Compare commits

...

209 Commits

Author SHA1 Message Date
psychedelicious
096c17465b fix(backend): use random seed for SDE & Ancestral schedulers
SDE and Ancestral schedulers use some randomness at each step when applying conditioning. We were using a static seed of `0` for this, regardless of the initial noise used. This could cause results to be a bit same-y.

Unfortunately, we do not have easy access to the seed used to create the initial noise at this time.

Changing this to use a random seed value instead of always 0.
2023-08-07 09:09:12 +10:00
psychedelicious
d09dfc3e9b fix(api): use db_location instead of db_path_string
This may just be the SQLite memory sentinel value.
2023-08-06 14:09:04 +10:00
psychedelicious
66f524cae7 fix(mm): fix a lot of typing issues
Most fixes are just things being typed as `str` but having default values of `None`, but there are some minor logic changes.
2023-08-06 14:09:04 +10:00
psychedelicious
9ba50130a1 fix(api): fix db location types
The services all want strings instead of `Path`s; create variable for the string representation of the path provided by the config services.
2023-08-06 14:09:04 +10:00
psychedelicious
d4cf2d2666 fix(api): fix ApiDependencies.invoker types
ApiDependencies.invoker` provides typing for the API's services layer. Marking it `Optional` results in all the routes seeing it as optional, which is not good.

Instead of marking it optional to satisfy the initial assignment to `None`, we can just skip the initial assignment. This preserves the IDE hinting in API layer and is types-legal.
2023-08-06 14:09:04 +10:00
psychedelicious
b8b589c150 fix(nodes): fix hsl nodes rebase conflict 2023-08-06 09:57:49 +10:00
Kent Keirsey
d93900a8de Added HSL Nodes 2023-08-06 09:57:49 +10:00
Jonathan
dc96a3e79d Fix random number generator
Passing in seed=0 is not equivalent to seed=None. The latter will get a new seed from entropy in the OS, and that's what we should be using.
2023-08-06 00:29:08 +10:00
Lincoln Stein
c076f1397e rebuild frontend 2023-08-05 14:40:42 +10:00
Lincoln Stein
2568aafc0b bump version number so that pip updates work 2023-08-05 14:40:42 +10:00
psychedelicious
b6e369c745 chore: black 2023-08-05 12:28:35 +10:00
gogurtenjoyer
ecabfc252b devices.py - Update MPS FP16 check to account for upcoming MacOS Sonoma
float16 doesn't seem to work on MacOS Sonoma due to further changes with Metal. This'll default back to float32 for Sonoma users.
2023-08-05 12:28:35 +10:00
Lincoln Stein
d162b78767 fix broken civitai example link 2023-08-05 12:10:52 +10:00
psychedelicious
eb6c317f04 chore: black 2023-08-05 12:05:24 +10:00
psychedelicious
6d7223238f fix: fix typo in message 2023-08-05 12:05:24 +10:00
Damian Stewart
8607d124c5 improve message about the consequences of the --ignore_missing_core_models flag 2023-08-05 12:05:24 +10:00
Damian Stewart
23497bf759 add --ignore_missing_core_models CLI flag to bypass checking for missing core models 2023-08-05 12:05:24 +10:00
StAlKeR7779
3d93851dba Installer should download fp16 models if user has specified 'auto' in config (#4129)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

At install time, when the user's config specified "auto" precision, the
installer was downloading the fp32 models even when an fp16 model would
be appropriate for the OS.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #4127
2023-08-05 01:56:25 +03:00
StAlKeR7779
9bacd77a79 Merge branch 'main' into bugfix/fp16-models 2023-08-05 01:42:43 +03:00
Lincoln Stein
1b158f62c4 resolve vae overrides correctly 2023-08-04 18:24:47 -04:00
Lincoln Stein
6ad565d84c folded in changes from 4099 2023-08-04 18:24:47 -04:00
Sergey Borisov
04229082d6 Provide ti name from model manager, not from ti itself 2023-08-04 18:24:47 -04:00
Lincoln Stein
03c27412f7 [WIP] Add sdxl lora support (#4097)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
Add lora loading for sdxl.
NOT TESTED - I run only 2 loras, please check more(including lycoris if
they already exists).

## QA Instructions, Screenshots, Recordings
https://civitai.com/models/118536/voxel-xl

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/76a6abff-cb0a-43b4-b779-a0b0e5b46e56)


## Added/updated tests?

- [ ] Yes
- [x] No
2023-08-04 16:12:22 -04:00
Sergey Borisov
f0613bb0ef Fix merge conflict resolve - restore full/diff layer support 2023-08-04 19:53:27 +03:00
StAlKeR7779
0e9f92b868 Merge branch 'main' into feat/sdxl_lora 2023-08-04 19:22:13 +03:00
psychedelicious
7d0cc6ec3f chore: black 2023-08-05 02:04:22 +10:00
Sergey Borisov
2f8b928486 Add support for diff/full lora layers 2023-08-05 02:04:22 +10:00
StAlKeR7779
0d3c27f46c Fix typo
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-08-04 11:44:56 -04:00
Sergey Borisov
cff91f06d3 Add lora apply in sdxl l2l node 2023-08-04 11:44:56 -04:00
Lincoln Stein
1d5d187ba1 model probe detects sdxl lora models 2023-08-04 11:44:56 -04:00
Sergey Borisov
1ac14a1e43 add sdxl lora support 2023-08-04 11:44:56 -04:00
Mary Hipp
cfc3a20565 autoAddBoardId should always be defined 2023-08-04 22:19:11 +10:00
Lincoln Stein
05ae4e283c Stop checking for unet/model.onnx when a model_index.json is detected (#4132)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-03 22:10:37 -04:00
Lincoln Stein
f06fee4581 Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-03 22:02:05 -04:00
Lincoln Stein
9091e19de8 Add execution stat reporting after each invocation (#4125)
## What type of PR is this? (check all applicable)

- [X] Feature


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No

## Description

This PR adds execution time and VRAM usage reporting to each graph
invocation. The log output will look like this:

```
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3                                                                                              
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node                 Calls  Seconds  VRAM Used                                                                                                 
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader        1   0.005s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip                1   0.004s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel                   2   0.512s     0.26G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int                 1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size            1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate                  1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator     1   0.002s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise                    1   0.002s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l                      1   3.541s     1.93G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i                      1   0.679s     0.58G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME:  4.749s                                                                                                            
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G                                                                                                                 
```
On systems without CUDA, the VRAM stats are not printed.

The current implementation keeps track of graph ids separately so will
not be confused when several graphs are executing in parallel. It
handles exceptions, and it is integrated into the app framework by
defining an abstract base class and storing an implementation instance
in `InvocationServices`.
2023-08-03 20:05:21 -04:00
Lincoln Stein
0a0b7141af Merge branch 'main' into feat/execution-stats 2023-08-03 19:49:00 -04:00
Lincoln Stein
446fb4a438 blackify 2023-08-03 19:24:23 -04:00
Lincoln Stein
ab5d938a1d use variant instead of revision 2023-08-03 19:23:52 -04:00
Brandon
9942af756a Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-03 10:10:51 -04:00
Lincoln Stein
06742faca7 Merge branch 'feat/execution-stats' of github.com:invoke-ai/InvokeAI into feat/execution-stats 2023-08-03 08:48:05 -04:00
Lincoln Stein
d2bddf7f91 tweak formatting to accommodate longer runtimes 2023-08-03 08:47:56 -04:00
psychedelicious
bf94412d14 feat: add multi-select to gallery
multi-select actions include:
- drag to board to move all to that board
- right click to add all to board or delete all

backend changes:
- add routes for changing board for list of image names, deleting list of images
- change image-specific routes to `images/i/{image_name}` to not clobber other routes (like `images/upload`, `images/delete`)
- subclass pydantic `BaseModel` as `BaseModelExcludeNull`, which excludes null values when calling `dict()` on the model. this fixes inconsistent types related to JSON parsing null values into `null` instead of `undefined`
- remove `board_id` from `remove_image_from_board`

frontend changes:
- multi-selection stuff uses `ImageDTO[]` as payloads, for dnd and other mutations. this gives us access to image `board_id`s when hitting routes, and enables efficient cache updates.
- consolidate change board and delete image modals to handle single and multiples
- board totals are now re-fetched on mutation and not kept in sync manually - was way too tedious to do this
- fixed warning about nested `<p>` elements
- closes #4088 , need to handle case when `autoAddBoardId` is `"none"`
- add option to show gallery image delete button on every gallery image

frontend refactors/organisation:
- make typegen script js instead of ts
- enable `noUncheckedIndexedAccess` to help avoid bugs when indexing into arrays, many small changes needed to satisfy TS after this
- move all image-related endpoints into `endpoints/images.ts`, its a big file now, but this fixes a number of circular dependency issues that were otherwise felt impossible to resolve
2023-08-03 11:46:59 +10:00
Lincoln Stein
e080fd1e08 blackify 2023-08-03 11:25:20 +10:00
Lincoln Stein
eeef1e08f8 restore ability to convert merged inpaint .safetensors files 2023-08-03 11:25:20 +10:00
Mary Hipp
b3b94b5a8d use correct prop 2023-08-03 11:01:21 +10:00
Mary Hipp
5c9787c145 add project-id header to requests 2023-08-03 11:01:21 +10:00
psychedelicious
cf72eba15c Merge branch 'main' into feat/execution-stats 2023-08-03 10:53:25 +10:00
psychedelicious
a6f9396a30 fix(db): retrieve metadata even when no session_id
this was unnecessarily skipped if there was no `session_id`.
2023-08-03 10:43:44 +10:00
Brandon Rising
118d5b387b deploy: refactor github workflows
Currently we use some workflow trigger conditionals to run either a real test workflow (installing the app and running it) or a fake workflow, disguised as the real one, that just auto-passes.

This change refactors the workflow to use a single workflow that can be skipped, using another github action to determine which things to run depending on the paths changed.
2023-08-03 10:32:50 +10:00
Millun Atluri
db545f8801 chore: move PR template to .github/ dir (#4060)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Have you discussed this change with the InvokeAI team?
- [x] No, because it's pretty minor

      
## Have you updated all relevant documentation?
- [x] No


## Description

This PR just moves the PR template to within the `.github/` directory
leading to a overall minimal project structure.

## Added/updated tests?

- [x] No : because this change doesn't affect or need a separate test
2023-08-03 10:08:17 +10:00
Millun Atluri
b0d72b15b3 Merge branch 'main' into patch-1 2023-08-03 10:04:47 +10:00
Damian Stewart
4e0949fa55 fix .swap() by reverting improperly merged @classmethod change 2023-08-03 10:00:43 +10:00
psychedelicious
f028342f5b Merge branch 'main' into patch-1 2023-08-03 10:00:10 +10:00
Eugene Brodsky
7021467048 (ci) do not install all dependencies when running static checks (#4036)
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-08-02 23:46:02 +00:00
Kevin Brack
26ef5249b1 guard board switching in board context menu 2023-08-03 09:18:46 +10:00
Kevin Brack
87424be95d block auto add board change during generation. Switch condition to isProcessing 2023-08-03 09:18:46 +10:00
Kevin Brack
366952f810 fix localization 2023-08-03 09:18:46 +10:00
Kevin Brack
450e95de59 auto change board waiting for isReady 2023-08-03 09:18:46 +10:00
Kevin Brack
0ba8a0ea6c Board assignment changing on click 2023-08-03 09:18:46 +10:00
Lincoln Stein
f4981f26d5 Merge branch 'main' into bugfix/fp16-models 2023-08-02 19:17:55 -04:00
Lincoln Stein
43d6312587 Merge branch 'main' into feat/execution-stats 2023-08-02 19:12:08 -04:00
psychedelicious
0d125bf3e4 chore: delete nonfunctional shell.nix
This was for v2.3 and is very broken. See `flake.nix`, thanks to @zopieux
2023-08-03 09:09:40 +10:00
Lincoln Stein
921ccad04d added stats service to the cli_app startup 2023-08-02 18:41:43 -04:00
Lincoln Stein
05c9207e7b Merge branch 'feat/execution-stats' of github.com:invoke-ai/InvokeAI into feat/execution-stats 2023-08-02 18:31:33 -04:00
Lincoln Stein
3fc789a7ee fix unit tests 2023-08-02 18:31:10 -04:00
Lincoln Stein
008362918e Merge branch 'main' into feat/execution-stats 2023-08-02 18:15:51 -04:00
Lincoln Stein
8fc75a71ee integrate correctly into app API and add features
- Create abstract base class InvocationStatsServiceBase
- Store InvocationStatsService in the InvocationServices object
- Collect and report stats on simultaneous graph execution
  independently for each graph id
- Track VRAM usage for each node
- Handle cancellations and other exceptions gracefully
2023-08-02 18:10:52 -04:00
Brandon
82d259f43b Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-02 16:35:46 -04:00
Lincoln Stein
818c55cd53 Refactor/cleanup root detection (#4102)
## What type of PR is this? (check all applicable)

- [ X] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ X] No, because: invisible change

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

There was a problem in 3.0.1 with root resolution. If INVOKEAI_ROOT were
set to "." (or any relative path), then the location of root would
change if the code did an os.chdir() after config initialization. I
fixed this in a quick and dirty way for 3.0.1.post3.

This PR cleans up the code with a little refactoring.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-02 10:36:12 -04:00
Lincoln Stein
0db1e97119 Merge branch 'main' into refactor/cleanup-root-detection 2023-08-02 09:46:46 -04:00
Brandon Rising
ed76250dba Stop checking for unet/model.onnx when a model_index.json is detected 2023-08-02 07:21:21 -04:00
Lincoln Stein
4d22cafdad Installer should download fp16 models if user has specified 'auto' in config
- Closes #4127
2023-08-01 22:06:27 -04:00
Lincoln Stein
8a4e5f73aa reset stats on exception 2023-08-01 19:39:42 -04:00
psychedelicious
4599575e65 fix(ui): use const for wsProtocol, lint 2023-08-02 09:26:20 +10:00
Zerdoumi
242d860a47 fix https/wss behind reverse proxy 2023-08-02 09:26:20 +10:00
Lincoln Stein
0c1a7e72d4 Fix manual installation documentation (#4107)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ]X Bug Fix
- [ ] Optimization
- [ X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ X] No, because: obvious problem

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

The manual installation documentation in both README.md and
020_MANUAL_INSTALL give an incomplete `invokeai-configure` command which
leaves out the path to the root directory to create. As a result, the
invokeai root directory gets created in the user’s home directory, even
if they intended it to be placed somewhere else.

This is a fairly important issue.
2023-08-01 18:55:53 -04:00
Lincoln Stein
11a44b944d fix installation documentation 2023-08-01 18:52:17 -04:00
Lincoln Stein
fd7b842419 add execution stat reporting after each invocation 2023-08-01 17:44:09 -04:00
Alexandre Macabies
403a6e88f2 fix: flake: add opencv with CUDA, new patchmatch dependency. 2023-08-01 23:56:41 +10:00
blessedcoolant
c9d452b9d4 fix: Model Manager Tab Issues (#4087)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [x] Feature
- [x] Bug Fix
- [?] Optimization


## Have you discussed this change with the InvokeAI team?
- [x] No

     
## Description

- Fixed filter type select using `images` instead of `all` -- Probably
some merge conflict.
- Added loading state for model lists. Handy when the model list takes
longer than a second for any reason to fetch. Better to show this than
an empty screen.
- Refactored the render model list function so we modify the display
component in one area rather than have repeated code.

