Compare commits

..

1 Commits

Author SHA1 Message Date
Sergey Borisov
e4a45341c8 Controlnet implementation for sequential execution 2023-06-16 02:42:32 +03:00
674 changed files with 27497 additions and 35491 deletions

View File

@@ -1,9 +1,25 @@
# use this file as a whitelist
*
!invokeai
!ldm
!pyproject.toml
!docker/docker-entrypoint.sh
!LICENSE
**/node_modules
**/__pycache__
**/*.egg-info
# ignore frontend/web but whitelist dist
invokeai/frontend/web/
!invokeai/frontend/web/dist/
# ignore invokeai/assets but whitelist invokeai/assets/web
invokeai/assets/
!invokeai/assets/web/
# Guard against pulling in any models that might exist in the directory tree
**/*.pt*
**/*.ckpt
# Byte-compiled / optimized / DLL files
**/__pycache__/
**/*.py[cod]
# Distribution / packaging
**/*.egg-info/
**/*.egg

View File

@@ -3,15 +3,17 @@ on:
push:
branches:
- 'main'
- 'update/ci/docker/*'
- 'update/docker/*'
- 'dev/ci/docker/*'
- 'dev/docker/*'
paths:
- 'pyproject.toml'
- '.dockerignore'
- 'invokeai/**'
- 'docker/Dockerfile'
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*'
- 'v*.*.*'
workflow_dispatch:
permissions:
@@ -24,27 +26,23 @@ jobs:
strategy:
fail-fast: false
matrix:
gpu-driver:
- cuda
- cpu
- rocm
flavor:
- rocm
- cuda
- cpu
include:
- flavor: rocm
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
- flavor: cuda
pip-extra-index-url: ''
- flavor: cpu
pip-extra-index-url: 'https://download.pytorch.org/whl/cpu'
runs-on: ubuntu-latest
name: ${{ matrix.gpu-driver }}
name: ${{ matrix.flavor }}
env:
# torch/arm64 does not support GPU currently, so arm64 builds
# would not be GPU-accelerated.
# re-enable arm64 if there is sufficient demand.
# PLATFORMS: 'linux/amd64,linux/arm64'
PLATFORMS: 'linux/amd64'
PLATFORMS: 'linux/amd64,linux/arm64'
DOCKERFILE: 'docker/Dockerfile'
steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
- name: Checkout
uses: actions/checkout@v3
@@ -55,7 +53,7 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
images: |
ghcr.io/${{ github.repository }}
${{ env.DOCKERHUB_REPOSITORY }}
${{ vars.DOCKERHUB_REPOSITORY }}
tags: |
type=ref,event=branch
type=ref,event=tag
@@ -64,8 +62,8 @@ jobs:
type=pep440,pattern={{major}}
type=sha,enable=true,prefix=sha-,format=short
flavor: |
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.gpu-driver }},onlatest=false
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.flavor }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
@@ -83,33 +81,34 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# - name: Login to Docker Hub
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
# uses: docker/login-action@v2
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Login to Docker Hub
if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
id: docker_build
uses: docker/build-push-action@v4
with:
context: .
file: docker/Dockerfile
file: ${{ env.DOCKERFILE }}
platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=${{ github.ref_name }}-${{ matrix.flavor }}
type=gha,scope=main-${{ matrix.flavor }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.flavor }}
# - name: Docker Hub Description
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
# uses: peter-evans/dockerhub-description@v3
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
# short-description: ${{ github.event.repository.description }}
- name: Docker Hub Description
if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
uses: peter-evans/dockerhub-description@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
repository: ${{ vars.DOCKERHUB_REPOSITORY }}
short-description: ${{ github.event.repository.description }}

View File

@@ -1,16 +1,10 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
@@ -25,26 +19,48 @@ jobs:
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- name: skip
run: echo "no build required"
- run: 'echo "No build required"'

View File

@@ -11,7 +11,6 @@ on:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
@@ -33,12 +32,19 @@ jobs:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
@@ -56,6 +62,14 @@ jobs:
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
@@ -86,38 +100,40 @@ jobs:
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
- name: run invokeai-configure
id: run-preload-models
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
run: >
invokeai-configure
--yes
--default_only
--full-precision
# can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
- name: run invokeai
id: run-invokeai
env:
# Set offline mode to make sure configure preloaded successfully.
HF_HUB_OFFLINE: 1
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
run: >
invokeai
--no-patchmatch
--no-nsfw_checker
--precision=float32
--always_use_cpu
--use_memory_db
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
--from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}
- name: Archive results
id: archive-results
env:
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
uses: actions/upload-artifact@v3
with:
name: results
path: ${{ env.INVOKEAI_OUTDIR }}

6
.gitignore vendored
View File

@@ -34,7 +34,7 @@ __pycache__/
.Python
build/
develop-eggs/
# dist/
dist/
downloads/
eggs/
.eggs/
@@ -79,7 +79,6 @@ cov.xml
.pytest.ini
cover/
junit/
notes/
# Translations
*.mo
@@ -202,8 +201,7 @@ checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/yarn.lock
invokeai/frontend/node_modules
invokeai/frontend/web/dist/*
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*

189
LICENSE
View File

@@ -1,176 +1,21 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
MIT License
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
Copyright (c) 2022 InvokeAI Team
1. Definitions.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

190
README.md
View File

@@ -1,11 +1,8 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
![project logo](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/invoke_ai_banner.png)
# InvokeAI: A Stable Diffusion Toolkit
[![discord badge]][discord link]
@@ -36,32 +33,15 @@
</div>
_**Note: This is an alpha release. Bugs are expected and not all
features are fully implemented. Please use the GitHub [Issues
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
to report unexpected problems. Also note that InvokeAI root directory
which contains models, outputs and configuration files, has changed
between the 2.x and 3.x release. If you wish to use your v2.3 root
directory with v3.0, please follow the directions in [Migrating a 2.3
root directory to 3.0](#migrating-to-3).**_
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/">Code and
Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
_Note: InvokeAI is rapidly evolving. Please use the
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
requests. Be sure to use the provided templates. They will help us diagnose issues faster._
<div align="center">
@@ -71,30 +51,22 @@ the foundation for multiple commercial products.
## Table of Contents
Table of Contents 📝
1. [Quick Start](#getting-started-with-invokeai)
2. [Installation](#detailed-installation-instructions)
3. [Hardware Requirements](#hardware-requirements)
4. [Features](#features)
5. [Latest Changes](#latest-changes)
6. [Troubleshooting](#troubleshooting)
7. [Contributing](#contributing)
8. [Contributors](#contributors)
9. [Support](#support)
10. [Further Reading](#further-reading)
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
## Getting Started with InvokeAI
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
@@ -103,8 +75,9 @@ directory to 3.0](#migrating-to-3) first.
3. Unzip the file.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
4. If you are on Windows, double-click on the `install.bat` script. On
macOS, open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. On Linux, run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
@@ -130,7 +103,7 @@ and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for developers and users familiar with Terminals)
### Command-Line Installation (for users familiar with Terminals)
You must have Python 3.9 or 3.10 installed on your machine. Earlier or later versions are
not supported.
@@ -206,7 +179,7 @@ not supported.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
## Detailed Installation Instructions
### Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
@@ -214,87 +187,6 @@ AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. The recipe is as follows>
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3a. During the alpha release phase, select option [3] and manually
enter the tag name `v3.0.0+a2`.
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
#### Migration Caveats
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. The released
version of 3.0 is expected to have an interface for importing an
entire directory of image files as a batch.
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
@@ -313,9 +205,13 @@ We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
**Memory** - At least 12 GB Main Memory RAM.
### Memory
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
- At least 12 GB Main Memory RAM.
### Disk
- At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
@@ -329,24 +225,28 @@ InvokeAI offers a locally hosted Web Server & React Frontend, with an industry l
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Node Architecture & Editor (Beta)*
### *Advanced Prompt Syntax*
Invoke AI's backend is built on a graph-based execution architecture. This allows for customizable generation pipelines to be developed by professional users looking to create specific workflows to support their production use-cases, and will be extended in the future with additional capabilities.
InvokeAI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
### *Board & Gallery Management*
### *Command Line Interface*
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
For users utilizing a terminal-based environment, or who want to take advantage of CLI features, InvokeAI offers an extensive and actively supported command-line interface that provides the full suite of generation functionality available in the tool.
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1 support*
- *Upscaling Tools*
- *Noise Control & Tresholding*
- *Popular Sampler Support*
- *Upscaling & Face Restoration Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
- *SDXL Support* (Coming soon)
### Coming Soon
- *Node-Based Architecture & UI*
- And more...
### Latest Changes
@@ -354,7 +254,7 @@ For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
### Troubleshooting
## Troubleshooting
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
@@ -384,6 +284,8 @@ This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
Thanks to [Weblate](https://weblate.org/) for generously providing translation services to this project.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the Discord.

View File

@@ -1,13 +0,0 @@
## Make a copy of this file named `.env` and fill in the values below.
## Any environment variables supported by InvokeAI can be specified here.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# This **must** be an absolute path.
INVOKEAI_ROOT=
HUGGINGFACE_TOKEN=
## optional variables specific to the docker setup
# GPU_DRIVER=cuda
# CONTAINER_UID=1000

View File

@@ -1,129 +1,107 @@
# syntax=docker/dockerfile:1.4
# syntax=docker/dockerfile:1
## Builder stage
ARG PYTHON_VERSION=3.9
##################
## base image ##
##################
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
FROM library/ubuntu:22.04 AS builder
LABEL org.opencontainers.image.authors="mauwii@outlook.de"
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
git \
python3.10-venv \
python3-pip \
build-essential
# Prepare apt for buildkit cache
RUN rm -f /etc/apt/apt.conf.d/docker-clean \
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
# Install dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update \
&& apt-get install -y \
--no-install-recommends \
libgl1-mesa-glx=20.3.* \
libglib2.0-0=2.66.* \
libopencv-dev=4.5.*
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
# Set working directory and env
ARG APPDIR=/usr/src
ARG APPNAME=InvokeAI
WORKDIR ${APPDIR}
ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
# Keeps Python from generating .pyc files in the container
ENV PYTHONDONTWRITEBYTECODE 1
# Turns off buffering for easier container logging
ENV PYTHONUNBUFFERED 1
# Don't fall back to legacy build system
ENV PIP_USE_PEP517=1
WORKDIR ${INVOKEAI_SRC}
#######################
## build pyproject ##
#######################
FROM python-base AS pyproject-builder
# Install pytorch before all other pip packages
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is default
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m venv ${VIRTUAL_ENV} &&\
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
torchvision==$TORCHVISION_VERSION
# Install build dependencies
RUN \
--mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt-get update \
&& apt-get install -y \
--no-install-recommends \
build-essential=12.9 \
gcc=4:10.2.* \
python3-dev=3.9.*
# Install the local package.
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
RUN --mount=type=cache,target=/root/.cache/pip \
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
else \
pip install -e "."; \
fi
# Prepare pip for buildkit cache
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR}
RUN mkdir -p ${PIP_CACHE_DIR}
# #### Build the Web UI ------------------------------------
# Create virtual environment
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
python3 -m venv "${APPNAME}" \
--upgrade-deps
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
# Install requirements
COPY --link pyproject.toml .
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
ARG PIP_EXTRA_INDEX_URL
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}"/bin/pip install .
# Install pyproject.toml
COPY --link . .
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
"${APPNAME}/bin/pip" install .
#### Runtime stage ---------------------------------------
FROM library/ubuntu:22.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
# globally add magic-wormhole
# for ease of transferring data to and from the container
# when running in sandboxed cloud environments; e.g. Runpod etc.
RUN pip install magic-wormhole
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
WORKDIR ${INVOKEAI_SRC}
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
# Build patchmatch
RUN python3 -c "from patchmatch import patch_match"
# Create unprivileged user and make the local dir
RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
#####################
## runtime image ##
#####################
FROM python-base AS runtime
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web", "--host", "0.0.0.0"]
# Create a new user
ARG UNAME=appuser
RUN useradd \
--no-log-init \
-m \
-U \
"${UNAME}"
# Create volume directory
ARG VOLUME_DIR=/data
RUN mkdir -p "${VOLUME_DIR}" \
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
# Setup runtime environment
USER ${UNAME}:${UNAME}
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
ENV INVOKEAI_ROOT ${VOLUME_DIR}
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"
EXPOSE 9090
ENTRYPOINT [ "invokeai" ]
CMD [ "--web", "--host", "0.0.0.0", "--port", "9090" ]
VOLUME [ "${VOLUME_DIR}" ]

