mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 09:18:00 -05:00
Compare commits
203 Commits
improve-co
...
maryhipp/s
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
89c5662848 | ||
|
|
e3e8d689d7 | ||
|
|
9d86c2e2c1 | ||
|
|
c3dd91e3c2 | ||
|
|
aaf83de364 | ||
|
|
959f70da71 | ||
|
|
d551338d62 | ||
|
|
1304fbb36f | ||
|
|
a2a70b6eb0 | ||
|
|
9c328056d5 | ||
|
|
977dbd8051 | ||
|
|
14250a0593 | ||
|
|
62b4614aed | ||
|
|
451c0f00e0 | ||
|
|
05485e1b47 | ||
|
|
01164a404f | ||
|
|
f0b587da27 | ||
|
|
f6b30d2b6b | ||
|
|
6d4fc6e55b | ||
|
|
4e1a0b8a7f | ||
|
|
67abe33c02 | ||
|
|
a3c736c0dc | ||
|
|
e4738b4bee | ||
|
|
fa13ec1f6b | ||
|
|
5ced646210 | ||
|
|
b03073d888 | ||
|
|
a43d602f16 | ||
|
|
7e9a89f8c6 | ||
|
|
79ceac2f82 | ||
|
|
8e47e005a7 | ||
|
|
d13aafb514 | ||
|
|
63a7e19dbf | ||
|
|
fbc5a8ec65 | ||
|
|
8ce6e4540e | ||
|
|
f14f377ede | ||
|
|
1925f83f5e | ||
|
|
3a5ad6d112 | ||
|
|
41a6bb45f3 | ||
|
|
70e40fa6c1 | ||
|
|
e26125b734 | ||
|
|
cd70937b7f | ||
|
|
f002bca2fa | ||
|
|
56771de856 | ||
|
|
c11478a94a | ||
|
|
fb694b3e17 | ||
|
|
1bc98abc76 | ||
|
|
7f03b04b2f | ||
|
|
4029972530 | ||
|
|
328f160e88 | ||
|
|
aae318425d | ||
|
|
785bb1d9e4 | ||
|
|
a3cb5da130 | ||
|
|
568a4844f7 | ||
|
|
b1e56e2485 | ||
|
|
9432336e2b | ||
|
|
7d19af2caa | ||
|
|
0dbec3ad8b | ||
|
|
52c0c4a32f | ||
|
|
8f1afc032a | ||
|
|
854bca668a | ||
|
|
fea9013cad | ||
|
|
045caddee1 | ||
|
|
58697141bf | ||
|
|
5e419dbb56 | ||
|
|
595096bdcf | ||
|
|
ed03d281e6 | ||
|
|
0b37496c57 | ||
|
|
fde58ce0a3 | ||
|
|
dc134935c8 | ||
|
|
9f9379682e | ||
|
|
f81b8bc9f6 | ||
|
|
6d067e56f2 | ||
|
|
2871676f79 | ||
|
|
1c5c3cdbd6 | ||
|
|
3db69af220 | ||
|
|
1823e446ac | ||
|
|
311e44ad19 | ||
|
|
848ca79da8 | ||
|
|
9cba0dfac9 | ||
|
|
37b1f21bcf | ||
|
|
b2e005f6b5 | ||
|
|
52aac954c0 | ||
|
|
ff01ceae99 | ||
|
|
669d92d8db | ||
|
|
2903060154 | ||
|
|
4af8699a00 | ||
|
|
71fedd1a07 | ||
|
|
6bb1189c88 | ||
|
|
c7546bc82e | ||
|
|
14372e3818 | ||
|
|
64523c4b1b | ||
|
|
89a764a359 | ||
|
|
756108f6bd | ||
|
|
68d628dc14 | ||
|
|
93c9852142 | ||
|
|
493f81788c | ||
|
|
f13427e3f4 | ||
|
|
e28737fc8b | ||
|
|
7391c126d3 | ||
|
|
1c59fce6ad | ||
|
|
a9962fd104 | ||
|
|
e7513f6088 | ||
|
|
c7f22b6a3b | ||
|
|
99413256ce | ||
|
|
aa9695e377 | ||
|
|
c58ac1e80d | ||
|
|
6cc6a45274 | ||
|
|
521f907f58 | ||
|
|
ccdecf21a3 | ||
|
|
b124440023 | ||
|
|
e3a70e598e | ||
|
|
132bbf330a | ||
|
|
2276f327e5 | ||
|
|
6b24424727 | ||
|
|
7153d846a9 | ||
|
|
9a0b77ad38 | ||
|
|
220d45967e | ||
|
|
038a482ef0 | ||
|
|
c325ad3432 | ||
|
|
449bc4dbe5 | ||
|
|
34d68a3663 | ||
|
|
8bb9571485 | ||
|
|
08bcc71e99 | ||
|
|
ff2b2fad83 | ||
|
|
0f0a6852f1 | ||
|
|
745140fa6b | ||
|
|
405fc46888 | ||
|
|
ca728ca29f | ||
|
|
d0fca53e67 | ||
|
|
ad9740d72d | ||
|
|
1c9c982b63 | ||
|
|
3cfd2755c2 | ||
|
|
8ea4067f83 | ||
|
|
940de6a5c5 | ||
|
|
dd74e89127 | ||
|
|
69da67e920 | ||
|
|
76b1f241d7 | ||
|
|
0e5336d8fa | ||
|
|
3501636018 | ||
|
|
e4ce188500 | ||
|
|
e976571fba | ||
|
|
0da36c1238 | ||
|
|
4ef8cbd9d0 | ||
|
|
8f8ddd620b | ||
|
|
1af53aed60 | ||
|
|
7a4bbd092e | ||
|
|
72bbcb2d94 | ||
|
|
c2eef93476 | ||
|
|
cfb12615e1 | ||
|
|
a983f27aad | ||
|
|
7cb32d3d83 | ||
|
|
ac56ab79a7 | ||
|
|
50d3030471 | ||
|
|
5beec8211a | ||
|
|
5a4d10467b | ||
|
|
7590f3005e | ||
|
|
2f9ebdec69 | ||
|
|
e257a72f94 | ||
|
|
843f82c837 | ||
|
|
66858effa2 | ||
|
|
21a60af881 | ||
|
|
ead1748c54 | ||
|
|
cd12ca6e85 | ||
|
|
34e1eb19f9 | ||
|
|
987ee704a1 | ||
|
|
e77c7e40b7 | ||
|
|
8aebc29b91 | ||
|
|
d968c6f379 | ||
|
|
2dae5eb7ad | ||
|
|
911a24479b | ||
|
|
f29c406fed | ||
|
|
287c679f7b | ||
|
|
0bf14c2830 | ||
|
|
b48d4a049d | ||
|
|
f211c95dbc | ||
|
|
8e5e9b53d6 | ||
|
|
e9a20051bd | ||
|
|
38df6f3702 | ||
|
|
3b64e7a1fd | ||
|
|
49c84cd423 | ||
|
|
1fe90c357c | ||
|
|
fcb071f30c | ||
|
|
57c831442e | ||
|
|
f65c7e2bfd | ||
|
|
7c39929758 | ||
|
|
a26667d3ca | ||
|
|
bb04f496e0 | ||
|
|
70903ef057 | ||
|
|
d72f272f16 | ||
|
|
34cdfc61ab | ||
|
|
470a39935c | ||
|
|
f1e79d5a8f | ||
|
|
f055e1edb6 | ||
|
|
fa6efac436 | ||
|
|
3ead827d61 | ||
|
|
c140d3b1df | ||
|
|
34438ce1af | ||
|
|
3ddd7ced49 | ||
|
|
41b909cbe3 | ||
|
|
3a26c7bb9e | ||
|
|
df5ebdbc4f | ||
|
|
af1b57a01f | ||
|
|
9cc1f20ad5 |
4
Makefile
4
Makefile
@@ -18,6 +18,7 @@ help:
|
||||
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
|
||||
@echo "installer-zip Build the installer .zip file for the current version"
|
||||
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
|
||||
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
|
||||
|
||||
# Runs ruff, fixing any safely-fixable errors and formatting
|
||||
ruff:
|
||||
@@ -70,3 +71,6 @@ installer-zip:
|
||||
tag-release:
|
||||
cd installer && ./tag_release.sh
|
||||
|
||||
# Generate the OpenAPI Schema for the app
|
||||
openapi:
|
||||
python scripts/generate_openapi_schema.py
|
||||
|
||||
@@ -128,7 +128,8 @@ The queue operates on a series of download job objects. These objects
|
||||
specify the source and destination of the download, and keep track of
|
||||
the progress of the download.
|
||||
|
||||
The only job type currently implemented is `DownloadJob`, a pydantic object with the
|
||||
Two job types are defined. `DownloadJob` and
|
||||
`MultiFileDownloadJob`. The former is a pydantic object with the
|
||||
following fields:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
@@ -138,7 +139,7 @@ following fields:
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `access_token` | str | | [optional] string containing authentication token for access |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
@@ -190,6 +191,33 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
|
||||
`error_type` field of "DownloadJobCancelledException". In addition,
|
||||
the job's `cancelled` property will be set to True.
|
||||
|
||||
The `MultiFileDownloadJob` is used for diffusers model downloads,
|
||||
which contain multiple files and directories under a common root:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
|----------------|-----------------|---------------|-----------------|
|
||||
| _Fields passed in at job creation time_ |
|
||||
| `download_parts` | Set[DownloadJob]| | Component download jobs |
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
| _Fields updated over the course of the download task_
|
||||
| `status` | DownloadJobStatus| | Status code |
|
||||
| `download_path` | Path | | Path to the root of the downloaded files |
|
||||
| `bytes` | int | 0 | Bytes downloaded so far |
|
||||
| `total_bytes` | int | 0 | Total size of the file at the remote site |
|
||||
| `error_type` | str | | String version of the exception that caused an error during download |
|
||||
| `error` | str | | String version of the traceback associated with an error |
|
||||
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
|
||||
|
||||
Note that the MultiFileDownloadJob does not support the `priority`,
|
||||
`job_started`, `job_ended` or `content_type` attributes. You can get
|
||||
these from the individual download jobs in `download_parts`.