### Other Issues

- The list can get a bit laggy on initial load when you have a hundreds
of models / loras. This needs to be fixed. Will make another PR for
this.
2023-08-02 01:06:53 +12:00
blessedcoolant
dcc274a2b9 feat: Make ModelListWrapper instead of rendering conditionally 2023-08-01 22:50:10 +10:00
blessedcoolant
f404669831 fix: Rename loading vars for consistency 2023-08-01 22:42:05 +10:00
blessedcoolant
ce687b28ef fix: Model Manager Tab Issues 2023-08-01 22:41:32 +10:00
psychedelicious
7292d89108 Merge branch 'main' into refactor/cleanup-root-detection 2023-08-01 22:14:56 +10:00
psychedelicious
41d6a38690 Update lint-frontend.yml
The action should run on every PR. We can make this more efficient in the future.
2023-08-01 22:10:56 +10:00
psychedelicious
fb8f218901 fix(ui): post-onnx fixes 2023-08-01 07:59:01 -04:00
Lincoln Stein
437f45a97f do not depend on existence of /tmp directory 2023-08-01 00:41:35 -04:00
Lincoln Stein
13ef33ed64 Merge branch 'refactor/cleanup-root-detection' of github.com:invoke-ai/InvokeAI into refactor/cleanup-root-detection 2023-08-01 00:19:55 -04:00
Lincoln Stein
86d8b46fca Merge branch 'main' into refactor/cleanup-root-detection 2023-08-01 00:14:26 -04:00
Brandon Rising
e86925d424 Add onnxruntime to the main dependencies 2023-08-01 00:03:10 -04:00
Lincoln Stein
df53b62048 get rid of dangling debug statements 2023-07-31 22:39:11 -04:00
Lincoln Stein
55d3f04476 additional refactoring 2023-07-31 22:36:11 -04:00
Lincoln Stein
72ebe2ce68 refactor root directory detection to be cleaner 2023-07-31 22:30:06 -04:00
Lincoln Stein
7cd8b2f207 Refactor root detection code 2023-07-31 21:15:44 -04:00
psychedelicious
52437205bb chore(ui): lint 2023-08-01 08:54:03 +10:00
Mary Hipp
ceebb501a4 try named export 2023-08-01 08:54:03 +10:00
Mary Hipp
cbe874b964 add chakra as peer dep 2023-08-01 08:54:03 +10:00
Mary Hipp
e2e5918ee2 export theme nad move chakra to peer dep 2023-08-01 08:54:03 +10:00
Mary Hipp
1b131e328a add optional projectId - unused so far 2023-08-01 08:54:03 +10:00
Kent Keirsey
81654daed7 ONNX Support (#3562)
Note: this branch based on #3548, not on main

While find out what needs to be done to implement onnx, found that I can
do draft of it pretty quickly, so... here it is)
Supports LoRA and TI.
As example - cat with sadcatmeme lora:

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/dbd1a5df-0629-4741-94b3-8e09f4b4d5a3)

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/d918836c-fdc7-43c0-aa81-dde9182f2e0f)
2023-07-31 17:34:27 -04:00
Kent Keirsey
746afcd235 Merge branch 'main' into feat/onnx 2023-07-31 16:56:34 -04:00
Kent Keirsey
ae0f4efcca Add missing Optional on a few nullable fields (#4076)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: trivial

## Description

Adds a few obviously missing `Optional` on fields that default to
`None`.
2023-07-31 16:56:10 -04:00
Kent Keirsey
23647336ce Merge branch 'main' into fix-optional 2023-07-31 16:55:57 -04:00
Kent Keirsey
4ca54dd5fa Added a getting started guide & updated the user landing page flow (#4028)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: Just a documentation update

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description
Updated documentation with a getting started guide & a glossary of terms
needed to get started
Updated the landing page flow for users 

<img width="1430" alt="Screenshot 2023-07-27 at 9 53 25 PM"
src="https://github.com/invoke-ai/InvokeAI/assets/7254508/d0006ba7-2ed4-4044-a1bc-ca9a99df9397">

## Related Tickets & Documents

<!--
For pull requests that relate or
 close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-31 16:55:25 -04:00
Kent Keirsey
d3a3067164 Merge branch 'main' into main 2023-07-31 16:54:48 -04:00
Brandon Rising
aeac557c41 Run python black, point out that onnx is an alpha feature in the installer 2023-07-31 16:47:48 -04:00
Brandon
af4fd328a6 Merge branch 'main' into feat/onnx 2023-07-31 16:45:12 -04:00
Lincoln Stein
c40c7424b6 Merge branch 'main' into fix-optional 2023-07-31 15:59:12 -04:00
Lincoln Stein
a6b907150b Add python black check to pre-commit (#4094)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-31 15:58:20 -04:00
Brandon Rising
b0e84c6497 Add python black check to pre-commit 2023-07-31 11:42:08 -04:00
Brandon Rising
f784e8412c Some cleanup after the merge 2023-07-31 11:23:43 -04:00
Brandon Rising
1bafbafdd3 Regen schema and rebuild frontend after merging main 2023-07-31 11:02:15 -04:00
Brandon Rising
f5ac73b091 Merge branch 'main' into feat/onnx 2023-07-31 10:58:40 -04:00
psychedelicious
2c07f54b6e Merge branch 'main' into fix-optional 2023-07-31 16:31:01 +10:00
Millun Atluri
0691e0a12a Few modifications to getting started doc 2023-07-31 15:35:20 +10:00
Millun Atluri
79afcbd07e Merge branch 'main' of https://github.com/invoke-ai/InvokeAI 2023-07-31 14:19:37 +10:00
Alexandre Macabies
50e00feceb Add missing Optional on a few nullable fields. 2023-07-30 16:25:12 +02:00
Saurav Maheshkar
35dd58e273 chore: move PR template to .github/ dir 2023-07-29 12:59:56 +05:30
Brandon Rising
6ca0c38ee3 Merge branch 'main' into feat/onnx 2023-07-28 22:06:28 -04:00
Brandon Rising
1bbf2f269d Update installer 2023-07-28 21:02:48 -04:00
Brandon Rising
d3f6c7f983 Remove onnxruntime 2023-07-28 16:58:06 -04:00
Brandon Rising
390ce9f249 Fix onnx installer 2023-07-28 16:54:03 -04:00
Brandon Rising
8935ae0ea3 Fix issues caused by merge 2023-07-28 14:00:32 -04:00
Brandon Rising
a2aa66f43a Run Python black 2023-07-28 10:00:09 -04:00
Brandon Rising
da751da3dd Merge branch 'main' into feat/onnx 2023-07-28 09:59:35 -04:00
Brandon Rising
2b7b3dd4ba Run python black 2023-07-28 09:46:44 -04:00
Brandon Rising
dc1148106d Just install onnxruntime by default 2023-07-28 09:32:43 -04:00
Millun Atluri
514722d67a Update definitions to be more accurate 2023-07-28 18:35:05 +10:00
Millun Atluri
5dbde2116f Merge branch 'invoke-ai:main' into main 2023-07-28 18:34:33 +10:00
Brandon Rising
1ea9ba84f5 Release session if applying ti or lora 2023-07-27 15:20:38 -04:00
Brandon Rising
bfdc8c80f3 Testing caching onnx sessions 2023-07-27 14:13:29 -04:00
Brandon Rising
59716938bf Remove TensorRT support at the current time until we validate it works, remove time step recorder 2023-07-27 11:18:50 -04:00
Brandon Rising
918a0dedc0 Always install onnx 2023-07-27 11:00:40 -04:00
Brandon Rising
a491e326c5 This is no longer needed 2023-07-27 10:52:36 -04:00
Brandon Rising
f7bb4c3f05 Remove more files no longer needed in main 2023-07-27 10:49:43 -04:00
Brandon Rising
57271ad125 Move onnx to optional dependencies 2023-07-27 10:28:26 -04:00
Brandon Rising
33245b37ad Removed things no longer needed in main 2023-07-27 10:23:55 -04:00
Brandon Rising
81d8fb8762 Removed things no longer needed in main 2023-07-27 10:14:55 -04:00
Brandon Rising
989d3d7f3c Remove onnx changes from canvas img2img, inpaint, and linear image2image 2023-07-27 10:08:45 -04:00
Brandon Rising
d2a46b4308 Fix dist and schema after merge 2023-07-27 09:55:28 -04:00
Brandon Rising
eb1ba8d74b Merge branch 'main' into feat/onnx 2023-07-27 09:54:30 -04:00
Brandon Rising
4ebde013ea Allow deleting onnx models in model manager ui 2023-07-27 09:50:20 -04:00
Brandon Rising
024f92f9a9 Add onnx models to the model manager UI 2023-07-27 09:37:37 -04:00
Millun Atluri
562c937a14 Updated new user flow 2023-07-27 21:46:39 +10:00
Millun Atluri
5300e353d8 updated community nodes doc 2023-07-27 18:58:44 +10:00
Millun Atluri
d78c97f8a8 Updated getting started guide and links 2023-07-27 18:51:48 +10:00
Millun Atluri
52f61698e9 added getting started with Invoke guide 2023-07-27 18:29:12 +10:00
Brandon Rising
4d732e06de Remove onnx models from img2img and unified canvas 2023-07-26 16:30:02 -04:00
Brandon Rising
f26a423e95 Fix merge issue 2023-07-26 15:32:28 -04:00
Brandon Rising
861c0fe76b Correct issues caused by merging main 2023-07-26 12:25:46 -04:00
Brandon Rising
c16da75ac7 Merge branch 'main' into feat/onnx 2023-07-26 10:42:31 -04:00
Brandon Rising
78750042f5 Pass in dim overrides 2023-07-21 12:16:24 -04:00
Brandon Rising
ce08aa350c Allow controlnet passthrough for now 2023-07-20 14:14:04 -04:00
Brandon Rising
ba1a934297 Fix Lora typings 2023-07-20 14:02:23 -04:00
Brandon Rising
4e90376d11 Allow passing in of precision, use available providers if none provided 2023-07-20 13:15:45 -04:00
Brandon Rising
23f4a4ea1a Fix dist 2023-07-19 18:27:51 -04:00
Brandon Rising
6aab8f16ce Fix issue from merge 2023-07-19 18:27:15 -04:00
Brandon Rising
8f61413865 Setup dist folder 2023-07-19 17:49:27 -04:00
Brandon Rising
43b6a077fb io binding seems to be massively resource intensive compared to session.run 2023-07-19 17:42:28 -04:00
Brandon Rising
e8299d0abb Comment out erroniously removed del statement, comment out opt tests 2023-07-18 23:23:34 -04:00
Brandon Rising
a28ab654ef Setup dist folder 2023-07-18 23:18:46 -04:00
Brandon Rising
8699fd7050 Fix invoke UI graphs for onnx 2023-07-18 23:16:51 -04:00
Brandon Rising
9e65470ada Setup dist 2023-07-18 23:07:31 -04:00
Brandon Rising
f4e52fafac Fix as part of merging main in 2023-07-18 23:05:33 -04:00
Brandon Rising
ee7b36cea5 Merge branch 'main' into onnx-testing 2023-07-18 22:56:41 -04:00
Brandon Rising
487455ef2e Add model_type to the model state object 2023-07-18 22:40:27 -04:00
Brandon Rising
e201ad2f51 Switch to io_binding for run, testing different session options 2023-07-18 21:54:54 -04:00
Brandon Rising
869f418b03 Setup onnx on linear text2image 2023-07-18 14:27:54 -04:00
Brandon Rising
35d5ef9118 Emit step completions 2023-07-18 12:35:07 -04:00
Brandon Rising
bcce70fca6 Testing different session opts, added timings for testing 2023-07-17 16:27:33 -04:00
Brandon Rising
932112b640 testing being super wasteful with data 2023-07-16 00:17:33 -04:00
Brandon Rising
91112167b1 Fix syntax err 2023-07-15 23:56:48 -04:00
Brandon Rising
bd7b59910d Testing onnx in new ui updates 2023-07-14 14:24:15 -04:00
Brandon Rising
524888bf3b Merge branch 'main' into feat/onnx 2023-07-13 14:23:57 -04:00
blessedcoolant
0327eae509 chore: Regen API 2023-06-23 05:21:06 +12:00
blessedcoolant
bb85608890 Merge branch 'main' into feat/onnx 2023-06-23 05:18:41 +12:00
Sergey Borisov
6c7668aaca Update onnx model structure, change code according 2023-06-22 20:03:17 +03:00
Sergey Borisov
7759b3f75a Small refactor 2023-06-21 04:24:25 +03:00
Sergey Borisov
4d337f6abc ONNX Model/runtime first implementation 2023-06-21 02:12:21 +03:00
Sergey Borisov
92c86fd0b8 Set model type to const value in openapi schema, add model format enums to model schema(as they not not referenced in case of Literal definition) 2023-06-20 03:44:58 +03:00
Sergey Borisov
46dc751139 Update model format field to use enums 2023-06-20 03:30:09 +03:00
Sergey Borisov
4cefe37723 Rename format to model_format(still named format when work with config) 2023-06-20 03:25:08 +03:00
Sergey Borisov
82b73c50a0 Remove default model logic 2023-06-20 03:13:10 +03:00
blessedcoolant
7df7a95299 Merge branch 'main' into model-manager-ui-30 2023-06-19 23:26:11 +12:00
blessedcoolant
85b4b359c2 tweal: UI colors 2023-06-19 23:16:14 +12:00
blessedcoolant
cfe81b5e00 fix: Adjust the Schedular select width
So the long names do not get cut off.
2023-06-19 23:05:32 +12:00
blessedcoolant
b0c4451324 Merge branch 'main' into model-manager-ui-30 2023-06-19 23:02:59 +12:00
blessedcoolant
d4931522d4 Merge branch 'main' into model-manager-ui-30 2023-06-19 22:53:13 +12:00
blessedcoolant
17e2a35228 fix: merge conflicts 2023-06-18 22:25:48 +12:00
blessedcoolant
91016d8b29 Merge branch 'main' into model-manager-ui-30 2023-06-18 22:23:18 +12:00
blessedcoolant
9fda21cf40 Revert "feat: Port Schedulers to Mantine"
This reverts commit e0c105f413.
2023-06-18 22:22:56 +12:00
blessedcoolant
809ec7163e fix: Remove type from Model type name 2023-06-18 19:41:30 +12:00
blessedcoolant
7c9a939b47 fix: Unserialization key issue 2023-06-18 19:38:15 +12:00
blessedcoolant
9634c96020 revert: getModels to receivedModels 2023-06-18 19:35:46 +12:00
blessedcoolant
e0c105f413 feat: Port Schedulers to Mantine 2023-06-18 19:31:53 +12:00
blessedcoolant
f0bf32c476 Merge branch 'main' into model-manager-ui-30 2023-06-18 17:37:34 +12:00
blessedcoolant
28373dbb98 cleanup: Updated model slice names to be more descriptive
Basically updated all slices to be more descriptive in their names. Did so in order to make sure theres good naming scheme available for secondary models.
2023-06-18 17:36:23 +12:00
blessedcoolant
4133d77772 wip: Move Model Selector to own file 2023-06-18 09:19:13 +12:00
blessedcoolant
61c426f502 feat: Enable 2.x Model Generation in Linear UI 2023-06-18 08:27:13 +12:00
blessedcoolant
bf0577c882 fix: 2.1 models breaking generation
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-06-18 08:26:25 +12:00
blessedcoolant
24673fd859 chore: Rebuild API - base_model and type added 2023-06-18 07:50:28 +12:00
Sergey Borisov
dc669d1447 Add name, base_mode, type fields to model info 2023-06-17 22:48:44 +03:00
blessedcoolant
ce4110b9f4 wip: Add 2.x Models to the Model List 2023-06-18 07:01:44 +12:00
blessedcoolant
0f3b7d2b3d chore: Rebuild API with new Model API names 2023-06-18 03:00:16 +12:00
Sergey Borisov
16dc78f6c6 Generate config names for openapi 2023-06-17 17:15:36 +03:00
blessedcoolant
7a66856785 wip: Update Linear UI Txt2Img and Img2Img Graphs
Update the text to imaeg and image to image graphs to work with the new model loader. Currently only supports 1.x models. Will update this soon to make it work with all models.
2023-06-18 01:38:01 +12:00
blessedcoolant
c8dfa49d86 fix: Update missing name types to new names 2023-06-17 22:04:28 +12:00
blessedcoolant
76dd749b1e chore: Rebuild API 2023-06-17 21:29:32 +12:00
blessedcoolant
67d05d2066 chore: Update model config type names 2023-06-17 21:28:43 +12:00
206 changed files with 6614 additions and 3609 deletions

View File

@@ -2,8 +2,6 @@ name: Lint frontend
on:
pull_request:
paths:
- 'invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
@@ -11,8 +9,6 @@ on:
push:
branches:
- 'main'
paths:
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:

View File

@@ -1,13 +1,14 @@
name: Black # TODO: add isort and flake8 later
name: style checks
# just formatting for now
# TODO: add isort and flake8 later
on:
pull_request: {}
pull_request:
push:
branches: master
tags: "*"
branches: main
jobs:
test:
black:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
@@ -19,8 +20,7 @@ jobs:
- name: Install dependencies with pip
run: |
pip install --upgrade pip wheel
pip install .[test]
pip install black
# - run: isort --check-only .
- run: black --check .

View File

@@ -1,50 +0,0 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
- pytorch: linux-cpu
os: ubuntu-22.04
- pytorch: macos-default
os: macOS-12
- pytorch: windows-cpu
os: windows-2022
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- name: skip
run: echo "no build required"

View File

@@ -3,16 +3,7 @@ on:
push:
branches:
- 'main'
paths:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
pull_request:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
@@ -65,10 +56,23 @@ jobs:
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v37
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
@@ -76,6 +80,7 @@ jobs:
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
@@ -83,6 +88,7 @@ jobs:
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest

View File

@@ -184,8 +184,9 @@ the command `npm install -g yarn` if needed)
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure
invokeai-configure --root .
```
Don't miss the dot at the end!
7. Launch the web server (do it every time you run InvokeAI):
@@ -193,15 +194,9 @@ the command `npm install -g yarn` if needed)
invokeai-web
```
8. Build Node.js assets
8. Point your browser to http://localhost:9090 to bring up the web interface.
```terminal
cd invokeai/frontend/web/
yarn vite build
```
9. Point your browser to http://localhost:9090 to bring up the web interface.
10. Type `banana sushi` in the box on the top left and click `Invoke`.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.