View File

@@ -1,77 +0,0 @@
# InvokeAI Containerized
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU.
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
#### macOS
1. Ensure Docker has at least 16GB RAM
2. Enable VirtioFS for file sharing
3. Enable `docker compose` V2 support
This is done via Docker Desktop preferences
## Quickstart
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. `docker compose up`
The image will be built automatically if needed.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
### Use a GPU
- Linux is *recommended* for GPU support in Docker.
- WSL2 is *required* for Windows.
- only `x86_64` architecture is supported.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Example (most values are optional):
```
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=cuda
```
## Even Moar Customizing!
See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```
command:
- invokeai-configure
- --yes
```
Or install models:
```
command:
- invokeai-model-install
```

View File

@@ -1,11 +1,51 @@
#!/usr/bin/env bash
set -e
build_args=""
# If you want to build a specific flavor, set the CONTAINER_FLAVOR environment variable
# e.g. CONTAINER_FLAVOR=cpu ./build.sh
# Possible Values are:
# - cpu
# - cuda
# - rocm
# Don't forget to also set it when executing run.sh
# if it is not set, the script will try to detect the flavor by itself.
#
# Doc can be found here:
# https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
echo "docker-compose build args:"
echo $build_args
source ./env.sh
docker-compose build $build_args
DOCKERFILE=${INVOKE_DOCKERFILE:-./Dockerfile}
# print the settings
echo -e "You are using these values:\n"
echo -e "Dockerfile:\t\t${DOCKERFILE}"
echo -e "index-url:\t\t${PIP_EXTRA_INDEX_URL:-none}"
echo -e "Volumename:\t\t${VOLUMENAME}"
echo -e "Platform:\t\t${PLATFORM}"
echo -e "Container Registry:\t${CONTAINER_REGISTRY}"
echo -e "Container Repository:\t${CONTAINER_REPOSITORY}"
echo -e "Container Tag:\t\t${CONTAINER_TAG}"
echo -e "Container Flavor:\t${CONTAINER_FLAVOR}"
echo -e "Container Image:\t${CONTAINER_IMAGE}\n"
# Create docker volume
if [[ -n "$(docker volume ls -f name="${VOLUMENAME}" -q)" ]]; then
echo -e "Volume already exists\n"
else
echo -n "creating docker volume "
docker volume create "${VOLUMENAME}"
fi
# Build Container
docker build \
--platform="${PLATFORM:-linux/amd64}" \
--tag="${CONTAINER_IMAGE:-invokeai}" \
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \
${PIP_EXTRA_INDEX_URL:+--build-arg="PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}"} \
${PIP_PACKAGE:+--build-arg="PIP_PACKAGE=${PIP_PACKAGE}"} \
--file="${DOCKERFILE}" \
..

View File

@@ -1,48 +0,0 @@
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
version: '3.8'
services:
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
build:
context: ..
dockerfile: docker/Dockerfile
# variables without a default will automatically inherit from the host environment
environment:
- INVOKEAI_ROOT
- HF_HOME
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
tty: true
stdin_open: true
# # Example of running alternative commands/scripts in the container
# command:
# - bash
# - -c
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0

View File

@@ -1,65 +0,0 @@
#!/bin/bash
set -e -o pipefail
### Container entrypoint
# Runs the CMD as defined by the Dockerfile or passed to `docker run`
# Can be used to configure the runtime dir
# Bypass by using ENTRYPOINT or `--entrypoint`
### Set INVOKEAI_ROOT pointing to a valid runtime directory
# Otherwise configure the runtime dir first.
### Configure the InvokeAI runtime directory (done by default)):
# docker run --rm -it <this image> --configure
# or skip with --no-configure
### Set the CONTAINER_UID envvar to match your user.
# Ensures files created in the container are owned by you:
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
USER_ID=${CONTAINER_UID:-1000}
USER=invoke
usermod -u ${USER_ID} ${USER} 1>/dev/null
configure() {
# Configure the runtime directory
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
echo "To reconfigure InvokeAI, delete the above file."
echo "======================================================================"
else
mkdir -p ${INVOKEAI_ROOT}
chown --recursive ${USER} ${INVOKEAI_ROOT}
gosu ${USER} invokeai-configure --yes --default_only
fi
}
## Skip attempting to configure.
## Must be passed first, before any other args.
if [[ $1 != "--no-configure" ]]; then
configure
else
shift
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.
# (use SCP to copy files to/from the image, etc)
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd $HOME
mkdir -p .ssh
echo ${PUBLIC_KEY} > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
cd ${INVOKEAI_ROOT}
# Run the CMD as the Container User (not root).
exec gosu ${USER} "$@"

54
docker/env.sh Normal file
View File

@@ -0,0 +1,54 @@
#!/usr/bin/env bash
# This file is used to set environment variables for the build.sh and run.sh scripts.
# Try to detect the container flavor if no PIP_EXTRA_INDEX_URL got specified
if [[ -z "$PIP_EXTRA_INDEX_URL" ]]; then
# Activate virtual environment if not already activated and exists
if [[ -z $VIRTUAL_ENV ]]; then
[[ -e "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" ]] \
&& source "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" \
&& echo "Activated virtual environment: $VIRTUAL_ENV"
fi
# Decide which container flavor to build if not specified
if [[ -z "$CONTAINER_FLAVOR" ]] && python -c "import torch" &>/dev/null; then
# Check for CUDA and ROCm
CUDA_AVAILABLE=$(python -c "import torch;print(torch.cuda.is_available())")
ROCM_AVAILABLE=$(python -c "import torch;print(torch.version.hip is not None)")
if [[ "${CUDA_AVAILABLE}" == "True" ]]; then
CONTAINER_FLAVOR="cuda"
elif [[ "${ROCM_AVAILABLE}" == "True" ]]; then
CONTAINER_FLAVOR="rocm"
else
CONTAINER_FLAVOR="cpu"
fi
fi
# Set PIP_EXTRA_INDEX_URL based on container flavor
if [[ "$CONTAINER_FLAVOR" == "rocm" ]]; then
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/rocm"
elif [[ "$CONTAINER_FLAVOR" == "cpu" ]]; then
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
# elif [[ -z "$CONTAINER_FLAVOR" || "$CONTAINER_FLAVOR" == "cuda" ]]; then
# PIP_PACKAGE=${PIP_PACKAGE-".[xformers]"}
fi
fi
# Variables shared by build.sh and run.sh
REPOSITORY_NAME="${REPOSITORY_NAME-$(basename "$(git rev-parse --show-toplevel)")}"
REPOSITORY_NAME="${REPOSITORY_NAME,,}"
VOLUMENAME="${VOLUMENAME-"${REPOSITORY_NAME}_data"}"
ARCH="${ARCH-$(uname -m)}"
PLATFORM="${PLATFORM-linux/${ARCH}}"
INVOKEAI_BRANCH="${INVOKEAI_BRANCH-$(git branch --show)}"
CONTAINER_REGISTRY="${CONTAINER_REGISTRY-"ghcr.io"}"
CONTAINER_REPOSITORY="${CONTAINER_REPOSITORY-"$(whoami)/${REPOSITORY_NAME}"}"
CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
# enable docker buildkit
export DOCKER_BUILDKIT=1

View File

@@ -1,8 +1,41 @@
#!/usr/bin/env bash
set -e
# How to use: https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
docker-compose up --build -d
docker-compose logs -f
source ./env.sh
# Create outputs directory if it does not exist
[[ -d ./outputs ]] || mkdir ./outputs
echo -e "You are using these values:\n"
echo -e "Volumename:\t${VOLUMENAME}"
echo -e "Invokeai_tag:\t${CONTAINER_IMAGE}"
echo -e "local Models:\t${MODELSPATH:-unset}\n"
docker run \
--interactive \
--tty \
--rm \
--platform="${PLATFORM}" \
--name="${REPOSITORY_NAME}" \
--hostname="${REPOSITORY_NAME}" \
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
--publish=9090:9090 \
--cap-add=sys_nice \
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
"${CONTAINER_IMAGE}" ${@:+$@}
echo -e "\nCleaning trash folder ..."
for f in outputs/.Trash*; do
if [ -e "$f" ]; then
rm -Rf "$f"
break
fi
done

View File

@@ -1,60 +0,0 @@
# InvokeAI - A Stable Diffusion Toolkit
Stable Diffusion distribution by InvokeAI: https://github.com/invoke-ai
The Docker image tracks the `main` branch of the InvokeAI project, which means it includes the latest features, but may contain some bugs.
Your working directory is mounted under the `/workspace` path inside the pod. The models are in `/workspace/invokeai/models`, and outputs are in `/workspace/invokeai/outputs`.
> **Only the /workspace directory will persist between pod restarts!**
> **If you _terminate_ (not just _stop_) the pod, the /workspace will be lost.**
## Quickstart
1. Launch a pod from this template. **It will take about 5-10 minutes to run through the initial setup**. Be patient.
1. Wait for the application to load.
- TIP: you know it's ready when the CPU usage goes idle
- You can also check the logs for a line that says "_Point your browser at..._"
1. Open the Invoke AI web UI: click the `Connect` => `connect over HTTP` button.
1. Generate some art!
## Other things you can do
At any point you may edit the pod configuration and set an arbitrary Docker command. For example, you could run a command to downloads some models using `curl`, or fetch some images and place them into your outputs to continue a working session.
If you need to run *multiple commands*, define them in the Docker Command field like this:
`bash -c "cd ${INVOKEAI_ROOT}/outputs; wormhole receive 2-foo-bar; invoke.py --web --host 0.0.0.0"`
### Copying your data in and out of the pod
This image includes a couple of handy tools to help you get the data into the pod (such as your custom models or embeddings), and out of the pod (such as downloading your outputs). Here are your options for getting your data in and out of the pod:
- **SSH server**:
1. Make sure to create and set your Public Key in the RunPod settings (follow the official instructions)
1. Add an exposed port 22 (TCP) in the pod settings!
1. When your pod restarts, you will see a new entry in the `Connect` dialog. Use this SSH server to `scp` or `sftp` your files as necessary, or SSH into the pod using the fully fledged SSH server.
- [**Magic Wormhole**](https://magic-wormhole.readthedocs.io/en/latest/welcome.html):
1. On your computer, `pip install magic-wormhole` (see above instructions for details)
1. Connect to the command line **using the "light" SSH client** or the browser-based console. _Currently there's a bug where `wormhole` isn't available when connected to "full" SSH server, as described above_.
1. `wormhole send /workspace/invokeai/outputs` will send the entire `outputs` directory. You can also send individual files.
1. Once packaged, you will see a `wormhole receive <123-some-words>` command. Copy it
1. Paste this command into the terminal on your local machine to securely download the payload.
1. It works the same in reverse: you can `wormhole send` some models from your computer to the pod. Again, save your files somewhere in `/workspace` or they will be lost when the pod is stopped.
- **RunPod's Cloud Sync feature** may be used to sync the persistent volume to cloud storage. You could, for example, copy the entire `/workspace` to S3, add some custom models to it, and copy it back from S3 when launching new pod configurations. Follow the Cloud Sync instructions.
### Disable the NSFW checker
The NSFW checker is enabled by default. To disable it, edit the pod configuration and set the following command:
```
invoke --web --host 0.0.0.0 --no-nsfw_checker
```
---
Template ©2023 Eugene Brodsky [ebr](https://github.com/ebr)

View File

@@ -4,236 +4,6 @@ title: Changelog
# :octicons-log-16: **Changelog**
## v2.3.5 <small>(22 May 2023)</small>
This release (along with the post1 and post2 follow-on releases) expands support for additional LoRA and LyCORIS models, upgrades diffusers versions, and fixes a few bugs.
### LoRA and LyCORIS Support Improvement
A number of LoRA/LyCORIS fine-tune files (those which alter the text encoder as well as the unet model) were not having the desired effect in InvokeAI. This bug has now been fixed. Full documentation of LoRA support is available at InvokeAI LoRA Support.
Previously, InvokeAI did not distinguish between LoRA/LyCORIS models based on Stable Diffusion v1.5 vs those based on v2.0 and 2.1, leading to a crash when an incompatible model was loaded. This has now been fixed. In addition, the web pulldown menus for LoRA and Textual Inversion selection have been enhanced to show only those files that are compatible with the currently-selected Stable Diffusion model.
Support for the newer LoKR LyCORIS files has been added.
### Library Updates and Speed/Reproducibility Advancements
The major enhancement in this version is that NVIDIA users no longer need to decide between speed and reproducibility. Previously, if you activated the Xformers library, you would see improvements in speed and memory usage, but multiple images generated with the same seed and other parameters would be slightly different from each other. This is no longer the case. Relative to 2.3.5 you will see improved performance when running without Xformers, and even better performance when Xformers is activated. In both cases, images generated with the same settings will be identical.
Here are the new library versions:
Library Version
Torch 2.0.0
Diffusers 0.16.1
Xformers 0.0.19
Compel 1.1.5
Other Improvements
### Performance Improvements
When a model is loaded for the first time, InvokeAI calculates its checksum for incorporation into the PNG metadata. This process could take up to a minute on network-mounted disks and WSL mounts. This release noticeably speeds up the process.
### Bug Fixes
The "import models from directory" and "import from URL" functionality in the console-based model installer has now been fixed.
When running the WebUI, we have reduced the number of times that InvokeAI reaches out to HuggingFace to fetch the list of embeddable Textual Inversion models. We have also caught and fixed a problem with the updater not correctly detecting when another instance of the updater is running
## v2.3.4 <small>(7 April 2023)</small>
What's New in 2.3.4
This features release adds support for LoRA (Low-Rank Adaptation) and LyCORIS (Lora beYond Conventional) models, as well as some minor bug fixes.
### LoRA and LyCORIS Support
LoRA files contain fine-tuning weights that enable particular styles, subjects or concepts to be applied to generated images. LyCORIS files are an extended variant of LoRA. InvokeAI supports the most common LoRA/LyCORIS format, which ends in the suffix .safetensors. You will find numerous LoRA and LyCORIS models for download at Civitai, and a small but growing number at Hugging Face. Full documentation of LoRA support is available at InvokeAI LoRA Support.( Pre-release note: this page will only be available after release)
To use LoRA/LyCORIS models in InvokeAI:
Download the .safetensors files of your choice and place in /path/to/invokeai/loras. This directory was not present in earlier version of InvokeAI but will be created for you the first time you run the command-line or web client. You can also create the directory manually.
Add withLora(lora-file,weight) to your prompts. The weight is optional and will default to 1.0. A few examples, assuming that a LoRA file named loras/sushi.safetensors is present:
family sitting at dinner table eating sushi withLora(sushi,0.9)
family sitting at dinner table eating sushi withLora(sushi, 0.75)
family sitting at dinner table eating sushi withLora(sushi)
Multiple withLora() prompt fragments are allowed. The weight can be arbitrarily large, but the useful range is roughly 0.5 to 1.0. Higher weights make the LoRA's influence stronger. Negative weights are also allowed, which can lead to some interesting effects.
Generate as you usually would! If you find that the image is too "crisp" try reducing the overall CFG value or reducing individual LoRA weights. As is the case with all fine-tunes, you'll get the best results when running the LoRA on top of the model similar to, or identical with, the one that was used during the LoRA's training. Don't try to load a SD 1.x-trained LoRA into a SD 2.x model, and vice versa. This will trigger a non-fatal error message and generation will not proceed.
You can change the location of the loras directory by passing the --lora_directory option to `invokeai.
### New WebUI LoRA and Textual Inversion Buttons
This version adds two new web interface buttons for inserting LoRA and Textual Inversion triggers into the prompt as shown in the screenshot below.
Clicking on one or the other of the buttons will bring up a menu of available LoRA/LyCORIS or Textual Inversion trigger terms. Select a menu item to insert the properly-formatted withLora() or <textual-inversion> prompt fragment into the positive prompt. The number in parentheses indicates the number of trigger terms currently in the prompt. You may click the button again and deselect the LoRA or trigger to remove it from the prompt, or simply edit the prompt directly.
Currently terms are inserted into the positive prompt textbox only. However, some textual inversion embeddings are designed to be used with negative prompts. To move a textual inversion trigger into the negative prompt, simply cut and paste it.
By default the Textual Inversion menu only shows locally installed models found at startup time in /path/to/invokeai/embeddings. However, InvokeAI has the ability to dynamically download and install additional Textual Inversion embeddings from the HuggingFace Concepts Library. You may choose to display the most popular of these (with five or more likes) in the Textual Inversion menu by going to Settings and turning on "Show Textual Inversions from HF Concepts Library." When this option is activated, the locally-installed TI embeddings will be shown first, followed by uninstalled terms from Hugging Face. See The Hugging Face Concepts Library and Importing Textual Inversion files for more information.
### Minor features and fixes
This release changes model switching behavior so that the command-line and Web UIs save the last model used and restore it the next time they are launched. It also improves the behavior of the installer so that the pip utility is kept up to date.
### Known Bugs in 2.3.4
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.3 <small>(28 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.2 the following bugs have been fixed:
Bugs
When using legacy checkpoints with an external VAE, the VAE file is now scanned for malware prior to loading. Previously only the main model weights file was scanned.
Textual inversion will select an appropriate batchsize based on whether xformers is active, and will default to xformers enabled if the library is detected.
The batch script log file names have been fixed to be compatible with Windows.
Occasional corruption of the .next_prefix file (which stores the next output file name in sequence) on Windows systems is now detected and corrected.
Support loading of legacy config files that have no personalization (textual inversion) section.
An infinite loop when opening the developer's console from within the invoke.sh script has been corrected.
Documentation fixes, including a recipe for detecting and fixing problems with the AMD GPU ROCm driver.
Enhancements
It is now possible to load and run several community-contributed SD-2.0 based models, including the often-requested "Illuminati" model.
The "NegativePrompts" embedding file, and others like it, can now be loaded by placing it in the InvokeAI embeddings directory.
If no --model is specified at launch time, InvokeAI will remember the last model used and restore it the next time it is launched.
On Linux systems, the invoke.sh launcher now uses a prettier console-based interface. To take advantage of it, install the dialog package using your package manager (e.g. sudo apt install dialog).
When loading legacy models (safetensors/ckpt) you can specify a custom config file and/or a VAE by placing like-named files in the same directory as the model following this example:
my-favorite-model.ckpt
my-favorite-model.yaml
my-favorite-model.vae.pt # or my-favorite-model.vae.safetensors
### Known Bugs in 2.3.3
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.2 <small>(11 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.1 the following bugs have been fixed:
Black images appearing for potential NSFW images when generating with legacy checkpoint models and both --no-nsfw_checker and --ckpt_convert turned on.
Black images appearing when generating from models fine-tuned on Stable-Diffusion-2-1-base. When importing V2-derived models, you may be asked to select whether the model was derived from a "base" model (512 pixels) or the 768-pixel SD-2.1 model.
The "Use All" button was not restoring the Hi-Res Fix setting on the WebUI
When using the model installer console app, models failed to import correctly when importing from directories with spaces in their names. A similar issue with the output directory was also fixed.
Crashes that occurred during model merging.
Restore previous naming of Stable Diffusion base and 768 models.
Upgraded to latest versions of diffusers, transformers, safetensors and accelerate libraries upstream. We hope that this will fix the assertion NDArray > 2**32 issue that MacOS users have had when generating images larger than 768x768 pixels. Please report back.
As part of the upgrade to diffusers, the location of the diffusers-based models has changed from models/diffusers to models/hub. When you launch InvokeAI for the first time, it will prompt you to OK a one-time move. This should be quick and harmless, but if you have modified your models/diffusers directory in some way, for example using symlinks, you may wish to cancel the migration and make appropriate adjustments.
New "Invokeai-batch" script
### Invoke AI Batch
2.3.2 introduces a new command-line only script called invokeai-batch that can be used to generate hundreds of images from prompts and settings that vary systematically. This can be used to try the same prompt across multiple combinations of models, steps, CFG settings and so forth. It also allows you to template prompts and generate a combinatorial list like:
a shack in the mountains, photograph
a shack in the mountains, watercolor
a shack in the mountains, oil painting
a chalet in the mountains, photograph
a chalet in the mountains, watercolor
a chalet in the mountains, oil painting
a shack in the desert, photograph
...
If you have a system with multiple GPUs, or a single GPU with lots of VRAM, you can parallelize generation across the combinatorial set, reducing wait times and using your system's resources efficiently (make sure you have good GPU cooling).
To try invokeai-batch out. Launch the "developer's console" using the invoke launcher script, or activate the invokeai virtual environment manually. From the console, give the command invokeai-batch --help in order to learn how the script works and create your first template file for dynamic prompt generation.
### Known Bugs in 2.3.2
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise a Trojan alert for the codeformer.pth face restoration model. As far as we have been able to determine, this is a false positive and can be safely whitelisted.
## v2.3.1 <small>(22 February 2023)</small>
This is primarily a bugfix release, but it does provide several new features that will improve the user experience.
### Enhanced support for model management
InvokeAI now makes it convenient to add, remove and modify models. You can individually import models that are stored on your local system, scan an entire folder and its subfolders for models and import them automatically, and even directly import models from the internet by providing their download URLs. You also have the option of designating a local folder to scan for new models each time InvokeAI is restarted.
There are three ways of accessing the model management features:
From the WebUI, click on the cube to the right of the model selection menu. This will bring up a form that allows you to import models individually from your local disk or scan a directory for models to import.
Using the Model Installer App
Choose option (5) download and install models from the invoke launcher script to start a new console-based application for model management. You can use this to select from a curated set of starter models, or import checkpoint, safetensors, and diffusers models from a local disk or the internet. The example below shows importing two checkpoint URLs from popular SD sites and a HuggingFace diffusers model using its Repository ID. It also shows how to designate a folder to be scanned at startup time for new models to import.
Command-line users can start this app using the command invokeai-model-install.
Using the Command Line Client (CLI)
The !install_model and !convert_model commands have been enhanced to allow entering of URLs and local directories to scan and import. The first command installs .ckpt and .safetensors files as-is. The second one converts them into the faster diffusers format before installation.
Internally InvokeAI is able to probe the contents of a .ckpt or .safetensors file to distinguish among v1.x, v2.x and inpainting models. This means that you do not need to include "inpaint" in your model names to use an inpainting model. Note that Stable Diffusion v2.x models will be autoconverted into a diffusers model the first time you use it.
Please see INSTALLING MODELS for more information on model management.
### An Improved Installer Experience
The installer now launches a console-based UI for setting and changing commonly-used startup options:
After selecting the desired options, the installer installs several support models needed by InvokeAI's face reconstruction and upscaling features and then launches the interface for selecting and installing models shown earlier. At any time, you can edit the startup options by launching invoke.sh/invoke.bat and entering option (6) change InvokeAI startup options
Command-line users can launch the new configure app using invokeai-configure.
This release also comes with a renewed updater. To do an update without going through a whole reinstallation, launch invoke.sh or invoke.bat and choose option (9) update InvokeAI . This will bring you to a screen that prompts you to update to the latest released version, to the most current development version, or any released or unreleased version you choose by selecting the tag or branch of the desired version.
Command-line users can run this interface by typing invokeai-configure
### Image Symmetry Options
There are now features to generate horizontal and vertical symmetry during generation. The way these work is to wait until a selected step in the generation process and then to turn on a mirror image effect. In addition to generating some cool images, you can also use this to make side-by-side comparisons of how an image will look with more or fewer steps. Access this option from the WebUI by selecting Symmetry from the image generation settings, or within the CLI by using the options --h_symmetry_time_pct and --v_symmetry_time_pct (these can be abbreviated to --h_sym and --v_sym like all other options).
### A New Unified Canvas Look
This release introduces a beta version of the WebUI Unified Canvas. To try it out, open up the settings dialogue in the WebUI (gear icon) and select Use Canvas Beta Layout:
Refresh the screen and go to to Unified Canvas (left side of screen, third icon from the top). The new layout is designed to provide more space to work in and to keep the image controls close to the image itself:
Model conversion and merging within the WebUI
The WebUI now has an intuitive interface for model merging, as well as for permanent conversion of models from legacy .ckpt/.safetensors formats into diffusers format. These options are also available directly from the invoke.sh/invoke.bat scripts.
An easier way to contribute translations to the WebUI
We have migrated our translation efforts to Weblate, a FOSS translation product. Maintaining the growing project's translations is now far simpler for the maintainers and community. Please review our brief translation guide for more information on how to contribute.
Numerous internal bugfixes and performance issues
### Bug Fixes
This releases quashes multiple bugs that were reported in 2.3.0. Major internal changes include upgrading to diffusers 0.13.0, and using the compel library for prompt parsing. See Detailed Change Log for a detailed list of bugs caught and squished.
Summary of InvokeAI command line scripts (all accessible via the launcher menu)
Command Description
invokeai Command line interface
invokeai --web Web interface
invokeai-model-install Model installer with console forms-based front end
invokeai-ti --gui Textual inversion, with a console forms-based front end
invokeai-merge --gui Model merging, with a console forms-based front end
invokeai-configure Startup configuration; can also be used to reinstall support models
invokeai-update InvokeAI software updater
### Known Bugs in 2.3.1
These are known bugs in the release.
MacOS users generating 768x768 pixel images or greater using diffusers models may experience a hard crash with assertion NDArray > 2**32 This appears to be an issu...
## v2.3.0 <small>(15 January 2023)</small>
**Transition to diffusers
@@ -494,7 +264,7 @@ sections describe what's new for InvokeAI.
[Manual Installation](installation/020_INSTALL_MANUAL.md).
- The ability to save frequently-used startup options (model to load, steps,
sampler, etc) in a `.invokeai` file. See
[Client](deprecated/CLI.md)
[Client](features/CLI.md)
- Support for AMD GPU cards (non-CUDA) on Linux machines.
- Multiple bugs and edge cases squashed.
@@ -617,7 +387,7 @@ sections describe what's new for InvokeAI.
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](deprecated/INPAINTING.md) and
- Support for [inpainting](features/INPAINTING.md) and
[outpainting](features/OUTPAINTING.md)
- img2img runs on all k\* samplers
- Support for
@@ -629,7 +399,7 @@ sections describe what's new for InvokeAI.
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E
infinite canvas), and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows
[larger images to be created without duplicating elements](deprecated/CLI.md#this-is-an-example-of-txt2img),
[larger images to be created without duplicating elements](features/CLI.md#this-is-an-example-of-txt2img),
at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control
variation during image generation (see
@@ -638,7 +408,7 @@ sections describe what's new for InvokeAI.
of images and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac
platforms.
- Improved [command-line completion behavior](deprecated/CLI.md) New commands
- Improved [command-line completion behavior](features/CLI.md) New commands
added:
- List command-line history with `!history`
- Search command-line history with `!search`

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.3 MiB

View File

@@ -1,54 +0,0 @@
## Welcome to Invoke AI
We're thrilled to have you here and we're excited for you to contribute.
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
Here are some guidelines to help you get started:
### Technical Prerequisites
Front-end: You'll need a working knowledge of React and TypeScript.
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
### How to Submit Contributions
To start contributing, please follow these steps:
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
### Types of Contributions We're Looking For
We welcome all contributions that improve the project. Right now, we're especially looking for:
1. Quality of life (QOL) enhancements on the front-end.
2. New backend capabilities added through nodes.
3. Incorporating additional optimizations from the broader open-source software community.
### Communication and Decision-making Process
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
### Code of Conduct and Contribution Expectations
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:
1. The contribution was created in whole or in part by you and you have the right to submit it under the open-source license indicated in this projects GitHub repository; or
2. The contribution is based upon previous work that, to the best of your knowledge, is covered under an appropriate open-source license and you have the right under that license to submit that work with modifications, whether created in whole or in part by you, under the same open-source license (unless you are permitted to submit under a different license); or
3. The contribution was provided directly to you by some other person who certified (1) or (2) and you have not modified it; or
4. You understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information you submit with it, including your sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open-source license(s) involved.
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
---
Remember, your contributions help make this project great. We're excited to see what you'll bring to our community!

View File

@@ -1,521 +1,8 @@
# Invocations
Features in InvokeAI are added in the form of modular node-like systems called
**Invocations**.
An Invocation is simply a single operation that takes in some inputs and gives
out some outputs. We can then chain multiple Invocations together to create more
complex functionality.
## Invocations Directory
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
You can add your new functionality to one of the existing Invocations in this
directory or create a new file in this directory as per your needs.
**Note:** _All Invocations must be inside this directory for InvokeAI to
recognize them as valid Invocations._
## Creating A New Invocation
In order to understand the process of creating a new Invocation, let us actually
create one.
In our example, let us create an Invocation that will take in an image, resize
it and output the resized image.
The first set of things we need to do when creating a new Invocation are -
- Create a new class that derives from a predefined parent class called
`BaseInvocation`.
- The name of every Invocation must end with the word `Invocation` in order for
it to be recognized as an Invocation.
- Every Invocation must have a `docstring` that describes what this Invocation
does.
- Every Invocation must have a unique `type` field defined which becomes its
indentifier.
- Invocations are strictly typed. We make use of the native
[typing](https://docs.python.org/3/library/typing.html) library and the
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
validation.
So let us do that.
```python
from typing import Literal
from .baseinvocation import BaseInvocation
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
```
That's great.
Now we have setup the base of our new Invocation. Let us think about what inputs
our Invocation takes.
- We need an `image` that we are going to resize.
- We will need new `width` and `height` values to which we need to resize the
image to.
### **Inputs**
Every Invocation input is a pydantic `Field` and like everything else should be
strictly typed and defined.
So let us create these inputs for our Invocation. First up, the `image` input we
need. Generally, we can use standard variable types in Python but InvokeAI
already has a custom `ImageField` type that handles all the stuff that is needed
for image inputs.
But what is this `ImageField` ..? It is a special class type specifically
written to handle how images are dealt with in InvokeAI. We will cover how to
create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
```
Let us break down our input code.
```python
image: Union[ImageField, None] = Field(description="The input image", default=None)
```
| Part | Value | Description |
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
| Name | `image` | The variable that will hold our image |
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
Great. Now let us create our other inputs for `width` and `height`
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
```
As you might have noticed, we added two new parameters to the field type for
`width` and `height` called `gt` and `le`. These basically stand for _greater
than or equal to_ and _less than or equal to_. There are various other param
types for field that you can find on the **pydantic** documentation.
**Note:** _Any time it is possible to define constraints for our field, we
should do it so the frontend has more information on how to parse this field._
Perfect. We now have our inputs. Let us do something with these.
### **Invoke Function**
The `invoke` function is where all the magic happens. This function provides you
the `context` parameter that is of the type `InvocationContext` which will give
you access to the current context of the generation and all the other services
that are provided by it by InvokeAI.
Let us create this function first.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext):
pass
```
### **Outputs**
The output of our Invocation will be whatever is returned by this `invoke`
function. Like with our inputs, we need to strongly type and define our outputs
too.
What is our output going to be? Another image. Normally you'd have to create a
type for this but InvokeAI already offers you an `ImageOutput` type that handles
all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
from .image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
pass
```
Perfect. Now that we have our Invocation setup, let us do what we want to do.
- We will first load the image. Generally we do this using the `PIL` library but
we can use one of the services provided by InvokeAI to load the image.
- We will resize the image using `PIL` to our input data.
- We will output this image in the format we set above.
So let's do that.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Preparing the image for output using InvokeAI's predefined Image Service.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
)
```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
certain way that the images need to be dispatched in order to be stored and read
correctly. In 99% of the cases when dealing with an image output, you can simply
copy-paste the template above.
That's it. You made your own **Resize Invocation**.
## Result
Once you make your Invocation correctly, the rest of the process is fully
automated for you.
When you launch InvokeAI, you can go to `http://localhost:9090/docs` and see
your new Invocation show up there with all the relevant info.
![resize invocation](../assets/contributing/resize_invocation.png)
When you launch the frontend UI, you can go to the Node Editor tab and find your
new Invocation ready to be used.
![resize node editor](../assets/contributing/resize_node_editor.png)
# Advanced
## Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
While creating your own Invocations, you might run into a scenario where the
existing input types in InvokeAI do not meet your requirements. In such cases,
you can create your own input types.
Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some
general good practices to keep in mind.
**Good Practices**
- There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your input field.
- Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant.
All input types a class that derive from the `BaseModel` type from `pydantic`.
So let's create one.
```python
from pydantic import BaseModel
class ColorField(BaseModel):
'''A field that holds the rgba values of a color'''
pass
```
Perfect. Now let us create our custom inputs for our field. This is exactly
similar how you created input fields for your Invocation. All the same rules
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_green(g)_ and _alpha(a)_ channel of the color.
```python
class ColorField(BaseModel):
'''A field that holds the rgba values of a color'''
r: int = Field(ge=0, le=255, description="The red channel")
g: int = Field(ge=0, le=255, description="The green channel")
b: int = Field(ge=0, le=255, description="The blue channel")
a: int = Field(ge=0, le=255, description="The alpha channel")
```
That's it. We now have a new input field type that we can use in our Invocations
like this.
```python
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
**Extra Config**
All input fields also take an additional `Config` class that you can use to do
various advanced things like setting required parameters and etc.
Let us do that for our _ColorField_ and enforce all the values because we did
not define any defaults for our fields.
```python
class ColorField(BaseModel):
'''A field that holds the rgba values of a color'''
r: int = Field(ge=0, le=255, description="The red channel")
g: int = Field(ge=0, le=255, description="The green channel")
b: int = Field(ge=0, le=255, description="The blue channel")
a: int = Field(ge=0, le=255, description="The alpha channel")
class Config:
schema_extra = {"required": ["r", "g", "b", "a"]}
```
Now it becomes mandatory for the user to supply all the values required by our
input field.
We will discuss the `Config` class in extra detail later in this guide and how
you can use it to make your Invocations more robust.
## Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up.
Now that you are familiar with Invocations and Inputs, let us use that knowledge
to put together a custom output type for an Invocation that returns _width_,
_height_ and _background_color_ that we need to create a blank image.
- A custom output type is a class that derives from the parent class of
`BaseInvocationOutput`.
- It is not mandatory but we recommend using names ending with `Output` for
output types. So we'll call our class `BlankImageOutput`
- It is not mandatory but we highly recommend adding a `docstring` to describe
what your output type is for.
- Like Invocations, each output type should have a `type` variable that is
**unique**
Now that we know the basic rules for creating a new output type, let us go ahead
and make it.
```python
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocationOutput
class BlankImageOutput(BaseInvocationOutput):
'''Base output type for creating a blank image'''
type: Literal['blank_image_output'] = 'blank_image_output'
# Inputs
width: int = Field(description='Width of blank image')
height: int = Field(description='Height of blank image')
bg_color: ColorField = Field(description='Background color of blank image')
class Config:
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
```
All set. We now have an output type that requires what we need to create a
blank_image. And if you noticed it, we even used the `Config` class to ensure
the fields are required.
## Custom Configuration
As you might have noticed when making inputs and outputs, we used a class called
`Config` from _pydantic_ to further customize them. Because our inputs and
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
You can do the same for your Invocations too but InvokeAI makes our life a
little bit easier on that end.
InvokeAI provides a custom configuration class called `InvocationConfig`
particularly for configuring Invocations. This is exactly the same as the raw
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
parsing of the scheme in the frontend UI.
At the current moment, tihs `InvocationConfig` class is further improved with
the following features related the `ui`.
| Config Option | Field Type | Example |
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
So let us update your `ResizeInvocation` with some extra configuration and see
how that works.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
class Config(InvocationConfig):
schema_extra: {
ui: {
tags: ['resize', 'image'],
title: ['My Custom Resize']
}
}
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Preparing the image for output using InvokeAI's predefined Image Service.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
)
```
We now customized our code to let the frontend know that our Invocation falls
under `resize` and `image` categories. So when the user searches for these
particular words, our Invocation will show up too.
We also set a custom title for our Invocation. So instead of being called
`Resize`, it will be called `My Custom Resize`.
As simple as that.
As time goes by, InvokeAI will further improve and add more customizability for
Invocation configuration. We will have more documentation regarding this at a
later time.
# **[TODO]**
## Custom Components For Frontend
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
---
# OLD -- TO BE DELETED OR MOVED LATER
---
Invocations represent a single operation, its inputs, and its outputs. These
operations and their outputs can be chained together to generate and modify
images.
## Creating a new invocation

