Compare commits

..

64 Commits

Author SHA1 Message Date
psychedelicious
75624e9158 Update invocation_cache_memory.py
Remove extra arg
2023-09-26 14:30:20 +10:00
Martin Kristiansen
a2613948d8 Feature/lru caching 2 (#4657)
* fix(nodes): do not disable invocation cache delete methods

When the runtime disabled flag is on, do not skip the delete methods. This could lead to a hit on a missing resource.

Do skip them when the cache size is 0, because the user cannot change this (must restart app to change it).

* fix(nodes): do not use double-underscores in cache service

* Thread lock for cache

* Making cache LRU

* Bug fixes

* bugfix

* Switching to one Lock and OrderedDict cache

* Removing unused imports

* Move lock cache instance

* Addressing PR comments

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Martin Kristiansen <martin@modyfi.io>
2023-09-26 03:42:09 +00:00
Mary Hipp Rogers
f8392b2f78 Maryhipp/hide use cache checkbox if disabled (#4691)
* add skeleton loading state for queue lit

* hide use cache checkbox if cache is disabled

* undo accidental add

* feat(ui): hide node footer entirely if nothing to show there

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-26 03:26:15 +00:00
psychedelicious
358116bc22 feat(ui): use spinner for queue loading state
Skeletons are for when we know the number of specific content items that are loading. When the queue is loading, we don't know how many items there are, or how many will load, so the whole list should be replaced with loading state.

The previous behaviour rendered a static number of skeletons. That number would rarely be the right number - the app shouldn't say "I'm loading 7 queue items", then load none, or load 50.

A future enhancement could use the queue item skeleton component and go by the total number of queue items, as reported by the queue status. I tried this but had some layout jankiness, not worth the effort right now.

The queue item skeleton component's styling was updated to support this future enhancement, making it exactly the same size as a queue item (it was a bit smaller before).
2023-09-26 13:19:49 +10:00
Millun Atluri
1e3590111d Remove dangling debug statement (#4695)
## What type of PR is this? (check all applicable)

- [X] Bug Fix

## Description

I left a dangling debug statement in a recent merged PR (#4674 ). This
removes it.
2023-09-26 11:08:10 +10:00
Millun Atluri
063b800280 Merge branch 'main' into bugfix/remove-debug-statement 2023-09-26 10:39:29 +10:00
Millun Atluri
3935bf92c8 Add image enhance node to composition pack in communitynods, 9 more n… (#4693)
Updates my Image & Mask Composition Pack from 4 to 14 nodes, and moves
the Enhance Image node into it.

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [X] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:
This is an update of my existing community nodes entries.
      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description
Adds 9 more nodes to my Image & Mask Composition pack including Clipseg,
Image Layer Blend, Masked Latent/Noise Blend, Image Dilate/Erode,
Shadows/Highlights/Midtones masks from image, and more.

## Related Tickets & Documents

n/a

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No : out of scope, tested the nodes, will integrate tests with my
own repo in time as is helpful
2023-09-26 09:41:28 +10:00
Lincoln Stein
066e09b517 remove dangling debug statement 2023-09-25 19:30:41 -04:00
Darren Ringer
869b4a8d49 Add image enhance node to composition pack in communitynods, 9 more nodes
Adds 9 more of my nodes to the Image & Mask Composition Pack in the community nodes page, and integrates the Enhance Image node into that pack as well (formerly it was its own entry).
2023-09-25 18:49:04 -04:00
Mary Hipp
13919ff300 remove unused vars 2023-09-25 17:45:29 -04:00
Mary Hipp
634e5652ef add skeleton loading state for queue lit 2023-09-25 17:45:29 -04:00
Millun Atluri
9bdc718df5 Update 020_INSTALL_MANUAL.md (#4685)
Add some instructions about installing the frontend toolchain when doing
a git-based install.

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission

## Description

[Update
020_INSTALL_MANUAL.md](73ca8ccdb3)

Add some instructions about installing the frontend toolchain when doing
a git-based install.
2023-09-25 21:43:08 +10:00
psychedelicious
73ca8ccdb3 Update 020_INSTALL_MANUAL.md
Add some instructions about installing the frontend toolchain when doing a git-based install.
2023-09-25 21:17:11 +10:00
Lincoln Stein
f37ffda966 replace case statements with if/else to support python 3.9 2023-09-25 18:33:39 +10:00
blessedcoolant
5a9777d443 fix: Auto switch Control Adapter processor to Color on relevant models (#4683)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-09-25 12:48:24 +05:30
blessedcoolant
8072c05ee0 Merge branch 'main' into color-map-auto 2023-09-25 12:48:12 +05:30
blessedcoolant
75ff4f4ca3 fix: Auto switch Control Adapter processor to Color on relevant models 2023-09-25 12:47:43 +05:30
blessedcoolant
30df123221 fix(ui): fix circular dependency (#4679)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

This is actually a platform-specific issue. `madge` is complaining about
a circular dependency on a single file -
`invokeai/frontend/web/src/features/queue/store/nanoStores.ts`. In that
file, we import from the `nanostores` package. Very similar name to the
file itself.

The error only appears on Windows and macOS, I imagine because those
systems both resolve `nanostores` to itself before resolving to the
package.

The solution is simple - rename `nanoStores.ts`. It's now
`queueNanoStore.ts`.


## Related Tickets & Documents

https://discord.com/channels/1020123559063990373/1155434451979993140

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->
2023-09-25 12:47:05 +05:30
blessedcoolant
06193ddbe8 Merge branch 'main' into fix/ui/fix-circular-dep 2023-09-25 12:45:01 +05:30
Lincoln Stein
ce5122f87c Add installer support for ip-adapters (#4677)
## What type of PR is this? (check all applicable)

- [X] Feature


## Have you discussed this change with the InvokeAI team?
- [X] Yes

      
## Have you updated all relevant documentation?
- [X] Yes

## Description

This PR adds support for selecting and installing IP-Adapters at
configure time. The user is offered the four existing InvokeAI IP
Adapters in the UI as shown below. The matching image encoders are
selected and installed behind the scenes. That is, if the user selects
one of the three sd15 adapters, then the SD encoder will be installed.
If they select the sdxl adapter, then the SDXL encoder will be
installed.


![image](https://github.com/invoke-ai/InvokeAI/assets/111189/19f46401-99fb-4f7b-9a5e-8f2efd0a5b77)

Note that the automatic selection of the encoder does not work when the
installer is run in headless mode. I may be able to fix that soon, but
I'm out of time today.
2023-09-24 23:29:57 -04:00
Lincoln Stein
43ebd68313 Merge branch 'main' into install/install-ip-adapters 2023-09-24 23:19:25 -04:00
psychedelicious
ec19fcafb1 fix(ui): fix circular dependency
This is actually a platform-specific issue. `madge` is complaining about a circular dependency on a single file - `invokeai/frontend/web/src/features/queue/store/nanoStores.ts`. In that file, we import from the `nanostores` package. Very similar name to the file itself.

The error only appears on Windows and macOS, I imagine because those systems both resolve `nanostores` to itself before resolving to the package.

The solution is simple - rename `nanoStores.ts`. It's now `queueNanoStore.ts`.
2023-09-25 10:45:38 +10:00
Yorzaren
6fcc7d4c4b Re-enable button for seeds set to zero
Change the statement to explicitly look for null and undefined so it doesn't fail to re-enable the button on images with seeds set to zero.
2023-09-25 10:33:35 +10:00
Lincoln Stein
912087e4dc blackify 2023-09-24 19:00:38 -04:00
Lincoln Stein
593fb95213 ip_adapter_sd15 & its encoder will now be installed by default during headless install 2023-09-24 19:00:21 -04:00
psychedelicious
6d821b32d3 fix(ui): fix hidden dropdowns
Notably in the change board modal.
2023-09-25 08:13:16 +10:00
Lincoln Stein
297f96c16b add installer support for ip-adapters 2023-09-24 17:31:08 -04:00
Martin Kristiansen
0e53b27655 Removing logging import from api_api.py 2023-09-25 07:25:32 +10:00
Lincoln Stein
35ae9f6e71 fix probing for ip_adapter folders (#4669)
## What type of PR is this? (check all applicable)

- [X] Bug Fix
- [ ] Optimizatio

## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] Np

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description

ip_adapter models live in a folder containing the file
`image_encoder.txt` and a safetensors file. The load-time probe for new
models was detecting the files contained within the folder rather than
the folder itself, and so models.yaml was not getting correctly updated.
This fixes the issue.

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-09-24 15:45:46 -04:00
Lincoln Stein
a1d9e6b871 Merge branch 'main' into bugfix/probe_ip_adapter 2023-09-24 15:39:43 -04:00
Lincoln Stein
f05379f965 Enable v_prediction for sd-1 models (#4674)
## What type of PR is this? (check all applicable)

- [X] Feature

## Have you discussed this change with the InvokeAI team?
- [X] Yes

      
## Have you updated all relevant documentation?
- [X] Yes

## Description

It turns out that there are a few SD-1 models that use the
`v_prediction` SchedulerPredictionType. Examples here:
https://huggingface.co/zatochu/EasyFluff/tree/main . Previously we only
allowed the user to set the prediction type for sd-2 models. This PR
does three things:

1. Add a new checkpoint configuration file `v1-inference-v.yaml`. This
will install automatically on new installs, but for existing installs
users will need to update and then run `invokeai-configure` to get it.
2. Change the prompt on the web model install page to indicate that some
SD-1 models use the "v_prediction" method
3. Provide backend support for sd-1 models that use the v_prediction
method.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #4277 

## QA Instructions, Screenshots, Recordings

Update, run `invoke-ai-configure --yes --skip-sd --skip-support`, and
then use the web interface to install
https://huggingface.co/zatochu/EasyFluff/resolve/main/EasyFluffV11.2.safetensors
with the prediction type set to "v_prediction." Check that the installed
model uses configuration `v1-inference-v.yaml`.

If "None" is selected from the install menu, check that SD-1 models
default to `v1-inference.yaml` and SD-2 default to
`v2-inference-v.yaml`.

Also try installing a checkpoint at a local path if a like-named config
.yaml file is located next to it in the same directory. This should
override everything else and use the local path .yaml.

## Added/updated tests?

- [ ] Yes
- [X] No
2023-09-24 15:24:36 -04:00
Lincoln Stein
e34e6d6e80 enable v_prediction for sd-1 models 2023-09-24 12:22:29 -04:00
Lincoln Stein
86cb53342a fix probing for ip_adapter folders 2023-09-23 22:32:03 -04:00
Lincoln Stein
e3de996525 Rename getLogger() to get_logger() (#4275)
## What type of PR is this? (check all applicable)

- [X] Refactor
## Have you discussed this change with the InvokeAI team?

- [ ] Yes
- [X] No, because: trivial fix

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No

## Description

It annoyed me that the class method to get the invokeai logger was
`InvokeAILogger.getLogger()`. We do not use camelCase anywhere else. So
this PR renames the method `get_logger()`.
2023-09-23 14:56:23 -07:00
Lincoln Stein
25a71a1791 Merge branch 'main' into refactor/rename-get-logger 2023-09-23 14:49:07 -07:00
Wubbbi
d16583ad1c Unpin Safetensors dependencies, safeguard against breaking changes 2023-09-23 10:23:05 -04:00
blessedcoolant
46db1dd18f feat(ui): allow numbers to connect to strings (#4653)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Description

Pydantic handles the casting so this is always safe.

Also de-duplicate some validation logic code that was needlessly
duplicated.
2023-09-23 10:09:59 +05:30
Jonathan
4c9344b0ee Merge branch 'main' into feat/ui/allow-number-to-string 2023-09-22 21:02:28 -05:00
psychedelicious
cba31efd78 fix(ui): do not process gallery logic for image primitive node 2023-09-23 10:02:55 +10:00
psychedelicious
4d01b5c0f2 fix(ui): hide workflow and gallery checkboxes on image primitive
This node doesn't actually *save* the image, so these checkboxes do nothing on it.
2023-09-23 10:02:55 +10:00
psychedelicious
e02af8f518 fix(ui): fix node glow styling 2023-09-23 10:02:55 +10:00
blessedcoolant
c485cf568b feat: Add Color PreProcessor to Linear UI 2023-09-22 17:30:12 -04:00
blessedcoolant
51451cbf21 fix: Handle cases where tile size > image size 2023-09-22 17:30:12 -04:00
blessedcoolant
0363a06963 feat: Add Color Map Preprocessor 2023-09-22 17:30:12 -04:00
psychedelicious
cc280cbef1 feat(ui): refactor informational popover
- Change translations to use arrays of paragraphs instead of a single paragraph.
- Change component to accept a `feature` prop to identify the feature which the popover describes.
- Add optional `wrapperProps`: passed to the wrapper element, allowing more flexibility when using the popover
- Add optional `popoverProps`: passed to the `<Popover />` component, allowing for overriding individual instances of the popover's props
- Move definitions of features and popover settings to `invokeai/frontend/web/src/common/components/IAIInformationalPopover/constants.ts`
  - Add some type safety to the `feature` prop
  - Edit `POPOVER_DATA` to provide `image`, `href`, `buttonLabel`, and any popover props. The popover props are applied to all instances of the popover for the given feature. Note that the component prop `popoverProps` will override settings here.
- Remove the popover's arrow. Because the popover is wrapping groups of components, sometimes the error ends up pointing to nothing, which looks kinda janky. I've just removed the arrow entirely, but feel free to add it back if you think it looks better.
- Use a `link` variant button with external link icon to better communicate that clicking the button will open a new tab.
- Default the link button label to "Learn More" (if a label is provided, that will be used instead)
- Make default position `top`, but set manually set some to `right` - namely, anything with a dropdown. This prevents the popovers from obscuring or being obscured by the dropdowns.
- Do a bit more restructuring of the Popover component itself, and how it is integrated with other components
- More ref forwarding
- Make the open delay 1s
- Set the popovers to use lazy mounting (eg do not mount until the user opens the thing)
- Update the verbiage for many popover items and add missing dynamic prompts stuff
2023-09-22 13:23:26 -04:00
psychedelicious
7544eadd48 fix(nodes): do not use double-underscores in cache service 2023-09-22 13:15:03 -04:00
psychedelicious
7d683b4db6 fix(nodes): do not disable invocation cache delete methods
When the runtime disabled flag is on, do not skip the delete methods. This could lead to a hit on a missing resource.

Do skip them when the cache size is 0, because the user cannot change this (must restart app to change it).
2023-09-22 13:15:03 -04:00
psychedelicious
60b3c6a201 feat(nodes): provide board_id in image creation 2023-09-22 10:11:20 -04:00
psychedelicious
88c8cb61f0 feat(ui): update linear UI to use new board field on save_image
- No longer need to make network request to add image to board after it's finished - removed
- Update linear graphs & upscale graph to save image to the board
- Update autoSwitch logic so when image is generated we still switch to the right board
2023-09-22 10:11:20 -04:00
psychedelicious
43fbac26df feat: move board logic to save_image node
- Remove the add-to-board node
- Create `BoardField` field type & add it to `save_image` node
- Add UI for `BoardField`
- Tighten up some loose types
- Make `save_image` node, in workflow editor, default to not intermediate
- Patch bump `save_image`
2023-09-22 10:11:20 -04:00
Brandon Rising
627444e17c Add images to a board through nodes 2023-09-22 10:11:20 -04:00
psychedelicious
5601858f4f feat(ui): allow numbers to connect to strings
Pydantic handles the casting so this is always safe.

Also de-duplicate some validation logic code that was needlessly duplicated.
2023-09-22 21:51:08 +10:00
Millun Atluri
b5e1ba34b3 Merge branch 'main' into refactor/rename-get-logger 2023-09-07 23:19:59 +10:00
psychedelicious
58aa159a50 fix(backend): fix remaining instances of getLogger() 2023-09-05 10:43:30 +10:00
psychedelicious
d8f7c19030 Merge branch 'main' into refactor/rename-get-logger 2023-09-05 10:37:53 +10:00
Millun Atluri
24132a7950 Merge branch 'main' into refactor/rename-get-logger 2023-08-28 11:38:37 +10:00
Lincoln Stein
45d172d5a8 Merge branch 'main' into refactor/rename-get-logger 2023-08-20 16:08:32 -04:00
Lincoln Stein
3cb6d333f6 Merge branch 'main' into refactor/rename-get-logger 2023-08-17 20:31:30 -04:00
Lincoln Stein
4570702dd0 hotfix for crashing api 2023-08-17 20:17:10 -04:00
Lincoln Stein
1d107f30e5 remove getLogger() completely 2023-08-17 19:17:38 -04:00
Lincoln Stein
79084e9e20 Merge branch 'main' into refactor/rename-get-logger 2023-08-17 19:01:17 -04:00
Lincoln Stein
fc9b4539a3 Merge branch 'main' into refactor/rename-get-logger 2023-08-16 09:19:52 -04:00
Lincoln Stein
09ef57718e fix docs 2023-08-14 20:20:35 -04:00
Lincoln Stein
cab8239ba8 add get_logger() as alias for getLogger() 2023-08-14 20:18:09 -04:00
90 changed files with 2268 additions and 2178 deletions

View File

@@ -296,8 +296,18 @@ code for InvokeAI. For this to work, you will need to install the
on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
> **Why do I need the frontend toolchain**?
>
> The InvokeAI project uses trunk-based development. That means our `main` branch is the development branch, and releases are tags on that branch. Because development is very active, we don't keep an updated build of the UI in `main` - we only build it for production releases.
>
> That means that between releases, to have a functioning application when running directly from the repo, you will need to run the UI in dev mode or build it regularly (any time the UI code changes).
1. Create a fork of the InvokeAI repository through the GitHub UI or [this link](https://github.com/invoke-ai/InvokeAI/fork)
1. From the command line, run this command:
2. From the command line, run this command:
```bash
git clone https://github.com/<your_github_username>/InvokeAI.git
```
@@ -305,10 +315,10 @@ Guide](https://github.com/git-guides/install-git)
This will create a directory named `InvokeAI` and populate it with the
full source code from your fork of the InvokeAI repository.
2. Activate the InvokeAI virtual environment as per step (4) of the manual
3. Activate the InvokeAI virtual environment as per step (4) of the manual
installation protocol (important!)
3. Enter the InvokeAI repository directory and run one of these
4. Enter the InvokeAI repository directory and run one of these
commands, based on your GPU:
=== "CUDA (NVidia)"
@@ -334,11 +344,15 @@ installation protocol (important!)
Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command.
You can now run `invokeai` and its related commands. The code will be
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files
and watch the code's behavior change.
4. If you wish to contribute to the InvokeAI project, you are
When you pull in new changes to the repo, be sure to re-build the UI.
7. If you wish to contribute to the InvokeAI project, you are
encouraged to establish a GitHub account and "fork"
https://github.com/invoke-ai/InvokeAI into your own copy of the
repository. You can then use GitHub functions to create and submit