|
||||
|
||||
|
||||
### Callbacks
|
||||
|
||||
Download jobs can be associated with a series of callbacks, each with
|
||||
@@ -251,11 +279,40 @@ jobs using `list_jobs()`, fetch a single job by its with
|
||||
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
|
||||
with `join()`.
|
||||
|
||||
#### job = queue.download(source, dest, priority, access_token)
|
||||
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
|
||||
Create a new download job and put it on the queue, returning the
|
||||
DownloadJob object.
|
||||
|
||||
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
|
||||
This is similar to download(), but instead of taking a single source,
|
||||
it accepts a `parts` argument consisting of a list of
|
||||
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
|
||||
where the URL is the location of the remote file, and the Path is the
|
||||
destination.
|
||||
|
||||
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
|
||||
consists of a url/path pair. Note that the path *must* be relative.
|
||||
|
||||
The method returns a `MultiFileDownloadJob`.
|
||||
|
||||
|
||||
```
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
|
||||
path='my_model/textencoder/pytorch_model.safetensors'
|
||||
)
|
||||
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
|
||||
path='my_model/vae/diffusers_model.safetensors'
|
||||
)
|
||||
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
|
||||
dest='/tmp/downloads',
|
||||
on_progress=TqdmProgress().update)
|
||||
queue.wait_for_job(job)
|
||||
print(f"The files were downloaded to {job.download_path}")
|
||||
```
|
||||
|
||||
#### jobs = queue.list_jobs()
|
||||
|
||||
Return a list of all active and inactive `DownloadJob`s.
|
||||
|
||||
@@ -397,26 +397,25 @@ In the event you wish to create a new installer, you may use the
|
||||
following initialization pattern:
|
||||
|
||||
```
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config import get_config
|
||||
from invokeai.app.services.model_records import ModelRecordServiceSQL
|
||||
from invokeai.app.services.model_install import ModelInstallService
|
||||
from invokeai.app.services.download import DownloadQueueService
|
||||
from invokeai.app.services.shared.sqlite import SqliteDatabase
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
config = get_config()
|
||||
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
db = SqliteDatabase(config, logger)
|
||||
db = SqliteDatabase(config.db_path, logger)
|
||||
record_store = ModelRecordServiceSQL(db)
|
||||
queue = DownloadQueueService()
|
||||
queue.start()
|
||||
|
||||
installer = ModelInstallService(app_config=config,
|
||||
installer = ModelInstallService(app_config=config,
|
||||
record_store=record_store,
|
||||
download_queue=queue
|
||||
)
|
||||
download_queue=queue
|
||||
)
|
||||
installer.start()
|
||||
```
|
||||
|
||||
@@ -1367,12 +1366,20 @@ the in-memory loaded model:
|
||||
| `model` | AnyModel | The instantiated model (details below) |
|
||||
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
|
||||
|
||||
Because the loader can return multiple model types, it is typed to
|
||||
return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
|
||||
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
|
||||
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
|
||||
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
|
||||
models. The others are obvious.
|
||||
### get_model_by_key(key, [submodel]) -> LoadedModel
|
||||
|
||||
The `get_model_by_key()` method will retrieve the model using its
|
||||
unique database key. For example:
|
||||
|
||||
loaded_model = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
|
||||
`get_model_by_key()` may raise any of the following exceptions:
|
||||
|
||||
* `UnknownModelException` -- key not in database
|
||||
* `ModelNotFoundException` -- key in database but model not found at path
|
||||
* `NotImplementedException` -- the loader doesn't know how to load this type of model
|
||||
|
||||
### Using the Loaded Model in Inference
|
||||
|
||||
`LoadedModel` acts as a context manager. The context loads the model
|
||||
into the execution device (e.g. VRAM on CUDA systems), locks the model
|
||||
@@ -1380,17 +1387,33 @@ in the execution device for the duration of the context, and returns
|
||||
the model. Use it like this:
|
||||
|
||||
```
|
||||
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with model_info as vae:
|
||||
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with loaded_model as vae:
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
`get_model_by_key()` may raise any of the following exceptions:
|
||||
The object returned by the LoadedModel context manager is an
|
||||
`AnyModel`, which is a Union of `ModelMixin`, `torch.nn.Module`,
|
||||
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
|
||||
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
|
||||
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
|
||||
models. The others are obvious.
|
||||
|
||||
In addition, you may call `LoadedModel.model_on_device()`, a context
|
||||
manager that returns a tuple of the model's state dict in CPU and the
|
||||
model itself in VRAM. It is used to optimize the LoRA patching and
|
||||
unpatching process:
|
||||
|
||||
```
|
||||
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with loaded_model.model_on_device() as (state_dict, vae):
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
Since not all models have state dicts, the `state_dict` return value
|
||||
can be None.
|
||||
|
||||
|
||||
* `UnknownModelException` -- key not in database
|
||||
* `ModelNotFoundException` -- key in database but model not found at path
|
||||
* `NotImplementedException` -- the loader doesn't know how to load this type of model
|
||||
|
||||
### Emitting model loading events
|
||||
|
||||
When the `context` argument is passed to `load_model_*()`, it will
|
||||
@@ -1578,3 +1601,59 @@ This method takes a model key, looks it up using the
|
||||
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
|
||||
model configuration to `load_model_by_config()`. It may raise a
|
||||
`NotImplementedException`.
|
||||
|
||||
## Invocation Context Model Manager API
|
||||
|
||||
Within invocations, the following methods are available from the
|
||||
`InvocationContext` object:
|
||||
|
||||
### context.download_and_cache_model(source) -> Path
|
||||
|
||||
This method accepts a `source` of a remote model, downloads and caches
|
||||
it locally, and then returns a Path to the local model. The source can
|
||||
be a direct download URL or a HuggingFace repo_id.
|
||||
|
||||
In the case of HuggingFace repo_id, the following variants are
|
||||
recognized:
|
||||
|
||||
* stabilityai/stable-diffusion-v4 -- default model
|
||||
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
|
||||
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
|
||||
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
|
||||
|
||||
You can also point at an arbitrary individual file within a repo_id
|
||||
directory using this syntax:
|
||||
|
||||
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
|
||||
|
||||
### context.load_local_model(model_path, [loader]) -> LoadedModel
|
||||
|
||||
This method loads a local model from the indicated path, returning a
|
||||
`LoadedModel`. The optional loader is a Callable that accepts a Path
|
||||
to the object, and returns a `AnyModel` object. If no loader is
|
||||
provided, then the method will use `torch.load()` for a .ckpt or .bin
|
||||
checkpoint file, `safetensors.torch.load_file()` for a safetensors
|
||||
checkpoint file, or `cls.from_pretrained()` for a directory that looks
|
||||
like a diffusers directory.
|
||||
|
||||
### context.load_remote_model(source, [loader]) -> LoadedModel
|
||||
|
||||
This method accepts a `source` of a remote model, downloads and caches
|
||||
it locally, loads it, and returns a `LoadedModel`. The source can be a
|
||||
direct download URL or a HuggingFace repo_id.
|
||||
|
||||
In the case of HuggingFace repo_id, the following variants are
|
||||
recognized:
|
||||
|
||||
* stabilityai/stable-diffusion-v4 -- default model
|
||||
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
|
||||
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
|
||||
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
|
||||
|
||||
You can also point at an arbitrary individual file within a repo_id
|
||||
directory using this syntax:
|
||||
|
||||
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -154,6 +154,18 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
|
||||
|
||||
Check the [configuration docs] for more detail about the settings and how to specify them.
|
||||
|
||||
## `ModuleNotFoundError: No module named 'controlnet_aux'`
|
||||
|
||||
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
|
||||
|
||||
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
|
||||
|
||||
- Run the Invoke launcher
|
||||
- Choose the developer console option
|
||||
- Run this command: `pip cache remove controlnet_aux`
|
||||
- Close the terminal window
|
||||
- Download and run the [installer](https://github.com/invoke-ai/InvokeAI/releases/latest), selecting your current install location
|
||||
|
||||
## Out of Memory Issues
|
||||
|
||||
The models are large, VRAM is expensive, and you may find yourself
|
||||
|
||||
@@ -93,7 +93,7 @@ class ApiDependencies:
|
||||
conditioning = ObjectSerializerForwardCache(
|
||||
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
|
||||
)
|
||||
download_queue_service = DownloadQueueService(event_bus=events)
|
||||
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
|
||||
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
|
||||
model_manager = ModelManagerService.build_model_manager(
|
||||
app_config=configuration,
|
||||
|
||||
@@ -316,6 +316,7 @@ async def list_image_dtos(
|
||||
),
|
||||
offset: int = Query(default=0, description="The page offset"),
|
||||
limit: int = Query(default=10, description="The number of images per page"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a list of image DTOs"""
|
||||
|
||||
@@ -326,6 +327,7 @@ async def list_image_dtos(
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
search_term
|
||||
)
|
||||
|
||||
return image_dtos
|
||||
|
||||
@@ -9,7 +9,7 @@ from copy import deepcopy
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from fastapi import Body, Path, Query, Response, UploadFile
|
||||
from fastapi.responses import FileResponse
|
||||
from fastapi.responses import FileResponse, HTMLResponse
|
||||
from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
|
||||
@@ -502,6 +502,133 @@ async def install_model(
|
||||
return result
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/install/huggingface",
|
||||
operation_id="install_hugging_face_model",
|
||||
responses={
|
||||
201: {"description": "The model is being installed"},
|
||||
400: {"description": "Bad request"},
|
||||
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
||||
},
|
||||
status_code=201,
|
||||
response_class=HTMLResponse,
|
||||
)
|
||||
async def install_hugging_face_model(
|
||||
source: str = Query(description="HuggingFace repo_id to install"),
|
||||
) -> HTMLResponse:
|
||||
"""Install a Hugging Face model using a string identifier."""