View File

@@ -16,7 +16,7 @@ If you don't feel ready to make a code contribution yet, no problem! You can als
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our roadmap <******************************link to roadmap>******************************. The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*

View File

@@ -4,6 +4,9 @@ title: Overview
Here you can find the documentation for InvokeAI's various features.
## The [Getting Started Guide](../help/gettingStartedWithAI)
A getting started guide for those new to AI image generation.
## The Basics
### * The [Web User Interface](WEB.md)
Guide to the Web interface. Also see the [WebUI Hotkeys Reference Guide](WEBUIHOTKEYS.md)
@@ -46,7 +49,7 @@ Personalize models by adding your own style or subjects.
## Other Features
### * [The NSFW Checker](NSFW.md)
### * [The NSFW Checker](WATERMARK+NSFW.md)
Prevent InvokeAI from displaying unwanted racy images.
### * [Controlling Logging](LOGGING.md)

View File

@@ -0,0 +1,95 @@
# Getting Started with AI Image Generation
New to image generation with AI? Youre in the right place!
This is a high level walkthrough of some of the concepts and terms youll see as you start using InvokeAI. Please note, this is not an exhaustive guide and may be out of date due to the rapidly changing nature of the space.
## Using InvokeAI
### **Prompt Crafting**
- Prompts are the basis of using InvokeAI, providing the models directions on what to generate. As a general rule of thumb, the more detailed your prompt is, the better your result will be.
*To get started, heres an easy template to use for structuring your prompts:*
- Subject, Style, Quality, Aesthetic
- **Subject:** What your image will be about. E.g. “a futuristic city with trains”, “penguins floating on icebergs”, “friends sharing beers”
- **Style:** The style or medium in which your image will be in. E.g. “photograph”, “pencil sketch”, “oil paints”, or “pop art”, “cubism”, “abstract”
- **Quality:** A particular aspect or trait that you would like to see emphasized in your image. E.g. "award-winning", "featured in {relevant set of high quality works}", "professionally acclaimed". Many people often use "masterpiece".
- **Aesthetics:** The visual impact and design of the artwork. This can be colors, mood, lighting, setting, etc.
- There are two prompt boxes: *Positive Prompt* & *Negative Prompt*.
- A **Positive** Prompt includes words you want the model to reference when creating an image.
- Negative Prompt is for anything you want the model to eliminate when creating an image. It doesnt always interpret things exactly the way you would, but helps control the generation process. Always try to include a few terms - you can typically use lower quality image terms like “blurry” or “distorted” with good success.
- Some examples prompts you can try on your own:
- A detailed oil painting of a tranquil forest at sunset with vibrant+ colors and soft, golden light filtering through the trees
- friends sharing beers in a busy city, realistic colored pencil sketch, twilight, masterpiece, bright, lively
### Generation Workflows
- Invoke offers a number of different workflows for interacting with models to produce images. Each is extremely powerful on its own, but together provide you an unparalleled way of producing high quality creative outputs that align with your vision.
- **Text to Image:** The text to image tab focuses on the key workflow of using a prompt to generate a new image. It includes other features that help control the generation process as well.
- **Image to Image:** With image to image, you provide an image as a reference (called the “initial image”), which provides more guidance around color and structure to the AI as it generates a new image. This is provided alongside the same features as Text to Image.
- **Unified Canvas:** The Unified Canvas is an advanced AI-first image editing tool that is easy to use, but hard to master. Drag an image onto the canvas from your gallery in order to regenerate certain elements, edit content or colors (known as inpainting), or extend the image with an exceptional degree of consistency and clarity (called outpainting).
### Improving Image Quality
- Fine tuning your prompt - the more specific you are, the closer the image will turn out to what is in your head! Adding more details in the Positive Prompt or Negative Prompt can help add / remove pieces of your image to improve it - You can also use advanced techniques like upweighting and downweighting to control the influence of certain words. [Learn more here](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#prompt-syntax-features).
- **Tip: If youre seeing poor results, try adding the things you dont like about the image to your negative prompt may help. E.g. distorted, low quality, unrealistic, etc.**
- Explore different models - Other models can produce different results due to the data theyve been trained on. Each model has specific language and settings it works best with; a models documentation is your friend here. Play around with some and see what works best for you!
- Increasing Steps - The number of steps used controls how much time the model is given to produce an image, and depends on the “Scheduler” used. The schedule controls how each step is processed by the model. More steps tends to mean better results, but will take longer - We recommend at least 30 steps for most
- Tweak and Iterate - Remember, its best to change one thing at a time so you know what is working and what isn't. Sometimes you just need to try a new image, and other times using a new prompt might be the ticket. For testing, consider turning off the “random” Seed - Using the same seed with the same settings will produce the same image, which makes it the perfect way to learn exactly what your changes are doing.
- Explore Advanced Settings - InvokeAI has a full suite of tools available to allow you complete control over your image creation process - Check out our [docs if you want to learn more](https://invoke-ai.github.io/InvokeAI/features/).
## Terms & Concepts
If you're interested in learning more, check out [this presentation](https://docs.google.com/presentation/d/1IO78i8oEXFTZ5peuHHYkVF-Y3e2M6iM5tCnc-YBfcCM/edit?usp=sharing) from one of our maintainers (@lstein).
### Stable Diffusion
Stable Diffusion is deep learning, text-to-image model that is the foundation of the capabilities found in InvokeAI. Since the release of Stable Diffusion, there have been many subsequent models created based on Stable Diffusion that are designed to generate specific types of images.
### Prompts
Prompts provide the models directions on what to generate. As a general rule of thumb, the more detailed your prompt is, the better your result will be.
### Models
Models are the magic that power InvokeAI. These files represent the output of training a machine on understanding massive amounts of images - providing them with the capability to generate new images using just a text description of what youd like to see. (Like Stable Diffusion!)
Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at ****. Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
- *Models that contain “inpainting” in the name are designed for use with the inpainting feature of the Unified Canvas*
### Scheduler
Schedulers guide the process of removing noise (de-noising) from data. They determine:
1. The number of steps to take to remove the noise.
2. Whether the steps are random (stochastic) or predictable (deterministic).
3. The specific method (algorithm) used for de-noising.
Experimenting with different schedulers is recommended as each will produce different outputs!
### Steps
The number of de-noising steps each generation through.
Schedulers can be intricate and there's often a balance to strike between how quickly they can de-noise data and how well they can do it. It's typically advised to experiment with different schedulers to see which one gives the best results. There has been a lot written on the internet about different schedulers, as well as exploring what the right level of "steps" are for each. You can save generation time by reducing the number of steps used, but you'll want to make sure that you are satisfied with the quality of images produced!
### Low-Rank Adaptations / LoRAs
Low-Rank Adaptations (LoRAs) are like a smaller, more focused version of models, intended to focus on training a better understanding of how a specific character, style, or concept looks.
### Textual Inversion Embeddings
Textual Inversion Embeddings, like LoRAs, assist with more easily prompting for certain characters, styles, or concepts. However, embeddings are trained to update the relationship between a specific word (known as the “trigger”) and the intended output.
### ControlNet
ControlNets are neural network models that are able to extract key features from an existing image and use these features to guide the output of the image generation model.
### VAE
Variational auto-encoder (VAE) is a encode/decode model that translates the "latents" image produced during the image generation procees to the large pixel images that we see.

