gets a full-resolution image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_origin, image_name)
path = ApiDependencies.invoker.services.images.get_path(image_name)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
@@ -160,7 +152,7 @@ async def get_image_full(
@images_router.get(
"/{image_origin}/{image_name}/thumbnail",
"/{image_name}/thumbnail",
operation_id="get_image_thumbnail",
response_class=Response,
responses={
@@ -172,14 +164,13 @@ async def get_image_full(
},
)
async def get_image_thumbnail(
image_origin: ResourceOrigin = Path(description="The origin of thumbnail image file to get"),
image_name: str = Path(description="The name of thumbnail image file to get"),
) -> FileResponse:
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(
image_origin, image_name, thumbnail=True
image_name, thumbnail=True
)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
@@ -192,25 +183,21 @@ async def get_image_thumbnail(
@images_router.get(
"/{image_origin}/{image_name}/urls",
"/{image_name}/urls",
operation_id="get_image_urls",
response_model=ImageUrlsDTO,
)
async def get_image_urls(
image_origin: ResourceOrigin = Path(description="The origin of the image whose URL to get"),
image_name: str = Path(description="The name of the image whose URL to get"),
) -> ImageUrlsDTO:
"""Gets an image and thumbnail URL"""
try:
image_url = ApiDependencies.invoker.services.images.get_url(
image_origin, image_name
)
image_url = ApiDependencies.invoker.services.images.get_url(image_name)
thumbnail_url = ApiDependencies.invoker.services.images.get_url(
image_origin, image_name, thumbnail=True
image_name, thumbnail=True
)
return ImageUrlsDTO(
image_origin=image_origin,
image_name=image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
@@ -234,6 +221,9 @@ async def list_images_with_metadata(
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images"
),
board_id: Optional[str] = Query(
default=None, description="The board id to filter by"
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),
) -> OffsetPaginatedResults[ImageDTO]:
@@ -245,6 +235,7 @@ async def list_images_with_metadata(
image_origin,
categories,
is_intermediate,
board_id,
)
return image_dtos

View File

@@ -1,100 +1,134 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2024 Lincoln Stein
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from typing import Literal, List, Optional, Union
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, parse_obj_as
from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS,
SchedulerPredictionType,
)
from invokeai.backend.model_management import MergeInterpolationMethod
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
async def list_models(
base_model: Optional[BaseModelType] = Query(default=None, description="Base model"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.post(
"/",
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={200: {"status": "success"}},
responses={200: {"description" : "The model was updated successfully"},
404: {"description" : "The model could not be found"},
400: {"description" : "Bad request"}
},
status_code = 200,
response_model = UpdateModelResponse,
)
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
try:
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = parse_obj_as(UpdateModelResponse, model_raw)
except KeyError as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return model_response
@models_router.post(
"/",
operation_id="import_model",
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL """
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
if not info:
logger.error("Import failed")
raise HTTPException(status_code=424)
logger.info(f'Successfully imported {location}, got {info}')
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name,
base_model=info.base_model,
model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
except KeyError as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.delete(
"/{model_name}",
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={
204: {
@@ -105,144 +139,95 @@ async def update_model(
}
},
)
async def delete_model(model_name: str) -> None:
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# check if model exists
logger.info(f"Checking for model {model_name}...")
if model_exists:
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
logger.error(f"Model not found")
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
except KeyError:
logger.error(f"Model not found: {model_name}")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: { "description": "Model converted successfully" },
400: {"description" : "Bad request" },
404: { "description": "Model not found" },
},
status_code = 200,
response_model = ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
base_model = base_model,
model_type = model_type
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
base_model = base_model,
model_type = model_type)
response = parse_obj_as(ConvertModelResponse, model_raw)
except KeyError:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: { "description": "Model converted successfully" },
400: { "description": "Incompatible models" },
404: { "description": "One or more models not found" },
},
status_code = 200,
response_model = MergeModelResponse,
)
async def merge_models(
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names}")
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
base_model,
merged_model_name or "+".join(model_names),
alpha,
interp,
force)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
base_model = base_model,
model_type = ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except KeyError:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@@ -22,12 +22,22 @@ app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
import invokeai.frontend.web as web_dir
import mimetypes
from .api.dependencies import ApiDependencies
from .api.routers import sessions, models, images
from .api.routers import sessions, models, images, boards, board_images, app_info
from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation
import torch
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type('application/javascript', '.js')
mimetypes.add_type('text/css', '.css')
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
@@ -78,6 +88,12 @@ app.include_router(models.models_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix='/api')
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
def custom_openapi():
@@ -116,6 +132,22 @@ def custom_openapi():
invoker_schema["output"] = outputs_ref
from invokeai.backend.model_management.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__
if name in openapi_schema["components"]["schemas"]:
# print(f"Config with name {name} already defined")
continue
# "BaseModelType":{"title":"BaseModelType","description":"An enumeration.","enum":["sd-1","sd-2"],"type":"string"}
openapi_schema["components"]["schemas"][name] = dict(
title=name,
description="An enumeration.",
type="string",
enum=list(v.value for v in model_config_format_enum),
)
app.openapi_schema = openapi_schema
return app.openapi_schema

View File

@@ -47,7 +47,7 @@ def add_parsers(
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
add_arguments: Union[Callable[[argparse.ArgumentParser], None],None] = None
):
"""Adds parsers for each command to the subparsers"""
@@ -72,7 +72,7 @@ def add_parsers(
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)

View File

@@ -1,15 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import argparse
import os
import re
import shlex
import sys
import time
from typing import (
Union,
get_type_hints,
)
from typing import Union, get_type_hints, Optional
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
@@ -21,30 +17,45 @@ config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import create_system_graphs
from .services.default_graphs import (default_text_to_image_graph_id,
create_system_graphs)
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, SortedHelpFormatter
from .cli.commands import (BaseCommand, CliContext, ExitCli,
SortedHelpFormatter, add_graph_parsers, add_parsers)
from .cli.completer import set_autocompleter
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.graph import (Edge, EdgeConnection, GraphExecutionState,
GraphInvocation, LibraryGraph,
are_connection_types_compatible)
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.model_manager_service import ModelManagerService
from .services.processor import DefaultInvocationProcessor
from .services.restoration_services import RestorationServices
from .services.sqlite import SqliteItemStorage
import torch
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
@@ -197,7 +208,6 @@ def invoke_all(context: CliContext):
raise SessionError()
def invoke_cli():
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
@@ -208,8 +218,8 @@ def invoke_cli():
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = get_model_manager(config,logger=logger)
model_manager = ModelManagerService(config,logger)
events = EventServiceBase()
output_folder = config.output_path
@@ -232,21 +242,49 @@ def invoke_cli():
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
images = ImageService(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
@@ -257,9 +295,11 @@ def invoke_cli():
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
set_autocompleter(services)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
@@ -311,7 +351,7 @@ def invoke_cli():
# Parse invocation
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
system_graph: Optional[LibraryGraph] = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))

View File

@@ -4,9 +4,10 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict, TYPE_CHECKING
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args,
get_type_hints)
from pydantic import BaseModel, Field
from pydantic import BaseConfig, BaseModel, Field
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
@@ -65,8 +66,13 @@ class BaseInvocation(ABC, BaseModel):
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses()))
return dict(
map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_all_subclasses(),
)
)
@classmethod
def get_output_type(cls):
return signature(cls.invoke).return_annotation
@@ -75,11 +81,11 @@ class BaseInvocation(ABC, BaseModel):
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
#fmt: off
# fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
#fmt: on
# fmt: on
# TODO: figure out a better way to provide these hints
@@ -97,16 +103,20 @@ class UIConfig(TypedDict, total=False):
"latents",
"model",
"control",
"image_collection",
"vae_model",
"lora_model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
class InvocationConfig(BaseConfig):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.

View File

@@ -4,13 +4,16 @@ from typing import Literal
import numpy as np
from pydantic import Field, validator
from invokeai.app.models.image import ImageField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
UIConfig,
)
@@ -22,6 +25,7 @@ class IntCollectionOutput(BaseInvocationOutput):
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class FloatCollectionOutput(BaseInvocationOutput):
"""A collection of floats"""
@@ -31,6 +35,18 @@ class FloatCollectionOutput(BaseInvocationOutput):
collection: list[float] = Field(default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput):
"""A collection of images"""
type: Literal["image_collection"] = "image_collection"
# Outputs
collection: list[ImageField] = Field(default=[], description="The output images")
class Config:
schema_extra = {"required": ["type", "collection"]}
class RangeInvocation(BaseInvocation):
"""Creates a range of numbers from start to stop with step"""
@@ -92,3 +108,27 @@ class RandomRangeInvocation(BaseInvocation):
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)
class ImageCollectionInvocation(BaseInvocation):
"""Load a collection of images and provide it as output."""
# fmt: off
type: Literal["image_collection"] = "image_collection"
# Inputs
images: list[ImageField] = Field(
default=[], description="The image collection to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.images)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"type_hints": {
"images": "image_collection",
}
},
}

View File

@@ -1,25 +1,25 @@
from typing import Literal, Optional, Union
from typing import Literal, Optional, Union, List
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.prompting.conditioning import try_parse_legacy_blend
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
import re
import torch
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment, Conjunction,
)
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType
from ...backend.model_management.models import ModelNotFoundException
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .model import ClipField
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@@ -40,7 +40,7 @@ class CompelInvocation(BaseInvocation):
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
clip: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
@@ -49,69 +49,77 @@ class CompelInvocation(BaseInvocation):
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
legacy_blend = try_parse_legacy_blend(prompt_str, skip_normalize=False)
if legacy_blend is not None:
conjunction = legacy_blend
else:
conjunction = Compel.parse_prompt_string(prompt_str)
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
if context.services.configuration.log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
text_encoder_info as text_encoder:
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
# TODO: long prompt support
# if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
@@ -124,10 +132,28 @@ class CompelInvocation(BaseInvocation):
),
)
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers")
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use")
skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder")
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return ClipSkipInvocationOutput(
clip=self.clip,
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
) -> int:
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
@@ -146,13 +172,13 @@ def get_max_token_count(
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
@@ -181,7 +207,7 @@ def log_tokenization_for_conjunction(
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts)>1:
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
@@ -236,7 +262,8 @@ def log_tokenization_for_prompt_object(
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '

View File

@@ -1,11 +1,12 @@
# InvokeAI nodes for ControlNet image preprocessors
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import float
from builtins import float, bool
import cv2
import numpy as np
from typing import Literal, Optional, Union, List
from PIL import Image, ImageFilter, ImageOps
from typing import Literal, Optional, Union, List, Dict
from PIL import Image
from pydantic import BaseModel, Field, validator
from ..models.image import ImageField, ImageCategory, ResourceOrigin
@@ -29,8 +30,13 @@ from controlnet_aux import (
ContentShuffleDetector,
ZoeDetector,
MediapipeFaceDetector,
SamDetector,
LeresDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from .image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
@@ -94,6 +100,10 @@ CONTROLNET_DEFAULT_MODELS = [
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
# crop and fill options not ready yet
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
@@ -104,6 +114,9 @@ class ControlField(BaseModel):
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight")
def abs_le_one(cls, v):
"""validate that all abs(values) are <=1"""
@@ -144,11 +157,11 @@ class ControlNetInvocation(BaseInvocation):
control_model: CONTROLNET_NAME_VALUES = Field(default="lllyasviel/sd-controlnet-canny",
description="control model used")
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
# TODO: add support in backend core for begin_step_percent, end_step_percent, guess_mode
begin_step_percent: float = Field(default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
# fmt: on
class Config(InvocationConfig):
@@ -166,7 +179,6 @@ class ControlNetInvocation(BaseInvocation):
}
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
@@ -174,10 +186,11 @@ class ControlNetInvocation(BaseInvocation):
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
),
)
# TODO: move image processors to separate file (image_analysis.py
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
@@ -193,9 +206,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
raw_image = context.services.images.get_pil_image(self.image.image_name)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
@@ -216,10 +227,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
)
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
# width=processed_image.width,
@@ -414,9 +422,9 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvoca
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
h: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Union[int, None] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
h: Optional[int] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
# fmt: on
def run_processor(self, image):
@@ -454,6 +462,104 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
# fmt: on
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == 'RGBA':
image = image.convert('RGB')
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies leres processing to image"""
# fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
boost: bool = Field(default=False, description="Whether to use boost mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
# fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# fmt: on
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
H, W, C = np_img.shape
H = int(float(H) / float(down_sampling_rate))
W = int(float(W) / float(down_sampling_rate))
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
processed_np_image = self.tile_resample(np_img,
#res=self.tile_size,
down_sampling_rate=self.down_sampling_rate
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies segment anything processing to image"""
# fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
# so using ADE20k color palette instead
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
h, w = anns[0]['segmentation'].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann['segmentation']
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)

View File

@@ -36,12 +36,8 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
mask = context.services.images.get_pil_image(
self.mask.image_origin, self.mask.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
mask = context.services.images.get_pil_image(self.mask.image_name)
# Convert to cv image/mask
# TODO: consider making these utility functions
@@ -65,10 +61,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,25 +1,27 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union, get_args
from typing import Literal, Optional, get_args
import numpy as np
from diffusers import ControlNetModel
from torch import Tensor
import torch
from pydantic import Field
from pydantic import BaseModel, Field
from invokeai.app.models.image import ColorField, ImageField, ResourceOrigin
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.models.image import (ColorField, ImageCategory, ImageField,
ResourceOrigin)
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.generator import Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.step_callback import stable_diffusion_step_callback
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
from .image import ImageOutput
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from .model import UNetField, VaeField
from .compel import ConditioningField
from contextlib import contextmanager, ExitStack, ContextDecorator
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
@@ -28,122 +30,51 @@ DEFAULT_INFILL_METHOD = (
)
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
from .latent import get_scheduler
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
class OldModelContext(ContextDecorator):
model: StableDiffusionGeneratorPipeline
def __init__(self, model):
self.model = model
def __enter__(self):
return self.model
def __exit__(self, *exc):
return False
class OldModelInfo:
name: str
hash: str
context: OldModelContext
def __init__(self, name: str, hash: str, model: StableDiffusionGeneratorPipeline):
self.name = name
self.hash = hash
self.context = OldModelContext(
model=model,
)
# Text to image
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
class InpaintInvocation(BaseInvocation):
"""Generates an image using inpaint."""
type: Literal["txt2img"] = "txt2img"
type: Literal["inpaint"] = "inpaint"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
control_model: Optional[str] = Field(default=None, description="The control model to use")
control_image: Optional[ImageField] = Field(default=None, description="The processed control image")
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# loading controlnet image (currently requires pre-processed image)
control_image = (
None if self.control_image is None
else context.services.images.get_pil_image(
self.control_image.image_origin, self.control_image.image_name
)
)
# loading controlnet model
if (self.control_model is None or self.control_model==''):
control_model = None
else:
# FIXME: change this to dropdown menu?
# FIXME: generalize so don't have to hardcode torch_dtype and device
control_model = ControlNetModel.from_pretrained(self.control_model,
torch_dtype=torch.float16).to("cuda")
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
txt2img = Txt2Img(model, control_model=control_model)
outputs = txt2img.generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context, source_node_id),
control_image=control_image,
**self.dict(
exclude={"prompt", "control_image" }
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
image_dto = context.services.images.create(
image=generate_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
unet: UNetField = Field(default=None, description="UNet model")
vae: VaeField = Field(default=None, description="Vae model")
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
image: Optional[ImageField] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
@@ -152,79 +83,8 @@ class ImageToImageInvocation(TextToImageInvocation):
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
)
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
image_dto = context.services.images.create(
image=generator_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
mask: Optional[ImageField] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(
default=16, ge=0, description="The seam inpaint blur radius (px)"
@@ -265,6 +125,14 @@ class InpaintInvocation(ImageToImageInvocation):
description="The amount by which to replace masked areas with latent noise",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
},
}
def dispatch_progress(
self,
context: InvocationContext,
@@ -278,39 +146,86 @@ class InpaintInvocation(ImageToImageInvocation):
source_node_id=source_node_id,
)
def get_conditioning(self, context):
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
return (uc, c, extra_conditioning_info)
@contextmanager
def load_model_old_way(self, context, scheduler):
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
#unet = unet_info.context.model
#vae = vae_info.context.model
with ExitStack() as stack:
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
with vae_info as vae,\
unet_info as unet,\
ModelPatcher.apply_lora_unet(unet, loras):
device = context.services.model_manager.mgr.cache.execution_device
dtype = context.services.model_manager.mgr.cache.precision
pipeline = StableDiffusionGeneratorPipeline(
vae=vae,
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if dtype == torch.float16 else "float32",
execution_device=device,
)
yield OldModelInfo(
name=self.unet.unet.model_name,
hash="<NO-HASH>",
model=pipeline,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
else context.services.images.get_pil_image(self.image.image_name)
)
mask = (
None
if self.mask is None
else context.services.images.get_pil_image(self.mask.image_origin, self.mask.image_name)
else context.services.images.get_pil_image(self.mask.image_name)
)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
conditioning = self.get_conditioning(context)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
with self.load_model_old_way(context, scheduler) as model:
outputs = Inpaint(model).generate(
conditioning=conditioning,
scheduler=scheduler,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"positive_conditioning", "negative_conditioning", "scheduler", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
@@ -325,10 +240,7 @@ class InpaintInvocation(ImageToImageInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,7 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from typing import Literal, Optional, Union
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps, ImageChops
@@ -67,18 +66,15 @@ class LoadImageInvocation(BaseInvocation):
type: Literal["load_image"] = "load_image"
# Inputs
image: Union[ImageField, None] = Field(
image: Optional[ImageField] = Field(
default=None, description="The image to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(
image_name=self.image.image_name,
image_origin=self.image.image_origin,
),
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@@ -90,24 +86,19 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image"
# Inputs
image: Union[ImageField, None] = Field(
image: Optional[ImageField] = Field(
default=None, description="The image to show"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_name=self.image.image_name,
image_origin=self.image.image_origin,
),
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@@ -120,7 +111,7 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_crop"] = "img_crop"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to crop")
image: Optional[ImageField] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
@@ -128,9 +119,7 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
@@ -147,10 +136,7 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -163,27 +149,21 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: Union[ImageField, None] = Field(default=None, description="The base image")
image: Union[ImageField, None] = Field(default=None, description="The image to paste")
base_image: Optional[ImageField] = Field(default=None, description="The base image")
image: Optional[ImageField] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(
self.base_image.image_origin, self.base_image.image_name
)
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = (
None
if self.mask is None
else ImageOps.invert(
context.services.images.get_pil_image(
self.mask.image_origin, self.mask.image_name
)
context.services.images.get_pil_image(self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@@ -209,10 +189,7 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -225,14 +202,12 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["tomask"] = "tomask"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to create the mask from")
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
if self.invert:
@@ -248,9 +223,7 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
)
return MaskOutput(
mask=ImageField(
image_origin=image_dto.image_origin, image_name=image_dto.image_name
),
mask=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -263,17 +236,13 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_mul"] = "img_mul"
# Inputs
image1: Union[ImageField, None] = Field(default=None, description="The first image to multiply")
image2: Union[ImageField, None] = Field(default=None, description="The second image to multiply")
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(
self.image1.image_origin, self.image1.image_name
)
image2 = context.services.images.get_pil_image(
self.image2.image_origin, self.image2.image_name
)
image1 = context.services.images.get_pil_image(self.image1.image_name)
image2 = context.services.images.get_pil_image(self.image2.image_name)
multiply_image = ImageChops.multiply(image1, image2)
@@ -287,9 +256,7 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_origin=image_dto.image_origin, image_name=image_dto.image_name
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -305,14 +272,12 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to get the channel from")
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
channel_image = image.getchannel(self.channel)
@@ -326,9 +291,7 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_origin=image_dto.image_origin, image_name=image_dto.image_name
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -344,14 +307,12 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to convert")
image: Optional[ImageField] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
converted_image = image.convert(self.mode)
@@ -365,9 +326,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_origin=image_dto.image_origin, image_name=image_dto.image_name
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -380,15 +339,13 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_blur"] = "img_blur"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to blur")
image: Optional[ImageField] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius)
@@ -407,10 +364,7 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -443,16 +397,14 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_resize"] = "img_resize"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to resize")
image: Optional[ImageField] = Field(default=None, description="The image to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
@@ -471,10 +423,7 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -487,15 +436,13 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to scale")
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
width = int(image.width * self.scale_factor)
@@ -516,10 +463,7 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -532,15 +476,13 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
@@ -557,10 +499,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -573,15 +512,13 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
@@ -603,10 +540,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,6 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Union, get_args
from typing import Literal, Optional, get_args
import numpy as np
import math
@@ -68,7 +68,7 @@ def get_tile_images(image: np.ndarray, width=8, height=8):
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
@@ -125,7 +125,7 @@ class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Union[ImageField, None] = Field(
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
color: ColorField = Field(
@@ -134,9 +134,7 @@ class InfillColorInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
@@ -153,10 +151,7 @@ class InfillColorInvocation(BaseInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -167,7 +162,7 @@ class InfillTileInvocation(BaseInvocation):
type: Literal["infill_tile"] = "infill_tile"
image: Union[ImageField, None] = Field(
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
@@ -179,9 +174,7 @@ class InfillTileInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
@@ -198,10 +191,7 @@ class InfillTileInvocation(BaseInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@@ -212,14 +202,12 @@ class InfillPatchMatchInvocation(BaseInvocation):
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Union[ImageField, None] = Field(
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
@@ -236,10 +224,7 @@ class InfillPatchMatchInvocation(BaseInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,52 +1,44 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import List, Literal, Optional, Union
import einops
from typing import Literal, Optional, Union, List
from compel import Compel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from pydantic import BaseModel, Field, validator
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from diffusers import ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from .controlnet_image_processors import ControlField
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.stable_diffusion.diffusers_pipeline import ControlNetData
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_file_storage import ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from .compel import ConditioningField
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline, ControlNetModel
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
@@ -60,29 +52,11 @@ class LatentsOutput(BaseInvocationOutput):
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
#fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
@@ -90,13 +64,22 @@ SAMPLER_NAME_VALUES = Literal[
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler_config = {**scheduler_config, **
scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
@@ -105,63 +88,6 @@ def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
@@ -176,10 +102,10 @@ class TextToLatentsInvocation(BaseInvocation):
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
control: Union[ControlField, List[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@@ -200,18 +126,18 @@ class TextToLatentsInvocation(BaseInvocation):
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
@@ -219,43 +145,12 @@ class TextToLatentsInvocation(BaseInvocation):
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
# if isinstance(model, DiffusionPipeline):
# for component in [model.unet, model.vae]:
# configure_model_padding(component,
# self.seamless,
# self.seamless_axes
# )
# else:
# configure_model_padding(model,
# self.seamless,
# self.seamless_axes
# )
return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
compel = Compel(
tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
def get_conditioning_data(
self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(
self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(
self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
@@ -263,38 +158,75 @@ class TextToLatentsInvocation(BaseInvocation):
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=uc.device).manual_seed(0),
)
return conditioning_data
def prep_control_data(self,
context: InvocationContext,
model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
def create_pipeline(
self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if unet.dtype == torch.float16 else "float32",
)
def prep_control_data(
self,
context: InvocationContext,
# really only need model for dtype and device
model: StableDiffusionGeneratorPipeline,
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
# print("control input is None")
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
# print("control input is empty list")
control_list = None
elif isinstance(control_input, ControlField):
# print("control input is ControlField")
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
# print("control input is list[ControlField]")
control_list = control_input
else:
# print("input control is unrecognized:", type(self.control))
control_list = None
if (control_list is None):
control_data = None
@@ -313,16 +245,17 @@ class TextToLatentsInvocation(BaseInvocation):
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(control_name,
subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(model.device)
control_model = ControlNetModel.from_pretrained(
control_name, subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(
model.device)
else:
control_model = ControlNetModel.from_pretrained(control_info.control_model,
torch_dtype=model.unet.dtype).to(model.device)
control_model = ControlNetModel.from_pretrained(
control_info.control_model, torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_origin,
control_image_field.image_name)
input_image = context.services.images.get_pil_image(
control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@@ -337,43 +270,68 @@ class TextToLatentsInvocation(BaseInvocation):
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -389,8 +347,11 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
@@ -405,43 +366,67 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
# TODO: Verify the noise is the right size
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -458,17 +443,18 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@@ -476,44 +462,49 @@ class LatentsToImageInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
# what happened to metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
with vae_info as vae:
if self.tiled or context.services.configuration.tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
# new (post Image service refactor) way of using services to save image
# and gnenerate unique image_name
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
@@ -522,21 +513,25 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: int = Field(
ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
latents, size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -553,21 +548,24 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
latents, scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -584,15 +582,17 @@ class ImageToLatentsInvocation(BaseInvocation):
type: Literal["i2l"] = "i2l"
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@@ -601,24 +601,32 @@ class ImageToLatentsInvocation(BaseInvocation):
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
with vae_info as vae:
if self.tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = 0.18215 * latents
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)