|
||||
|
||||
def generate_html(title: str, heading: str, repo_id: str, is_error: bool, message: str | None = "") -> str:
|
||||
if message:
|
||||
message = f"<p>{message}</p>"
|
||||
title_class = "error" if is_error else "success"
|
||||
return f"""
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>{title}</title>
|
||||
<style>
|
||||
body {{
|
||||
text-align: center;
|
||||
background-color: hsl(220 12% 10% / 1);
|
||||
font-family: Helvetica, sans-serif;
|
||||
color: hsl(220 12% 86% / 1);
|
||||
}}
|
||||
|
||||
.repo-id {{
|
||||
color: hsl(220 12% 68% / 1);
|
||||
}}
|
||||
|
||||
.error {{
|
||||
color: hsl(0 42% 68% / 1)
|
||||
}}
|
||||
|
||||
.message-box {{
|
||||
display: inline-block;
|
||||
border-radius: 5px;
|
||||
background-color: hsl(220 12% 20% / 1);
|
||||
padding-inline-end: 30px;
|
||||
padding: 20px;
|
||||
padding-inline-start: 30px;
|
||||
padding-inline-end: 30px;
|
||||
}}
|
||||
|
||||
.container {{
|
||||
display: flex;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
}}
|
||||
|
||||
a {{
|
||||
color: inherit
|
||||
}}
|
||||
|
||||
a:visited {{
|
||||
color: inherit
|
||||
}}
|
||||
|
||||
a:active {{
|
||||
color: inherit
|
||||
}}
|
||||
</style>
|
||||
</head>
|
||||
|
||||
<body style="background-color: hsl(220 12% 10% / 1);">
|
||||
<div class="container">
|
||||
<div class="message-box">
|
||||
<h2 class="{title_class}">{heading}</h2>
|
||||
{message}
|
||||
<p class="repo-id">Repo ID: {repo_id}</p>
|
||||
</div>
|
||||
</div>
|
||||
</body>
|
||||
|
||||
</html>
|
||||
"""
|
||||
|
||||
try:
|
||||
metadata = HuggingFaceMetadataFetch().from_id(source)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
except UnknownMetadataException:
|
||||
title = "Unable to Install Model"
|
||||
heading = "No HuggingFace repository found with that repo ID."
|
||||
message = "Ensure the repo ID is correct and try again."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=400)
|
||||
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
|
||||
try:
|
||||
installer = ApiDependencies.invoker.services.model_manager.install
|
||||
if metadata.is_diffusers:
|
||||
installer.heuristic_import(
|
||||
source=source,
|
||||
inplace=False,
|
||||
)
|
||||
elif metadata.ckpt_urls is not None and len(metadata.ckpt_urls) == 1:
|
||||
installer.heuristic_import(
|
||||
source=str(metadata.ckpt_urls[0]),
|
||||
inplace=False,
|
||||
)
|
||||
else:
|
||||
title = "Unable to Install Model"
|
||||
heading = "This HuggingFace repo has multiple models."
|
||||
message = "Please use the Model Manager to install this model."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=200)
|
||||
|
||||
title = "Model Install Started"
|
||||
heading = "Your HuggingFace model is installing now."
|
||||
message = "You can close this tab and check the Model Manager for installation progress."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, False, message), status_code=201)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
title = "Unable to Install Model"
|
||||
heading = "There was an problem installing this model."
|
||||
message = 'Please use the Model Manager directly to install this model. If the issue persists, ask for help on <a href="https://discord.gg/ZmtBAhwWhy">discord</a>.'
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=500)
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/install",
|
||||
operation_id="list_model_installs",
|
||||
|
||||
@@ -3,9 +3,7 @@ import logging
|
||||
import mimetypes
|
||||
import socket
|
||||
from contextlib import asynccontextmanager
|
||||
from inspect import signature
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import uvicorn
|
||||
@@ -13,11 +11,9 @@ from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
from fastapi.responses import HTMLResponse
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||
from pydantic.json_schema import models_json_schema
|
||||
from torch.backends.mps import is_available as is_mps_available
|
||||
|
||||
# for PyCharm:
|
||||
@@ -25,10 +21,8 @@ from torch.backends.mps import is_available as is_mps_available
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
@@ -45,11 +39,6 @@ from .api.routers import (
|
||||
workflows,
|
||||
)
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
UIConfigBase,
|
||||
)
|
||||
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
@@ -119,84 +108,7 @@ app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
|
||||
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
def custom_openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# Add all outputs
|
||||
all_invocations = BaseInvocation.get_invocations()
|
||||
output_types = set()
|
||||
output_type_titles = {}
|
||||
for invoker in all_invocations:
|
||||
output_type = signature(invoker.invoke).return_annotation
|
||||
output_types.add(output_type)
|
||||
|
||||
output_schemas = models_json_schema(
|
||||
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
for schema_key, output_schema in output_schemas[1]["$defs"].items():
|
||||
# TODO: note that we assume the schema_key here is the TYPE.__name__
|
||||
# This could break in some cases, figure out a better way to do it
|
||||
output_type_titles[schema_key] = output_schema["title"]
|
||||
openapi_schema["components"]["schemas"][schema_key] = output_schema
|
||||
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions
|
||||
additional_schemas = models_json_schema(
|
||||
[
|
||||
(UIConfigBase, "serialization"),
|
||||
(InputFieldJSONSchemaExtra, "serialization"),
|
||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
||||
(ModelIdentifierField, "serialization"),
|
||||
(ProgressImage, "serialization"),
|
||||
],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
output_type = signature(obj=invoker.invoke).return_annotation
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# Add all event schemas
|
||||
for event in sorted(EventBase.get_events(), key=lambda e: e.__name__):
|
||||
json_schema = event.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
|
||||
if "$defs" in json_schema:
|
||||
for schema_key, schema in json_schema["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema
|
||||
del json_schema["$defs"]
|
||||
openapi_schema["components"]["schemas"][event.__name__] = json_schema
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
|
||||
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
|
||||
app.openapi = get_openapi_func(app)
|
||||
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
|
||||
@@ -98,11 +98,13 @@ class BaseInvocationOutput(BaseModel):
|
||||
|
||||
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def register_output(cls, output: BaseInvocationOutput) -> None:
|
||||
"""Registers an invocation output."""
|
||||
cls._output_classes.add(output)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
||||
@@ -112,11 +114,12 @@ class BaseInvocationOutput(BaseModel):
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
|
||||
if not cls._typeadapter:
|
||||
InvocationOutputsUnion = TypeAliasType(
|
||||
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocationOutput = TypeAliasType(
|
||||
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
|
||||
cls._typeadapter_needs_update = False
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@@ -125,12 +128,13 @@ class BaseInvocationOutput(BaseModel):
|
||||
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
|
||||
# Because we use a pydantic Literal field with default value for the invocation type,
|
||||
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "output"
|
||||
schema["required"].extend(["type"])
|
||||
|
||||
@classmethod
|
||||
@@ -167,6 +171,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
|
||||
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def get_type(cls) -> str:
|
||||
@@ -177,15 +182,17 @@ class BaseInvocation(ABC, BaseModel):
|
||||
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
||||
"""Registers an invocation."""
|
||||
cls._invocation_classes.add(invocation)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
|
||||
if not cls._typeadapter:
|
||||
InvocationsUnion = TypeAliasType(
|
||||
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocation = TypeAliasType(
|
||||
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(InvocationsUnion)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocation)
|
||||
cls._typeadapter_needs_update = False
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@@ -221,7 +228,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
return signature(cls.invoke).return_annotation
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
||||
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
||||
if uiconfig is not None:
|
||||
@@ -237,6 +244,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
schema["version"] = uiconfig.version
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "invocation"
|
||||
schema["required"].extend(["type", "id"])
|
||||
|
||||
@abstractmethod
|
||||
@@ -310,7 +318,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
protected_namespaces=(),
|
||||
validate_assignment=True,
|
||||
json_schema_extra=json_schema_extra,
|
||||
json_schema_serialization_defaults_required=True,
|
||||
json_schema_serialization_defaults_required=False,
|
||||
coerce_numbers_to_str=True,
|
||||
)
|
||||
|
||||
|
||||
98
invokeai/app/invocations/blend_latents.py
Normal file
98
invokeai/app/invocations/blend_latents.py
Normal file
@@ -0,0 +1,98 @@
|
||||
from typing import Any, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"lblend",
|
||||
title="Blend Latents",
|
||||
tags=["latents", "blend"],
|
||||
category="latents",
|
||||
version="1.0.3",
|
||||
)
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||
|
||||
latents_a: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents_b: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents_a = context.tensors.load(self.latents_a.latents_name)
|
||||
latents_b = context.tensors.load(self.latents_b.latents_name)
|
||||
|
||||
if latents_a.shape != latents_b.shape:
|
||||
raise Exception("Latents to blend must be the same size.")