View File

@@ -121,18 +121,6 @@ To be imported, an .obj must use triangulated meshes, so make sure to enable tha
**Example Usage:**
![depth from obj usage graph](https://raw.githubusercontent.com/dwringer/depth-from-obj-node/main/depth_from_obj_usage.jpg)
--------------------------------
### Enhance Image (simple adjustments)
**Description:** Boost or reduce color saturation, contrast, brightness, sharpness, or invert colors of any image at any stage with this simple wrapper for pillow [PIL]'s ImageEnhance module.
Color inversion is toggled with a simple switch, while each of the four enhancer modes are activated by entering a value other than 1 in each corresponding input field. Values less than 1 will reduce the corresponding property, while values greater than 1 will enhance it.
**Node Link:** https://github.com/dwringer/image-enhance-node
**Example Usage:**
![enhance image usage graph](https://raw.githubusercontent.com/dwringer/image-enhance-node/main/image_enhance_usage.jpg)
--------------------------------
### Generative Grammar-Based Prompt Nodes
@@ -153,16 +141,26 @@ This includes 3 Nodes:
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
This includes 4 Nodes:
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
This includes 14 Nodes:
- *Adjust Image Hue Plus* - Rotate the hue of an image in one of several different color spaces.
- *Blend Latents/Noise (Masked)* - Use a mask to blend part of one latents tensor [including Noise outputs] into another. Can be used to "renoise" sections during a multi-stage [masked] denoising process.
- *Enhance Image* - Boost or reduce color saturation, contrast, brightness, sharpness, or invert colors of any image at any stage with this simple wrapper for pillow [PIL]'s ImageEnhance module.
- *Equivalent Achromatic Lightness* - Calculates image lightness accounting for Helmholtz-Kohlrausch effect based on a method described by High, Green, and Nussbaum (2023).
- *Text to Mask (Clipseg)* - Input a prompt and an image to generate a mask representing areas of the image matched by the prompt.
- *Text to Mask Advanced (Clipseg)* - Output up to four prompt masks combined with logical "and", logical "or", or as separate channels of an RGBA image.
- *Image Layer Blend* - Perform a layered blend of two images using alpha compositing. Opacity of top layer is selectable, with optional mask and several different blend modes/color spaces.
- *Image Compositor* - Take a subject from an image with a flat backdrop and layer it on another image using a chroma key or flood select background removal.
- *Image Dilate or Erode* - Dilate or expand a mask (or any image!). This is equivalent to an expand/contract operation.
- *Image Value Thresholds* - Clip an image to pure black/white beyond specified thresholds.
- *Offset Latents* - Offset a latents tensor in the vertical and/or horizontal dimensions, wrapping it around.
- *Offset Image* - Offset an image in the vertical and/or horizontal dimensions, wrapping it around.
- *Shadows/Highlights/Midtones* - Extract three masks (with adjustable hard or soft thresholds) representing shadows, midtones, and highlights regions of an image.
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
**Node Link:** https://github.com/dwringer/composition-nodes
**Example Usage:**
![composition nodes usage graph](https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_nodes_usage.jpg)
**Nodes and Output Examples:**
![composition nodes usage graph](https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg)
--------------------------------
### Size Stepper Nodes

View File

@@ -49,7 +49,7 @@ def check_internet() -> bool:
return False
logger = InvokeAILogger.getLogger()
logger = InvokeAILogger.get_logger()
class ApiDependencies:

View File

@@ -45,17 +45,13 @@ async def upload_image(
if not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
metadata: Optional[str] = None
workflow: Optional[str] = None
contents = await file.read()
try:
pil_image = Image.open(io.BytesIO(contents))
if crop_visible:
bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox)
metadata = pil_image.info.get("invokeai_metadata", None)
workflow = pil_image.info.get("invokeai_workflow", None)
except Exception:
# Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image")
@@ -67,8 +63,6 @@ async def upload_image(
image_category=image_category,
session_id=session_id,
board_id=board_id,
metadata=metadata,
workflow=workflow,
is_intermediate=is_intermediate,
)

View File

@@ -146,7 +146,8 @@ async def update_model(
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoint files", default="v_prediction"
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
default=None,
),
) -> ImportModelResponse:
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""

View File

@@ -8,7 +8,6 @@ app_config.parse_args()
if True: # hack to make flake8 happy with imports coming after setting up the config
import asyncio
import logging
import mimetypes
import socket
from inspect import signature
@@ -41,7 +40,9 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
logger = InvokeAILogger.getLogger(config=app_config)
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.get_logger(config=app_config)
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
@@ -223,7 +224,7 @@ def invoke_api():
exc_info=e,
)
else:
jurigged.watch(logger=InvokeAILogger.getLogger(name="jurigged").info)
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
port = find_port(app_config.port)
if port != app_config.port:
@@ -242,7 +243,7 @@ def invoke_api():
# replace uvicorn's loggers with InvokeAI's for consistent appearance
for logname in ["uvicorn.access", "uvicorn"]:
log = logging.getLogger(logname)
log = InvokeAILogger.get_logger(logname)
log.handlers.clear()
for ch in logger.handlers:
log.addHandler(ch)

View File

@@ -7,8 +7,6 @@ from .services.config import InvokeAIAppConfig
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
# which are imported/used before parse_args() is called will get the default config values instead of the
# values from the command line or config file.
config = InvokeAIAppConfig.get_config()
config.parse_args()
if True: # hack to make flake8 happy with imports coming after setting up the config
import argparse
@@ -61,8 +59,9 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
logger = InvokeAILogger().getLogger(config=config)
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().get_logger(config=config)
class CliCommand(BaseModel):

View File

@@ -71,12 +71,7 @@ class FieldDescriptions:
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_dict_collection = "Collection of MetadataDicts"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
core_metadata = "Optional core metadata to be written to image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
@@ -180,12 +175,8 @@ class UIType(str, Enum):
Scheduler = "Scheduler"
WorkflowField = "WorkflowField"
IsIntermediate = "IsIntermediate"
MetadataField = "MetadataField"
BoardField = "BoardField"
Any = "Any"
MetadataItem = "MetadataItem"
MetadataItemCollection = "MetadataItemCollection"
MetadataItemPolymorphic = "MetadataItemPolymorphic"
MetadataDict = "MetadataDict"
# endregion
@@ -631,8 +622,23 @@ class BaseInvocation(ABC, BaseModel):
is_intermediate: bool = InputField(
default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate
)
workflow: Optional[str] = InputField(
default=None,
description="The workflow to save with the image",
ui_type=UIType.WorkflowField,
)
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
@validator("workflow", pre=True)
def validate_workflow_is_json(cls, v):
if v is None:
return None
try:
json.loads(v)
except json.decoder.JSONDecodeError:
raise ValueError("Workflow must be valid JSON")
return v
UIConfig: ClassVar[Type[UIConfigBase]]
@@ -737,19 +743,3 @@ def invocation_output(
return cls
return wrapper
class WithWorkflow(BaseModel):
workflow: Optional[str] = InputField(
default=None, description=FieldDescriptions.workflow, ui_type=UIType.WorkflowField
)
@validator("workflow", pre=True)
def validate_workflow_is_json(cls, v):
if v is None:
return None
try:
json.loads(v)
except json.decoder.JSONDecodeError:
raise ValueError("Workflow must be valid JSON")
return v

View File

@@ -25,7 +25,6 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.primitives import ImageField, ImageOutput
@@ -39,7 +38,6 @@ from .baseinvocation import (
InputField,
InvocationContext,
OutputField,
WithWorkflow,
invocation,
invocation_output,
)
@@ -129,7 +127,7 @@ class ControlNetInvocation(BaseInvocation):
@invocation(
"image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet", version="1.0.0"
)
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ImageProcessorInvocation(BaseInvocation):
"""Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process")
@@ -152,7 +150,6 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)

View File

@@ -7,21 +7,13 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
FieldDescriptions,
Input,
InputField,
InvocationContext,
WithWorkflow,
invocation,
)
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@@ -45,7 +37,7 @@ class ShowImageInvocation(BaseInvocation):
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline"""
width: int = InputField(default=512, description="The width of the image")
@@ -63,7 +55,6 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -75,7 +66,7 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
image: ImageField = InputField(description="The image to crop")
@@ -97,7 +88,6 @@ class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -109,7 +99,7 @@ class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image."""
base_image: ImageField = InputField(description="The base image")
@@ -151,7 +141,6 @@ class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -163,7 +152,7 @@ class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
image: ImageField = InputField(description="The image to create the mask from")
@@ -183,7 +172,6 @@ class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -195,7 +183,7 @@ class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
image1: ImageField = InputField(description="The first image to multiply")
@@ -214,7 +202,6 @@ class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -229,7 +216,7 @@ IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image."""
image: ImageField = InputField(description="The image to get the channel from")
@@ -247,7 +234,6 @@ class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -262,7 +248,7 @@ IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode."""
image: ImageField = InputField(description="The image to convert")
@@ -280,7 +266,6 @@ class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -292,7 +277,7 @@ class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageBlurInvocation(BaseInvocation):
"""Blurs an image"""
image: ImageField = InputField(description="The image to blur")
@@ -315,7 +300,6 @@ class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -347,13 +331,16 @@ PIL_RESAMPLING_MAP = {
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions"""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, gt=0, description="The width to resize to (px)")
height: int = InputField(default=512, gt=0, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@@ -372,7 +359,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
@@ -384,7 +371,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor"""
image: ImageField = InputField(description="The image to scale")
@@ -414,7 +401,6 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -426,7 +412,7 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
@@ -448,7 +434,6 @@ class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -460,7 +445,7 @@ class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
@@ -482,7 +467,6 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -494,10 +478,13 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images"""
image: ImageField = InputField(description="The image to check")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@@ -518,7 +505,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
@@ -538,11 +525,14 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation(
"img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image", version="1.0.0"
)
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image"""
image: ImageField = InputField(description="The image to check")
text: str = InputField(default="InvokeAI", description="Watermark text")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@@ -554,7 +544,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
@@ -566,7 +556,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image"""
image: ImageField = InputField(description="The image to apply the mask to")
@@ -600,7 +590,6 @@ class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -614,7 +603,7 @@ class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation(
"mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image", version="1.0.0"
)
class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
mask1: ImageField = InputField(description="The first mask to combine")
@@ -633,7 +622,6 @@ class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -645,7 +633,7 @@ class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ColorCorrectInvocation(BaseInvocation):
"""
Shifts the colors of a target image to match the reference image, optionally
using a mask to only color-correct certain regions of the target image.
@@ -744,7 +732,6 @@ class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -756,7 +743,7 @@ class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -784,7 +771,6 @@ class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -860,7 +846,7 @@ CHANNEL_FORMATS = {
category="image",
version="1.0.0",
)
class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageChannelOffsetInvocation(BaseInvocation):
"""Add or subtract a value from a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -894,7 +880,6 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -931,7 +916,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
category="image",
version="1.0.0",
)
class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ImageChannelMultiplyInvocation(BaseInvocation):
"""Scale a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -971,7 +956,6 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata)
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
metadata=self.metadata.data if self.metadata else None,
)
return ImageOutput(
@@ -991,11 +975,16 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata)
version="1.0.1",
use_cache=False,
)
class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class SaveImageInvocation(BaseInvocation):
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
image: ImageField = InputField(description=FieldDescriptions.image)
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@@ -1008,7 +997,7 @@ class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)

View File

@@ -5,7 +5,6 @@ from typing import Literal, Optional, get_args
import numpy as np
from PIL import Image, ImageOps
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
@@ -14,7 +13,7 @@ from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithWorkflow, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
@@ -120,7 +119,7 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
@@ -144,7 +143,6 @@ class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -156,7 +154,7 @@ class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
@@ -181,7 +179,6 @@ class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -195,7 +192,7 @@ class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0"
)
class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
@@ -235,7 +232,6 @@ class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
@@ -247,7 +243,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class LaMaInfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
@@ -264,8 +260,6 @@ class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@@ -276,7 +270,7 @@ class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class CV2InfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill")
@@ -293,8 +287,6 @@ class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -23,7 +23,7 @@ from pydantic import validator
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import (
DenoiseMaskField,
DenoiseMaskOutput,
@@ -62,7 +62,6 @@ from .baseinvocation import (
InvocationContext,
OutputField,
UIType,
WithWorkflow,
invocation,
invocation_output,
)
@@ -622,7 +621,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
@invocation(
"l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.0.0"
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
latents: LatentsField = InputField(
@@ -635,6 +634,11 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -703,7 +707,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)

View File

@@ -1,19 +1,18 @@
from typing import Any, Optional, Union
from typing import Optional
from pydantic import BaseModel, Field
from pydantic import Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
from invokeai.app.invocations.model import LoRAModelField
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from ...version import __version__
@@ -26,78 +25,159 @@ class LoRAMetadataField(BaseModelExcludeNull):
weight: float = Field(description="The weight of the LoRA model")
class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI."""
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
generation_mode: str = Field(
description="The generation mode that output this image",
)
created_by: Optional[str] = Field(description="The name of the creator of the image")
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
height: int = Field(description="The height parameter")
seed: int = Field(description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: Optional[int] = Field(
default=None,
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Optional[VAEModelField] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# Latents-to-Latents
strength: Optional[float] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Optional[str] = Field(default=None, description="The name of the initial image")
# SDXL
positive_style_prompt: Optional[str] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Optional[str] = Field(default=None, description="The negative style prompt parameter")
# SDXL Refiner
refiner_model: Optional[MainModelField] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Optional[float] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Optional[int] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Optional[str] = Field(default=None, description="The scheduler used for the refiner")
refiner_positive_aesthetic_score: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_negative_aesthetic_score: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Optional[float] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModelExcludeNull):
"""An image's generation metadata"""
metadata: Optional[dict] = Field(default=None, description="The metadata associated with the image")
workflow: Optional[dict] = Field(default=None, description="The workflow associated with the image")
metadata: Optional[dict] = Field(
default=None,
description="The image's core metadata, if it was created in the Linear or Canvas UI",
)
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
class MetadataItem(BaseModel):
label: str = Field(description=FieldDescriptions.metadata_item_label)
value: Any = Field(description=FieldDescriptions.metadata_item_value)
@invocation_output("metadata_accumulator_output")
class MetadataAccumulatorOutput(BaseInvocationOutput):
"""The output of the MetadataAccumulator node"""
metadata: CoreMetadata = OutputField(description="The core metadata for the image")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
@invocation(
"metadata_accumulator", title="Metadata Accumulator", tags=["metadata"], category="metadata", version="1.0.0"
)
class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object"""
item: MetadataItem = OutputField(description="Metadata Item")
generation_mode: str = InputField(
description="The generation mode that output this image",
)
positive_prompt: str = InputField(description="The positive prompt parameter")
negative_prompt: str = InputField(description="The negative prompt parameter")
width: int = InputField(description="The width parameter")
height: int = InputField(description="The height parameter")
seed: int = InputField(description="The seed used for noise generation")
rand_device: str = InputField(description="The device used for random number generation")
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
steps: int = InputField(description="The number of steps used for inference")
scheduler: str = InputField(description="The scheduler used for inference")
clip_skip: Optional[int] = Field(
default=None,
description="The number of skipped CLIP layers",
)
model: MainModelField = InputField(description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Optional[str] = InputField(
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# SDXL
positive_style_prompt: Optional[str] = InputField(
default=None,
description="The positive style prompt parameter",
)
negative_style_prompt: Optional[str] = InputField(
default=None,
description="The negative style prompt parameter",
)
@invocation("metadata_item", title="Metadata Item", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataItemInvocation(BaseInvocation):
"""Used to create an arbitrary metadata item. Provide "label" and make a connection to "value" to store that data as the value."""
# SDXL Refiner
refiner_model: Optional[MainModelField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
refiner_cfg_scale: Optional[float] = InputField(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Optional[int] = InputField(
default=None,
description="The number of steps used for the refiner",
)
refiner_scheduler: Optional[str] = InputField(
default=None,
description="The scheduler used for the refiner",
)
refiner_positive_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_negative_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_start: Optional[float] = InputField(
default=None,
description="The start value used for refiner denoising",
)
label: str = InputField(description=FieldDescriptions.metadata_item_label)
value: Any = InputField(description=FieldDescriptions.metadata_item_value, ui_type=UIType.Any)
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""
def invoke(self, context: InvocationContext) -> MetadataItemOutput:
return MetadataItemOutput(item=MetadataItem(label=self.label, value=self.value))
class MetadataDict(BaseModel):
"""Accepts a single MetadataItem or collection of MetadataItems (use a Collect node)."""
data: dict[str, Any] = Field(description="Metadata dict")
@invocation_output("metadata_dict")
class MetadataDictOutput(BaseInvocationOutput):
metadata_dict: MetadataDict = OutputField(description="Metadata Dict")
@invocation("metadata", title="Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataInvocation(BaseInvocation):
"""Takes a MetadataItem or collection of MetadataItems and outputs a MetadataDict."""
items: Union[list[MetadataItem], MetadataItem] = InputField(description=FieldDescriptions.metadata_item_polymorphic)
def invoke(self, context: InvocationContext) -> MetadataDictOutput:
if isinstance(self.items, MetadataItem):
# single metadata item
data = {self.items.label: self.items.value}
else:
# collection of metadata items
data = {item.label: item.value for item in self.items}
data.update({"app_version": __version__})
return MetadataDictOutput(metadata_dict=(MetadataDict(data=data)))
@invocation("merge_metadata_dict", title="Metadata Merge", tags=["metadata"], category="metadata", version="1.0.0")
class MergeMetadataDictInvocation(BaseInvocation):
"""Merged a collection of MetadataDict into a single MetadataDict."""
collection: list[MetadataDict] = InputField(description=FieldDescriptions.metadata_dict_collection)
def invoke(self, context: InvocationContext) -> MetadataDictOutput:
data = {}
for item in self.collection:
data.update(item.data)
return MetadataDictOutput(metadata_dict=MetadataDict(data=data))
class WithMetadata(BaseModel):
metadata: Optional[MetadataDict] = InputField(default=None, description=FieldDescriptions.metadata)
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))

View File

@@ -12,7 +12,7 @@ from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, Field, validator
from tqdm import tqdm
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
@@ -28,7 +28,6 @@ from .baseinvocation import (
Input,
InputField,
InvocationContext,
WithWorkflow,
OutputField,
UIComponent,
UIType,
@@ -322,7 +321,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
category="image",
version="1.0.0",
)
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
latents: LatentsField = InputField(
@@ -333,6 +332,11 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
description=FieldDescriptions.vae,
input=Input.Connection,
)
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
# tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
def invoke(self, context: InvocationContext) -> ImageOutput:
@@ -371,7 +375,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)

View File

@@ -251,9 +251,7 @@ class ImageCollectionOutput(BaseInvocationOutput):
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0")
class ImageInvocation(
BaseInvocation,
):
class ImageInvocation(BaseInvocation):
"""An image primitive value"""
image: ImageField = InputField(description="The image to load")

View File

@@ -7,12 +7,11 @@ import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from invokeai.app.invocations.metadata import WithMetadata
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithWorkflow, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
# TODO: Populate this from disk?
# TODO: Use model manager to load?
@@ -25,7 +24,7 @@ ESRGAN_MODELS = Literal[
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.0.0")
class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image")
@@ -107,7 +106,6 @@ class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.data if self.metadata else None,
workflow=self.workflow,
)