View File

@@ -0,0 +1,310 @@
import copy
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(
default=None, description="Info to load submodel"
)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class MainModelField(BaseModel):
"""Main model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class LoRAModelField(BaseModel):
"""LoRA model field"""
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["main_model_loader"] = "main_model_loader"
model: MainModelField = Field(description="The model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
)
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["lora_loader_output"] = "lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
# fmt: on
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field(
default=None, description="Lora model name"
)
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(
lora.model_name == lora_name for lora in self.unet.loras
):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(
lora.model_name == lora_name for lora in self.clip.loras
):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
return output
class VAEModelField(BaseModel):
"""Vae model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class VaeLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["vae_loader_output"] = "vae_loader_output"
vae: VaeField = Field(default=None, description="Vae model")
# fmt: on
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
type: Literal["vae_loader"] = "vae_loader"
vae_model: VAEModelField = Field(description="The VAE to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "VAE Loader",
"tags": ["vae", "loader"],
"type_hints": {"vae_model": "vae_model"},
},
}
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)

View File

@@ -0,0 +1,134 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import math
from typing import Literal
from pydantic import Field, validator
import torch
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
"""
Utilities
"""
def get_noise(
width: int,
height: int,
device: torch.device,
seed: int = 0,
latent_channels: int = 4,
downsampling_factor: int = 8,
use_cpu: bool = True,
perlin: float = 0.0,
):
"""Generate noise for a given image size."""
noise_device_type = "cpu" if use_cpu else device.type
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
noise_tensor = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=noise_device_type,
generator=generator,
).to(device)
return noise_tensor
"""
Nodes
"""
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
# fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
# fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use",
default_factory=get_random_seed,
)
width: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The width of the resulting noise",
)
height: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting noise",
)
use_cpu: bool = Field(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)

View File

@@ -133,20 +133,19 @@ class StepParamEasingInvocation(BaseInvocation):
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
logger = InvokeAILogger.getLogger(name="StepParamEasing")
logger.debug("start_step: " + str(start_step))
logger.debug("end_step: " + str(end_step))
logger.debug("num_easing_steps: " + str(num_easing_steps))
logger.debug("num_presteps: " + str(num_presteps))
logger.debug("num_poststeps: " + str(num_poststeps))
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("postlist size: " + str(len(postlist)))
logger.debug("prelist: " + str(prelist))
logger.debug("postlist: " + str(postlist))
context.services.logger.debug("start_step: " + str(start_step))
context.services.logger.debug("end_step: " + str(end_step))
context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.services.logger.debug("num_presteps: " + str(num_presteps))
context.services.logger.debug("num_poststeps: " + str(num_poststeps))
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
context.services.logger.debug("prelist: " + str(prelist))
context.services.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
logger.debug("easing class: " + str(easing_class))
context.services.logger.debug("easing class: " + str(easing_class))
easing_list = list()
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
@@ -156,7 +155,7 @@ class StepParamEasingInvocation(BaseInvocation):
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
if log_diagnostics: logger.debug("base easing duration: " + str(base_easing_duration))
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
easing_function = easing_class(start=self.start_value,
end=self.end_value,
@@ -166,14 +165,14 @@ class StepParamEasingInvocation(BaseInvocation):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
logger.debug("base easing vals: " + str(base_easing_vals))
logger.debug("mirror easing vals: " + str(mirror_easing_vals))
context.services.logger.debug("base easing vals: " + str(base_easing_vals))
context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
@@ -206,12 +205,12 @@ class StepParamEasingInvocation(BaseInvocation):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("easing_list size: " + str(len(easing_list)))
logger.debug("postlist size: " + str(len(postlist)))
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("easing_list size: " + str(len(easing_list)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist

View File

@@ -2,8 +2,8 @@ from typing import Literal
from pydantic.fields import Field
from .baseinvocation import BaseInvocationOutput
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
@@ -20,3 +20,38 @@ class PromptOutput(BaseInvocationOutput):
'prompt',
]
}
class PromptCollectionOutput(BaseInvocationOutput):
"""Base class for invocations that output a collection of prompts"""
# fmt: off
type: Literal["prompt_collection_output"] = "prompt_collection_output"
prompt_collection: list[str] = Field(description="The output prompt collection")
count: int = Field(description="The size of the prompt collection")
# fmt: on
class Config:
schema_extra = {"required": ["type", "prompt_collection", "count"]}
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field(
default=False, description="Whether to use the combinatorial generator"
)
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
else:
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))

View File

@@ -1,4 +1,4 @@
from typing import Literal, Union
from typing import Literal, Optional
from pydantic import Field
@@ -15,7 +15,7 @@ class RestoreFaceInvocation(BaseInvocation):
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
image: Optional[ImageField] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
# fmt: on
@@ -28,9 +28,7 @@ class RestoreFaceInvocation(BaseInvocation):
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=None,
@@ -51,10 +49,7 @@ class RestoreFaceInvocation(BaseInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,6 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Union
from typing import Literal, Optional
from pydantic import Field
@@ -16,7 +16,7 @@ class UpscaleInvocation(BaseInvocation):
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
image: Optional[ImageField] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on
@@ -30,9 +30,7 @@ class UpscaleInvocation(BaseInvocation):
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
@@ -53,10 +51,7 @@ class UpscaleInvocation(BaseInvocation):
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -1,14 +0,0 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_name and not model_manager.valid_model(model_name):
default_model_name = model_manager.default_model()
logger.warning(f"\'{model_name}\' is not a valid model name. Using default model \'{default_model_name}\' instead.")
model = model_manager.get_model()
else:
model = model_manager.get_model(model_name)
return model

View File

@@ -66,13 +66,10 @@ class InvalidImageCategoryException(ValueError):
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_origin: ResourceOrigin = Field(
default=ResourceOrigin.INTERNAL, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_origin", "image_name"]}
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):

View File

@@ -0,0 +1,253 @@
from abc import ABC, abstractmethod
import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (
ImageRecord,
deserialize_image_record,
)
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets images for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
VALUES (?, ?)
ON CONFLICT (image_name) DO UPDATE SET board_id = ?;
""",
(board_id, image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE board_id = ? AND image_name = ?;
""",
(board_id, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_images_for_board(
self,
board_id: str,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = self._cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_image_count_for_board(self, board_id: str) -> int:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM board_images WHERE board_id = ?;
""",
(board_id,),
)
count = cast(int, self._cursor.fetchone()[0])
return count
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -0,0 +1,142 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import List, Union, Optional
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import (
BoardRecord,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO, image_record_to_dto
from invokeai.app.services.urls import UrlServiceBase
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets images for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesServiceDependencies:
"""Service dependencies for the BoardImagesService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardImagesService(BoardImagesServiceABC):
_services: BoardImagesServiceDependencies
def __init__(self, services: BoardImagesServiceDependencies):
self._services = services
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(board_id, image_name)
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
image_records = self._services.board_image_records.get_images_for_board(
board_id
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
board_id,
),
image_records.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=image_records.offset,
limit=image_records.limit,
total=image_records.total,
)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self._services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={'cover_image_name'}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@@ -0,0 +1,329 @@
from abc import ABC, abstractmethod
from typing import Optional, cast
import sqlite3
import threading
from typing import Optional, Union
import uuid
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import (
BoardRecord,
deserialize_board_record,
)
from pydantic import BaseModel, Field, Extra
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(
description="The name of the board's new cover image."
)
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
board_name: str,
) -> BoardRecord:
try:
board_id = str(uuid.uuid4())
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get(
self,
board_id: str,
) -> BoardRecord:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordNotFoundException from e
finally:
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
try:
self._lock.acquire()
# Change the name of a board
if changes.board_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
""",
(limit, offset),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
# Get the total number of boards
self._cursor.execute(
"""--sql
SELECT COUNT(*)
FROM boards
WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](
items=boards, offset=offset, limit=limit, total=count
)
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all(
self,
) -> list[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
return boards
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -0,0 +1,185 @@
from abc import ABC, abstractmethod
from logging import Logger
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_images import board_record_to_dto
from invokeai.app.services.board_record_storage import (
BoardChanges,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass
class BoardServiceDependencies:
"""Service dependencies for the BoardService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardService(BoardServiceABC):
_services: BoardServiceDependencies
def __init__(self, services: BoardServiceDependencies):
self._services = services
def create(
self,
board_name: str,
) -> BoardDTO:
board_record = self._services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id)
def get_many(
self, offset: int = 0, limit: int = 10
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](
items=board_dtos, offset=offset, limit=limit, total=len(board_dtos)
)
def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@@ -15,10 +15,7 @@ InvokeAI:
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
embedding_dir: embeddings
lora_dir: loras
autoconvert_dir: null
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
@@ -171,9 +168,10 @@ from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
MODEL_CORE = Path('models/core')
DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init')
@@ -231,10 +229,10 @@ class InvokeAISettings(BaseSettings):
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
@@ -327,16 +325,11 @@ class InvokeAISettings(BaseSettings):
help=field.field_info.description,
)
def _find_root()->Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
elif any([(venv.parent/x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
@@ -351,7 +344,7 @@ setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
@@ -370,27 +363,27 @@ setting environment variables INVOKEAI_<setting>.
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
controlnet_dir : Path = Field(default="controlnets", description='Path to directory of ControlNet models.', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
@@ -400,7 +393,7 @@ setting environment variables INVOKEAI_<setting>.
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
Update settings with contents of init file, environment, and
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
@@ -415,7 +408,7 @@ setting environment variables INVOKEAI_<setting>.
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
@@ -435,7 +428,7 @@ setting environment variables INVOKEAI_<setting>.
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''
@@ -492,39 +485,11 @@ setting environment variables INVOKEAI_<setting>.
return self._resolve(self.legacy_conf_dir)
@property
def cache_dir(self)->Path:
'''
Path to the global cache directory for HuggingFace hub-managed models
'''
return self.models_dir / "hub"
@property
def models_dir(self)->Path:
def models_path(self)->Path:
'''
Path to the models directory
'''
return self._resolve("models")
@property
def embedding_path(self)->Path:
'''
Path to the textual inversion embeddings directory.
'''
return self._resolve(self.embedding_dir) if self.embedding_dir else None
@property
def lora_path(self)->Path:
'''
Path to the LoRA models directory.
'''
return self._resolve(self.lora_dir) if self.lora_dir else None
@property
def controlnet_path(self)->Path:
'''
Path to the controlnet models directory.
'''
return self._resolve(self.controlnet_dir) if self.controlnet_dir else None
return self._resolve(self.models_dir)
@property
def autoconvert_path(self)->Path:
@@ -533,13 +498,6 @@ setting environment variables INVOKEAI_<setting>.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
@property
def gfpgan_model_path(self)->Path:
'''
Path to the GFPGAN model.
'''
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:

View File

@@ -1,4 +1,5 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph

View File

@@ -1,9 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any
from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
class EventServiceBase:
session_event: str = "session_event"
@@ -27,7 +27,7 @@ class EventServiceBase:
graph_execution_state_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
progress_image: Optional[ProgressImage],
step: int,
total_steps: int,
) -> None:
@@ -101,3 +101,53 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
),
)
def emit_model_load_started (
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
) -> None:
"""Emitted when a model is requested"""
self.__emit_session_event(
event_name="model_load_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
),
)
def emit_model_load_completed(
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_session_event(
event_name="model_load_completed",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info,
),
)

View File

@@ -3,7 +3,6 @@
import copy
import itertools
import uuid
from types import NoneType
from typing import (
Annotated,
Any,
@@ -26,6 +25,8 @@ from ..invocations.baseinvocation import (
InvocationContext,
)
# in 3.10 this would be "from types import NoneType"
NoneType = type(None)
class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection")
@@ -60,8 +61,6 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None
return node_input_field
from typing import Optional, Union, List, get_args
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
@@ -846,7 +845,7 @@ class GraphExecutionState(BaseModel):
]
}
def next(self) -> BaseInvocation | None:
def next(self) -> Optional[BaseInvocation]:
"""Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes

View File

@@ -1,15 +1,13 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Optional
from typing import Dict, Optional, Union
from PIL.Image import Image as PILImageType
from PIL import Image, PngImagePlugin
from send2trash import send2trash
from invokeai.app.models.image import ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
@@ -40,14 +38,12 @@ class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_origin: ResourceOrigin, image_name: str) -> PILImageType:
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
@@ -62,7 +58,6 @@ class ImageFileStorageBase(ABC):
def save(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
@@ -71,7 +66,7 @@ class ImageFileStorageBase(ABC):
pass
@abstractmethod
def delete(self, image_origin: ResourceOrigin, image_name: str) -> None:
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
@@ -79,31 +74,28 @@ class ImageFileStorageBase(ABC):
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: str
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, PILImageType]
__cache: Dict[Path, PILImageType]
__max_cache_size: int
def __init__(self, output_folder: str):
self.__output_folder = output_folder
def __init__(self, output_folder: Union[str, Path]):
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
Path(output_folder).mkdir(parents=True, exist_ok=True)
self.__output_folder: Path = (
output_folder if isinstance(output_folder, Path) else Path(output_folder)
)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# TODO: don't hard-code. get/save/delete should maybe take subpath?
for image_origin in ResourceOrigin:
Path(os.path.join(output_folder, image_origin)).mkdir(
parents=True, exist_ok=True
)
Path(os.path.join(output_folder, image_origin, "thumbnails")).mkdir(
parents=True, exist_ok=True
)
# Validate required output folders at launch
self.__validate_storage_folders()
def get(self, image_origin: ResourceOrigin, image_name: str) -> PILImageType:
def get(self, image_name: str) -> PILImageType:
try:
image_path = self.get_path(image_origin, image_name)
image_path = self.get_path(image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
@@ -117,13 +109,13 @@ class DiskImageFileStorage(ImageFileStorageBase):
def save(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
) -> None:
try:
image_path = self.get_path(image_origin, image_name)
self.__validate_storage_folders()
image_path = self.get_path(image_name)
if metadata is not None:
pnginfo = PngImagePlugin.PngInfo()
@@ -133,7 +125,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image.save(image_path, "PNG")
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_origin, thumbnail_name, thumbnail=True)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
thumbnail_image = make_thumbnail(image, thumbnail_size)
thumbnail_image.save(thumbnail_path)
@@ -142,20 +134,19 @@ class DiskImageFileStorage(ImageFileStorageBase):
except Exception as e:
raise ImageFileSaveException from e
def delete(self, image_origin: ResourceOrigin, image_name: str) -> None:
def delete(self, image_name: str) -> None:
try:
basename = os.path.basename(image_name)
image_path = self.get_path(image_origin, basename)
image_path = self.get_path(image_name)
if os.path.exists(image_path):
if image_path.exists():
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_origin, thumbnail_name, True)
thumbnail_path = self.get_path(thumbnail_name, True)
if os.path.exists(thumbnail_path):
if thumbnail_path.exists():
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
@@ -163,36 +154,30 @@ class DiskImageFileStorage(ImageFileStorageBase):
raise ImageFileDeleteException from e
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
path = self.__output_folder / image_name
if thumbnail:
thumbnail_name = get_thumbnail_name(basename)
path = os.path.join(
self.__output_folder, image_origin, "thumbnails", thumbnail_name
)
else:
path = os.path.join(self.__output_folder, image_origin, basename)
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
abspath = os.path.abspath(path)
return path
return abspath
def validate_path(self, path: str) -> bool:
def validate_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for an image or thumbnail."""
try:
os.stat(path)
return True
except:
return False
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def __get_cache(self, image_name: str) -> PILImageType | None:
def __validate_storage_folders(self) -> None:
"""Checks if the required output folders exist and create them if they don't"""
folders: list[Path] = [self.__output_folder, self.__thumbnails_folder]
for folder in folders:
folder.mkdir(parents=True, exist_ok=True)
def __get_cache(self, image_name: Path) -> Optional[PILImageType]:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: PILImageType):
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(