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
def slerp(
|
||||
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
|
||||
v0: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
v1: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
DOT_THRESHOLD: float = 0.9995,
|
||||
) -> Union[torch.Tensor, npt.NDArray[Any]]:
|
||||
"""
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
"""
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
|
||||
return v2_torch
|
||||
else:
|
||||
assert isinstance(v2, np.ndarray)
|
||||
return v2
|
||||
|
||||
# blend
|
||||
bl = slerp(self.alpha, latents_a, latents_b)
|
||||
assert isinstance(bl, torch.Tensor)
|
||||
blended_latents: torch.Tensor = bl # for type checking convenience
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
blended_latents = blended_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=blended_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
|
||||
@@ -81,9 +81,13 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
with (
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info as text_encoder,
|
||||
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||
ModelPatcher.apply_lora_text_encoder(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
model_state_dict=model_state_dict,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
|
||||
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
|
||||
@@ -172,9 +176,14 @@ class SDXLPromptInvocationBase:
|
||||
|
||||
with (
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info as text_encoder,
|
||||
text_encoder_info.model_on_device() as (state_dict, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||
ModelPatcher.apply_lora(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
prefix=lora_prefix,
|
||||
model_state_dict=state_dict,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
|
||||
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
"""
|
||||
@@ -15,3 +16,5 @@ SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
# initial implementation by Gregg Helt, 2023
|
||||
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
||||
from builtins import bool, float
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Literal, Union
|
||||
|
||||
import cv2
|
||||
@@ -36,12 +37,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
||||
from invokeai.backend.image_util.hed import HEDProcessor
|
||||
from invokeai.backend.image_util.lineart import LineartProcessor
|
||||
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
@@ -139,6 +141,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
return context.images.get_pil(self.image.image_name, "RGB")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
self._context = context
|
||||
raw_image = self.load_image(context)
|
||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||
processed_image = self.run_processor(raw_image)
|
||||
@@ -284,7 +287,8 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
# depth_and_normal not supported in controlnet_aux v0.0.3
|
||||
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
|
||||
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = midas_processor(
|
||||
image,
|
||||
@@ -311,7 +315,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = normalbae_processor(
|
||||
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
|
||||
@@ -330,7 +334,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
||||
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
||||
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = mlsd_processor(
|
||||
image,
|
||||
@@ -353,7 +357,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
||||
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
||||
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = pidi_processor(
|
||||
image,
|
||||
@@ -381,7 +385,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
|
||||
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
content_shuffle_processor = ContentShuffleDetector()
|
||||
processed_image = content_shuffle_processor(
|
||||
image,
|
||||
@@ -405,7 +409,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Zoe depth processing to image"""
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = zoe_depth_processor(image)
|
||||
return processed_image
|
||||
@@ -426,7 +430,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
mediapipe_face_processor = MediapipeFaceDetector()
|
||||
processed_image = mediapipe_face_processor(
|
||||
image,
|
||||
@@ -454,7 +458,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = leres_processor(
|
||||
image,
|
||||
@@ -496,8 +500,8 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
||||
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
||||
return np_img
|
||||
|
||||
def run_processor(self, img):
|
||||
np_img = np.array(img, dtype=np.uint8)
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
np_img = np.array(image, dtype=np.uint8)
|
||||
processed_np_image = self.tile_resample(
|
||||
np_img,
|
||||
# res=self.tile_size,
|
||||
@@ -520,7 +524,7 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
||||
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
|
||||
"ybelkada/segment-anything", subfolder="checkpoints"
|
||||
@@ -566,7 +570,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||
|
||||
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
|
||||
|
||||
def run_processor(self, image: Image.Image):
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
np_image = np.array(image, dtype=np.uint8)
|
||||
height, width = np_image.shape[:2]
|
||||
|
||||
@@ -601,12 +605,18 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
)
|
||||
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image):
|
||||
depth_anything_detector = DepthAnythingDetector()
|
||||
depth_anything_detector.load_model(model_size=self.model_size)
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def loader(model_path: Path):
|
||||
return DepthAnythingDetector.load_model(
|
||||
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
|
||||
)
|
||||
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
|
||||
return processed_image
|
||||
with self._context.models.load_remote_model(
|
||||
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
|
||||
) as model:
|
||||
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -624,8 +634,11 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
draw_hands: bool = InputField(default=False)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image):
|
||||
dw_openpose = DWOpenposeDetector()
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
|
||||
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
|
||||
|
||||
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
|
||||
processed_image = dw_openpose(
|
||||
image,
|
||||
draw_face=self.draw_face,
|
||||
|
||||
80
invokeai/app/invocations/create_denoise_mask.py
Normal file
80
invokeai/app/invocations/create_denoise_mask.py
Normal file
@@ -0,0 +1,80 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import DenoiseMaskOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_denoise_mask",
|
||||
title="Create Denoise Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
|
||||
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=4,
|
||||
)
|
||||
|
||||
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
|
||||
if mask_image.mode != "L":
|
||||
mask_image = mask_image.convert("L")
|
||||
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
if mask_tensor.dim() == 3:
|
||||
mask_tensor = mask_tensor.unsqueeze(0)
|
||||
# if shape is not None:
|
||||
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
|
||||
return mask_tensor
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
|
||||
if self.image is not None:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
else:
|
||||
image_tensor = None
|
||||
|
||||
mask = self.prep_mask_tensor(
|
||||
context.images.get_pil(self.mask.image_name),
|
||||
)
|
||||
|
||||
if image_tensor is not None:
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
# TODO:
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
|
||||
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
else:
|
||||
masked_latents_name = None
|
||||
|
||||
mask_name = context.tensors.save(tensor=mask)
|
||||
|
||||
return DenoiseMaskOutput.build(
|
||||
mask_name=mask_name,
|
||||
masked_latents_name=masked_latents_name,
|
||||
gradient=False,
|
||||
)
|
||||
138
invokeai/app/invocations/create_gradient_mask.py
Normal file
138
invokeai/app/invocations/create_gradient_mask.py
Normal file
@@ -0,0 +1,138 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image, ImageFilter
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
OutputField,
|
||||
)
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation_output("gradient_mask_output")
|
||||
class GradientMaskOutput(BaseInvocationOutput):
|
||||
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
|
||||
|
||||
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
|
||||
expanded_mask_area: ImageField = OutputField(
|
||||
description="Image representing the total gradient area of the mask. For paste-back purposes."
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_gradient_mask",
|
||||
title="Create Gradient Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.1.0",
|
||||
)
|
||||
class CreateGradientMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
edge_radius: int = InputField(
|
||||
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
|
||||
)
|
||||
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
|
||||
minimum_denoise: float = InputField(
|
||||
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||||
)
|
||||
image: Optional[ImageField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] Image",
|
||||
ui_order=6,
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
title="[OPTIONAL] UNet",
|
||||
ui_order=5,
|
||||
)
|
||||
vae: Optional[VAEField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] VAE",
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=9,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||||
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
|
||||
if self.edge_radius > 0:
|
||||
if self.coherence_mode == "Box Blur":
|
||||
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
|
||||
else: # Gaussian Blur OR Staged
|
||||
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
|
||||
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
|
||||
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
|
||||
|
||||
# redistribute blur so that the original edges are 0 and blur outwards to 1
|
||||
blur_tensor = (blur_tensor - 0.5) * 2
|
||||
|
||||
threshold = 1 - self.minimum_denoise
|
||||
|
||||
if self.coherence_mode == "Staged":
|
||||
# wherever the blur_tensor is less than fully masked, convert it to threshold
|
||||
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
|
||||
else:
|
||||
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
|
||||
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
|
||||
|
||||
else:
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
|
||||
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
|
||||
|
||||
# compute a [0, 1] mask from the blur_tensor
|
||||
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
|
||||
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||||
expanded_image_dto = context.images.save(expanded_mask_image)
|
||||
|
||||
masked_latents_name = None
|
||||
if self.unet is not None and self.vae is not None and self.image is not None:
|
||||
# all three fields must be present at the same time
|
||||
main_model_config = context.models.get_config(self.unet.unet.key)
|
||||
assert isinstance(main_model_config, MainConfigBase)
|
||||
if main_model_config.variant is ModelVariantType.Inpaint:
|
||||
mask = blur_tensor
|
||||
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||||
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||||
)
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
|
||||
return GradientMaskOutput(
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||||
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||||
)
|
||||
61
invokeai/app/invocations/crop_latents.py
Normal file
61
invokeai/app/invocations/crop_latents.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
# The Crop Latents node was copied from @skunkworxdark's implementation here:
|
||||
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
|
||||
@invocation(
|
||||
"crop_latents",
|
||||
title="Crop Latents",
|
||||
tags=["latents", "crop"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
|
||||
# Currently, if the class names conflict then 'GET /openapi.json' fails.
|
||||
class CropLatentsCoreInvocation(BaseInvocation):
|
||||
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
|
||||
divisible by the latent scale factor of 8.