View File

@@ -205,14 +205,14 @@ Here are the invoke> command that apply to txt2img:
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--seamless_axes` | | `x,y` | Specify which axes to use circular convolution on. |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](../features/OTHER.md#weighted-prompts) |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75` | Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--facetool_strength <float>` | `-G <float> ` | `-G0` | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
@@ -257,7 +257,7 @@ additional options:
by `-M`. You may also supply just a single initial image with the areas
to overpaint made transparent, but you must be careful not to destroy
the pixels underneath when you create the transparent areas. See
[Inpainting](INPAINTING.md) for details.
[Inpainting](./INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as well as
the --mask (-M) and --text_mask (-tm) arguments:
@@ -297,7 +297,7 @@ invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](../features/CONCEPTS.md) for more details.
see [Concepts Library](CONCEPTS.md) for more details.
## Other Commands

View File

@@ -1,12 +1,9 @@
---
title: Concepts
title: Concepts Library
---
# :material-library-shelves: The Hugging Face Concepts Library and Importing Textual Inversion files
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
@@ -15,16 +12,18 @@ and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
as in "&lt;trigger-phrase&gt;". The two most common type of
known in InvokeAI as "triggers." Triggers are often, but not always, denoted
using angle brackets as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TRAINING.md) produces `.pt`.
[built-in TI training system](TEXTUAL_INVERSION.md) produces `.pt`.
The [Hugging Face company](https://huggingface.co/sd-concepts-library) has
amassed a large ligrary of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. You can also install your own or others' TI files
by placing them in the designated directory for the compatible model type
broad range of subjects and styles. InvokeAI has built-in support for this
library which downloads and merges TI files automatically upon request. You can
also install your own or others' TI files by placing them in a designated
directory.
### An Example
@@ -42,43 +41,91 @@ You can also combine styles and concepts:
| :--------------------------------------------------------: |
| ![](../assets/concepts/image5.png) |
</figure>
## Using a Hugging Face Concept
!!! warning "Authenticating to HuggingFace"
Some concepts require valid authentication to HuggingFace. Without it, they will not be downloaded
and will be silently ignored.
If you used an installer to install InvokeAI, you may have already set a HuggingFace token.
If you skipped this step, you can:
- run the InvokeAI configuration script again (if you used a manual installer): `invokeai-configure`
- set one of the `HUGGINGFACE_TOKEN` or `HUGGING_FACE_HUB_TOKEN` environment variables to contain your token
Finally, if you already used any HuggingFace library on your computer, you might already have a token
in your local cache. Check for a hidden `.huggingface` directory in your home folder. If it
contains a `token` file, then you are all set.
Hugging Face TI concepts are downloaded and installed automatically as you
require them. This requires your machine to be connected to the Internet. To
find out what each concept is for, you can browse the
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
look at examples of what each concept produces.
When you have an idea of a concept you wish to try, go to the command-line
client (CLI) and type a `<` character and the beginning of the Hugging Face
concept name you wish to load. Press ++tab++, and the CLI will show you all
matching concepts. You can also type `<` and hit ++tab++ to get a listing of all
~800 concepts, but be prepared to scroll up to see them all! If there is more
than one match you can continue to type and ++tab++ until the concept is
completed.
!!! example
if you type in `<x` and hit ++tab++, you'll be prompted with the completions:
```py
<xatu2> <xatu> <xbh> <xi> <xidiversity> <xioboma> <xuna> <xyz>
```
Now type `id` and press ++tab++. It will be autocompleted to `<xidiversity>`
because this is a unique match.
Finish your prompt and generate as usual. You may include multiple concept terms
in the prompt.
If you have never used this concept before, you will see a message that the TI
model is being downloaded and installed. After this, the concept will be saved
locally (in the `models/sd-concepts-library` directory) for future use.
Several steps happen during downloading and installation, including a scan of
the file for malicious code. Should any errors occur, you will be warned and the
concept will fail to load. Generation will then continue treating the trigger
term as a normal string of characters (e.g. as literal `<ghibli-face>`).
You can also use `<concept-names>` in the WebGUI's prompt textbox. There is no
autocompletion at this time.
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
the `embeddings` directory of the InvokeAI runtime directory (usually `invokeai`
in your home directory). You may create subdirectories in order to organize the
files in any way you wish. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
`learned_embedding.bin`. You can use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
files it finds there for compatible models. At startup you will see a message similar to this one:
At startup time, InvokeAI will scan the `embeddings` directory and load any TI
files it finds there. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
>> Current embedding manager terms: *, <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
## Using LoRAs
Note the `*` trigger term. This is a placeholder term that many early TI
tutorials taught people to use rather than a more descriptive term.
Unfortunately, if you have multiple TI files that all use this term, only the
first one loaded will be triggered by use of the term.
LoRA files are models that customize the output of Stable Diffusion image generation.
Larger than embeddings, but much smaller than full models, they augment SD with improved
understanding of subjects and artistic styles.
To avoid this problem, you can use the `merge_embeddings.py` script to merge two
or more TI files together. If it encounters a collision of terms, the script
will prompt you to select new terms that do not collide. See
[Textual Inversion](TEXTUAL_INVERSION.md) for details.
Unlike TI files, LoRAs do not introduce novel vocabulary into the model's known tokens. Instead,
LoRAs augment the model's weights that are applied to generate imagery. LoRAs may be supplied
with a "trigger" word that they have been explicitly trained on, or may simply apply their
effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most secure way to store and transmit
these types of weights. You may install any number of `.safetensors` LoRA files simply by copying them into
the `lora` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 LoRA file to
the `sd-1/lora` folder.
To use these when generating, open the LoRA menu item in the options panel, select the LoRAs you want to apply
and ensure that they have the appropriate weight recommended by the model provider. Typically, most LoRAs perform best at a weight of .75-1.
## Further Reading
Please see [the repository](https://github.com/rinongal/textual_inversion) and
associated paper for details and limitations.

View File

@@ -1,92 +0,0 @@
---
title: ControlNet
---
# :material-loupe: ControlNet
## ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source community (notably, Stanford researcher [**@ilyasviel**](https://github.com/lllyasviel)) that allows you to apply a secondary neural network model to your image generation process in Invoke.
With ControlNet, you can get more control over the output of your image generation, providing you with a way to direct the network towards generating images that better fit your desired style or outcome.
### How it works
ControlNet works by analyzing an input image, pre-processing that image to identify relevant information that can be interpreted by each specific ControlNet model, and then inserting that control information into the generation process. This can be used to adjust the style, composition, or other aspects of the image to better achieve a specific result.
### Models
As part of the model installation, ControlNet models can be selected including a variety of pre-trained models that have been added to achieve different effects or styles in your generated images. Further ControlNet models may require additional code functionality to also be incorporated into Invoke's Invocations folder. You should expect to follow any installation instructions for ControlNet models loaded outside the default models provided by Invoke. The default models include:
**Canny**:
When the Canny model is used in ControlNet, Invoke will attempt to generate images that match the edges detected.
Canny edge detection works by detecting the edges in an image by looking for abrupt changes in intensity. It is known for its ability to detect edges accurately while reducing noise and false edges, and the preprocessor can identify more information by decreasing the thresholds.
**M-LSD**:
M-LSD is another edge detection algorithm used in ControlNet. It stands for Multi-Scale Line Segment Detector.
It detects straight line segments in an image by analyzing the local structure of the image at multiple scales. It can be useful for architectural imagery, or anything where straight-line structural information is needed for the resulting output.
**Lineart**:
The Lineart model in ControlNet generates line drawings from an input image. The resulting pre-processed image is a simplified version of the original, with only the outlines of objects visible.The Lineart model in ControlNet is known for its ability to accurately capture the contours of the objects in an input sketch.
**Lineart Anime**:
A variant of the Lineart model that generates line drawings with a distinct style inspired by anime and manga art styles.
**Depth**:
A model that generates depth maps of images, allowing you to create more realistic 3D models or to simulate depth effects in post-processing.
**Normal Map (BAE):**
A model that generates normal maps from input images, allowing for more realistic lighting effects in 3D rendering.
**Image Segmentation**:
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
**Tile (experimental)**:
The Tile model fills out details in the image to match the image, rather than the prompt. The Tile Model is a versatile tool that offers a range of functionalities. Its primary capabilities can be boiled down to two main behaviors:
- It can reinterpret specific details within an image and create fresh, new elements.
- It has the ability to disregard global instructions if there's a discrepancy between them and the local context or specific parts of the image. In such cases, it uses the local context to guide the process.
The Tile Model can be a powerful tool in your arsenal for enhancing image quality and details. If there are undesirable elements in your images, such as blurriness caused by resizing, this model can effectively eliminate these issues, resulting in cleaner, crisper images. Moreover, it can generate and add refined details to your images, improving their overall quality and appeal.
**Pix2Pix (experimental)**
With Pix2Pix, you can input an image into the controlnet, and then "instruct" the model to change it using your prompt. For example, you can say "Make it winter" to add more wintry elements to a scene.
**Inpaint**: Coming Soon - Currently this model is available but not functional on the Canvas. An upcoming release will provide additional capabilities for using this model when inpainting.
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
## Using ControlNet
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
Each ControlNet has two settings that are applied to the ControlNet.
Weight - Strength of the Controlnet model applied to the generation for the section, defined by start/end.
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.

View File

@@ -4,13 +4,86 @@ title: Image-to-Image
# :material-image-multiple: Image-to-Image
InvokeAI provides an "img2img" feature that lets you seed your
creations with an initial drawing or photo. This is a really cool
feature that tells stable diffusion to build the prompt on top of the
image you provide, preserving the original's basic shape and layout.
Both the Web and command-line interfaces provide an "img2img" feature
that lets you seed your creations with an initial drawing or
photo. This is a really cool feature that tells stable diffusion to
build the prompt on top of the image you provide, preserving the
original's basic shape and layout.
For a walkthrough of using Image-to-Image in the Web UI, see [InvokeAI
Web Server](./WEB.md#image-to-image).
See the [WebUI Guide](WEB.md) for a walkthrough of the img2img feature
in the InvokeAI web server. This document describes how to use img2img
in the command-line tool.
## Basic Usage
Launch the command-line client by launching `invoke.sh`/`invoke.bat`
and choosing option (1). Alternative, activate the InvokeAI
environment and issue the command `invokeai`.
Once the `invoke> ` prompt appears, you can start an img2img render by
pointing to a seed file with the `-I` option as shown here:
!!! example ""
```commandline
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
<figure markdown>
| original image | generated image |
| :------------: | :-------------: |
| ![original-image](https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png){ width=320 } | ![generated-image](https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png){ width=320 } |
</figure>
The `--init_img` (`-I`) option gives the path to the seed picture. `--strength`
(`-f`) controls how much the original will be modified, ranging from `0.0` (keep
the original intact), to `1.0` (ignore the original completely). The default is
`0.75`, and ranges from `0.25-0.90` give interesting results. Other relevant
options include `-C` (classification free guidance scale), and `-s` (steps).
Unlike `txt2img`, adding steps will continuously change the resulting image and
it will not converge.
You may also pass a `-v<variation_amount>` option to generate `-n<iterations>`
count variants on the original image. This is done by passing the first
generated image back into img2img the requested number of times. It generates
interesting variants.
Note that the prompt makes a big difference. For example, this slight variation
on the prompt produces a very different image:
<figure markdown>
![](https://user-images.githubusercontent.com/111189/194135220-16b62181-b60c-4248-8989-4834a8fd7fbd.png){ width=320 }
<caption markdown>photograph of a tree on a hill with a river</caption>
</figure>
!!! tip
When designing prompts, think about how the images scraped from the internet were
captioned. Very few photographs will be labeled "photograph" or "photorealistic."
They will, however, be captioned with the publication, photographer, camera model,
or film settings.
If the initial image contains transparent regions, then Stable Diffusion will
only draw within the transparent regions, a process called
[`inpainting`](./INPAINTING.md#creating-transparent-regions-for-inpainting).
However, for this to work correctly, the color information underneath the
transparent needs to be preserved, not erased.
!!! warning "**IMPORTANT ISSUE** "
`img2img` does not work properly on initial images smaller
than 512x512. Please scale your image to at least 512x512 before using it.
Larger images are not a problem, but may run out of VRAM on your GPU card. To
fix this, use the --fit option, which downscales the initial image to fit within
the box specified by width x height:
```
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
```
## How does it actually work, though?
The main difference between `img2img` and `prompt2img` is the starting point.
While `prompt2img` always starts with pure gaussian noise and progressively
@@ -26,6 +99,10 @@ seed `1592514025` develops something like this:
!!! example ""
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png){ width=720 }
</figure>
@@ -80,8 +157,17 @@ Diffusion has less chance to refine itself, so the result ends up inheriting all
the problems of my bad drawing.
If you want to try this out yourself, all of these are using a seed of
`1592514025` with a width/height of `384`, step count `10`, the
`k_lms` sampler, and the single-word prompt `"fire"`.
`1592514025` with a width/height of `384`, step count `10`, the default sampler
(`k_lms`), and the single-word prompt `"fire"`:
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch
[document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) -
run `invoke.py` and check your `outputs/img-samples/intermediates` folder while
generating an image.
### Compensating for the reduced step count
@@ -94,6 +180,10 @@ give each generation 20 steps.
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD
does `20` steps from my image):
```bash
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
```
<figure markdown>
![000035.1592514025](../assets/img2img/000035.1592514025.png)
</figure>
@@ -101,6 +191,10 @@ does `20` steps from my image):
and here is strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to
make sure SD does `20` steps from my image):
```commandline
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
```
<figure markdown>
![000046.1592514025](../assets/img2img/000046.1592514025.png)
</figure>

View File

@@ -71,3 +71,6 @@ under the selected name and register it with InvokeAI.
use InvokeAI conventions - only alphanumeric letters and the
characters ".+-".
## Caveats
This is a new script and may contain bugs.

View File

@@ -31,22 +31,10 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file
(`invokeai.yaml` in the InvokeAI root directory). You can change the
default at any time by opening this file in a text editor and
changing the line `nsfw_checker:` from true to false or vice-versa:
```
...
Features:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: true
patchmatch: true
restore: true
```
response is stored in the InvokeAI initialization file (usually
`invokeai.init` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.
## Caveats
@@ -91,3 +79,11 @@ generates. However, it does write metadata into the PNG data area,
including the prompt used to generate the image and relevant parameter
settings. These fields can be examined using the `sd-metadata.py`
script that comes with the InvokeAI package.
Note that several other Stable Diffusion distributions offer
wavelet-based "invisible" watermarking. We have experimented with the
library used to generate these watermarks and have reached the
conclusion that while the watermarking library may be adding
watermarks to PNG images, the currently available version is unable to
retrieve them successfully. If and when a functioning version of the
library becomes available, we will offer this feature as well.

View File

@@ -18,16 +18,43 @@ Output Example:
## **Seamless Tiling**
The seamless tiling mode causes generated images to seamlessly tile
with itself creating repetitive wallpaper-like patterns. To use it,
activate the Seamless Tiling option in the Web GUI and then select
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
will then be active for the next set of generations.
A nice prompt to test seamless tiling with is:
The seamless tiling mode causes generated images to seamlessly tile with itself. To use it, add the
`--seamless` option when starting the script which will result in all generated images to tile, or
for each `invoke>` prompt as shown here:
```python
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
pond garden with lotus by claude monet"
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**
Since it is so common to reuse seeds while refining a prompt, there is now a shortcut as of version
1.11. Provide a `-S` (or `--seed`) switch of `-1` to use the seed of the most recent image
generated. If you produced multiple images with the `-n` switch, then you can go back further
using `-2`, `-3`, etc. up to the first image generated by the previous command. Sorry, but you can't go
back further than one command.
Here's an example of using this to do a quick refinement. It also illustrates using the new `-G`
switch to turn on upscaling and face enhancement (see previous section):
```bash
invoke> a cute child playing hopscotch -G0.5
[...]
outputs/img-samples/000039.3498014304.png: "a cute child playing hopscotch" -s50 -W512 -H512 -C7.5 -mk_lms -S3498014304
# I wonder what it will look like if I bump up the steps and set facial enhancement to full strength?
invoke> a cute child playing hopscotch -G1.0 -s100 -S -1
reusing previous seed 3498014304
[...]
outputs/img-samples/000040.3498014304.png: "a cute child playing hopscotch" -G1.0 -s100 -W512 -H512 -C7.5 -mk_lms -S3498014304
```
---
@@ -46,27 +73,66 @@ This will tell the sampler to invest 25% of its effort on the tabby cat aspect o
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
combination of integers and floating point numbers, and they do not need to add up to 1.
---
## **Filename Format**
The argument `--fnformat` allows to specify the filename of the
image. Supported wildcards are all arguments what can be set such as
`perlin`, `seed`, `threshold`, `height`, `width`, `gfpgan_strength`,
`sampler_name`, `steps`, `model`, `upscale`, `prompt`, `cfg_scale`,
`prefix`.
The following prompt
```bash
dream> a red car --steps 25 -C 9.8 --perlin 0.1 --fnformat {prompt}_steps.{steps}_cfg.{cfg_scale}_perlin.{perlin}.png
```
generates a file with the name: `outputs/img-samples/a red car_steps.25_cfg.9.8_perlin.0.1.png`
---
## **Thresholding and Perlin Noise Initialization Options**
Under the Noise section of the Web UI, you will find two options named
Perlin Noise and Noise Threshold. [Perlin
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
structured noise used to simulate terrain and other natural
textures. The slider controls the percentage of perlin noise that will
be mixed into the image at the beginning of generation. Adding a little
perlin noise to a generation will alter the image substantially.
The noise threshold limits the range of the latent values during
sampling and helps combat the oversharpening seem with higher CFG
scale values.
Two new options are the thresholding (`--threshold`) and the perlin noise initialization (`--perlin`) options. Thresholding limits the range of the latent values during optimization, which helps combat oversaturation with higher CFG scale values. Perlin noise initialization starts with a percentage (a value ranging from 0 to 1) of perlin noise mixed into the initial noise. Both features allow for more variations and options in the course of generating images.
For better intuition into what these options do in practice:
![here is a graphic demonstrating them both](../assets/truncation_comparison.jpg)
In generating this graphic, perlin noise at initialization was
programmatically varied going across on the diagram by values 0.0,
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
20, 100 steps, and a seed of 1950357039.
In generating this graphic, perlin noise at initialization was programmatically varied going across on the diagram by values 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied going down from
0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are fixed, so the initial prompt is as follows (no thresholding or perlin noise):
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 0 --perlin 0
```
Here's an example of another prompt used when setting the threshold to 5 and perlin noise to 0.2:
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 5 --perlin 0.2
```
!!! note
currently the thresholding feature is only implemented for the k-diffusion style samplers, and empirically appears to work best with `k_euler_a` and `k_dpm_2_a`. Using 0 disables thresholding. Using 0 for perlin noise disables using perlin noise for initialization. Finally, using 1 for perlin noise uses only perlin noise for initialization.
---
## **Simplified API**
For programmers who wish to incorporate stable-diffusion into other products, this repository
includes a simplified API for text to image generation, which lets you create images from a prompt
in just three lines of code:
```bash
from ldm.generate import Generate
g = Generate()
outputs = g.txt2img("a unicorn in manhattan")
```
Outputs is a list of lists in the format [filename1,seed1],[filename2,seed2]...].
Please see the documentation in ldm/generate.py for more information.
---