View File

@@ -3,7 +3,6 @@ from datetime import datetime
from typing import Generic, Optional, TypeVar, cast
import sqlite3
import threading
from typing import Optional, Union
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
@@ -21,6 +20,7 @@ from invokeai.app.services.models.image_record import (
T = TypeVar("T", bound=BaseModel)
class OffsetPaginatedResults(GenericModel, Generic[T]):
"""Offset-paginated results"""
@@ -60,7 +60,7 @@ class ImageRecordStorageBase(ABC):
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_origin: ResourceOrigin, image_name: str) -> ImageRecord:
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@@ -68,7 +68,6 @@ class ImageRecordStorageBase(ABC):
def update(
self,
image_name: str,
image_origin: ResourceOrigin,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
@@ -82,6 +81,7 @@ class ImageRecordStorageBase(ABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
@@ -89,10 +89,15 @@ class ImageRecordStorageBase(ABC):
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_origin: ResourceOrigin, image_name: str) -> None:
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def save(
self,
@@ -109,6 +114,11 @@ class ImageRecordStorageBase(ABC):
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase):
_filename: str
@@ -135,7 +145,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._lock.release()
def _create_tables(self) -> None:
"""Creates the tables for the `images` database."""
"""Creates the `images` table."""
# Create the `images` table.
self._cursor.execute(
@@ -152,6 +162,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
board_id TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
@@ -190,15 +201,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = current_timestamp
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
)
def get(
self, image_origin: ResourceOrigin, image_name: str
) -> Union[ImageRecord, None]:
def get(self, image_name: str) -> Optional[ImageRecord]:
try:
self._lock.acquire()
@@ -210,7 +219,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(image_name,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
@@ -225,7 +234,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
def update(
self,
image_name: str,
image_origin: ResourceOrigin,
changes: ImageRecordChanges,
) -> None:
try:
@@ -262,6 +270,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
""",
(changes.is_intermediate, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
@@ -276,40 +285,66 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
try:
self._lock.acquire()
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
count_query = f"""SELECT COUNT(*) FROM images WHERE 1=1\n"""
images_query = f"""SELECT * FROM images WHERE 1=1\n"""
images_query = """--sql
SELECT images.*
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_conditions = ""
query_params = []
if image_origin is not None:
query_conditions += f"""AND image_origin = ?\n"""
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
if categories is not None:
## Convert the enum values to unique list of strings
category_strings = list(
map(lambda c: c.value, set(categories))
)
# Convert the enum values to unique list of strings
category_strings = list(map(lambda c: c.value, set(categories)))
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"AND image_category IN ( {placeholders} )\n"
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += f"""AND is_intermediate = ?\n"""
query_conditions += """--sql
AND images.is_intermediate = ?
"""
query_params.append(is_intermediate)
query_pagination = f"""ORDER BY created_at DESC LIMIT ? OFFSET ?\n"""
if board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
query_pagination = """--sql
ORDER BY images.created_at DESC LIMIT ? OFFSET ?
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
@@ -326,7 +361,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
count_query += query_conditions + ";"
count_params = query_params.copy()
self._cursor.execute(count_query, count_params)
count = self._cursor.fetchone()[0]
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
@@ -337,7 +372,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
items=images, offset=offset, limit=limit, total=count
)
def delete(self, image_origin: ResourceOrigin, image_name: str) -> None:
def delete(self, image_name: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
@@ -354,6 +389,25 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
def delete_many(self, image_names: list[str]) -> None:
try:
placeholders = ",".join("?" for _ in image_names)
self._lock.acquire()
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Execute the query with the list of IDs as parameters
self._cursor.execute(query, image_names)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
image_name: str,
@@ -417,3 +471,28 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_most_recent_image_for_board(
self, board_id: str
) -> Optional[ImageRecord]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
ORDER BY images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
finally:
self._lock.release()
if result is None:
return None
return deserialize_image_record(dict(result))

View File

@@ -10,6 +10,7 @@ from invokeai.app.models.image import (
InvalidOriginException,
)
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException,
ImageRecordNotFoundException,
@@ -49,7 +50,7 @@ class ImageServiceABC(ABC):
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
intermediate: bool = False,
is_intermediate: bool = False,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@@ -57,7 +58,6 @@ class ImageServiceABC(ABC):
@abstractmethod
def update(
self,
image_origin: ResourceOrigin,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
@@ -65,22 +65,22 @@ class ImageServiceABC(ABC):
pass
@abstractmethod
def get_pil_image(self, image_origin: ResourceOrigin, image_name: str) -> PILImageType:
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_origin: ResourceOrigin, image_name: str) -> ImageRecord:
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_origin: ResourceOrigin, image_name: str) -> ImageDTO:
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_path(self, image_origin: ResourceOrigin, image_name: str) -> str:
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@@ -90,9 +90,7 @@ class ImageServiceABC(ABC):
pass
@abstractmethod
def get_url(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@@ -104,21 +102,28 @@ class ImageServiceABC(ABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_origin: ResourceOrigin, image_name: str):
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass
class ImageServiceDependencies:
"""Service dependencies for the ImageService."""
records: ImageRecordStorageBase
files: ImageFileStorageBase
image_records: ImageRecordStorageBase
image_files: ImageFileStorageBase
board_image_records: BoardImageRecordStorageBase
metadata: MetadataServiceBase
urls: UrlServiceBase
logger: Logger
@@ -129,14 +134,16 @@ class ImageServiceDependencies:
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
board_image_record_storage: BoardImageRecordStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self.records = image_record_storage
self.files = image_file_storage
self.image_records = image_record_storage
self.image_files = image_file_storage
self.board_image_records = board_image_record_storage
self.metadata = metadata
self.urls = url
self.logger = logger
@@ -147,25 +154,8 @@ class ImageServiceDependencies:
class ImageService(ImageServiceABC):
_services: ImageServiceDependencies
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self._services = ImageServiceDependencies(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=url,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
def __init__(self, services: ImageServiceDependencies):
self._services = services
def create(
self,
@@ -190,7 +180,7 @@ class ImageService(ImageServiceABC):
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
created_at = self._services.records.save(
self._services.image_records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
@@ -205,38 +195,15 @@ class ImageService(ImageServiceABC):
metadata=metadata,
)
self._services.files.save(
image_origin=image_origin,
self._services.image_files.save(
image_name=image_name,
image=image,
metadata=metadata,
)
image_url = self._services.urls.get_image_url(image_origin, image_name)
thumbnail_url = self._services.urls.get_image_url(
image_origin, image_name, True
)
image_dto = self.get_dto(image_name)
return ImageDTO(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Nullable fields
node_id=node_id,
session_id=session_id,
metadata=metadata,
# Meta fields
created_at=created_at,
updated_at=created_at, # this is always the same as the created_at at this time
deleted_at=None,
is_intermediate=is_intermediate,
# Extra non-nullable fields for DTO
image_url=image_url,
thumbnail_url=thumbnail_url,
)
return image_dto
except ImageRecordSaveException:
self._services.logger.error("Failed to save image record")
raise
@@ -249,13 +216,12 @@ class ImageService(ImageServiceABC):
def update(
self,
image_origin: ResourceOrigin,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self._services.records.update(image_name, image_origin, changes)
return self.get_dto(image_origin, image_name)
self._services.image_records.update(image_name, changes)
return self.get_dto(image_name)
except ImageRecordSaveException:
self._services.logger.error("Failed to update image record")
raise
@@ -263,9 +229,9 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem updating image record")
raise e
def get_pil_image(self, image_origin: ResourceOrigin, image_name: str) -> PILImageType:
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self._services.files.get(image_origin, image_name)
return self._services.image_files.get(image_name)
except ImageFileNotFoundException:
self._services.logger.error("Failed to get image file")
raise
@@ -273,9 +239,9 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem getting image file")
raise e
def get_record(self, image_origin: ResourceOrigin, image_name: str) -> ImageRecord:
def get_record(self, image_name: str) -> ImageRecord:
try:
return self._services.records.get(image_origin, image_name)
return self._services.image_records.get(image_name)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
@@ -283,14 +249,15 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem getting image record")
raise e
def get_dto(self, image_origin: ResourceOrigin, image_name: str) -> ImageDTO:
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self._services.records.get(image_origin, image_name)
image_record = self._services.image_records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self._services.urls.get_image_url(image_origin, image_name),
self._services.urls.get_image_url(image_origin, image_name, True),
self._services.urls.get_image_url(image_name),
self._services.urls.get_image_url(image_name, True),
self._services.board_image_records.get_board_for_image(image_name),
)
return image_dto
@@ -301,27 +268,23 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem getting image DTO")
raise e
def get_path(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.files.get_path(image_origin, image_name, thumbnail)
return self._services.image_files.get_path(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self._services.files.validate_path(path)
return self._services.image_files.validate_path(path)
except Exception as e:
self._services.logger.error("Problem validating image path")
raise e
def get_url(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.urls.get_image_url(image_origin, image_name, thumbnail)
return self._services.urls.get_image_url(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
@@ -333,23 +296,26 @@ class ImageService(ImageServiceABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self._services.records.get_many(
results = self._services.image_records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_origin, r.image_name),
self._services.urls.get_image_url(
r.image_origin, r.image_name, True
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(
r.image_name
),
),
results.items,
@@ -366,10 +332,10 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem getting paginated image DTOs")
raise e
def delete(self, image_origin: ResourceOrigin, image_name: str):
def delete(self, image_name: str):
try:
self._services.files.delete(image_origin, image_name)
self._services.records.delete(image_origin, image_name)
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
raise
@@ -380,9 +346,31 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem deleting image record and file")
raise e
def delete_images_on_board(self, board_id: str):
try:
images = self._services.board_image_records.get_images_for_board(board_id)
image_name_list = list(
map(
lambda r: r.image_name,
images.items,
)
)
for image_name in image_name_list:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_name_list)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e
def _get_metadata(
self, session_id: Optional[str] = None, node_id: Optional[str] = None
) -> Union[ImageMetadata, None]:
) -> Optional[ImageMetadata]:
"""Get the metadata for a node."""
metadata = None

View File

@@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from queue import Queue
from pydantic import BaseModel, Field
from typing import Optional
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
@@ -22,7 +22,7 @@ class InvocationQueueABC(ABC):
pass
@abstractmethod
def put(self, item: InvocationQueueItem | None) -> None:
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
@@ -57,7 +57,7 @@ class MemoryInvocationQueue(InvocationQueueABC):
return item
def put(self, item: InvocationQueueItem | None) -> None:
def put(self, item: Optional[InvocationQueueItem]) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:

View File

@@ -4,8 +4,10 @@ from typing import TYPE_CHECKING
if TYPE_CHECKING:
from logging import Logger
from invokeai.app.services.images import ImageService
from invokeai.backend import ModelManager
from invokeai.app.services.board_images import BoardImagesServiceABC
from invokeai.app.services.boards import BoardServiceABC
from invokeai.app.services.images import ImageServiceABC
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.latent_storage import LatentsStorageBase
from invokeai.app.services.restoration_services import RestorationServices
@@ -20,41 +22,47 @@ class InvocationServices:
"""Services that can be used by invocations"""
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
events: "EventServiceBase"
latents: "LatentsStorageBase"
queue: "InvocationQueueABC"
model_manager: "ModelManager"
restoration: "RestorationServices"
board_images: "BoardImagesServiceABC"
boards: "BoardServiceABC"
configuration: "InvokeAISettings"
images: "ImageService"
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: "ItemStorageABC"["LibraryGraph"]
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
graph_library: "ItemStorageABC"["LibraryGraph"]
images: "ImageServiceABC"
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
processor: "InvocationProcessorABC"
queue: "InvocationQueueABC"
restoration: "RestorationServices"
def __init__(
self,
model_manager: "ModelManager",
events: "EventServiceBase",
logger: "Logger",
latents: "LatentsStorageBase",
images: "ImageService",
queue: "InvocationQueueABC",
graph_library: "ItemStorageABC"["LibraryGraph"],
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: "RestorationServices",
board_images: "BoardImagesServiceABC",
boards: "BoardServiceABC",
configuration: "InvokeAISettings",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
graph_library: "ItemStorageABC"["LibraryGraph"],
images: "ImageServiceABC",
latents: "LatentsStorageBase",
logger: "Logger",
model_manager: "ModelManagerServiceBase",
processor: "InvocationProcessorABC",
queue: "InvocationQueueABC",
restoration: "RestorationServices",
):
self.model_manager = model_manager
self.events = events
self.logger = logger
self.latents = latents
self.images = images
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration
self.board_images = board_images
self.boards = boards
self.boards = boards
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.latents = latents
self.logger = logger
self.model_manager = model_manager
self.processor = processor
self.queue = queue
self.restoration = restoration

View File

@@ -1,14 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC
from threading import Event, Thread
from typing import Optional
from ..invocations.baseinvocation import InvocationContext
from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueABC, InvocationQueueItem
from .invocation_queue import InvocationQueueItem
from .invocation_services import InvocationServices
from .item_storage import ItemStorageABC
class Invoker:
"""The invoker, used to execute invocations"""
@@ -21,7 +18,7 @@ class Invoker:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> str | None:
) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
@@ -45,7 +42,7 @@ class Invoker:
return invocation.id
def create_execution_state(self, graph: Graph | None = None) -> GraphExecutionState:
def create_execution_state(self, graph: Optional[Graph] = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)

View File

@@ -1,10 +1,9 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
from typing import Dict, Union, Optional
import torch
@@ -56,7 +55,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
@@ -70,24 +69,26 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
__output_folder: Union[str, Path]
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
latent_path.unlink()
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Union
from typing import Any, Optional
import networkx as nx
from invokeai.app.models.metadata import ImageMetadata
@@ -34,7 +34,7 @@ class CoreMetadataService(MetadataServiceBase):
return metadata
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Union[str, None]:
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Optional[str]:
"""
Finds the id of the nearest ancestor (of a valid type) of a given node.
@@ -65,7 +65,7 @@ class CoreMetadataService(MetadataServiceBase):
def _get_additional_metadata(
self, graph: Graph, node_id: str
) -> Union[dict[str, Any], None]:
) -> Optional[dict[str, Any]]:
"""
Returns additional metadata for a given node.

View File

@@ -1,104 +0,0 @@
import os
import sys
import torch
from argparse import Namespace
from omegaconf import OmegaConf
from pathlib import Path
from typing import types
import invokeai.version
from .config import InvokeAISettings
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: InvokeAISettings, logger: types.ModuleType) -> ModelManager:
model_config = config.model_conf_path
if not model_config.exists():
report_model_error(
config, FileNotFoundError(f"The file {model_config} could not be found."), logger
)
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{config.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
embedding_path = config.embedding_path
# migrate legacy models
ModelManager.migrate_models()
# creating the model manager
try:
device = torch.device(choose_torch_device())
precision = 'float16' if config.precision=='float16' \
else 'float32' if config.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.model_conf_path),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = embedding_path,
logger = logger,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e, logger)
except (IOError, KeyError) as e:
logger.error(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if config.autoconvert_path:
model_manager.heuristic_import(
config.autoconvert_path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)

View File

@@ -0,0 +1,562 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from pydantic import Field
from typing import Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from types import ModuleType
from invokeai.backend.model_management import (
ModelManager,
BaseModelType,
ModelType,
SubModelType,
ModelInfo,
AddModelResult,
SchedulerPredictionType,
ModelMerger,
MergeInterpolationMethod,
)
import torch
from invokeai.app.models.exceptions import CanceledException
from ...backend.util import choose_precision, choose_torch_device
from .config import InvokeAIAppConfig
if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
KeyErrorException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
# simple implementation
class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory"""
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
if config.model_conf_path and config.model_conf_path.exists():
config_file = config.model_conf_path
else:
config_file = config.root_dir / "configs/models.yaml"
if not config_file.exists():
raise IOError(f"The file {config_file} could not be found.")
logger.debug(f'config file={config_file}')
device = torch.device(choose_torch_device())
logger.debug(f'GPU device = {device}')
precision = config.precision
if precision == "auto":
precision = choose_precision(device)
dtype = torch.float32 if precision == 'float32' else torch.float16
# this is transitional backward compatibility
# support for the deprecated `max_loaded_models`
# configuration value. If present, then the
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
sequential_offload = config.sequential_guidance
self.mgr = ModelManager(
config=config_file,
device_type=device,
precision=dtype,
max_cache_size=max_cache_size,
sequential_offload=sequential_offload,
logger=logger,
)
logger.info('Model manager service initialized')
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""
Retrieve the indicated model. submodel can be used to get a
part (such as the vae) of a diffusers mode.
"""
# if we are called from within a node, then we get to emit
# load start and complete events
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
model_info = self.mgr.get_model(
model_name,
base_model,
model_type,
submodel,
)
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
)
return model_info
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return self.mgr.model_exists(
model_name,
base_model,
model_type,
)
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
return self.mgr.model_info(model_name, base_model, model_type)
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
return self.mgr.model_names()
def list_models(
self,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
) -> list[dict]:
"""
Return a list of models.
"""
return self.mgr.list_models(base_model, model_type)
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
return self.mgr.list_model(model_name=model_name,
base_model=base_model,
model_type=model_type)
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
)->None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'add/update model {model_name}')
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
KeyError exception if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'update model {model_name}')
if not self.model_exists(model_name, base_model, model_type):
raise KeyError(f"Unknown model {model_name}")
return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True)
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
self.logger.debug(f'delete model {model_name}')
self.mgr.del_model(model_name, base_model, model_type)
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
self.logger.debug(f'convert model {model_name}')
return self.mgr.convert_model(model_name, base_model, model_type)
def commit(self, conf_file: Optional[Path]=None):
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
return self.mgr.commit(conf_file)
def _emit_load_event(
self,
node,
context,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: Optional[ModelInfo] = None,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException()
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[node.id]
if model_info:
context.services.events.emit_model_load_completed(
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
)
else:
context.services.events.emit_model_load_started(
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
@property
def logger(self):
return self.mgr.logger
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
"""
merger = ModelMerger(self.mgr)
try:
result = merger.merge_diffusion_models_and_save(
model_names = model_names,
base_model = base_model,
merged_model_name = merged_model_name,
alpha = alpha,
interp = interp,
force = force,
)
except AssertionError as e:
raise ValueError(e)
return result

View File

@@ -0,0 +1,62 @@
from typing import Optional, Union
from datetime import datetime
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from invokeai.app.util.misc import get_iso_timestamp
class BoardRecord(BaseModel):
"""Deserialized board record."""
board_id: str = Field(description="The unique ID of the board.")
"""The unique ID of the board."""
board_name: str = Field(description="The name of the board.")
"""The name of the board."""
created_at: Union[datetime, str] = Field(
description="The created timestamp of the board."
)
"""The created timestamp of the image."""
updated_at: Union[datetime, str] = Field(
description="The updated timestamp of the board."
)
"""The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field(
description="The deleted timestamp of the board."
)
"""The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(
description="The name of the cover image of the board."
)
"""The name of the cover image of the board."""
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(
description="The name of the board's cover image."
)
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
board_id = board_dict.get("board_id", "unknown")
board_name = board_dict.get("board_name", "unknown")
cover_image_name = board_dict.get("cover_image_name", "unknown")
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
return BoardRecord(
board_id=board_id,
board_name=board_name,
cover_image_name=cover_image_name,
created_at=created_at,
updated_at=updated_at,
deleted_at=deleted_at,
)

View File

@@ -79,8 +79,6 @@ class ImageUrlsDTO(BaseModel):
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_origin: ResourceOrigin = Field(description="The type of the image.")
"""The origin of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
@@ -88,19 +86,24 @@ class ImageUrlsDTO(BaseModel):
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend with URLs."""
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(
description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord, image_url: str, thumbnail_url: str
image_record: ImageRecord, image_url: str, thumbnail_url: str, board_id: Optional[str]
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)

View File

@@ -16,13 +16,14 @@ class RestorationServices:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
restoration = Restoration()
if args.restore:
# TODO: redo for new model structure
if False and args.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
args.gfpgan_model_path
)
else:
logger.info("Face restoration disabled")
if args.esrgan:
if False and args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
logger.info("Upscaling disabled")

View File

@@ -1,6 +1,6 @@
import sqlite3
from threading import Lock
from typing import Generic, TypeVar, Union, get_args
from typing import Generic, TypeVar, Optional, Union, get_args
from pydantic import BaseModel, parse_raw_as
@@ -63,7 +63,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._lock.release()
self._on_changed(item)
def get(self, id: str) -> Union[T, None]:
def get(self, id: str) -> Optional[T]:
try:
self._lock.acquire()
self._cursor.execute(