|
||||
"""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
x: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
y: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
x1 = self.x // LATENT_SCALE_FACTOR
|
||||
y1 = self.y // LATENT_SCALE_FACTOR
|
||||
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
|
||||
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
|
||||
|
||||
cropped_latents = latents[..., y1:y2, x1:x2]
|
||||
|
||||
name = context.tensors.save(tensor=cropped_latents)
|
||||
|
||||
return LatentsOutput.build(latents_name=name, latents=cropped_latents)
|
||||
811
invokeai/app/invocations/denoise_latents.py
Normal file
811
invokeai/app/invocations/denoise_latents.py
Normal file
@@ -0,0 +1,811 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
import inspect
|
||||
from contextlib import ExitStack
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
import torchvision.transforms as T
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.models.adapter import T2IAdapter
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
|
||||
from diffusers.schedulers.scheduling_tcd import TCDScheduler
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
|
||||
from pydantic import field_validator
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||
from invokeai.app.invocations.model import ModelIdentifierField, UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||
ControlNetData,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
T2IAdapterData,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
IPAdapterConditioningInfo,
|
||||
IPAdapterData,
|
||||
Range,
|
||||
SDXLConditioningInfo,
|
||||
TextConditioningData,
|
||||
TextConditioningRegions,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.mask import to_standard_float_mask
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
|
||||
def get_scheduler(
|
||||
context: InvocationContext,
|
||||
scheduler_info: ModelIdentifierField,
|
||||
scheduler_name: str,
|
||||
seed: int,
|
||||
) -> Scheduler:
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
|
||||
orig_scheduler_info = context.models.load(scheduler_info)
|
||||
with orig_scheduler_info as orig_scheduler:
|
||||
scheduler_config = orig_scheduler.config
|
||||
|
||||
if "_backup" in scheduler_config:
|
||||
scheduler_config = scheduler_config["_backup"]
|
||||
scheduler_config = {
|
||||
**scheduler_config,
|
||||
**scheduler_extra_config, # FIXME
|
||||
"_backup": scheduler_config,
|
||||
}
|
||||
|
||||
# make dpmpp_sde reproducable(seed can be passed only in initializer)
|
||||
if scheduler_class is DPMSolverSDEScheduler:
|
||||
scheduler_config["noise_sampler_seed"] = seed
|
||||
|
||||
scheduler = scheduler_class.from_config(scheduler_config)
|
||||
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, "uses_inpainting_model"):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
assert isinstance(scheduler, Scheduler)
|
||||
return scheduler
|
||||
|
||||
|
||||
@invocation(
|
||||
"denoise_latents",
|
||||
title="Denoise Latents",
|
||||
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
||||
category="latents",
|
||||
version="1.5.3",
|
||||
)
|
||||
class DenoiseLatentsInvocation(BaseInvocation):
|
||||
"""Denoises noisy latents to decodable images"""
|
||||
|
||||
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
|
||||
)
|
||||
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
|
||||
)
|
||||
noise: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.noise,
|
||||
input=Input.Connection,
|
||||
ui_order=3,
|
||||
)
|
||||
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: Union[float, List[float]] = InputField(
|
||||
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
|
||||
)
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
ui_order=2,
|
||||
)
|
||||
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=5,
|
||||
)
|
||||
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
|
||||
description=FieldDescriptions.ip_adapter,
|
||||
title="IP-Adapter",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=6,
|
||||
)
|
||||
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
|
||||
description=FieldDescriptions.t2i_adapter,
|
||||
title="T2I-Adapter",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
latents: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
ui_order=4,
|
||||
)
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.mask,
|
||||
input=Input.Connection,
|
||||
ui_order=8,
|
||||
)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]:
|
||||
"""validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
def _get_text_embeddings_and_masks(
|
||||
self,
|
||||
cond_list: list[ConditioningField],
|
||||
context: InvocationContext,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
|
||||
"""Get the text embeddings and masks from the input conditioning fields."""
|
||||
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
|
||||
text_embeddings_masks: list[Optional[torch.Tensor]] = []
|
||||
for cond in cond_list:
|
||||
cond_data = context.conditioning.load(cond.conditioning_name)
|
||||
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
|
||||
|
||||
mask = cond.mask
|
||||
if mask is not None:
|
||||
mask = context.tensors.load(mask.tensor_name)
|
||||
text_embeddings_masks.append(mask)
|
||||
|
||||
return text_embeddings, text_embeddings_masks
|
||||
|
||||
def _preprocess_regional_prompt_mask(
|
||||
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
|
||||
) -> torch.Tensor:
|
||||
"""Preprocess a regional prompt mask to match the target height and width.
|
||||
If mask is None, returns a mask of all ones with the target height and width.
|
||||
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The processed mask. shape: (1, 1, target_height, target_width).
|
||||
"""
|
||||
|
||||
if mask is None:
|
||||
return torch.ones((1, 1, target_height, target_width), dtype=dtype)
|
||||
|
||||
mask = to_standard_float_mask(mask, out_dtype=dtype)
|
||||
|
||||
tf = torchvision.transforms.Resize(
|
||||
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
|
||||
)
|
||||
|
||||
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
|
||||
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
|
||||
resized_mask = tf(mask)
|
||||
return resized_mask
|
||||
|
||||
def _concat_regional_text_embeddings(
|
||||
self,
|
||||
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
|
||||
masks: Optional[list[Optional[torch.Tensor]]],
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
dtype: torch.dtype,
|
||||
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
|
||||
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
|
||||
if masks is None:
|
||||
masks = [None] * len(text_conditionings)
|
||||
assert len(text_conditionings) == len(masks)
|
||||
|
||||
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
|
||||
|
||||
all_masks_are_none = all(mask is None for mask in masks)
|
||||
|
||||
text_embedding = []
|
||||
pooled_embedding = None
|
||||
add_time_ids = None
|
||||
cur_text_embedding_len = 0
|
||||
processed_masks = []
|
||||
embedding_ranges = []
|
||||
|
||||
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
|
||||
mask = masks[prompt_idx]
|
||||
|
||||
if is_sdxl:
|
||||
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
|
||||
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
|
||||
# global prompt information. In an ideal case, there should be exactly one global prompt without a
|
||||
# mask, but we don't enforce this.
|
||||
|
||||
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
|
||||
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
|
||||
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
|
||||
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
|
||||
# pretty major breaking change to a popular node, so for now we use this hack.
|
||||
if pooled_embedding is None or mask is None:
|
||||
pooled_embedding = text_embedding_info.pooled_embeds
|
||||
if add_time_ids is None or mask is None:
|
||||
add_time_ids = text_embedding_info.add_time_ids
|
||||
|
||||
text_embedding.append(text_embedding_info.embeds)
|
||||
if not all_masks_are_none:
|
||||
embedding_ranges.append(
|
||||
Range(
|
||||
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
|
||||
)
|
||||
)
|
||||
processed_masks.append(
|
||||
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
|
||||
)
|
||||
|
||||
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
|
||||
|
||||
text_embedding = torch.cat(text_embedding, dim=1)
|
||||
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
|
||||
|
||||
regions = None
|
||||
if not all_masks_are_none:
|
||||
regions = TextConditioningRegions(
|
||||
masks=torch.cat(processed_masks, dim=1),
|
||||
ranges=embedding_ranges,
|
||||
)
|
||||
|
||||
if is_sdxl:
|
||||
return (
|
||||
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
|
||||
regions,
|
||||
)
|
||||
return BasicConditioningInfo(embeds=text_embedding), regions
|
||||
|
||||
def get_conditioning_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
unet: UNet2DConditionModel,
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
) -> TextConditioningData:
|
||||
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
|
||||
cond_list = self.positive_conditioning
|
||||
if not isinstance(cond_list, list):
|
||||
cond_list = [cond_list]
|
||||
uncond_list = self.negative_conditioning
|
||||
if not isinstance(uncond_list, list):
|
||||
uncond_list = [uncond_list]
|
||||
|
||||
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
cond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
uncond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
|
||||
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
|
||||
text_conditionings=cond_text_embeddings,
|
||||
masks=cond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
|
||||
text_conditionings=uncond_text_embeddings,
|
||||
masks=uncond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
if isinstance(self.cfg_scale, list):
|
||||
assert (
|
||||
len(self.cfg_scale) == self.steps
|
||||
), "cfg_scale (list) must have the same length as the number of steps"
|
||||
|
||||
conditioning_data = TextConditioningData(
|
||||
uncond_text=uncond_text_embedding,
|
||||
cond_text=cond_text_embedding,
|
||||
uncond_regions=uncond_regions,
|
||||
cond_regions=cond_regions,
|
||||
guidance_scale=self.cfg_scale,
|
||||
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
return conditioning_data
|
||||
|
||||
def create_pipeline(
|
||||
self,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Scheduler,
|
||||
) -> StableDiffusionGeneratorPipeline:
|
||||
class FakeVae:
|
||||
class FakeVaeConfig:
|
||||
def __init__(self) -> None:
|
||||
self.block_out_channels = [0]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.config = FakeVae.FakeVaeConfig()
|
||||
|
||||
return StableDiffusionGeneratorPipeline(
|
||||
vae=FakeVae(), # TODO: oh...