View File

@@ -8,6 +8,12 @@ title: Postprocessing
This extension provides the ability to restore faces and upscale images.
Face restoration and upscaling can be applied at the time you generate the
images, or at any later time against a previously-generated PNG file, using the
[!fix](#fixing-previously-generated-images) command.
[Outpainting and outcropping](OUTPAINTING.md) can only be applied after the
fact.
## Face Fixing
The default face restoration module is GFPGAN. The default upscale is
@@ -17,7 +23,8 @@ Real-ESRGAN. For an alternative face restoration module, see
As of version 1.14, environment.yaml will install the Real-ESRGAN package into
the standard install location for python packages, and will put GFPGAN into a
subdirectory of "src" in the InvokeAI directory. Upscaling with Real-ESRGAN
should "just work" without further intervention. Simply indicate the desired scale on
should "just work" without further intervention. Simply pass the `--upscale`
(`-U`) option on the `invoke>` command line, or indicate the desired scale on
the popup in the Web GUI.
**GFPGAN** requires a series of downloadable model files to work. These are
@@ -34,75 +41,48 @@ reconstruction.
### Upscaling
Open the upscaling dialog by clicking on the "expand" icon located
above the image display area in the Web UI:
`-U : <upscaling_factor> <upscaling_strength>`
<figure markdown>
![upscale1](../assets/features/upscale-dialog.png)
</figure>
The upscaling prompt argument takes two values. The first value is a scaling
factor and should be set to either `2` or `4` only. This will either scale the
image 2x or 4x respectively using different models.
There are three different upscaling parameters that you can
adjust. The first is the scale itself, either 2x or 4x.
You can set the scaling stength between `0` and `1.0` to control intensity of
the of the scaling. This is handy because AI upscalers generally tend to smooth
out texture details. If you wish to retain some of those for natural looking
results, we recommend using values between `0.5 to 0.8`.
The second is the "Denoising Strength." Higher values will smooth out
the image and remove digital chatter, but may lose fine detail at
higher values.
Third, "Upscale Strength" allows you to adjust how the You can set the
scaling stength between `0` and `1.0` to control the intensity of the
scaling. AI upscalers generally tend to smooth out texture details. If
you wish to retain some of those for natural looking results, we
recommend using values between `0.5 to 0.8`.
[This figure](../assets/features/upscaling-montage.png) illustrates
the effects of denoising and strength. The original image was 512x512,
4x scaled to 2048x2048. The "original" version on the upper left was
scaled using simple pixel averaging. The remainder use the ESRGAN
upscaling algorithm at different levels of denoising and strength.
<figure markdown>
![upscaling](../assets/features/upscaling-montage.png){ width=720 }
</figure>
Both denoising and strength default to 0.75.
If you do not explicitly specify an upscaling_strength, it will default to 0.75.
### Face Restoration
InvokeAI offers alternative two face restoration algorithms,
[GFPGAN](https://github.com/TencentARC/GFPGAN) and
[CodeFormer](https://huggingface.co/spaces/sczhou/CodeFormer). These
algorithms improve the appearance of faces, particularly eyes and
mouths. Issues with faces are less common with the latest set of
Stable Diffusion models than with the original 1.4 release, but the
restoration algorithms can still make a noticeable improvement in
certain cases. You can also apply restoration to old photographs you
upload.
`-G : <facetool_strength>`
To access face restoration, click the "smiley face" icon in the
toolbar above the InvokeAI image panel. You will be presented with a
dialog that offers a choice between the two algorithm and sliders that
allow you to adjust their parameters. Alternatively, you may open the
left-hand accordion panel labeled "Face Restoration" and have the
restoration algorithm of your choice applied to generated images
automatically.
This prompt argument controls the strength of the face restoration that is being
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
You can use either one or both without any conflicts. In cases where you use
both, the image will be first upscaled and then the face restoration process
will be executed to ensure you get the highest quality facial features.
Like upscaling, there are a number of parameters that adjust the face
restoration output. GFPGAN has a single parameter, `strength`, which
controls how much the algorithm is allowed to adjust the
image. CodeFormer has two parameters, `strength`, and `fidelity`,
which together control the quality of the output image as described in
the [CodeFormer project
page](https://shangchenzhou.com/projects/CodeFormer/). Default values
are 0.75 for both parameters, which achieves a reasonable balance
between changing the image too much and not enough.
`--save_orig`
[This figure](../assets/features/restoration-montage.png) illustrates
the effects of adjusting GFPGAN and CodeFormer parameters.
When you use either `-U` or `-G`, the final result you get is upscaled or face
modified. If you want to save the original Stable Diffusion generation, you can
use the `-save_orig` prompt argument to save the original unaffected version
too.
<figure markdown>
![upscaling](../assets/features/restoration-montage.png){ width=720 }
</figure>
### Example Usage
```bash
invoke> "superman dancing with a panda bear" -U 2 0.6 -G 0.4
```
This also works with img2img:
```bash
invoke> "a man wearing a pineapple hat" -I path/to/your/file.png -U 2 0.5 -G 0.6
```
!!! note
@@ -115,8 +95,69 @@ the effects of adjusting GFPGAN and CodeFormer parameters.
process is complete. While the image generation is taking place, you will still be able to preview
the base images.
If you wish to stop during the image generation but want to upscale or face
restore a particular generated image, pass it again with the same prompt and
generated seed along with the `-U` and `-G` prompt arguments to perform those
actions.
## CodeFormer Support
This repo also allows you to perform face restoration using
[CodeFormer](https://github.com/sczhou/CodeFormer).
In order to setup CodeFormer to work, you need to download the models like with
GFPGAN. You can do this either by running `invokeai-configure` or by manually
downloading the
[model file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
and saving it to `ldm/invoke/restoration/codeformer/weights` folder.
You can use `-ft` prompt argument to swap between CodeFormer and the default
GFPGAN. The above mentioned `-G` prompt argument will allow you to control the
strength of the restoration effect.
### CodeFormer Usage
The following command will perform face restoration with CodeFormer instead of
the default gfpgan.
`<prompt> -G 0.8 -ft codeformer`
### Other Options
- `-cf` - cf or CodeFormer Fidelity takes values between `0` and `1`. 0 produces
high quality results but low accuracy and 1 produces lower quality results but
higher accuacy to your original face.
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is closely matching to the input face.
`<prompt> -G 1.0 -ft codeformer -cf 0.9`
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is the best restoration possible. This may deviate
slightly from the original face. This is an excellent option to use in
situations when there is very little facial data to work with.
`<prompt> -G 1.0 -ft codeformer -cf 0.1`
## Fixing Previously-Generated Images
It is easy to apply face restoration and/or upscaling to any
previously-generated file. Just use the syntax
`!fix path/to/file.png <options>`. For example, to apply GFPGAN at strength 0.8
and upscale 2X for a file named `./outputs/img-samples/000044.2945021133.png`,
just run:
```bash
invoke> !fix ./outputs/img-samples/000044.2945021133.png -G 0.8 -U 2
```
A new file named `000044.2945021133.fixed.png` will be created in the output
directory. Note that the `!fix` command does not replace the original file,
unlike the behavior at generate time.
## How to disable
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
you can disable them on the invoke.py command line with the `--no_restore` and
`--no_esrgan` options, respectively.
`--no_upscale` options, respectively.

View File

@@ -4,12 +4,77 @@ title: Prompting-Features
# :octicons-command-palette-24: Prompting-Features
## **Reading Prompts from a File**
You can automate `invoke.py` by providing a text file with the prompts you want
to run, one line per prompt. The text file must be composed with a text editor
(e.g. Notepad) and not a word processor. Each line should look like what you
would type at the invoke> prompt:
```bash
"a beautiful sunny day in the park, children playing" -n4 -C10
"stormy weather on a mountain top, goats grazing" -s100
"innovative packaging for a squid's dinner" -S137038382
```
Then pass this file's name to `invoke.py` when you invoke it:
```bash
python scripts/invoke.py --from_file "/path/to/prompts.txt"
```
You may also read a series of prompts from standard input by providing
a filename of `-`. For example, here is a python script that creates a
matrix of prompts, each one varying slightly:
```bash
#!/usr/bin/env python
adjectives = ['sunny','rainy','overcast']
samplers = ['k_lms','k_euler_a','k_heun']
cfg = [7.5, 9, 11]
for adj in adjectives:
for samp in samplers:
for cg in cfg:
print(f'a {adj} day -A{samp} -C{cg}')
```
Its output looks like this (abbreviated):
```bash
a sunny day -Aklms -C7.5
a sunny day -Aklms -C9
a sunny day -Aklms -C11
a sunny day -Ak_euler_a -C7.5
a sunny day -Ak_euler_a -C9
...
a overcast day -Ak_heun -C9
a overcast day -Ak_heun -C11
```
To feed it to invoke.py, pass the filename of "-"
```bash
python matrix.py | python scripts/invoke.py --from_file -
```
When the script is finished, each of the 27 combinations
of adjective, sampler and CFG will be executed.
The command-line interface provides `!fetch` and `!replay` commands
which allow you to read the prompts from a single previously-generated
image or a whole directory of them, write the prompts to a file, and
then replay them. Or you can create your own file of prompts and feed
them to the command-line client from within an interactive session.
See [Command-Line Interface](CLI.md) for details.
---
## **Negative and Unconditioned Prompts**
Any words between a pair of square brackets will instruct Stable
Diffusion to attempt to ban the concept from the generated image. The
same effect is achieved by placing words in the "Negative Prompts"
textbox in the Web UI.
Any words between a pair of square brackets will instruct Stable Diffusion to
attempt to ban the concept from the generated image.
```text
this is a test prompt [not really] to make you understand [cool] how this works.
@@ -22,9 +87,7 @@ Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<figure markdown>
@@ -36,8 +99,7 @@ That image has a woman, so if we want the horse without a rider, we can
influence the image not to have a woman by putting [woman] in the prompt, like
this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
(same parameters as above)
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<figure markdown>
@@ -48,8 +110,7 @@ this:
That's nice - but say we also don't want the image to be quite so blue. We can
add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
(same parameters as above)
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<figure markdown>
@@ -60,8 +121,7 @@ add "blue" to the list of negative prompts, so it's now [woman blue]:
Getting close - but there's no sense in having a saddle when our horse doesn't
have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
(same parameters as above)
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<figure markdown>
@@ -201,6 +261,19 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
Note that `prompt2prompt` is not currently working with the runwayML inpainting
model, and may never work due to the way this model is set up. If you attempt to
use `prompt2prompt` you will get the original image back. However, since this
model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdog
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat
```
### Escaping parantheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its
@@ -301,48 +374,6 @@ summoning up the concept of some sort of scifi creature? Let's find out.
Indeed, removing the word "hybrid" produces an image that is more like what we'd
expect.
## Dynamic Prompts
Dynamic Prompts are a powerful feature designed to produce a variety of prompts based on user-defined options. Using a special syntax, you can construct a prompt with multiple possibilities, and the system will automatically generate a series of permutations based on your settings. This is extremely beneficial for ideation, exploring various scenarios, or testing different concepts swiftly and efficiently.
### Structure of a Dynamic Prompt
A Dynamic Prompt comprises of regular text, supplemented with alternatives enclosed within curly braces {} and separated by a vertical bar |. For example: {option1|option2|option3}. The system will then select one of the options to include in the final prompt. This flexible system allows for options to be placed throughout the text as needed.
Furthermore, Dynamic Prompts can designate multiple selections from a single group of options. This feature is triggered by prefixing the options with a numerical value followed by $$. For example, in {2$$option1|option2|option3}, the system will select two distinct options from the set.
### Creating Dynamic Prompts
To create a Dynamic Prompt, follow these steps:
Draft your sentence or phrase, identifying words or phrases with multiple possible options.
Encapsulate the different options within curly braces {}.
Within the braces, separate each option using a vertical bar |.
If you want to include multiple options from a single group, prefix with the desired number and $$.
For instance: A {house|apartment|lodge|cottage} in {summer|winter|autumn|spring} designed in {2$$style1|style2|style3}.
### How Dynamic Prompts Work
Once a Dynamic Prompt is configured, the system generates an array of combinations using the options provided. Each group of options in curly braces is treated independently, with the system selecting one option from each group. For a prefixed set (e.g., 2$$), the system will select two distinct options.
For example, the following prompts could be generated from the above Dynamic Prompt:
A house in summer designed in style1, style2
A lodge in autumn designed in style3, style1
A cottage in winter designed in style2, style3
And many more!
When the `Combinatorial` setting is on, Invoke will disable the "Images" selection, and generate every combination up until the setting for Max Prompts is reached.
When the `Combinatorial` setting is off, Invoke will randomly generate combinations up until the setting for Images has been reached.
### Tips and Tricks for Using Dynamic Prompts
Below are some useful strategies for creating Dynamic Prompts:
Utilize Dynamic Prompts to generate a wide spectrum of prompts, perfect for brainstorming and exploring diverse ideas.
Ensure that the options within a group are contextually relevant to the part of the sentence where they are used. For instance, group building types together, and seasons together.
Apply the 2$$ prefix when you want to incorporate more than one option from a single group. This becomes quite handy when mixing and matching different elements.
Experiment with different quantities for the prefix. For example, 3$$ will select three distinct options.
Be aware of coherence in your prompts. Although the system can generate all possible combinations, not all may semantically make sense. Therefore, carefully choose the options for each group.
Always review and fine-tune the generated prompts as needed. While Dynamic Prompts can help you generate a multitude of combinations, the final polishing and refining remain in your hands.
In conclusion, prompt blending is great for exploring creative space, but can be
difficult to direct. A forthcoming release of InvokeAI will feature more
deterministic prompt weighting.

View File

@@ -1,10 +1,9 @@
---
title: Training
title: Textual-Inversion
---
# :material-file-document: Training
# :material-file-document: Textual Inversion
# Textual Inversion Training
## **Personalizing Text-to-Image Generation**
You may personalize the generated images to provide your own styles or objects
@@ -47,19 +46,11 @@ start the front end by selecting choice (3):
```sh
Do you want to generate images using the
1: Browser-based UI
2: Command-line interface
3: Run textual inversion training
4: Merge models (diffusers type only)
5: Download and install models
6: Change InvokeAI startup options
7: Re-run the configure script to fix a broken install
8: Open the developer console
9: Update InvokeAI
10: Command-line help
Q: Quit
Please enter 1-10, Q: [1]
1. command-line
2. browser-based UI
3. textual inversion training
4. open the developer console
Please enter 1, 2, 3, or 4: [1] 3
```
From the command line, with the InvokeAI virtual environment active,
@@ -259,6 +250,16 @@ invokeai-ti \
--only_save_embeds
```
## Using Embeddings
After training completes, the resultant embeddings will be saved into your `$INVOKEAI_ROOT/embeddings/<trigger word>/learned_embeds.bin`.
These will be automatically loaded when you start InvokeAI.
Add the trigger word, surrounded by angle brackets, to use that embedding. For example, if your trigger word was `terence`, use `<terence>` in prompts. This is the same syntax used by the HuggingFace concepts library.
**Note:** `.pt` embeddings do not require the angle brackets.
## Troubleshooting
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`

View File

@@ -6,7 +6,9 @@ title: Variations
## Intro
InvokeAI's support for variations enables you to do the following:
Release 1.13 of SD-Dream adds support for image variations.
You are able to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
@@ -28,7 +30,19 @@ The prompt we will use throughout is:
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations.
requesting six iterations:
```bash
invoke> lucy lawless as xena, warrior princess, character portrait, high resolution -n6
...
Outputs:
./outputs/Xena/000001.1579445059.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1579445059
./outputs/Xena/000001.1880768722.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1880768722
./outputs/Xena/000001.332057179.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S332057179
./outputs/Xena/000001.2224800325.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S2224800325
./outputs/Xena/000001.465250761.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S465250761
./outputs/Xena/000001.3357757885.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S3357757885
```
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
@@ -39,16 +53,22 @@ requesting six iterations.
## Step 2 - Generating Variations
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
Let's try to generate some variations. Using the same seed, we pass the argument
`-v0.1` (or --variant_amount), which generates a series of variations each
differing by a variation amount of 0.2. This number ranges from `0` to `1.0`,
with higher numbers being larger amounts of variation.
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
```bash
invoke> "prompt" -n6 -S3357757885 -v0.2
...
Outputs:
./outputs/Xena/000002.784039624.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 784039624:0.2 -S3357757885
./outputs/Xena/000002.3647897225.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.2 -S3357757885
./outputs/Xena/000002.917731034.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 917731034:0.2 -S3357757885
./outputs/Xena/000002.4116285959.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 4116285959:0.2 -S3357757885
./outputs/Xena/000002.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1614299449:0.2 -S3357757885
./outputs/Xena/000002.1335553075.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1335553075:0.2 -S3357757885
```
### **Variation Sub Seeding**

View File

@@ -299,6 +299,14 @@ initial image" icons are located.
See the [Unified Canvas Guide](UNIFIED_CANVAS.md)
## Parting remarks
This concludes the walkthrough, but there are several more features that you can
explore. Please check out the [Command Line Interface](CLI.md) documentation for
further explanation of the advanced features that were not covered here.
The WebUI is only rapid development. Check back regularly for updates!
## Reference
### Additional Options
@@ -341,9 +349,11 @@ the settings configured in the toolbar.
See below for additional documentation related to each feature:
- [Core Prompt Settings](./CLI.md)
- [Variations](./VARIATIONS.md)
- [Upscaling](./POSTPROCESS.md#upscaling)
- [Image to Image](./IMG2IMG.md)
- [Inpainting](./INPAINTING.md)
- [Other](./OTHER.md)
#### Invocation Gallery

View File

@@ -13,16 +13,28 @@ Build complex scenes by combine and modifying multiple images in a stepwise
fashion. This feature combines img2img, inpainting and outpainting in
a single convenient digital artist-optimized user interface.
### * The [Command Line Interface (CLI)](CLI.md)
Scriptable access to InvokeAI's features.
## Image Generation
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
## * [Post-Processing](POSTPROCESS.md)
Restore mangled faces and make images larger with upscaling. Also see the [Embiggen Upscaling Guide](EMBIGGEN.md).
## * The [Concepts Library](CONCEPTS.md)
Add custom subjects and styles using HuggingFace's repository of embeddings.
### * [Image-to-Image Guide](IMG2IMG.md)
### * [Image-to-Image Guide for the CLI](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
### * [Inpainting Guide for the CLI](INPAINTING.md)
Selectively erase and replace portions of an existing image in the CLI.
### * [Outpainting Guide for the CLI](OUTPAINTING.md)
Extend the borders of the image with an "outcrop" function within the CLI.
### * [Generating Variations](VARIATIONS.md)
Have an image you like and want to generate many more like it? Variations
are the ticket.

View File

@@ -13,7 +13,6 @@ title: Home
<div align="center" markdown>
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@@ -68,7 +67,7 @@ title: Home
implementation of Stable Diffusion, the open source text-to-image and
image-to-image generator. It provides a streamlined process with various new
features and options to aid the image generation process. It runs on Windows,
Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a
@@ -132,13 +131,17 @@ This method is recommended for those familiar with running Docker containers
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
- [WebUI Unified Canvas for Img2Img, inpainting and outpainting](features/UNIFIED_CANVAS.md)
<!-- separator -->
### The InvokeAI Command Line Interface
- [Command Line Interace Reference Guide](features/CLI.md)
<!-- separator -->
### Image Management
- [Image2Image](features/IMG2IMG.md)
- [Inpainting](features/INPAINTING.md)
- [Outpainting](features/OUTPAINTING.md)
- [Adding custom styles and subjects](features/CONCEPTS.md)
- [Upscaling and Face Reconstruction](features/POSTPROCESS.md)
- [Embiggen upscaling](features/EMBIGGEN.md)
- [Other Features](features/OTHER.md)
<!-- separator -->
@@ -153,60 +156,83 @@ This method is recommended for those familiar with running Docker containers
- [Prompt Syntax](features/PROMPTS.md)
- [Generating Variations](features/VARIATIONS.md)
## :octicons-log-16: Important Changes Since Version 2.3
## :octicons-log-16: Latest Changes
### Nodes
### v2.3.0 <small>(9 February 2023)</small>
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
#### Migration to Stable Diffusion `diffusers` models
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
Previous versions of InvokeAI supported the original model file format introduced with Stable Diffusion 1.4. In the original format, known variously as "checkpoint", or "legacy" format, there is a single large weights file ending with `.ckpt` or `.safetensors`. Though this format has served the community well, it has a number of disadvantages, including file size, slow loading times, and a variety of non-standard variants that require special-case code to handle. In addition, because checkpoint files are actually a bundle of multiple machine learning sub-models, it is hard to swap different sub-models in and out, or to share common sub-models. A new format, introduced by the StabilityAI company in collaboration with HuggingFace, is called `diffusers` and consists of a directory of individual models. The most immediate benefit of `diffusers` is that they load from disk very quickly. A longer term benefit is that in the near future `diffusers` models will be able to share common sub-models, dramatically reducing disk space when you have multiple fine-tune models derived from the same base.
### Command-Line Interface Retired
When you perform a new install of version 2.3.0, you will be offered the option to install the `diffusers` versions of a number of popular SD models, including Stable Diffusion versions 1.5 and 2.1 (including the 768x768 pixel version of 2.1). These will act and work just like the checkpoint versions. Do not be concerned if you already have a lot of ".ckpt" or ".safetensors" models on disk! InvokeAI 2.3.0 can still load these and generate images from them without any extra intervention on your part.
The original "invokeai" command-line interface has been retired. The
`invokeai` command will now launch a new command-line client that can
be used by developers to create and test nodes. It is not intended to
be used for routine image generation or manipulation.
To take advantage of the optimized loading times of `diffusers` models, InvokeAI offers options to convert legacy checkpoint models into optimized `diffusers` models. If you use the `invokeai` command line interface, the relevant commands are:
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
* `!convert_model` -- Take the path to a local checkpoint file or a URL that is pointing to one, convert it into a `diffusers` model, and import it into InvokeAI's models registry file.
* `!optimize_model` -- If you already have a checkpoint model in your InvokeAI models file, this command will accept its short name and convert it into a like-named `diffusers` model, optionally deleting the original checkpoint file.
* `!import_model` -- Take the local path of either a checkpoint file or a `diffusers` model directory and import it into InvokeAI's registry file. You may also provide the ID of any diffusers model that has been published on the [HuggingFace models repository](https://huggingface.co/models?pipeline_tag=text-to-image&sort=downloads) and it will be downloaded and installed automatically.
### ControlNet
The WebGUI offers similar functionality for model management.
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
For advanced users, new command-line options provide additional functionality. Launching `invokeai` with the argument `--autoconvert <path to directory>` takes the path to a directory of checkpoint files, automatically converts them into `diffusers` models and imports them. Each time the script is launched, the directory will be scanned for new checkpoint files to be loaded. Alternatively, the `--ckpt_convert` argument will cause any checkpoint or safetensors model that is already registered with InvokeAI to be converted into a `diffusers` model on the fly, allowing you to take advantage of future diffusers-only features without explicitly converting the model and saving it to disk.
### New Schedulers
Please see [INSTALLING MODELS](https://invoke-ai.github.io/InvokeAI/installation/050_INSTALLING_MODELS/) for more information on model management in both the command-line and Web interfaces.
The list of schedulers has been completely revamped and brought up to date:
#### Support for the `XFormers` Memory-Efficient Crossattention Package
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
On CUDA (Nvidia) systems, version 2.3.0 supports the `XFormers` library. Once installed, the`xformers` package dramatically reduces the memory footprint of loaded Stable Diffusion models files and modestly increases image generation speed. `xformers` will be installed and activated automatically if you specify a CUDA system at install time.
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
The caveat with using `xformers` is that it introduces slightly non-deterministic behavior, and images generated using the same seed and other settings will be subtly different between invocations. Generally the changes are unnoticeable unless you rapidly shift back and forth between images, but to disable `xformers` and restore fully deterministic behavior, you may launch InvokeAI using the `--no-xformers` option. This is most conveniently done by opening the file `invokeai/invokeai.init` with a text editor, and adding the line `--no-xformers` at the bottom.
#### A Negative Prompt Box in the WebUI
There is now a separate text input box for negative prompts in the WebUI. This is convenient for stashing frequently-used negative prompts ("mangled limbs, bad anatomy"). The `[negative prompt]` syntax continues to work in the main prompt box as well.
To see exactly how your prompts are being parsed, launch `invokeai` with the `--log_tokenization` option. The console window will then display the tokenization process for both positive and negative prompts.
#### Model Merging
Version 2.3.0 offers an intuitive user interface for merging up to three Stable Diffusion models using an intuitive user interface. Model merging allows you to mix the behavior of models to achieve very interesting effects. To use this, each of the models must already be imported into InvokeAI and saved in `diffusers` format, then launch the merger using a new menu item in the InvokeAI launcher script (`invoke.sh`, `invoke.bat`) or directly from the command line with `invokeai-merge --gui`. You will be prompted to select the models to merge, the proportions in which to mix them, and the mixing algorithm. The script will create a new merged `diffusers` model and import it into InvokeAI for your use.
See [MODEL MERGING](https://invoke-ai.github.io/InvokeAI/features/MODEL_MERGING/) for more details.
#### Textual Inversion Training
Textual Inversion (TI) is a technique for training a Stable Diffusion model to emit a particular subject or style when triggered by a keyword phrase. You can perform TI training by placing a small number of images of the subject or style in a directory, and choosing a distinctive trigger phrase, such as "pointillist-style". After successful training, The subject or style will be activated by including `<pointillist-style>` in your prompt.
Previous versions of InvokeAI were able to perform TI, but it required using a command-line script with dozens of obscure command-line arguments. Version 2.3.0 features an intuitive TI frontend that will build a TI model on top of any `diffusers` model. To access training you can launch from a new item in the launcher script or from the command line using `invokeai-ti --gui`.
See [TEXTUAL INVERSION](https://invoke-ai.github.io/InvokeAI/features/TEXTUAL_INVERSION/) for further details.
#### A New Installer Experience
The InvokeAI installer has been upgraded in order to provide a smoother and hopefully more glitch-free experience. In addition, InvokeAI is now packaged as a PyPi project, allowing developers and power-users to install InvokeAI with the command `pip install InvokeAI --use-pep517`. Please see [Installation](#installation) for details.
Developers should be aware that the `pip` installation procedure has been simplified and that the `conda` method is no longer supported at all. Accordingly, the `environments_and_requirements` directory has been deleted from the repository.
#### Command-line name changes
All of InvokeAI's functionality, including the WebUI, command-line interface, textual inversion training and model merging, can all be accessed from the `invoke.sh` and `invoke.bat` launcher scripts. The menu of options has been expanded to add the new functionality. For the convenience of developers and power users, we have normalized the names of the InvokeAI command-line scripts:
* `invokeai` -- Command-line client
* `invokeai --web` -- Web GUI
* `invokeai-merge --gui` -- Model merging script with graphical front end
* `invokeai-ti --gui` -- Textual inversion script with graphical front end
* `invokeai-configure` -- Configuration tool for initializing the `invokeai` directory and selecting popular starter models.
For backward compatibility, the old command names are also recognized, including `invoke.py` and `configure-invokeai.py`. However, these are deprecated and will eventually be removed.
Developers should be aware that the locations of the script's source code has been moved. The new locations are:
* `invokeai` => `ldm/invoke/CLI.py`
* `invokeai-configure` => `ldm/invoke/config/configure_invokeai.py`
* `invokeai-ti`=> `ldm/invoke/training/textual_inversion.py`
* `invokeai-merge` => `ldm/invoke/merge_diffusers`
Developers are strongly encouraged to perform an "editable" install of InvokeAI using `pip install -e . --use-pep517` in the Git repository, and then to call the scripts using their 2.3.0 names, rather than executing the scripts directly. Developers should also be aware that the several important data files have been relocated into a new directory named `invokeai`. This includes the WebGUI's `frontend` and `backend` directories, and the `INITIAL_MODELS.yaml` files used by the installer to select starter models. Eventually all InvokeAI modules will be in subdirectories of `invokeai`.
Please see [2.3.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v2.3.0) for further details.
For older changelogs, please visit the
**[CHANGELOG](CHANGELOG/#v223-2-december-2022)**.
## :material-target: Troubleshooting
@@ -242,3 +268,8 @@ free to send me an email if you use and like the script.
Original portions of the software are Copyright (c) 2022-23
by [The InvokeAI Team](https://github.com/invoke-ai).
## :octicons-book-24: Further Reading
Please see the original README for more information on this software and
underlying algorithm, located in the file
[README-CompViz.md](other/README-CompViz.md).

View File

@@ -87,18 +87,18 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv` and `blas`:
2. Install `opencv`:
```sh
sudo pacman -S opencv blas
sudo pacman -S opencv
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda blas
sudo pacman -S opencv-cuda
```
3. Fix the naming of the `opencv` package configuration file:
```sh