View File

@@ -11,6 +11,33 @@ title: Home
```
-->
<!-- CSS styling -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/fontawesome-free@6.2.1/css/fontawesome.min.css">
<style>
.button {
width: 300px;
height: 50px;
background-color: #448AFF;
color: #fff;
font-size: 16px;
border: none;
cursor: pointer;
border-radius: 0.2rem;
}
.button-container {
display: grid;
grid-template-columns: repeat(3, 300px);
gap: 20px;
}
.button:hover {
background-color: #526CFE;
}
</style>
<div align="center" markdown>
@@ -70,63 +97,23 @@ image-to-image generator. It provides a streamlined process with various new
features and options to aid the image generation process. It runs on Windows,
Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas &
Q&A</a>]
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
!!! note
!!! Note
This software is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
## :octicons-package-dependencies-24: Installation
## :octicons-link-24: Quick Links
This software is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](installation/010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](installation/020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](installation/040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
#### [Installation Troubleshooting](installation/010_INSTALL_AUTOMATED.md#troubleshooting)
Installation troubleshooting guide.
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements
### :octicons-cpu-24: System
You wil need one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
We do **not recommend** the following video cards due to issues with their
running in half-precision mode and having insufficient VRAM to render 512x512
images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
### :fontawesome-solid-memory: Memory and Disk
- At least 12 GB Main Memory RAM.
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
<div class="button-container">
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
<a href="features/"> <button class="button">Features</button> </a>
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
<a href="https://discord.gg/ZmtBAhwWhy"> <button class="button"> Join the Discord Server!</button> </a>
</div>
## :octicons-gift-24: InvokeAI Features

View File

@@ -192,8 +192,10 @@ manager, please follow these steps:
your outputs.
```terminal
invokeai-configure
invokeai-configure --root .
```
Don't miss the dot at the end of the command!
The script `invokeai-configure` will interactively guide you through the
process of downloading and installing the weights files needed for InvokeAI.
@@ -225,12 +227,6 @@ manager, please follow these steps:
!!! warning "Make sure that the virtual environment is activated, which should create `(.venv)` in front of your prompt!"
=== "CLI"
```bash
invokeai
```
=== "local Webserver"
```bash
@@ -243,6 +239,12 @@ manager, please follow these steps:
invokeai --web --host 0.0.0.0
```
=== "CLI"
```bash
invokeai
```
If you choose the run the web interface, point your browser at
http://localhost:9090 in order to load the GUI.

View File

@@ -124,7 +124,7 @@ installation. Examples:
invokeai-model-install --list controlnet
# (install the model at the indicated URL)
invokeai-model-install --add http://civitai.com/2860
invokeai-model-install --add https://civitai.com/api/download/models/128713
# (delete the named model)
invokeai-model-install --delete sd-1/main/analog-diffusion
@@ -170,4 +170,4 @@ elsewhere on disk and they will be autoimported. You can also create
subfolders and organize them as you wish.
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).

View File

@@ -1,6 +1,4 @@
---
title: Overview
---
# Overview
We offer several ways to install InvokeAI, each one suited to your
experience and preferences. We suggest that everyone start by
@@ -15,6 +13,56 @@ See the [troubleshooting
section](010_INSTALL_AUTOMATED.md#troubleshooting) of the automated
install guide for frequently-encountered installation issues.
This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements
### :octicons-cpu-24: System
You wil need one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
** SDXL 1.0 Requirements*
To use SDXL, user must have one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 8 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 16 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
### :fontawesome-solid-memory: Memory and Disk
- At least 12 GB Main Memory RAM.
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
We do **not recommend** the following video cards due to issues with their
running in half-precision mode and having insufficient VRAM to render 512x512
images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
## Installation options
1. [Automated Installer](010_INSTALL_AUTOMATED.md)

View File

@@ -35,7 +35,7 @@ The nodes linked below have been developed and contributed by members of the Inv
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Super Cool Node Template
### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
@@ -45,7 +45,9 @@ The nodes linked below have been developed and contributed by members of the Inv
**Output Examples**
![Invoke AI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

View File

@@ -34,6 +34,10 @@
cudaPackages.cudnn
cudaPackages.cuda_nvrtc
cudatoolkit
pkgconfig
libconfig
cmake
blas
freeglut
glib
gperf
@@ -42,6 +46,12 @@
libGLU
linuxPackages.nvidia_x11
python
(opencv4.override {
enableGtk3 = true;
enableFfmpeg = true;
enableCuda = true;
enableUnfree = true;
})
stdenv.cc
stdenv.cc.cc.lib
xorg.libX11

View File

@@ -455,7 +455,7 @@ def get_torch_source() -> (Union[str, None], str):
device = graphical_accelerator()
url = None
optional_modules = None
optional_modules = "[onnx]"
if OS == "Linux":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.4.2"
@@ -464,7 +464,10 @@ def get_torch_source() -> (Union[str, None], str):
if device == "cuda":
url = "https://download.pytorch.org/whl/cu117"
optional_modules = "[xformers]"
optional_modules = "[xformers,onnx-cuda]"
if device == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu117"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@@ -167,6 +167,10 @@ def graphical_accelerator():
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
"cuda",
)
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
"cuda_and_dml",
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
"rocm",
@@ -181,7 +185,7 @@ def graphical_accelerator():
)
if OS == "Windows":
options = [nvidia, cpu]
options = [nvidia, nvidia_with_dml, cpu]
if OS == "Linux":
options = [nvidia, amd, cpu]
elif OS == "Darwin":

View File

@@ -1,7 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional
from logging import Logger
import os
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
@@ -29,6 +29,7 @@ from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService
from ..services.invocation_stats import InvocationStatsService
from .events import FastAPIEventService
@@ -54,7 +55,7 @@ logger = InvokeAILogger.getLogger()
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
invoker: Invoker
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
@@ -67,8 +68,9 @@ class ApiDependencies:
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = config.db_path
db_location.parent.mkdir(parents=True, exist_ok=True)
db_path = config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
db_location = str(db_path)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
@@ -127,6 +129,7 @@ class ApiDependencies:
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
configuration=config,
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger,
)

View File

@@ -1,24 +1,30 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardRecord, BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO
from pydantic import BaseModel, Field
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
class AddImagesToBoardResult(BaseModel):
board_id: str = Field(description="The id of the board the images were added to")
added_image_names: list[str] = Field(description="The image names that were added to the board")
class RemoveImagesFromBoardResult(BaseModel):
removed_image_names: list[str] = Field(description="The image names that were removed from their board")
@board_images_router.post(
"/",
operation_id="create_board_image",
operation_id="add_image_to_board",
responses={
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
)
async def create_board_image(
async def add_image_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
@@ -29,26 +35,78 @@ async def create_board_image(
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
raise HTTPException(status_code=500, detail="Failed to add image to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
operation_id="remove_image_from_board",
responses={
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
)
async def remove_board_image(
board_id: str = Body(description="The id of the board"),
image_name: str = Body(description="The name of the image to remove"),
async def remove_image_from_board(
image_name: str = Body(description="The name of the image to remove", embed=True),
):
"""Deletes a board_image"""
"""Removes an image from its board, if it had one"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(
board_id=board_id, image_name=image_name
)
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
raise HTTPException(status_code=500, detail="Failed to remove image from board")
@board_images_router.post(
"/batch",
operation_id="add_images_to_board",
responses={
201: {"description": "Images were added to board successfully"},
},
status_code=201,
response_model=AddImagesToBoardResult,
)
async def add_images_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_names: list[str] = Body(description="The names of the images to add", embed=True),
) -> AddImagesToBoardResult:
"""Adds a list of images to a board"""
try:
added_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
)
added_image_names.append(image_name)
except:
pass
return AddImagesToBoardResult(board_id=board_id, added_image_names=added_image_names)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add images to board")
@board_images_router.post(
"/batch/delete",
operation_id="remove_images_from_board",
responses={
201: {"description": "Images were removed from board successfully"},
},
status_code=201,
response_model=RemoveImagesFromBoardResult,
)
async def remove_images_from_board(
image_names: list[str] = Body(description="The names of the images to remove", embed=True),
) -> RemoveImagesFromBoardResult:
"""Removes a list of images from their board, if they had one"""
try:
removed_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_image_names.append(image_name)
except:
pass
return RemoveImagesFromBoardResult(removed_image_names=removed_image_names)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to remove images from board")

View File

@@ -5,6 +5,7 @@ from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadF
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
@@ -25,7 +26,7 @@ IMAGE_MAX_AGE = 31536000
@images_router.post(
"/",
"/upload",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
@@ -77,7 +78,7 @@ async def upload_image(
raise HTTPException(status_code=500, detail="Failed to create image")
@images_router.delete("/{image_name}", operation_id="delete_image")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
@@ -103,7 +104,7 @@ async def clear_intermediates() -> int:
@images_router.patch(
"/{image_name}",
"/i/{image_name}",
operation_id="update_image",
response_model=ImageDTO,
)
@@ -120,7 +121,7 @@ async def update_image(
@images_router.get(
"/{image_name}",
"/i/{image_name}",
operation_id="get_image_dto",
response_model=ImageDTO,
)
@@ -136,7 +137,7 @@ async def get_image_dto(
@images_router.get(
"/{image_name}/metadata",
"/i/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageMetadata,
)
@@ -152,7 +153,7 @@ async def get_image_metadata(
@images_router.get(
"/{image_name}/full",
"/i/{image_name}/full",
operation_id="get_image_full",
response_class=Response,
responses={
@@ -187,7 +188,7 @@ async def get_image_full(
@images_router.get(
"/{image_name}/thumbnail",
"/i/{image_name}/thumbnail",
operation_id="get_image_thumbnail",
response_class=Response,
responses={
@@ -216,7 +217,7 @@ async def get_image_thumbnail(
@images_router.get(
"/{image_name}/urls",
"/i/{image_name}/urls",
operation_id="get_image_urls",
response_model=ImageUrlsDTO,
)
@@ -265,3 +266,24 @@ async def list_image_dtos(
)
return image_dtos
class DeleteImagesFromListResult(BaseModel):
deleted_images: list[str]
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesFromListResult)
async def delete_images_from_list(
image_names: list[str] = Body(description="The list of names of images to delete", embed=True),
) -> DeleteImagesFromListResult:
try:
deleted_images: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
except:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to delete images")

View File

@@ -37,6 +37,7 @@ from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from invokeai.app.services.invocation_stats import InvocationStatsService
from .services.default_graphs import default_text_to_image_graph_id, create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
@@ -311,6 +312,7 @@ def invoke_cli():
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger,
configuration=config,
)

View File

@@ -1,6 +1,14 @@
from typing import Literal, Optional, Union, List, Annotated
from pydantic import BaseModel, Field
import re
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .model import ClipField
from ...backend.util.devices import torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
@@ -101,12 +109,15 @@ class CompelInvocation(BaseInvocation):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@@ -165,7 +176,7 @@ class CompelInvocation(BaseInvocation):
class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
def run_clip_raw(self, context, clip_field, prompt, get_pooled, lora_prefix):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
@@ -189,12 +200,15 @@ class SDXLPromptInvocationBase:
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@@ -202,8 +216,8 @@ class SDXLPromptInvocationBase:
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
with ModelPatcher.apply_lora(
text_encoder_info.context.model, _lora_loader(), lora_prefix
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
@@ -239,7 +253,7 @@ class SDXLPromptInvocationBase:
return c, c_pooled, None
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
def run_clip_compel(self, context, clip_field, prompt, get_pooled, lora_prefix):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
@@ -263,12 +277,15 @@ class SDXLPromptInvocationBase:
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@@ -276,8 +293,8 @@ class SDXLPromptInvocationBase:
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
with ModelPatcher.apply_lora(
text_encoder_info.context.model, _lora_loader(), lora_prefix
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
@@ -349,11 +366,11 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip, self.prompt, False)
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip, self.prompt, False, "lora_te1_")
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True, "lora_te2_")
else:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "lora_te2_")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@@ -407,7 +424,8 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@@ -459,11 +477,11 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip, self.prompt, False)
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip, self.prompt, False, "lora_te1_")
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True, "lora_te2_")
else:
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True, "lora_te2_")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@@ -517,7 +535,8 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True, "<NONE>")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)

View File

@@ -3,6 +3,7 @@
from typing import Literal, Optional
import numpy
import cv2
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import Field
from pathlib import Path
@@ -650,3 +651,147 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
width=image_dto.width,
height=image_dto.height,
)
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
# fmt: off
type: Literal["img_hue_adjust"] = "img_hue_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
hue: int = Field(default=0, description="The degrees by which to rotate the hue")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Adjust the hue
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + self.hue) % 180
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
class ImageLuminosityAdjustmentInvocation(BaseInvocation):
"""Adjusts the Luminosity (Value) of an image."""
# fmt: off
type: Literal["img_luminosity_adjust"] = "img_luminosity_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
luminosity: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Adjust the luminosity (value)
hsv_image[:, :, 2] = numpy.clip(hsv_image[:, :, 2] * self.luminosity, 0, 255)
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
class ImageSaturationAdjustmentInvocation(BaseInvocation):
"""Adjusts the Saturation of an image."""
# fmt: off
type: Literal["img_saturation_adjust"] = "img_saturation_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
saturation: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Adjust the saturation
hsv_image[:, :, 1] = numpy.clip(hsv_image[:, :, 1] * self.saturation, 0, 255)
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -14,7 +14,7 @@ from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData,
@@ -24,6 +24,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.model_management import ModelPatcher
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
@@ -179,6 +180,10 @@ class TextToLatentsInvocation(BaseInvocation):
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].embeds.to(device=unet.device, dtype=unet.dtype)
# for ancestral and sde schedulers
generator = torch.Generator(device=unet.device)
generator.seed()
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
@@ -197,7 +202,7 @@ class TextToLatentsInvocation(BaseInvocation):
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=unet.device).manual_seed(0),
generator=generator,
)
return conditioning_data

View File

@@ -1,6 +1,6 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from pydantic import Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -10,16 +10,17 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class LoRAMetadataField(BaseModel):
class LoRAMetadataField(BaseModelExcludeNull):
"""LoRA metadata for an image generated in InvokeAI."""
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
class CoreMetadata(BaseModel):
class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI."""
generation_mode: str = Field(
@@ -70,7 +71,7 @@ class CoreMetadata(BaseModel):
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModel):
class ImageMetadata(BaseModelExcludeNull):
"""An image's generation metadata"""
metadata: Optional[dict] = Field(

View File

@@ -53,6 +53,7 @@ class MainModelField(BaseModel):
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class LoRAModelField(BaseModel):
@@ -261,6 +262,103 @@ class LoraLoaderInvocation(BaseInvocation):
return output
class SDXLLoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
clip2: Optional[ClipField] = Field(default=None, description="Tokenizer2 and text_encoder2 submodels")
# fmt: on
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
clip2: Optional[ClipField] = Field(description="Clip2 model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unknown lora name: {lora_name}!")
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip')
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip2')
output = SDXLLoraLoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = copy.deepcopy(self.clip2)
output.clip2.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
return output
class VAEModelField(BaseModel):
"""Vae model field"""

View File

@@ -0,0 +1,573 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import re
import inspect
from pydantic import BaseModel, Field, validator
import torch
import numpy as np
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management import ONNXModelPatcher
from ...backend.util import choose_torch_device
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.backend import BaseModelType, ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.stable_diffusion import PipelineIntermediateState
from tqdm import tqdm
from .model import ClipField
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
from .compel import CompelOutput
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
class ONNXPromptInvocation(BaseInvocation):
type: Literal["prompt_onnx"] = "prompt_onnx"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder, ExitStack() as stack:
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
for lora in self.clip.loras
]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model,
)
)
except Exception:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
if loras or ti_list:
text_encoder.release_session()
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras), ONNXModelPatcher.apply_ti(
orig_tokenizer, text_encoder, ti_list
) as (tokenizer, ti_manager):
text_encoder.create_session()
# copy from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
text_inputs = tokenizer(
self.prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
"""
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
"""
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# Text to image
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l_onnx"] = "t2l_onnx"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
precision: PRECISION_VALUES = Field(default = "tensor(float16)", description="The precision to use when generating latents")
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
},
},
}
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
if isinstance(c, torch.Tensor):
c = c.cpu().numpy()
if isinstance(uc, torch.Tensor):
uc = uc.cpu().numpy()
device = torch.device(choose_torch_device())
prompt_embeds = np.concatenate([uc, c])
latents = context.services.latents.get(self.noise.latents_name)
if isinstance(latents, torch.Tensor):
latents = latents.cpu().numpy()
# TODO: better execution device handling
latents = latents.astype(ORT_TO_NP_TYPE[self.precision])
# get the initial random noise unless the user supplied it
do_classifier_free_guidance = True
# latents_dtype = prompt_embeds.dtype
# latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
# if latents.shape != latents_shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
def torch2numpy(latent: torch.Tensor):