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
def prep_control_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
control_input: Optional[Union[ControlField, List[ControlField]]],
|
||||
latents_shape: List[int],
|
||||
exit_stack: ExitStack,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
) -> Optional[List[ControlNetData]]:
|
||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
||||
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
|
||||
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
|
||||
if control_input is None:
|
||||
control_list = None
|
||||
elif isinstance(control_input, list) and len(control_input) == 0:
|
||||
control_list = None
|
||||
elif isinstance(control_input, ControlField):
|
||||
control_list = [control_input]
|
||||
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
|
||||
control_list = control_input
|
||||
else:
|
||||
control_list = None
|
||||
if control_list is None:
|
||||
return None
|
||||
# After above handling, any control that is not None should now be of type list[ControlField].
|
||||
|
||||
# FIXME: add checks to skip entry if model or image is None
|
||||
# and if weight is None, populate with default 1.0?
|
||||
controlnet_data = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
|
||||
|
||||
# control_models.append(control_model)
|
||||
control_image_field = control_info.image
|
||||
input_image = context.images.get_pil(control_image_field.image_name)
|
||||
# self.image.image_type, self.image.image_name
|
||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||
# and add in batch_size, num_images_per_prompt?
|
||||
# and do real check for classifier_free_guidance?
|
||||
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
|
||||
control_image = prepare_control_image(
|
||||
image=input_image,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
width=control_width_resize,
|
||||
height=control_height_resize,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
control_mode=control_info.control_mode,
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model, # model object
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
end_step_percent=control_info.end_step_percent,
|
||||
control_mode=control_info.control_mode,
|
||||
# any resizing needed should currently be happening in prepare_control_image(),
|
||||
# but adding resize_mode to ControlNetData in case needed in the future
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
controlnet_data.append(control_item)
|
||||
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
|
||||
|
||||
return controlnet_data
|
||||
|
||||
def prep_ip_adapter_image_prompts(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
ip_adapters: List[IPAdapterField],
|
||||
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
|
||||
image_prompts = []
|
||||
for single_ip_adapter in ip_adapters:
|
||||
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
|
||||
assert isinstance(ip_adapter_model, IPAdapter)
|
||||
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
|
||||
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
|
||||
single_ipa_image_fields = single_ip_adapter.image
|
||||
if not isinstance(single_ipa_image_fields, list):
|
||||
single_ipa_image_fields = [single_ipa_image_fields]
|
||||
|
||||
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
|
||||
with image_encoder_model_info as image_encoder_model:
|
||||
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
|
||||
# Get image embeddings from CLIP and ImageProjModel.
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
|
||||
single_ipa_images, image_encoder_model
|
||||
)
|
||||
image_prompts.append((image_prompt_embeds, uncond_image_prompt_embeds))
|
||||
|
||||
return image_prompts
|
||||
|
||||
def prep_ip_adapter_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
ip_adapters: List[IPAdapterField],
|
||||
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
exit_stack: ExitStack,
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
dtype: torch.dtype,
|
||||
) -> Optional[List[IPAdapterData]]:
|
||||
"""If IP-Adapter is enabled, then this function loads the requisite models and adds the image prompt conditioning data."""
|
||||
ip_adapter_data_list = []
|
||||
for single_ip_adapter, (image_prompt_embeds, uncond_image_prompt_embeds) in zip(
|
||||
ip_adapters, image_prompts, strict=True
|
||||
):
|
||||
ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
|
||||
|
||||
mask_field = single_ip_adapter.mask
|
||||
mask = context.tensors.load(mask_field.tensor_name) if mask_field is not None else None
|
||||
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
|
||||
|
||||
ip_adapter_data_list.append(
|
||||
IPAdapterData(
|
||||
ip_adapter_model=ip_adapter_model,
|
||||
weight=single_ip_adapter.weight,
|
||||
target_blocks=single_ip_adapter.target_blocks,
|
||||
begin_step_percent=single_ip_adapter.begin_step_percent,
|
||||
end_step_percent=single_ip_adapter.end_step_percent,
|
||||
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
|
||||
mask=mask,
|
||||
)
|
||||
)
|
||||
|
||||
return ip_adapter_data_list if len(ip_adapter_data_list) > 0 else None
|
||||
|
||||
def run_t2i_adapters(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
|
||||
latents_shape: list[int],
|
||||
do_classifier_free_guidance: bool,
|
||||
) -> Optional[list[T2IAdapterData]]:
|
||||
if t2i_adapter is None:
|
||||
return None
|
||||
|
||||
# Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField.
|
||||
if isinstance(t2i_adapter, T2IAdapterField):
|
||||
t2i_adapter = [t2i_adapter]
|
||||
|
||||
if len(t2i_adapter) == 0:
|
||||
return None
|
||||
|
||||
t2i_adapter_data = []
|
||||
for t2i_adapter_field in t2i_adapter:
|
||||
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
|
||||
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
|
||||
image = context.images.get_pil(t2i_adapter_field.image.image_name)
|
||||
|
||||
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
|
||||
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
|
||||
max_unet_downscale = 8
|
||||
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
|
||||
max_unet_downscale = 4
|
||||
else:
|
||||
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
|
||||
|
||||
t2i_adapter_model: T2IAdapter
|
||||
with t2i_adapter_loaded_model as t2i_adapter_model:
|
||||
total_downscale_factor = t2i_adapter_model.total_downscale_factor
|
||||
|
||||
# Resize the T2I-Adapter input image.
|
||||
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
|
||||
# result will match the latent image's dimensions after max_unet_downscale is applied.
|
||||
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
|
||||
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
|
||||
|
||||
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
|
||||
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
|
||||
# T2I-Adapter model.
|
||||
#
|
||||
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
|
||||
# of the same requirements (e.g. preserving binary masks during resize).
|
||||
t2i_image = prepare_control_image(
|
||||
image=image,
|
||||
do_classifier_free_guidance=False,
|
||||
width=t2i_input_width,
|
||||
height=t2i_input_height,
|
||||
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
|
||||
device=t2i_adapter_model.device,
|
||||
dtype=t2i_adapter_model.dtype,
|
||||
resize_mode=t2i_adapter_field.resize_mode,
|
||||
)
|
||||
|
||||
adapter_state = t2i_adapter_model(t2i_image)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
for idx, value in enumerate(adapter_state):
|
||||
adapter_state[idx] = torch.cat([value] * 2, dim=0)
|
||||
|
||||
t2i_adapter_data.append(
|
||||
T2IAdapterData(
|
||||
adapter_state=adapter_state,
|
||||
weight=t2i_adapter_field.weight,
|
||||
begin_step_percent=t2i_adapter_field.begin_step_percent,
|
||||
end_step_percent=t2i_adapter_field.end_step_percent,
|
||||
)
|
||||
)
|
||||
|
||||
return t2i_adapter_data
|
||||
|
||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||
# TODO: research more for second order schedulers timesteps
|
||||
def init_scheduler(
|
||||
self,
|
||||
scheduler: Union[Scheduler, ConfigMixin],
|
||||
device: torch.device,
|
||||
steps: int,
|
||||
denoising_start: float,
|
||||
denoising_end: float,
|
||||
seed: int,
|
||||
) -> Tuple[int, List[int], int, Dict[str, Any]]:
|
||||
assert isinstance(scheduler, ConfigMixin)
|
||||
if scheduler.config.get("cpu_only", False):
|
||||
scheduler.set_timesteps(steps, device="cpu")
|
||||
timesteps = scheduler.timesteps.to(device=device)
|
||||
else:
|
||||
scheduler.set_timesteps(steps, device=device)
|
||||
timesteps = scheduler.timesteps
|
||||
|
||||
# skip greater order timesteps
|
||||
_timesteps = timesteps[:: scheduler.order]
|
||||
|
||||
# get start timestep index
|
||||
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start)))
|
||||
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
|
||||
|
||||
# get end timestep index
|
||||
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end)))
|
||||
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
|
||||
|
||||
# apply order to indexes
|
||||
t_start_idx *= scheduler.order
|
||||
t_end_idx *= scheduler.order
|
||||
|
||||
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
|
||||
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||
num_inference_steps = len(timesteps) // scheduler.order
|
||||
|
||||
scheduler_step_kwargs: Dict[str, Any] = {}
|
||||
scheduler_step_signature = inspect.signature(scheduler.step)
|
||||
if "generator" in scheduler_step_signature.parameters:
|
||||
# At some point, someone decided that schedulers that accept a generator should use the original seed with
|
||||
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
|
||||
# reproducibility.
|
||||
#
|
||||
# These Invoke-supported schedulers accept a generator as of 2024-06-04:
|
||||
# - DDIMScheduler
|
||||
# - DDPMScheduler
|
||||
# - DPMSolverMultistepScheduler
|
||||
# - EulerAncestralDiscreteScheduler
|
||||
# - EulerDiscreteScheduler
|
||||
# - KDPM2AncestralDiscreteScheduler
|
||||
# - LCMScheduler
|
||||
# - TCDScheduler
|
||||
scheduler_step_kwargs.update({"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)})
|
||||
if isinstance(scheduler, TCDScheduler):
|
||||
scheduler_step_kwargs.update({"eta": 1.0})
|
||||
|
||||
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
||||
|
||||
def prep_inpaint_mask(
|
||||
self, context: InvocationContext, latents: torch.Tensor
|
||||
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
|
||||
if self.denoise_mask is None:
|
||||
return None, None, False
|
||||
|
||||
mask = context.tensors.load(self.denoise_mask.mask_name)
|
||||
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
if self.denoise_mask.masked_latents_name is not None:
|
||||
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
|
||||
else:
|
||||
masked_latents = torch.where(mask < 0.5, 0.0, latents)
|
||||
|
||||
return 1 - mask, masked_latents, self.denoise_mask.gradient
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed = None
|
||||
noise = None
|
||||
if self.noise is not None:
|
||||
noise = context.tensors.load(self.noise.latents_name)
|
||||
seed = self.noise.seed
|
||||
|
||||
if self.latents is not None:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
if seed is None:
|
||||
seed = self.latents.seed
|
||||
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
|
||||
elif noise is not None:
|
||||
latents = torch.zeros_like(noise)
|
||||
else:
|
||||
raise Exception("'latents' or 'noise' must be provided!")