View File

@@ -117,6 +117,10 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if from_type is int and to_type is float:
return True
# allow int|float -> str, pydantic will cast for us
if (from_type is int or from_type is float) and to_type is str:
return True
# if not issubclass(from_type, to_type):
if not is_union_subtype(from_type, to_type):
return False
@@ -421,14 +425,6 @@ class Graph(BaseModel):
return True
def _is_destination_field_Any(self, edge: Edge) -> bool:
"""Checks if the destination field for an edge is of type typing.Any"""
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == Any
def _is_destination_field_list_of_Any(self, edge: Edge) -> bool:
"""Checks if the destination field for an edge is of type typing.Any"""
return get_input_field(self.get_node(edge.destination.node_id), edge.destination.field) == list[Any]
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
@@ -481,19 +477,8 @@ class Graph(BaseModel):
f"Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate that we are not connecting collector to iterator (currently unsupported)
if isinstance(from_node, CollectInvocation) and isinstance(to_node, IterateInvocation):
raise InvalidEdgeError(
f"Cannot connect collector to iterator: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
)
# Validate if collector output type matches input type (if this edge results in both being set) - skip if the destination field is not Any or list[Any]
if (
isinstance(from_node, CollectInvocation)
and edge.source.field == "collection"
and not self._is_destination_field_list_of_Any(edge)
and not self._is_destination_field_Any(edge)
):
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(edge.source.node_id, new_output=edge.destination):
raise InvalidEdgeError(
f"Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}"
@@ -726,15 +711,16 @@ class Graph(BaseModel):
# Get the input root type
input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # type: ignore
# Verify that all outputs are lists
# if not all((get_origin(f) == list for f in output_fields)):
# return False
# Verify that all outputs are lists
if not all(is_list_or_contains_list(f) for f in output_fields):
return False
# Verify that all outputs match the input type (are a base class or the same class)
if not all(
is_union_subtype(input_root_type, get_args(f)[0]) or issubclass(input_root_type, get_args(f)[0])
for f in output_fields
):
if not all((issubclass(input_root_type, get_args(f)[0]) for f in output_fields)):
return False
return True

View File

@@ -59,7 +59,7 @@ class ImageFileStorageBase(ABC):
self,
image: PILImageType,
image_name: str,
metadata: Optional[Union[str, dict]] = None,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
@@ -109,7 +109,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
self,
image: PILImageType,
image_name: str,
metadata: Optional[Union[str, dict]] = None,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
@@ -119,10 +119,20 @@ class DiskImageFileStorage(ImageFileStorageBase):
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata) if type(metadata) is dict else metadata)
if workflow is not None:
pnginfo.add_text("invokeai_workflow", workflow)
if metadata is not None or workflow is not None:
if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
if workflow is not None:
pnginfo.add_text("invokeai_workflow", workflow)
else:
# For uploaded images, we want to retain metadata. PIL strips it on save; manually add it back
# TODO: retain non-invokeai metadata on save...
original_metadata = image.info.get("invokeai_metadata", None)
if original_metadata is not None:
pnginfo.add_text("invokeai_metadata", original_metadata)
original_workflow = image.info.get("invokeai_workflow", None)
if original_workflow is not None:
pnginfo.add_text("invokeai_workflow", original_workflow)
image.save(image_path, "PNG", pnginfo=pnginfo)

View File

@@ -3,12 +3,11 @@ import sqlite3
import threading
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Generic, Optional, TypeVar, Union, cast
from typing import Generic, Optional, TypeVar, cast
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.models.image_record import ImageRecord, ImageRecordChanges, deserialize_image_record
@@ -82,7 +81,7 @@ class ImageRecordStorageBase(ABC):
pass
@abstractmethod
def get_metadata(self, image_name: str) -> ImageMetadata:
def get_metadata(self, image_name: str) -> Optional[dict]:
"""Gets an image's metadata'."""
pass
@@ -135,8 +134,7 @@ class ImageRecordStorageBase(ABC):
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[Union[str, dict]],
workflow: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
@@ -206,13 +204,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
)
if "workflow" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images ADD COLUMN workflow TEXT;
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
@@ -278,31 +269,22 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
return deserialize_image_record(dict(result))
def get_metadata(self, image_name: str) -> ImageMetadata:
def get_metadata(self, image_name: str) -> Optional[dict]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT metadata, workflow FROM images
SELECT images.metadata FROM images
WHERE image_name = ?;
""",
(image_name,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
if not result:
return ImageMetadata()
as_dict = dict(result)
metadata_raw = cast(Optional[str], as_dict.get("metadata", None))
workflow_raw = cast(Optional[str], as_dict.get("workflow", None))
return ImageMetadata(
metadata=json.loads(metadata_raw) if metadata_raw is not None else None,
workflow=json.loads(workflow_raw) if workflow_raw is not None else None,
)
if not result or not result[0]:
return None
return json.loads(result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
@@ -537,15 +519,12 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
width: int,
height: int,
node_id: Optional[str],
metadata: Optional[Union[str, dict]],
workflow: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
try:
metadata_json: Optional[str] = None
if metadata is not None:
metadata_json = metadata if type(metadata) is str else json.dumps(metadata)
metadata_json = None if metadata is None else json.dumps(metadata)
self._lock.acquire()
self._cursor.execute(
"""--sql
@@ -558,11 +537,10 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id,
session_id,
metadata,
workflow,
is_intermediate,
starred
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
@@ -573,7 +551,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id,
session_id,
metadata_json,
workflow,
is_intermediate,
starred,
),

View File

@@ -1,6 +1,6 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import TYPE_CHECKING, Callable, Optional, Union
from typing import TYPE_CHECKING, Callable, Optional
from PIL.Image import Image as PILImageType
@@ -29,6 +29,7 @@ from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.models.image_record import ImageDTO, ImageRecord, ImageRecordChanges, image_record_to_dto
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
if TYPE_CHECKING:
from invokeai.app.services.graph import GraphExecutionState
@@ -70,7 +71,7 @@ class ImageServiceABC(ABC):
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[Union[str, dict]] = None,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
@@ -195,7 +196,7 @@ class ImageService(ImageServiceABC):
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[Union[str, dict]] = None,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
@@ -233,7 +234,6 @@ class ImageService(ImageServiceABC):
# Nullable fields
node_id=node_id,
metadata=metadata,
workflow=workflow,
session_id=session_id,
)
if board_id is not None:
@@ -311,7 +311,23 @@ class ImageService(ImageServiceABC):
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]:
try:
return self._services.image_records.get_metadata(image_name)
image_record = self._services.image_records.get(image_name)
metadata = self._services.image_records.get_metadata(image_name)
if not image_record.session_id:
return ImageMetadata(metadata=metadata)
session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
if session_raw:
try:
graph = get_metadata_graph_from_raw_session(session_raw)
except Exception as e:
self._services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
return ImageMetadata(graph=graph, metadata=metadata)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise

View File

@@ -1,4 +1,7 @@
from queue import Queue
from collections import OrderedDict
from dataclasses import dataclass, field
from threading import Lock
from time import time
from typing import Optional, Union
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
@@ -7,22 +10,28 @@ from invokeai.app.services.invocation_cache.invocation_cache_common import Invoc
from invokeai.app.services.invoker import Invoker
@dataclass(order=True)
class CachedItem:
invocation_output: BaseInvocationOutput = field(compare=False)
invocation_output_json: str = field(compare=False)
class MemoryInvocationCache(InvocationCacheBase):
_cache: dict[Union[int, str], tuple[BaseInvocationOutput, str]]
_cache: OrderedDict[Union[int, str], CachedItem]
_max_cache_size: int
_disabled: bool
_hits: int
_misses: int
_cache_ids: Queue
_invoker: Invoker
_lock: Lock
def __init__(self, max_cache_size: int = 0) -> None:
self._cache = dict()
self._cache = OrderedDict()
self._max_cache_size = max_cache_size
self._disabled = False
self._hits = 0
self._misses = 0
self._cache_ids = Queue()
self._lock = Lock()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
@@ -32,80 +41,87 @@ class MemoryInvocationCache(InvocationCacheBase):
self._invoker.services.latents.on_deleted(self._delete_by_match)
def get(self, key: Union[int, str]) -> Optional[BaseInvocationOutput]:
if self._max_cache_size == 0 or self._disabled:
return
item = self._cache.get(key, None)
if item is not None:
self._hits += 1
return item[0]
self._misses += 1
with self._lock:
if self._max_cache_size == 0 or self._disabled:
return None
item = self._cache.get(key, None)
if item is not None:
self._hits += 1
self._cache.move_to_end(key)
return item.invocation_output
self._misses += 1
return None
def save(self, key: Union[int, str], invocation_output: BaseInvocationOutput) -> None:
if self._max_cache_size == 0 or self._disabled:
return
with self._lock:
if self._max_cache_size == 0 or self._disabled or key in self._cache:
return
# If the cache is full, we need to remove the least used
number_to_delete = len(self._cache) + 1 - self._max_cache_size
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(invocation_output, invocation_output.json())
if key not in self._cache:
self._cache[key] = (invocation_output, invocation_output.json())
self._cache_ids.put(key)
if self._cache_ids.qsize() > self._max_cache_size:
try:
self._cache.pop(self._cache_ids.get())
except KeyError:
# this means the cache_ids are somehow out of sync w/ the cache
pass
def _delete_oldest_access(self, number_to_delete: int) -> None:
number_to_delete = min(number_to_delete, len(self._cache))
for _ in range(number_to_delete):
self._cache.popitem(last=False)
def delete(self, key: Union[int, str]) -> None:
def _delete(self, key: Union[int, str]) -> None:
if self._max_cache_size == 0:
return
if key in self._cache:
del self._cache[key]
def delete(self, key: Union[int, str]) -> None:
with self._lock:
return self._delete(key)
def clear(self, *args, **kwargs) -> None:
if self._max_cache_size == 0:
return
with self._lock:
if self._max_cache_size == 0:
return
self._cache.clear()
self._misses = 0
self._hits = 0
self._cache.clear()
self._cache_ids = Queue()
self._misses = 0
self._hits = 0
def create_key(self, invocation: BaseInvocation) -> int:
@staticmethod
def create_key(invocation: BaseInvocation) -> int:
return hash(invocation.json(exclude={"id"}))
def disable(self) -> None:
if self._max_cache_size == 0:
return
self._disabled = True
with self._lock:
if self._max_cache_size == 0:
return
self._disabled = True
def enable(self) -> None:
if self._max_cache_size == 0:
return
self._disabled = False
with self._lock:
if self._max_cache_size == 0:
return
self._disabled = False
def get_status(self) -> InvocationCacheStatus:
return InvocationCacheStatus(
hits=self._hits,
misses=self._misses,
enabled=not self._disabled and self._max_cache_size > 0,
size=len(self._cache),
max_size=self._max_cache_size,
)
with self._lock:
return InvocationCacheStatus(
hits=self._hits,
misses=self._misses,
enabled=not self._disabled and self._max_cache_size > 0,
size=len(self._cache),
max_size=self._max_cache_size,
)
def _delete_by_match(self, to_match: str) -> None:
if self._max_cache_size == 0:
return
keys_to_delete = set()
for key, value_tuple in self._cache.items():
if to_match in value_tuple[1]:
keys_to_delete.add(key)
if not keys_to_delete:
return
for key in keys_to_delete:
self.delete(key)
self._invoker.services.logger.debug(f"Deleted {len(keys_to_delete)} cached invocation outputs for {to_match}")
with self._lock:
if self._max_cache_size == 0:
return
keys_to_delete = set()
for key, cached_item in self._cache.items():
if to_match in cached_item.invocation_output_json:
keys_to_delete.add(key)
if not keys_to_delete:
return
for key in keys_to_delete:
self._delete(key)
self._invoker.services.logger.debug(
f"Deleted {len(keys_to_delete)} cached invocation outputs for {to_match}"
)

View File

@@ -47,20 +47,27 @@ class DefaultSessionProcessor(SessionProcessorBase):
async def _on_queue_event(self, event: FastAPIEvent) -> None:
event_name = event[1]["event"]
match event_name:
case "graph_execution_state_complete" | "invocation_error" | "session_retrieval_error" | "invocation_retrieval_error":
self.__queue_item = None
self._poll_now()
case "session_canceled" if self.__queue_item is not None and self.__queue_item.session_id == event[1][
"data"
]["graph_execution_state_id"]:
self.__queue_item = None
self._poll_now()
case "batch_enqueued":
self._poll_now()
case "queue_cleared":
self.__queue_item = None
self._poll_now()
# This was a match statement, but match is not supported on python 3.9
if event_name in [
"graph_execution_state_complete",
"invocation_error",
"session_retrieval_error",
"invocation_retrieval_error",
]:
self.__queue_item = None
self._poll_now()
elif (
event_name == "session_canceled"
and self.__queue_item is not None
and self.__queue_item.session_id == event[1]["data"]["graph_execution_state_id"]
):
self.__queue_item = None
self._poll_now()
elif event_name == "batch_enqueued":
self._poll_now()
elif event_name == "queue_cleared":
self.__queue_item = None
self._poll_now()
def resume(self) -> SessionProcessorStatus:
if not self.__resume_event.is_set():

View File

@@ -59,13 +59,14 @@ class SqliteSessionQueue(SessionQueueBase):
async def _on_session_event(self, event: FastAPIEvent) -> FastAPIEvent:
event_name = event[1]["event"]
match event_name:
case "graph_execution_state_complete":
await self._handle_complete_event(event)
case "invocation_error" | "session_retrieval_error" | "invocation_retrieval_error":
await self._handle_error_event(event)
case "session_canceled":
await self._handle_cancel_event(event)
# This was a match statement, but match is not supported on python 3.9
if event_name == "graph_execution_state_complete":
await self._handle_complete_event(event)
elif event_name in ["invocation_error", "session_retrieval_error", "invocation_retrieval_error"]:
await self._handle_error_event(event)
elif event_name == "session_canceled":
await self._handle_cancel_event(event)
return event
async def _handle_complete_event(self, event: FastAPIEvent) -> None:

View File

@@ -93,7 +93,7 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# or renaming it and then running invokeai-configure again.
"""
logger = InvokeAILogger.getLogger()
logger = InvokeAILogger.get_logger()
class DummyWidgetValue(Enum):
@@ -894,7 +894,7 @@ def main():
if opt.full_precision:
invoke_args.extend(["--precision", "float32"])
config.parse_args(invoke_args)
logger = InvokeAILogger().getLogger(config=config)
logger = InvokeAILogger().get_logger(config=config)
errors = set()

View File

@@ -30,7 +30,7 @@ warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.getLogger(name="InvokeAI")
logger = InvokeAILogger.get_logger(name="InvokeAI")
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
@@ -47,8 +47,14 @@ Config_preamble = """
LEGACY_CONFIGS = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v1-inference.yaml",
SchedulerPredictionType.VPrediction: "v1-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v1-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v1-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
@@ -69,14 +75,6 @@ LEGACY_CONFIGS = {
}
@dataclass
class ModelInstallList:
"""Class for listing models to be installed/removed"""
install_models: List[str] = field(default_factory=list)
remove_models: List[str] = field(default_factory=list)
@dataclass
class InstallSelections:
install_models: List[str] = field(default_factory=list)
@@ -94,6 +92,7 @@ class ModelLoadInfo:
installed: bool = False
recommended: bool = False
default: bool = False
requires: Optional[List[str]] = field(default_factory=list)
class ModelInstall(object):
@@ -131,8 +130,6 @@ class ModelInstall(object):
# supplement with entries in models.yaml
installed_models = [x for x in self.mgr.list_models()]
# suppresses autoloaded models
# installed_models = [x for x in self.mgr.list_models() if not self._is_autoloaded(x)]
for md in installed_models:
base = md["base_model"]
@@ -164,9 +161,12 @@ class ModelInstall(object):
def list_models(self, model_type):
installed = self.mgr.list_models(model_type=model_type)
print()
print(f"Installed models of type `{model_type}`:")
print(f"{'Model Key':50} Model Path")
for i in installed:
print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}")
print(f"{'/'.join([i['base_model'],i['model_type'],i['model_name']]):50} {i['path']}")
print()
# logic here a little reversed to maintain backward compatibility
def starter_models(self, all_models: bool = False) -> Set[str]:
@@ -204,6 +204,8 @@ class ModelInstall(object):
job += 1
# add requested models
self._remove_installed(selections.install_models)
self._add_required_models(selections.install_models)
for path in selections.install_models:
logger.info(f"Installing {path} [{job}/{jobs}]")
try:
@@ -263,6 +265,26 @@ class ModelInstall(object):
return models_installed
def _remove_installed(self, model_list: List[str]):
all_models = self.all_models()
for path in model_list:
key = self.reverse_paths.get(path)
if key and all_models[key].installed:
logger.warning(f"{path} already installed. Skipping.")
model_list.remove(path)
def _add_required_models(self, model_list: List[str]):
additional_models = []
all_models = self.all_models()
for path in model_list:
if not (key := self.reverse_paths.get(path)):
continue
for requirement in all_models[key].requires:
requirement_key = self.reverse_paths.get(requirement)
if not all_models[requirement_key].installed:
additional_models.append(requirement)
model_list.extend(additional_models)
# install a model from a local path. The optional info parameter is there to prevent
# the model from being probed twice in the event that it has already been probed.
def _install_path(self, path: Path, info: ModelProbeInfo = None) -> AddModelResult:
@@ -286,7 +308,7 @@ class ModelInstall(object):
location = download_with_resume(url, Path(staging))
if not location:
logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location)
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
dest.parent.mkdir(parents=True, exist_ok=True)
models_path = shutil.move(location, dest)
@@ -393,7 +415,7 @@ class ModelInstall(object):
possible_conf = path.with_suffix(".yaml")
if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf))
elif info.base_type == BaseModelType.StableDiffusion2:
elif info.base_type in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
legacy_conf = Path(
self.config.legacy_conf_dir,
LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type],
@@ -492,7 +514,7 @@ def yes_or_no(prompt: str, default_yes=True):
# ---------------------------------------------
def hf_download_from_pretrained(model_class: object, model_name: str, destination: Path, **kwargs):
logger = InvokeAILogger.getLogger("InvokeAI")
logger = InvokeAILogger.get_logger("InvokeAI")
logger.addFilter(lambda x: "fp16 is not a valid" not in x.getMessage())
model = model_class.from_pretrained(

View File

@@ -74,7 +74,7 @@ if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
logger = InvokeAILogger.getLogger(__name__)
logger = InvokeAILogger.get_logger(__name__)
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
@@ -1279,12 +1279,12 @@ def download_from_original_stable_diffusion_ckpt(
extract_ema = original_config["model"]["params"]["use_ema"]
if (
model_version == BaseModelType.StableDiffusion2
model_version in [BaseModelType.StableDiffusion2, BaseModelType.StableDiffusion1]
and original_config["model"]["params"].get("parameterization") == "v"
):
prediction_type = "v_prediction"
upcast_attention = True
image_size = 768
image_size = 768 if model_version == BaseModelType.StableDiffusion2 else 512
else:
prediction_type = "epsilon"
upcast_attention = False