View File

@@ -38,7 +38,6 @@ echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist
echo.
echo See %INSTRUCTIONS% for more details.
echo.
echo "For the best user experience we suggest enlarging or maximizing this window now."
pause
@rem ---------------------------- check Python version ---------------

View File

@@ -25,8 +25,7 @@ done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
echo "For the best user experience we suggest enlarging or maximizing this window now."
echo "Please install Python 3.9 or higher before running this script. See instructions at $INSTRUCTIONS for help."
read -p "Press any key to exit"
exit -1
fi

View File

@@ -149,7 +149,7 @@ class Installer:
return venv_dir
def install(self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
def install(self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
"""
Install the InvokeAI application into the given runtime path
@@ -248,7 +248,6 @@ class InvokeAiInstance:
"install",
"--require-virtualenv",
"torch~=2.0.0",
"torchmetrics==0.11.4",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,

View File

@@ -293,8 +293,6 @@ def introduction() -> None:
"3. Create initial configuration files.",
"",
"[i]At any point you may interrupt this program and resume later.",
"",
"[b]For the best user experience, please enlarge or maximize this window",
),
)
)

View File

@@ -14,13 +14,13 @@ echo 3. Run textual inversion training
echo 4. Merge models (diffusers type only)
echo 5. Download and install models
echo 6. Change InvokeAI startup options
echo 7. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 7. Re-run the configure script to fix a broken install
echo 8. Open the developer console
echo 9. Update InvokeAI
echo 10. Command-line help
echo Q - Quit
set /P choice="Please enter 1-10, Q: [2] "
if not defined choice set choice=1
if not defined choice set choice=2
IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %*
@@ -56,7 +56,7 @@ IF /I "%choice%" == "1" (
call cmd /k
) ELSE IF /I "%choice%" == "9" (
echo Running invokeai-update...
python -m invokeai.frontend.install.invokeai_update
python .venv\Scripts\invokeai-update.exe %*
) ELSE IF /I "%choice%" == "10" (
echo Displaying command line help...
python .venv\Scripts\invokeai.exe --help %*

View File

@@ -81,7 +81,7 @@ do_choice() {
;;
7)
clear
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
printf "Re-run the configure script to fix a broken install\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
@@ -93,7 +93,7 @@ do_choice() {
9)
clear
printf "Update InvokeAI\n"
python -m invokeai.frontend.install.invokeai_update
invokeai-update
;;
10)
clear
@@ -118,12 +118,12 @@ do_choice() {
do_dialog() {
options=(
1 "Generate images with a browser-based interface"
2 "Explore InvokeAI nodes using a command-line interface"
2 "Generate images using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
7 "Re-run the configure script to fix a broken install"
8 "Open the developer console"
9 "Update InvokeAI")

View File

@@ -2,25 +2,16 @@
from logging import Logger
import os
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.images import ImageService
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_file_storage import DiskImageFileStorage
@@ -29,7 +20,6 @@ from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService
from .events import FastAPIEventService
@@ -59,8 +49,7 @@ class ApiDependencies:
@staticmethod
def initialize(config, event_handler_id: int, logger: Logger = logger):
logger.debug(f'InvokeAI version {__version__}')
logger.debug(f"Internet connectivity is {config.internet_available}")
logger.info(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
@@ -68,7 +57,7 @@ class ApiDependencies:
# TODO: build a file/path manager?
db_location = config.db_path
db_location.parent.mkdir(parents=True, exist_ok=True)
db_location.parent.mkdir(parents=True,exist_ok=True)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
@@ -83,49 +72,21 @@ class ApiDependencies:
DiskLatentsStorage(f"{output_folder}/latents")
)
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
services = InvocationServices(
model_manager=ModelManagerService(config,logger),
model_manager=get_model_manager(config, logger),
events=events,
latents=latents,
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"

View File

@@ -1,18 +0,0 @@
from fastapi.routing import APIRouter
from pydantic import BaseModel
from invokeai.version import __version__
app_router = APIRouter(prefix="/v1/app", tags=['app'])
class AppVersion(BaseModel):
"""App Version Response"""
version: str
@app_router.get('/version', operation_id="app_version",
status_code=200,
response_model=AppVersion)
async def get_version() -> AppVersion:
return AppVersion(version=__version__)

View File

@@ -1,118 +0,0 @@
from fastapi import Body, HTTPException, Path
from fastapi.routing import APIRouter
from invokeai.app.models.image import (AddManyImagesToBoardResult,
GetAllBoardImagesForBoardResult,
RemoveManyImagesFromBoardResult)
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
@board_images_router.post(
"/{board_id}",
operation_id="create_board_image",
responses={
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
)
async def create_board_image(
board_id: str = Path(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
responses={
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
)
async def remove_board_image(
image_name: str = Body(
description="The name of the image to remove from its board"
),
):
"""Deletes a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(
image_name=image_name
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@board_images_router.get(
"/{board_id}",
operation_id="get_all_board_images_for_board",
response_model=GetAllBoardImagesForBoardResult,
)
async def get_all_board_images_for_board(
board_id: str = Path(description="The id of the board"),
) -> GetAllBoardImagesForBoardResult:
"""Gets all image names for a board"""
result = (
ApiDependencies.invoker.services.board_images.get_all_board_images_for_board(
board_id,
)
)
return result
@board_images_router.patch(
"/{board_id}/images",
operation_id="create_multiple_board_images",
responses={
201: {"description": "The images were added to the board successfully"},
},
status_code=201,
)
async def create_multiple_board_images(
board_id: str = Path(description="The id of the board"),
image_names: list[str] = Body(
description="The names of the images to add to the board"
),
) -> AddManyImagesToBoardResult:
"""Add many images to a board"""
results = ApiDependencies.invoker.services.board_images.add_many_images_to_board(
board_id, image_names
)
return results
@board_images_router.post(
"/images",
operation_id="delete_multiple_board_images",
responses={
201: {"description": "The images were removed from their boards successfully"},
},
status_code=201,
)
async def delete_multiple_board_images(
image_names: list[str] = Body(
description="The names of the images to remove from their boards, if they have one"
),
) -> RemoveManyImagesFromBoardResult:
"""Remove many images from their boards, if they have one"""
results = (
ApiDependencies.invoker.services.board_images.remove_many_images_from_board(
image_names
)
)
return results

View File

@@ -1,120 +0,0 @@
from typing import Optional, Union
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.models.image import DeleteManyImagesResult
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@boards_router.post(
"/",
operation_id="create_board",
responses={
201: {"description": "The board was created successfully"},
},
status_code=201,
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
) -> BoardDTO:
"""Creates a board"""
try:
result = ApiDependencies.invoker.services.boards.create(board_name=board_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to create board")
@boards_router.get("/{board_id}", operation_id="get_board", response_model=BoardDTO)
async def get_board(
board_id: str = Path(description="The id of board to get"),
) -> BoardDTO:
"""Gets a board"""
try:
result = ApiDependencies.invoker.services.boards.get_dto(board_id=board_id)
return result
except Exception as e:
raise HTTPException(status_code=404, detail="Board not found")
@boards_router.patch(
"/{board_id}",
operation_id="update_board",
responses={
201: {
"description": "The board was updated successfully",
},
},
status_code=201,
response_model=BoardDTO,
)
async def update_board(
board_id: str = Path(description="The id of board to update"),
changes: BoardChanges = Body(description="The changes to apply to the board"),
) -> BoardDTO:
"""Updates a board"""
try:
result = ApiDependencies.invoker.services.boards.update(
board_id=board_id, changes=changes
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete("/{board_id}", operation_id="delete_board", response_model=DeleteManyImagesResult)
async def delete_board(
board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query(
description="Permanently delete all images on the board", default=False
),
) -> DeleteManyImagesResult:
"""Deletes a board"""
try:
if include_images is True:
result = ApiDependencies.invoker.services.images.delete_images_on_board(
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
else:
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
result = DeleteManyImagesResult(deleted_images=[])
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to delete images on board")
@boards_router.get(
"/",
operation_id="list_boards",
response_model=Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]],
)
async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(
default=None, description="The number of boards per page"
),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:
return ApiDependencies.invoker.services.boards.get_all()
elif offset is not None and limit is not None:
return ApiDependencies.invoker.services.boards.get_many(
offset,
limit,
)
else:
raise HTTPException(
status_code=400,
detail="Invalid request: Must provide either 'all' or both 'offset' and 'limit'",
)

View File

@@ -1,19 +1,20 @@
import io
from typing import Optional
from fastapi import (Body, HTTPException, Path, Query, Request, Response,
UploadFile)
from fastapi.responses import FileResponse
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.routing import APIRouter
from fastapi.responses import FileResponse
from PIL import Image
from invokeai.app.models.image import (DeleteManyImagesResult, ImageCategory,
ResourceOrigin)
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (GetImagesByNamesResult,
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO)
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from invokeai.app.services.item_storage import PaginatedResults
from ..dependencies import ApiDependencies
@@ -21,7 +22,7 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.post(
"/upload",
"/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
@@ -102,14 +103,14 @@ async def update_image(
@images_router.get(
"/{image_name}",
operation_id="get_image",
"/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageDTO,
)
async def get_image_dto(
async def get_image_metadata(
image_name: str = Path(description="The name of image to get"),
) -> ImageDTO:
"""Gets an image's DTO"""
"""Gets an image's metadata"""
try:
return ApiDependencies.invoker.services.images.get_dto(image_name)
@@ -118,8 +119,8 @@ async def get_image_dto(
@images_router.get(
"/{image_name}/full_size",
operation_id="get_image_full_size",
"/{image_name}",
operation_id="get_image_full",
response_class=Response,
responses={
200: {
@@ -129,7 +130,7 @@ async def get_image_dto(
404: {"description": "Image not found"},
},
)
async def get_image_full_size(
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> FileResponse:
"""Gets a full-resolution image file"""
@@ -207,10 +208,10 @@ async def get_image_urls(
@images_router.get(
"/",
operation_id="get_many_images",
operation_id="list_images_with_metadata",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def get_many_images(
async def list_images_with_metadata(
image_origin: Optional[ResourceOrigin] = Query(
default=None, description="The origin of images to list"
),
@@ -220,10 +221,6 @@ async def get_many_images(
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images"
),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by, provide 'none' for images without a board",
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),
) -> OffsetPaginatedResults[ImageDTO]:
@@ -235,40 +232,6 @@ async def get_many_images(
image_origin,
categories,
is_intermediate,
board_id,
)
return image_dtos
@images_router.post(
"/",
operation_id="get_images_by_names",
response_model=GetImagesByNamesResult,
)
async def get_images_by_names(
image_names: list[str] = Body(description="The names of the images to get"),
) -> GetImagesByNamesResult:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.get_images_by_names(
image_names
)
return result
@images_router.post(
"/delete",
operation_id="delete_many_images",
response_model=DeleteManyImagesResult,
)
async def delete_many_images(
image_names: list[str] = Body(description="The names of the images to delete"),
) -> DeleteManyImagesResult:
"""Deletes many images"""
try:
return ApiDependencies.invoker.services.images.delete_many(image_names)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to delete images")

View File

@@ -1,134 +1,100 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2024 Lincoln Stein
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from typing import Literal, List, Optional, Union
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, parse_obj_as
from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS,
SchedulerPredictionType,
)
from invokeai.backend.model_management import MergeInterpolationMethod
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models(
base_model: Optional[BaseModelType] = Query(default=None, description="Base model"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
async def list_models() -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"},
404: {"description" : "The model could not be found"},
400: {"description" : "Bad request"}
},
status_code = 200,
response_model = UpdateModelResponse,
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
""" Add Model """
try:
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = parse_obj_as(UpdateModelResponse, model_raw)
except KeyError as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return model_response
@models_router.post(
"/",
operation_id="import_model",
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
operation_id="update_model",
responses={200: {"status": "success"}},
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL """
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
logger = ApiDependencies.invoker.services.logger
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
return model_response
if not info:
logger.error("Import failed")
raise HTTPException(status_code=424)
logger.info(f'Successfully imported {location}, got {info}')
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name,
base_model=info.base_model,
model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
except KeyError as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
"/{model_name}",
operation_id="del_model",
responses={
204: {
@@ -139,95 +105,144 @@ async def import_model(
}
},
)
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
except KeyError:
logger.error(f"Model not found: {model_name}")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
model_exists = model_name in model_names
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: { "description": "Model converted successfully" },
400: {"description" : "Bad request" },
404: { "description": "Model not found" },
},
status_code = 200,
response_model = ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
base_model = base_model,
model_type = model_type
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
base_model = base_model,
model_type = model_type)
response = parse_obj_as(ConvertModelResponse, model_raw)
except KeyError:
# check if model exists
logger.info(f"Checking for model {model_name}...")
if model_exists:
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
logger.error(f"Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: { "description": "Model converted successfully" },
400: { "description": "Incompatible models" },
404: { "description": "One or more models not found" },
},
status_code = 200,
response_model = MergeModelResponse,
)
async def merge_models(
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names}")
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
base_model,
merged_model_name or "+".join(model_names),
alpha,
interp,
force)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
base_model = base_model,
model_type = ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except KeyError:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import sys
from inspect import signature
import uvicorn
@@ -21,31 +20,13 @@ from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before
# other invokeai initialization messages
if app_config.version:
print(f'InvokeAI version {__version__}')
sys.exit(0)
import invokeai.frontend.web as web_dir
import mimetypes
from .api.dependencies import ApiDependencies
from .api.routers import sessions, models, images, boards, board_images, app_info
from .api.routers import sessions, models, images
from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation
import torch
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type('application/javascript', '.js')
mimetypes.add_type('text/css', '.css')
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
@@ -97,12 +78,6 @@ app.include_router(models.models_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix='/api')
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
def custom_openapi():
@@ -141,22 +116,6 @@ def custom_openapi():
invoker_schema["output"] = outputs_ref
from invokeai.backend.model_management.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__
if name in openapi_schema["components"]["schemas"]:
# print(f"Config with name {name} already defined")
continue
# "BaseModelType":{"title":"BaseModelType","description":"An enumeration.","enum":["sd-1","sd-2"],"type":"string"}
openapi_schema["components"]["schemas"][name] = dict(
title=name,
description="An enumeration.",
type="string",
enum=list(v.value for v in model_config_format_enum),
)
app.openapi_schema = openapi_schema
return app.openapi_schema

View File

@@ -47,7 +47,7 @@ def add_parsers(
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Union[Callable[[argparse.ArgumentParser], None],None] = None
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
"""Adds parsers for each command to the subparsers"""
@@ -72,7 +72,7 @@ def add_parsers(
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)

View File

@@ -1,11 +1,15 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import argparse
import os
import re
import shlex
import sys
import time
from typing import Union, get_type_hints, Optional
from typing import (
Union,
get_type_hints,
)
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
@@ -16,52 +20,31 @@ from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before other invokeai initialization messages
if config.version:
print(f'InvokeAI version {__version__}')
sys.exit(0)
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.images import ImageService
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import (default_text_to_image_graph_id,
create_system_graphs)
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import (BaseCommand, CliContext, ExitCli,
SortedHelpFormatter, add_graph_parsers, add_parsers)
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, SortedHelpFormatter
from .cli.completer import set_autocompleter
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.graph import (Edge, EdgeConnection, GraphExecutionState,
GraphInvocation, LibraryGraph,
are_connection_types_compatible)
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.model_manager_service import ModelManagerService
from .services.processor import DefaultInvocationProcessor
from .services.restoration_services import RestorationServices
from .services.sqlite import SqliteItemStorage
import torch
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
@@ -214,7 +197,7 @@ def invoke_all(context: CliContext):
raise SessionError()
def invoke_cli():
logger.info(f'InvokeAI version {__version__}')
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
@@ -225,8 +208,8 @@ def invoke_cli():
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = ModelManagerService(config,logger)
model_manager = get_model_manager(config,logger=logger)
events = EventServiceBase()
output_folder = config.output_path
@@ -249,49 +232,21 @@ def invoke_cli():
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
@@ -302,11 +257,9 @@ def invoke_cli():
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
set_autocompleter(services)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
@@ -358,7 +311,7 @@ def invoke_cli():
# Parse invocation
command: CliCommand = None # type:ignore
system_graph: Optional[LibraryGraph] = None
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))

View File

@@ -4,10 +4,9 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args,
get_type_hints)
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict, TYPE_CHECKING
from pydantic import BaseConfig, BaseModel, Field
from pydantic import BaseModel, Field
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
@@ -66,13 +65,8 @@ class BaseInvocation(ABC, BaseModel):
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(
map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_all_subclasses(),
)
)
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses()))
@classmethod
def get_output_type(cls):
return signature(cls.invoke).return_annotation
@@ -81,11 +75,11 @@ class BaseInvocation(ABC, BaseModel):
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
# fmt: off
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
# fmt: on
#fmt: on
# TODO: figure out a better way to provide these hints
@@ -103,20 +97,16 @@ class UIConfig(TypedDict, total=False):
"latents",
"model",
"control",
"image_collection",
"vae_model",
"lora_model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseConfig):
class InvocationConfig(BaseModel.Config):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.