View File

@@ -1,17 +1,12 @@
import os
from abc import ABC, abstractmethod
from invokeai.app.models.image import ResourceOrigin
from invokeai.app.util.thumbnails import get_thumbnail_name
class UrlServiceBase(ABC):
"""Responsible for building URLs for resources."""
@abstractmethod
def get_image_url(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the URL for an image or thumbnail."""
pass
@@ -20,15 +15,11 @@ class LocalUrlService(UrlServiceBase):
def __init__(self, base_url: str = "api/v1"):
self._base_url = base_url
def get_image_url(
self, image_origin: ResourceOrigin, image_name: str, thumbnail: bool = False
) -> str:
def get_image_url(self, image_name: str, thumbnail: bool = False) -> str:
image_basename = os.path.basename(image_name)
# These paths are determined by the routes in invokeai/app/api/routers/images.py
if thumbnail:
return (
f"{self._base_url}/images/{image_origin.value}/{image_basename}/thumbnail"
)
return f"{self._base_url}/images/{image_basename}/thumbnail"
return f"{self._base_url}/images/{image_origin.value}/{image_basename}"
return f"{self._base_url}/images/{image_basename}"

View File

@@ -5,9 +5,11 @@ from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint
)
from .model_management import ModelManager, SDModelComponent
from .model_management import (
ModelManager, ModelCache, BaseModelType,
ModelType, SubModelType, ModelInfo
)
from .safety_checker import SafetyChecker

View File

@@ -5,7 +5,6 @@ from .base import (
InvokeAIGenerator,
InvokeAIGeneratorBasicParams,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint,
Generator,

View File

@@ -21,7 +21,7 @@ from PIL import Image, ImageChops, ImageFilter
from accelerate.utils import set_seed
from diffusers import DiffusionPipeline
from tqdm import trange
from typing import Callable, List, Iterator, Optional, Type
from typing import Callable, List, Iterator, Optional, Type, Union
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
@@ -29,7 +29,6 @@ import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
@@ -81,13 +80,15 @@ class InvokeAIGenerator(metaclass=ABCMeta):
self.params=params
self.kwargs = kwargs
def generate(self,
prompt: str='',
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
def generate(
self,
conditioning: tuple,
scheduler,
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
'''
Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput
@@ -113,54 +114,46 @@ class InvokeAIGenerator(metaclass=ABCMeta):
generator_args.update(keyword_args)
model_info = self.model_info
model_name = model_info['model_name']
model:StableDiffusionGeneratorPipeline = model_info['model']
model_hash = model_info['hash']
scheduler: Scheduler = self.get_scheduler(
model=model,
scheduler_name=generator_args.get('scheduler')
)
model_name = model_info.name
model_hash = model_info.hash
with model_info.context as model:
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
# get conditioning from prompt via Compel package
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt, model=model)
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(prompt,
conditioning=(uc, c, extra_conditioning_info),
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(
conditioning=conditioning,
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
yield output
@classmethod
@@ -173,20 +166,6 @@ class InvokeAIGenerator(metaclass=ABCMeta):
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@classmethod
def _generator_class(cls)->Type[Generator]:
'''
@@ -196,17 +175,10 @@ class InvokeAIGenerator(metaclass=ABCMeta):
'''
return Generator
# ------------------------------------
class Txt2Img(InvokeAIGenerator):
@classmethod
def _generator_class(cls):
from .txt2img import Txt2Img
return Txt2Img
# ------------------------------------
class Img2Img(InvokeAIGenerator):
def generate(self,
init_image: Image.Image | torch.FloatTensor,
init_image: Union[Image.Image, torch.FloatTensor],
strength: float=0.75,
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
@@ -223,7 +195,7 @@ class Img2Img(InvokeAIGenerator):
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img):
def generate(self,
mask_image: Image.Image | torch.FloatTensor,
mask_image: Union[Image.Image, torch.FloatTensor],
# Seam settings - when 0, doesn't fill seam
seam_size: int = 96,
seam_blur: int = 16,
@@ -256,25 +228,6 @@ class Inpaint(Img2Img):
from .inpaint import Inpaint
return Inpaint
# ------------------------------------
class Embiggen(Txt2Img):
def generate(
self,
embiggen: list=None,
embiggen_tiles: list = None,
strength: float=0.75,
**kwargs)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
strength=strength,
**kwargs)
@classmethod
def _generator_class(cls):
from .embiggen import Embiggen
return Embiggen
class Generator:
downsampling_factor: int
latent_channels: int
@@ -285,7 +238,7 @@ class Generator:
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.channels
self.latent_channels = model.unet.config.in_channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
@@ -296,7 +249,7 @@ class Generator:
self.free_gpu_mem = None
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self, prompt, **kwargs):
def get_make_image(self, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
@@ -312,7 +265,6 @@ class Generator:
def generate(
self,
prompt,
width,
height,
sampler,
@@ -337,7 +289,6 @@ class Generator:
saver.get_stacked_maps_image()
)
make_image = self.get_make_image(
prompt,
sampler=sampler,
init_image=init_image,
width=width,
@@ -619,28 +570,16 @@ class Generator:
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
if self.use_mps_noise or device.type == "mps":
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device="cpu",
).to(device)
else:
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(
width // self.downsampling_factor, height // self.downsampling_factor

View File

@@ -1,559 +0,0 @@
"""
invokeai.backend.generator.embiggen descends from .generator
and generates with .generator.img2img
"""
import numpy as np
import torch
from PIL import Image
from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None
# Replace generate because Embiggen doesn't need/use most of what it does normallly
def generate(
self,
prompt,
iterations=1,
seed=None,
image_callback=None,
step_callback=None,
**kwargs,
):
make_image = self.get_make_image(prompt, step_callback=step_callback, **kwargs)
results = []
seed = seed if seed else self.new_seed()
# Noise will be generated by the Img2Img generator when called
for _ in trange(iterations, desc="Generating"):
# make_image will call Img2Img which will do the equivalent of get_noise itself
image = make_image()
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed, prompt_in=prompt)
seed = self.new_seed()
return results
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_img,
strength,
width,
height,
embiggen,
embiggen_tiles,
step_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
Return value depends on the seed at the time you call it
"""
assert (
not sampler.uses_inpainting_model()
), "--embiggen is not supported by inpainting models"
# Construct embiggen arg array, and sanity check arguments
if embiggen == None: # embiggen can also be called with just embiggen_tiles
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
logger.warning(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
logger.warning(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
logger.warning(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
# and then sort them, because... people.
if embiggen_tiles:
embiggen_tiles = list(map(lambda n: n - 1, embiggen_tiles))
embiggen_tiles.sort()
if strength >= 0.5:
logger.warning(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
gen_img2img = Img2Img(self.model, self.precision)
# Open original init image (not a tensor) to manipulate
initsuperimage = Image.open(init_img)
with Image.open(init_img) as img:
initsuperimage = img.convert("RGB")
# Size of the target super init image in pixels
initsuperwidth, initsuperheight = initsuperimage.size
# Increase by scaling factor if not already resized, using ESRGAN as able
if embiggen[0] != 1.0:
initsuperwidth = round(initsuperwidth * embiggen[0])
initsuperheight = round(initsuperheight * embiggen[0])
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
logger.info(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
4, # upscale scale
)
else:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
2, # upscale scale
)
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
# but from personal experiance it doesn't greatly improve anything after 4x
# Resize to target scaling factor resolution
initsuperimage = initsuperimage.resize(
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS
)
# Use width and height as tile widths and height
# Determine buffer size in pixels
if embiggen[2] < 1:
if embiggen[2] < 0:
embiggen[2] = 0
overlap_size_x = round(embiggen[2] * width)
overlap_size_y = round(embiggen[2] * height)
else:
overlap_size_x = round(embiggen[2])
overlap_size_y = round(embiggen[2])
# With overall image width and height known, determine how many tiles we need
def ceildiv(a, b):
return -1 * (-a // b)
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
# (width - overlap_size_x) is how much new we can fill with a single tile
emb_tiles_x = 1
emb_tiles_y = 1
if (initsuperwidth - width) > 0:
emb_tiles_x = ceildiv(initsuperwidth - width, width - overlap_size_x) + 1
if (initsuperheight - height) > 0:
emb_tiles_y = ceildiv(initsuperheight - height, height - overlap_size_y) + 1
# Sanity
assert (
emb_tiles_x > 1 or emb_tiles_y > 1
), f"ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don't need to Embiggen! Check your arguments."
# Prep alpha layers --------------
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
# agradientL is Left-side transparent
agradientL = (
Image.linear_gradient("L").rotate(90).resize((overlap_size_x, height))
)
# agradientT is Top-side transparent
agradientT = Image.linear_gradient("L").resize((width, overlap_size_y))
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
agradientC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
# Find distance to lower right corner (numpy takes arrays)
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
# Clamp values to max 255
if distanceToLR > 255:
distanceToLR = 255
# Place the pixel as invert of distance
agradientC.putpixel((x, y), round(255 - distanceToLR))
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
agradientAsymC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
value = round(max(0, x - (255 - y)) * (255 / max(1, y)))
# Clamp values
value = max(0, value)
value = min(255, value)
agradientAsymC.putpixel((x, y), value)
# Create alpha layers default fully white
alphaLayerL = Image.new("L", (width, height), 255)
alphaLayerT = Image.new("L", (width, height), 255)
alphaLayerLTC = Image.new("L", (width, height), 255)
# Paste gradients into alpha layers
alphaLayerL.paste(agradientL, (0, 0))
alphaLayerT.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientL, (0, 0))
alphaLayerLTC.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0))
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
alphaLayerTaC = alphaLayerT.copy()
alphaLayerTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
alphaLayerLTaC = alphaLayerLTC.copy()
alphaLayerLTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
if embiggen_tiles:
# Individual unconnected sides
alphaLayerR = Image.new("L", (width, height), 255)
alphaLayerR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerB = Image.new("L", (width, height), 255)
alphaLayerB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerTB = Image.new("L", (width, height), 255)
alphaLayerTB.paste(agradientT, (0, 0))
alphaLayerTB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLR = Image.new("L", (width, height), 255)
alphaLayerLR.paste(agradientL, (0, 0))
alphaLayerLR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
# Sides and corner Layers
alphaLayerRBC = Image.new("L", (width, height), 255)
alphaLayerRBC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerRBC.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerLBC = Image.new("L", (width, height), 255)
alphaLayerLBC.paste(agradientL, (0, 0))
alphaLayerLBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLBC.paste(
agradientC.rotate(90).resize((overlap_size_x, overlap_size_y)),
(0, height - overlap_size_y),
)
alphaLayerRTC = Image.new("L", (width, height), 255)
alphaLayerRTC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRTC.paste(agradientT, (0, 0))
alphaLayerRTC.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# All but X layers
alphaLayerABT = Image.new("L", (width, height), 255)
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
alphaLayerABT.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerABT.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABL = Image.new("L", (width, height), 255)
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
alphaLayerABL.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerABL.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABR = Image.new("L", (width, height), 255)
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
alphaLayerABR.paste(agradientT, (0, 0))
alphaLayerABR.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerABB = Image.new("L", (width, height), 255)
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
alphaLayerABB.paste(agradientL, (0, 0))
alphaLayerABB.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
# All-around layer
alphaLayerAA = Image.new("L", (width, height), 255)
alphaLayerAA.paste(alphaLayerABT, (0, 0))
alphaLayerAA.paste(agradientT, (0, 0))
alphaLayerAA.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerAA.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# Clean up temporary gradients
del agradientL
del agradientT
del agradientC
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else:
logger.info(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
# Although we could use the same seed for every tile for determinism, at higher strengths this may
# produce duplicated structures for each tile and make the tiling effect more obvious
# instead track and iterate a local seed we pass to Img2Img
seed = self.seed
seedintlimit = (
np.iinfo(np.uint32).max - 1
) # only retreive this one from numpy
for tile in range(emb_tiles_x * emb_tiles_y):
# Don't iterate on first tile
if tile != 0:
if seed < seedintlimit:
seed += 1
else:
seed = 0
# Determine if this is a re-run and replace
if embiggen_tiles and not tile in embiggen_tiles:
continue
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
# Determine bounds to cut up the init image
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
right = left + width
bottom = top + height
# Cropped image of above dimension (does not modify the original)
newinitimage = initsuperimage.crop((left, top, right, bottom))
# DEBUG:
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
newinitimage = torch.from_numpy(newinitimage)
newinitimage = 2.0 * newinitimage - 1.0
newinitimage = newinitimage.to(self.model.device)
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
tile_results = gen_img2img.generate(
prompt,
iterations=1,
seed=seed,
sampler=sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
ddim_eta=ddim_eta,
image_callback=None, # called only after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
width=width,
height=height,
init_image=newinitimage, # notice that init_image is different from init_img
mask_image=None,
strength=strength,
clear_cuda_cache=clear_cuda_cache,
)
emb_tile_store.append(tile_results[0][0])
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
del newinitimage
# Sanity check we have them all
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (
embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)
):
outputsuperimage = Image.new("RGBA", (initsuperwidth, initsuperheight))
if embiggen_tiles:
outputsuperimage.alpha_composite(
initsuperimage.convert("RGBA"), (0, 0)
)
for tile in range(emb_tiles_x * emb_tiles_y):
if embiggen_tiles:
if tile in embiggen_tiles:
intileimage = emb_tile_store.pop(0)
else:
continue
else:
intileimage = emb_tile_store[tile]
intileimage = intileimage.convert("RGBA")
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
left = 0
top = 0
else:
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
# Handle gradients for various conditions
# Handle emb_rerun case
if embiggen_tiles:
# top of image
if emb_row_i == 0:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) not in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerB)
# Otherwise do nothing on this tile
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerR)
else:
intileimage.putalpha(alphaLayerRBC)
elif emb_column_i == emb_tiles_x - 1:
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerLR)
else:
intileimage.putalpha(alphaLayerABT)
# bottom of image
elif emb_row_i == emb_tiles_y - 1:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerRTC)
elif emb_column_i == emb_tiles_x - 1:
# No tiles to look ahead to
intileimage.putalpha(alphaLayerLTC)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABB)
# vertical middle of image
else:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerTB)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerRTC)
else:
intileimage.putalpha(alphaLayerABL)
elif emb_column_i == emb_tiles_x - 1:
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABR)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABR)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerABB)
else:
intileimage.putalpha(alphaLayerAA)
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
else:
if emb_row_i == 0 and emb_column_i >= 1:
intileimage.putalpha(alphaLayerL)
elif emb_row_i >= 1 and emb_column_i == 0:
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerTaC)
else:
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerLTaC)
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
logger.error(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image
return outputsuperimage
# end of function declaration
return make_image

View File

@@ -22,7 +22,6 @@ class Img2Img(Generator):
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
@@ -89,10 +88,7 @@ class Img2Img(Generator):
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == "mps":
x = torch.randn_like(like, device="cpu").to(device)
else:
x = torch.randn_like(like, device=device)
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(

View File

@@ -4,11 +4,10 @@ invokeai.backend.generator.inpaint descends from .generator
from __future__ import annotations
import math
from typing import Tuple, Union
from typing import Tuple, Union, Optional
import cv2
import numpy as np
import PIL
import torch
from PIL import Image, ImageChops, ImageFilter, ImageOps
@@ -76,7 +75,7 @@ class Inpaint(Img2Img):
return im_patched
def tile_fill_missing(
self, im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
self, im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
@@ -161,9 +160,7 @@ class Inpaint(Img2Img):
im: Image.Image,
seam_size: int,
seam_blur: int,
prompt,
seed,
sampler,
steps,
cfg_scale,
ddim_eta,
@@ -177,8 +174,6 @@ class Inpaint(Img2Img):
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
make_image = self.get_make_image(
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
@@ -203,14 +198,12 @@ class Inpaint(Img2Img):
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_image: Image.Image | torch.FloatTensor,
mask_image: Image.Image | torch.FloatTensor,
init_image: Union[Image.Image, torch.FloatTensor],
mask_image: Union[Image.Image, torch.FloatTensor],
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
@@ -306,7 +299,6 @@ class Inpaint(Img2Img):
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
# todo: support cross-attention control
uc, c, _ = conditioning
@@ -345,9 +337,7 @@ class Inpaint(Img2Img):
result,
seam_size,
seam_blur,
prompt,
seed,
sampler,
seam_steps,
cfg_scale,
ddim_eta,
@@ -360,8 +350,6 @@ class Inpaint(Img2Img):
# Restore original settings
self.get_make_image(
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,

View File

@@ -1,125 +0,0 @@
"""
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
"""
import PIL.Image
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from diffusers.models.controlnet import ControlNetModel, ControlNetOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from ..stable_diffusion import (
ConditioningData,
PostprocessingSettings,
StableDiffusionGeneratorPipeline,
)
from .base import Generator
class Txt2Img(Generator):
def __init__(self, model, precision,
control_model: Optional[Union[ControlNetModel, List[ControlNetModel]]] = None,
**kwargs):
self.control_model = control_model
if isinstance(self.control_model, list):
self.control_model = MultiControlNetModel(self.control_model)
super().__init__(model, precision, **kwargs)
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
width,
height,
step_callback=None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
control_image = kwargs.get("control_image", None)
do_classifier_free_guidance = cfg_scale > 1.0
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.control_model = self.control_model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=warmup,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
if control_image is not None:
if isinstance(self.control_model, ControlNetModel):
control_image = pipeline.prepare_control_image(
image=control_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=self.control_model.device,
dtype=self.control_model.dtype,
)
elif isinstance(self.control_model, MultiControlNetModel):
images = []
for image_ in control_image:
image_ = self.model.prepare_control_image(
image=image_,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=self.control_model.device,
dtype=self.control_model.dtype,
)
images.append(image_)
control_image = images
kwargs["control_image"] = control_image
def make_image(x_T: torch.Tensor, _: int) -> PIL.Image.Image:
pipeline_output = pipeline.image_from_embeddings(
latents=torch.zeros_like(x_T, dtype=self.torch_dtype()),
noise=x_T,
num_inference_steps=steps,
conditioning_data=conditioning_data,
callback=step_callback,
**kwargs,
)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image

View File

@@ -1,209 +0,0 @@
"""
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
"""
import math
from typing import Callable, Optional
import torch
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
from ..stable_diffusion import PostprocessingSettings
from .base import Generator
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # for get_noise()
def get_make_image(
self,
prompt: str,
sampler,
steps: int,
cfg_scale: float,
ddim_eta,
conditioning,
width: int,
height: int,
strength: float,
step_callback: Optional[Callable] = None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=0.2,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
def make_image(x_T: torch.Tensor, _: int):
first_pass_latent_output, _ = pipeline.latents_from_embeddings(
latents=torch.zeros_like(x_T),
num_inference_steps=steps,
conditioning_data=conditioning_data,
noise=x_T,
callback=step_callback,
)
# Get our initial generation width and height directly from the latent output so
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
logger.info(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing
resized_latents = torch.nn.functional.interpolate(
first_pass_latent_output,
size=(
height // self.downsampling_factor,
width // self.downsampling_factor,
),
mode="bilinear",
)
# Free up memory from the last generation.
clear_cuda_cache = kwargs["clear_cuda_cache"] or None
if clear_cuda_cache is not None:
clear_cuda_cache()
second_pass_noise = self.get_noise_like(
resized_latents, override_perlin=True
)
# Clear symmetry for the second pass
from dataclasses import replace
new_postprocessing_settings = replace(
conditioning_data.postprocessing_settings, h_symmetry_time_pct=None
)
new_postprocessing_settings = replace(
new_postprocessing_settings, v_symmetry_time_pct=None
)
new_conditioning_data = replace(
conditioning_data, postprocessing_settings=new_postprocessing_settings
)
verbosity = get_verbosity()
set_verbosity_error()
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
resized_latents,
num_inference_steps=steps,
conditioning_data=new_conditioning_data,
strength=strength,
noise=second_pass_noise,
callback=step_callback,
)
set_verbosity(verbosity)
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
# FIXME: do we really need something entirely different for the inpainting model?
# in the case of the inpainting model being loaded, the trick of
# providing an interpolated latent doesn't work, so we transiently
# create a 512x512 PIL image, upscale it, and run the inpainting
# over it in img2img mode. Because the inpaing model is so conservative
# it doesn't change the image (much)
return make_image
def get_noise_like(self, like: torch.Tensor, override_perlin: bool = False):
device = like.device
if device.type == "mps":
x = torch.randn_like(like, device="cpu", dtype=self.torch_dtype()).to(
device
)
else:
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
if self.perlin > 0.0 and override_perlin == False:
shape = like.shape
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
return x
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self, width, height, scale=True):
# print(f"Get noise: {width}x{height}")
if scale:
# Scale the input width and height for the initial generation
# Make their area equivalent to the model's resolution area (e.g. 512*512 = 262144),
# while keeping the minimum dimension at least 0.5 * resolution (e.g. 512*0.5 = 256)
aspect = width / height
dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor
min_dimension = math.floor(dimension * 0.5)
model_area = (
dimension * dimension
) # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = trim_to_multiple_of(
math.floor(init_width), math.floor(init_height)
)
else:
scaled_width = width
scaled_height = height
device = self.model.device
channels = self.latent_channels
if channels == 9:
channels = 4 # we don't really want noise for all the mask channels
shape = (
1,
channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor,
)
if self.use_mps_noise or device.type == "mps":
tensor = torch.empty(size=shape, device="cpu")
tensor = self.get_noise_like(like=tensor).to(device)
else:
tensor = torch.empty(size=shape, device=device)
tensor = self.get_noise_like(like=tensor)
return tensor