View File

@@ -90,8 +90,7 @@ class ModelProbe(object):
to place it somewhere in the models directory hierarchy. If the model is
already loaded into memory, you may provide it as model in order to avoid
opening it a second time. The prediction_type_helper callable is a function that receives
the path to the model and returns the BaseModelType. It is called to distinguish
between V2-Base and V2-768 SD models.
the path to the model and returns the SchedulerPredictionType.
"""
if model_path:
format_type = "diffusers" if model_path.is_dir() else "checkpoint"
@@ -305,25 +304,36 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
else:
raise InvalidModelException("Cannot determine base type")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
"""Return model prediction type."""
# if there is a .yaml associated with this checkpoint, then we do not need
# to probe for the prediction type as it will be ignored.
if self.checkpoint_path and self.checkpoint_path.with_suffix(".yaml").exists():
return None
type = self.get_base_type()
if type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
if (
self.checkpoint_path and self.helper and not self.checkpoint_path.with_suffix(".yaml").exists()
): # if a .yaml config file exists, then this step not needed
return self.helper(self.checkpoint_path)
else:
return None
if type == BaseModelType.StableDiffusion2:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
if self.helper and self.checkpoint_path:
if helper_guess := self.helper(self.checkpoint_path):
return helper_guess
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
elif type == BaseModelType.StableDiffusion1:
if self.helper and self.checkpoint_path:
if helper_guess := self.helper(self.checkpoint_path):
return helper_guess
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
else:
return None
class VaeCheckpointProbe(CheckpointProbeBase):

View File

@@ -71,7 +71,13 @@ class ModelSearch(ABC):
if any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
}
]
):
try:

View File

@@ -24,7 +24,7 @@ from invokeai.backend.util.logging import InvokeAILogger
# Modified ControlNetModel with encoder_attention_mask argument added
logger = InvokeAILogger.getLogger(__name__)
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):