return latent.cpu().numpy()
def numpy2torch(latent, device):
return torch.from_numpy(latent).to(device)
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet, ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
for lora in self.unet.loras
]
if loras:
unet.release_session()
with ONNXModelPatcher.apply_lora_unet(unet, loras):
# TODO:
_, _, h, w = latents.shape
unet.create_session(h, w)
timestep_dtype = next(
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
for i in tqdm(range(len(scheduler.timesteps))):
t = scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
latent_model_input = latent_model_input.cpu().numpy()
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
noise_pred = noise_pred[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = scheduler.step(
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
)
latents = torch2numpy(scheduler_output.prev_sample)
state = PipelineIntermediateState(
run_id="test", step=i, timestep=timestep, latents=scheduler_output.prev_sample
)
dispatch_progress(self, context=context, source_node_id=source_node_id, intermediate_state=state)
# call the callback, if provided
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
# Latent to image
class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i_onnx"] = "l2i_onnx"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
)
# tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with vae_info as vae:
vae.create_session()
# copied from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate([vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])])
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
image = VaeImageProcessor.numpy_to_pil(image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
"""Loading submodels of selected model."""
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
model_name: str = Field(default="", description="Model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["model", "loader"], "type_hints": {"model_name": "model"}}, # TODO: rename to model_name?
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
model_name = "stable-diffusion-v1-5"
base_model = BaseModelType.StableDiffusion1
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
):
raise Exception(f"Unkown model name: {model_name}!")
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.TextEncoder,
),
loras=[],
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeEncoder,
),
),
)
class OnnxModelField(BaseModel):
"""Onnx model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["onnx_model_loader"] = "onnx_model_loader"
model: OnnxModelField = Field(description="The model to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Onnx Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.ONNX
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeEncoder,
),
),
)

View File

@@ -5,7 +5,7 @@ from typing import List, Literal, Optional, Union
from pydantic import Field, validator
from ...backend.model_management import ModelType, SubModelType
from ...backend.model_management import ModelType, SubModelType, ModelPatcher
from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
@@ -293,10 +293,20 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
num_inference_steps = self.steps
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
scheduler.set_timesteps(num_inference_steps, device=unet.device)
timesteps = scheduler.timesteps
@@ -543,9 +553,19 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
context=context,
)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
# apply denoising_start
num_inference_steps = self.steps
scheduler.set_timesteps(num_inference_steps, device=unet.device)

View File

@@ -25,7 +25,6 @@ class BoardImageRecordStorageBase(ABC):
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
@@ -154,7 +153,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
@@ -162,9 +160,9 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE board_id = ? AND image_name = ?;
WHERE image_name = ?;
""",
(board_id, image_name),
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:

View File

@@ -31,7 +31,6 @@ class BoardImagesServiceABC(ABC):
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
@@ -93,10 +92,9 @@ class BoardImagesService(BoardImagesServiceABC):
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(board_id, image_name)
self._services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,

View File

@@ -274,7 +274,7 @@ class InvokeAISettings(BaseSettings):
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ["type", "initconf", "cached_root"]
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self) -> List[str]:
@@ -290,7 +290,6 @@ class InvokeAISettings(BaseSettings):
"restore",
"root",
"nsfw_checker",
"cached_root",
]
class Config:
@@ -356,7 +355,7 @@ class InvokeAISettings(BaseSettings):
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
@@ -403,7 +402,7 @@ class InvokeAIAppConfig(InvokeAISettings):
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
@@ -415,6 +414,7 @@ class InvokeAIAppConfig(InvokeAISettings):
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
@@ -424,7 +424,6 @@ class InvokeAIAppConfig(InvokeAISettings):
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
cached_root : Path = Field(default=None, description="internal use only", category="DEPRECATED")
# fmt: on
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
@@ -472,15 +471,12 @@ class InvokeAIAppConfig(InvokeAISettings):
"""
Path to the runtime root directory
"""
# we cache value of root to protect against it being '.' and the cwd changing
if self.cached_root:
root = self.cached_root
elif self.root:
if self.root:
root = Path(self.root).expanduser().absolute()
else:
root = self.find_root()
self.cached_root = root
return self.cached_root
root = self.find_root().expanduser().absolute()
self.root = root # insulate ourselves from relative paths that may change
return root
@property
def root_dir(self) -> Path:

View File

@@ -289,9 +289,10 @@ class ImageService(ImageServiceABC):
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]:
try:
image_record = self._services.image_records.get(image_name)
metadata = self._services.image_records.get_metadata(image_name)
if not image_record.session_id:
return ImageMetadata()
return ImageMetadata(metadata=metadata)
session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
@@ -303,7 +304,6 @@ class ImageService(ImageServiceABC):
self._services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
metadata = self._services.image_records.get_metadata(image_name)
return ImageMetadata(graph=graph, metadata=metadata)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")

View File

@@ -32,6 +32,7 @@ class InvocationServices:
logger: "Logger"
model_manager: "ModelManagerServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
def __init__(
@@ -47,6 +48,7 @@ class InvocationServices:
logger: "Logger",
model_manager: "ModelManagerServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
):
self.board_images = board_images
@@ -61,4 +63,5 @@ class InvocationServices:
self.logger = logger
self.model_manager = model_manager
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue

View File

@@ -0,0 +1,223 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight"""
"""
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
import time
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from dataclasses import dataclass, field
from typing import Dict
import torch
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from .graph import GraphExecutionState
from .item_storage import ItemStorageABC
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
@abstractmethod
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
"""
Initialize the InvocationStatsService and reset counters to zero
:param graph_execution_manager: Graph execution manager for this session
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsService(InvocationStatsServiceBase):
"""Accumulate performance information about a running graph. Collects time spent in each node,
as well as the maximum and current VRAM utilisation for CUDA systems"""
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
self.graph_execution_manager = graph_execution_manager
# {graph_id => NodeLog}
self._stats: Dict[str, NodeLog] = {}
class StatsContext:
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
self.invocation = invocation
self.collector = collector
self.graph_id = graph_id
self.start_time = 0
def __enter__(self):
self.start_time = time.time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
def __exit__(self, *args):
self.collector.update_invocation_stats(
self.graph_id,
self.invocation.type,
time.time() - self.start_time,
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
)
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> StatsContext:
"""
Return a context object that will capture the statistics.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog()
return self.StatsContext(invocation, graph_execution_state_id, self)
def reset_all_stats(self):
"""Zero all statistics"""
self._stats = {}
def reset_stats(self, graph_execution_id: str):
"""Zero the statistics for the indicated graph."""
try:
self._stats.pop(graph_execution_id)
except KeyError:
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Floating point seconds used by node's exection
"""
if not self._stats[graph_id].nodes.get(invocation_type):
self._stats[graph_id].nodes[invocation_type] = NodeStats()
stats = self._stats[graph_id].nodes[invocation_type]
stats.calls += 1
stats.time_used += time_used
stats.max_vram = max(stats.max_vram, vram_used)
def log_stats(self):
"""
Send the statistics to the system logger at the info level.
Stats will only be printed if when the execution of the graph
is complete.
"""
completed = set()
for graph_id, node_log in self._stats.items():
current_graph_state = self.graph_execution_manager.get(graph_id)
if not current_graph_state.is_complete():
continue
total_time = 0
logger.info(f"Graph stats: {graph_id}")
logger.info("Node Calls Seconds VRAM Used")
for node_type, stats in self._stats[graph_id].nodes.items():
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
total_time += stats.time_used
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
if torch.cuda.is_available():
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
completed.add(graph_id)
for graph_id in completed:
del self._stats[graph_id]

View File

@@ -3,9 +3,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from pydantic import Field
from typing import Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from typing import Literal, Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from types import ModuleType
from invokeai.backend.model_management import (
@@ -193,7 +194,7 @@ class ModelManagerServiceBase(ABC):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
@@ -292,7 +293,7 @@ class ModelManagerService(ModelManagerServiceBase):
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
logger: Logger,
):
"""
Initialize with the path to the models.yaml config file.
@@ -396,7 +397,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type,
)
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> Union[dict, None]:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
@@ -416,7 +417,7 @@ class ModelManagerService(ModelManagerServiceBase):
"""
return self.mgr.list_models(base_model, model_type)
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> Union[dict, None]:
"""
Return information about the model using the same format as list_models()
"""
@@ -429,7 +430,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> None:
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
@@ -478,7 +479,7 @@ class ModelManagerService(ModelManagerServiceBase):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
@@ -573,9 +574,9 @@ class ModelManagerService(ModelManagerServiceBase):
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
alpha: float = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
force: bool = False,
merge_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
@@ -633,8 +634,8 @@ class ModelManagerService(ModelManagerServiceBase):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
new_name: Optional[str] = None,
new_base: Optional[BaseModelType] = None,
):
"""
Rename the indicated model. Can provide a new name and/or a new base.

View File

@@ -0,0 +1,8 @@
from pydantic import Field
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class BoardImage(BaseModelExcludeNull):
board_id: str = Field(description="The id of the board")
image_name: str = Field(description="The name of the image")

View File

@@ -1,10 +1,11 @@
from typing import Optional, Union
from datetime import datetime
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from pydantic import Field
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class BoardRecord(BaseModel):
class BoardRecord(BaseModelExcludeNull):
"""Deserialized board record."""
board_id: str = Field(description="The unique ID of the board.")

View File

@@ -1,13 +1,14 @@
import datetime
from typing import Optional, Union
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from pydantic import Extra, Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ImageRecord(BaseModel):
class ImageRecord(BaseModelExcludeNull):
"""Deserialized image record without metadata."""
image_name: str = Field(description="The unique name of the image.")
@@ -40,7 +41,7 @@ class ImageRecord(BaseModel):
"""The node ID that generated this image, if it is a generated image."""
class ImageRecordChanges(BaseModel, extra=Extra.forbid):
class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
"""A set of changes to apply to an image record.
Only limited changes are valid:
@@ -60,7 +61,7 @@ class ImageRecordChanges(BaseModel, extra=Extra.forbid):
"""The image's new `is_intermediate` flag."""
class ImageUrlsDTO(BaseModel):
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
@@ -76,11 +77,15 @@ class ImageDTO(ImageRecord, ImageUrlsDTO):
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord, image_url: str, thumbnail_url: str, board_id: Optional[str]
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(

View File

@@ -1,14 +1,15 @@
import time
import traceback
from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException
from threading import BoundedSemaphore, Event, Thread
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import InvocationContext
from ..models.exceptions import CanceledException
from .invocation_queue import InvocationQueueItem
from .invocation_stats import InvocationStatsServiceBase
from .invoker import InvocationProcessorABC, Invoker
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
@@ -35,6 +36,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
while not stop_event.is_set():
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
@@ -83,35 +86,38 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Invoke
try:
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
with statistics.collect_stats(invocation, graph_execution_state.id):
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
)
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
statistics.log_stats()
except KeyboardInterrupt:
pass
except CanceledException:
statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
@@ -133,7 +139,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error_type=e.__class__.__name__,
error=error,
)
statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so

View File

@@ -20,6 +20,6 @@ class LocalUrlService(UrlServiceBase):
# These paths are determined by the routes in invokeai/app/api/routers/images.py
if thumbnail:
return f"{self._base_url}/images/{image_basename}/thumbnail"
return f"{self._base_url}/images/i/{image_basename}/thumbnail"
return f"{self._base_url}/images/{image_basename}/full"
return f"{self._base_url}/images/i/{image_basename}/full"

View File

@@ -18,5 +18,5 @@ SEED_MAX = np.iinfo(np.uint32).max
def get_random_seed():
rng = np.random.default_rng(seed=0)
rng = np.random.default_rng(seed=None)
return int(rng.integers(0, SEED_MAX))

View File

@@ -0,0 +1,23 @@
from typing import Any
from pydantic import BaseModel
"""
We want to exclude null values from objects that make their way to the client.
Unfortunately there is no built-in way to do this in pydantic, so we need to override the default
dict method to do this.
From https://github.com/tiangolo/fastapi/discussions/8882#discussioncomment-5154541
"""
class BaseModelExcludeNull(BaseModel):
def dict(self, *args, **kwargs) -> dict[str, Any]:
"""
Override the default dict method to exclude None values in the response
"""
kwargs.pop("exclude_none", None)
return super().dict(*args, exclude_none=True, **kwargs)
pass

View File

@@ -12,16 +12,17 @@ def check_invokeai_root(config: InvokeAIAppConfig):
assert config.model_conf_path.exists(), f"{config.model_conf_path} not found"
assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
assert config.models_path.exists(), f"{config.models_path} not found"
for model in [
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
"clip-vit-large-patch14",
"sd-vae-ft-mse",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
]:
path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
if not config.ignore_missing_core_models:
for model in [
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
"clip-vit-large-patch14",
"sd-vae-ft-mse",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
]:
path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
except Exception as e:
print()
print(f"An exception has occurred: {str(e)}")
@@ -32,5 +33,10 @@ def check_invokeai_root(config: InvokeAIAppConfig):
print(
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
)
print(
'** (To skip this check completely, add "--ignore_missing_core_models" to your CLI args. Not installing '
"these core models will prevent the loading of some or all .safetensors and .ckpt files. However, you can "
"always come back and install these core models in the future.)"
)
input("Press any key to continue...")
sys.exit(0)

View File

@@ -7,11 +7,13 @@ import warnings
from dataclasses import dataclass, field
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set, Optional
from typing import Optional, List, Dict, Callable, Union, Set
import requests
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
import onnx
import torch
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
from tqdm import tqdm
@@ -22,6 +24,7 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
from invokeai.backend.util import download_with_resume
from invokeai.backend.util.devices import torch_dtype, choose_torch_device
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
@@ -86,8 +89,8 @@ class ModelLoadInfo:
name: str
model_type: ModelType
base_type: BaseModelType
path: Path = None
repo_id: str = None
path: Optional[Path] = None
repo_id: Optional[str] = None
description: str = ""
installed: bool = False
recommended: bool = False
@@ -98,9 +101,9 @@ class ModelInstall(object):
def __init__(
self,
config: InvokeAIAppConfig,
prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
model_manager: ModelManager = None,
access_token: str = None,
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
model_manager: Optional[ModelManager] = None,
access_token: Optional[str] = None,
):
self.config = config
self.mgr = model_manager or ModelManager(config.model_conf_path)
@@ -304,6 +307,8 @@ class ModelInstall(object):
staging = Path(staging)
if "model_index.json" in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline
elif "unet/model.onnx" in files:
location = self._download_hf_model(repo_id, files, staging)
else:
for suffix in ["safetensors", "bin"]:
if f"pytorch_lora_weights.{suffix}" in files:
@@ -368,7 +373,7 @@ class ModelInstall(object):
model_format=info.format,
)
legacy_conf = None
if info.model_type == ModelType.Main:
if info.model_type == ModelType.Main or info.model_type == ModelType.ONNX:
attributes.update(
dict(
variant=info.variant_type,
@@ -413,15 +418,25 @@ class ModelInstall(object):
does a save_pretrained() to the indicated staging area.
"""
_, name = repo_id.split("/")
revisions = ["fp16", "main"] if self.config.precision == "float16" else ["main"]
precision = torch_dtype(choose_torch_device())
variants = ["fp16", None] if precision == torch.float16 else [None, "fp16"]
model = None
for revision in revisions:
for variant in variants:
try:
model = DiffusionPipeline.from_pretrained(repo_id, revision=revision, safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass
model = DiffusionPipeline.from_pretrained(
repo_id,
variant=variant,
torch_dtype=precision,
safety_checker=None,
)
except Exception as e: # most errors are due to fp16 not being present. Fix this to catch other errors
if "fp16" not in str(e):
print(e)
if model:
break
if not model:
logger.error(f"Diffusers model {repo_id} could not be downloaded. Skipping.")
return None
@@ -433,8 +448,13 @@ class ModelInstall(object):
location = staging / name
paths = list()
for filename in files:
filePath = Path(filename)
p = hf_download_with_resume(
repo_id, model_dir=location, model_name=filename, access_token=self.access_token
repo_id,
model_dir=location / filePath.parent,
model_name=filePath.name,
access_token=self.access_token,
subfolder=filePath.parent,
)
if p:
paths.append(p)
@@ -482,11 +502,12 @@ def hf_download_with_resume(
model_name: str,
model_dest: Path = None,
access_token: str = None,
subfolder: str = None,
) -> Path:
model_dest = model_dest or Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
url = hf_hub_url(repo_id, model_name, subfolder=subfolder)
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"

View File

@@ -3,6 +3,7 @@ Initialization file for invokeai.backend.model_management
"""
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .lora import ModelPatcher, ONNXModelPatcher
from .models import (
BaseModelType,
ModelType,
@@ -12,3 +13,4 @@ from .models import (
DuplicateModelException,
)
from .model_merge import ModelMerger, MergeInterpolationMethod
from .lora import ModelPatcher

View File

@@ -6,427 +6,20 @@ from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from onnx import numpy_helper
from onnxruntime import OrtValue
import numpy as np
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return (
op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
)
* multiplier
* scale
)
def get_weight(self):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoRAModel: # (torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> LoRAModel:
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
else:
# TODO: diff/ia3/... format
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key}")
return
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
"""
loras = [