View File

@@ -7,8 +7,6 @@
# Coauthor: Kevin Turner http://github.com/keturn
#
import sys
print("Loading Python libraries...\n",file=sys.stderr)
import argparse
import io
import os
@@ -16,6 +14,7 @@ import shutil
import textwrap
import traceback
import warnings
import yaml
from argparse import Namespace
from pathlib import Path
from shutil import get_terminal_size
@@ -25,6 +24,7 @@ from urllib import request
import npyscreen
import transformers
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
@@ -34,6 +34,8 @@ from transformers import (
CLIPSegForImageSegmentation,
CLIPTextModel,
CLIPTokenizer,
AutoFeatureExtractor,
BertTokenizerFast,
)
import invokeai.configs as configs
@@ -43,6 +45,7 @@ from invokeai.app.services.config import (
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
@@ -52,12 +55,13 @@ from invokeai.frontend.install.widgets import (
)
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.install.model_install_backend import (
default_dataset,
download_from_hf,
hf_download_with_resume,
recommended_datasets,
UserSelections,
hf_download_from_pretrained,
InstallSelections,
ModelInstall,
)
from invokeai.backend.model_management.model_probe import (
ModelType, BaseModelType
)
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
@@ -73,7 +77,7 @@ Weights_dir = "ldm/stable-diffusion-v1/"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ['auto','float16','float32','autocast']
PRECISION_CHOICES = ['auto','float16','float32']
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
@@ -81,7 +85,7 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# or renaming it and then running invokeai-configure again.
"""
logger=None
logger=InvokeAILogger.getLogger()
# --------------------------------------------
def postscript(errors: None):
@@ -162,75 +166,91 @@ class ProgressBar:
# ---------------------------------------------
def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"):
try:
print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr)
logger.info(f"Installing {label} model file {model_url}...")
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
request.urlretrieve(
model_url, model_dest, ProgressBar(os.path.basename(model_dest))
)
print("...downloaded successfully", file=sys.stderr)
logger.info("...downloaded successfully")
else:
print("...exists", file=sys.stderr)
logger.info("...exists")
except Exception:
print("...download failed", file=sys.stderr)
print(f"Error downloading {label} model", file=sys.stderr)
logger.info("...download failed")
logger.info(f"Error downloading {label} model")
print(traceback.format_exc(), file=sys.stderr)
# ---------------------------------------------
# this will preload the Bert tokenizer fles
def download_bert():
print("Installing bert tokenizer...", file=sys.stderr)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
from transformers import BertTokenizerFast
def download_conversion_models():
target_dir = config.root_path / 'models/core/convert'
kwargs = dict() # for future use
try:
logger.info('Downloading core tokenizers and text encoders')
download_from_hf(BertTokenizerFast, "bert-base-uncased")
# bert
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs)
bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True)
# sd-1
repo_id = 'openai/clip-vit-large-patch14'
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14')
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14')
# sd-2
repo_id = "stabilityai/stable-diffusion-2"
pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True)
# ---------------------------------------------
def download_sd1_clip():
print("Installing SD1 clip model...", file=sys.stderr)
version = "openai/clip-vit-large-patch14"
download_from_hf(CLIPTokenizer, version)
download_from_hf(CLIPTextModel, version)
pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True)
# VAE
logger.info('Downloading stable diffusion VAE')
vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs)
vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True)
# ---------------------------------------------
def download_sd2_clip():
version = "stabilityai/stable-diffusion-2"
print("Installing SD2 clip model...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version, subfolder="tokenizer")
download_from_hf(CLIPTextModel, version, subfolder="text_encoder")
# safety checking
logger.info('Downloading safety checker')
repo_id = "CompVis/stable-diffusion-safety-checker"
pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs)
pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True)
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
# ---------------------------------------------
def download_realesrgan():
print("Installing models from RealESRGAN...", file=sys.stderr)
logger.info("Installing models from RealESRGAN...")
model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth"
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = config.root_path / "models/realesrgan/realesr-general-x4v3.pth"
wdn_model_dest = config.root_path / "models/realesrgan/realesr-general-wdn-x4v3.pth"
model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-x4v3.pth"
wdn_model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth"
download_with_progress_bar(model_url, str(model_dest), "RealESRGAN")
download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn")
def download_gfpgan():
print("Installing GFPGAN models...", file=sys.stderr)
logger.info("Installing GFPGAN models...")
for model in (
[
"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"./models/gfpgan/GFPGANv1.4.pth",
"./models/core/face_restoration/gfpgan/GFPGANv1.4.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",
"./models/gfpgan/weights/detection_Resnet50_Final.pth",
"./models/core/face_restoration/gfpgan/weights/detection_Resnet50_Final.pth",
],
[
"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",
"./models/gfpgan/weights/parsing_parsenet.pth",
"./models/core/face_restoration/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], config.root_path / model[1]
@@ -239,70 +259,32 @@ def download_gfpgan():
# ---------------------------------------------
def download_codeformer():
print("Installing CodeFormer model file...", file=sys.stderr)
logger.info("Installing CodeFormer model file...")
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = config.root_path / "models/codeformer/codeformer.pth"
model_dest = config.root_path / "models/core/face_restoration/codeformer/codeformer.pth"
download_with_progress_bar(model_url, str(model_dest), "CodeFormer")
# ---------------------------------------------
def download_clipseg():
print("Installing clipseg model for text-based masking...", file=sys.stderr)
logger.info("Installing clipseg model for text-based masking...")
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
download_from_hf(AutoProcessor, CLIPSEG_MODEL)
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL)
hf_download_from_pretrained(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
hf_download_from_pretrained(CLIPSegForImageSegmentation, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
except Exception:
print("Error installing clipseg model:")
print(traceback.format_exc())
logger.info("Error installing clipseg model:")
logger.info(traceback.format_exc())
# -------------------------------------
def download_safety_checker():
print("Installing model for NSFW content detection...", file=sys.stderr)
try:
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
except ModuleNotFoundError:
print("Error installing NSFW checker model:")
print(traceback.format_exc())
return
safety_model_id = "CompVis/stable-diffusion-safety-checker"
print("AutoFeatureExtractor...", file=sys.stderr)
download_from_hf(AutoFeatureExtractor, safety_model_id)
print("StableDiffusionSafetyChecker...", file=sys.stderr)
download_from_hf(StableDiffusionSafetyChecker, safety_model_id)
# -------------------------------------
def download_vaes():
print("Installing stabilityai VAE...", file=sys.stderr)
try:
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=config.cache_dir,
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
repo_id = "stabilityai/sd-vae-ft-mse-original"
model_name = "vae-ft-mse-840000-ema-pruned.ckpt"
# next the legacy checkpoint version
if not hf_download_with_resume(
repo_id=repo_id,
model_name=model_name,
model_dir=str(config.root_path / Model_dir / Weights_dir),
):
raise Exception(f"download of {model_name} failed")
except Exception as e:
print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def download_support_models():
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_conversion_models()
# -------------------------------------
def get_root(root: str = None) -> str:
@@ -378,9 +360,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True,
)
self.nextrely += 1
label = """If you have an account at HuggingFace you may optionally paste your access token here
to allow InvokeAI to download restricted styles & subjects from the "Concept Library". See https://huggingface.co/settings/tokens.
"""
label = """HuggingFace access token (OPTIONAL) for automatic model downloads. See https://huggingface.co/settings/tokens."""
for line in textwrap.wrap(label,width=window_width-6):
self.add_widget_intelligent(
npyscreen.FixedText,
@@ -442,6 +422,7 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
)
self.precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
columns = 2,
name="Precision",
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision),
@@ -449,13 +430,13 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
max_height=len(PRECISION_CHOICES) + 1,
scroll_exit=True,
)
self.max_loaded_models = self.add_widget_intelligent(
self.max_cache_size = self.add_widget_intelligent(
IntTitleSlider,
name="Number of models to cache in CPU memory (each will use 2-4 GB!)",
value=old_opts.max_loaded_models,
out_of=10,
lowest=1,
begin_entry_at=4,
name="Size of the RAM cache used for fast model switching (GB)",
value=old_opts.max_cache_size,
out_of=20,
lowest=3,
begin_entry_at=6,
scroll_exit=True,
)
self.nextrely += 1
@@ -465,39 +446,19 @@ to allow InvokeAI to download restricted styles & subjects from the "Concept Lib
editable=False,
color="CONTROL",
)
self.embedding_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" Textual Inversion Embeddings:",
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.lora_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" LoRA and LyCORIS:",
value=str(default_lora_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.controlnet_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" ControlNets:",
value=str(default_controlnet_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.autoimport_dirs = {}
for description, config_name, path in autoimport_paths(old_opts):
self.autoimport_dirs[config_name] = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=description+':',
value=str(path),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
@@ -562,10 +523,6 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
)
if not Path(opt.embedding_dir).parent.exists():
bad_fields.append(
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
for problem in bad_fields:
@@ -582,22 +539,22 @@ https://huggingface.co/spaces/CompVis/stable-diffusion-license
"outdir",
"nsfw_checker",
"free_gpu_mem",
"max_loaded_models",
"max_cache_size",
"xformers_enabled",
"always_use_cpu",
"embedding_dir",
"lora_dir",
"controlnet_dir",
]:
setattr(new_opts, attr, getattr(self, attr).value)
for attr in self.autoimport_dirs:
directory = Path(self.autoimport_dirs[attr].value)
if directory.is_relative_to(config.root_path):
directory = directory.relative_to(config.root_path)
setattr(new_opts, attr, directory)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
# widget library workaround to make max_loaded_models an int rather than a float
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
return new_opts
@@ -607,7 +564,8 @@ class EditOptApplication(npyscreen.NPSAppManaged):
self.program_opts = program_opts
self.invokeai_opts = invokeai_opts
self.user_cancelled = False
self.user_selections = default_user_selections(program_opts)
self.autoload_pending = True
self.install_selections = default_user_selections(program_opts)
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
@@ -642,41 +600,62 @@ def default_startup_options(init_file: Path) -> Namespace:
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> UserSelections:
return UserSelections(
install_models=default_dataset()
def default_user_selections(program_opts: Namespace) -> InstallSelections:
installer = ModelInstall(config)
models = installer.all_models()
return InstallSelections(
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
if program_opts.default_only
else recommended_datasets()
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
if program_opts.yes_to_all
else dict(),
purge_deleted_models=False,
scan_directory=None,
autoscan_on_startup=None,
else list(),
# scan_directory=None,
# autoscan_on_startup=None,
)
# -------------------------------------
def autoimport_paths(config: InvokeAIAppConfig):
return [
('Checkpoints & diffusers models', 'autoimport_dir', config.root_path / config.autoimport_dir),
('LoRA/LyCORIS models', 'lora_dir', config.root_path / config.lora_dir),
('Controlnet models', 'controlnet_dir', config.root_path / config.controlnet_dir),
('Textual Inversion Embeddings', 'embedding_dir', config.root_path / config.embedding_dir),
]
# -------------------------------------
def initialize_rootdir(root: Path, yes_to_all: bool = False):
print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
for name in (
"models",
"configs",
"embeddings",
"databases",
"loras",
"controlnets",
"text-inversion-output",
"text-inversion-training-data",
"configs"
):
os.makedirs(os.path.join(root, name), exist_ok=True)
for model_type in ModelType:
Path(root, 'autoimport', model_type.value).mkdir(parents=True, exist_ok=True)
configs_src = Path(configs.__path__[0])
configs_dest = root / "configs"
if not os.path.samefile(configs_src, configs_dest):
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
dest = root / 'models'
for model_base in BaseModelType:
for model_type in ModelType:
path = dest / model_base.value / model_type.value
path.mkdir(parents=True, exist_ok=True)
path = dest / 'core'
path.mkdir(parents=True, exist_ok=True)
with open(root / 'configs' / 'models.yaml','w') as yaml_file:
yaml_file.write(yaml.dump({'__metadata__':
{'version':'3.0.0'}
}
)
)
# -------------------------------------
def run_console_ui(
program_opts: Namespace, initfile: Path = None
@@ -699,7 +678,7 @@ def run_console_ui(
if editApp.user_cancelled:
return (None, None)
else:
return (editApp.new_opts, editApp.user_selections)
return (editApp.new_opts, editApp.install_selections)
# -------------------------------------
@@ -722,18 +701,6 @@ def write_opts(opts: Namespace, init_file: Path):
def default_output_dir() -> Path:
return config.root_path / "outputs"
# -------------------------------------
def default_embedding_dir() -> Path:
return config.root_path / "embeddings"
# -------------------------------------
def default_lora_dir() -> Path:
return config.root_path / "loras"
# -------------------------------------
def default_controlnet_dir() -> Path:
return config.root_path / "controlnets"
# -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile)
@@ -758,14 +725,42 @@ def migrate_init_file(legacy_format:Path):
new.nsfw_checker = old.safety_checker
new.xformers_enabled = old.xformers
new.conf_path = old.conf
new.embedding_dir = old.embedding_path
new.root = legacy_format.parent.resolve()
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
outfile.write(new.to_yaml())
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
legacy_format.replace(legacy_format.parent / 'invokeai.init.orig')
# -------------------------------------
def migrate_models(root: Path):
from invokeai.backend.install.migrate_to_3 import do_migrate
do_migrate(root, root)
def migrate_if_needed(opt: Namespace, root: Path)->bool:
# We check for to see if the runtime directory is correctly initialized.
old_init_file = root / 'invokeai.init'
new_init_file = root / 'invokeai.yaml'
old_hub = root / 'models/hub'
migration_needed = old_init_file.exists() and not new_init_file.exists() or old_hub.exists()
if migration_needed:
if opt.yes_to_all or \
yes_or_no(f'{str(config.root_path)} appears to be a 2.3 format root directory. Convert to version 3.0?'):
logger.info('** Migrating invokeai.init to invokeai.yaml')
migrate_init_file(old_init_file)
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
if old_hub.exists():
migrate_models(config.root_path)
else:
print('Cannot continue without conversion. Aborting.')
return migration_needed
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
@@ -831,20 +826,16 @@ def main():
errors = set()
try:
models_to_download = default_user_selections(opt)
# We check for to see if the runtime directory is correctly initialized.
old_init_file = config.root_path / 'invokeai.init'
new_init_file = config.root_path / 'invokeai.yaml'
if old_init_file.exists() and not new_init_file.exists():
print('** Migrating invokeai.init to invokeai.yaml')
migrate_init_file(old_init_file)
# Load new init file into config
config.parse_args(argv=[],conf=OmegaConf.load(new_init_file))
# if we do a root migration/upgrade, then we are keeping previous
# configuration and we are done.
if migrate_if_needed(opt, config.root_path):
sys.exit(0)
if not config.model_conf_path.exists():
initialize_rootdir(config.root_path, opt.yes_to_all)
models_to_download = default_user_selections(opt)
new_init_file = config.root_path / 'invokeai.yaml'
if opt.yes_to_all:
write_default_options(opt, new_init_file)
init_options = Namespace(
@@ -855,29 +846,21 @@ def main():
if init_options:
write_opts(init_options, new_init_file)
else:
print(
logger.info(
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
)
sys.exit(0)
if opt.skip_support_models:
print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **")
logger.info("SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST")
else:
print("\n** CHECKING/UPDATING SUPPORT MODELS **")
download_bert()
download_sd1_clip()
download_sd2_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()
download_clipseg()
download_safety_checker()
download_vaes()
logger.info("CHECKING/UPDATING SUPPORT MODELS")
download_support_models()
if opt.skip_sd_weights:
print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
logger.info("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **")
elif models_to_download:
print("\n** DOWNLOADING DIFFUSION WEIGHTS **")
logger.info("\n** DOWNLOADING DIFFUSION WEIGHTS **")
process_and_execute(opt, models_to_download)
postscript(errors=errors)

View File

@@ -4,11 +4,14 @@ import argparse
import shlex
from argparse import ArgumentParser
# note that this includes both old sampler names and new scheduler names
# in order to be able to parse both 2.0 and 3.0-pre-nodes versions of invokeai.init
SAMPLER_CHOICES = [
"ddim",
"ddpm",
"deis",
"lms",
"lms_k",
"pndm",
"heun",
"heun_k",
@@ -18,9 +21,23 @@ SAMPLER_CHOICES = [
"kdpm_2",
"kdpm_2_a",
"dpmpp_2s",
"dpmpp_2s_k",
"dpmpp_2m",
"dpmpp_2m_k",
"dpmpp_2m_sde",
"dpmpp_2m_sde_k",
"dpmpp_sde",
"dpmpp_sde_k",
"unipc",
"k_dpm_2_a",
"k_dpm_2",
"k_dpmpp_2_a",
"k_dpmpp_2",
"k_euler_a",
"k_euler",
"k_heun",
"k_lms",
"plms",
]
PRECISION_CHOICES = [