View File

@@ -1,7 +1,6 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""
invokeai.backend.util.logging
"""invokeai.backend.util.logging
Logging class for InvokeAI that produces console messages
@@ -9,9 +8,9 @@ Usage:
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.getLogger(name='InvokeAI') // Initialization
logger = InvokeAILogger.get_logger(name='InvokeAI') // Initialization
(or)
logger = InvokeAILogger.getLogger(__name__) // To use the filename
logger = InvokeAILogger.get_logger(__name__) // To use the filename
logger.configure()
logger.critical('this is critical') // Critical Message
@@ -34,13 +33,13 @@ IAILogger.debug('this is a debugging message')
## Configuration
The default configuration will print to stderr on the console. To add
additional logging handlers, call getLogger with an initialized InvokeAIAppConfig
additional logging handlers, call get_logger with an initialized InvokeAIAppConfig
object:
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger.getLogger(config=config)
logger = InvokeAILogger.get_logger(config=config)
### Three command-line options control logging:
@@ -173,6 +172,7 @@ InvokeAI:
log_level: info
log_format: color
```
"""
import logging.handlers
@@ -193,39 +193,35 @@ except ImportError:
# module level functions
def debug(msg, *args, **kwargs):
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
InvokeAILogger.get_logger().debug(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
InvokeAILogger.get_logger().info(msg, *args, **kwargs)
def warning(msg, *args, **kwargs):
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
InvokeAILogger.get_logger().warning(msg, *args, **kwargs)
def error(msg, *args, **kwargs):
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
InvokeAILogger.get_logger().error(msg, *args, **kwargs)
def critical(msg, *args, **kwargs):
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
InvokeAILogger.get_logger().critical(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
InvokeAILogger.get_logger().log(level, msg, *args, **kwargs)
def disable(level=logging.CRITICAL):
InvokeAILogger.getLogger().disable(level)
InvokeAILogger.get_logger().disable(level)
def basicConfig(**kwargs):
InvokeAILogger.getLogger().basicConfig(**kwargs)
def getLogger(name: str = None) -> logging.Logger:
return InvokeAILogger.getLogger(name)
InvokeAILogger.get_logger().basicConfig(**kwargs)
_FACILITY_MAP = (
@@ -351,7 +347,7 @@ class InvokeAILogger(object):
loggers = dict()
@classmethod
def getLogger(
def get_logger(
cls, name: str = "InvokeAI", config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
) -> logging.Logger:
if name in cls.loggers:
@@ -360,13 +356,13 @@ class InvokeAILogger(object):
else:
logger = logging.getLogger(name)
logger.setLevel(config.log_level.upper()) # yes, strings work here
for ch in cls.getLoggers(config):
for ch in cls.get_loggers(config):
logger.addHandler(ch)
cls.loggers[name] = logger
return cls.loggers[name]
@classmethod
def getLoggers(cls, config: InvokeAIAppConfig) -> list[logging.Handler]:
def get_loggers(cls, config: InvokeAIAppConfig) -> list[logging.Handler]:
handler_strs = config.log_handlers
handlers = list()
for handler in handler_strs:

View File

@@ -103,3 +103,35 @@ sd-1/lora/LowRA:
recommended: True
sd-1/lora/Ink scenery:
path: https://civitai.com/api/download/models/83390
sd-1/ip_adapter/ip_adapter_sd15:
repo_id: InvokeAI/ip_adapter_sd15
recommended: True
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: IP-Adapter for SD 1.5 models
sd-1/ip_adapter/ip_adapter_plus_sd15:
repo_id: InvokeAI/ip_adapter_plus_sd15
recommended: False
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: Refined IP-Adapter for SD 1.5 models
sd-1/ip_adapter/ip_adapter_plus_face_sd15:
repo_id: InvokeAI/ip_adapter_plus_face_sd15
recommended: False
requires:
- InvokeAI/ip_adapter_sd_image_encoder
description: Refined IP-Adapter for SD 1.5 models, adapted for faces
sdxl/ip_adapter/ip_adapter_sdxl:
repo_id: InvokeAI/ip_adapter_sdxl
recommended: False
requires:
- InvokeAI/ip_adapter_sdxl_image_encoder
description: IP-Adapter for SDXL models
any/clip_vision/ip_adapter_sd_image_encoder:
repo_id: InvokeAI/ip_adapter_sd_image_encoder
recommended: False
description: Required model for using IP-Adapters with SD-1/2 models
any/clip_vision/ip_adapter_sdxl_image_encoder:
repo_id: InvokeAI/ip_adapter_sdxl_image_encoder
recommended: False
description: Required model for using IP-Adapters with SDXL models

View File

@@ -0,0 +1,80 @@
model:
base_learning_rate: 1.0e-04
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: invokeai.backend.stable_diffusion.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@@ -45,7 +45,7 @@ from invokeai.frontend.install.widgets import (
)
config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.getLogger()
logger = InvokeAILogger.get_logger()
# build a table mapping all non-printable characters to None
# for stripping control characters
@@ -101,11 +101,12 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
"STARTER MODELS",
"MAIN MODELS",
"CONTROLNETS",
"IP-ADAPTERS",
"LORA/LYCORIS",
"TEXTUAL INVERSION",
],
value=[self.current_tab],
columns=5,
columns=6,
max_height=2,
relx=8,
scroll_exit=True,
@@ -130,6 +131,13 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.ipadapter_models = self.add_model_widgets(
model_type=ModelType.IPAdapter,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.lora_models = self.add_model_widgets(
model_type=ModelType.Lora,
@@ -343,6 +351,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,
]
@@ -532,6 +541,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,
]
@@ -553,6 +563,25 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
if downloads := section.get("download_ids"):
selections.install_models.extend(downloads.value.split())
# NOT NEEDED - DONE IN BACKEND NOW
# # special case for the ipadapter_models. If any of the adapters are
# # chosen, then we add the corresponding encoder(s) to the install list.
# section = self.ipadapter_models
# if section.get("models_selected"):
# selected_adapters = [
# self.all_models[section["models"][x]].name for x in section.get("models_selected").value
# ]
# encoders = []
# if any(["sdxl" in x for x in selected_adapters]):
# encoders.append("ip_adapter_sdxl_image_encoder")
# if any(["sd15" in x for x in selected_adapters]):
# encoders.append("ip_adapter_sd_image_encoder")
# for encoder in encoders:
# key = f"any/clip_vision/{encoder}"
# repo_id = f"InvokeAI/{encoder}"
# if key not in self.all_models:
# selections.install_models.append(repo_id)
class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self, opt):
@@ -652,7 +681,7 @@ def process_and_execute(
translator = StderrToMessage(conn_out)
sys.stderr = translator
sys.stdout = translator
logger = InvokeAILogger.getLogger()
logger = InvokeAILogger.get_logger()
logger.handlers.clear()
logger.addHandler(logging.StreamHandler(translator))
@@ -765,7 +794,7 @@ def main():
if opt.full_precision:
invoke_args.extend(["--precision", "float32"])
config.parse_args(invoke_args)
logger = InvokeAILogger().getLogger(config=config)
logger = InvokeAILogger().get_logger(config=config)
if not config.model_conf_path.exists():
logger.info("Your InvokeAI root directory is not set up. Calling invokeai-configure.")

View File

@@ -574,7 +574,7 @@
"onnxModels": "Onnx",
"pathToCustomConfig": "Path To Custom Config",
"pickModelType": "Pick Model Type",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models only)",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models and occasional Stable Diffusion 1.x Models)",
"quickAdd": "Quick Add",
"repo_id": "Repo ID",
"repoIDValidationMsg": "Online repository of your model",

View File

@@ -79,7 +79,7 @@
"lightMode": "Light Mode",
"linear": "Linear",
"load": "Load",
"loading": "Loading",
"loading": "Loading $t({{noun}})...",
"loadingInvokeAI": "Loading Invoke AI",
"learnMore": "Learn More",
"modelManager": "Model Manager",
@@ -655,7 +655,7 @@
"onnxModels": "Onnx",
"pathToCustomConfig": "Path To Custom Config",
"pickModelType": "Pick Model Type",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models only)",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models and occasional Stable Diffusion 1.x Models)",
"quickAdd": "Quick Add",
"repo_id": "Repo ID",
"repoIDValidationMsg": "Online repository of your model",

View File

@@ -17,7 +17,10 @@ import '../../i18n';
import AppDndContext from '../../features/dnd/components/AppDndContext';
import { $customStarUI, CustomStarUi } from 'app/store/nanostores/customStarUI';
import { $headerComponent } from 'app/store/nanostores/headerComponent';
import { $queueId, DEFAULT_QUEUE_ID } from 'features/queue/store/nanoStores';
import {
$queueId,
DEFAULT_QUEUE_ID,
} from 'features/queue/store/queueNanoStore';
const App = lazy(() => import('./App'));
const ThemeLocaleProvider = lazy(() => import('./ThemeLocaleProvider'));

View File

@@ -81,3 +81,38 @@ export const IAINoContentFallback = (props: IAINoImageFallbackProps) => {
</Flex>
);
};
type IAINoImageFallbackWithSpinnerProps = FlexProps & {
label?: string;
};
export const IAINoContentFallbackWithSpinner = (
props: IAINoImageFallbackWithSpinnerProps
) => {
const { sx, ...rest } = props;
return (
<Flex
sx={{
w: 'full',
h: 'full',
alignItems: 'center',
justifyContent: 'center',
borderRadius: 'base',
flexDir: 'column',
gap: 2,
userSelect: 'none',
opacity: 0.7,
color: 'base.700',
_dark: {
color: 'base.500',
},
...sx,
}}
{...rest}
>
<Spinner size="xl" />
{props.label && <Text textAlign="center">{props.label}</Text>}
</Flex>
);
};

View File

@@ -44,7 +44,7 @@ const IAIMantineMultiSelect = forwardRef((props: IAIMultiSelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow isOpen={true}>
<FormControl ref={ref} isDisabled={disabled}>
<FormControl ref={ref} isDisabled={disabled} position="static">
{label && <FormLabel>{label}</FormLabel>}
<MultiSelect
ref={inputRef}

View File

@@ -70,11 +70,10 @@ const IAIMantineSearchableSelect = forwardRef((props: IAISelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow>
<FormControl ref={ref} isDisabled={disabled}>
<FormControl ref={ref} isDisabled={disabled} position="static">
{label && <FormLabel>{label}</FormLabel>}
<Select
ref={inputRef}
withinPortal
disabled={disabled}
searchValue={searchValue}
onSearchChange={setSearchValue}

View File

@@ -22,7 +22,12 @@ const IAIMantineSelect = forwardRef((props: IAISelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow>
<FormControl ref={ref} isRequired={required} isDisabled={disabled}>
<FormControl
ref={ref}
isRequired={required}
isDisabled={disabled}
position="static"
>
<FormLabel>{label}</FormLabel>
<Select disabled={disabled} ref={inputRef} styles={styles} {...rest} />
</FormControl>

View File

@@ -254,4 +254,5 @@ export const CONTROLNET_MODEL_DEFAULT_PROCESSORS: {
mediapipe: 'mediapipe_face_processor',
pidi: 'pidi_image_processor',
zoe: 'zoe_depth_image_processor',
color: 'color_map_image_processor',
};

View File

@@ -28,7 +28,7 @@ import {
setShouldShowImageDetails,
setShouldShowProgressInViewer,
} from 'features/ui/store/uiSlice';
import { memo, useCallback } from 'react';
import { memo, useCallback, useMemo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import {
@@ -41,10 +41,9 @@ import {
import { FaCircleNodes, FaEllipsis } from 'react-icons/fa6';
import {
useGetImageDTOQuery,
useGetImageMetadataQuery,
useGetImageMetadataFromFileQuery,
} from 'services/api/endpoints/images';
import { menuListMotionProps } from 'theme/components/menu';
import { useDebounce } from 'use-debounce';
import { sentImageToImg2Img } from '../../store/actions';
import SingleSelectionMenuItems from '../ImageContextMenu/SingleSelectionMenuItems';
@@ -93,6 +92,7 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
shouldShowImageDetails,
lastSelectedImage,
shouldShowProgressInViewer,
shouldFetchMetadataFromApi,
} = useAppSelector(currentImageButtonsSelector);
const isUpscalingEnabled = useFeatureStatus('upscaling').isFeatureEnabled;
@@ -107,10 +107,16 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
lastSelectedImage?.image_name ?? skipToken
);
const [debouncedImageName] = useDebounce(lastSelectedImage?.image_name, 300);
const getMetadataArg = useMemo(() => {
if (lastSelectedImage) {
return { image: lastSelectedImage, shouldFetchMetadataFromApi };
} else {
return skipToken;
}
}, [lastSelectedImage, shouldFetchMetadataFromApi]);
const { metadata, workflow, isLoading } = useGetImageMetadataQuery(
debouncedImageName ?? skipToken,
const { metadata, workflow, isLoading } = useGetImageMetadataFromFileQuery(
getMetadataArg,
{
selectFromResult: (res) => ({
isLoading: res.isFetching,
@@ -281,7 +287,7 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
icon={<FaSeedling />}
tooltip={`${t('parameters.useSeed')} (S)`}
aria-label={`${t('parameters.useSeed')} (S)`}
isDisabled={!metadata?.seed}
isDisabled={metadata?.seed === null || metadata?.seed === undefined}
onClick={handleUseSeed}
/>
<IAIIconButton

View File

@@ -1,9 +1,8 @@
import { Flex, MenuItem, Spinner } from '@chakra-ui/react';
import { useStore } from '@nanostores/react';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import { useAppToaster } from 'app/components/Toaster';
import { $customStarUI } from 'app/store/nanostores/customStarUI';
import { useAppDispatch } from 'app/store/storeHooks';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import {
imagesToChangeSelected,
@@ -33,12 +32,12 @@ import {
import { FaCircleNodes } from 'react-icons/fa6';
import { MdStar, MdStarBorder } from 'react-icons/md';
import {
useGetImageMetadataQuery,
useGetImageMetadataFromFileQuery,
useStarImagesMutation,
useUnstarImagesMutation,
} from 'services/api/endpoints/images';
import { ImageDTO } from 'services/api/types';
import { useDebounce } from 'use-debounce';
import { configSelector } from '../../../system/store/configSelectors';
import { sentImageToCanvas, sentImageToImg2Img } from '../../store/actions';
type SingleSelectionMenuItemsProps = {
@@ -54,12 +53,11 @@ const SingleSelectionMenuItems = (props: SingleSelectionMenuItemsProps) => {
const toaster = useAppToaster();
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
const { shouldFetchMetadataFromApi } = useAppSelector(configSelector);
const customStarUi = useStore($customStarUI);
const [debouncedImageName] = useDebounce(imageDTO.image_name, 300);
const { metadata, workflow, isLoading } = useGetImageMetadataQuery(
debouncedImageName ?? skipToken,
const { metadata, workflow, isLoading } = useGetImageMetadataFromFileQuery(
{ image: imageDTO, shouldFetchMetadataFromApi },
{
selectFromResult: (res) => ({
isLoading: res.isFetching,

View File

@@ -9,15 +9,15 @@ import {
Tabs,
Text,
} from '@chakra-ui/react';
import { skipToken } from '@reduxjs/toolkit/dist/query';
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { useGetImageMetadataQuery } from 'services/api/endpoints/images';
import { useGetImageMetadataFromFileQuery } from 'services/api/endpoints/images';
import { ImageDTO } from 'services/api/types';
import { useDebounce } from 'use-debounce';
import DataViewer from './DataViewer';
import ImageMetadataActions from './ImageMetadataActions';
import { useAppSelector } from '../../../../app/store/storeHooks';
import { configSelector } from '../../../system/store/configSelectors';
import { useTranslation } from 'react-i18next';
type ImageMetadataViewerProps = {
image: ImageDTO;
@@ -31,10 +31,10 @@ const ImageMetadataViewer = ({ image }: ImageMetadataViewerProps) => {
// });
const { t } = useTranslation();
const [debouncedImageName] = useDebounce(image.image_name, 300);
const { shouldFetchMetadataFromApi } = useAppSelector(configSelector);
const { metadata, workflow } = useGetImageMetadataQuery(
debouncedImageName ?? skipToken,
const { metadata, workflow } = useGetImageMetadataFromFileQuery(
{ image, shouldFetchMetadataFromApi },
{
selectFromResult: (res) => ({
metadata: res?.currentData?.metadata,

View File

@@ -1,13 +1,13 @@
import { Checkbox, Flex, FormControl, FormLabel } from '@chakra-ui/react';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEmbedWorkflow } from 'features/nodes/hooks/useEmbedWorkflow';
import { useWithWorkflow } from 'features/nodes/hooks/useWithWorkflow';
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
import { nodeEmbedWorkflowChanged } from 'features/nodes/store/nodesSlice';
import { ChangeEvent, memo, useCallback } from 'react';
const EmbedWorkflowCheckbox = ({ nodeId }: { nodeId: string }) => {
const dispatch = useAppDispatch();
const withWorkflow = useWithWorkflow(nodeId);
const hasImageOutput = useHasImageOutput(nodeId);
const embedWorkflow = useEmbedWorkflow(nodeId);
const handleChange = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
@@ -21,7 +21,7 @@ const EmbedWorkflowCheckbox = ({ nodeId }: { nodeId: string }) => {
[dispatch, nodeId]
);
if (!withWorkflow) {
if (!hasImageOutput) {
return null;
}

View File

@@ -8,6 +8,7 @@ import InvocationNodeFooter from './InvocationNodeFooter';
import InvocationNodeHeader from './InvocationNodeHeader';
import InputField from './fields/InputField';
import OutputField from './fields/OutputField';
import { useWithFooter } from 'features/nodes/hooks/useWithFooter';
type Props = {
nodeId: string;
@@ -20,6 +21,7 @@ type Props = {
const InvocationNode = ({ nodeId, isOpen, label, type, selected }: Props) => {
const inputConnectionFieldNames = useConnectionInputFieldNames(nodeId);
const inputAnyOrDirectFieldNames = useAnyOrDirectInputFieldNames(nodeId);
const withFooter = useWithFooter(nodeId);
const outputFieldNames = useOutputFieldNames(nodeId);
return (
@@ -41,7 +43,7 @@ const InvocationNode = ({ nodeId, isOpen, label, type, selected }: Props) => {
h: 'full',
py: 2,
gap: 1,
borderBottomRadius: 0,
borderBottomRadius: withFooter ? 0 : 'base',
}}
>
<Flex sx={{ flexDir: 'column', px: 2, w: 'full', h: 'full' }}>
@@ -74,7 +76,7 @@ const InvocationNode = ({ nodeId, isOpen, label, type, selected }: Props) => {
))}
</Flex>
</Flex>
<InvocationNodeFooter nodeId={nodeId} />
{withFooter && <InvocationNodeFooter nodeId={nodeId} />}
</>
)}
</NodeWrapper>

View File

@@ -1,10 +1,11 @@
import { Flex } from '@chakra-ui/react';
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
import { DRAG_HANDLE_CLASSNAME } from 'features/nodes/types/constants';
import { memo } from 'react';
import EmbedWorkflowCheckbox from './EmbedWorkflowCheckbox';
import SaveToGalleryCheckbox from './SaveToGalleryCheckbox';
import UseCacheCheckbox from './UseCacheCheckbox';
import { useHasImageOutput } from 'features/nodes/hooks/useHasImageOutput';
import { useFeatureStatus } from '../../../../../system/hooks/useFeatureStatus';
type Props = {
nodeId: string;
@@ -12,6 +13,7 @@ type Props = {
const InvocationNodeFooter = ({ nodeId }: Props) => {
const hasImageOutput = useHasImageOutput(nodeId);
const isCacheEnabled = useFeatureStatus('invocationCache').isFeatureEnabled;
return (
<Flex
className={DRAG_HANDLE_CLASSNAME}
@@ -25,7 +27,7 @@ const InvocationNodeFooter = ({ nodeId }: Props) => {
justifyContent: 'space-between',
}}
>
<UseCacheCheckbox nodeId={nodeId} />
{isCacheEnabled && <UseCacheCheckbox nodeId={nodeId} />}
{hasImageOutput && <EmbedWorkflowCheckbox nodeId={nodeId} />}
{hasImageOutput && <SaveToGalleryCheckbox nodeId={nodeId} />}
</Flex>

View File

@@ -3,12 +3,7 @@ import graphlib from '@dagrejs/graphlib';
import { useAppSelector } from 'app/store/storeHooks';
import { useCallback } from 'react';
import { Connection, Edge, Node, useReactFlow } from 'reactflow';
import {
COLLECTION_MAP,
COLLECTION_TYPES,
POLYMORPHIC_TO_SINGLE_MAP,
POLYMORPHIC_TYPES,
} from '../types/constants';
import { validateSourceAndTargetTypes } from '../store/util/validateSourceAndTargetTypes';
import { InvocationNodeData } from '../types/types';
/**
@@ -23,11 +18,6 @@ export const useIsValidConnection = () => {
);
const isValidConnection = useCallback(
({ source, sourceHandle, target, targetHandle }: Connection): boolean => {
if (!shouldValidateGraph) {
// manual override!
return true;
}
const edges = flow.getEdges();
const nodes = flow.getNodes();
// Connection must have valid targets
@@ -52,6 +42,16 @@ export const useIsValidConnection = () => {
return false;
}
if (source === target) {
// Don't allow nodes to connect to themselves, even if validation is disabled
return false;
}
if (!shouldValidateGraph) {
// manual override!
return true;
}
if (
edges
.filter((edge) => {
@@ -76,63 +76,8 @@ export const useIsValidConnection = () => {
return false;
}
/**
* Connection types must be the same for a connection, with exceptions:
* - CollectionItem can connect to any non-Collection
* - Non-Collections can connect to CollectionItem
* - Anything (non-Collections, Collections, Polymorphics) can connect to Polymorphics of the same base type
* - Generic Collection can connect to any other Collection or Polymorphic
* - Any Collection can connect to a Generic Collection
*/
if (sourceType !== targetType) {
const isCollectionItemToNonCollection =
sourceType === 'CollectionItem' &&
!COLLECTION_TYPES.includes(targetType);
const isNonCollectionToCollectionItem =
targetType === 'CollectionItem' &&
!COLLECTION_TYPES.includes(sourceType) &&
!POLYMORPHIC_TYPES.includes(sourceType);
const isAnythingToPolymorphicOfSameBaseType =
POLYMORPHIC_TYPES.includes(targetType) &&
(() => {
if (!POLYMORPHIC_TYPES.includes(targetType)) {
return false;
}
const baseType =