(lora_model1, 0.7),
@@ -505,6 +98,26 @@ class ModelPatcher:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
yield
@classmethod
@contextmanager
def apply_lora(
@@ -551,7 +164,7 @@ class ModelPatcher:
cls,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
ti_list: List[Any],
ti_list: List[Tuple[str, Any]],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
init_tokens_count = None
new_tokens_added = None
@@ -561,27 +174,27 @@ class ModelPatcher:
ti_manager = TextualInversionManager(ti_tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
def _get_trigger(ti, index):
trigger = ti.name
def _get_trigger(ti_name, index):
trigger = ti_name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for ti_name, ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
model_embeddings = text_encoder.get_input_embeddings()
for ti in ti_list:
for ti_name, ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i]
trigger = _get_trigger(ti, i)
trigger = _get_trigger(ti_name, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
@@ -626,7 +239,6 @@ class ModelPatcher:
class TextualInversionModel:
name: str
embedding: torch.Tensor # [n, 768]|[n, 1280]
@classmethod
@@ -640,7 +252,6 @@ class TextualInversionModel:
file_path = Path(file_path)
result = cls() # TODO:
result.name = file_path.stem # TODO:
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
@@ -698,3 +309,186 @@ class TextualInversionManager(BaseTextualInversionManager):
new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids
class ONNXModelPatcher:
from .models.base import IAIOnnxRuntimeModel, OnnxRuntimeModel
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
# based on
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
@classmethod
@contextmanager
def apply_lora(
cls,
model: IAIOnnxRuntimeModel,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
from .models.base import IAIOnnxRuntimeModel
if not isinstance(model, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_weights = dict()
try:
blended_loras = dict()
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
layer.to(dtype=torch.float32)
layer_key = layer_key.replace(prefix, "")
layer_weight = layer.get_weight().detach().cpu().numpy() * lora_weight
if layer_key is blended_loras:
blended_loras[layer_key] += layer_weight
else:
blended_loras[layer_key] = layer_weight
node_names = dict()
for node in model.nodes.values():
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
for layer_key, lora_weight in blended_loras.items():
conv_key = layer_key + "_Conv"
gemm_key = layer_key + "_Gemm"
matmul_key = layer_key + "_MatMul"
if conv_key in node_names or gemm_key in node_names:
if conv_key in node_names:
conv_node = model.nodes[node_names[conv_key]]
else:
conv_node = model.nodes[node_names[gemm_key]]
weight_name = [n for n in conv_node.input if ".weight" in n][0]
orig_weight = model.tensors[weight_name]
if orig_weight.shape[-2:] == (1, 1):
if lora_weight.shape[-2:] == (1, 1):
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
else:
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
new_weight = np.expand_dims(new_weight, (2, 3))
else:
if orig_weight.shape != lora_weight.shape:
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
else:
new_weight = orig_weight + lora_weight
orig_weights[weight_name] = orig_weight
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
elif matmul_key in node_names:
weight_node = model.nodes[node_names[matmul_key]]
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
orig_weight = model.tensors[matmul_name]
new_weight = orig_weight + lora_weight.transpose()
orig_weights[matmul_name] = orig_weight
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
else:
# warn? err?
pass
yield
finally:
# restore original weights
for name, orig_weight in orig_weights.items():
model.tensors[name] = orig_weight
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: IAIOnnxRuntimeModel,
ti_list: List[Tuple[str, Any]],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
from .models.base import IAIOnnxRuntimeModel
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_embeddings = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
def _get_trigger(ti_name, index):
trigger = ti_name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti_name, ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
embeddings = np.concatenate(
(np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))),
axis=0,
)
for ti_name, ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i].detach().numpy()
trigger = _get_trigger(ti_name, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if embeddings[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {embeddings[token_id].shape[0]}."
)
embeddings[token_id] = embedding
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(
orig_embeddings.dtype
)
yield ti_tokenizer, ti_manager
finally:
# restore
if orig_embeddings is not None:
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings

View File

@@ -28,8 +28,6 @@ import torch
import logging
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .lora import LoRAModel, TextualInversionModel
from .models import BaseModelType, ModelType, SubModelType, ModelBase
# Maximum size of the cache, in gigs
@@ -188,7 +186,7 @@ class ModelCache(object):
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}:{submodel.value if submodel else ''}"
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
)
# this will remove older cached models until
@@ -360,7 +358,8 @@ class ModelCache(object):
# 2 refs:
# 1 from cache_entry
# 1 from getrefcount function
if not cache_entry.locked and refs <= 2:
# 1 from onnx runtime object
if not cache_entry.locked and refs <= 3 if "onnx" in model_key else 2:
self.logger.debug(
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)

View File

@@ -234,7 +234,7 @@ import textwrap
import yaml
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, List, Tuple, Union, Dict, Set, Callable, types
from typing import Literal, Optional, List, Tuple, Union, Dict, Set, Callable, types
from shutil import rmtree, move
import torch
@@ -276,7 +276,7 @@ class ModelInfo:
hash: str
location: Union[Path, str]
precision: torch.dtype
_cache: ModelCache = None
_cache: Optional[ModelCache] = None
def __enter__(self):
return self.context.__enter__()
@@ -472,7 +472,7 @@ class ModelManager(object):
if submodel_type is not None and hasattr(model_config, submodel_type):
override_path = getattr(model_config, submodel_type)
if override_path:
model_path = self.app_config.root_path / override_path
model_path = self.resolve_path(override_path)
model_type = submodel_type
submodel_type = None
model_class = MODEL_CLASSES[base_model][model_type]
@@ -518,7 +518,7 @@ class ModelManager(object):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> dict:
) -> Union[dict, None]:
"""
Given a model name returns the OmegaConf (dict-like) object describing it.
"""
@@ -540,13 +540,15 @@ class ModelManager(object):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> dict:
) -> Union[dict, None]:
"""
Returns a dict describing one installed model, using
the combined format of the list_models() method.
"""
models = self.list_models(base_model, model_type, model_name)
return models[0] if models else None
if len(models) > 1:
return models[0]
return None
def list_models(
self,
@@ -560,7 +562,7 @@ class ModelManager(object):
model_keys = (
[self.create_key(model_name, base_model, model_type)]
if model_name
if model_name and base_model and model_type
else sorted(self.models, key=str.casefold)
)
models = []
@@ -596,7 +598,7 @@ class ModelManager(object):
Print a table of models and their descriptions. This needs to be redone
"""
# TODO: redo
for model_type, model_dict in self.list_models().items():
for model_dict in self.list_models():
for model_name, model_info in model_dict.items():
line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}'
print(line)
@@ -670,7 +672,7 @@ class ModelManager(object):
# TODO: if path changed and old_model.path inside models folder should we delete this too?
# remove conversion cache as config changed
old_model_path = self.app_config.root_path / old_model.path
old_model_path = self.resolve_model_path(old_model.path)
old_model_cache = self._get_model_cache_path(old_model_path)
if old_model_cache.exists():
if old_model_cache.is_dir():
@@ -699,8 +701,8 @@ class ModelManager(object):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
new_name: Optional[str] = None,
new_base: Optional[BaseModelType] = None,
):
"""
Rename or rebase a model.
@@ -753,7 +755,7 @@ class ModelManager(object):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
@@ -767,6 +769,10 @@ class ModelManager(object):
This will raise a ValueError unless the model is a checkpoint.
"""
info = self.model_info(model_name, base_model, model_type)
if info is None:
raise FileNotFoundError(f"model not found: {model_name}")
if info["model_format"] != "checkpoint":
raise ValueError(f"not a checkpoint format model: {model_name}")
@@ -780,7 +786,7 @@ class ModelManager(object):
model_type,
**submodel,
)
checkpoint_path = self.app_config.root_path / info["path"]
checkpoint_path = self.resolve_model_path(info["path"])
old_diffusers_path = self.resolve_model_path(model.location)
new_diffusers_path = (
dest_directory or self.app_config.models_path / base_model.value / model_type.value
@@ -836,7 +842,7 @@ class ModelManager(object):
return search_folder, found_models
def commit(self, conf_file: Path = None) -> None:
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
"""
@@ -983,7 +989,7 @@ class ModelManager(object):
# LS: hacky
# Patch in the SD VAE from core so that it is available for use by the UI
try:
self.heuristic_import({self.resolve_model_path("core/convert/sd-vae-ft-mse")})
self.heuristic_import({str(self.resolve_model_path("core/convert/sd-vae-ft-mse"))})
except:
pass
@@ -992,7 +998,7 @@ class ModelManager(object):
model_manager=self,
prediction_type_helper=ask_user_for_prediction_type,
)
known_paths = {config.root_path / x["path"] for x in self.list_models()}
known_paths = {self.resolve_model_path(x["path"]) for x in self.list_models()}
directories = {
config.root_path / x
for x in [
@@ -1011,7 +1017,7 @@ class ModelManager(object):
def heuristic_import(
self,
items_to_import: Set[str],
prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> Dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.

View File

@@ -33,7 +33,7 @@ class ModelMerger(object):
self,
model_paths: List[Path],
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
**kwargs,
) -> DiffusionPipeline:
@@ -73,7 +73,7 @@ class ModelMerger(object):
base_model: Union[BaseModelType, str],
merged_model_name: str,
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
merge_dest_directory: Optional[Path] = None,
**kwargs,
@@ -122,7 +122,7 @@ class ModelMerger(object):
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
merged_pipe.save_pretrained(dump_path, safe_serialization=True)
attributes = dict(
path=str(dump_path),
description=f"Merge of models {', '.join(model_names)}",

View File

@@ -27,7 +27,7 @@ class ModelProbeInfo(object):
variant_type: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
format: Literal["diffusers", "checkpoint", "lycoris"]
format: Literal["diffusers", "checkpoint", "lycoris", "olive", "onnx"]
image_size: int
@@ -41,6 +41,7 @@ class ModelProbe(object):
PROBES = {
"diffusers": {},
"checkpoint": {},
"onnx": {},
}
CLASS2TYPE = {
@@ -53,7 +54,9 @@ class ModelProbe(object):
}
@classmethod
def register_probe(cls, format: Literal["diffusers", "checkpoint"], model_type: ModelType, probe_class: ProbeBase):
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: ProbeBase
):
cls.PROBES[format][model_type] = probe_class
@classmethod
@@ -95,6 +98,7 @@ class ModelProbe(object):
if format_type == "diffusers"
else cls.get_model_type_from_checkpoint(model_path, model)
)
format_type = "onnx" if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
return None
@@ -168,6 +172,8 @@ class ModelProbe(object):
if model:
class_name = model.__class__.__name__
else:
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "learned_embeds.bin").exists():
return ModelType.TextualInversion
@@ -309,21 +315,38 @@ class LoRACheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
# SD-2 models are very hard to probe. These probes are brittle and likely to fail in the future
# There are also some "SD-2 LoRAs" that have identical keys and shapes to SD-1 and will be
# misclassified as SD-1
key = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
if key in checkpoint and checkpoint[key].shape[0] == 320:
return BaseModelType.StableDiffusion2
key = "lora_unet_output_blocks_5_1_transformer_blocks_1_ff_net_2.lora_up.weight"
if key in checkpoint:
return BaseModelType.StableDiffusionXL
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
key3 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
lora_token_vector_length = (
checkpoint[key1].shape[1]
if key1 in checkpoint
else checkpoint[key2].shape[0]
else checkpoint[key2].shape[1]
if key2 in checkpoint
else 768
else checkpoint[key3].shape[0]
if key3 in checkpoint
else None
)
if lora_token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif lora_token_vector_length == 1024:
return BaseModelType.StableDiffusion2
else:
return None
raise InvalidModelException(f"Unknown LoRA type")
class TextualInversionCheckpointProbe(CheckpointProbeBase):
@@ -460,6 +483,17 @@ class TextualInversionFolderProbe(FolderProbeBase):
return TextualInversionCheckpointProbe(None, checkpoint=checkpoint).get_base_type()
class ONNXFolderProbe(FolderProbeBase):
def get_format(self) -> str:
return "onnx"
def get_base_type(self) -> BaseModelType:
return BaseModelType.StableDiffusion1
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.folder_path / "config.json"
@@ -497,3 +531,4 @@ ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@@ -23,8 +23,11 @@ from .lora import LoRAModel
from .controlnet import ControlNetModel # TODO:
from .textual_inversion import TextualInversionModel
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
MODEL_CLASSES = {
BaseModelType.StableDiffusion1: {
ModelType.ONNX: ONNXStableDiffusion1Model,
ModelType.Main: StableDiffusion1Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@@ -32,6 +35,7 @@ MODEL_CLASSES = {
ModelType.TextualInversion: TextualInversionModel,
},
BaseModelType.StableDiffusion2: {
ModelType.ONNX: ONNXStableDiffusion2Model,
ModelType.Main: StableDiffusion2Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@@ -45,6 +49,7 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelType.Main: StableDiffusionXLModel,
@@ -53,6 +58,7 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
# BaseModelType.Kandinsky2_1: {
# ModelType.Main: Kandinsky2_1Model,

View File

@@ -8,13 +8,23 @@ from abc import ABCMeta, abstractmethod
from pathlib import Path
from picklescan.scanner import scan_file_path
import torch
import numpy as np
import safetensors.torch
from diffusers import DiffusionPipeline, ConfigMixin
from pathlib import Path
from diffusers import DiffusionPipeline, ConfigMixin, OnnxRuntimeModel
from contextlib import suppress
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
import onnx
from onnx import numpy_helper
from onnxruntime import (
InferenceSession,
SessionOptions,
get_available_providers,
)
class DuplicateModelException(Exception):
pass
@@ -37,6 +47,7 @@ class BaseModelType(str, Enum):
class ModelType(str, Enum):
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
@@ -51,6 +62,8 @@ class SubModelType(str, Enum):
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
# MoVQ = "movq"
@@ -279,8 +292,9 @@ class DiffusersModel(ModelBase):
)
break
except Exception as e:
# print("====ERR LOAD====")
# print(f"{variant}: {e}")
if not str(e).startswith("Error no file"):
print("====ERR LOAD====")
print(f"{variant}: {e}")
pass
else:
raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model")
@@ -362,6 +376,8 @@ def calc_model_size_by_data(model) -> int:
return _calc_pipeline_by_data(model)
elif isinstance(model, torch.nn.Module):
return _calc_model_by_data(model)
elif isinstance(model, IAIOnnxRuntimeModel):
return _calc_onnx_model_by_data(model)
else:
return 0
@@ -382,6 +398,12 @@ def _calc_model_by_data(model) -> int:
return mem
def _calc_onnx_model_by_data(model) -> int:
tensor_size = model.tensors.size() * 2 # The session doubles this
mem = tensor_size # in bytes
return mem
def _fast_safetensors_reader(path: str):
checkpoint = dict()
device = torch.device("meta")
@@ -449,3 +471,208 @@ class SilenceWarnings(object):
transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity)
warnings.simplefilter("default")
ONNX_WEIGHTS_NAME = "model.onnx"
class IAIOnnxRuntimeModel:
class _tensor_access:
def __init__(self, model):
self.model = model
self.indexes = dict()
for idx, obj in enumerate(self.model.proto.graph.initializer):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
value = self.model.proto.graph.initializer[self.indexes[key]]
return numpy_helper.to_array(value)
def __setitem__(self, key: str, value: np.ndarray):
new_node = numpy_helper.from_array(value)
# set_external_data(new_node, location="in-memory-location")
new_node.name = key
# new_node.ClearField("raw_data")
del self.model.proto.graph.initializer[self.indexes[key]]
self.model.proto.graph.initializer.insert(self.indexes[key], new_node)
# self.model.data[key] = OrtValue.ortvalue_from_numpy(value)
# __delitem__
def __contains__(self, key: str):
return self.indexes[key] in self.model.proto.graph.initializer
def items(self):
raise NotImplementedError("tensor.items")
# return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.indexes.keys()
def values(self):
raise NotImplementedError("tensor.values")
# return [obj for obj in self.raw_proto]
def size(self):
bytesSum = 0
for node in self.model.proto.graph.initializer:
bytesSum += sys.getsizeof(node.raw_data)
return bytesSum
class _access_helper:
def __init__(self, raw_proto):
self.indexes = dict()
self.raw_proto = raw_proto
for idx, obj in enumerate(raw_proto):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
return self.raw_proto[self.indexes[key]]
def __setitem__(self, key: str, value):
index = self.indexes[key]
del self.raw_proto[index]
self.raw_proto.insert(index, value)
# __delitem__
def __contains__(self, key: str):
return key in self.indexes
def items(self):
return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.indexes.keys()
def values(self):
return [obj for obj in self.raw_proto]
def __init__(self, model_path: str, provider: Optional[str]):
self.path = model_path
self.session = None
self.provider = provider
"""
self.data_path = self.path + "_data"
if not os.path.exists(self.data_path):
print(f"Moving model tensors to separate file: {self.data_path}")
tmp_proto = onnx.load(model_path, load_external_data=True)
onnx.save_model(tmp_proto, self.path, save_as_external_data=True, all_tensors_to_one_file=True, location=os.path.basename(self.data_path), size_threshold=1024, convert_attribute=False)
del tmp_proto
gc.collect()
self.proto = onnx.load(model_path, load_external_data=False)
"""
self.proto = onnx.load(model_path, load_external_data=True)
# self.data = dict()
# for tensor in self.proto.graph.initializer:
# name = tensor.name
# if tensor.HasField("raw_data"):
# npt = numpy_helper.to_array(tensor)
# orv = OrtValue.ortvalue_from_numpy(npt)
# # self.data[name] = orv
# # set_external_data(tensor, location="in-memory-location")
# tensor.name = name
# # tensor.ClearField("raw_data")
self.nodes = self._access_helper(self.proto.graph.node)
# self.initializers = self._access_helper(self.proto.graph.initializer)
# print(self.proto.graph.input)
# print(self.proto.graph.initializer)
self.tensors = self._tensor_access(self)
# TODO: integrate with model manager/cache
def create_session(self, height=None, width=None):
if self.session is None or self.session_width != width or self.session_height != height:
# onnx.save(self.proto, "tmp.onnx")
# onnx.save_model(self.proto, "tmp.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="tmp.onnx_data", size_threshold=1024, convert_attribute=False)
# TODO: something to be able to get weight when they already moved outside of model proto
# (trimmed_model, external_data) = buffer_external_data_tensors(self.proto)
sess = SessionOptions()
# self._external_data.update(**external_data)
# sess.add_external_initializers(list(self.data.keys()), list(self.data.values()))
# sess.enable_profiling = True
# sess.intra_op_num_threads = 1
# sess.inter_op_num_threads = 1
# sess.execution_mode = ExecutionMode.ORT_SEQUENTIAL
# sess.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
# sess.enable_cpu_mem_arena = True
# sess.enable_mem_pattern = True
# sess.add_session_config_entry("session.intra_op.use_xnnpack_threadpool", "1") ########### It's the key code
self.session_height = height
self.session_width = width
if height and width:
sess.add_free_dimension_override_by_name("unet_sample_batch", 2)
sess.add_free_dimension_override_by_name("unet_sample_channels", 4)
sess.add_free_dimension_override_by_name("unet_hidden_batch", 2)
sess.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
sess.add_free_dimension_override_by_name("unet_sample_height", self.session_height)
sess.add_free_dimension_override_by_name("unet_sample_width", self.session_width)
sess.add_free_dimension_override_by_name("unet_time_batch", 1)
providers = []
if self.provider:
providers.append(self.provider)
else:
providers = get_available_providers()
if "TensorrtExecutionProvider" in providers:
providers.remove("TensorrtExecutionProvider")
try:
self.session = InferenceSession(self.proto.SerializeToString(), providers=providers, sess_options=sess)
except Exception as e:
raise e
# self.session = InferenceSession("tmp.onnx", providers=[self.provider], sess_options=self.sess_options)
# self.io_binding = self.session.io_binding()
def release_session(self):
self.session = None
import gc
gc.collect()
return
def __call__(self, **kwargs):
if self.session is None:
raise Exception("You should call create_session before running model")
inputs = {k: np.array(v) for k, v in kwargs.items()}
output_names = self.session.get_outputs()
# for k in inputs:
# self.io_binding.bind_cpu_input(k, inputs[k])
# for name in output_names:
# self.io_binding.bind_output(name.name)
# self.session.run_with_iobinding(self.io_binding, None)
# return self.io_binding.copy_outputs_to_cpu()
return self.session.run(None, inputs)
# compatability with diffusers load code
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
subfolder: Union[str, Path] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
sess_options: Optional["SessionOptions"] = None,
**kwargs,
):
file_name = file_name or ONNX_WEIGHTS_NAME
if os.path.isdir(model_id):
model_path = model_id
if subfolder is not None:
model_path = os.path.join(model_path, subfolder)
model_path = os.path.join(model_path, file_name)
else:
model_path = model_id
# load model from local directory
if not os.path.isfile(model_path):
raise Exception(f"Model not found: {model_path}")
# TODO: session options
return cls(model_path, provider=provider)

View File

@@ -1,7 +1,9 @@
import os
import torch
from enum import Enum
from typing import Optional, Union, Literal
from typing import Optional, Dict, Union, Literal, Any
from pathlib import Path
from safetensors.torch import load_file
from .base import (
ModelBase,
ModelConfigBase,
@@ -13,9 +15,6 @@ from .base import (
ModelNotFoundException,
)
# TODO: naming
from ..lora import LoRAModel as LoRAModelRaw
class LoRAModelFormat(str, Enum):
LyCORIS = "lycoris"
@@ -50,6 +49,7 @@ class LoRAModel(ModelBase):
model = LoRAModelRaw.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
base_model=self.base_model,
)
self.model_size = model.calc_size()
@@ -87,3 +87,582 @@ class LoRAModel(ModelBase):
raise NotImplementedError("Diffusers lora not supported")
else:
return model_path
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return (
op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
)
* multiplier
* scale
)
def get_weight(self):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# weight: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
def get_weight(self):
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
class LoRAModelRaw: # (torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_compvis_keys(cls, state_dict):
new_state_dict = dict()
for full_key, value in state_dict.items():
if full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
continue # clip same
if not full_key.startswith("lora_unet_"):
raise NotImplementedError(f"Unknown prefix for sdxl lora key - {full_key}")
src_key = full_key.replace("lora_unet_", "")
try:
dst_key = None
while "_" in src_key:
if src_key in SDXL_UNET_COMPVIS_MAP:
dst_key = SDXL_UNET_COMPVIS_MAP[src_key]
break
src_key = "_".join(src_key.split("_")[:-1])
if dst_key is None:
raise Exception(f"Unknown sdxl lora key - {full_key}")
new_key = full_key.replace(src_key, dst_key)
except:
print(SDXL_UNET_COMPVIS_MAP)
raise
new_state_dict[new_key] = value
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_compvis_keys(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
elif "diff" in values:
layer = FullLayer(layer_key, values)
else:
# TODO: ia3/... format
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map():
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_COMPVIS_MAP = {
f"{sd}".rstrip(".").replace(".", "_"): f"{hf}".rstrip(".").replace(".", "_")
for sd, hf in make_sdxl_unet_conversion_map()
}

View File

@@ -4,6 +4,7 @@ from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionPipeline
from .base import (
ModelConfigBase,
BaseModelType,
@@ -263,6 +264,8 @@ def _convert_ckpt_and_cache(
weights = app_config.models_path / model_config.path
config_file = app_config.root_path / model_config.config
output_path = Path(output_path)
variant = model_config.variant
pipeline_class = StableDiffusionInpaintPipeline if variant == "inpaint" else StableDiffusionPipeline
# return cached version if it exists
if output_path.exists():
@@ -289,6 +292,7 @@ def _convert_ckpt_and_cache(
original_config_file=config_file,
extract_ema=True,
scan_needed=True,
pipeline_class=pipeline_class,
from_safetensors=weights.suffix == ".safetensors",
precision=torch_dtype(choose_torch_device()),
**kwargs,

View File

@@ -0,0 +1,157 @@
import os
import json
from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
DiffusersModel,
SchedulerPredictionType,
SilenceWarnings,
read_checkpoint_meta,
classproperty,
OnnxRuntimeModel,
IAIOnnxRuntimeModel,
)
from invokeai.app.services.config import InvokeAIAppConfig
class StableDiffusionOnnxModelFormat(str, Enum):
Olive = "olive"
Onnx = "onnx"
class ONNXStableDiffusion1Model(DiffusersModel):
class Config(ModelConfigBase):
model_format: Literal[StableDiffusionOnnxModelFormat.Onnx]
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 1.* model format")
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
# TODO: Detect onnx vs olive
return StableDiffusionOnnxModelFormat.Onnx
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path
class ONNXStableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly
class Config(ModelConfigBase):
model_format: Literal[StableDiffusionOnnxModelFormat.Onnx]
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion2,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if variant == ModelVariantType.Normal:
prediction_type = SchedulerPredictionType.VPrediction
upcast_attention = True
else:
prediction_type = SchedulerPredictionType.Epsilon
upcast_attention = False
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
# TODO: Detect onnx vs olive
return StableDiffusionOnnxModelFormat.Onnx
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path

View File

@@ -78,10 +78,9 @@ class InvokeAIDiffuserComponent:
self.cross_attention_control_context = None
self.sequential_guidance = config.sequential_guidance
@classmethod
@contextmanager
def custom_attention_context(
cls,
self,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int,
@@ -91,18 +90,19 @@ class InvokeAIDiffuserComponent:
old_attn_processors = unet.attn_processors
# Load lora conditions into the model
if extra_conditioning_info.wants_cross_attention_control:
cross_attention_control_context = Context(
self.cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
cross_attention_control_context,
self.cross_attention_control_context,
)
try:
yield None
finally:
self.cross_attention_control_context = None
if old_attn_processors is not None:
unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving

View File

@@ -1,6 +1,8 @@
from __future__ import annotations
from contextlib import nullcontext
from packaging import version
import platform
import torch
from torch import autocast
@@ -30,7 +32,7 @@ def choose_precision(device: torch.device) -> str:
device_name = torch.cuda.get_device_name(device)
if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name):
return "float16"
elif device.type == "mps":
elif device.type == "mps" and version.parse(platform.mac_ver()[0]) < version.parse("14.0.0"):
return "float16"
return "float32"

View File

@@ -21,7 +21,7 @@ export const packageConfig: UserConfig = {
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react'],
output: {
globals: {
react: 'React',

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{A as m,f_ as Je,z as y,a4 as Ka,f$ as Xa,af as va,aj as d,g0 as b,g1 as t,g2 as Ya,g3 as h,g4 as ua,g5 as Ja,g6 as Qa,aI as Za,g7 as et,ad as rt,g8 as at}from"./index-9bb68e3a.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./MantineProvider-ae002ae6.js";var za=String.raw,Ca=za`
import{B as m,g7 as Je,A as y,a5 as Ka,g8 as Xa,af as va,aj as d,g9 as b,ga as t,gb as Ya,gc as h,gd as ua,ge as Ja,gf as Qa,aL as Za,gg as et,ad as rt,gh as at}from"./index-de589048.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./menu-11348abc.js";var za=String.raw,Ca=za`
:root,
:host {
--chakra-vh: 100vh;

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-9bb68e3a.js"></script>
<script type="module" crossorigin src="./assets/index-de589048.js"></script>
</head>
<body dir="ltr">

View File

@@ -124,7 +124,8 @@
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"images": "Images",
"assets": "Assets"
"assets": "Assets",
"autoAssignBoardOnClick": "Auto-Assign Board on Click"
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@@ -342,6 +343,8 @@
"diffusersModels": "Diffusers",
"loraModels": "LoRAs",
"safetensorModels": "SafeTensors",
"onnxModels": "Onnx",
"oliveModels": "Olives",
"modelAdded": "Model Added",
"modelUpdated": "Model Updated",
"modelUpdateFailed": "Model Update Failed",

View File

@@ -23,7 +23,7 @@
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
"dev:host": "concurrently \"vite dev --host\" \"yarn run theme:watch\"",
"build": "yarn run lint && vite build",
"typegen": "npx ts-node scripts/typegen.ts",
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
"lint:madge": "madge --circular src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
@@ -116,6 +116,7 @@
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.0",
"@chakra-ui/react": "^2.8.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"

View File

@@ -124,7 +124,8 @@
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"images": "Images",
"assets": "Assets"
"assets": "Assets",
"autoAssignBoardOnClick": "Auto-Assign Board on Click"
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@@ -342,6 +343,8 @@
"diffusersModels": "Diffusers",
"loraModels": "LoRAs",
"safetensorModels": "SafeTensors",
"onnxModels": "Onnx",
"oliveModels": "Olives",
"modelAdded": "Model Added",
"modelUpdated": "Model Updated",
"modelUpdateFailed": "Model Update Failed",

View File

@@ -4,8 +4,9 @@ import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/ap
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { PartialAppConfig } from 'app/types/invokeai';
import ImageUploader from 'common/components/ImageUploader';
import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal';
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import GalleryDrawer from 'features/gallery/components/GalleryPanel';
import DeleteImageModal from 'features/imageDeletion/components/DeleteImageModal';
import SiteHeader from 'features/system/components/SiteHeader';
import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors';
@@ -16,7 +17,6 @@ import ParametersDrawer from 'features/ui/components/ParametersDrawer';
import i18n from 'i18n';
import { size } from 'lodash-es';
import { ReactNode, memo, useEffect } from 'react';
import UpdateImageBoardModal from '../../features/gallery/components/Boards/UpdateImageBoardModal';
import GlobalHotkeys from './GlobalHotkeys';
import Toaster from './Toaster';
@@ -84,7 +84,7 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
</Portal>
</Grid>
<DeleteImageModal />
<UpdateImageBoardModal />
<ChangeBoardModal />
<Toaster />
<GlobalHotkeys />
</>

View File

@@ -58,7 +58,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
);
}
if (props.dragData.payloadType === 'IMAGE_NAMES') {
if (props.dragData.payloadType === 'IMAGE_DTOS') {
return (
<Flex
sx={{
@@ -71,7 +71,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
...STYLES,
}}
>
<Heading>{props.dragData.payload.image_names.length}</Heading>
<Heading>{props.dragData.payload.imageDTOs.length}</Heading>
<Heading size="sm">Images</Heading>
</Flex>
);

View File

@@ -18,27 +18,32 @@ import {
DragStartEvent,
TypesafeDraggableData,
} from './typesafeDnd';
import { logger } from 'app/logging/logger';
type ImageDndContextProps = PropsWithChildren;
const ImageDndContext = (props: ImageDndContextProps) => {
const [activeDragData, setActiveDragData] =
useState<TypesafeDraggableData | null>(null);
const log = logger('images');
const dispatch = useAppDispatch();
const handleDragStart = useCallback((event: DragStartEvent) => {
console.log('dragStart', event.active.data.current);
const activeData = event.active.data.current;
if (!activeData) {
return;
}
setActiveDragData(activeData);
}, []);
const handleDragStart = useCallback(
(event: DragStartEvent) => {
log.trace({ dragData: event.active.data.current }, 'Drag started');
const activeData = event.active.data.current;
if (!activeData) {
return;
}
setActiveDragData(activeData);
},
[log]
);
const handleDragEnd = useCallback(
(event: DragEndEvent) => {
console.log('dragEnd', event.active.data.current);
log.trace({ dragData: event.active.data.current }, 'Drag ended');
const overData = event.over?.data.current;
if (!activeDragData || !overData) {
return;
@@ -46,7 +51,7 @@ const ImageDndContext = (props: ImageDndContextProps) => {
dispatch(dndDropped({ overData, activeData: activeDragData }));
setActiveDragData(null);
},
[activeDragData, dispatch]
[activeDragData, dispatch, log]
);
const mouseSensor = useSensor(MouseSensor, {

View File

@@ -11,7 +11,6 @@ import {
useDraggable as useOriginalDraggable,
useDroppable as useOriginalDroppable,
} from '@dnd-kit/core';
import { BoardId } from 'features/gallery/store/types';
import { ImageDTO } from 'services/api/types';
type BaseDropData = {
@@ -54,9 +53,13 @@ export type AddToBatchDropData = BaseDropData & {
actionType: 'ADD_TO_BATCH';
};
export type MoveBoardDropData = BaseDropData & {
actionType: 'MOVE_BOARD';
context: { boardId: BoardId };
export type AddToBoardDropData = BaseDropData & {
actionType: 'ADD_TO_BOARD';
context: { boardId: string };
};
export type RemoveFromBoardDropData = BaseDropData & {
actionType: 'REMOVE_FROM_BOARD';
};
export type TypesafeDroppableData =
@@ -67,7 +70,8 @@ export type TypesafeDroppableData =
| NodesImageDropData
| AddToBatchDropData
| NodesMultiImageDropData
| MoveBoardDropData;
| AddToBoardDropData
| RemoveFromBoardDropData;
type BaseDragData = {
id: string;
@@ -78,14 +82,12 @@ export type ImageDraggableData = BaseDragData & {
payload: { imageDTO: ImageDTO };
};
export type ImageNamesDraggableData = BaseDragData & {
payloadType: 'IMAGE_NAMES';
payload: { image_names: string[] };
export type ImageDTOsDraggableData = BaseDragData & {
payloadType: 'IMAGE_DTOS';
payload: { imageDTOs: ImageDTO[] };
};
export type TypesafeDraggableData =
| ImageDraggableData
| ImageNamesDraggableData;
export type TypesafeDraggableData = ImageDraggableData | ImageDTOsDraggableData;
interface UseDroppableTypesafeArguments
extends Omit<UseDroppableArguments, 'data'> {
@@ -156,14 +158,39 @@ export const isValidDrop = (
case 'SET_NODES_IMAGE':
return payloadType === 'IMAGE_DTO';
case 'SET_MULTI_NODES_IMAGE':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
return payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
case 'ADD_TO_BATCH':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
case 'MOVE_BOARD': {
return payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
case 'ADD_TO_BOARD': {
// If the board is the same, don't allow the drop
// Check the payload types
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
if (!isPayloadValid) {
return false;
}
// Check if the image's board is the board we are dragging onto
if (payloadType === 'IMAGE_DTO') {
const { imageDTO } = active.data.current.payload;
const currentBoard = imageDTO.board_id ?? 'none';
const destinationBoard = overData.context.boardId;
return currentBoard !== destinationBoard;
}
if (payloadType === 'IMAGE_DTOS') {
// TODO (multi-select)
return true;
}
return false;
}
case 'REMOVE_FROM_BOARD': {
// If the board is the same, don't allow the drop
// Check the payload types
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
if (!isPayloadValid) {
return false;
}
@@ -172,20 +199,16 @@ export const isValidDrop = (
if (payloadType === 'IMAGE_DTO') {
const { imageDTO } = active.data.current.payload;
const currentBoard = imageDTO.board_id;
const destinationBoard = overData.context.boardId;
const isSameBoard = currentBoard === destinationBoard;
const isDestinationValid = !currentBoard ? destinationBoard : true;
return !isSameBoard && isDestinationValid;
return currentBoard !== 'none';
}
if (payloadType === 'IMAGE_NAMES') {
if (payloadType === 'IMAGE_DTOS') {
// TODO (multi-select)
return false;
return true;
}
return true;
return false;
}
default:
return false;

View File

@@ -1,3 +1,6 @@
import { Middleware } from '@reduxjs/toolkit';
import { store } from 'app/store/store';
import { PartialAppConfig } from 'app/types/invokeai';
import React, {
lazy,
memo,
@@ -6,18 +9,12 @@ import React, {
useEffect,
} from 'react';
import { Provider } from 'react-redux';
import { store } from 'app/store/store';
import Loading from '../../common/components/Loading/Loading';
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
import { PartialAppConfig } from 'app/types/invokeai';
import '../../i18n';
import { $authToken, $baseUrl, $projectId } from 'services/api/client';
import { socketMiddleware } from 'services/events/middleware';
import { Middleware } from '@reduxjs/toolkit';
import Loading from '../../common/components/Loading/Loading';
import '../../i18n';
import ImageDndContext from './ImageDnd/ImageDndContext';
import { AddImageToBoardContextProvider } from '../contexts/AddImageToBoardContext';
import { $authToken, $baseUrl } from 'services/api/client';
const App = lazy(() => import('./App'));
const ThemeLocaleProvider = lazy(() => import('./ThemeLocaleProvider'));
@@ -28,6 +25,7 @@ interface Props extends PropsWithChildren {
config?: PartialAppConfig;
headerComponent?: ReactNode;
middleware?: Middleware[];
projectId?: string;
}
const InvokeAIUI = ({
@@ -36,6 +34,7 @@ const InvokeAIUI = ({
config,
headerComponent,
middleware,
projectId,
}: Props) => {
useEffect(() => {
// configure API client token
@@ -48,6 +47,11 @@ const InvokeAIUI = ({
$baseUrl.set(apiUrl);
}
// configure API client project header
if (projectId) {
$projectId.set(projectId);
}
// reset dynamically added middlewares
resetMiddlewares();
@@ -67,8 +71,9 @@ const InvokeAIUI = ({
// Reset the API client token and base url on unmount
$baseUrl.set(undefined);
$authToken.set(undefined);
$projectId.set(undefined);
};
}, [apiUrl, token, middleware]);
}, [apiUrl, token, middleware, projectId]);
return (
<React.StrictMode>
@@ -76,9 +81,7 @@ const InvokeAIUI = ({
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<ImageDndContext>
<AddImageToBoardContextProvider>
<App config={config} headerComponent={headerComponent} />
</AddImageToBoardContextProvider>
<App config={config} headerComponent={headerComponent} />
</ImageDndContext>
</ThemeLocaleProvider>
</React.Suspense>

View File

@@ -1,91 +0,0 @@
import { useDisclosure } from '@chakra-ui/react';
import { PropsWithChildren, createContext, useCallback, useState } from 'react';
import { ImageDTO } from 'services/api/types';
import { imagesApi } from 'services/api/endpoints/images';
import { useAppDispatch } from '../store/storeHooks';
export type ImageUsage = {
isInitialImage: boolean;
isCanvasImage: boolean;
isNodesImage: boolean;
isControlNetImage: boolean;
};
type AddImageToBoardContextValue = {
/**
* Whether the move image dialog is open.
*/
isOpen: boolean;
/**
* Closes the move image dialog.
*/
onClose: () => void;
/**
* The image pending movement
*/
image?: ImageDTO;
onClickAddToBoard: (image: ImageDTO) => void;
handleAddToBoard: (boardId: string) => void;
};
export const AddImageToBoardContext =
createContext<AddImageToBoardContextValue>({
isOpen: false,
onClose: () => undefined,
onClickAddToBoard: () => undefined,
handleAddToBoard: () => undefined,
});
type Props = PropsWithChildren;
export const AddImageToBoardContextProvider = (props: Props) => {
const [imageToMove, setImageToMove] = useState<ImageDTO>();
const { isOpen, onOpen, onClose } = useDisclosure();
const dispatch = useAppDispatch();
// Clean up after deleting or dismissing the modal
const closeAndClearImageToDelete = useCallback(() => {
setImageToMove(undefined);
onClose();
}, [onClose]);
const onClickAddToBoard = useCallback(
(image?: ImageDTO) => {
if (!image) {
return;
}
setImageToMove(image);
onOpen();
},
[setImageToMove, onOpen]
);
const handleAddToBoard = useCallback(
(boardId: string) => {
if (imageToMove) {
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO: imageToMove,
board_id: boardId,
})
);
closeAndClearImageToDelete();
}
},
[dispatch, closeAndClearImageToDelete, imageToMove]
);
return (
<AddImageToBoardContext.Provider
value={{
isOpen,
image: imageToMove,
onClose: closeAndClearImageToDelete,
onClickAddToBoard,
handleAddToBoard,
}}
>
{props.children}
</AddImageToBoardContext.Provider>
);
};

View File

@@ -1,8 +0,0 @@
import { createContext } from 'react';
type VoidFunc = () => void;
type ImageUploaderTriggerContextType = VoidFunc | null;
export const ImageUploaderTriggerContext =
createContext<ImageUploaderTriggerContextType>(null);

View File

@@ -23,6 +23,6 @@ const serializationDenylist: {
};
export const serialize: SerializeFunction = (data, key) => {
const result = omit(data, serializationDenylist[key]);
const result = omit(data, serializationDenylist[key] ?? []);
return JSON.stringify(result);
};

View File

@@ -27,7 +27,8 @@ import {
addImageDeletedFulfilledListener,
addImageDeletedPendingListener,
addImageDeletedRejectedListener,
addRequestedImageDeletionListener,
addRequestedSingleImageDeletionListener,
addRequestedMultipleImageDeletionListener,
} from './listeners/imageDeleted';
import { addImageDroppedListener } from './listeners/imageDropped';
import {
@@ -111,7 +112,8 @@ addImageUploadedRejectedListener();
addInitialImageSelectedListener();
// Image deleted
addRequestedImageDeletionListener();
addRequestedSingleImageDeletionListener();
addRequestedMultipleImageDeletionListener();
addImageDeletedPendingListener();
addImageDeletedFulfilledListener();
addImageDeletedRejectedListener();

View File

@@ -1,12 +1,10 @@
import { createAction } from '@reduxjs/toolkit';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import {
ImageCache,
getListImagesUrl,
imagesApi,
} from 'services/api/endpoints/images';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { getListImagesUrl, imagesAdapter } from 'services/api/util';
import { ImageCache } from 'services/api/types';
export const appStarted = createAction('app/appStarted');
@@ -34,7 +32,8 @@ export const addFirstListImagesListener = () => {
if (data.ids.length > 0) {
// Select the first image
dispatch(imageSelected(data.ids[0] as string));
const firstImage = imagesAdapter.getSelectors().selectAll(data)[0];
dispatch(imageSelected(firstImage ?? null));
}
},
});

View File

@@ -18,7 +18,9 @@ export const addAppConfigReceivedListener = () => {
const infillMethod = getState().generation.infillMethod;
if (!infill_methods.includes(infillMethod)) {
dispatch(setInfillMethod(infill_methods[0]));
// if there is no infill method, set it to the first one
// if there is no first one... god help us
dispatch(setInfillMethod(infill_methods[0] as string));
}
if (!nsfw_methods.includes('nsfw_checker')) {

View File

@@ -1,14 +1,14 @@
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { getImageUsage } from 'features/imageDeletion/store/imageDeletionSelectors';
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { boardsApi } from '../../../../../services/api/endpoints/boards';
export const addDeleteBoardAndImagesFulfilledListener = () => {
startAppListening({
matcher: boardsApi.endpoints.deleteBoardAndImages.matchFulfilled,
matcher: imagesApi.endpoints.deleteBoardAndImages.matchFulfilled,
effect: async (action, { dispatch, getState }) => {
const { deleted_images } = action.payload;

View File

@@ -10,6 +10,7 @@ import {
} from 'features/gallery/store/types';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { imagesSelectors } from 'services/api/util';