View File

@@ -0,0 +1,606 @@
'''
Migrate the models directory and models.yaml file from an existing
InvokeAI 2.3 installation to 3.0.0.
'''
import os
import argparse
import shutil
import yaml
import transformers
import diffusers
import warnings
from dataclasses import dataclass
from pathlib import Path
from omegaconf import OmegaConf, DictConfig
from typing import Union
from diffusers import StableDiffusionPipeline, AutoencoderKL
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import (
CLIPTextModel,
CLIPTokenizer,
AutoFeatureExtractor,
BertTokenizerFast,
)
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager
from invokeai.backend.model_management.model_probe import (
ModelProbe, ModelType, BaseModelType, ModelProbeInfo
)
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
diffusers.logging.set_verbosity_error()
# holder for paths that we will migrate
@dataclass
class ModelPaths:
models: Path
embeddings: Path
loras: Path
controlnets: Path
class MigrateTo3(object):
def __init__(self,
from_root: Path,
to_models: Path,
model_manager: ModelManager,
src_paths: ModelPaths,
):
self.root_directory = from_root
self.dest_models = to_models
self.mgr = model_manager
self.src_paths = src_paths
@classmethod
def initialize_yaml(cls, yaml_file: Path):
with open(yaml_file, 'w') as file:
file.write(
yaml.dump(
{
'__metadata__': {'version':'3.0.0'}
}
)
)
def create_directory_structure(self):
'''
Create the basic directory structure for the models folder.
'''
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora,
ModelType.ControlNet,ModelType.TextualInversion]:
path = self.dest_models / model_base.value / model_type.value
path.mkdir(parents=True, exist_ok=True)
path = self.dest_models / 'core'
path.mkdir(parents=True, exist_ok=True)
@staticmethod
def copy_file(src:Path,dest:Path):
'''
copy a single file with logging
'''
if dest.exists():
logger.info(f'Skipping existing {str(dest)}')
return
logger.info(f'Copying {str(src)} to {str(dest)}')
try:
shutil.copy(src, dest)
except Exception as e:
logger.error(f'COPY FAILED: {str(e)}')
@staticmethod
def copy_dir(src:Path,dest:Path):
'''
Recursively copy a directory with logging
'''
if dest.exists():
logger.info(f'Skipping existing {str(dest)}')
return
logger.info(f'Copying {str(src)} to {str(dest)}')
try:
shutil.copytree(src, dest)
except Exception as e:
logger.error(f'COPY FAILED: {str(e)}')
def migrate_models(self, src_dir: Path):
'''
Recursively walk through src directory, probe anything
that looks like a model, and copy the model into the
appropriate location within the destination models directory.
'''
directories_scanned = set()
for root, dirs, files in os.walk(src_dir):
for d in dirs:
try:
model = Path(root,d)
info = ModelProbe().heuristic_probe(model)
if not info:
continue
dest = self._model_probe_to_path(info) / model.name
self.copy_dir(model, dest)
directories_scanned.add(model)
except Exception as e:
logger.error(str(e))
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
for f in files:
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
# let them be copied as part of a tree copy operation
try:
if f in {'learned_embeds.bin','pytorch_lora_weights.bin'}:
continue
model = Path(root,f)
if model.parent in directories_scanned:
continue
info = ModelProbe().heuristic_probe(model)
if not info:
continue
dest = self._model_probe_to_path(info) / f
self.copy_file(model, dest)
except Exception as e:
logger.error(str(e))
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
def migrate_support_models(self):
'''
Copy the clipseg, upscaler, and restoration models to their new
locations.
'''
dest_directory = self.dest_models
if (self.root_directory / 'models/clipseg').exists():
self.copy_dir(self.root_directory / 'models/clipseg', dest_directory / 'core/misc/clipseg')
if (self.root_directory / 'models/realesrgan').exists():
self.copy_dir(self.root_directory / 'models/realesrgan', dest_directory / 'core/upscaling/realesrgan')
for d in ['codeformer','gfpgan']:
path = self.root_directory / 'models' / d
if path.exists():
self.copy_dir(path,dest_directory / f'core/face_restoration/{d}')
def migrate_tuning_models(self):
'''
Migrate the embeddings, loras and controlnets directories to their new homes.
'''
for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]:
if not src:
continue
if src.is_dir():
logger.info(f'Scanning {src}')
self.migrate_models(src)
else:
logger.info(f'{src} directory not found; skipping')
continue
def migrate_conversion_models(self):
'''
Migrate all the models that are needed by the ckpt_to_diffusers conversion
script.
'''
dest_directory = self.dest_models
kwargs = dict(
cache_dir = self.root_directory / 'models/hub',
#local_files_only = True
)
try:
logger.info('Migrating core tokenizers and text encoders')
target_dir = dest_directory / 'core' / 'convert'
self._migrate_pretrained(BertTokenizerFast,
repo_id='bert-base-uncased',
dest = target_dir / 'bert-base-uncased',
**kwargs)
# sd-1
repo_id = 'openai/clip-vit-large-patch14'
self._migrate_pretrained(CLIPTokenizer,
repo_id= repo_id,
dest= target_dir / 'clip-vit-large-patch14',
**kwargs)
self._migrate_pretrained(CLIPTextModel,
repo_id = repo_id,
dest = target_dir / 'clip-vit-large-patch14',
force = True,
**kwargs)
# sd-2
repo_id = "stabilityai/stable-diffusion-2"
self._migrate_pretrained(CLIPTokenizer,
repo_id = repo_id,
dest = target_dir / 'stable-diffusion-2-clip' / 'tokenizer',
**{'subfolder':'tokenizer',**kwargs}
)
self._migrate_pretrained(CLIPTextModel,
repo_id = repo_id,
dest = target_dir / 'stable-diffusion-2-clip' / 'text_encoder',
**{'subfolder':'text_encoder',**kwargs}
)
# VAE
logger.info('Migrating stable diffusion VAE')
self._migrate_pretrained(AutoencoderKL,
repo_id = 'stabilityai/sd-vae-ft-mse',
dest = target_dir / 'sd-vae-ft-mse',
**kwargs)
# safety checking
logger.info('Migrating safety checker')
repo_id = "CompVis/stable-diffusion-safety-checker"
self._migrate_pretrained(AutoFeatureExtractor,
repo_id = repo_id,
dest = target_dir / 'stable-diffusion-safety-checker',
**kwargs)
self._migrate_pretrained(StableDiffusionSafetyChecker,
repo_id = repo_id,
dest = target_dir / 'stable-diffusion-safety-checker',
**kwargs)
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
return Path(self.dest_models, info.base_type.value, info.model_type.value)
def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, force:bool=False, **kwargs):
if dest.exists() and not force:
logger.info(f'Skipping existing {dest}')
return
model = model_class.from_pretrained(repo_id, **kwargs)
self._save_pretrained(model, dest, overwrite=force)
def _save_pretrained(self, model, dest: Path, overwrite: bool=False):
model_name = dest.name
if overwrite:
model.save_pretrained(dest, safe_serialization=True)
else:
download_path = dest.with_name(f'{model_name}.downloading')
model.save_pretrained(download_path, safe_serialization=True)
download_path.replace(dest)
def _download_vae(self, repo_id: str, subfolder:str=None)->Path:
vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / 'models/hub', subfolder=subfolder)
info = ModelProbe().heuristic_probe(vae)
_, model_name = repo_id.split('/')
dest = self._model_probe_to_path(info) / self.unique_name(model_name, info)
vae.save_pretrained(dest, safe_serialization=True)
return dest
def _vae_path(self, vae: Union[str,dict])->Path:
'''
Convert 2.3 VAE stanza to a straight path.
'''
vae_path = None
# First get a path
if isinstance(vae,str):
vae_path = vae
elif isinstance(vae,DictConfig):
if p := vae.get('path'):
vae_path = p
elif repo_id := vae.get('repo_id'):
if repo_id=='stabilityai/sd-vae-ft-mse': # this guy is already downloaded
vae_path = 'models/core/convert/sd-vae-ft-mse'
return vae_path
else:
vae_path = self._download_vae(repo_id, vae.get('subfolder'))
assert vae_path is not None, "Couldn't find VAE for this model"
# if the VAE is in the old models directory, then we must move it into the new
# one. VAEs outside of this directory can stay where they are.
vae_path = Path(vae_path)
if vae_path.is_relative_to(self.src_paths.models):
info = ModelProbe().heuristic_probe(vae_path)
dest = self._model_probe_to_path(info) / vae_path.name
if not dest.exists():
if vae_path.is_dir():
self.copy_dir(vae_path,dest)
else:
self.copy_file(vae_path,dest)
vae_path = dest
if vae_path.is_relative_to(self.dest_models):
rel_path = vae_path.relative_to(self.dest_models)
return Path('models',rel_path)
else:
return vae_path
def migrate_repo_id(self, repo_id: str, model_name: str=None, **extra_config):
'''
Migrate a locally-cached diffusers pipeline identified with a repo_id
'''
dest_dir = self.dest_models
cache = self.root_directory / 'models/hub'
kwargs = dict(
cache_dir = cache,
safety_checker = None,
# local_files_only = True,
)
owner,repo_name = repo_id.split('/')
model_name = model_name or repo_name
model = cache / '--'.join(['models',owner,repo_name])
if len(list(model.glob('snapshots/**/model_index.json')))==0:
return
revisions = [x.name for x in model.glob('refs/*')]
# if an fp16 is available we use that
revision = 'fp16' if len(revisions) > 1 and 'fp16' in revisions else revisions[0]
pipeline = StableDiffusionPipeline.from_pretrained(
repo_id,
revision=revision,
**kwargs)
info = ModelProbe().heuristic_probe(pipeline)
if not info:
return
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
return
dest = self._model_probe_to_path(info) / model_name
self._save_pretrained(pipeline, dest)
rel_path = Path('models',dest.relative_to(dest_dir))
self._add_model(model_name, info, rel_path, **extra_config)
def migrate_path(self, location: Path, model_name: str=None, **extra_config):
'''
Migrate a model referred to using 'weights' or 'path'
'''
# handle relative paths
dest_dir = self.dest_models
location = self.root_directory / location
model_name = model_name or location.stem
info = ModelProbe().heuristic_probe(location)
if not info:
return
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
logger.warning(f'A model named {model_name} already exists at the destination. Skipping migration.')
return
# uh oh, weights is in the old models directory - move it into the new one
if Path(location).is_relative_to(self.src_paths.models):
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
if location.is_dir():
self.copy_dir(location,dest)
else:
self.copy_file(location,dest)
location = Path('models', info.base_type.value, info.model_type.value, location.name)
self._add_model(model_name, info, location, **extra_config)
def _add_model(self,
model_name: str,
info: ModelProbeInfo,
location: Path,
**extra_config):
if info.model_type != ModelType.Main:
return
self.mgr.add_model(
model_name = model_name,
base_model = info.base_type,
model_type = info.model_type,
clobber = True,
model_attributes = {
'path': str(location),
'description': f'A {info.base_type.value} {info.model_type.value} model',
'model_format': info.format,
'variant': info.variant_type.value,
**extra_config,
}
)
def migrate_defined_models(self):
'''
Migrate models defined in models.yaml
'''
# find any models referred to in old models.yaml
conf = OmegaConf.load(self.root_directory / 'configs/models.yaml')
for model_name, stanza in conf.items():
try:
passthru_args = {}
if vae := stanza.get('vae'):
try:
passthru_args['vae'] = str(self._vae_path(vae))
except Exception as e:
logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"')
logger.warning(str(e))
if config := stanza.get('config'):
passthru_args['config'] = config
if description:= stanza.get('description'):
passthru_args['description'] = description
if repo_id := stanza.get('repo_id'):
logger.info(f'Migrating diffusers model {model_name}')
self.migrate_repo_id(repo_id, model_name, **passthru_args)
elif location := stanza.get('weights'):
logger.info(f'Migrating checkpoint model {model_name}')
self.migrate_path(Path(location), model_name, **passthru_args)
elif location := stanza.get('path'):
logger.info(f'Migrating diffusers model {model_name}')
self.migrate_path(Path(location), model_name, **passthru_args)
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
def migrate(self):
self.create_directory_structure()
# the configure script is doing this
self.migrate_support_models()
self.migrate_conversion_models()
self.migrate_tuning_models()
self.migrate_defined_models()
def _parse_legacy_initfile(root: Path, initfile: Path)->ModelPaths:
'''
Returns tuple of (embedding_path, lora_path, controlnet_path)
'''
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
parser.add_argument(
'--embedding_directory',
'--embedding_path',
type=Path,
dest='embedding_path',
default=Path('embeddings'),
)
parser.add_argument(
'--lora_directory',
dest='lora_path',
type=Path,
default=Path('loras'),
)
opt,_ = parser.parse_known_args([f'@{str(initfile)}'])
return ModelPaths(
models = root / 'models',
embeddings = root / str(opt.embedding_path).strip('"'),
loras = root / str(opt.lora_path).strip('"'),
controlnets = root / 'controlnets',
)
def _parse_legacy_yamlfile(root: Path, initfile: Path)->ModelPaths:
'''
Returns tuple of (embedding_path, lora_path, controlnet_path)
'''
# Don't use the config object because it is unforgiving of version updates
# Just use omegaconf directly
opt = OmegaConf.load(initfile)
paths = opt.InvokeAI.Paths
models = paths.get('models_dir','models')
embeddings = paths.get('embedding_dir','embeddings')
loras = paths.get('lora_dir','loras')
controlnets = paths.get('controlnet_dir','controlnets')
return ModelPaths(
models = root / models,
embeddings = root / embeddings,
loras = root /loras,
controlnets = root / controlnets,
)
def get_legacy_embeddings(root: Path) -> ModelPaths:
path = root / 'invokeai.init'
if path.exists():
return _parse_legacy_initfile(root, path)
path = root / 'invokeai.yaml'
if path.exists():
return _parse_legacy_yamlfile(root, path)
def do_migrate(src_directory: Path, dest_directory: Path):
"""
Migrate models from src to dest InvokeAI root directories
"""
config_file = dest_directory / 'configs' / 'models.yaml.3'
dest_models = dest_directory / 'models.3'
version_3 = (dest_directory / 'models' / 'core').exists()
# Here we create the destination models.yaml file.
# If we are writing into a version 3 directory and the
# file already exists, then we write into a copy of it to
# avoid deleting its previous customizations. Otherwise we
# create a new empty one.
if version_3: # write into the dest directory
try:
shutil.copy(dest_directory / 'configs' / 'models.yaml', config_file)
except:
MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
(dest_directory / 'models').replace(dest_models)
else:
MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file)
paths = get_legacy_embeddings(src_directory)
migrator = MigrateTo3(
from_root = src_directory,
to_models = dest_models,
model_manager = mgr,
src_paths = paths
)
migrator.migrate()
print("Migration successful.")
if not version_3:
(dest_directory / 'models').replace(src_directory / 'models.orig')
print(f'Original models directory moved to {dest_directory}/models.orig')
(dest_directory / 'configs' / 'models.yaml').replace(src_directory / 'configs' / 'models.yaml.orig')
print(f'Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig')
config_file.replace(config_file.with_suffix(''))
dest_models.replace(dest_models.with_suffix(''))
def main():
parser = argparse.ArgumentParser(prog="invokeai-migrate3",
description="""
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.
It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure
script, which will perform a full upgrade in place."""
)
parser.add_argument('--from-directory',
dest='src_root',
type=Path,
required=True,
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
)
parser.add_argument('--to-directory',
dest='dest_root',
type=Path,
required=True,
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
)
args = parser.parse_args()
src_root = args.src_root
assert src_root.is_dir(), f"{src_root} is not a valid directory"
assert (src_root / 'models').is_dir(), f"{src_root} does not contain a 'models' subdirectory"
assert (src_root / 'models' / 'hub').exists(), f"{src_root} does not contain a version 2.3 models directory"
assert (src_root / 'invokeai.init').exists() or (src_root / 'invokeai.yaml').exists(), f"{src_root} does not contain an InvokeAI init file."
dest_root = args.dest_root
assert dest_root.is_dir(), f"{dest_root} is not a valid directory"
config = InvokeAIAppConfig.get_config()
config.parse_args(['--root',str(dest_root)])
# TODO: revisit
# assert (dest_root / 'models').is_dir(), f"{dest_root} does not contain a 'models' subdirectory"
# assert (dest_root / 'invokeai.yaml').exists(), f"{dest_root} does not contain an InvokeAI init file."
do_migrate(src_root,dest_root)
if __name__ == '__main__':
main()