POLYMORPHIC_TO_SINGLE_MAP[
targetType as keyof typeof POLYMORPHIC_TO_SINGLE_MAP
];
const collectionType =
COLLECTION_MAP[baseType as keyof typeof COLLECTION_MAP];
return sourceType === baseType || sourceType === collectionType;
})();
const isGenericCollectionToAnyCollectionOrPolymorphic =
sourceType === 'Collection' &&
(COLLECTION_TYPES.includes(targetType) ||
POLYMORPHIC_TYPES.includes(targetType));
const isCollectionToGenericCollection =
targetType === 'Collection' && COLLECTION_TYPES.includes(sourceType);
const isIntToFloat = sourceType === 'integer' && targetType === 'float';
const isEitherAnyType = sourceType === 'Any' || targetType === 'Any';
return (
isCollectionItemToNonCollection ||
isNonCollectionToCollectionItem ||
isAnythingToPolymorphicOfSameBaseType ||
isGenericCollectionToAnyCollectionOrPolymorphic ||
isCollectionToGenericCollection ||
isIntToFloat ||
isEitherAnyType
);
if (!validateSourceAndTargetTypes(sourceType, targetType)) {
return false;
}
// Graphs much be acyclic (no loops!)

View File

@@ -1,31 +1,14 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { some } from 'lodash-es';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { useMemo } from 'react';
import { FOOTER_FIELDS } from '../types/constants';
import { isInvocationNode } from '../types/types';
import { useHasImageOutput } from './useHasImageOutput';
export const useHasImageOutputs = (nodeId: string) => {
const selector = useMemo(
() =>
createSelector(
stateSelector,
({ nodes }) => {
const node = nodes.nodes.find((node) => node.id === nodeId);
if (!isInvocationNode(node)) {
return false;
}
return some(node.data.outputs, (output) =>
FOOTER_FIELDS.includes(output.type)
);
},
defaultSelectorOptions
),
[nodeId]
export const useWithFooter = (nodeId: string) => {
const hasImageOutput = useHasImageOutput(nodeId);
const isCacheEnabled = useFeatureStatus('invocationCache').isFeatureEnabled;
const withFooter = useMemo(
() => hasImageOutput || isCacheEnabled,
[hasImageOutput, isCacheEnabled]
);
const withFooter = useAppSelector(selector);
return withFooter;
};

View File

@@ -1,31 +0,0 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { useMemo } from 'react';
import { isInvocationNode } from '../types/types';
export const useWithWorkflow = (nodeId: string) => {
const selector = useMemo(
() =>
createSelector(
stateSelector,
({ nodes }) => {
const node = nodes.nodes.find((node) => node.id === nodeId);
if (!isInvocationNode(node)) {
return false;
}
const nodeTemplate = nodes.nodeTemplates[node?.data.type ?? ''];
if (!nodeTemplate) {
return false;
}
return nodeTemplate.withWorkflow;
},
defaultSelectorOptions
),
[nodeId]
);
const withWorkflow = useAppSelector(selector);
return withWorkflow;
};

View File

@@ -1,15 +1,10 @@
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { getIsGraphAcyclic } from 'features/nodes/hooks/useIsValidConnection';
import {
COLLECTION_MAP,
COLLECTION_TYPES,
POLYMORPHIC_TO_SINGLE_MAP,
POLYMORPHIC_TYPES,
} from 'features/nodes/types/constants';
import { FieldType } from 'features/nodes/types/types';
import { HandleType } from 'reactflow';
import i18n from 'i18next';
import { HandleType } from 'reactflow';
import { validateSourceAndTargetTypes } from './validateSourceAndTargetTypes';
/**
* NOTE: The logic here must be duplicated in `invokeai/frontend/web/src/features/nodes/hooks/useIsValidConnection.ts`
@@ -70,67 +65,8 @@ export const makeConnectionErrorSelector = (
return i18n.t('nodes.inputMayOnlyHaveOneConnection');
}
/**
* Connection types must be the same for a connection, with exceptions:
* - CollectionItem can connect to any non-Collection
* - Non-Collections can connect to CollectionItem
* - Anything (non-Collections, Collections, Polymorphics) can connect to Polymorphics of the same base type
* - Generic Collection can connect to any other Collection or Polymorphic
* - Any Collection can connect to a Generic Collection
*/
if (sourceType !== targetType) {
const isCollectionItemToNonCollection =
sourceType === 'CollectionItem' &&
!COLLECTION_TYPES.includes(targetType);
const isNonCollectionToCollectionItem =
targetType === 'CollectionItem' &&
!COLLECTION_TYPES.includes(sourceType) &&
!POLYMORPHIC_TYPES.includes(sourceType);
const isAnythingToPolymorphicOfSameBaseType =
POLYMORPHIC_TYPES.includes(targetType) &&
(() => {
if (!POLYMORPHIC_TYPES.includes(targetType)) {
return false;
}
const baseType =
POLYMORPHIC_TO_SINGLE_MAP[
targetType as keyof typeof POLYMORPHIC_TO_SINGLE_MAP
];
const collectionType =
COLLECTION_MAP[baseType as keyof typeof COLLECTION_MAP];
return sourceType === baseType || sourceType === collectionType;
})();
const isGenericCollectionToAnyCollectionOrPolymorphic =
sourceType === 'Collection' &&
(COLLECTION_TYPES.includes(targetType) ||
POLYMORPHIC_TYPES.includes(targetType));
const isCollectionToGenericCollection =
targetType === 'Collection' && COLLECTION_TYPES.includes(sourceType);
const isIntToFloat = sourceType === 'integer' && targetType === 'float';
const isEitherAnyType = sourceType === 'Any' || targetType === 'Any';
if (
!(
isCollectionItemToNonCollection ||
isNonCollectionToCollectionItem ||
isAnythingToPolymorphicOfSameBaseType ||
isGenericCollectionToAnyCollectionOrPolymorphic ||
isCollectionToGenericCollection ||
isIntToFloat ||
isEitherAnyType
)
) {
return i18n.t('nodes.fieldTypesMustMatch');
}
if (!validateSourceAndTargetTypes(sourceType, targetType)) {
return i18n.t('nodes.fieldTypesMustMatch');
}
const isGraphAcyclic = getIsGraphAcyclic(

View File

@@ -0,0 +1,74 @@
import {
COLLECTION_MAP,
COLLECTION_TYPES,
POLYMORPHIC_TO_SINGLE_MAP,
POLYMORPHIC_TYPES,
} from 'features/nodes/types/constants';
import { FieldType } from 'features/nodes/types/types';
export const validateSourceAndTargetTypes = (
sourceType: FieldType,
targetType: FieldType
) => {
if (sourceType === targetType) {
return true;
}
/**
* Connection types must be the same for a connection, with exceptions:
* - CollectionItem can connect to any non-Collection
* - Non-Collections can connect to CollectionItem
* - Anything (non-Collections, Collections, Polymorphics) can connect to Polymorphics of the same base type
* - Generic Collection can connect to any other Collection or Polymorphic
* - Any Collection can connect to a Generic Collection
*/
const isCollectionItemToNonCollection =
sourceType === 'CollectionItem' && !COLLECTION_TYPES.includes(targetType);
const isNonCollectionToCollectionItem =
targetType === 'CollectionItem' &&
!COLLECTION_TYPES.includes(sourceType) &&
!POLYMORPHIC_TYPES.includes(sourceType);
const isAnythingToPolymorphicOfSameBaseType =
POLYMORPHIC_TYPES.includes(targetType) &&
(() => {
if (!POLYMORPHIC_TYPES.includes(targetType)) {
return false;
}
const baseType =
POLYMORPHIC_TO_SINGLE_MAP[
targetType as keyof typeof POLYMORPHIC_TO_SINGLE_MAP
];
const collectionType =
COLLECTION_MAP[baseType as keyof typeof COLLECTION_MAP];
return sourceType === baseType || sourceType === collectionType;
})();
const isGenericCollectionToAnyCollectionOrPolymorphic =
sourceType === 'Collection' &&
(COLLECTION_TYPES.includes(targetType) ||
POLYMORPHIC_TYPES.includes(targetType));
const isCollectionToGenericCollection =
targetType === 'Collection' && COLLECTION_TYPES.includes(sourceType);
const isIntToFloat = sourceType === 'integer' && targetType === 'float';
const isIntOrFloatToString =
(sourceType === 'integer' || sourceType === 'float') &&
targetType === 'string';
return (
isCollectionItemToNonCollection ||
isNonCollectionToCollectionItem ||
isAnythingToPolymorphicOfSameBaseType ||
isGenericCollectionToAnyCollectionOrPolymorphic ||
isCollectionToGenericCollection ||
isIntToFloat ||
isIntOrFloatToString
);
};

View File

@@ -31,8 +31,6 @@ export const COLLECTION_TYPES: FieldType[] = [
'ConditioningCollection',
'ControlCollection',
'ColorCollection',
'MetadataItemCollection',
'MetadataDictCollection',
];
export const POLYMORPHIC_TYPES: FieldType[] = [
@@ -45,7 +43,6 @@ export const POLYMORPHIC_TYPES: FieldType[] = [
'ConditioningPolymorphic',
'ControlPolymorphic',
'ColorPolymorphic',
'MetadataItemPolymorphic',
];
export const MODEL_TYPES: FieldType[] = [
@@ -73,8 +70,6 @@ export const COLLECTION_MAP: FieldTypeMapWithNumber = {
ConditioningField: 'ConditioningCollection',
ControlField: 'ControlCollection',
ColorField: 'ColorCollection',
MetadataItem: 'MetadataItemCollection',
MetadataDict: 'MetadataDictCollection',
};
export const isCollectionItemType = (
itemType: string | undefined
@@ -92,7 +87,6 @@ export const SINGLE_TO_POLYMORPHIC_MAP: FieldTypeMapWithNumber = {
ConditioningField: 'ConditioningPolymorphic',
ControlField: 'ControlPolymorphic',
ColorField: 'ColorPolymorphic',
MetadataItem: 'MetadataItemPolymorphic',
};
export const POLYMORPHIC_TO_SINGLE_MAP: FieldTypeMap = {
@@ -105,7 +99,6 @@ export const POLYMORPHIC_TO_SINGLE_MAP: FieldTypeMap = {
ConditioningPolymorphic: 'ConditioningField',
ControlPolymorphic: 'ControlField',
ColorPolymorphic: 'ColorField',
MetadataItemPolymorphic: 'MetadataItem',
};
export const TYPES_WITH_INPUT_COMPONENTS: FieldType[] = [
@@ -138,37 +131,6 @@ export const isPolymorphicItemType = (
Boolean(itemType && itemType in SINGLE_TO_POLYMORPHIC_MAP);
export const FIELDS: Record<FieldType, FieldUIConfig> = {
Any: {
color: 'gray.500',
description: 'Any field type is accepted.',
title: 'Any',
},
MetadataDict: {
color: 'gray.500',
description: 'A metadata dict.',
title: 'Metadata Dict',
},
MetadataDictCollection: {
color: 'gray.500',
description: 'A collection of metadata dicts.',
title: 'Metadata Dict Collection',
},
MetadataItem: {
color: 'gray.500',
description: 'A metadata item.',
title: 'Metadata Item',
},
MetadataItemCollection: {
color: 'gray.500',
description: 'Any field type is accepted.',
title: 'Metadata Item Collection',
},
MetadataItemPolymorphic: {
color: 'gray.500',
description:
'MetadataItem or MetadataItemCollection field types are accepted.',
title: 'Metadata Item Polymorphic',
},
boolean: {
color: 'green.500',
description: t('nodes.booleanDescription'),

View File

@@ -54,10 +54,6 @@ export type InvocationTemplate = {
* The type of this node's output
*/
outputType: string; // TODO: generate a union of output types
/**
* Whether or not this invocation supports workflows
*/
withWorkflow: boolean;
/**
* The invocation's version.
*/
@@ -76,7 +72,6 @@ export type FieldUIConfig = {
// TODO: Get this from the OpenAPI schema? may be tricky...
export const zFieldType = z.enum([
'Any',
'BoardField',
'boolean',
'BooleanCollection',
@@ -112,11 +107,6 @@ export const zFieldType = z.enum([
'LatentsPolymorphic',
'LoRAModelField',
'MainModelField',
'MetadataDict',
'MetadataDictCollection',
'MetadataItem',
'MetadataItemCollection',
'MetadataItemPolymorphic',
'ONNXModelField',
'Scheduler',
'SDXLMainModelField',
@@ -617,58 +607,6 @@ export type CollectionItemInputFieldValue = z.infer<
typeof zCollectionItemInputFieldValue
>;
export const zMetadataItem = z.object({
label: z.string(),
value: z.any(),
});
export type MetadataItem = z.infer<typeof zMetadataItem>;
export const zMetadataItemInputFieldValue = zInputFieldValueBase.extend({
type: z.literal('MetadataItem'),
value: zMetadataItem.optional(),
});
export type MetadataItemInputFieldValue = z.infer<
typeof zMetadataItemInputFieldValue
>;
export const zMetadataItemCollectionInputFieldValue =
zInputFieldValueBase.extend({
type: z.literal('MetadataItemCollection'),
value: z.array(zMetadataItem).optional(),
});
export type MetadataItemCollectionInputFieldValue = z.infer<
typeof zMetadataItemCollectionInputFieldValue
>;
export const zMetadataItemPolymorphicInputFieldValue =
zInputFieldValueBase.extend({
type: z.literal('MetadataItemPolymorphic'),
value: z.union([zMetadataItem, z.array(zMetadataItem)]).optional(),
});
export type MetadataItemPolymorphicInputFieldValue = z.infer<
typeof zMetadataItemPolymorphicInputFieldValue
>;
export const zMetadataDict = z.record(z.any());
export type MetadataDict = z.infer<typeof zMetadataDict>;
export const zMetadataDictInputFieldValue = zInputFieldValueBase.extend({
type: z.literal('MetadataDict'),
value: zMetadataDict.optional(),
});
export type MetadataDictInputFieldValue = z.infer<
typeof zMetadataDictInputFieldValue
>;
export const zMetadataDictCollectionInputFieldValue =
zInputFieldValueBase.extend({
type: z.literal('MetadataDictCollection'),
value: z.array(zMetadataDict).optional(),
});
export type MetadataDictCollectionInputFieldValue = z.infer<
typeof zMetadataDictCollectionInputFieldValue
>;
export const zColorField = z.object({
r: z.number().int().min(0).max(255),
g: z.number().int().min(0).max(255),
@@ -707,13 +645,7 @@ export type SchedulerInputFieldValue = z.infer<
typeof zSchedulerInputFieldValue
>;
export const zAnyInputFieldValue = zInputFieldValueBase.extend({
type: z.literal('Any'),
value: z.any().optional(),
});
export const zInputFieldValue = z.discriminatedUnion('type', [
zAnyInputFieldValue,
zBoardInputFieldValue,
zBooleanCollectionInputFieldValue,
zBooleanInputFieldValue,
@@ -758,11 +690,6 @@ export const zInputFieldValue = z.discriminatedUnion('type', [
zUNetInputFieldValue,
zVaeInputFieldValue,
zVaeModelInputFieldValue,
zMetadataItemInputFieldValue,
zMetadataItemCollectionInputFieldValue,
zMetadataItemPolymorphicInputFieldValue,
zMetadataDictInputFieldValue,
zMetadataDictCollectionInputFieldValue,
]);
export type InputFieldValue = z.infer<typeof zInputFieldValue>;
@@ -775,11 +702,6 @@ export type InputFieldTemplateBase = {
fieldKind: 'input';
} & _InputField;
export type AnyInputFieldTemplate = InputFieldTemplateBase & {
type: 'Any';
default: undefined;
};
export type IntegerInputFieldTemplate = InputFieldTemplateBase & {
type: 'integer';
default: number;
@@ -933,11 +855,6 @@ export type UNetInputFieldTemplate = InputFieldTemplateBase & {
type: 'UNetField';
};
export type MetadataItemFieldTemplate = InputFieldTemplateBase & {
default: undefined;
type: 'UNetField';
};
export type ClipInputFieldTemplate = InputFieldTemplateBase & {
default: undefined;
type: 'ClipField';
@@ -1050,35 +967,6 @@ export type WorkflowInputFieldTemplate = InputFieldTemplateBase & {
type: 'WorkflowField';
};
export type MetadataItemInputFieldTemplate = InputFieldTemplateBase & {
default: undefined;
type: 'MetadataItem';
};
export type MetadataItemCollectionInputFieldTemplate =
InputFieldTemplateBase & {
default: undefined;
type: 'MetadataItemCollection';
};
export type MetadataItemPolymorphicInputFieldTemplate = Omit<
MetadataItemInputFieldTemplate,
'type'
> & {
type: 'MetadataItemPolymorphic';
};
export type MetadataDictInputFieldTemplate = InputFieldTemplateBase & {
default: undefined;
type: 'MetadataDict';
};
export type MetadataDictCollectionInputFieldTemplate =
InputFieldTemplateBase & {
default: undefined;
type: 'MetadataDictCollection';
};
/**
* An input field template is generated on each page load from the OpenAPI schema.
*
@@ -1086,7 +974,6 @@ export type MetadataDictCollectionInputFieldTemplate =
* maximum length, pattern to match, etc).
*/
export type InputFieldTemplate =
| AnyInputFieldTemplate
| BoardInputFieldTemplate
| BooleanCollectionInputFieldTemplate
| BooleanPolymorphicInputFieldTemplate
@@ -1130,12 +1017,7 @@ export type InputFieldTemplate =
| StringInputFieldTemplate
| UNetInputFieldTemplate
| VaeInputFieldTemplate
| VaeModelInputFieldTemplate
| MetadataItemInputFieldTemplate
| MetadataItemCollectionInputFieldTemplate
| MetadataDictInputFieldTemplate
| MetadataItemPolymorphicInputFieldTemplate
| MetadataDictCollectionInputFieldTemplate;
| VaeModelInputFieldTemplate;
export const isInputFieldValue = (
field?: InputFieldValue | OutputFieldValue
@@ -1252,7 +1134,7 @@ export const isInvocationFieldSchema = (
export type InvocationEdgeExtra = { type: 'default' | 'collapsed' };
export const zLoRAMetadataItem = z.object({
const zLoRAMetadataItem = z.object({
lora: zLoRAModelField.deepPartial(),
weight: z.number(),
});
@@ -1279,7 +1161,15 @@ export const zCoreMetadata = z
.nullish()
.catch(null),
controlnets: z.array(zControlField.deepPartial()).nullish().catch(null),
loras: z.array(zLoRAMetadataItem).nullish().catch(null),
loras: z
.array(
z.object({
lora: zLoRAModelField.deepPartial(),
weight: z.number(),
})
)
.nullish()
.catch(null),
vae: zVaeModelField.nullish().catch(null),
strength: z.number().nullish().catch(null),
init_image: z.string().nullish().catch(null),

View File

@@ -1,6 +1,5 @@
import { isBoolean, isInteger, isNumber, isString } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types';
import { ControlField } from 'services/api/types';
import {
COLLECTION_MAP,
POLYMORPHIC_TYPES,
@@ -9,61 +8,36 @@ import {
isPolymorphicItemType,
} from '../types/constants';
import {
AnyInputFieldTemplate,
BoardInputFieldTemplate,
BooleanCollectionInputFieldTemplate,
BooleanInputFieldTemplate,
BooleanPolymorphicInputFieldTemplate,
ClipInputFieldTemplate,
CollectionInputFieldTemplate,
CollectionItemInputFieldTemplate,
ColorCollectionInputFieldTemplate,
ColorInputFieldTemplate,
ColorPolymorphicInputFieldTemplate,
ConditioningCollectionInputFieldTemplate,
ConditioningField,
ConditioningInputFieldTemplate,
ConditioningPolymorphicInputFieldTemplate,
ControlCollectionInputFieldTemplate,
ControlInputFieldTemplate,
ControlNetModelInputFieldTemplate,
ControlPolymorphicInputFieldTemplate,
DenoiseMaskInputFieldTemplate,
EnumInputFieldTemplate,
FieldType,
FloatCollectionInputFieldTemplate,
FloatInputFieldTemplate,
FloatPolymorphicInputFieldTemplate,
IPAdapterInputFieldTemplate,
IPAdapterModelInputFieldTemplate,
FloatInputFieldTemplate,
ImageCollectionInputFieldTemplate,
ImageField,
ImageInputFieldTemplate,
ImagePolymorphicInputFieldTemplate,
InputFieldTemplate,
InputFieldTemplateBase,
IntegerCollectionInputFieldTemplate,
IntegerInputFieldTemplate,
IntegerPolymorphicInputFieldTemplate,
InvocationFieldSchema,
InvocationSchemaObject,
LatentsCollectionInputFieldTemplate,
LatentsField,
LatentsInputFieldTemplate,
LatentsPolymorphicInputFieldTemplate,
LoRAModelInputFieldTemplate,
MainModelInputFieldTemplate,
MetadataDictCollectionInputFieldTemplate,
MetadataDictInputFieldTemplate,
MetadataItemCollectionInputFieldTemplate,
MetadataItemInputFieldTemplate,
MetadataItemPolymorphicInputFieldTemplate,
SDXLMainModelInputFieldTemplate,
SDXLRefinerModelInputFieldTemplate,
SchedulerInputFieldTemplate,
StringCollectionInputFieldTemplate,
StringInputFieldTemplate,
StringPolymorphicInputFieldTemplate,
UNetInputFieldTemplate,
VaeInputFieldTemplate,
VaeModelInputFieldTemplate,
@@ -71,7 +45,27 @@ import {
isNonArraySchemaObject,
isRefObject,
isSchemaObject,
ControlPolymorphicInputFieldTemplate,
ColorPolymorphicInputFieldTemplate,
ColorCollectionInputFieldTemplate,
IntegerPolymorphicInputFieldTemplate,
StringPolymorphicInputFieldTemplate,
BooleanPolymorphicInputFieldTemplate,
ImagePolymorphicInputFieldTemplate,
LatentsPolymorphicInputFieldTemplate,
LatentsCollectionInputFieldTemplate,
ConditioningPolymorphicInputFieldTemplate,
ConditioningCollectionInputFieldTemplate,
ControlCollectionInputFieldTemplate,
ImageField,
LatentsField,
ConditioningField,
IPAdapterInputFieldTemplate,
IPAdapterModelInputFieldTemplate,
BoardInputFieldTemplate,
InputFieldTemplate,
} from '../types/types';
import { ControlField } from 'services/api/types';
export type BaseFieldProperties = 'name' | 'title' | 'description';
@@ -737,78 +731,6 @@ const buildCollectionItemInputFieldTemplate = ({
return template;
};
const buildAnyInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): AnyInputFieldTemplate => {
const template: AnyInputFieldTemplate = {
...baseField,
type: 'Any',
default: undefined,
};
return template;
};
const buildMetadataItemInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): MetadataItemInputFieldTemplate => {
const template: MetadataItemInputFieldTemplate = {
...baseField,
type: 'MetadataItem',
default: undefined,
};
return template;
};
const buildMetadataItemCollectionInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): MetadataItemCollectionInputFieldTemplate => {
const template: MetadataItemCollectionInputFieldTemplate = {
...baseField,
type: 'MetadataItemCollection',
default: undefined,
};
return template;
};
const buildMetadataItemPolymorphicInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): MetadataItemPolymorphicInputFieldTemplate => {
const template: MetadataItemPolymorphicInputFieldTemplate = {
...baseField,
type: 'MetadataItemPolymorphic',
default: undefined,
};
return template;
};
const buildMetadataDictInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): MetadataDictInputFieldTemplate => {
const template: MetadataDictInputFieldTemplate = {
...baseField,
type: 'MetadataDict',
default: undefined,
};
return template;
};
const buildMetadataDictCollectionInputFieldTemplate = ({
baseField,
}: BuildInputFieldArg): MetadataDictCollectionInputFieldTemplate => {
const template: MetadataDictCollectionInputFieldTemplate = {
...baseField,
type: 'MetadataDictCollection',
default: undefined,
};
return template;
};
const buildColorInputFieldTemplate = ({
schemaObject,
baseField,
@@ -948,7 +870,6 @@ const TEMPLATE_BUILDER_MAP: {
[key in FieldType]?: (arg: BuildInputFieldArg) => InputFieldTemplate;
} = {
BoardField: buildBoardInputFieldTemplate,
Any: buildAnyInputFieldTemplate,
boolean: buildBooleanInputFieldTemplate,
BooleanCollection: buildBooleanCollectionInputFieldTemplate,
BooleanPolymorphic: buildBooleanPolymorphicInputFieldTemplate,
@@ -982,11 +903,6 @@ const TEMPLATE_BUILDER_MAP: {