|
||||
|
||||
if seed is None:
|
||||
seed = 0
|
||||
|
||||
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
|
||||
|
||||
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
|
||||
# below. Investigate whether this is appropriate.
|
||||
t2i_adapter_data = self.run_t2i_adapters(
|
||||
context,
|
||||
self.t2i_adapter,
|
||||
latents.shape,
|
||||
do_classifier_free_guidance=True,
|
||||
)
|
||||
|
||||
ip_adapters: List[IPAdapterField] = []
|
||||
if self.ip_adapter is not None:
|
||||
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
|
||||
if isinstance(self.ip_adapter, list):
|
||||
ip_adapters = self.ip_adapter
|
||||
else:
|
||||
ip_adapters = [self.ip_adapter]
|
||||
|
||||
# If there are IP adapters, the following line runs the adapters' CLIPVision image encoders to return
|
||||
# a series of image conditioning embeddings. This is being done here rather than in the
|
||||
# big model context below in order to use less VRAM on low-VRAM systems.
|
||||
# The image prompts are then passed to prep_ip_adapter_data().
|
||||
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
|
||||
|
||||
# get the unet's config so that we can pass the base to dispatch_progress()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
context.util.sd_step_callback(state, unet_config.base)
|
||||
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
assert isinstance(unet_info.model, UNet2DConditionModel)
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
unet_info.model_on_device() as (model_state_dict, unet),
|
||||
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
||||
set_seamless(unet, self.unet.seamless_axes), # FIXME
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_unet(
|
||||
unet,
|
||||
loras=_lora_loader(),
|
||||
model_state_dict=model_state_dict,
|
||||
),
|
||||
):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
if mask is not None:
|
||||
mask = mask.to(device=unet.device, dtype=unet.dtype)
|
||||
if masked_latents is not None:
|
||||
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
conditioning_data = self.get_conditioning_data(
|
||||
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
|
||||
)
|
||||
|
||||
controlnet_data = self.prep_control_data(
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=latents.shape,
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
ip_adapter_data = self.prep_ip_adapter_data(
|
||||
context=context,
|
||||
ip_adapters=ip_adapters,
|
||||
image_prompts=image_prompts,
|
||||
exit_stack=exit_stack,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
result_latents = pipeline.latents_from_embeddings(
|
||||
latents=latents,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
noise=noise,
|
||||
seed=seed,
|
||||
mask=mask,
|
||||
masked_latents=masked_latents,
|
||||
gradient_mask=gradient_mask,
|
||||
num_inference_steps=num_inference_steps,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=controlnet_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
t2i_adapter_data=t2i_adapter_data,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
result_latents = result_latents.to("cpu")
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=result_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
|
||||
65
invokeai/app/invocations/ideal_size.py
Normal file
65
invokeai/app/invocations/ideal_size.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
|
||||
@invocation_output("ideal_size_output")
|
||||
class IdealSizeOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
width: int = OutputField(description="The ideal width of the image (in pixels)")
|
||||
height: int = OutputField(description="The ideal height of the image (in pixels)")
|
||||
|
||||
|
||||
@invocation(
|
||||
"ideal_size",
|
||||
title="Ideal Size",
|
||||
tags=["latents", "math", "ideal_size"],
|
||||
version="1.0.3",
|
||||
)
|
||||
class IdealSizeInvocation(BaseInvocation):
|
||||
"""Calculates the ideal size for generation to avoid duplication"""
|
||||
|
||||
width: int = InputField(default=1024, description="Final image width")
|
||||
height: int = InputField(default=576, description="Final image height")
|
||||
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
|
||||
multiplier: float = InputField(
|
||||
default=1.0,
|
||||
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "
|
||||
"initial generation artifacts if too large)",
|
||||
)
|
||||
|
||||
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
|
||||
return tuple((x - x % multiple_of) for x in args)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
aspect = self.width / self.height
|
||||
dimension: float = 512
|
||||
if unet_config.base == BaseModelType.StableDiffusion2:
|
||||
dimension = 768
|
||||
elif unet_config.base == BaseModelType.StableDiffusionXL:
|
||||
dimension = 1024
|
||||
dimension = dimension * self.multiplier
|
||||
min_dimension = math.floor(dimension * 0.5)
|
||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
||||
|
||||
if aspect > 1.0:
|
||||
init_height = max(min_dimension, math.sqrt(model_area / aspect))
|
||||
init_width = init_height * aspect
|
||||
else:
|
||||
init_width = max(min_dimension, math.sqrt(model_area * aspect))
|
||||
init_height = init_width / aspect
|
||||
|
||||
scaled_width, scaled_height = self.trim_to_multiple_of(
|
||||
math.floor(init_width),
|
||||
math.floor(init_height),
|
||||
)
|
||||
|
||||
return IdealSizeOutput(width=scaled_width, height=scaled_height)
|
||||
125
invokeai/app/invocations/image_to_latents.py
Normal file
125
invokeai/app/invocations/image_to_latents.py
Normal file
@@ -0,0 +1,125 @@
|
||||
from functools import singledispatchmethod
|
||||
|
||||
import einops
|
||||
import torch
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation(
|
||||
"i2l",
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(orig_dtype)
|
||||
vae.decoder.conv_in.to(orig_dtype)
|
||||
vae.decoder.mid_block.to(orig_dtype)
|
||||
# else:
|
||||
# latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
# latents = latents.half()
|
||||
|
||||
if tiled:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode():
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
latents = latents.to(dtype=orig_dtype)
|
||||
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
||||
latents: torch.Tensor = image_tensor_dist.sample().to(
|
||||
dtype=vae.dtype
|
||||
) # FIXME: uses torch.randn. make reproducible!
|
||||
return latents
|
||||
|
||||
@_encode_to_tensor.register
|
||||
@staticmethod
|
||||
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
latents: torch.FloatTensor = vae.encode(image_tensor).latents
|
||||
return latents
|
||||
@@ -42,15 +42,16 @@ class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Infill the image with the specified method"""
|
||||
pass
|
||||
|
||||
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
|
||||
def load_image(self) -> tuple[Image.Image, bool]:
|
||||
"""Process the image to have an alpha channel before being infilled"""
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image = self._context.images.get_pil(self.image.image_name)
|
||||
has_alpha = True if image.mode == "RGBA" else False
|
||||
return image, has_alpha
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
self._context = context
|
||||
# Retrieve and process image to be infilled
|
||||
input_image, has_alpha = self.load_image(context)
|
||||
input_image, has_alpha = self.load_image()
|
||||
|
||||
# If the input image has no alpha channel, return it
|
||||
if has_alpha is False:
|
||||
@@ -133,8 +134,12 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
|
||||
"""Infills transparent areas of an image using the LaMa model"""
|
||||
|
||||
def infill(self, image: Image.Image):
|
||||
lama = LaMA()
|
||||
return lama(image)
|
||||
with self._context.models.load_remote_model(
|
||||
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
||||
loader=LaMA.load_jit_model,
|
||||
) as model:
|
||||
lama = LaMA(model)
|
||||
return lama(image)
|
||||
|
||||
|
||||
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
107
invokeai/app/invocations/latents_to_image.py
Normal file
107
invokeai/app/invocations/latents_to_image.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import torch
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion import set_seamless
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"l2i",
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.2.2",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
|
||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(latents.dtype)
|
||||
vae.decoder.conv_in.to(latents.dtype)
|
||||
vae.decoder.mid_block.to(latents.dtype)
|
||||
else:
|
||||
latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
latents = latents.half()
|
||||
|
||||
if self.tiled or context.config.get().force_tiled_decode:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
# copied from diffusers pipeline
|
||||
latents = latents / vae.config.scaling_factor
|
||||
image = vae.decode(latents, return_dict=False)[0]
|
||||
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
image_dto = context.images.save(image=image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
||||
103
invokeai/app/invocations/resize_latents.py
Normal file
103
invokeai/app/invocations/resize_latents.py
Normal file
@@ -0,0 +1,103 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
||||
|
||||
|
||||
@invocation(
|
||||
"lresize",
|
||||
title="Resize Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@invocation(
|
||||
"lscale",
|
||||
title="Scale Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
# resizing
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
scale_factor=self.scale_factor,
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
34
invokeai/app/invocations/scheduler.py
Normal file
34
invokeai/app/invocations/scheduler.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
OutputField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
class SchedulerOutput(BaseInvocationOutput):
|
||||
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||
|
||||
|
||||
@invocation(
|
||||
"scheduler",
|
||||
title="Scheduler",
|
||||
tags=["scheduler"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SchedulerInvocation(BaseInvocation):
|
||||
"""Selects a scheduler."""
|
||||
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SchedulerOutput:
|
||||
return SchedulerOutput(scheduler=self.scheduler)
|
||||
@@ -1,5 +1,4 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
@@ -10,10 +9,8 @@ from pydantic import ConfigDict
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
@@ -52,7 +49,6 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
rrdbnet_model = None
|
||||
netscale = None
|
||||
esrgan_model_path = None
|
||||
|
||||
if self.model_name in [
|
||||
"RealESRGAN_x4plus.pth",
|
||||
@@ -95,28 +91,25 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
context.logger.error(msg)
|
||||
raise ValueError(msg)
|
||||
|
||||
esrgan_model_path = Path(context.config.get().models_path, f"core/upscaling/realesrgan/{self.model_name}")
|
||||
|
||||
# Downloads the ESRGAN model if it doesn't already exist
|
||||
download_with_progress_bar(
|
||||
name=self.model_name, url=ESRGAN_MODEL_URLS[self.model_name], dest_path=esrgan_model_path
|
||||
loadnet = context.models.load_remote_model(
|
||||
source=ESRGAN_MODEL_URLS[self.model_name],
|
||||
)
|
||||
|
||||
upscaler = RealESRGAN(
|
||||
scale=netscale,
|
||||
model_path=esrgan_model_path,
|
||||
model=rrdbnet_model,
|
||||
half=False,
|
||||
tile=self.tile_size,
|
||||
)
|
||||
with loadnet as loadnet_model:
|
||||
upscaler = RealESRGAN(
|
||||
scale=netscale,
|
||||
loadnet=loadnet_model,
|
||||
model=rrdbnet_model,
|
||||
half=False,
|
||||
tile=self.tile_size,
|
||||
)
|
||||
|
||||
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
||||
# TODO: This strips the alpha... is that okay?
|
||||
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
|
||||
upscaled_image = upscaler.upscale(cv2_image)
|
||||
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
|
||||
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
||||
# TODO: This strips the alpha... is that okay?
|
||||
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
|
||||
upscaled_image = upscaler.upscale(cv2_image)
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
|
||||
|
||||
@@ -86,6 +86,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
patchmatch: Enable patchmatch inpaint code.