View File

@@ -2,46 +2,37 @@
Utility (backend) functions used by model_install.py
"""
import os
import re
import shutil
import sys
import warnings
from dataclasses import dataclass,field
from pathlib import Path
from tempfile import TemporaryFile
from typing import List, Dict, Callable
from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set
import requests
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_url, HfFolder
from diffusers import StableDiffusionPipeline
from diffusers import logging as dlogging
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
import invokeai.configs as configs
from invokeai.app.services.config import InvokeAIAppConfig
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
from invokeai.backend.util import download_with_resume
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
logger = InvokeAILogger.getLogger(name='InvokeAI')
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
# initial models omegaconf
Datasets = None
# logger
logger = InvokeAILogger.getLogger(name='InvokeAI')
Config_preamble = """
# This file describes the alternative machine learning models
# available to InvokeAI script.
@@ -52,6 +43,24 @@ Config_preamble = """
# was trained on.
"""
LEGACY_CONFIGS = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: 'v1-inference.yaml',
ModelVariantType.Inpaint: 'v1-inpainting-inference.yaml',
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: 'v2-inference.yaml',
SchedulerPredictionType.VPrediction: 'v2-inference-v.yaml',
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: 'v2-inpainting-inference.yaml',
SchedulerPredictionType.VPrediction: 'v2-inpainting-inference-v.yaml',
}
}
}
@dataclass
class ModelInstallList:
'''Class for listing models to be installed/removed'''
@@ -59,133 +68,332 @@ class ModelInstallList:
remove_models: List[str] = field(default_factory=list)
@dataclass
class UserSelections():
class InstallSelections():
install_models: List[str]= field(default_factory=list)
remove_models: List[str]=field(default_factory=list)
purge_deleted_models: bool=field(default_factory=list)
install_cn_models: List[str] = field(default_factory=list)
remove_cn_models: List[str] = field(default_factory=list)
install_lora_models: List[str] = field(default_factory=list)
remove_lora_models: List[str] = field(default_factory=list)
install_ti_models: List[str] = field(default_factory=list)
remove_ti_models: List[str] = field(default_factory=list)
scan_directory: Path = None
autoscan_on_startup: bool=False
import_model_paths: str=None
# scan_directory: Path = None
# autoscan_on_startup: bool=False
@dataclass
class ModelLoadInfo():
name: str
model_type: ModelType
base_type: BaseModelType
path: Path = None
repo_id: str = None
description: str = ''
installed: bool = False
recommended: bool = False
default: bool = False
class ModelInstall(object):
def __init__(self,
config:InvokeAIAppConfig,
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
model_manager: ModelManager = None,
access_token:str = None):
self.config = config
self.mgr = model_manager or ModelManager(config.model_conf_path)
self.datasets = OmegaConf.load(Dataset_path)
self.prediction_helper = prediction_type_helper
self.access_token = access_token or HfFolder.get_token()
self.reverse_paths = self._reverse_paths(self.datasets)
def all_models(self)->Dict[str,ModelLoadInfo]:
'''
Return dict of model_key=>ModelLoadInfo objects.
This method consolidates and simplifies the entries in both
models.yaml and INITIAL_MODELS.yaml so that they can
be treated uniformly. It also sorts the models alphabetically
by their name, to improve the display somewhat.
'''
model_dict = dict()
def default_config_file():
return config.model_conf_path
# first populate with the entries in INITIAL_MODELS.yaml
for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key)
value['name'] = name
value['base_type'] = base
value['model_type'] = model_type
model_dict[key] = ModelLoadInfo(**value)
def sd_configs():
return config.legacy_conf_path
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
def install_requested_models(
diffusers: ModelInstallList = None,
controlnet: ModelInstallList = None,
lora: ModelInstallList = None,
ti: ModelInstallList = None,
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
model_config_file_callback: Callable[[Path],Path] = None
):
"""
Entry point for installing/deleting starter models, or installing external models.
"""
access_token = HfFolder.get_token()
config_file_path = config_file_path or default_config_file()
if not config_file_path.exists():
open(config_file_path, "w")
# prevent circular import here
from ..model_management import ModelManager
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
if controlnet:
model_manager.install_controlnet_models(controlnet.install_models, access_token=access_token)
model_manager.delete_controlnet_models(controlnet.remove_models)
if lora:
model_manager.install_lora_models(lora.install_models, access_token=access_token)
model_manager.delete_lora_models(lora.remove_models)
if ti:
model_manager.install_ti_models(ti.install_models, access_token=access_token)
model_manager.delete_ti_models(ti.remove_models)
if diffusers:
# TODO: Replace next three paragraphs with calls into new model manager
if diffusers.remove_models and len(diffusers.remove_models) > 0:
logger.info("Processing requested deletions")
for model in diffusers.remove_models:
logger.info(f"{model}...")
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if diffusers.install_models and len(diffusers.install_models) > 0:
logger.info("Installing requested models")
downloaded_paths = download_weight_datasets(
models=diffusers.install_models,
access_token=None,
precision=precision,
)
successful = {x:v for x,v in downloaded_paths.items() if v is not None}
if len(successful) > 0:
update_config_file(successful, config_file_path)
if len(successful) < len(diffusers.install_models):
unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
# due to above, we have to reload the model manager because conf file
# was changed behind its back
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
external_models = external_models or list()
if scan_directory:
external_models.append(str(scan_directory))
if len(external_models) > 0:
logger.info("INSTALLING EXTERNAL MODELS")
for path_url_or_repo in external_models:
try:
logger.debug(f'In install_requested_models; callback = {model_config_file_callback}')
model_manager.heuristic_import(
path_url_or_repo,
commit_to_conf=config_file_path,
config_file_callback = model_config_file_callback,
# supplement with entries in models.yaml
installed_models = self.mgr.list_models()
for md in installed_models:
base = md['base_model']
model_type = md['type']
name = md['name']
key = ModelManager.create_key(name, base, model_type)
if key in model_dict:
model_dict[key].installed = True
else:
model_dict[key] = ModelLoadInfo(
name = name,
base_type = base,
model_type = model_type,
path = value.get('path'),
installed = True,
)
except KeyboardInterrupt:
sys.exit(-1)
except Exception:
return {x : model_dict[x] for x in sorted(model_dict.keys(),key=lambda y: model_dict[y].name.lower())}
def starter_models(self)->Set[str]:
models = set()
for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key)
if model_type==ModelType.Main:
models.add(key)
return models
def recommended_models(self)->Set[str]:
starters = self.starter_models()
return set([x for x in starters if self.datasets[x].get('recommended',False)])
def default_model(self)->str:
starters = self.starter_models()
defaults = [x for x in starters if self.datasets[x].get('default',False)]
return defaults[0]
def install(self, selections: InstallSelections):
verbosity = dlogging.get_verbosity() # quench NSFW nags
dlogging.set_verbosity_error()
job = 1
jobs = len(selections.remove_models) + len(selections.install_models)
# remove requested models
for key in selections.remove_models:
name,base,mtype = self.mgr.parse_key(key)
logger.info(f'Deleting {mtype} model {name} [{job}/{jobs}]')
try:
self.mgr.del_model(name,base,mtype)
except FileNotFoundError as e:
logger.warning(e)
job += 1
# add requested models
for path in selections.install_models:
logger.info(f'Installing {path} [{job}/{jobs}]')
try:
self.heuristic_import(path)
except (ValueError, KeyError) as e:
logger.error(str(e))
job += 1
dlogging.set_verbosity(verbosity)
self.mgr.commit()
def heuristic_import(self,
model_path_id_or_url: Union[str,Path],
models_installed: Set[Path]=None,
)->Dict[str, AddModelResult]:
'''
:param model_path_id_or_url: A Path to a local model to import, or a string representing its repo_id or URL
:param models_installed: Set of installed models, used for recursive invocation
Returns a set of dict objects corresponding to newly-created stanzas in models.yaml.
'''
if not models_installed:
models_installed = dict()
# A little hack to allow nested routines to retrieve info on the requested ID
self.current_id = model_path_id_or_url
path = Path(model_path_id_or_url)
# checkpoint file, or similar
if path.is_file():
models_installed.update({str(path):self._install_path(path)})
# folders style or similar
elif path.is_dir() and any([(path/x).exists() for x in \
{'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}
]
):
models_installed.update(self._install_path(path))
# recursive scan
elif path.is_dir():
for child in path.iterdir():
self.heuristic_import(child, models_installed=models_installed)
# huggingface repo
elif len(str(model_path_id_or_url).split('/')) == 2:
models_installed.update({str(model_path_id_or_url): self._install_repo(str(model_path_id_or_url))})
# a URL
elif str(model_path_id_or_url).startswith(("http:", "https:", "ftp:")):
models_installed.update({str(model_path_id_or_url): self._install_url(model_path_id_or_url)})
else:
raise KeyError(f'{str(model_path_id_or_url)} is not recognized as a local path, repo ID or URL. Skipping')
return models_installed
# install a model from a local path. The optional info parameter is there to prevent
# the model from being probed twice in the event that it has already been probed.
def _install_path(self, path: Path, info: ModelProbeInfo=None)->AddModelResult:
info = info or ModelProbe().heuristic_probe(path,self.prediction_helper)
if not info:
logger.warning(f'Unable to parse format of {path}')
return None
model_name = path.stem if path.is_file() else path.name
if self.mgr.model_exists(model_name, info.base_type, info.model_type):
raise ValueError(f'A model named "{model_name}" is already installed.')
attributes = self._make_attributes(path,info)
return self.mgr.add_model(model_name = model_name,
base_model = info.base_type,
model_type = info.model_type,
model_attributes = attributes,
)
def _install_url(self, url: str)->AddModelResult:
with TemporaryDirectory(dir=self.config.models_path) as staging:
location = download_with_resume(url,Path(staging))
if not location:
logger.error(f'Unable to download {url}. Skipping.')
info = ModelProbe().heuristic_probe(location)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
models_path = shutil.move(location,dest)
# staged version will be garbage-collected at this time
return self._install_path(Path(models_path), info)
def _install_repo(self, repo_id: str)->AddModelResult:
hinfo = HfApi().model_info(repo_id)
# we try to figure out how to download this most economically
# list all the files in the repo
files = [x.rfilename for x in hinfo.siblings]
location = None
with TemporaryDirectory(dir=self.config.models_path) as staging:
staging = Path(staging)
if 'model_index.json' in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline
else:
for suffix in ['safetensors','bin']:
if f'pytorch_lora_weights.{suffix}' in files:
location = self._download_hf_model(repo_id, ['pytorch_lora_weights.bin'], staging) # LoRA
break
elif self.config.precision=='float16' and f'diffusion_pytorch_model.fp16.{suffix}' in files: # vae, controlnet or some other standalone
files = ['config.json', f'diffusion_pytorch_model.fp16.{suffix}']
location = self._download_hf_model(repo_id, files, staging)
break
elif f'diffusion_pytorch_model.{suffix}' in files:
files = ['config.json', f'diffusion_pytorch_model.{suffix}']
location = self._download_hf_model(repo_id, files, staging)
break
elif f'learned_embeds.{suffix}' in files:
location = self._download_hf_model(repo_id, [f'learned_embeds.{suffix}'], staging)
break
if not location:
logger.warning(f'Could not determine type of repo {repo_id}. Skipping install.')
return {}
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
if not info:
logger.warning(f'Could not probe {location}. Skipping install.')
return {}
dest = self.config.models_path / info.base_type.value / info.model_type.value / self._get_model_name(repo_id,location)
if dest.exists():
shutil.rmtree(dest)
shutil.copytree(location,dest)
return self._install_path(dest, info)
def _get_model_name(self,path_name: str, location: Path)->str:
'''
Calculate a name for the model - primitive implementation.
'''
if key := self.reverse_paths.get(path_name):
(name, base, mtype) = ModelManager.parse_key(key)
return name
else:
return location.stem
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
model_name = path.name if path.is_dir() else path.stem
description = f'{info.base_type.value} {info.model_type.value} model {model_name}'
if key := self.reverse_paths.get(self.current_id):
if key in self.datasets:
description = self.datasets[key].get('description') or description
rel_path = self.relative_to_root(path)
attributes = dict(
path = str(rel_path),
description = str(description),
model_format = info.format,
)
if info.model_type == ModelType.Main:
attributes.update(dict(variant = info.variant_type,))
if info.format=="checkpoint":
try:
possible_conf = path.with_suffix('.yaml')
if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf))
elif info.base_type == BaseModelType.StableDiffusion2:
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type])
else:
legacy_conf = Path(self.config.legacy_conf_dir, LEGACY_CONFIGS[info.base_type][info.variant_type])
except KeyError:
legacy_conf = Path(self.config.legacy_conf_dir, 'v1-inference.yaml') # best guess
attributes.update(
dict(
config = str(legacy_conf)
)
)
return attributes
def relative_to_root(self, path: Path)->Path:
root = self.config.root_path
if path.is_relative_to(root):
return path.relative_to(root)
else:
return path
def _download_hf_pipeline(self, repo_id: str, staging: Path)->Path:
'''
This retrieves a StableDiffusion model from cache or remote and then
does a save_pretrained() to the indicated staging area.
'''
_,name = repo_id.split("/")
revisions = ['fp16','main'] if self.config.precision=='float16' else ['main']
model = None
for revision in revisions:
try:
model = StableDiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass
if model:
break
if not model:
logger.error(f'Diffusers model {repo_id} could not be downloaded. Skipping.')
return None
model.save_pretrained(staging / name, safe_serialization=True)
return staging / name
if scan_at_startup and scan_directory.is_dir():
update_autoconvert_dir(scan_directory)
else:
update_autoconvert_dir(None)
def update_autoconvert_dir(autodir: Path):
'''
Update the "autoconvert_dir" option in invokeai.yaml
'''
invokeai_config_path = config.init_file_path
conf = OmegaConf.load(invokeai_config_path)
conf.InvokeAI.Paths.autoconvert_dir = str(autodir) if autodir else None
yaml = OmegaConf.to_yaml(conf)
tmpfile = invokeai_config_path.parent / "new_config.tmp"
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(yaml)
tmpfile.replace(invokeai_config_path)
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path)->Path:
_,name = repo_id.split("/")
location = staging / name
paths = list()
for filename in files:
p = hf_download_with_resume(repo_id,
model_dir=location,
model_name=filename,
access_token = self.access_token
)
if p:
paths.append(p)
else:
logger.warning(f'Could not download {filename} from {repo_id}.')
return location if len(paths)>0 else None
@classmethod
def _reverse_paths(cls,datasets)->dict:
'''
Reverse mapping from repo_id/path to destination name.
'''
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
# -------------------------------------
def yes_or_no(prompt: str, default_yes=True):
@@ -197,133 +405,19 @@ def yes_or_no(prompt: str, default_yes=True):
return response[0] in ("y", "Y")
# ---------------------------------------------
def recommended_datasets() -> List['str']:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("recommended", False):
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def default_dataset() -> dict:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("default", False):
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def all_datasets() -> dict:
datasets = dict()
for ds in initial_models().keys():
datasets[ds] = True
return datasets
# ---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
logger.warning(
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
)
logger.warning(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
# ---------------------------------------------
def download_weight_datasets(
models: List[str], access_token: str, precision: str = "float32"
):
migrate_models_ckpt()
successful = dict()
for mod in models:
logger.info(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
initial_models()[mod], access_token, precision=precision
)
return successful
def _download_repo_or_file(
mconfig: DictConfig, access_token: str, precision: str = "float32"
) -> Path:
path = None
if mconfig["format"] == "ckpt":
path = _download_ckpt_weights(mconfig, access_token)
else:
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
_download_diffusion_weights(
mconfig["vae"], access_token, precision=precision
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
model_name=filename,
access_token=access_token,
)
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, **kwargs
def hf_download_from_pretrained(
model_class: object, model_name: str, destination: Path, **kwargs
):
logger = InvokeAILogger.getLogger('InvokeAI')
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
path = config.cache_dir
model = model_class.from_pretrained(
model_name,
cache_dir=path,
resume_download=True,
**kwargs,
)
model_name = "--".join(("models", *model_name.split("/")))
return path / model_name if model else None
def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
path = None
for extra_args in extra_arg_list:
try:
path = download_from_hf(
model_class,
repo_id,
safety_checker=None,
**extra_args,
)
except OSError as e:
if 'Revision Not Found' in str(e):
pass
else:
logger.error(str(e))
if path:
break
return path
model.save_pretrained(destination, safe_serialization=True)
return destination
# ---------------------------------------------
def hf_download_with_resume(
@@ -383,128 +477,3 @@ def hf_download_with_resume(
return model_dest
# ---------------------------------------------
def update_config_file(successfully_downloaded: dict, config_file: Path):
config_file = (
Path(config_file) if config_file is not None else default_config_file()
)
# In some cases (incomplete setup, etc), the default configs directory might be missing.
# Create it if it doesn't exist.
# this check is ignored if opt.config_file is specified - user is assumed to know what they
# are doing if they are passing a custom config file from elsewhere.
if config_file is default_config_file() and not config_file.parent.exists():
configs_src = Dataset_path.parent
configs_dest = default_config_file().parent
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
yaml = new_config_file_contents(successfully_downloaded, config_file)
try:
backup = None
if os.path.exists(config_file):
logger.warning(
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
if sys.platform == "win32" and backup.is_file():
backup.unlink()
config_file.rename(backup)
with TemporaryFile() as tmp:
tmp.write(Config_preamble.encode())
tmp.write(yaml.encode())
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
tmp.seek(0)
new_config.write(tmp.read())
except Exception as e:
logger.error(f"Error creating config file {config_file}: {str(e)}")
if backup is not None:
logger.info("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
logger.info(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
def new_config_file_contents(
successfully_downloaded: dict,
config_file: Path,
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
else:
conf = OmegaConf.create()
default_selected = None
for model in successfully_downloaded:
# a bit hacky - what we are doing here is seeing whether a checkpoint
# version of the model was previously defined, and whether the current
# model is a diffusers (indicated with a path)
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
delete_weights(model, conf[model])
stanza = {}
mod = initial_models()[model]
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
stanza["width"] = mod["width"]
if "height" in mod:
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=config.root_dir
)
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
)
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
)
else:
stanza["vae"] = mod["vae"]
if mod.get("default", False):
stanza["default"] = True
default_selected = True
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)
# ---------------------------------------------
def delete_weights(model_name: str, conf_stanza: dict):
if not (weights := conf_stanza.get("weights")):
return
if re.match("/VAE/", conf_stanza.get("config")):
return
logger.warning(
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
weights = Path(weights)
if not weights.is_absolute():
weights = config.root_dir / weights
try:
weights.unlink()
except OSError as e:
logger.error(str(e))

View File

@@ -1,11 +1,8 @@
"""
Initialization file for invokeai.backend.model_management
"""
from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager,SDModelComponent
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType
from .model_merge import ModelMerger, MergeInterpolationMethod

View File

@@ -28,10 +28,13 @@ from safetensors.torch import load_file
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from .model_manager import ModelManager, SDLegacyType
from .model_manager import ModelManager
from picklescan.scanner import scan_file_path
from .models import BaseModelType, ModelVariantType
try:
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
except ImportError:
raise ImportError(
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
@@ -56,10 +59,6 @@ from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import (
LDMBertConfig,
LDMBertModel,
)
from diffusers.pipelines.paint_by_example import (
PaintByExampleImageEncoder,
PaintByExamplePipeline,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
@@ -74,6 +73,10 @@ from transformers import (
from ..stable_diffusion import StableDiffusionGeneratorPipeline
# TODO: redo in future
#CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core" / "convert"
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / "models" / "core" / "convert"
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
@@ -158,17 +161,17 @@ def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
@@ -183,7 +186,6 @@ def assign_to_checkpoint(
paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
config=None,
):
@@ -198,35 +200,9 @@ def assign_to_checkpoint(
paths, list
), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape(
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
)
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if (
attention_paths_to_split is not None
and new_path in attention_paths_to_split
):
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
@@ -245,14 +221,14 @@ def assign_to_checkpoint(
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
elif "to_out.0.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
checkpoint[key] = checkpoint[key][:, :, 0, 0]
def create_unet_diffusers_config(original_config, image_size: int):
@@ -612,16 +588,29 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
return new_checkpoint
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
# Extract state dict for VAE. Works both with burnt-in
# VAEs, and with standalone VAEs.
# checkpoint can either be a all-in-one stable diffusion
# model, or an isolated vae .ckpt. This tests for
# a key that will be present in the all-in-one model
# that isn't present in the isolated ckpt.
probe_key = "first_stage_model.encoder.conv_in.weight"
if probe_key in checkpoint:
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
else:
vae_state_dict = checkpoint
new_checkpoint = convert_ldm_vae_state_dict(vae_state_dict, config)
return new_checkpoint
def convert_ldm_vae_state_dict(vae_state_dict, config):
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
@@ -841,10 +830,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=InvokeAIAppConfig.get_config().cache_dir
)
text_model = CLIPTextModel.from_pretrained(CONVERT_MODEL_ROOT / 'clip-vit-large-patch14')
keys = list(checkpoint.keys())
text_model_dict = {}
@@ -896,82 +882,10 @@ protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))
def convert_paint_by_example_checkpoint(checkpoint):
cache_dir = InvokeAIAppConfig.get_config().cache_dir
config = CLIPVisionConfig.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=cache_dir
)
model = PaintByExampleImageEncoder(config)
keys = list(checkpoint.keys())
text_model_dict = {}
for key in keys:
if key.startswith("cond_stage_model.transformer"):
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[
key
]
# load clip vision
model.model.load_state_dict(text_model_dict)
# load mapper
keys_mapper = {
k[len("cond_stage_model.mapper.res") :]: v
for k, v in checkpoint.items()
if k.startswith("cond_stage_model.mapper")
}
MAPPING = {
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
"attn.c_proj": ["attn1.to_out.0"],
"ln_1": ["norm1"],
"ln_2": ["norm3"],
"mlp.c_fc": ["ff.net.0.proj"],
"mlp.c_proj": ["ff.net.2"],
}
mapped_weights = {}
for key, value in keys_mapper.items():
prefix = key[: len("blocks.i")]
suffix = key.split(prefix)[-1].split(".")[-1]
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
mapped_names = MAPPING[name]
num_splits = len(mapped_names)
for i, mapped_name in enumerate(mapped_names):
new_name = ".".join([prefix, mapped_name, suffix])
shape = value.shape[0] // num_splits
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
model.mapper.load_state_dict(mapped_weights)
# load final layer norm
model.final_layer_norm.load_state_dict(
{
"bias": checkpoint["cond_stage_model.final_ln.bias"],
"weight": checkpoint["cond_stage_model.final_ln.weight"],
}
)
# load final proj
model.proj_out.load_state_dict(
{
"bias": checkpoint["proj_out.bias"],
"weight": checkpoint["proj_out.weight"],
}
)
# load uncond vector
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
return model
def convert_open_clip_checkpoint(checkpoint):
cache_dir = InvokeAIAppConfig.get_config().cache_dir
text_model = CLIPTextModel.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir
CONVERT_MODEL_ROOT / 'stable-diffusion-2-clip',
subfolder='text_encoder',
)
keys = list(checkpoint.keys())
@@ -1037,7 +951,7 @@ def convert_open_clip_checkpoint(checkpoint):
return text_model
def replace_checkpoint_vae(checkpoint, vae_path:str):
def replace_checkpoint_vae(checkpoint, vae_path: str):
if vae_path.endswith(".safetensors"):
vae_ckpt = load_file(vae_path)
else:
@@ -1047,22 +961,28 @@ def replace_checkpoint_vae(checkpoint, vae_path:str):
new_key = f'first_stage_model.{vae_key}'
checkpoint[new_key] = state_dict[vae_key]
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:
vae_config = create_vae_diffusers_config(
vae_config, image_size=image_size
)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
checkpoint, vae_config
)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
return vae
def load_pipeline_from_original_stable_diffusion_ckpt(
checkpoint_path: str,
original_config_file: str = None,
num_in_channels: int = None,
scheduler_type: str = "pndm",
pipeline_type: str = None,
image_size: int = None,
prediction_type: str = None,
model_version: BaseModelType,
model_variant: ModelVariantType,
original_config_file: str,
extract_ema: bool = True,
upcast_attn: bool = False,
vae: AutoencoderKL = None,
vae_path: str = None,
precision: torch.dtype = torch.float32,
return_generator_pipeline: bool = False,
scan_needed:bool=True,
) -> Union[StableDiffusionPipeline, StableDiffusionGeneratorPipeline]:
scan_needed: bool = True,
) -> StableDiffusionPipeline:
"""
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
config file.
@@ -1074,148 +994,72 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
:param checkpoint_path: Path to `.ckpt` file.
:param original_config_file: Path to `.yaml` config file corresponding to the original architecture.
If `None`, will be automatically inferred by looking for a key that only exists in SD2.0 models.
:param image_size: The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
Base. Use 768 for Stable Diffusion v2.
:param prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion
v1.X and Stable Diffusion v2 Base. Use `'v-prediction'` for Stable Diffusion v2.
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
inferred.
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
"euler-ancestral", "dpm", "ddim"]`. :param model_type: The pipeline type. `None` to automatically infer, or one of
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder", "PaintByExample"]`. :param extract_ema: Only relevant for
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder"]`. :param extract_ema: Only relevant for
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights
or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher
quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
:param precision: precision to use - torch.float16, torch.float32 or torch.autocast
:param upcast_attention: Whether the attention computation should always be upcasted. This is necessary when
running stable diffusion 2.1.
:param vae: A diffusers VAE to load into the pipeline.
:param vae_path: Path to a checkpoint VAE that will be converted into diffusers and loaded into the pipeline.
"""
config = InvokeAIAppConfig.get_config()
cache_dir = config.cache_dir
if not isinstance(checkpoint_path, Path):
checkpoint_path = Path(checkpoint_path)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
if Path(checkpoint_path).suffix == '.ckpt':
if scan_needed:
ModelManager.scan_model(checkpoint_path,checkpoint_path)
checkpoint = torch.load(checkpoint_path)
else:
if checkpoint_path.suffix == ".safetensors":
checkpoint = load_file(checkpoint_path)
pipeline_class = (
StableDiffusionGeneratorPipeline
if return_generator_pipeline
else StableDiffusionPipeline
)
# Sometimes models don't have the global_step item
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
logger.debug("global_step key not found in model")
global_step = None
if scan_needed:
# scan model
scan_result = scan_file_path(checkpoint_path)
if scan_result.infected_files != 0:
raise "The model {checkpoint_path} is potentially infected by malware. Aborting import."
checkpoint = torch.load(checkpoint_path)
# sometimes there is a state_dict key and sometimes not
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
upcast_attention = False
if original_config_file is None:
model_type = ModelManager.probe_model_type(checkpoint)
if model_type == SDLegacyType.V2_v:
original_config_file = (
config.legacy_conf_path / "v2-inference-v.yaml"
)
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
elif model_type == SDLegacyType.V2_e:
original_config_file = (
config.legacy_conf_path / "v2-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
original_config_file = (
config.legacy_conf_path / "v1-inpainting-inference.yaml"
)
elif model_type == SDLegacyType.V1:
original_config_file = (
config.legacy_conf_path / "v1-inference.yaml"
)
else:
raise Exception("Unknown checkpoint type")
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"][
"in_channels"
] = num_in_channels
if (
"parameterization" in original_config["model"]["params"]
and original_config["model"]["params"]["parameterization"] == "v"
):
if prediction_type is None:
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
# as it relies on a brittle global step parameter here
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
if image_size is None:
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
# as it relies on a brittle global step parameter here
image_size = 512 if global_step == 875000 else 768
if model_version == BaseModelType.StableDiffusion2 and original_config["model"]["params"]["parameterization"] == "v":
prediction_type = "v_prediction"
upcast_attention = True
image_size = 768
else:
if prediction_type is None:
prediction_type = "epsilon"
if image_size is None:
image_size = 512
prediction_type = "epsilon"
upcast_attention = False
image_size = 512
#
# convert scheduler
#
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
scheduler = DDIMScheduler(
scheduler = PNDMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
skip_prk_steps=True
)
# make sure scheduler works correctly with DDIM
scheduler.register_to_config(clip_sample=False)
if scheduler_type == "pndm":
config = dict(scheduler.config)
config["skip_prk_steps"] = True
scheduler = PNDMScheduler.from_config(config)
elif scheduler_type == "lms":
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "heun":
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler":
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "euler-ancestral":
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == 'unipc':
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
#
# convert unet
#
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(
original_config, image_size=image_size
)
@@ -1228,44 +1072,25 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
unet.load_state_dict(converted_unet_checkpoint)
# If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it
if vae_path:
logger.debug(f"Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed
elif not vae:
logger.debug("Using checkpoint model's original VAE")
#
# convert vae
#
if vae:
logger.debug("Using replacement diffusers VAE")
else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config(
original_config, image_size=image_size
)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
checkpoint, vae_config
)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae = convert_ldm_vae_to_diffusers(
checkpoint,
original_config,
image_size,
)
# Convert the text model.
model_type = pipeline_type
if model_type is None:
model_type = original_config.model.params.cond_stage_config.target.split(
"."
)[-1]
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
if model_type == "FrozenOpenCLIPEmbedder":
text_model = convert_open_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained(
"stabilityai/stable-diffusion-2",
subfolder="tokenizer",
cache_dir=cache_dir,
CONVERT_MODEL_ROOT / 'stable-diffusion-2-clip',
subfolder='tokenizer',
)
pipe = pipeline_class(
pipe = StableDiffusionPipeline(
vae=vae.to(precision),
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
@@ -1275,49 +1100,26 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
feature_extractor=None,
requires_safety_checker=False,
)
elif model_type == "PaintByExample":
vision_model = convert_paint_by_example_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=cache_dir
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir
)
pipe = PaintByExamplePipeline(
vae=vae,
image_encoder=vision_model,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=feature_extractor,
)
elif model_type in ["FrozenCLIPEmbedder", "WeightedFrozenCLIPEmbedder"]:
text_model = convert_ldm_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=cache_dir
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker",
cache_dir=cache_dir,
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir
)
pipe = pipeline_class(
tokenizer = CLIPTokenizer.from_pretrained(CONVERT_MODEL_ROOT / 'clip-vit-large-patch14')
safety_checker = StableDiffusionSafetyChecker.from_pretrained(CONVERT_MODEL_ROOT / 'stable-diffusion-safety-checker')
feature_extractor = AutoFeatureExtractor.from_pretrained(CONVERT_MODEL_ROOT / 'stable-diffusion-safety-checker')
pipe = StableDiffusionPipeline(
vae=vae.to(precision),
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
unet=unet.to(precision),
scheduler=scheduler,
safety_checker=None if return_generator_pipeline else safety_checker.to(precision),
safety_checker=safety_checker.to(precision),
feature_extractor=feature_extractor,
)
else:
text_config = create_ldm_bert_config(original_config)
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
tokenizer = BertTokenizerFast.from_pretrained(
"bert-base-uncased", cache_dir=cache_dir
)
tokenizer = BertTokenizerFast.from_pretrained(CONVERT_MODEL_ROOT / "bert-base-uncased")
pipe = LDMTextToImagePipeline(
vqvae=vae,
bert=text_model,
@@ -1331,9 +1133,9 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
def convert_ckpt_to_diffusers(
checkpoint_path: Union[str, Path],
dump_path: Union[str, Path],
**kwargs,
checkpoint_path: Union[str, Path],
dump_path: Union[str, Path],
**kwargs,
):
"""
Takes all the arguments of load_pipeline_from_original_stable_diffusion_ckpt(),