View File

@@ -4,16 +4,13 @@ from typing import Literal
import numpy as np
from pydantic import Field, validator
from invokeai.app.models.image import ImageField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
UIConfig,
)
@@ -25,7 +22,6 @@ class IntCollectionOutput(BaseInvocationOutput):
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class FloatCollectionOutput(BaseInvocationOutput):
"""A collection of floats"""
@@ -35,18 +31,6 @@ class FloatCollectionOutput(BaseInvocationOutput):
collection: list[float] = Field(default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput):
"""A collection of images"""
type: Literal["image_collection"] = "image_collection"
# Outputs
collection: list[ImageField] = Field(default=[], description="The output images")
class Config:
schema_extra = {"required": ["type", "collection"]}
class RangeInvocation(BaseInvocation):
"""Creates a range of numbers from start to stop with step"""
@@ -108,27 +92,3 @@ class RandomRangeInvocation(BaseInvocation):
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)
class ImageCollectionInvocation(BaseInvocation):
"""Load a collection of images and provide it as output."""
# fmt: off
type: Literal["image_collection"] = "image_collection"
# Inputs
images: list[ImageField] = Field(
default=[], description="The image collection to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.images)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"type_hints": {
"images": "image_collection",
}
},
}

View File

@@ -1,25 +1,25 @@
from typing import Literal, Optional, Union, List
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
import re
import torch
from compel import Compel
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType
from ...backend.model_management.models import ModelNotFoundException
from ...backend.model_management.lora import ModelPatcher
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.prompting.conditioning import try_parse_legacy_blend
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .model import ClipField
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment, Conjunction,
)
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@@ -40,7 +40,7 @@ class CompelInvocation(BaseInvocation):
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
@@ -49,77 +49,69 @@ class CompelInvocation(BaseInvocation):
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
legacy_blend = try_parse_legacy_blend(prompt_str, skip_normalize=False)
if legacy_blend is not None:
conjunction = legacy_blend
else:
conjunction = Compel.parse_prompt_string(prompt_str)
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
text_encoder_info as text_encoder:
if context.services.configuration.log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
# TODO: long prompt support
# if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
@@ -132,28 +124,10 @@ class CompelInvocation(BaseInvocation):
),
)
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers")
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use")
skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder")
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return ClipSkipInvocationOutput(
clip=self.clip,
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
@@ -172,13 +146,13 @@ def get_max_token_count(
)
else:
return len(
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> List[str]:
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
@@ -207,7 +181,7 @@ def log_tokenization_for_conjunction(
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
if len(c.prompts)>1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
@@ -262,8 +236,7 @@ def log_tokenization_for_prompt_object(
)
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '

View File

@@ -1,12 +1,11 @@
# Invocations for ControlNet image preprocessors
# InvokeAI nodes for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import float, bool
import cv2
import numpy as np
from typing import Literal, Optional, Union, List, Dict
from PIL import Image
from typing import Literal, Optional, Union, List
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field, validator
from ..models.image import ImageField, ImageCategory, ResourceOrigin
@@ -30,13 +29,8 @@ from controlnet_aux import (
ContentShuffleDetector,
ZoeDetector,
MediapipeFaceDetector,
SamDetector,
LeresDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from .image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
@@ -101,9 +95,6 @@ CONTROLNET_DEFAULT_MODELS = [
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
# crop and fill options not ready yet
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
@@ -114,8 +105,7 @@ class ControlField(BaseModel):
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The contorl mode to use")
@validator("control_weight")
def abs_le_one(cls, v):
@@ -190,7 +180,7 @@ class ControlNetInvocation(BaseInvocation):
),
)
# TODO: move image processors to separate file (image_analysis.py
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
@@ -422,9 +412,9 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvoca
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
h: Optional[int] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
h: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Union[int, None] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Union[int, None] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
# fmt: on
def run_processor(self, image):
@@ -462,104 +452,6 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
# fmt: on
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == 'RGBA':
image = image.convert('RGB')
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies leres processing to image"""
# fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
boost: bool = Field(default=False, description="Whether to use boost mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
# fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# fmt: on
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
H, W, C = np_img.shape
H = int(float(H) / float(down_sampling_rate))
W = int(float(W) / float(down_sampling_rate))
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
processed_np_image = self.tile_resample(np_img,
#res=self.tile_size,
down_sampling_rate=self.down_sampling_rate
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies segment anything processing to image"""
# fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
# so using ADE20k color palette instead
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
h, w = anns[0]['segmentation'].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann['segmentation']
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)

View File

@@ -1,27 +1,25 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, get_args
from typing import Literal, Optional, Union, get_args
import numpy as np
from diffusers import ControlNetModel
from torch import Tensor
import torch
from pydantic import Field
from invokeai.app.models.image import (ColorField, ImageCategory, ImageField,
ResourceOrigin)
from pydantic import BaseModel, Field
from invokeai.app.models.image import ColorField, ImageField, ResourceOrigin
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
from ...backend.generator import Inpaint, InvokeAIGenerator
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.step_callback import stable_diffusion_step_callback
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
from .image import ImageOutput
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from .model import UNetField, VaeField
from .compel import ConditioningField
from contextlib import contextmanager, ExitStack, ContextDecorator
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
@@ -30,51 +28,117 @@ DEFAULT_INFILL_METHOD = (
)
from .latent import get_scheduler
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
class OldModelContext(ContextDecorator):
model: StableDiffusionGeneratorPipeline
def __init__(self, model):
self.model = model
def __enter__(self):
return self.model
def __exit__(self, *exc):
return False
class OldModelInfo:
name: str
hash: str
context: OldModelContext
def __init__(self, name: str, hash: str, model: StableDiffusionGeneratorPipeline):
self.name = name
self.hash = hash
self.context = OldModelContext(
model=model,
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
class InpaintInvocation(BaseInvocation):
"""Generates an image using inpaint."""
# Text to image
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
type: Literal["inpaint"] = "inpaint"
type: Literal["txt2img"] = "txt2img"
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet model")
vae: VaeField = Field(default=None, description="Vae model")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
control_model: Optional[str] = Field(default=None, description="The control model to use")
control_image: Optional[ImageField] = Field(default=None, description="The processed control image")
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# loading controlnet image (currently requires pre-processed image)
control_image = (
None if self.control_image is None
else context.services.images.get_pil_image(self.control_image.image_name)
)
# loading controlnet model
if (self.control_model is None or self.control_model==''):
control_model = None
else:
# FIXME: change this to dropdown menu?
# FIXME: generalize so don't have to hardcode torch_dtype and device
control_model = ControlNetModel.from_pretrained(self.control_model,
torch_dtype=torch.float16).to("cuda")
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
txt2img = Txt2Img(model, control_model=control_model)
outputs = txt2img.generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context, source_node_id),
control_image=control_image,
**self.dict(
exclude={"prompt", "control_image" }
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
image_dto = context.services.images.create(
image=generate_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
# Inputs
image: Optional[ImageField] = Field(description="The input image")
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
@@ -83,8 +147,74 @@ class InpaintInvocation(BaseInvocation):
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get_pil_image(self.image.image_name)
)
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
image_dto = context.services.images.create(
image=generator_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Optional[ImageField] = Field(description="The mask")
mask: Union[ImageField, None] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(
default=16, ge=0, description="The seam inpaint blur radius (px)"
@@ -125,14 +255,6 @@ class InpaintInvocation(BaseInvocation):
description="The amount by which to replace masked areas with latent noise",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
},
}
def dispatch_progress(
self,
context: InvocationContext,
@@ -146,49 +268,6 @@ class InpaintInvocation(BaseInvocation):
source_node_id=source_node_id,
)
def get_conditioning(self, context):
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
return (uc, c, extra_conditioning_info)
@contextmanager
def load_model_old_way(self, context, scheduler):
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
#unet = unet_info.context.model
#vae = vae_info.context.model
with ExitStack() as stack:
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
with vae_info as vae,\
unet_info as unet,\
ModelPatcher.apply_lora_unet(unet, loras):
device = context.services.model_manager.mgr.cache.execution_device
dtype = context.services.model_manager.mgr.cache.precision
pipeline = StableDiffusionGeneratorPipeline(
vae=vae,
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if dtype == torch.float16 else "float32",
execution_device=device,
)
yield OldModelInfo(
name=self.unet.unet.model_name,
hash="<NO-HASH>",
model=pipeline,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
@@ -201,31 +280,25 @@ class InpaintInvocation(BaseInvocation):
else context.services.images.get_pil_image(self.mask.image_name)
)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
conditioning = self.get_conditioning(context)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
with self.load_model_old_way(context, scheduler) as model:
outputs = Inpaint(model).generate(
conditioning=conditioning,
scheduler=scheduler,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"positive_conditioning", "negative_conditioning", "scheduler", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
import io
from typing import Literal, Optional, Union
import numpy
from PIL import Image, ImageFilter, ImageOps, ImageChops
@@ -66,7 +67,7 @@ class LoadImageInvocation(BaseInvocation):
type: Literal["load_image"] = "load_image"
# Inputs
image: Optional[ImageField] = Field(
image: Union[ImageField, None] = Field(
default=None, description="The image to load"
)
# fmt: on
@@ -86,7 +87,7 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image"
# Inputs
image: Optional[ImageField] = Field(
image: Union[ImageField, None] = Field(
default=None, description="The image to show"
)
@@ -111,7 +112,7 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_crop"] = "img_crop"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to crop")
image: Union[ImageField, None] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
@@ -149,8 +150,8 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: Optional[ImageField] = Field(default=None, description="The base image")
image: Optional[ImageField] = Field(default=None, description="The image to paste")
base_image: Union[ImageField, None] = Field(default=None, description="The base image")
image: Union[ImageField, None] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
@@ -202,7 +203,7 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["tomask"] = "tomask"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
image: Union[ImageField, None] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
@@ -236,8 +237,8 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_mul"] = "img_mul"
# Inputs
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
image1: Union[ImageField, None] = Field(default=None, description="The first image to multiply")
image2: Union[ImageField, None] = Field(default=None, description="The second image to multiply")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -272,7 +273,7 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
image: Union[ImageField, None] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
@@ -307,7 +308,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to convert")
image: Union[ImageField, None] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
@@ -339,7 +340,7 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_blur"] = "img_blur"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to blur")
image: Union[ImageField, None] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
@@ -397,7 +398,7 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_resize"] = "img_resize"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to resize")
image: Union[ImageField, None] = Field(default=None, description="The image to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
@@ -436,7 +437,7 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to scale")
image: Union[ImageField, None] = Field(default=None, description="The image to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
@@ -476,7 +477,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
@@ -512,7 +513,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
image: Union[ImageField, None] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on

View File

@@ -1,6 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Optional, get_args
from typing import Literal, Union, get_args
import numpy as np
import math
@@ -68,7 +68,7 @@ def get_tile_images(image: np.ndarray, width=8, height=8):
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
@@ -125,7 +125,7 @@ class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field(
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
color: ColorField = Field(
@@ -162,7 +162,7 @@ class InfillTileInvocation(BaseInvocation):
type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field(
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
@@ -202,7 +202,7 @@ class InfillPatchMatchInvocation(BaseInvocation):
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field(
image: Union[ImageField, None] = Field(
default=None, description="The image to infill"
)

View File

@@ -1,44 +1,52 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import List, Literal, Optional, Union
import random
import einops
import torch
from diffusers import ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from typing import Literal, Optional, Union, List
from compel import Compel
from diffusers.pipelines.controlnet import MultiControlNetModel
from pydantic import BaseModel, Field, validator
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.stable_diffusion.diffusers_pipeline import ControlNetData
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_file_storage import ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline, ControlNetModel
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
@@ -52,11 +60,29 @@ class LatentsOutput(BaseInvocationOutput):
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
#fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
@@ -64,22 +90,13 @@ SAMPLER_NAME_VALUES = Literal[
]
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **
scheduler_extra_config, "_backup": scheduler_config}
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
@@ -88,6 +105,63 @@ def get_scheduler(
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
@@ -102,10 +176,10 @@ class TextToLatentsInvocation(BaseInvocation):
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
control: Union[ControlField, List[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@@ -126,18 +200,18 @@ class TextToLatentsInvocation(BaseInvocation):
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
@@ -145,12 +219,43 @@ class TextToLatentsInvocation(BaseInvocation):
source_node_id=source_node_id,
)
def get_conditioning_data(
self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(
self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(
self.negative_conditioning.conditioning_name)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
# if isinstance(model, DiffusionPipeline):
# for component in [model.unet, model.vae]:
# configure_model_padding(component,
# self.seamless,
# self.seamless_axes
# )
# else:
# configure_model_padding(model,
# self.seamless,
# self.seamless_axes
# )
return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
compel = Compel(
tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
@@ -158,63 +263,21 @@ class TextToLatentsInvocation(BaseInvocation):
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=uc.device).manual_seed(0),
)
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
return conditioning_data
def create_pipeline(
self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if unet.dtype == torch.float16 else "float32",
)
def prep_control_data(
self,
context: InvocationContext,
# really only need model for dtype and device
model: StableDiffusionGeneratorPipeline,
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
def prep_control_data(self,
context: InvocationContext,
model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
@@ -245,17 +308,15 @@ class TextToLatentsInvocation(BaseInvocation):
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(
control_name, subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(
model.device)
control_model = ControlNetModel.from_pretrained(control_name,
subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(model.device)
else:
control_model = ControlNetModel.from_pretrained(
control_info.control_model, torch_dtype=model.unet.dtype).to(model.device)
control_model = ControlNetModel.from_pretrained(control_info.control_model,
torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(
control_image_field.image_name)
input_image = context.services.images.get_pil_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@@ -272,66 +333,44 @@ class TextToLatentsInvocation(BaseInvocation):
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -347,11 +386,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
@@ -366,67 +402,43 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
# TODO: Verify the noise is the right size
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -443,18 +455,17 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@@ -462,49 +473,41 @@ class LatentsToImageInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with vae_info as vae:
if self.tiled or context.services.configuration.tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
# what happened to metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# new (post Image service refactor) way of using services to save image
# and gnenerate unique image_name
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
@@ -513,25 +516,21 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: int = Field(
ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents, size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -548,24 +547,21 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents, scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
@@ -582,17 +578,15 @@ class ImageToLatentsInvocation(BaseInvocation):
type: Literal["i2l"] = "i2l"
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@@ -603,30 +597,20 @@ class ImageToLatentsInvocation(BaseInvocation):
# )
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
with vae_info as vae:
if self.tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = 0.18215 * latents
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)

View File

@@ -1,310 +0,0 @@
import copy
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(
default=None, description="Info to load submodel"
)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class MainModelField(BaseModel):
"""Main model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class LoRAModelField(BaseModel):
"""LoRA model field"""
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["main_model_loader"] = "main_model_loader"
model: MainModelField = Field(description="The model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
)
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["lora_loader_output"] = "lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
# fmt: on
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field(
default=None, description="Lora model name"
)
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(
lora.model_name == lora_name for lora in self.unet.loras
):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(
lora.model_name == lora_name for lora in self.clip.loras
):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
return output
class VAEModelField(BaseModel):
"""Vae model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class VaeLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["vae_loader_output"] = "vae_loader_output"
vae: VaeField = Field(default=None, description="Vae model")
# fmt: on
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
type: Literal["vae_loader"] = "vae_loader"
vae_model: VAEModelField = Field(description="The VAE to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "VAE Loader",
"tags": ["vae", "loader"],
"type_hints": {"vae_model": "vae_model"},
},
}
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)

View File

@@ -1,134 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import math
from typing import Literal
from pydantic import Field, validator
import torch
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
"""
Utilities
"""
def get_noise(
width: int,
height: int,
device: torch.device,
seed: int = 0,
latent_channels: int = 4,
downsampling_factor: int = 8,
use_cpu: bool = True,
perlin: float = 0.0,
):
"""Generate noise for a given image size."""
noise_device_type = "cpu" if use_cpu else device.type
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
noise_tensor = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=noise_device_type,
generator=generator,
).to(device)
return noise_tensor
"""
Nodes
"""
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
# fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
# fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use",
default_factory=get_random_seed,
)
width: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The width of the resulting noise",
)
height: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting noise",
)
use_cpu: bool = Field(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)

View File

@@ -133,19 +133,20 @@ class StepParamEasingInvocation(BaseInvocation):
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.services.logger.debug("start_step: " + str(start_step))
context.services.logger.debug("end_step: " + str(end_step))
context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.services.logger.debug("num_presteps: " + str(num_presteps))
context.services.logger.debug("num_poststeps: " + str(num_poststeps))
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
context.services.logger.debug("prelist: " + str(prelist))
context.services.logger.debug("postlist: " + str(postlist))
logger = InvokeAILogger.getLogger(name="StepParamEasing")
logger.debug("start_step: " + str(start_step))
logger.debug("end_step: " + str(end_step))
logger.debug("num_easing_steps: " + str(num_easing_steps))
logger.debug("num_presteps: " + str(num_presteps))
logger.debug("num_poststeps: " + str(num_poststeps))
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("postlist size: " + str(len(postlist)))
logger.debug("prelist: " + str(prelist))
logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.services.logger.debug("easing class: " + str(easing_class))
logger.debug("easing class: " + str(easing_class))
easing_list = list()
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
@@ -155,7 +156,7 @@ class StepParamEasingInvocation(BaseInvocation):
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration))
if log_diagnostics: logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
easing_function = easing_class(start=self.start_value,
end=self.end_value,
@@ -165,14 +166,14 @@ class StepParamEasingInvocation(BaseInvocation):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.services.logger.debug("base easing vals: " + str(base_easing_vals))
context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
logger.debug("base easing vals: " + str(base_easing_vals))
logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
@@ -205,12 +206,12 @@ class StepParamEasingInvocation(BaseInvocation):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("easing_list size: " + str(len(easing_list)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
logger.debug("prelist size: " + str(len(prelist)))
logger.debug("easing_list size: " + str(len(easing_list)))
logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist

View File

@@ -1,4 +1,4 @@
from typing import Literal, Optional
from typing import Literal, Union
from pydantic import Field
@@ -15,7 +15,7 @@ class RestoreFaceInvocation(BaseInvocation):
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Optional[ImageField] = Field(description="The input image")
image: Union[ImageField, None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
# fmt: on

View File

@@ -1,6 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
from typing import Literal, Union
from pydantic import Field
@@ -16,7 +16,7 @@ class UpscaleInvocation(BaseInvocation):
type: Literal["upscale"] = "upscale"
# Inputs
image: Optional[ImageField] = Field(description="The input image", default=None)
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on

View File

@@ -0,0 +1,14 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_name and not model_manager.valid_model(model_name):
default_model_name = model_manager.default_model()
logger.warning(f"\'{model_name}\' is not a valid model name. Using default model \'{default_model_name}\' instead.")
model = model_manager.get_model()
else:
model = model_manager.get_model(model_name)
return model

View File

@@ -1,6 +1,5 @@
from enum import Enum
from typing import Optional, Tuple
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
@@ -89,41 +88,3 @@ class ProgressImage(BaseModel):
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class DeleteManyImagesResult(BaseModel):
"""The result of a delete many image operation."""
deleted_images: list[str] = Field(
description="The names of the images that were successfully deleted"
)
class AddManyImagesToBoardResult(BaseModel):
"""The result of an add many images to board operation."""
board_id: str = Field(description="The id of the board the images were added to")
added_images: list[str] = Field(
description="The names of the images that were successfully added"
)
total: int = Field(description="The total number of images on the board")
class RemoveManyImagesFromBoardResult(BaseModel):
"""The result of a remove many images from their boards operation."""
removed_images: list[str] = Field(
description="The names of the images that were successfully removed from their boards"
)
class GetAllBoardImagesForBoardResult(BaseModel):
"""The result of a get all image names for board operation."""
board_id: str = Field(
description="The id of the board with which the images are associated"
)
image_names: list[str] = Field(
description="The names of the images that are associated with the board"
)