LatentsField: buildLatentsInputFieldTemplate,
LatentsPolymorphic: buildLatentsPolymorphicInputFieldTemplate,
LoRAModelField: buildLoRAModelInputFieldTemplate,
MetadataItem: buildMetadataItemInputFieldTemplate,
MetadataItemCollection: buildMetadataItemCollectionInputFieldTemplate,
MetadataItemPolymorphic: buildMetadataItemPolymorphicInputFieldTemplate,
MetadataDict: buildMetadataDictInputFieldTemplate,
MetadataDictCollection: buildMetadataDictCollectionInputFieldTemplate,
MainModelField: buildMainModelInputFieldTemplate,
Scheduler: buildSchedulerInputFieldTemplate,
SDXLMainModelField: buildSDXLMainModelInputFieldTemplate,

View File

@@ -3,7 +3,6 @@ import { FieldType, InputFieldTemplate, InputFieldValue } from '../types/types';
const FIELD_VALUE_FALLBACK_MAP: {
[key in FieldType]: InputFieldValue['value'];
} = {
Any: undefined,
enum: '',
BoardField: undefined,
boolean: false,
@@ -37,11 +36,6 @@ const FIELD_VALUE_FALLBACK_MAP: {
LatentsCollection: [],
LatentsField: undefined,
LatentsPolymorphic: undefined,
MetadataItem: undefined,
MetadataItemCollection: [],
MetadataItemPolymorphic: undefined,
MetadataDict: undefined,
MetadataDictCollection: [],
LoRAModelField: undefined,
MainModelField: undefined,
ONNXModelField: undefined,

View File

@@ -1,16 +1,18 @@
import { RootState } from 'app/store/store';
import { getValidControlNets } from 'features/controlNet/util/getValidControlNets';
import { omit } from 'lodash-es';
import {
CollectInvocation,
ControlField,
ControlNetInvocation,
MetadataAccumulatorInvocation,
} from 'services/api/types';
import { NonNullableGraph, zControlField } from '../../types/types';
import { NonNullableGraph } from '../../types/types';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CONTROL_NET_COLLECT,
METADATA_ACCUMULATOR,
} from './constants';
import { addMainMetadata } from './metadata';
export const addControlNetToLinearGraph = (
state: RootState,
@@ -21,9 +23,12 @@ export const addControlNetToLinearGraph = (
const validControlNets = getValidControlNets(controlNets);
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (isControlNetEnabled && Boolean(validControlNets.length)) {
if (validControlNets.length) {
const controlnets: ControlField[] = [];
// We have multiple controlnets, add ControlNet collector
const controlNetIterateNode: CollectInvocation = {
id: CONTROL_NET_COLLECT,
@@ -82,7 +87,15 @@ export const addControlNetToLinearGraph = (
graph.nodes[controlNetNode.id] = controlNetNode as ControlNetInvocation;
controlnets.push(zControlField.parse(controlNetNode));
if (metadataAccumulator?.controlnets) {
// metadata accumulator only needs a control field - not the whole node
// extract what we need and add to the accumulator
const controlField = omit(controlNetNode, [
'id',
'type',
]) as ControlField;
metadataAccumulator.controlnets.push(controlField);
}
graph.edges.push({
source: { node_id: controlNetNode.id, field: 'control' },
@@ -102,8 +115,6 @@ export const addControlNetToLinearGraph = (
});
}
});
addMainMetadata(graph, { controlnets });
}
}
};

View File

@@ -38,7 +38,15 @@ export const addIPAdapterToLinearGraph = (
graph.nodes[ipAdapterNode.id] = ipAdapterNode as IPAdapterInvocation;
// TODO: add metadata
// if (metadataAccumulator?.ip_adapters) {
// // metadata accumulator only needs the ip_adapter field - not the whole node
// // extract what we need and add to the accumulator
// const ipAdapterField = omit(ipAdapterNode, [
// 'id',
// 'type',
// ]) as IPAdapterField;
// metadataAccumulator.ip_adapters.push(ipAdapterField);
// }
graph.edges.push({
source: { node_id: ipAdapterNode.id, field: 'ip_adapter' },

View File

@@ -1,22 +1,21 @@
import { RootState } from 'app/store/store';
import {
LoRAMetadataItem,
NonNullableGraph,
zLoRAMetadataItem,
} from 'features/nodes/types/types';
import { NonNullableGraph } from 'features/nodes/types/types';
import { forEach, size } from 'lodash-es';
import { LoraLoaderInvocation } from 'services/api/types';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
LoraLoaderInvocation,
MetadataAccumulatorInvocation,
} from 'services/api/types';
import {
CANVAS_INPAINT_GRAPH,
CANVAS_OUTPAINT_GRAPH,
CANVAS_COHERENCE_DENOISE_LATENTS,
CLIP_SKIP,
LORA_LOADER,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
} from './constants';
import { addMainMetadata } from './metadata';
export const addLoRAsToGraph = (
state: RootState,
@@ -34,29 +33,29 @@ export const addLoRAsToGraph = (
const { loras } = state.lora;
const loraCount = size(loras);
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (loraCount === 0) {
return;
if (loraCount > 0) {
// Remove modelLoaderNodeId unet connection to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === modelLoaderNodeId &&
['unet'].includes(e.source.field)
)
);
// Remove CLIP_SKIP connections to conditionings to feed it through LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(e.source.node_id === CLIP_SKIP && ['clip'].includes(e.source.field))
);
}
// Remove modelLoaderNodeId unet connection to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === modelLoaderNodeId &&
['unet'].includes(e.source.field)
)
);
// Remove CLIP_SKIP connections to conditionings to feed it through LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(e.source.node_id === CLIP_SKIP && ['clip'].includes(e.source.field))
);
// we need to remember the last lora so we can chain from it
let lastLoraNodeId = '';
let currentLoraIndex = 0;
const loraMetadata: LoRAMetadataItem[] = [];
forEach(loras, (lora) => {
const { model_name, base_model, weight } = lora;
@@ -70,12 +69,13 @@ export const addLoRAsToGraph = (
weight,
};
loraMetadata.push(
zLoRAMetadataItem.parse({
// add the lora to the metadata accumulator
if (metadataAccumulator?.loras) {
metadataAccumulator.loras.push({
lora: { model_name, base_model },
weight,
})
);
});
}
// add to graph
graph.nodes[currentLoraNodeId] = loraLoaderNode;
@@ -182,6 +182,4 @@ export const addLoRAsToGraph = (
lastLoraNodeId = currentLoraNodeId;
currentLoraIndex += 1;
});
addMainMetadata(graph, { loras: loraMetadata });
};

View File

@@ -1,14 +1,14 @@
import { RootState } from 'app/store/store';
import {
LoRAMetadataItem,
NonNullableGraph,
zLoRAMetadataItem,
} from 'features/nodes/types/types';
import { NonNullableGraph } from 'features/nodes/types/types';
import { forEach, size } from 'lodash-es';
import { SDXLLoraLoaderInvocation } from 'services/api/types';
import {
MetadataAccumulatorInvocation,
SDXLLoraLoaderInvocation,
} from 'services/api/types';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
LORA_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
SDXL_CANVAS_INPAINT_GRAPH,
@@ -17,7 +17,6 @@ import {
SDXL_REFINER_INPAINT_CREATE_MASK,
SEAMLESS,
} from './constants';
import { addMainMetadata } from './metadata';
export const addSDXLLoRAsToGraph = (
state: RootState,
@@ -35,12 +34,9 @@ export const addSDXLLoRAsToGraph = (
const { loras } = state.lora;
const loraCount = size(loras);
if (loraCount === 0) {
return;
}
const loraMetadata: LoRAMetadataItem[] = [];
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
// Handle Seamless Plugs
const unetLoaderId = modelLoaderNodeId;
@@ -51,17 +47,22 @@ export const addSDXLLoRAsToGraph = (
clipLoaderId = SDXL_MODEL_LOADER;
}
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === unetLoaderId && ['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === clipLoaderId && ['clip'].includes(e.source.field)
) &&
!(e.source.node_id === clipLoaderId && ['clip2'].includes(e.source.field))
);
if (loraCount > 0) {
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === unetLoaderId && ['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === clipLoaderId && ['clip'].includes(e.source.field)
) &&
!(
e.source.node_id === clipLoaderId &&
['clip2'].includes(e.source.field)
)
);
}
// we need to remember the last lora so we can chain from it
let lastLoraNodeId = '';
@@ -79,12 +80,16 @@ export const addSDXLLoRAsToGraph = (
weight,
};
loraMetadata.push(
zLoRAMetadataItem.parse({
// add the lora to the metadata accumulator
if (metadataAccumulator) {
if (!metadataAccumulator.loras) {
metadataAccumulator.loras = [];
}
metadataAccumulator.loras.push({
lora: { model_name, base_model },
weight,
})
);
});
}
// add to graph
graph.nodes[currentLoraNodeId] = loraLoaderNode;
@@ -237,6 +242,4 @@ export const addSDXLLoRAsToGraph = (
lastLoraNodeId = currentLoraNodeId;
currentLoraIndex += 1;
});
addMainMetadata(graph, { loras: loraMetadata });
};

View File

@@ -2,6 +2,7 @@ import { RootState } from 'app/store/store';
import {
CreateDenoiseMaskInvocation,
ImageDTO,
MetadataAccumulatorInvocation,
SeamlessModeInvocation,
} from 'services/api/types';
import { NonNullableGraph } from '../../types/types';
@@ -11,6 +12,7 @@ import {
LATENTS_TO_IMAGE,
MASK_COMBINE,
MASK_RESIZE_UP,
METADATA_ACCUMULATOR,
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
SDXL_CANVAS_INPAINT_GRAPH,
SDXL_CANVAS_OUTPAINT_GRAPH,
@@ -24,7 +26,6 @@ import {
SDXL_REFINER_SEAMLESS,
} from './constants';
import { buildSDXLStylePrompts } from './helpers/craftSDXLStylePrompt';
import { addMainMetadata } from './metadata';
export const addSDXLRefinerToGraph = (
state: RootState,
@@ -56,15 +57,21 @@ export const addSDXLRefinerToGraph = (
return;
}
addMainMetadata(graph, {
refiner_model: refinerModel,
refiner_positive_aesthetic_score: refinerPositiveAestheticScore,
refiner_negative_aesthetic_score: refinerNegativeAestheticScore,
refiner_cfg_scale: refinerCFGScale,
refiner_scheduler: refinerScheduler,
refiner_start: refinerStart,
refiner_steps: refinerSteps,
});
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (metadataAccumulator) {
metadataAccumulator.refiner_model = refinerModel;
metadataAccumulator.refiner_positive_aesthetic_score =
refinerPositiveAestheticScore;
metadataAccumulator.refiner_negative_aesthetic_score =
refinerNegativeAestheticScore;
metadataAccumulator.refiner_cfg_scale = refinerCFGScale;
metadataAccumulator.refiner_scheduler = refinerScheduler;
metadataAccumulator.refiner_start = refinerStart;
metadataAccumulator.refiner_steps = refinerSteps;
}
const modelLoaderId = modelLoaderNodeId
? modelLoaderNodeId

View File

@@ -1,14 +1,18 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { SaveImageInvocation } from 'services/api/types';
import {
CANVAS_OUTPUT,
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NSFW_CHECKER,
SAVE_IMAGE,
WATERMARKER,
} from './constants';
import {
MetadataAccumulatorInvocation,
SaveImageInvocation,
} from 'services/api/types';
import { RootState } from 'app/store/store';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
/**
* Set the `use_cache` field on the linear/canvas graph's final image output node to False.
@@ -32,6 +36,23 @@ export const addSaveImageNode = (
graph.nodes[SAVE_IMAGE] = saveImageNode;
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (metadataAccumulator) {
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: SAVE_IMAGE,
field: 'metadata',
},
});
}
const destination = {
node_id: SAVE_IMAGE,
field: 'image',

View File

@@ -1,7 +1,6 @@
import { RootState } from 'app/store/store';
import { SeamlessModeInvocation } from 'services/api/types';
import { NonNullableGraph } from '../../types/types';
import { addMainMetadata } from './metadata';
import {
CANVAS_COHERENCE_DENOISE_LATENTS,
CANVAS_INPAINT_GRAPH,
@@ -32,11 +31,6 @@ export const addSeamlessToLinearGraph = (
seamless_y: seamlessYAxis,
} as SeamlessModeInvocation;
addMainMetadata(graph, {
seamless_x: seamlessXAxis,
seamless_y: seamlessYAxis,
});
let denoisingNodeId = DENOISE_LATENTS;
if (

View File

@@ -1,5 +1,6 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { MetadataAccumulatorInvocation } from 'services/api/types';
import {
CANVAS_COHERENCE_INPAINT_CREATE_MASK,
CANVAS_IMAGE_TO_IMAGE_GRAPH,
@@ -13,6 +14,7 @@ import {
INPAINT_IMAGE,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
ONNX_MODEL_LOADER,
SDXL_CANVAS_IMAGE_TO_IMAGE_GRAPH,
SDXL_CANVAS_INPAINT_GRAPH,
@@ -24,7 +26,6 @@ import {
TEXT_TO_IMAGE_GRAPH,
VAE_LOADER,
} from './constants';
import { addMainMetadata } from './metadata';
export const addVAEToGraph = (
state: RootState,
@@ -40,6 +41,9 @@ export const addVAEToGraph = (
);
const isAutoVae = !vae;
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (!isAutoVae) {
graph.nodes[VAE_LOADER] = {
@@ -177,7 +181,7 @@ export const addVAEToGraph = (
}
}
if (vae) {
addMainMetadata(graph, { vae });
if (vae && metadataAccumulator) {
metadataAccumulator.vae = vae;
}
};

View File

@@ -5,8 +5,14 @@ import {
ImageNSFWBlurInvocation,
ImageWatermarkInvocation,
LatentsToImageInvocation,
MetadataAccumulatorInvocation,
} from 'services/api/types';
import { LATENTS_TO_IMAGE, NSFW_CHECKER, WATERMARKER } from './constants';
import {
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NSFW_CHECKER,
WATERMARKER,
} from './constants';
export const addWatermarkerToGraph = (
state: RootState,
@@ -26,6 +32,10 @@ export const addWatermarkerToGraph = (
| ImageNSFWBlurInvocation
| undefined;
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (!nodeToAddTo) {
// something has gone terribly awry
return;
@@ -70,4 +80,17 @@ export const addWatermarkerToGraph = (
},
});
}
if (metadataAccumulator) {
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: WATERMARKER,
field: 'metadata',
},
});
}
};

View File

@@ -1,13 +1,12 @@
import { BoardId } from 'features/gallery/store/types';
import { NonNullableGraph } from 'features/nodes/types/types';
import { ESRGANModelName } from 'features/parameters/store/postprocessingSlice';
import {
ESRGANInvocation,
Graph,
ESRGANInvocation,
SaveImageInvocation,
} from 'services/api/types';
import { REALESRGAN as ESRGAN, SAVE_IMAGE } from './constants';
import { addMainMetadataNodeToGraph } from './metadata';
import { BoardId } from 'features/gallery/store/types';
type Arg = {
image_name: string;
@@ -56,9 +55,5 @@ export const buildAdHocUpscaleGraph = ({
],
};
addMainMetadataNodeToGraph(graph, {
model: esrganModelName,
});
return graph;
};

View File

@@ -19,12 +19,12 @@ import {
IMG2IMG_RESIZE,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
SEAMLESS,
} from './constants';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Canvas tab's Image to Image graph.
@@ -307,7 +307,10 @@ export const buildCanvasImageToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'img2img',
cfg_scale,
width: !isUsingScaledDimensions ? width : scaledBoundingBoxDimensions.width,
@@ -321,10 +324,13 @@ export const buildCanvasImageToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
clip_skip: clipSkip,
strength,
init_image: initialImage.image_name,
});
};
// Add Seamless To Graph
if (seamlessXAxis || seamlessYAxis) {

View File

@@ -16,6 +16,7 @@ import {
IMAGE_TO_LATENTS,
IMG2IMG_RESIZE,
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
@@ -26,7 +27,6 @@ import {
SEAMLESS,
} from './constants';
import { buildSDXLStylePrompts } from './helpers/craftSDXLStylePrompt';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Canvas tab's Image to Image graph.
@@ -318,7 +318,10 @@ export const buildCanvasSDXLImageToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'img2img',
cfg_scale,
width: !isUsingScaledDimensions ? width : scaledBoundingBoxDimensions.width,
@@ -332,8 +335,22 @@ export const buildCanvasSDXLImageToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
strength,
init_image: initialImage.image_name,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: CANVAS_OUTPUT,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -17,6 +17,7 @@ import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_OUTPUT,
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
ONNX_MODEL_LOADER,
@@ -28,7 +29,6 @@ import {
SEAMLESS,
} from './constants';
import { buildSDXLStylePrompts } from './helpers/craftSDXLStylePrompt';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Canvas tab's Text to Image graph.
@@ -300,7 +300,10 @@ export const buildCanvasSDXLTextToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'txt2img',
cfg_scale,
width: !isUsingScaledDimensions ? width : scaledBoundingBoxDimensions.width,
@@ -314,6 +317,20 @@ export const buildCanvasSDXLTextToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: CANVAS_OUTPUT,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -20,13 +20,13 @@ import {
DENOISE_LATENTS,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
ONNX_MODEL_LOADER,
POSITIVE_CONDITIONING,
SEAMLESS,
} from './constants';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Canvas tab's Text to Image graph.
@@ -288,7 +288,10 @@ export const buildCanvasTextToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'txt2img',
cfg_scale,
width: !isUsingScaledDimensions ? width : scaledBoundingBoxDimensions.width,
@@ -302,7 +305,21 @@ export const buildCanvasTextToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
clip_skip: clipSkip,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: CANVAS_OUTPUT,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -4,20 +4,13 @@ import { generateSeeds } from 'common/util/generateSeeds';
import { NonNullableGraph } from 'features/nodes/types/types';
import { range, unset } from 'lodash-es';
import { components } from 'services/api/schema';
import { Batch, BatchConfig, MetadataItemInvocation } from 'services/api/types';
import { Batch, BatchConfig } from 'services/api/types';
import {
BATCH_PROMPT,
BATCH_SEED,
BATCH_STYLE_PROMPT,
CANVAS_COHERENCE_NOISE,
METADATA_ACCUMULATOR,
NOISE,
POSITIVE_CONDITIONING,
} from './constants';
import {
addBatchMetadataNodeToGraph,
removeMetadataFromMainMetadataNode,
} from './metadata';
export const prepareLinearUIBatch = (
state: RootState,
@@ -30,27 +23,8 @@ export const prepareLinearUIBatch = (
const data: Batch['data'] = [];
const seedMetadataItemNode: MetadataItemInvocation = {
id: BATCH_SEED,
type: 'metadata_item',
label: 'seed',
};
const promptMetadataItemNode: MetadataItemInvocation = {
id: BATCH_PROMPT,
type: 'metadata_item',
label: 'positive_prompt',
};
const stylePromptMetadataItemNode: MetadataItemInvocation = {
id: BATCH_STYLE_PROMPT,
type: 'metadata_item',
label: 'positive_style_prompt',
};
const itemNodesIds: string[] = [];
if (prompts.length === 1) {
unset(graph.nodes[METADATA_ACCUMULATOR], 'seed');
const seeds = generateSeeds({
count: iterations,
start: shouldRandomizeSeed ? undefined : seed,
@@ -66,15 +40,13 @@ export const prepareLinearUIBatch = (
});
}
// add to metadata
removeMetadataFromMainMetadataNode(graph, 'seed');
itemNodesIds.push(BATCH_SEED);
graph.nodes[BATCH_SEED] = seedMetadataItemNode;
zipped.push({
node_path: BATCH_SEED,
field_name: 'value',
items: seeds,
});
if (graph.nodes[METADATA_ACCUMULATOR]) {
zipped.push({
node_path: METADATA_ACCUMULATOR,
field_name: 'seed',
items: seeds,
});
}
if (graph.nodes[CANVAS_COHERENCE_NOISE]) {
zipped.push({
@@ -105,15 +77,13 @@ export const prepareLinearUIBatch = (
});
}
// add to metadata
removeMetadataFromMainMetadataNode(graph, 'seed');
itemNodesIds.push(BATCH_SEED);
graph.nodes[BATCH_SEED] = seedMetadataItemNode;
firstBatchDatumList.push({
node_path: BATCH_SEED,
field_name: 'value',
items: seeds,
});
if (graph.nodes[METADATA_ACCUMULATOR]) {
firstBatchDatumList.push({
node_path: METADATA_ACCUMULATOR,
field_name: 'seed',
items: seeds,
});
}
if (graph.nodes[CANVAS_COHERENCE_NOISE]) {
firstBatchDatumList.push({
@@ -136,17 +106,13 @@ export const prepareLinearUIBatch = (
items: seeds,
});
}
// add to metadata
removeMetadataFromMainMetadataNode(graph, 'seed');
itemNodesIds.push(BATCH_SEED);
graph.nodes[BATCH_SEED] = seedMetadataItemNode;
secondBatchDatumList.push({
node_path: BATCH_SEED,
field_name: 'value',
items: seeds,
});
if (graph.nodes[METADATA_ACCUMULATOR]) {
secondBatchDatumList.push({
node_path: METADATA_ACCUMULATOR,
field_name: 'seed',
items: seeds,
});
}
if (graph.nodes[CANVAS_COHERENCE_NOISE]) {
secondBatchDatumList.push({
node_path: CANVAS_COHERENCE_NOISE,
@@ -171,15 +137,13 @@ export const prepareLinearUIBatch = (
});
}
// add to metadata
removeMetadataFromMainMetadataNode(graph, 'positive_prompt');
itemNodesIds.push(BATCH_PROMPT);
graph.nodes[BATCH_PROMPT] = promptMetadataItemNode;
firstBatchDatumList.push({
node_path: BATCH_PROMPT,
field_name: 'value',
items: extendedPrompts,
});
if (graph.nodes[METADATA_ACCUMULATOR]) {
firstBatchDatumList.push({
node_path: METADATA_ACCUMULATOR,
field_name: 'positive_prompt',
items: extendedPrompts,
});
}
if (shouldConcatSDXLStylePrompt && model?.base_model === 'sdxl') {
unset(graph.nodes[METADATA_ACCUMULATOR], 'positive_style_prompt');
@@ -196,22 +160,18 @@ export const prepareLinearUIBatch = (
});
}
// add to metadata
removeMetadataFromMainMetadataNode(graph, 'positive_style_prompt');
itemNodesIds.push(BATCH_STYLE_PROMPT);
graph.nodes[BATCH_STYLE_PROMPT] = stylePromptMetadataItemNode;
firstBatchDatumList.push({
node_path: BATCH_STYLE_PROMPT,
field_name: 'value',
items: extendedPrompts,
});
if (graph.nodes[METADATA_ACCUMULATOR]) {
firstBatchDatumList.push({
node_path: METADATA_ACCUMULATOR,
field_name: 'positive_style_prompt',
items: stylePrompts,
});
}
}
data.push(firstBatchDatumList);
}
addBatchMetadataNodeToGraph(graph, itemNodesIds);
const enqueueBatchArg: BatchConfig = {
prepend,
batch: {

View File

@@ -20,13 +20,13 @@ import {
IMAGE_TO_LATENTS,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
RESIZE,
SEAMLESS,
} from './constants';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Image to Image tab graph.