View File

@@ -0,0 +1,710 @@
from __future__ import annotations
import copy
from contextlib import contextmanager
from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
import torch
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
class LoRALayerBase:
#rank: Optional[int]
#alpha: Optional[float]
#bias: Optional[torch.Tensor]
#layer_key: str
#@property
#def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if (
"bias_indices" in values
and "bias_values" in values
and "bias_size" in values
):
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
) * multiplier * scale
def get_weight(self):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
#up: torch.Tensor
#mid: Optional[torch.Tensor]
#down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
#w1_a: torch.Tensor
#w1_b: torch.Tensor
#w2_a: torch.Tensor
#w2_b: torch.Tensor
#t1: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a
)
rebuild2 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a
)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
#w1: Optional[torch.Tensor] = None
#w1_a: Optional[torch.Tensor] = None
#w1_b: Optional[torch.Tensor] = None
#w2: Optional[torch.Tensor] = None
#w2_a: Optional[torch.Tensor] = None
#w2_b: Optional[torch.Tensor] = None
#t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum('i j k l, i p, j r -> p r k l', self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoRAModel: #(torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> LoRAModel:
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
else:
# TODO: diff/ia3/... format
print(
f">> Encountered unknown lora layer module in {model.name}: {layer_key}"
)
return
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
"""
loras = [
(lora_model1, 0.7),
(lora_model2, 0.4),
]
with LoRAHelper.apply_lora_unet(unet, loras):
# unet with applied loras
# unmodified unet
"""
# TODO: rename smth like ModelPatcher and add TI method?
class ModelPatcher:
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix):].split('_')
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)
@staticmethod
def _lora_forward_hook(
applied_loras: List[Tuple[LoraModel, float]],
layer_name: str,
):
def lora_forward(module, input_h, output):
if len(applied_loras) == 0:
return output
for lora, weight in applied_loras:
layer = lora.layers.get(layer_name, None)
if layer is None:
continue
output += layer.forward(module, input_h, weight)
return output
return lora_forward
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: torch.nn.Module,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
original_weights = dict()
try:
with torch.no_grad():
for lora, lora_weight in loras:
#assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
# enable autocast to calc fp16 loras on cpu
#with torch.autocast(device_type="cpu"):
layer.to(dtype=torch.float32)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
layer_weight = layer.get_weight() * lora_weight * layer_scale
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris
layer_weight = layer_weight.reshape(module.weight.shape)
module.weight += layer_weight.to(device=module.weight.device, dtype=module.weight.dtype)
yield # wait for context manager exit
finally:
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
ti_list: List[Any],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
init_tokens_count = None
new_tokens_added = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
def _get_trigger(ti, index):
trigger = ti.name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
model_embeddings = text_encoder.get_input_embeddings()
for ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i]
trigger = _get_trigger(ti, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if model_embeddings.weight.data[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {model_embeddings.weight.data[token_id].shape[0]}."
)
model_embeddings.weight.data[token_id] = embedding.to(device=text_encoder.device, dtype=text_encoder.dtype)
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
yield ti_tokenizer, ti_manager
finally:
if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count)
@classmethod
@contextmanager
def apply_clip_skip(
cls,
text_encoder: CLIPTextModel,
clip_skip: int,
):
skipped_layers = []
try:
for i in range(clip_skip):
skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1))
yield
finally:
while len(skipped_layers) > 0:
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
class TextualInversionModel:
name: str
embedding: torch.Tensor # [n, 768]|[n, 1280]
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if not isinstance(file_path, Path):
file_path = Path(file_path)
result = cls() # TODO:
result.name = file_path.stem # TODO:
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
# both v1 and v2 format embeddings
# difference mostly in metadata
if "string_to_param" in state_dict:
if len(state_dict["string_to_param"]) > 1:
print(f"Warn: Embedding \"{file_path.name}\" contains multiple tokens, which is not supported. The first token will be used.")
result.embedding = next(iter(state_dict["string_to_param"].values()))
# v3 (easynegative)
elif "emb_params" in state_dict:
result.embedding = state_dict["emb_params"]
# v4(diffusers bin files)
else:
result.embedding = next(iter(state_dict.values()))
if len(result.embedding.shape) == 1:
result.embedding = result.embedding.unsqueeze(0)
if not isinstance(result.embedding, torch.Tensor):
raise ValueError(f"Invalid embeddings file: {file_path.name}")
return result
class TextualInversionManager(BaseTextualInversionManager):
pad_tokens: Dict[int, List[int]]
tokenizer: CLIPTokenizer
def __init__(self, tokenizer: CLIPTokenizer):
self.pad_tokens = dict()
self.tokenizer = tokenizer
def expand_textual_inversion_token_ids_if_necessary(
self, token_ids: list[int]
) -> list[int]:
if len(self.pad_tokens) == 0:
return token_ids
if token_ids[0] == self.tokenizer.bos_token_id:
raise ValueError("token_ids must not start with bos_token_id")
if token_ids[-1] == self.tokenizer.eos_token_id:
raise ValueError("token_ids must not end with eos_token_id")
new_token_ids = []
for token_id in token_ids:
new_token_ids.append(token_id)
if token_id in self.pad_tokens:
new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids

View File

@@ -0,0 +1,381 @@
"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
The cache returns context manager generators designed to load the
model into the GPU within the context, and unload outside the
context. Use like this:
cache = ModelCache(max_cache_size=7.5)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1,
cache.get_model('stabilityai/stable-diffusion-2') as SD2:
do_something_in_GPU(SD1,SD2)
"""
import gc
import os
import sys
import hashlib
from contextlib import suppress
from pathlib import Path
from typing import Dict, Union, types, Optional, Type, Any
import torch
import logging
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .lora import LoRAModel, TextualInversionModel
from .models import BaseModelType, ModelType, SubModelType, ModelBase
# Maximum size of the cache, in gigs
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
# actual size of a gig
GIG = 1073741824
class ModelLocker(object):
"Forward declaration"
pass
class ModelCache(object):
"Forward declaration"
pass
class _CacheRecord:
size: int
model: Any
cache: ModelCache
_locks: int
def __init__(self, cache, model: Any, size: int):
self.size = size
self.model = model
self.cache = cache
self._locks = 0
def lock(self):
self._locks += 1
def unlock(self):
self._locks -= 1
assert self._locks >= 0
@property
def locked(self):
return self._locks > 0
@property
def loaded(self):
if self.model is not None and hasattr(self.model, "device"):
return self.model.device != self.cache.storage_device
else:
return False
class ModelCache(object):
def __init__(
self,
max_cache_size: float=DEFAULT_MAX_CACHE_SIZE,
execution_device: torch.device=torch.device('cuda'),
storage_device: torch.device=torch.device('cpu'),
precision: torch.dtype=torch.float16,
sequential_offload: bool=False,
lazy_offloading: bool=True,
sha_chunksize: int = 16777216,
logger: types.ModuleType = logger
):
'''
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param sha_chunksize: Chunksize to use when calculating sha256 model hash
'''
#max_cache_size = 9999
self.model_infos: Dict[str, ModelBase] = dict()
self.lazy_offloading = lazy_offloading
#self.sequential_offload: bool=sequential_offload
self.precision: torch.dtype=precision
self.max_cache_size: int=max_cache_size
self.execution_device: torch.device=execution_device
self.storage_device: torch.device=storage_device
self.sha_chunksize=sha_chunksize
self.logger = logger
self._cached_models = dict()
self._cache_stack = list()
def get_key(
self,
model_path: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
):
key = f"{model_path}:{base_model}:{model_type}"
if submodel_type:
key += f":{submodel_type}"
return key
def _get_model_info(
self,
model_path: str,
model_class: Type[ModelBase],
base_model: BaseModelType,
model_type: ModelType,
):
model_info_key = self.get_key(
model_path=model_path,
base_model=base_model,
model_type=model_type,
submodel_type=None,
)
if model_info_key not in self.model_infos:
self.model_infos[model_info_key] = model_class(
model_path,
base_model,
model_type,
)
return self.model_infos[model_info_key]
# TODO: args
def get_model(
self,
model_path: Union[str, Path],
model_class: Type[ModelBase],
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
gpu_load: bool = True,
) -> Any:
if not isinstance(model_path, Path):
model_path = Path(model_path)
if not os.path.exists(model_path):
raise Exception(f"Model not found: {model_path}")
model_info = self._get_model_info(
model_path=model_path,
model_class=model_class,
base_model=base_model,
model_type=model_type,
)
key = self.get_key(
model_path=model_path,
base_model=base_model,
model_type=model_type,
submodel_type=submodel,
)
# TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(f'Loading model {model_path}, type {base_model}:{model_type}:{submodel}')
# this will remove older cached models until
# there is sufficient room to load the requested model
self._make_cache_room(model_info.get_size(submodel))
# clean memory to make MemoryUsage() more accurate
gc.collect()
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
if mem_used := model_info.get_size(submodel):
self.logger.debug(f'CPU RAM used for load: {(mem_used/GIG):.2f} GB')
cache_entry = _CacheRecord(self, model, mem_used)
self._cached_models[key] = cache_entry
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return self.ModelLocker(self, key, cache_entry.model, gpu_load)
class ModelLocker(object):
def __init__(self, cache, key, model, gpu_load):
self.gpu_load = gpu_load
self.cache = cache
self.key = key
self.model = model
self.cache_entry = self.cache._cached_models[self.key]
def __enter__(self) -> Any:
if not hasattr(self.model, 'to'):
return self.model
# NOTE that the model has to have the to() method in order for this
# code to move it into GPU!
if self.gpu_load:
self.cache_entry.lock()
try:
if self.cache.lazy_offloading:
self.cache._offload_unlocked_models()
if self.model.device != self.cache.execution_device:
self.cache.logger.debug(f'Moving {self.key} into {self.cache.execution_device}')
with VRAMUsage() as mem:
self.model.to(self.cache.execution_device) # move into GPU
self.cache.logger.debug(f'GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB')
self.cache.logger.debug(f'Locking {self.key} in {self.cache.execution_device}')
self.cache._print_cuda_stats()
except:
self.cache_entry.unlock()
raise
# TODO: not fully understand
# in the event that the caller wants the model in RAM, we
# move it into CPU if it is in GPU and not locked
elif self.cache_entry.loaded and not self.cache_entry.locked:
self.model.to(self.cache.storage_device)
return self.model
def __exit__(self, type, value, traceback):
if not hasattr(self.model, 'to'):
return
self.cache_entry.unlock()
if not self.cache.lazy_offloading:
self.cache._offload_unlocked_models()
self.cache._print_cuda_stats()
# TODO: should it be called untrack_model?
def uncache_model(self, cache_id: str):
with suppress(ValueError):
self._cache_stack.remove(cache_id)
self._cached_models.pop(cache_id, None)
def model_hash(
self,
model_path: Union[str, Path],
) -> str:
'''
Given the HF repo id or path to a model on disk, returns a unique
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
:param model_path: Path to model file/directory on disk.
'''
return self._local_model_hash(model_path)
def cache_size(self) -> float:
"Return the current size of the cache, in GB"
current_cache_size = sum([m.size for m in self._cached_models.values()])
return current_cache_size / GIG
def _has_cuda(self) -> bool:
return self.execution_device.type == 'cuda'
def _print_cuda_stats(self):
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
ram = "%4.2fG" % self.cache_size()
cached_models = 0
loaded_models = 0
locked_models = 0
for model_info in self._cached_models.values():
cached_models += 1
if model_info.loaded:
loaded_models += 1
if model_info.locked:
locked_models += 1
self.logger.debug(f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}")
def _make_cache_room(self, model_size):
# calculate how much memory this model will require
#multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = sum([m.size for m in self._cached_models.values()])
if current_size + bytes_needed > maximum_size:
self.logger.debug(f'Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB')
self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}")
pos = 0
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
refs = sys.getrefcount(cache_entry.model)
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}")
# 2 refs:
# 1 from cache_entry
# 1 from getrefcount function
if not cache_entry.locked and refs <= 2:
self.logger.debug(f'Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)')
current_size -= cache_entry.size
del self._cache_stack[pos]
del self._cached_models[model_key]
del cache_entry
else:
pos += 1
gc.collect()
torch.cuda.empty_cache()
self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}")
def _offload_unlocked_models(self):
for model_key, cache_entry in self._cached_models.items():
if not cache_entry.locked and cache_entry.loaded:
self.logger.debug(f'Offloading {model_key} from {self.execution_device} into {self.storage_device}')
with VRAMUsage() as mem:
cache_entry.model.to(self.storage_device)
self.logger.debug(f'GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB')
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
sha = hashlib.sha256()
path = Path(model_path)
hashpath = path / "checksum.sha256"
if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime:
with open(hashpath) as f:
hash = f.read()
return hash
self.logger.debug(f'computing hash of model {path.name}')
for file in list(path.rglob("*.ckpt")) \
+ list(path.rglob("*.safetensors")) \
+ list(path.rglob("*.pth")):
with open(file, "rb") as f:
while chunk := f.read(self.sha_chunksize):
sha.update(chunk)
hash = sha.hexdigest()
with open(hashpath, "w") as f:
f.write(hash)
return hash
class VRAMUsage(object):
def __init__(self):
self.vram = None
self.vram_used = 0
def __enter__(self):
self.vram = torch.cuda.memory_allocated()
return self
def __exit__(self, *args):
self.vram_used = torch.cuda.memory_allocated() - self.vram

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,131 @@
"""
invokeai.backend.model_management.model_merge exports:
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import warnings
from enum import Enum
from pathlib import Path
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
from typing import List, Union
import invokeai.backend.util.logging as logger
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
class MergeInterpolationMethod(str, Enum):
WeightedSum = "weighted_sum"
Sigmoid = "sigmoid"
InvSigmoid = "inv_sigmoid"
AddDifference = "add_difference"
class ModelMerger(object):
def __init__(self, manager: ModelManager):
self.manager = manager
def merge_diffusion_models(
self,
model_paths: List[Path],
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
force: bool = False,
**kwargs,
) -> DiffusionPipeline:
"""
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
pipe = DiffusionPipeline.from_pretrained(
model_paths[0],
custom_pipeline="checkpoint_merger",
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_paths,
alpha=alpha,
interp=interp.value if interp else None, #diffusers API treats None as "weighted sum"
force=force,
**kwargs,
)
dlogging.set_verbosity(verbosity)
return merged_pipe
def merge_diffusion_models_and_save (
self,
model_names: List[str],
base_model: Union[BaseModelType,str],
merged_model_name: str,
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
force: bool = False,
**kwargs,
) -> AddModelResult:
"""
:param models: up to three models, designated by their InvokeAI models.yaml model name
:param base_model: base model (must be the same for all merged models!)
:param merged_model_name: name for new model
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
model_paths = list()
config = self.manager.app_config
base_model = BaseModelType(base_model)
vae = None
for mod in model_names:
info = self.manager.list_model(mod, base_model=base_model, model_type=ModelType.Main)
assert info, f"model {mod}, base_model {base_model}, is unknown"
assert info["model_format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging"
assert info["variant"] == "normal", f"{mod} is a {info['variant']} model, which cannot currently be merged"
assert len(model_names) <= 2 or \
interp==MergeInterpolationMethod.AddDifference, "When merging three models, only the 'add_difference' merge method is supported"
# pick up the first model's vae
if mod == model_names[0]:
vae = info.get("vae")
model_paths.extend([config.root_path / info["path"]])
merge_method = None if interp == 'weighted_sum' else MergeInterpolationMethod(interp)
logger.debug(f'interp = {interp}, merge_method={merge_method}')
merged_pipe = self.merge_diffusion_models(
model_paths, alpha, merge_method, force, **kwargs
)
dump_path = config.models_path / base_model.value / ModelType.Main.value
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
attributes = dict(
path = str(dump_path),
description = f"Merge of models {', '.join(model_names)}",
model_format = "diffusers",
variant = ModelVariantType.Normal.value,
vae = vae,
)
return self.manager.add_model(merged_model_name,
base_model = base_model,
model_type = ModelType.Main,
model_attributes = attributes,
clobber = True
)

Some files were not shown because too many files have changed in this diff Show More