View File

@@ -1,240 +0,0 @@
import sqlite3
import threading
from abc import ABC, abstractmethod
from typing import Optional, cast
from invokeai.app.models.image import GetAllBoardImagesForBoardResult
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (
ImageRecord, deserialize_image_record)
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_images_for_board(
self,
board_id: str,
) -> GetAllBoardImagesForBoardResult:
"""Gets all image names for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
VALUES (?, ?)
ON CONFLICT (image_name) DO UPDATE SET board_id = ?;
""",
(board_id, image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def remove_image_from_board(
self,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all_board_images_for_board(
self,
board_id: str,
) -> GetAllBoardImagesForBoardResult:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name
FROM board_images
WHERE board_id = ?
ORDER BY updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = list(map(lambda r: r[0], result))
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return GetAllBoardImagesForBoardResult(
board_id=board_id, image_names=image_names
)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = self._cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_image_count_for_board(self, board_id: str) -> int:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM board_images WHERE board_id = ?;
""",
(board_id,),
)
count = cast(int, self._cursor.fetchone()[0])
return count
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -1,181 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import List, Optional, Union
from invokeai.app.models.image import (AddManyImagesToBoardResult,
GetAllBoardImagesForBoardResult,
RemoveManyImagesFromBoardResult)
from invokeai.app.services.board_image_record_storage import \
BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import (BoardRecord,
BoardRecordStorageBase)
from invokeai.app.services.image_record_storage import (ImageRecordStorageBase,
OffsetPaginatedResults)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import (ImageDTO,
image_record_to_dto)
from invokeai.app.services.urls import UrlServiceBase
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board. If the image is on a different board, it is removed from that board."""
pass
@abstractmethod
def add_many_images_to_board(
self,
board_id: str,
image_names: list[str],
) -> AddManyImagesToBoardResult:
"""Adds many images to a board. If an image is on a different board, it is removed from that board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from its board."""
pass
@abstractmethod
def remove_many_images_from_board(
self,
image_names: list[str],
) -> RemoveManyImagesFromBoardResult:
"""Removes many images from their board, if they had one."""
pass
@abstractmethod
def get_all_board_images_for_board(
self,
board_id: str,
) -> GetAllBoardImagesForBoardResult:
"""Gets all image names for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesServiceDependencies:
"""Service dependencies for the BoardImagesService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardImagesService(BoardImagesServiceABC):
_services: BoardImagesServiceDependencies
def __init__(self, services: BoardImagesServiceDependencies):
self._services = services
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.add_image_to_board(board_id, image_name)
def add_many_images_to_board(
self,
board_id: str,
image_names: list[str],
) -> AddManyImagesToBoardResult:
added_images: list[str] = []
for image_name in image_names:
try:
self._services.board_image_records.add_image_to_board(
board_id, image_name
)
added_images.append(image_name)
except Exception as e:
self._services.logger.exception(e)
total = self._services.board_image_records.get_image_count_for_board(board_id)
return AddManyImagesToBoardResult(
board_id=board_id, added_images=added_images, total=total
)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(image_name)
def remove_many_images_from_board(
self,
image_names: list[str],
) -> RemoveManyImagesFromBoardResult:
removed_images: list[str] = []
for image_name in image_names:
try:
self._services.board_image_records.remove_image_from_board(image_name)
removed_images.append(image_name)
except Exception as e:
self._services.logger.exception(e)
return RemoveManyImagesFromBoardResult(
removed_images=removed_images,
)
def get_all_board_images_for_board(
self,
board_id: str,
) -> GetAllBoardImagesForBoardResult:
result = self._services.board_image_records.get_all_board_images_for_board(
board_id
)
return result
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self._services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@@ -1,329 +0,0 @@
from abc import ABC, abstractmethod
from typing import Optional, cast
import sqlite3
import threading
from typing import Optional, Union
import uuid
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import (
BoardRecord,
deserialize_board_record,
)
from pydantic import BaseModel, Field, Extra
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(
description="The name of the board's new cover image."
)
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
board_name: str,
) -> BoardRecord:
try:
board_id = str(uuid.uuid4())
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get(
self,
board_id: str,
) -> BoardRecord:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordNotFoundException from e
finally:
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
try:
self._lock.acquire()
# Change the name of a board
if changes.board_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
""",
(limit, offset),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
# Get the total number of boards
self._cursor.execute(
"""--sql
SELECT COUNT(*)
FROM boards
WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](
items=boards, offset=offset, limit=limit, total=count
)
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all(
self,
) -> list[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
return boards
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@@ -1,185 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_images import board_record_to_dto
from invokeai.app.services.board_record_storage import (
BoardChanges,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass
class BoardServiceDependencies:
"""Service dependencies for the BoardService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardService(BoardServiceABC):
_services: BoardServiceDependencies
def __init__(self, services: BoardServiceDependencies):
self._services = services
def create(
self,
board_name: str,
) -> BoardDTO:
board_record = self._services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id)
def get_many(
self, offset: int = 0, limit: int = 10
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](
items=board_dtos, offset=offset, limit=limit, total=len(board_dtos)
)
def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@@ -15,7 +15,10 @@ InvokeAI:
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
embedding_dir: embeddings
lora_dir: loras
autoconvert_dir: null
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
Models:
model: stable-diffusion-1.5
embeddings: true
@@ -23,8 +26,7 @@ InvokeAI:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 2.7
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
@@ -169,10 +171,9 @@ from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
from typing import ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
MODEL_CORE = Path('models/core')
DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init')
@@ -230,10 +231,10 @@ class InvokeAISettings(BaseSettings):
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
@@ -271,8 +272,7 @@ class InvokeAISettings(BaseSettings):
@classmethod
def _excluded(self)->List[str]:
# combination of deprecated parameters and internal ones
return ['type','initconf', 'gpu_mem_reserved', 'max_loaded_models', 'version']
return ['type','initconf']
class Config:
env_file_encoding = 'utf-8'
@@ -327,11 +327,16 @@ class InvokeAISettings(BaseSettings):
help=field.field_info.description,
)
def _find_root()->Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent/x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = (venv.parent).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
@@ -346,7 +351,7 @@ setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
@@ -365,41 +370,37 @@ setting environment variables INVOKEAI_<setting>.
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='DEPRECATED')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
controlnet_dir : Path = Field(default="controlnets", description='Path to directory of ControlNet models.', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
#fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
Update settings with contents of init file, environment, and
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
@@ -414,7 +415,7 @@ setting environment variables INVOKEAI_<setting>.
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
@@ -434,7 +435,7 @@ setting environment variables INVOKEAI_<setting>.
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''
@@ -491,11 +492,39 @@ setting environment variables INVOKEAI_<setting>.
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self)->Path:
def cache_dir(self)->Path:
'''
Path to the global cache directory for HuggingFace hub-managed models
'''
return self.models_dir / "hub"
@property
def models_dir(self)->Path:
'''
Path to the models directory
'''
return self._resolve(self.models_dir)
return self._resolve("models")
@property
def embedding_path(self)->Path:
'''
Path to the textual inversion embeddings directory.
'''
return self._resolve(self.embedding_dir) if self.embedding_dir else None
@property
def lora_path(self)->Path:
'''
Path to the LoRA models directory.
'''
return self._resolve(self.lora_dir) if self.lora_dir else None
@property
def controlnet_path(self)->Path:
'''
Path to the controlnet models directory.
'''
return self._resolve(self.controlnet_dir) if self.controlnet_dir else None
@property
def autoconvert_path(self)->Path:
@@ -504,6 +533,13 @@ setting environment variables INVOKEAI_<setting>.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
@property
def gfpgan_model_path(self)->Path:
'''
Path to the GFPGAN model.
'''
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:

View File

@@ -1,5 +1,4 @@
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph

View File

@@ -1,9 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Optional
from typing import Any
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
class EventServiceBase:
session_event: str = "session_event"
@@ -27,7 +27,7 @@ class EventServiceBase:
graph_execution_state_id: str,
node: dict,
source_node_id: str,
progress_image: Optional[ProgressImage],
progress_image: ProgressImage | None,
step: int,
total_steps: int,
) -> None:
@@ -101,53 +101,3 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
),
)
def emit_model_load_started (
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
) -> None:
"""Emitted when a model is requested"""
self.__emit_session_event(
event_name="model_load_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
),
)
def emit_model_load_completed(
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_session_event(
event_name="model_load_completed",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info,
),
)

View File

@@ -3,6 +3,7 @@
import copy
import itertools
import uuid
from types import NoneType
from typing import (
Annotated,
Any,
@@ -25,8 +26,6 @@ from ..invocations.baseinvocation import (
InvocationContext,
)
# in 3.10 this would be "from types import NoneType"
NoneType = type(None)
class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection")
@@ -61,6 +60,8 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None
return node_input_field
from typing import Optional, Union, List, get_args
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
@@ -845,7 +846,7 @@ class GraphExecutionState(BaseModel):
]
}
def next(self) -> Optional[BaseInvocation]:
def next(self) -> BaseInvocation | None:
"""Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes

View File

@@ -2,12 +2,13 @@
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from typing import Dict, Optional
from PIL.Image import Image as PILImageType
from PIL import Image, PngImagePlugin
from send2trash import send2trash
from invokeai.app.models.image import ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
@@ -79,15 +80,13 @@ class DiskImageFileStorage(ImageFileStorageBase):
__cache: Dict[Path, PILImageType]
__max_cache_size: int
def __init__(self, output_folder: Union[str, Path]):
def __init__(self, output_folder: str | Path):
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = (
output_folder if isinstance(output_folder, Path) else Path(output_folder)
)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / 'thumbnails'
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -95,7 +94,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
def get(self, image_name: str) -> PILImageType:
try:
image_path = self.get_path(image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
@@ -156,33 +155,31 @@ class DiskImageFileStorage(ImageFileStorageBase):
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
path = self.__output_folder / image_name
if thumbnail:
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
return path
def validate_path(self, path: Union[str, Path]) -> bool:
def validate_path(self, path: str | Path) -> bool:
"""Validates the path given for an image or thumbnail."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def __validate_storage_folders(self) -> None:
"""Checks if the required output folders exist and create them if they don't"""
folders: list[Path] = [self.__output_folder, self.__thumbnails_folder]
for folder in folders:
folder.mkdir(parents=True, exist_ok=True)
def __get_cache(self, image_name: Path) -> Optional[PILImageType]:
def __get_cache(self, image_name: Path) -> PILImageType | None:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
if cache_id in self.__cache:

View File

@@ -1,16 +1,23 @@
import sqlite3
import threading
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Generic, Optional, TypeVar, cast
import sqlite3
import threading
from typing import Optional, Union
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.models.image_record import (
ImageRecord, ImageRecordChanges, deserialize_image_record)
ImageRecord,
ImageRecordChanges,
deserialize_image_record,
)
T = TypeVar("T", bound=BaseModel)
@@ -75,16 +82,10 @@ class ImageRecordStorageBase(ABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
@abstractmethod
def get_by_names(self, image_names: list[str]) -> list[ImageRecord]:
"""Gets a list of image records by name."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
@@ -92,11 +93,6 @@ class ImageRecordStorageBase(ABC):
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def save(
self,
@@ -113,11 +109,6 @@ class ImageRecordStorageBase(ABC):
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase):
_filename: str
@@ -144,7 +135,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `images` table."""
"""Creates the tables for the `images` database."""
# Create the `images` table.
self._cursor.execute(
@@ -199,13 +190,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
UPDATE images SET updated_at = current_timestamp
WHERE image_name = old.image_name;
END;
"""
)
def get(self, image_name: str) -> Optional[ImageRecord]:
def get(self, image_name: str) -> Union[ImageRecord, None]:
try:
self._lock.acquire()
@@ -217,7 +208,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(image_name,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
@@ -268,7 +259,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
""",
(changes.is_intermediate, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
@@ -283,70 +273,38 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
try:
self._lock.acquire()
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
images_query = """--sql
SELECT images.*
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
count_query = f"""SELECT COUNT(*) FROM images WHERE 1=1\n"""
images_query = f"""SELECT * FROM images WHERE 1=1\n"""
query_conditions = ""
query_params = []
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_conditions += f"""AND image_origin = ?\n"""
query_params.append(image_origin.value)
if categories is not None:
# Convert the enum values to unique list of strings
## Convert the enum values to unique list of strings
category_strings = list(map(lambda c: c.value, set(categories)))
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
query_conditions += f"AND image_category IN ( {placeholders} )\n"
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
"""
query_conditions += f"""AND is_intermediate = ?\n"""
query_params.append(is_intermediate)
if board_id is not None:
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
else:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
query_pagination = """--sql
ORDER BY images.created_at DESC LIMIT ? OFFSET ?
"""
query_pagination = f"""ORDER BY created_at DESC LIMIT ? OFFSET ?\n"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
@@ -363,7 +321,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
count_query += query_conditions + ";"
count_params = query_params.copy()
self._cursor.execute(count_query, count_params)
count = cast(int, self._cursor.fetchone()[0])
count = self._cursor.fetchone()[0]
except sqlite3.Error as e:
self._conn.rollback()
raise e
@@ -374,30 +332,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
items=images, offset=offset, limit=limit, total=count
)
def get_by_names(self, image_names: list[str]) -> list[ImageRecord]:
try:
placeholders = ",".join("?" for _ in image_names)
self._lock.acquire()
# Construct the SQLite query with the placeholders
query = f"""--sql
SELECT * FROM images
WHERE image_name IN ({placeholders})
"""
# Execute the query with the list of IDs as parameters
self._cursor.execute(query, image_names)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
return images
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def delete(self, image_name: str) -> None:
try:
self._lock.acquire()
@@ -415,25 +349,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
def delete_many(self, image_names: list[str]) -> None:
try:
placeholders = ",".join("?" for _ in image_names)
self._lock.acquire()
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Execute the query with the list of IDs as parameters
self._cursor.execute(query, image_names)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
image_name: str,
@@ -497,26 +412,3 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
ORDER BY images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
finally:
self._lock.release()
if result is None:
return None
return deserialize_image_record(dict(result))

View File

@@ -1,27 +1,36 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import TYPE_CHECKING, Optional
from typing import Optional, TYPE_CHECKING, Union
from PIL.Image import Image as PILImageType
from invokeai.app.models.image import (DeleteManyImagesResult, ImageCategory,
InvalidImageCategoryException,
InvalidOriginException, ResourceOrigin)
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
InvalidImageCategoryException,
InvalidOriginException,
)
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.board_image_record_storage import \
BoardImageRecordStorageBase
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException, ImageFileNotFoundException,
ImageFileSaveException, ImageFileStorageBase)
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException, ImageRecordNotFoundException,
ImageRecordSaveException, ImageRecordStorageBase, OffsetPaginatedResults)
from invokeai.app.services.item_storage import ItemStorageABC
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.image_record import (
ImageRecord,
ImageDTO,
ImageRecordChanges,
image_record_to_dto,
)
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
ImageFileStorageBase,
)
from invokeai.app.services.item_storage import ItemStorageABC, PaginatedResults
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.app.services.models.image_record import (GetImagesByNamesResult,
ImageDTO, ImageRecord,
ImageRecordChanges,
image_record_to_dto)
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
@@ -40,7 +49,7 @@ class ImageServiceABC(ABC):
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
is_intermediate: bool = False,
intermediate: bool = False,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@@ -70,7 +79,7 @@ class ImageServiceABC(ABC):
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
def get_path(self, image_name: str) -> str:
"""Gets an image's path."""
pass
@@ -92,38 +101,21 @@ class ImageServiceABC(ABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def get_images_by_names(self, image_names: list[str]) -> GetImagesByNamesResult:
"""Gets image DTOs by list of names."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> DeleteManyImagesResult:
"""Deletes many images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str) -> DeleteManyImagesResult:
"""Deletes all images on a board."""
pass
class ImageServiceDependencies:
"""Service dependencies for the ImageService."""
image_records: ImageRecordStorageBase
image_files: ImageFileStorageBase
board_image_records: BoardImageRecordStorageBase
records: ImageRecordStorageBase
files: ImageFileStorageBase
metadata: MetadataServiceBase
urls: UrlServiceBase
logger: Logger
@@ -134,16 +126,14 @@ class ImageServiceDependencies:
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
board_image_record_storage: BoardImageRecordStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self.image_records = image_record_storage
self.image_files = image_file_storage
self.board_image_records = board_image_record_storage
self.records = image_record_storage
self.files = image_file_storage
self.metadata = metadata
self.urls = url
self.logger = logger
@@ -154,8 +144,25 @@ class ImageServiceDependencies:
class ImageService(ImageServiceABC):
_services: ImageServiceDependencies
def __init__(self, services: ImageServiceDependencies):
self._services = services
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self._services = ImageServiceDependencies(
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=url,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
def create(
self,
@@ -180,7 +187,7 @@ class ImageService(ImageServiceABC):
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
self._services.image_records.save(
created_at = self._services.records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
@@ -195,15 +202,35 @@ class ImageService(ImageServiceABC):
metadata=metadata,
)
self._services.image_files.save(
self._services.files.save(
image_name=image_name,
image=image,
metadata=metadata,
)
image_dto = self.get_dto(image_name)
image_url = self._services.urls.get_image_url(image_name)
thumbnail_url = self._services.urls.get_image_url(image_name, True)
return image_dto
return ImageDTO(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Nullable fields
node_id=node_id,
session_id=session_id,
metadata=metadata,
# Meta fields
created_at=created_at,
updated_at=created_at, # this is always the same as the created_at at this time
deleted_at=None,
is_intermediate=is_intermediate,
# Extra non-nullable fields for DTO
image_url=image_url,
thumbnail_url=thumbnail_url,
)
except ImageRecordSaveException:
self._services.logger.error("Failed to save image record")
raise
@@ -220,7 +247,7 @@ class ImageService(ImageServiceABC):
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self._services.image_records.update(image_name, changes)
self._services.records.update(image_name, changes)
return self.get_dto(image_name)
except ImageRecordSaveException:
self._services.logger.error("Failed to update image record")
@@ -231,7 +258,7 @@ class ImageService(ImageServiceABC):
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self._services.image_files.get(image_name)
return self._services.files.get(image_name)
except ImageFileNotFoundException:
self._services.logger.error("Failed to get image file")
raise
@@ -241,7 +268,7 @@ class ImageService(ImageServiceABC):
def get_record(self, image_name: str) -> ImageRecord:
try:
return self._services.image_records.get(image_name)
return self._services.records.get(image_name)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
@@ -251,13 +278,12 @@ class ImageService(ImageServiceABC):
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self._services.image_records.get(image_name)
image_record = self._services.records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self._services.urls.get_image_url(image_name),
self._services.urls.get_image_url(image_name, True),
self._services.board_image_records.get_board_for_image(image_name),
)
return image_dto
@@ -270,14 +296,14 @@ class ImageService(ImageServiceABC):
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.image_files.get_path(image_name, thumbnail)
return self._services.files.get_path(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self._services.image_files.validate_path(path)
return self._services.files.validate_path(path)
except Exception as e:
self._services.logger.error("Problem validating image path")
raise e
@@ -296,16 +322,14 @@ class ImageService(ImageServiceABC):
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self._services.image_records.get_many(
results = self._services.records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
image_dtos = list(
@@ -314,9 +338,6 @@ class ImageService(ImageServiceABC):
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(
r.image_name
),
),
results.items,
)
@@ -332,32 +353,10 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem getting paginated image DTOs")
raise e
def get_images_by_names(self, image_names: list[str]) -> GetImagesByNamesResult:
try:
image_records = self._services.image_records.get_by_names(image_names)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(
r.image_name
),
),
image_records,
)
)
return GetImagesByNamesResult(image_dtos=image_dtos)
except Exception as e:
self._services.logger.error("Problem getting image DTOs from names")
raise e
def delete(self, image_name: str):
try:
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
self._services.files.delete(image_name)
self._services.records.delete(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
raise
@@ -368,49 +367,9 @@ class ImageService(ImageServiceABC):
self._services.logger.error("Problem deleting image record and file")
raise e
def delete_many(self, image_names: list[str]) -> DeleteManyImagesResult:
deleted_images: list[str] = []
for image_name in image_names:
try:
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
deleted_images.append(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
deleted_images.append(image_name)
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image file")
deleted_images.append(image_name)
except Exception as e:
self._services.logger.error("Problem deleting image record and file")
deleted_images.append(image_name)
return DeleteManyImagesResult(deleted_images=deleted_images)
def delete_images_on_board(self, board_id: str) -> DeleteManyImagesResult:
try:
board_images = (
self._services.board_image_records.get_all_board_images_for_board(
board_id
)
)
image_name_list = board_images.image_names
for image_name in image_name_list:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_name_list)
return DeleteManyImagesResult(deleted_images=board_images.image_names)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e
def _get_metadata(
self, session_id: Optional[str] = None, node_id: Optional[str] = None
) -> Optional[ImageMetadata]:
) -> Union[ImageMetadata, None]:
"""Get the metadata for a node."""
metadata = None

View File

@@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from queue import Queue
from pydantic import BaseModel, Field
from typing import Optional
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
@@ -22,7 +22,7 @@ class InvocationQueueABC(ABC):
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
def put(self, item: InvocationQueueItem | None) -> None:
pass
@abstractmethod
@@ -57,7 +57,7 @@ class MemoryInvocationQueue(InvocationQueueABC):
return item
def put(self, item: Optional[InvocationQueueItem]) -> None:
def put(self, item: InvocationQueueItem | None) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:

View File

@@ -4,10 +4,8 @@ from typing import TYPE_CHECKING
if TYPE_CHECKING:
from logging import Logger
from invokeai.app.services.board_images import BoardImagesServiceABC
from invokeai.app.services.boards import BoardServiceABC
from invokeai.app.services.images import ImageServiceABC
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
from invokeai.app.services.images import ImageService
from invokeai.backend import ModelManager
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.latent_storage import LatentsStorageBase
from invokeai.app.services.restoration_services import RestorationServices
@@ -22,47 +20,41 @@ class InvocationServices:
"""Services that can be used by invocations"""
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
board_images: "BoardImagesServiceABC"
boards: "BoardServiceABC"
configuration: "InvokeAISettings"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
graph_library: "ItemStorageABC"["LibraryGraph"]
images: "ImageServiceABC"
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
processor: "InvocationProcessorABC"
queue: "InvocationQueueABC"
model_manager: "ModelManager"
restoration: "RestorationServices"
configuration: "InvokeAISettings"
images: "ImageService"
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: "ItemStorageABC"["LibraryGraph"]
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
processor: "InvocationProcessorABC"
def __init__(
self,
board_images: "BoardImagesServiceABC",
boards: "BoardServiceABC",
configuration: "InvokeAISettings",
model_manager: "ModelManager",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
graph_library: "ItemStorageABC"["LibraryGraph"],
images: "ImageServiceABC",
latents: "LatentsStorageBase",
logger: "Logger",
model_manager: "ModelManagerServiceBase",
processor: "InvocationProcessorABC",
latents: "LatentsStorageBase",
images: "ImageService",
queue: "InvocationQueueABC",
graph_library: "ItemStorageABC"["LibraryGraph"],
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: "RestorationServices",
configuration: "InvokeAISettings",
):
self.board_images = board_images
self.boards = boards
self.boards = boards
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.latents = latents
self.logger = logger
self.model_manager = model_manager
self.processor = processor
self.events = events
self.logger = logger
self.latents = latents
self.images = images
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration
self.configuration = configuration

View File

@@ -1,11 +1,14 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC
from typing import Optional
from threading import Event, Thread
from ..invocations.baseinvocation import InvocationContext
from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueItem
from .invocation_queue import InvocationQueueABC, InvocationQueueItem
from .invocation_services import InvocationServices
from .item_storage import ItemStorageABC
class Invoker:
"""The invoker, used to execute invocations"""
@@ -18,7 +21,7 @@ class Invoker:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> Optional[str]:
) -> str | None:
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
@@ -42,7 +45,7 @@ class Invoker:
return invocation.id
def create_execution_state(self, graph: Optional[Graph] = None) -> GraphExecutionState:
def create_execution_state(self, graph: Graph | None = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)

View File

@@ -3,7 +3,7 @@
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Union, Optional
from typing import Dict
import torch
@@ -55,7 +55,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
@@ -69,9 +69,9 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Union[str, Path]
__output_folder: str | Path
def __init__(self, output_folder: Union[str, Path]):
def __init__(self, output_folder: str | Path):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
@@ -91,4 +91,4 @@ class DiskLatentsStorage(LatentsStorageBase):
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Optional
from typing import Any, Union
import networkx as nx
from invokeai.app.models.metadata import ImageMetadata
@@ -34,7 +34,7 @@ class CoreMetadataService(MetadataServiceBase):
return metadata
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Optional[str]:
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Union[str, None]:
"""
Finds the id of the nearest ancestor (of a valid type) of a given node.
@@ -65,7 +65,7 @@ class CoreMetadataService(MetadataServiceBase):
def _get_additional_metadata(
self, graph: Graph, node_id: str
) -> Optional[dict[str, Any]]:
) -> Union[dict[str, Any], None]:
"""
Returns additional metadata for a given node.