export const addBoardIdSelectedListener = () => {
startAppListening({
@@ -52,8 +53,9 @@ export const addBoardIdSelectedListener = () => {
queryArgs
)(getState());
if (boardImagesData?.ids.length) {
dispatch(imageSelected((boardImagesData.ids[0] as string) ?? null));
if (boardImagesData) {
const firstImage = imagesSelectors.selectAll(boardImagesData)[0];
dispatch(imageSelected(firstImage ?? null));
} else {
// board has no images - deselect
dispatch(imageSelected(null));

View File

@@ -26,6 +26,8 @@ export const addCanvasSavedToGalleryListener = () => {
return;
}
const { autoAddBoardId } = state.gallery;
dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'savedCanvas.png', {
@@ -33,7 +35,7 @@ export const addCanvasSavedToGalleryListener = () => {
}),
image_category: 'general',
is_intermediate: false,
board_id: state.gallery.autoAddBoardId,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
postUploadAction: {
type: 'TOAST',

View File

@@ -31,15 +31,20 @@ const predicate: AnyListenerPredicate<RootState> = (
// do not process if the user just disabled auto-config
if (
prevState.controlNet.controlNets[action.payload.controlNetId]
.shouldAutoConfig === true
?.shouldAutoConfig === true
) {
return false;
}
}
const { controlImage, processorType, shouldAutoConfig } =
state.controlNet.controlNets[action.payload.controlNetId];
const cn = state.controlNet.controlNets[action.payload.controlNetId];
if (!cn) {
// something is wrong, the controlNet should exist
return false;
}
const { controlImage, processorType, shouldAutoConfig } = cn;
if (controlNetModelChanged.match(action) && !shouldAutoConfig) {
// do not process if the action is a model change but the processor settings are dirty
return false;

View File

@@ -17,7 +17,7 @@ export const addControlNetImageProcessedListener = () => {
const { controlNetId } = action.payload;
const controlNet = getState().controlNet.controlNets[controlNetId];
if (!controlNet.controlImage) {
if (!controlNet?.controlImage) {
log.error('Unable to process ControlNet image');
return;
}

View File

@@ -1,57 +1,72 @@
import { logger } from 'app/logging/logger';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { imageDeletionConfirmed } from 'features/imageDeletion/store/actions';
import { isModalOpenChanged } from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es';
import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images';
import { imagesAdapter } from 'services/api/util';
import { startAppListening } from '..';
/**
* Called when the user requests an image deletion
*/
export const addRequestedImageDeletionListener = () => {
export const addRequestedSingleImageDeletionListener = () => {
startAppListening({
actionCreator: imageDeletionConfirmed,
effect: async (action, { dispatch, getState, condition }) => {
const { imageDTO, imageUsage } = action.payload;
const { imageDTOs, imagesUsage } = action.payload;
if (imageDTOs.length !== 1 || imagesUsage.length !== 1) {
// handle multiples in separate listener
return;
}
const imageDTO = imageDTOs[0];
const imageUsage = imagesUsage[0];
if (!imageDTO || !imageUsage) {
// satisfy noUncheckedIndexedAccess
return;
}
dispatch(isModalOpenChanged(false));
const { image_name } = imageDTO;
const state = getState();
const lastSelectedImage =
state.gallery.selection[state.gallery.selection.length - 1];
state.gallery.selection[state.gallery.selection.length - 1]?.image_name;
if (imageDTO && imageDTO?.image_name === lastSelectedImage) {
const { image_name } = imageDTO;
if (lastSelectedImage === image_name) {
const baseQueryArgs = selectListImagesBaseQueryArgs(state);
const { data } =
imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
const ids = data?.ids ?? [];
const cachedImageDTOs = data
? imagesAdapter.getSelectors().selectAll(data)
: [];
const deletedImageIndex = ids.findIndex(
(result) => result.toString() === image_name
const deletedImageIndex = cachedImageDTOs.findIndex(
(i) => i.image_name === image_name
);
const filteredIds = ids.filter((id) => id.toString() !== image_name);
const filteredImageDTOs = cachedImageDTOs.filter(
(i) => i.image_name !== image_name
);
const newSelectedImageIndex = clamp(
deletedImageIndex,
0,
filteredIds.length - 1
filteredImageDTOs.length - 1
);
const newSelectedImageId = filteredIds[newSelectedImageIndex];
const newSelectedImageDTO = filteredImageDTOs[newSelectedImageIndex];
if (newSelectedImageId) {
dispatch(imageSelected(newSelectedImageId as string));
if (newSelectedImageDTO) {
dispatch(imageSelected(newSelectedImageDTO));
} else {
dispatch(imageSelected(null));
}
@@ -97,6 +112,66 @@ export const addRequestedImageDeletionListener = () => {
});
};
/**
* Called when the user requests an image deletion
*/
export const addRequestedMultipleImageDeletionListener = () => {
startAppListening({
actionCreator: imageDeletionConfirmed,
effect: async (action, { dispatch, getState }) => {
const { imageDTOs, imagesUsage } = action.payload;
if (imageDTOs.length < 1 || imagesUsage.length < 1) {
// handle singles in separate listener
return;
}
try {
// Delete from server
await dispatch(
imagesApi.endpoints.deleteImages.initiate({ imageDTOs })
).unwrap();
const state = getState();
const baseQueryArgs = selectListImagesBaseQueryArgs(state);
const { data } =
imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
const newSelectedImageDTO = data
? imagesAdapter.getSelectors().selectAll(data)[0]
: undefined;
if (newSelectedImageDTO) {
dispatch(imageSelected(newSelectedImageDTO));
} else {
dispatch(imageSelected(null));
}
dispatch(isModalOpenChanged(false));
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist
if (imagesUsage.some((i) => i.isCanvasImage)) {
dispatch(resetCanvas());
}
if (imagesUsage.some((i) => i.isControlNetImage)) {
dispatch(controlNetReset());
}
if (imagesUsage.some((i) => i.isInitialImage)) {
dispatch(clearInitialImage());
}
if (imagesUsage.some((i) => i.isNodesImage)) {
dispatch(nodeEditorReset());
}
} catch {
// no-op
}
},
});
};
/**
* Called when the actual delete request is sent to the server
*/

View File

@@ -6,10 +6,7 @@ import {
import { logger } from 'app/logging/logger';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import {
imageSelected,
imagesAddedToBatch,
} from 'features/gallery/store/gallerySlice';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { imagesApi } from 'services/api/endpoints/images';
@@ -27,19 +24,32 @@ export const addImageDroppedListener = () => {
const log = logger('images');
const { activeData, overData } = action.payload;
log.debug({ activeData, overData }, 'Image or selection dropped');
if (activeData.payloadType === 'IMAGE_DTO') {
log.debug({ activeData, overData }, 'Image dropped');
} else if (activeData.payloadType === 'IMAGE_DTOS') {
log.debug(
{ activeData, overData },
`Images (${activeData.payload.imageDTOs.length}) dropped`
);
} else {
log.debug({ activeData, overData }, `Unknown payload dropped`);
}
// set current image
/**
* Image dropped on current image
*/
if (
overData.actionType === 'SET_CURRENT_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
dispatch(imageSelected(activeData.payload.imageDTO.image_name));
dispatch(imageSelected(activeData.payload.imageDTO));
return;
}
// set initial image
/**
* Image dropped on initial image
*/
if (
overData.actionType === 'SET_INITIAL_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
@@ -49,27 +59,9 @@ export const addImageDroppedListener = () => {
return;
}
// add image to batch
if (
overData.actionType === 'ADD_TO_BATCH' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
dispatch(imagesAddedToBatch([activeData.payload.imageDTO.image_name]));
return;
}
// add multiple images to batch
if (
overData.actionType === 'ADD_TO_BATCH' &&
activeData.payloadType === 'IMAGE_NAMES'
) {
dispatch(imagesAddedToBatch(activeData.payload.image_names));
return;
}
// set control image
/**
* Image dropped on ControlNet
*/
if (
overData.actionType === 'SET_CONTROLNET_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
@@ -85,7 +77,9 @@ export const addImageDroppedListener = () => {
return;
}
// set canvas image
/**
* Image dropped on Canvas
*/
if (
overData.actionType === 'SET_CANVAS_INITIAL_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
@@ -95,7 +89,9 @@ export const addImageDroppedListener = () => {
return;
}
// set nodes image
/**
* Image dropped on node image field
*/
if (
overData.actionType === 'SET_NODES_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
@@ -112,61 +108,36 @@ export const addImageDroppedListener = () => {
return;
}
// set multiple nodes images (single image handler)
if (
overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { fieldName, nodeId } = overData.context;
dispatch(
fieldValueChanged({
nodeId,
fieldName,
value: [activeData.payload.imageDTO],
})
);
return;
}
// // set multiple nodes images (multiple images handler)
/**
* TODO
* Image selection dropped on node image collection field
*/
// if (
// overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
// activeData.payloadType === 'IMAGE_NAMES'
// activeData.payloadType === 'IMAGE_DTO' &&
// activeData.payload.imageDTO
// ) {
// const { fieldName, nodeId } = overData.context;
// dispatch(
// imageCollectionFieldValueChanged({
// fieldValueChanged({
// nodeId,
// fieldName,
// value: activeData.payload.image_names.map((image_name) => ({
// image_name,
// })),
// value: [activeData.payload.imageDTO],
// })
// );
// return;
// }
// add image to board
/**
* Image dropped on user board
*/
if (
overData.actionType === 'MOVE_BOARD' &&
overData.actionType === 'ADD_TO_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
const { boardId } = overData.context;
// image was droppe on the "NoBoardBoard"
if (!boardId) {
dispatch(
imagesApi.endpoints.removeImageFromBoard.initiate({
imageDTO,
})
);
return;
}
// image was dropped on a user board
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO,
@@ -176,67 +147,58 @@ export const addImageDroppedListener = () => {
return;
}
// // add gallery selection to board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId
// ) {
// console.log('adding gallery selection to board');
// const board_id = overData.context.boardId;
// dispatch(
// boardImagesApi.endpoints.addManyBoardImages.initiate({
// board_id,
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
/**
* Image dropped on 'none' board
*/
if (
overData.actionType === 'REMOVE_FROM_BOARD' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { imageDTO } = activeData.payload;
dispatch(
imagesApi.endpoints.removeImageFromBoard.initiate({
imageDTO,
})
);
return;
}
// // remove gallery selection from board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId === null
// ) {
// console.log('removing gallery selection to board');
// dispatch(
// boardImagesApi.endpoints.deleteManyBoardImages.initiate({
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
/**
* Multiple images dropped on user board
*/
if (
overData.actionType === 'ADD_TO_BOARD' &&
activeData.payloadType === 'IMAGE_DTOS' &&
activeData.payload.imageDTOs
) {
const { imageDTOs } = activeData.payload;
const { boardId } = overData.context;
dispatch(
imagesApi.endpoints.addImagesToBoard.initiate({
imageDTOs,
board_id: boardId,
})
);
return;
}
// // add batch selection to board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId
// ) {
// const board_id = overData.context.boardId;
// dispatch(
// boardImagesApi.endpoints.addManyBoardImages.initiate({
// board_id,
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
// // remove batch selection from board
// if (
// overData.actionType === 'MOVE_BOARD' &&
// activeData.payloadType === 'IMAGE_NAMES' &&
// overData.context.boardId === null
// ) {
// dispatch(
// boardImagesApi.endpoints.deleteManyBoardImages.initiate({
// image_names: activeData.payload.image_names,
// })
// );
// return;
// }
/**
* Multiple images dropped on 'none' board
*/
if (
overData.actionType === 'REMOVE_FROM_BOARD' &&
activeData.payloadType === 'IMAGE_DTOS' &&
activeData.payload.imageDTOs
) {
const { imageDTOs } = activeData.payload;
dispatch(
imagesApi.endpoints.removeImagesFromBoard.initiate({
imageDTOs,
})
);
return;
}
},
});
};

View File

@@ -1,37 +1,32 @@
import { imageDeletionConfirmed } from 'features/imageDeletion/store/actions';
import { selectImageUsage } from 'features/imageDeletion/store/imageDeletionSelectors';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { selectImageUsage } from 'features/deleteImageModal/store/selectors';
import {
imageToDeleteSelected,
imagesToDeleteSelected,
isModalOpenChanged,
} from 'features/imageDeletion/store/imageDeletionSlice';
} from 'features/deleteImageModal/store/slice';
import { startAppListening } from '..';
export const addImageToDeleteSelectedListener = () => {
startAppListening({
actionCreator: imageToDeleteSelected,
actionCreator: imagesToDeleteSelected,
effect: async (action, { dispatch, getState }) => {
const imageDTO = action.payload;
const imageDTOs = action.payload;
const state = getState();
const { shouldConfirmOnDelete } = state.system;
const imageUsage = selectImageUsage(getState());
if (!imageUsage) {
// should never happen
return;
}
const imagesUsage = selectImageUsage(getState());
const isImageInUse =
imageUsage.isCanvasImage ||
imageUsage.isInitialImage ||
imageUsage.isControlNetImage ||
imageUsage.isNodesImage;
imagesUsage.some((i) => i.isCanvasImage) ||
imagesUsage.some((i) => i.isInitialImage) ||
imagesUsage.some((i) => i.isControlNetImage) ||
imagesUsage.some((i) => i.isNodesImage);
if (shouldConfirmOnDelete || isImageInUse) {
dispatch(isModalOpenChanged(true));
return;
}
dispatch(imageDeletionConfirmed({ imageDTO, imageUsage }));
dispatch(imageDeletionConfirmed({ imageDTOs, imagesUsage }));
},
});
};

View File

@@ -2,14 +2,13 @@ import { UseToastOptions } from '@chakra-ui/react';
import { logger } from 'app/logging/logger';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import { imagesAddedToBatch } from 'features/gallery/store/gallerySlice';
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { addToast } from 'features/system/store/systemSlice';
import { omit } from 'lodash-es';
import { boardsApi } from 'services/api/endpoints/boards';
import { startAppListening } from '..';
import { imagesApi } from '../../../../../services/api/endpoints/images';
import { omit } from 'lodash-es';
const DEFAULT_UPLOADED_TOAST: UseToastOptions = {
title: 'Image Uploaded',
@@ -41,7 +40,7 @@ export const addImageUploadedFulfilledListener = () => {
// default action - just upload and alert user
if (postUploadAction?.type === 'TOAST') {
const { toastOptions } = postUploadAction;
if (!autoAddBoardId) {
if (!autoAddBoardId || autoAddBoardId === 'none') {
dispatch(addToast({ ...DEFAULT_UPLOADED_TOAST, ...toastOptions }));
} else {
// Add this image to the board
@@ -121,17 +120,6 @@ export const addImageUploadedFulfilledListener = () => {
);
return;
}
if (postUploadAction?.type === 'ADD_TO_BATCH') {
dispatch(imagesAddedToBatch([imageDTO.image_name]));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: 'Added to batch',
})
);
return;
}
},
});
};

View File

@@ -6,7 +6,7 @@ import {
modelChanged,
vaeSelected,
} from 'features/parameters/store/generationSlice';
import { zMainModel } from 'features/parameters/types/parameterSchemas';
import { zMainOrOnnxModel } from 'features/parameters/types/parameterSchemas';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { forEach } from 'lodash-es';
@@ -19,7 +19,7 @@ export const addModelSelectedListener = () => {
const log = logger('models');
const state = getState();
const result = zMainModel.safeParse(action.payload);
const result = zMainOrOnnxModel.safeParse(action.payload);
if (!result.success) {
log.error(

View File

@@ -6,7 +6,8 @@ import {
vaeSelected,
} from 'features/parameters/store/generationSlice';
import {
zMainModel,
zMainOrOnnxModel,
zSDXLRefinerModel,
zVaeModel,
} from 'features/parameters/types/parameterSchemas';
import {
@@ -14,7 +15,7 @@ import {
setShouldUseSDXLRefiner,
} from 'features/sdxl/store/sdxlSlice';
import { forEach, some } from 'lodash-es';
import { modelsApi } from 'services/api/endpoints/models';
import { modelsApi, vaeModelsAdapter } from 'services/api/endpoints/models';
import { startAppListening } from '..';
export const addModelsLoadedListener = () => {
@@ -36,7 +37,8 @@ export const addModelsLoadedListener = () => {
action.payload.entities,
(m) =>
m?.model_name === currentModel?.model_name &&
m?.base_model === currentModel?.base_model
m?.base_model === currentModel?.base_model &&
m?.model_type === currentModel?.model_type
);
if (isCurrentModelAvailable) {
@@ -52,7 +54,7 @@ export const addModelsLoadedListener = () => {
return;
}
const result = zMainModel.safeParse(firstModel);
const result = zMainOrOnnxModel.safeParse(firstModel);
if (!result.success) {
log.error(
@@ -83,7 +85,8 @@ export const addModelsLoadedListener = () => {
action.payload.entities,
(m) =>
m?.model_name === currentModel?.model_name &&
m?.base_model === currentModel?.base_model
m?.base_model === currentModel?.base_model &&
m?.model_type === currentModel?.model_type
);
if (isCurrentModelAvailable) {
@@ -100,7 +103,7 @@ export const addModelsLoadedListener = () => {
return;
}
const result = zMainModel.safeParse(firstModel);
const result = zSDXLRefinerModel.safeParse(firstModel);
if (!result.success) {
log.error(
@@ -141,8 +144,9 @@ export const addModelsLoadedListener = () => {
return;
}
const firstModelId = action.payload.ids[0];
const firstModel = action.payload.entities[firstModelId];
const firstModel = vaeModelsAdapter
.getSelectors()
.selectAll(action.payload)[0];
if (!firstModel) {
// No custom VAEs loaded at all; use the default

View File

@@ -8,9 +8,10 @@ import {
} from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import { progressImageSet } from 'features/system/store/systemSlice';
import { imagesAdapter, imagesApi } from 'services/api/endpoints/images';
import { imagesApi } from 'services/api/endpoints/images';
import { isImageOutput } from 'services/api/guards';
import { sessionCanceled } from 'services/api/thunks/session';
import { imagesAdapter } from 'services/api/util';
import {
appSocketInvocationComplete,
socketInvocationComplete,
@@ -67,7 +68,7 @@ export const addInvocationCompleteEventListener = () => {
*/
const { autoAddBoardId } = gallery;
if (autoAddBoardId) {
if (autoAddBoardId && autoAddBoardId !== 'none') {
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
board_id: autoAddBoardId,
@@ -83,10 +84,7 @@ export const addInvocationCompleteEventListener = () => {
categories: IMAGE_CATEGORIES,
},
(draft) => {
const oldTotal = draft.total;
const newState = imagesAdapter.addOne(draft, imageDTO);
const delta = newState.total - oldTotal;
draft.total = draft.total + delta;
imagesAdapter.addOne(draft, imageDTO);
}
)
);
@@ -94,8 +92,8 @@ export const addInvocationCompleteEventListener = () => {
dispatch(
imagesApi.util.invalidateTags([
{ type: 'BoardImagesTotal', id: autoAddBoardId ?? 'none' },
{ type: 'BoardAssetsTotal', id: autoAddBoardId ?? 'none' },
{ type: 'BoardImagesTotal', id: autoAddBoardId },
{ type: 'BoardAssetsTotal', id: autoAddBoardId },
])
);
@@ -110,7 +108,7 @@ export const addInvocationCompleteEventListener = () => {
} else if (!autoAddBoardId) {
dispatch(galleryViewChanged('images'));
}
dispatch(imageSelected(imageDTO.image_name));
dispatch(imageSelected(imageDTO));
}
}

View File

@@ -47,9 +47,9 @@ export const addTabChangedListener = () => {
}
// only store the model name and base model in redux
const { base_model, model_name } = firstValidCanvasModel;
const { base_model, model_name, model_type } = firstValidCanvasModel;
dispatch(modelChanged({ base_model, model_name }));
dispatch(modelChanged({ base_model, model_name, model_type }));
}
},
});

View File

@@ -8,9 +8,9 @@ import {
import canvasReducer from 'features/canvas/store/canvasSlice';
import controlNetReducer from 'features/controlNet/store/controlNetSlice';
import dynamicPromptsReducer from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import boardsReducer from 'features/gallery/store/boardSlice';
import galleryReducer from 'features/gallery/store/gallerySlice';
import imageDeletionReducer from 'features/imageDeletion/store/imageDeletionSlice';
import deleteImageModalReducer from 'features/deleteImageModal/store/slice';
import changeBoardModalReducer from 'features/changeBoardModal/store/slice';
import loraReducer from 'features/lora/store/loraSlice';
import nodesReducer from 'features/nodes/store/nodesSlice';
import generationReducer from 'features/parameters/store/generationSlice';
@@ -43,9 +43,9 @@ const allReducers = {
ui: uiReducer,
hotkeys: hotkeysReducer,
controlNet: controlNetReducer,
boards: boardsReducer,
dynamicPrompts: dynamicPromptsReducer,
imageDeletion: imageDeletionReducer,
deleteImageModal: deleteImageModalReducer,
changeBoardModal: changeBoardModalReducer,
lora: loraReducer,
modelmanager: modelmanagerReducer,
sdxl: sdxlReducer,

View File

@@ -1,4 +1,4 @@
import { Flex, Text, useColorMode } from '@chakra-ui/react';
import { Box, Flex, useColorMode } from '@chakra-ui/react';
import { motion } from 'framer-motion';
import { ReactNode, memo, useRef } from 'react';
import { mode } from 'theme/util/mode';
@@ -74,7 +74,7 @@ export const IAIDropOverlay = (props: Props) => {
justifyContent: 'center',
}}
>
<Text
<Box
sx={{
fontSize: '2xl',
fontWeight: 600,
@@ -87,7 +87,7 @@ export const IAIDropOverlay = (props: Props) => {
}}
>
{label}
</Text>
</Box>
</Flex>
</Flex>
</motion.div>

View File

@@ -53,7 +53,9 @@ const IAIMantineSearchableSelect = (props: IAISelectProps) => {
// wrap onChange to clear search value on select
const handleChange = useCallback(
(v: string | null) => {
setSearchValue('');
// cannot figure out why we were doing this, but it was causing an issue where if you
// select the currently-selected item, it reset the search value to empty
// setSearchValue('');
if (!onChange) {
return;

View File

@@ -78,7 +78,7 @@ const ImageUploader = (props: ImageUploaderProps) => {
image_category: 'user',
is_intermediate: false,
postUploadAction,
board_id: autoAddBoardId,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
},
[autoAddBoardId, postUploadAction, uploadImage]

View File

@@ -49,7 +49,7 @@ export const useImageUploadButton = ({
image_category: 'user',
is_intermediate: false,
postUploadAction: postUploadAction ?? { type: 'TOAST' },
board_id: autoAddBoardId,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
},
[autoAddBoardId, postUploadAction, uploadImage]

View File

@@ -33,6 +33,10 @@ const useColorPicker = () => {
1
).data;
if (!(a && r && g && b)) {
return;
}
dispatch(setColorPickerColor({ r, g, b, a }));
},
commitColorUnderCursor: () => {

Some files were not shown because too many files have changed in this diff Show More