@@ -310,7 +310,10 @@ export const buildLinearImageToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'img2img',
cfg_scale,
height,
@@ -322,9 +325,23 @@ export const buildLinearImageToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
clip_skip: clipSkip,
strength,
init_image: initialImage.imageName,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -17,6 +17,7 @@ import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
IMAGE_TO_LATENTS,
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
@@ -28,7 +29,6 @@ import {
SEAMLESS,
} from './constants';
import { buildSDXLStylePrompts } from './helpers/craftSDXLStylePrompt';
import { addMainMetadataNodeToGraph } from './metadata';
/**
* Builds the Image to Image tab graph.
@@ -330,7 +330,10 @@ export const buildLinearSDXLImageToImageGraph = (
});
}
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'sdxl_img2img',
cfg_scale,
height,
@@ -342,10 +345,24 @@ export const buildLinearSDXLImageToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
strength,
vae: undefined,
controlnets: [],
loras: [],
strength: strength,
init_image: initialImage.imageName,
positive_style_prompt: positiveStylePrompt,
negative_style_prompt: negativeStylePrompt,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -10,9 +10,9 @@ import { addSaveImageNode } from './addSaveImageNode';
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import { addMainMetadataNodeToGraph } from './metadata';
import {
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
@@ -224,7 +224,10 @@ export const buildLinearSDXLTextToImageGraph = (
],
};
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'sdxl_txt2img',
cfg_scale,
height,
@@ -236,8 +239,22 @@ export const buildLinearSDXLTextToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined,
controlnets: [],
loras: [],
positive_style_prompt: positiveStylePrompt,
negative_style_prompt: negativeStylePrompt,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -13,12 +13,12 @@ import { addSaveImageNode } from './addSaveImageNode';
import { addSeamlessToLinearGraph } from './addSeamlessToLinearGraph';
import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import { addMainMetadataNodeToGraph } from './metadata';
import {
CLIP_SKIP,
DENOISE_LATENTS,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
ONNX_MODEL_LOADER,
@@ -232,7 +232,10 @@ export const buildLinearTextToImageGraph = (
],
};
addMainMetadataNodeToGraph(graph, {
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'txt2img',
cfg_scale,
height,
@@ -244,7 +247,21 @@ export const buildLinearTextToImageGraph = (
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
clip_skip: clipSkip,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'metadata',
},
});
// Add Seamless To Graph

View File

@@ -50,15 +50,7 @@ export const IP_ADAPTER = 'ip_adapter';
export const DYNAMIC_PROMPT = 'dynamic_prompt';
export const IMAGE_COLLECTION = 'image_collection';
export const IMAGE_COLLECTION_ITERATE = 'image_collection_iterate';
export const METADATA = 'metadata';
export const BATCH_METADATA = 'batch_metadata';
export const BATCH_METADATA_COLLECT = 'batch_metadata_collect';
export const BATCH_SEED = 'batch_seed';
export const BATCH_PROMPT = 'batch_prompt';
export const BATCH_STYLE_PROMPT = 'batch_style_prompt';
export const METADATA_COLLECT = 'metadata_collect';
export const METADATA_ACCUMULATOR = 'metadata_accumulator';
export const MERGE_METADATA = 'merge_metadata';
export const REALESRGAN = 'esrgan';
export const DIVIDE = 'divide';
export const SCALE = 'scale_image';

View File

@@ -1,151 +0,0 @@
import { NonNullableGraph } from 'features/nodes/types/types';
import { map } from 'lodash-es';
import { MetadataInvocationAsCollection } from 'services/api/types';
import { JsonObject } from 'type-fest';
import {
BATCH_METADATA,
BATCH_METADATA_COLLECT,
MERGE_METADATA,
METADATA,
METADATA_COLLECT,
SAVE_IMAGE,
} from './constants';
export const addMainMetadataNodeToGraph = (
graph: NonNullableGraph,
metadata: JsonObject
): void => {
graph.nodes[METADATA] = {
id: METADATA,
type: 'metadata',
items: map(metadata, (value, label) => ({ label, value })),
};
graph.nodes[METADATA_COLLECT] = {
id: METADATA_COLLECT,
type: 'collect',
};
graph.nodes[MERGE_METADATA] = {
id: MERGE_METADATA,
type: 'merge_metadata_dict',
};
graph.edges.push({
source: {
node_id: METADATA,
field: 'metadata_dict',
},
destination: {
node_id: METADATA_COLLECT,
field: 'item',
},
});
graph.edges.push({
source: {
node_id: METADATA_COLLECT,
field: 'collection',
},
destination: {
node_id: MERGE_METADATA,
field: 'collection',
},
});
graph.edges.push({
source: {
node_id: MERGE_METADATA,
field: 'metadata_dict',
},
destination: {
node_id: SAVE_IMAGE,
field: 'metadata',
},
});
return;
};
export const addMainMetadata = (
graph: NonNullableGraph,
metadata: JsonObject
): void => {
const metadataNode = graph.nodes[METADATA] as
| MetadataInvocationAsCollection
| undefined;
if (!metadataNode) {
return;
}
metadataNode.items.push(
...map(metadata, (value, label) => ({ label, value }))
);
};
export const removeMetadataFromMainMetadataNode = (
graph: NonNullableGraph,
label: string
): void => {
const metadataNode = graph.nodes[METADATA] as
| MetadataInvocationAsCollection
| undefined;
if (!metadataNode) {
return;
}
metadataNode.items = metadataNode.items.filter(
(item) => item.label !== label
);
};
export const addBatchMetadataNodeToGraph = (
graph: NonNullableGraph,
itemNodeIds: string[]
) => {
graph.nodes[BATCH_METADATA] = {
id: BATCH_METADATA,
type: 'metadata',
};
graph.nodes[BATCH_METADATA_COLLECT] = {
id: BATCH_METADATA_COLLECT,
type: 'collect',
};
itemNodeIds.forEach((id) => {
graph.edges.push({
source: {
node_id: id,
field: 'item',
},
destination: {
node_id: BATCH_METADATA_COLLECT,
field: 'item',
},
});
});
graph.edges.push({
source: {
node_id: BATCH_METADATA_COLLECT,
field: 'collection',
},
destination: {
node_id: BATCH_METADATA,
field: 'items',
},
});
graph.edges.push({
source: {
node_id: BATCH_METADATA,
field: 'metadata_dict',
},
destination: {
node_id: METADATA_COLLECT,
field: 'item',
},
});
};

View File

@@ -4,6 +4,7 @@ import { reduce } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types';
import { AnyInvocationType } from 'services/events/types';
import {
FieldType,
InputFieldTemplate,
InvocationSchemaObject,
InvocationTemplate,
@@ -15,11 +16,18 @@ import {
} from '../types/types';
import { buildInputFieldTemplate, getFieldType } from './fieldTemplateBuilders';
const RESERVED_INPUT_FIELD_NAMES = ['id', 'type', 'use_cache'];
const RESERVED_INPUT_FIELD_NAMES = ['id', 'type', 'metadata', 'use_cache'];
const RESERVED_OUTPUT_FIELD_NAMES = ['type'];
const RESERVED_FIELD_TYPES = ['IsIntermediate', 'WorkflowField'];
const RESERVED_FIELD_TYPES = [
'WorkflowField',
'MetadataField',
'IsIntermediate',
];
const invocationDenylist: AnyInvocationType[] = ['graph'];
const invocationDenylist: AnyInvocationType[] = [
'graph',
'metadata_accumulator',
];
const isReservedInputField = (nodeType: string, fieldName: string) => {
if (RESERVED_INPUT_FIELD_NAMES.includes(fieldName)) {
@@ -34,7 +42,7 @@ const isReservedInputField = (nodeType: string, fieldName: string) => {
return false;
};
const isReservedFieldType = (fieldType: string) => {
const isReservedFieldType = (fieldType: FieldType) => {
if (RESERVED_FIELD_TYPES.includes(fieldType)) {
return true;
}
@@ -78,7 +86,6 @@ export const parseSchema = (
const tags = schema.tags ?? [];
const description = schema.description ?? '';
const version = schema.version;
let withWorkflow = false;
const inputs = reduce(
schema.properties,
@@ -105,7 +112,7 @@ export const parseSchema = (
const fieldType = getFieldType(property);
if (!fieldType) {
if (!isFieldType(fieldType)) {
logger('nodes').warn(
{
node: type,
@@ -113,16 +120,11 @@ export const parseSchema = (
fieldType,
field: parseify(property),
},
'Missing input field type'
'Skipping unknown input field type'
);
return inputsAccumulator;
}
if (fieldType === 'WorkflowField') {
withWorkflow = true;
return inputsAccumulator;
}
if (isReservedFieldType(fieldType)) {
logger('nodes').trace(
{
@@ -131,20 +133,7 @@ export const parseSchema = (
fieldType,
field: parseify(property),
},
`Skipping reserved input field type: ${fieldType}`
);
return inputsAccumulator;
}
if (!isFieldType(fieldType)) {
logger('nodes').warn(
{
node: type,
fieldName: propertyName,
fieldType,
field: parseify(property),
},
`Skipping unknown input field type: ${fieldType}`
'Skipping reserved field type'
);
return inputsAccumulator;
}
@@ -157,7 +146,7 @@ export const parseSchema = (
);
if (!field) {
logger('nodes').warn(
logger('nodes').debug(
{
node: type,
fieldName: propertyName,
@@ -258,7 +247,6 @@ export const parseSchema = (
inputs,
outputs,
useCache,
withWorkflow,
};
Object.assign(invocationsAccumulator, { [type]: invocation });

View File

@@ -0,0 +1,41 @@
import { Flex, Skeleton } from '@chakra-ui/react';
import { memo } from 'react';
import { COLUMN_WIDTHS } from './constants';
const QueueItemSkeleton = () => {
return (
<Flex alignItems="center" p={1.5} gap={4} minH={9} h="full" w="full">
<Flex
w={COLUMN_WIDTHS.number}
justifyContent="flex-end"
alignItems="center"
>
<Skeleton w="full" h="full">
&nbsp;
</Skeleton>
</Flex>
<Flex w={COLUMN_WIDTHS.statusBadge} alignItems="center">
<Skeleton w="full" h="full">
&nbsp;
</Skeleton>
</Flex>
<Flex w={COLUMN_WIDTHS.time} alignItems="center">
<Skeleton w="full" h="full">
&nbsp;
</Skeleton>
</Flex>
<Flex w={COLUMN_WIDTHS.batchId} alignItems="center">
<Skeleton w="full" h="full">
&nbsp;
</Skeleton>
</Flex>
<Flex w={COLUMN_WIDTHS.fieldValues} alignItems="center" flexGrow={1}>
<Skeleton w="full" h="full">
&nbsp;
</Skeleton>
</Flex>
</Flex>
);
};
export default memo(QueueItemSkeleton);

View File

@@ -3,6 +3,7 @@ import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
import { IAINoContentFallbackWithSpinner } from 'common/components/IAIImageFallback';
import {
listCursorChanged,
listPriorityChanged,
@@ -85,7 +86,7 @@ const QueueList = () => {
return () => osInstance()?.destroy();
}, [scroller, initialize, osInstance]);
const { data: listQueueItemsData } = useListQueueItemsQuery({
const { data: listQueueItemsData, isLoading } = useListQueueItemsQuery({
cursor: listCursor,
priority: listPriority,
});
@@ -125,36 +126,40 @@ const QueueList = () => {
[openQueueItems, toggleQueueItem]
);
if (isLoading) {
return <IAINoContentFallbackWithSpinner />;
}
if (!queueItems.length) {
return (
<Flex w="full" h="full" alignItems="center" justifyContent="center">
<Heading color="base.400" _dark={{ color: 'base.500' }}>
{t('queue.queueEmpty')}
</Heading>
</Flex>
);
}
return (
<Flex w="full" h="full" flexDir="column">
{queueItems.length ? (
<>
<QueueListHeader />
<Flex
ref={rootRef}
w="full"
h="full"
alignItems="center"
justifyContent="center"
>
<Virtuoso<SessionQueueItemDTO, ListContext>
data={queueItems}
endReached={handleLoadMore}
scrollerRef={setScroller as TableVirtuosoScrollerRef}
itemContent={itemContent}
computeItemKey={computeItemKey}
components={components}
context={context}
/>
</Flex>
</>
) : (
<Flex w="full" h="full" alignItems="center" justifyContent="center">
<Heading color="base.400" _dark={{ color: 'base.500' }}>
{t('queue.queueEmpty')}
</Heading>
</Flex>
)}
<QueueListHeader />
<Flex
ref={rootRef}
w="full"
h="full"
alignItems="center"
justifyContent="center"
>
<Virtuoso<SessionQueueItemDTO, ListContext>
data={queueItems}
endReached={handleLoadMore}
scrollerRef={setScroller as TableVirtuosoScrollerRef}
itemContent={itemContent}
computeItemKey={computeItemKey}
components={components}
context={context}
/>
</Flex>
</Flex>
);
};

View File

@@ -10,7 +10,6 @@ import {
import {
ImageMetadataAndWorkflow,
zCoreMetadata,
zWorkflow,
} from 'features/nodes/types/types';
import { getMetadataAndWorkflowFromImageBlob } from 'features/nodes/util/getMetadataAndWorkflowFromImageBlob';
import { keyBy } from 'lodash-es';
@@ -24,6 +23,7 @@ import {
ListImagesArgs,
OffsetPaginatedResults_ImageDTO_,
PostUploadAction,
UnsafeImageMetadata,
} from '../types';
import {
getCategories,
@@ -33,7 +33,6 @@ import {
imagesSelectors,
} from '../util';
import { boardsApi } from './boards';
import { logger } from 'app/logging/logger';
export const imagesApi = api.injectEndpoints({
endpoints: (build) => ({
@@ -114,33 +113,11 @@ export const imagesApi = api.injectEndpoints({
],
keepUnusedDataFor: 86400, // 24 hours
}),
getImageMetadata: build.query<ImageMetadataAndWorkflow, string>({
getImageMetadata: build.query<UnsafeImageMetadata, string>({
query: (image_name) => ({ url: `images/i/${image_name}/metadata` }),
providesTags: (result, error, image_name) => [
{ type: 'ImageMetadata', id: image_name },
],
transformResponse: (
response: paths['/api/v1/images/i/{image_name}/metadata']['get']['responses']['200']['content']['application/json']
) => {
const imageMetadataAndWorkflow: ImageMetadataAndWorkflow = {};
if (response?.metadata) {
const metadataResult = zCoreMetadata.safeParse(response.metadata);
if (metadataResult.success) {
imageMetadataAndWorkflow.metadata = metadataResult.data;
} else {
logger('images').warn('Problem parsing metadata');
}
}
if (response?.workflow) {
const workflowResult = zWorkflow.safeParse(response.workflow);
if (workflowResult.success) {
imageMetadataAndWorkflow.workflow = workflowResult.data;
} else {
logger('images').warn('Problem parsing workflow');
}
}
return imageMetadataAndWorkflow;
},
keepUnusedDataFor: 86400, // 24 hours
}),
getImageMetadataFromFile: build.query<

View File

@@ -4,7 +4,7 @@ import {
ThunkDispatch,
createEntityAdapter,
} from '@reduxjs/toolkit';
import { $queueId } from 'features/queue/store/nanoStores';
import { $queueId } from 'features/queue/store/queueNanoStore';
import { listParamsReset } from 'features/queue/store/queueSlice';
import queryString from 'query-string';
import { ApiTagDescription, api } from '..';

File diff suppressed because one or more lines are too long

View File

@@ -1,5 +1,5 @@
import { createAsyncThunk, isAnyOf } from '@reduxjs/toolkit';
import { $queueId } from 'features/queue/store/nanoStores';
import { $queueId } from 'features/queue/store/queueNanoStore';
import { isObject } from 'lodash-es';
import { $client } from 'services/api/client';
import { paths } from 'services/api/schema';

View File

@@ -147,15 +147,6 @@ export type ImageNSFWBlurInvocation = s['ImageNSFWBlurInvocation'];
export type ImageWatermarkInvocation = s['ImageWatermarkInvocation'];
export type SeamlessModeInvocation = s['SeamlessModeInvocation'];
export type SaveImageInvocation = s['SaveImageInvocation'];
export type MetadataInvocation = s['MetadataInvocation'];
export type MetadataInvocationAsCollection = Omit<
s['MetadataInvocation'],
'items'
> & {
items: s['MetadataItem'][];
};
export type MetadataItemInvocation = s['MetadataItemInvocation'];
export type MergeMetadataDictInvocation = s['MergeMetadataDictInvocation'];
// ControlNet Nodes
export type ControlNetInvocation = s['ControlNetInvocation'];

View File

@@ -1,7 +1,7 @@
import { MiddlewareAPI } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import { AppDispatch, RootState } from 'app/store/store';
import { $queueId } from 'features/queue/store/nanoStores';
import { $queueId } from 'features/queue/store/queueNanoStore';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { Socket } from 'socket.io-client';

View File

@@ -72,7 +72,7 @@ dependencies = [
"realesrgan",
"requests~=2.28.2",
"rich~=13.3",
"safetensors==0.3.1",
"safetensors~=0.3.1",
"scikit-image~=0.21.0",
"semver~=3.0.1",
"send2trash",

View File

@@ -9,12 +9,7 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.image import ShowImageInvocation
from invokeai.app.invocations.math import AddInvocation, SubtractInvocation
from invokeai.app.invocations.primitives import (
FloatCollectionInvocation,
FloatInvocation,
IntegerInvocation,
StringInvocation,
)
from invokeai.app.invocations.primitives import FloatInvocation, IntegerInvocation
from invokeai.app.invocations.upscale import ESRGANInvocation
from invokeai.app.services.default_graphs import create_text_to_image
from invokeai.app.services.graph import (
@@ -31,11 +26,8 @@ from invokeai.app.services.graph import (
)
from .test_nodes import (
AnyTypeTestInvocation,
ImageToImageTestInvocation,
ListPassThroughInvocation,
PolymorphicStringTestInvocation,
PromptCollectionTestInvocation,
PromptTestInvocation,
TextToImageTestInvocation,
)
@@ -699,146 +691,6 @@ def test_ints_do_not_accept_floats():
g.add_edge(e)
def test_polymorphic_accepts_single():
g = Graph()
n1 = StringInvocation(id="1", value="banana")
n2 = PolymorphicStringTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge(n1.id, "value", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e1)
def test_polymorphic_accepts_collection_of_same_base_type():
g = Graph()
n1 = PromptCollectionTestInvocation(id="1", collection=["banana", "sundae"])
n2 = PolymorphicStringTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge(n1.id, "collection", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e1)
def test_polymorphic_does_not_accept_collection_of_different_base_type():
g = Graph()
n1 = FloatCollectionInvocation(id="1", collection=[1.0, 2.0, 3.0])
n2 = PolymorphicStringTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e1 = create_edge(n1.id, "collection", n2.id, "value")
with pytest.raises(InvalidEdgeError):
g.add_edge(e1)
def test_polymorphic_does_not_accept_generic_collection():
g = Graph()
n1 = IntegerInvocation(id="1", value=1)
n2 = IntegerInvocation(id="2", value=2)
n3 = CollectInvocation(id="3")
n4 = PolymorphicStringTestInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge(n1.id, "value", n3.id, "item")
e2 = create_edge(n2.id, "value", n3.id, "item")
e3 = create_edge(n3.id, "collection", n4.id, "value")
g.add_edge(e1)
g.add_edge(e2)
with pytest.raises(InvalidEdgeError):
g.add_edge(e3)
def test_any_accepts_integer():
g = Graph()
n1 = IntegerInvocation(id="1", value=1)
n2 = AnyTypeTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "value", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e)
def test_any_accepts_string():
g = Graph()
n1 = StringInvocation(id="1", value="banana sundae")
n2 = AnyTypeTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "value", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e)
def test_any_accepts_generic_collection():
g = Graph()
n1 = IntegerInvocation(id="1", value=1)
n2 = IntegerInvocation(id="2", value=2)
n3 = CollectInvocation(id="3")
n4 = AnyTypeTestInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge(n1.id, "value", n3.id, "item")
e2 = create_edge(n2.id, "value", n3.id, "item")
e3 = create_edge(n3.id, "collection", n4.id, "value")
g.add_edge(e1)
g.add_edge(e2)
# Not throwing on this line is sufficient
g.add_edge(e3)
def test_any_accepts_prompt_collection():
g = Graph()
n1 = PromptCollectionTestInvocation(id="1", collection=["banana", "sundae"])
n2 = AnyTypeTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "collection", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e)
def test_any_accepts_any():
g = Graph()
n1 = AnyTypeTestInvocation(id="1")
n2 = AnyTypeTestInvocation(id="2")
g.add_node(n1)
g.add_node(n2)
e = create_edge(n1.id, "value", n2.id, "value")
# Not throwing on this line is sufficient
g.add_edge(e)
@pytest.mark.xfail(
reason="""We need to update the validation for Collect -> Iterate to traverse to the Iterate
node's output and compare that against the item type of the Collect node's collection. Until
then, Collect nodes may not output into Iterate nodes."""
)
def test_iterate_accepts_collection():
g = Graph()
n1 = IntegerInvocation(id="1", value=1)
n2 = IntegerInvocation(id="2", value=2)
n3 = CollectInvocation(id="3")
n4 = IterateInvocation(id="4")
g.add_node(n1)
g.add_node(n2)
g.add_node(n3)
g.add_node(n4)
e1 = create_edge(n1.id, "value", n3.id, "item")
e2 = create_edge(n2.id, "value", n3.id, "item")
e3 = create_edge(n3.id, "collection", n4.id, "collection")
g.add_edge(e1)
g.add_edge(e2)
# eventually this should succeed
with pytest.raises(InvalidEdgeError, match="Cannot connect collector to iterator"):
g.add_edge(e3)
def test_graph_can_generate_schema():
# Not throwing on this line is sufficient
# NOTE: if this test fails, it's PROBABLY because a new invocation type is breaking schema generation

View File

@@ -81,29 +81,6 @@ class PromptCollectionTestInvocation(BaseInvocation):
return PromptCollectionTestInvocationOutput(collection=self.collection.copy())
@invocation_output("test_any_output")
class AnyTypeTestInvocationOutput(BaseInvocationOutput):
value: Any = Field()
@invocation("test_any")
class AnyTypeTestInvocation(BaseInvocation):
value: Any = Field(default=None)
def invoke(self, context: InvocationContext) -> AnyTypeTestInvocationOutput:
return AnyTypeTestInvocationOutput(value=self.value)
@invocation("test_polymorphic")
class PolymorphicStringTestInvocation(BaseInvocation):
value: Union[str, list[str]] = Field(default="")
def invoke(self, context: InvocationContext) -> PromptCollectionTestInvocationOutput:
if isinstance(self.value, str):
return PromptCollectionTestInvocationOutput(collection=[self.value])
return PromptCollectionTestInvocationOutput(collection=self.value)
# Importing these must happen after test invocations are defined or they won't register
from invokeai.app.services.events import EventServiceBase # noqa: E402
from invokeai.app.services.graph import Edge, EdgeConnection # noqa: E402