View File

@@ -0,0 +1,104 @@
import os
import sys
import torch
from argparse import Namespace
from omegaconf import OmegaConf
from pathlib import Path
from typing import types
import invokeai.version
from .config import InvokeAISettings
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: InvokeAISettings, logger: types.ModuleType) -> ModelManager:
model_config = config.model_conf_path
if not model_config.exists():
report_model_error(
config, FileNotFoundError(f"The file {model_config} could not be found."), logger
)
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{config.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
embedding_path = config.embedding_path
# migrate legacy models
ModelManager.migrate_models()
# creating the model manager
try:
device = torch.device(choose_torch_device())
precision = 'float16' if config.precision=='float16' \
else 'float32' if config.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.model_conf_path),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = embedding_path,
logger = logger,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e, logger)
except (IOError, KeyError) as e:
logger.error(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if config.autoconvert_path:
model_manager.heuristic_import(
config.autoconvert_path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)

View File

@@ -1,560 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from pydantic import Field
from typing import Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from types import ModuleType
from invokeai.backend.model_management import (
ModelManager,
BaseModelType,
ModelType,
SubModelType,
ModelInfo,
AddModelResult,
SchedulerPredictionType,
ModelMerger,
MergeInterpolationMethod,
)
import torch
from invokeai.app.models.exceptions import CanceledException
from ...backend.util import choose_precision, choose_torch_device
from .config import InvokeAIAppConfig
if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
KeyErrorException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
# simple implementation
class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory"""
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
if config.model_conf_path and config.model_conf_path.exists():
config_file = config.model_conf_path
else:
config_file = config.root_dir / "configs/models.yaml"
logger.debug(f'config file={config_file}')
device = torch.device(choose_torch_device())
logger.debug(f'GPU device = {device}')
precision = config.precision
if precision == "auto":
precision = choose_precision(device)
dtype = torch.float32 if precision == 'float32' else torch.float16
# this is transitional backward compatibility
# support for the deprecated `max_loaded_models`
# configuration value. If present, then the
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
sequential_offload = config.sequential_guidance
self.mgr = ModelManager(
config=config_file,
device_type=device,
precision=dtype,
max_cache_size=max_cache_size,
sequential_offload=sequential_offload,
logger=logger,
)
logger.info('Model manager service initialized')
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""
Retrieve the indicated model. submodel can be used to get a
part (such as the vae) of a diffusers mode.
"""
# if we are called from within a node, then we get to emit
# load start and complete events
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
model_info = self.mgr.get_model(
model_name,
base_model,
model_type,
submodel,
)
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
)
return model_info
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return self.mgr.model_exists(
model_name,
base_model,
model_type,
)
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
return self.mgr.model_info(model_name, base_model, model_type)
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
return self.mgr.model_names()
def list_models(
self,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
) -> list[dict]:
"""
Return a list of models.
"""
return self.mgr.list_models(base_model, model_type)
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
return self.mgr.list_model(model_name=model_name,
base_model=base_model,
model_type=model_type)
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
)->None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'add/update model {model_name}')
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
KeyError exception if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'update model {model_name}')
if not self.model_exists(model_name, base_model, model_type):
raise KeyError(f"Unknown model {model_name}")
return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True)
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
self.logger.debug(f'delete model {model_name}')
self.mgr.del_model(model_name, base_model, model_type)
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
self.logger.debug(f'convert model {model_name}')
return self.mgr.convert_model(model_name, base_model, model_type)
def commit(self, conf_file: Optional[Path]=None):
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
return self.mgr.commit(conf_file)
def _emit_load_event(
self,
node,
context,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: Optional[ModelInfo] = None,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException()
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[node.id]
if model_info:
context.services.events.emit_model_load_completed(
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info
)
else:
context.services.events.emit_model_load_started(
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
@property
def logger(self):
return self.mgr.logger
def heuristic_import(self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
"""
merger = ModelMerger(self.mgr)
try:
result = merger.merge_diffusion_models_and_save(
model_names = model_names,
base_model = base_model,
merged_model_name = merged_model_name,
alpha = alpha,
interp = interp,
force = force,
)
except AssertionError as e:
raise ValueError(e)
return result

View File

@@ -1,62 +0,0 @@
from typing import Optional, Union
from datetime import datetime
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from invokeai.app.util.misc import get_iso_timestamp
class BoardRecord(BaseModel):
"""Deserialized board record."""
board_id: str = Field(description="The unique ID of the board.")
"""The unique ID of the board."""
board_name: str = Field(description="The name of the board.")
"""The name of the board."""
created_at: Union[datetime, str] = Field(
description="The created timestamp of the board."
)
"""The created timestamp of the image."""
updated_at: Union[datetime, str] = Field(
description="The updated timestamp of the board."
)
"""The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field(
description="The deleted timestamp of the board."
)
"""The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(
description="The name of the cover image of the board."
)
"""The name of the cover image of the board."""
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(
description="The name of the board's cover image."
)
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
board_id = board_dict.get("board_id", "unknown")
board_name = board_dict.get("board_name", "unknown")
cover_image_name = board_dict.get("cover_image_name", "unknown")
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
return BoardRecord(
board_id=board_id,
board_name=board_name,
cover_image_name=cover_image_name,
created_at=created_at,
updated_at=updated_at,
deleted_at=deleted_at,
)

View File

@@ -1,8 +1,6 @@
import datetime
from typing import Optional, Union
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.misc import get_iso_timestamp
@@ -88,35 +86,19 @@ class ImageUrlsDTO(BaseModel):
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
"""Deserialized image record, enriched for the frontend with URLs."""
board_id: Optional[str] = Field(
description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists."""
pass
class GetImagesByNamesResult(BaseModel):
"""The result of a get all image names for board operation."""
image_dtos: list[ImageDTO] = Field(
description="The names of the images that are associated with the board"
)
def image_record_to_dto(
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
image_record: ImageRecord, image_url: str, thumbnail_url: str
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)

View File

@@ -104,7 +104,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
except Exception as e:
error = traceback.format_exc()
logger.error(error)
# Save error
graph_execution_state.set_node_error(invocation.id, error)

View File

@@ -16,14 +16,13 @@ class RestorationServices:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
restoration = Restoration()
# TODO: redo for new model structure
if False and args.restore:
if args.restore:
gfpgan, codeformer = restoration.load_face_restore_models(
args.gfpgan_model_path
)
else:
logger.info("Face restoration disabled")
if False and args.esrgan:
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
logger.info("Upscaling disabled")

View File

@@ -1,6 +1,6 @@
import sqlite3
from threading import Lock
from typing import Generic, TypeVar, Optional, Union, get_args
from typing import Generic, TypeVar, Union, get_args
from pydantic import BaseModel, parse_raw_as
@@ -63,7 +63,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._lock.release()
self._on_changed(item)
def get(self, id: str) -> Optional[T]:
def get(self, id: str) -> Union[T, None]:
try:
self._lock.acquire()
self._cursor.execute(

View File

@@ -22,4 +22,4 @@ class LocalUrlService(UrlServiceBase):
if thumbnail:
return f"{self._base_url}/images/{image_basename}/thumbnail"
return f"{self._base_url}/images/{image_basename}/full_size"
return f"{self._base_url}/images/{image_basename}"

View File

@@ -5,11 +5,9 @@ from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint
)
from .model_management import (
ModelManager, ModelCache, BaseModelType,
ModelType, SubModelType, ModelInfo
)
from .model_management import ModelManager, SDModelComponent
from .safety_checker import SafetyChecker

View File

@@ -5,6 +5,7 @@ from .base import (
InvokeAIGenerator,
InvokeAIGeneratorBasicParams,
InvokeAIGeneratorOutput,
Txt2Img,
Img2Img,
Inpaint,
Generator,

View File

@@ -21,7 +21,7 @@ from PIL import Image, ImageChops, ImageFilter
from accelerate.utils import set_seed
from diffusers import DiffusionPipeline
from tqdm import trange
from typing import Callable, List, Iterator, Optional, Type, Union
from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
@@ -29,6 +29,7 @@ import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
@@ -80,15 +81,13 @@ class InvokeAIGenerator(metaclass=ABCMeta):
self.params=params
self.kwargs = kwargs
def generate(
self,
conditioning: tuple,
scheduler,
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
def generate(self,
prompt: str='',
callback: Optional[Callable]=None,
step_callback: Optional[Callable]=None,
iterations: int=1,
**keyword_args,
)->Iterator[InvokeAIGeneratorOutput]:
'''
Return an iterator across the indicated number of generations.
Each time the iterator is called it will return an InvokeAIGeneratorOutput
@@ -114,46 +113,54 @@ class InvokeAIGenerator(metaclass=ABCMeta):
generator_args.update(keyword_args)
model_info = self.model_info
model_name = model_info.name
model_hash = model_info.hash
with model_info.context as model:
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
model_name = model_info['model_name']
model:StableDiffusionGeneratorPipeline = model_info['model']
model_hash = model_info['hash']
scheduler: Scheduler = self.get_scheduler(
model=model,
scheduler_name=generator_args.get('scheduler')
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
# get conditioning from prompt via Compel package
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(prompt, model=model)
gen_class = self._generator_class()
generator = gen_class(model, self.params.precision, **self.kwargs)
if self.params.variation_amount > 0:
generator.set_variation(generator_args.get('seed'),
generator_args.get('variation_amount'),
generator_args.get('with_variations')
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
else:
configure_model_padding(model,
generator_args.get('seamless',False),
generator_args.get('seamless_axes')
)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(
conditioning=conditioning,
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
iteration_count = range(iterations) if iterations else itertools.count(start=0, step=1)
for i in iteration_count:
results = generator.generate(prompt,
conditioning=(uc, c, extra_conditioning_info),
step_callback=step_callback,
sampler=scheduler,
**generator_args,
)
output = InvokeAIGeneratorOutput(
image=results[0][0],
seed=results[0][1],
attention_maps_images=results[0][2],
model_hash = model_hash,
params=Namespace(model_name=model_name,**generator_args),
)
if callback:
callback(output)
yield output
@classmethod
@@ -166,6 +173,20 @@ class InvokeAIGenerator(metaclass=ABCMeta):
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@classmethod
def _generator_class(cls)->Type[Generator]:
'''
@@ -175,10 +196,17 @@ class InvokeAIGenerator(metaclass=ABCMeta):
'''
return Generator
# ------------------------------------
class Txt2Img(InvokeAIGenerator):
@classmethod
def _generator_class(cls):
from .txt2img import Txt2Img
return Txt2Img
# ------------------------------------
class Img2Img(InvokeAIGenerator):
def generate(self,
init_image: Union[Image.Image, torch.FloatTensor],
init_image: Image.Image | torch.FloatTensor,
strength: float=0.75,
**keyword_args
)->Iterator[InvokeAIGeneratorOutput]:
@@ -195,7 +223,7 @@ class Img2Img(InvokeAIGenerator):
# Takes all the arguments of Img2Img and adds the mask image and the seam/infill stuff
class Inpaint(Img2Img):
def generate(self,
mask_image: Union[Image.Image, torch.FloatTensor],
mask_image: Image.Image | torch.FloatTensor,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 96,
seam_blur: int = 16,
@@ -228,6 +256,25 @@ class Inpaint(Img2Img):
from .inpaint import Inpaint
return Inpaint
# ------------------------------------
class Embiggen(Txt2Img):
def generate(
self,
embiggen: list=None,
embiggen_tiles: list = None,
strength: float=0.75,
**kwargs)->Iterator[InvokeAIGeneratorOutput]:
return super().generate(embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
strength=strength,
**kwargs)
@classmethod
def _generator_class(cls):
from .embiggen import Embiggen
return Embiggen
class Generator:
downsampling_factor: int
latent_channels: int
@@ -238,7 +285,7 @@ class Generator:
self.model = model
self.precision = precision
self.seed = None
self.latent_channels = model.unet.config.in_channels
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.safety_checker = None
self.perlin = 0.0
@@ -249,7 +296,7 @@ class Generator:
self.free_gpu_mem = None
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self, **kwargs):
def get_make_image(self, prompt, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
@@ -265,6 +312,7 @@ class Generator:
def generate(
self,
prompt,
width,
height,
sampler,
@@ -289,6 +337,7 @@ class Generator:
saver.get_stacked_maps_image()
)
make_image = self.get_make_image(
prompt,
sampler=sampler,
init_image=init_image,
width=width,
@@ -570,16 +619,28 @@ class Generator:
device = self.model.device
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(self.latent_channels, 4)
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
if self.use_mps_noise or device.type == "mps":
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device="cpu",
).to(device)
else:
x = torch.randn(
[
1,
input_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
],
dtype=self.torch_dtype(),
device=device,
)
if self.perlin > 0.0:
perlin_noise = self.get_perlin_noise(
width // self.downsampling_factor, height // self.downsampling_factor

View File

@@ -0,0 +1,559 @@
"""
invokeai.backend.generator.embiggen descends from .generator
and generates with .generator.img2img
"""
import numpy as np
import torch
from PIL import Image
from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None
# Replace generate because Embiggen doesn't need/use most of what it does normallly
def generate(
self,
prompt,
iterations=1,
seed=None,
image_callback=None,
step_callback=None,
**kwargs,
):
make_image = self.get_make_image(prompt, step_callback=step_callback, **kwargs)
results = []
seed = seed if seed else self.new_seed()
# Noise will be generated by the Img2Img generator when called
for _ in trange(iterations, desc="Generating"):
# make_image will call Img2Img which will do the equivalent of get_noise itself
image = make_image()
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed, prompt_in=prompt)
seed = self.new_seed()
return results
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_img,
strength,
width,
height,
embiggen,
embiggen_tiles,
step_callback=None,
**kwargs,
):
"""
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
Return value depends on the seed at the time you call it
"""
assert (
not sampler.uses_inpainting_model()
), "--embiggen is not supported by inpainting models"
# Construct embiggen arg array, and sanity check arguments
if embiggen == None: # embiggen can also be called with just embiggen_tiles
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
logger.warning(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
logger.warning(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
logger.warning(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
# and then sort them, because... people.
if embiggen_tiles:
embiggen_tiles = list(map(lambda n: n - 1, embiggen_tiles))
embiggen_tiles.sort()
if strength >= 0.5:
logger.warning(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
gen_img2img = Img2Img(self.model, self.precision)
# Open original init image (not a tensor) to manipulate
initsuperimage = Image.open(init_img)
with Image.open(init_img) as img:
initsuperimage = img.convert("RGB")
# Size of the target super init image in pixels
initsuperwidth, initsuperheight = initsuperimage.size
# Increase by scaling factor if not already resized, using ESRGAN as able
if embiggen[0] != 1.0:
initsuperwidth = round(initsuperwidth * embiggen[0])
initsuperheight = round(initsuperheight * embiggen[0])
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
logger.info(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
4, # upscale scale
)
else:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
2, # upscale scale
)
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
# but from personal experiance it doesn't greatly improve anything after 4x
# Resize to target scaling factor resolution
initsuperimage = initsuperimage.resize(
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS
)
# Use width and height as tile widths and height
# Determine buffer size in pixels
if embiggen[2] < 1:
if embiggen[2] < 0:
embiggen[2] = 0
overlap_size_x = round(embiggen[2] * width)
overlap_size_y = round(embiggen[2] * height)
else:
overlap_size_x = round(embiggen[2])
overlap_size_y = round(embiggen[2])
# With overall image width and height known, determine how many tiles we need
def ceildiv(a, b):
return -1 * (-a // b)
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
# (width - overlap_size_x) is how much new we can fill with a single tile
emb_tiles_x = 1
emb_tiles_y = 1
if (initsuperwidth - width) > 0:
emb_tiles_x = ceildiv(initsuperwidth - width, width - overlap_size_x) + 1
if (initsuperheight - height) > 0:
emb_tiles_y = ceildiv(initsuperheight - height, height - overlap_size_y) + 1
# Sanity
assert (
emb_tiles_x > 1 or emb_tiles_y > 1
), f"ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don't need to Embiggen! Check your arguments."
# Prep alpha layers --------------
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
# agradientL is Left-side transparent
agradientL = (
Image.linear_gradient("L").rotate(90).resize((overlap_size_x, height))
)
# agradientT is Top-side transparent
agradientT = Image.linear_gradient("L").resize((width, overlap_size_y))
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
agradientC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
# Find distance to lower right corner (numpy takes arrays)
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
# Clamp values to max 255
if distanceToLR > 255:
distanceToLR = 255
# Place the pixel as invert of distance
agradientC.putpixel((x, y), round(255 - distanceToLR))
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
agradientAsymC = Image.new("L", (256, 256))
for y in range(256):
for x in range(256):
value = round(max(0, x - (255 - y)) * (255 / max(1, y)))
# Clamp values
value = max(0, value)
value = min(255, value)
agradientAsymC.putpixel((x, y), value)
# Create alpha layers default fully white
alphaLayerL = Image.new("L", (width, height), 255)
alphaLayerT = Image.new("L", (width, height), 255)
alphaLayerLTC = Image.new("L", (width, height), 255)
# Paste gradients into alpha layers
alphaLayerL.paste(agradientL, (0, 0))
alphaLayerT.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientL, (0, 0))
alphaLayerLTC.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0))
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
alphaLayerTaC = alphaLayerT.copy()
alphaLayerTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
alphaLayerLTaC = alphaLayerLTC.copy()
alphaLayerLTaC.paste(
agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
if embiggen_tiles:
# Individual unconnected sides
alphaLayerR = Image.new("L", (width, height), 255)
alphaLayerR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerB = Image.new("L", (width, height), 255)
alphaLayerB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerTB = Image.new("L", (width, height), 255)
alphaLayerTB.paste(agradientT, (0, 0))
alphaLayerTB.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLR = Image.new("L", (width, height), 255)
alphaLayerLR.paste(agradientL, (0, 0))
alphaLayerLR.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
# Sides and corner Layers
alphaLayerRBC = Image.new("L", (width, height), 255)
alphaLayerRBC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerRBC.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerLBC = Image.new("L", (width, height), 255)
alphaLayerLBC.paste(agradientL, (0, 0))
alphaLayerLBC.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerLBC.paste(
agradientC.rotate(90).resize((overlap_size_x, overlap_size_y)),
(0, height - overlap_size_y),
)
alphaLayerRTC = Image.new("L", (width, height), 255)
alphaLayerRTC.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerRTC.paste(agradientT, (0, 0))
alphaLayerRTC.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# All but X layers
alphaLayerABT = Image.new("L", (width, height), 255)
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
alphaLayerABT.paste(agradientL.rotate(180), (width - overlap_size_x, 0))
alphaLayerABT.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABL = Image.new("L", (width, height), 255)
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
alphaLayerABL.paste(agradientT.rotate(180), (0, height - overlap_size_y))
alphaLayerABL.paste(
agradientC.rotate(180).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, height - overlap_size_y),
)
alphaLayerABR = Image.new("L", (width, height), 255)
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
alphaLayerABR.paste(agradientT, (0, 0))
alphaLayerABR.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerABB = Image.new("L", (width, height), 255)
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
alphaLayerABB.paste(agradientL, (0, 0))
alphaLayerABB.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
# All-around layer
alphaLayerAA = Image.new("L", (width, height), 255)
alphaLayerAA.paste(alphaLayerABT, (0, 0))
alphaLayerAA.paste(agradientT, (0, 0))
alphaLayerAA.paste(
agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0)
)
alphaLayerAA.paste(
agradientC.rotate(270).resize((overlap_size_x, overlap_size_y)),
(width - overlap_size_x, 0),
)
# Clean up temporary gradients
del agradientL
del agradientT
del agradientC
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else:
logger.info(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
# Although we could use the same seed for every tile for determinism, at higher strengths this may
# produce duplicated structures for each tile and make the tiling effect more obvious
# instead track and iterate a local seed we pass to Img2Img
seed = self.seed
seedintlimit = (
np.iinfo(np.uint32).max - 1
) # only retreive this one from numpy
for tile in range(emb_tiles_x * emb_tiles_y):
# Don't iterate on first tile
if tile != 0:
if seed < seedintlimit:
seed += 1
else:
seed = 0
# Determine if this is a re-run and replace
if embiggen_tiles and not tile in embiggen_tiles:
continue
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
# Determine bounds to cut up the init image
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
right = left + width
bottom = top + height
# Cropped image of above dimension (does not modify the original)
newinitimage = initsuperimage.crop((left, top, right, bottom))
# DEBUG:
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
newinitimage = torch.from_numpy(newinitimage)
newinitimage = 2.0 * newinitimage - 1.0
newinitimage = newinitimage.to(self.model.device)
clear_cuda_cache = (
kwargs["clear_cuda_cache"] if "clear_cuda_cache" in kwargs else None
)
tile_results = gen_img2img.generate(
prompt,
iterations=1,
seed=seed,
sampler=sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
ddim_eta=ddim_eta,
image_callback=None, # called only after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
width=width,
height=height,
init_image=newinitimage, # notice that init_image is different from init_img
mask_image=None,
strength=strength,
clear_cuda_cache=clear_cuda_cache,
)
emb_tile_store.append(tile_results[0][0])
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
del newinitimage
# Sanity check we have them all
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (
embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)
):
outputsuperimage = Image.new("RGBA", (initsuperwidth, initsuperheight))
if embiggen_tiles:
outputsuperimage.alpha_composite(
initsuperimage.convert("RGBA"), (0, 0)
)
for tile in range(emb_tiles_x * emb_tiles_y):
if embiggen_tiles:
if tile in embiggen_tiles:
intileimage = emb_tile_store.pop(0)
else:
continue
else:
intileimage = emb_tile_store[tile]
intileimage = intileimage.convert("RGBA")
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
left = 0
top = 0
else:
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
# Handle gradients for various conditions
# Handle emb_rerun case
if embiggen_tiles:
# top of image
if emb_row_i == 0:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) not in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerB)
# Otherwise do nothing on this tile
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerR)
else:
intileimage.putalpha(alphaLayerRBC)
elif emb_column_i == emb_tiles_x - 1:
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerLR)
else:
intileimage.putalpha(alphaLayerABT)
# bottom of image
elif emb_row_i == emb_tiles_y - 1:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerRTC)
elif emb_column_i == emb_tiles_x - 1:
# No tiles to look ahead to
intileimage.putalpha(alphaLayerLTC)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABB)
# vertical middle of image
else:
if emb_column_i == 0:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerTaC)
else:
intileimage.putalpha(alphaLayerTB)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerRTC)
else:
intileimage.putalpha(alphaLayerABL)
elif emb_column_i == emb_tiles_x - 1:
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABR)
else:
if (tile + 1) in embiggen_tiles: # Look-ahead right
if (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTaC)
else:
intileimage.putalpha(alphaLayerABR)
elif (
tile + emb_tiles_x
) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerABB)
else:
intileimage.putalpha(alphaLayerAA)
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
else:
if emb_row_i == 0 and emb_column_i >= 1:
intileimage.putalpha(alphaLayerL)
elif emb_row_i >= 1 and emb_column_i == 0:
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerTaC)
else:
if (
emb_column_i + 1 == emb_tiles_x
): # If we don't have anything that can be placed to the right
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerLTaC)
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
logger.error(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image
return outputsuperimage
# end of function declaration
return make_image

Some files were not shown because too many files have changed in this diff Show More