|
||||
models_dir: Path to the models directory.
|
||||
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
|
||||
download_cache_dir: Path to the directory that contains dynamically downloaded models.
|
||||
legacy_conf_dir: Path to directory of legacy checkpoint config files.
|
||||
db_dir: Path to InvokeAI databases directory.
|
||||
outputs_dir: Path to directory for outputs.
|
||||
@@ -112,6 +113,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
|
||||
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
|
||||
max_queue_size: Maximum number of items in the session queue.
|
||||
clear_queue_on_startup: Empties session queue on startup.
|
||||
allow_nodes: List of nodes to allow. Omit to allow all.
|
||||
deny_nodes: List of nodes to deny. Omit to deny none.
|
||||
node_cache_size: How many cached nodes to keep in memory.
|
||||
@@ -146,7 +148,8 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
|
||||
# PATHS
|
||||
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
|
||||
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
|
||||
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
|
||||
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
|
||||
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
|
||||
@@ -184,6 +187,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
|
||||
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
|
||||
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
|
||||
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
|
||||
|
||||
# NODES
|
||||
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")
|
||||
@@ -303,6 +307,11 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
"""Path to the converted cache models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.convert_cache_dir)
|
||||
|
||||
@property
|
||||
def download_cache_path(self) -> Path:
|
||||
"""Path to the downloaded models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.download_cache_dir)
|
||||
|
||||
@property
|
||||
def custom_nodes_path(self) -> Path:
|
||||
"""Path to the custom nodes directory, resolved to an absolute path.."""
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
"""Init file for download queue."""
|
||||
|
||||
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
|
||||
from .download_base import (
|
||||
DownloadJob,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from .download_default import DownloadQueueService, TqdmProgress
|
||||
|
||||
__all__ = [
|
||||
"DownloadJob",
|
||||
"MultiFileDownloadJob",
|
||||
"DownloadQueueServiceBase",
|
||||
"DownloadQueueService",
|
||||
"TqdmProgress",
|
||||
|
||||
@@ -5,11 +5,13 @@ from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from functools import total_ordering
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, List, Optional
|
||||
from typing import Any, Callable, List, Optional, Set, Union
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
|
||||
|
||||
class DownloadJobStatus(str, Enum):
|
||||
"""State of a download job."""
|
||||
@@ -33,30 +35,23 @@ class ServiceInactiveException(Exception):
|
||||
"""This exception is raised when user attempts to initiate a download before the service is started."""
|
||||
|
||||
|
||||
DownloadEventHandler = Callable[["DownloadJob"], None]
|
||||
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
|
||||
SingleFileDownloadEventHandler = Callable[["DownloadJob"], None]
|
||||
SingleFileDownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
|
||||
MultiFileDownloadEventHandler = Callable[["MultiFileDownloadJob"], None]
|
||||
MultiFileDownloadExceptionHandler = Callable[["MultiFileDownloadJob", Optional[Exception]], None]
|
||||
DownloadEventHandler = Union[SingleFileDownloadEventHandler, MultiFileDownloadEventHandler]
|
||||
DownloadExceptionHandler = Union[SingleFileDownloadExceptionHandler, MultiFileDownloadExceptionHandler]
|
||||
|
||||
|
||||
@total_ordering
|
||||
class DownloadJob(BaseModel):
|
||||
"""Class to monitor and control a model download request."""
|
||||
class DownloadJobBase(BaseModel):
|
||||
"""Base of classes to monitor and control downloads."""
|
||||
|
||||
# required variables to be passed in on creation
|
||||
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
|
||||
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
|
||||
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
|
||||
# automatically assigned on creation
|
||||
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
|
||||
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
|
||||
|
||||
# set internally during download process
|
||||
dest: Path = Field(description="Initial destination of downloaded model on local disk; a directory or file path")
|
||||
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file or directory")
|
||||
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
|
||||
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
|
||||
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
|
||||
job_ended: Optional[str] = Field(
|
||||
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
|
||||
)
|
||||
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
|
||||
bytes: int = Field(default=0, description="Bytes downloaded so far")
|
||||
total_bytes: int = Field(default=0, description="Total file size (bytes)")
|
||||
|
||||
@@ -74,14 +69,6 @@ class DownloadJob(BaseModel):
|
||||
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return hash of the string representation of this object, for indexing."""
|
||||
return hash(str(self))
|
||||
|
||||
def __le__(self, other: "DownloadJob") -> bool:
|
||||
"""Return True if this job's priority is less than another's."""
|
||||
return self.priority <= other.priority
|
||||
|
||||
def cancel(self) -> None:
|
||||
"""Call to cancel the job."""
|
||||
self._cancelled = True
|
||||
@@ -98,6 +85,11 @@ class DownloadJob(BaseModel):
|
||||
"""Return true if job completed without errors."""
|
||||
return self.status == DownloadJobStatus.COMPLETED
|
||||
|
||||
@property
|
||||
def waiting(self) -> bool:
|
||||
"""Return true if the job is waiting to run."""
|
||||
return self.status == DownloadJobStatus.WAITING
|
||||
|
||||
@property
|
||||
def running(self) -> bool:
|
||||
"""Return true if the job is running."""
|
||||
@@ -154,6 +146,37 @@ class DownloadJob(BaseModel):
|
||||
self._on_cancelled = on_cancelled
|
||||
|
||||
|
||||
@total_ordering
|
||||
class DownloadJob(DownloadJobBase):
|
||||
"""Class to monitor and control a model download request."""
|
||||
|
||||
# required variables to be passed in on creation
|
||||
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
|
||||
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
|
||||
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
|
||||
|
||||
# set internally during download process
|
||||
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
|
||||
job_ended: Optional[str] = Field(
|
||||
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
|
||||
)
|
||||
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return hash of the string representation of this object, for indexing."""
|
||||
return hash(str(self))
|
||||
|
||||
def __le__(self, other: "DownloadJob") -> bool:
|
||||
"""Return True if this job's priority is less than another's."""
|
||||
return self.priority <= other.priority
|
||||
|
||||
|
||||
class MultiFileDownloadJob(DownloadJobBase):
|
||||
"""Class to monitor and control multifile downloads."""
|
||||
|
||||
download_parts: Set[DownloadJob] = Field(default_factory=set, description="List of download parts.")
|
||||
|
||||
|
||||
class DownloadQueueServiceBase(ABC):
|
||||
"""Multithreaded queue for downloading models via URL."""
|
||||
|
||||
@@ -201,6 +224,48 @@ class DownloadQueueServiceBase(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def multifile_download(
|
||||
self,
|
||||
parts: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadExceptionHandler] = None,
|
||||
) -> MultiFileDownloadJob:
|
||||
"""
|
||||
Create and enqueue a multifile download job.
|
||||
|
||||
:param parts: Set of URL / filename pairs
|
||||
:param dest: Path to download to. See below.
|
||||
:param access_token: Access token to download the indicated files. If not provided,
|
||||
each file's URL may be matched to an access token using the config file matching
|
||||
system.
|
||||
:param submit_job: If true [default] then submit the job for execution. Otherwise,
|
||||
you will need to pass the job to submit_multifile_download().
|
||||
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
|
||||
events.
|
||||
:returns: A MultiFileDownloadJob object for monitoring the state of the download.
|
||||
|
||||
The `dest` argument is a Path object pointing to a directory. All downloads
|
||||
with be placed inside this directory. The callbacks will receive the
|
||||
MultiFileDownloadJob.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
|
||||
"""
|
||||
Enqueue a previously-created multi-file download job.
|
||||
|
||||
:param job: A MultiFileDownloadJob created with multifile_download()
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def submit_download_job(
|
||||
self,
|
||||
@@ -252,7 +317,7 @@ class DownloadQueueServiceBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_job(self, job: DownloadJob) -> None:
|
||||
def cancel_job(self, job: DownloadJobBase) -> None:
|
||||
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
|
||||
pass
|
||||
|
||||
@@ -262,7 +327,7 @@ class DownloadQueueServiceBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
|
||||
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
|
||||
"""Wait until the indicated download job has reached a terminal state.
|
||||
|
||||
This will block until the indicated install job has completed,
|
||||
|
||||
@@ -8,30 +8,32 @@ import time
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
from queue import Empty, PriorityQueue
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
|
||||
from typing import Any, Dict, List, Literal, Optional, Set
|
||||
|
||||
import requests
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .download_base import (
|
||||
DownloadEventHandler,
|
||||
DownloadExceptionHandler,
|
||||
DownloadJob,
|
||||
DownloadJobBase,
|
||||
DownloadJobCancelledException,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
ServiceInactiveException,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
# Maximum number of bytes to download during each call to requests.iter_content()
|
||||
DOWNLOAD_CHUNK_SIZE = 100000
|
||||
|
||||
@@ -42,20 +44,24 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
def __init__(
|
||||
self,
|
||||
max_parallel_dl: int = 5,
|
||||
app_config: Optional[InvokeAIAppConfig] = None,
|
||||
event_bus: Optional["EventServiceBase"] = None,
|
||||
requests_session: Optional[requests.sessions.Session] = None,
|
||||
):
|
||||
"""
|
||||
Initialize DownloadQueue.
|
||||
|
||||
:param app_config: InvokeAIAppConfig object
|
||||
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
|
||||
:param requests_session: Optional requests.sessions.Session object, for unit tests.
|
||||
"""
|
||||
self._app_config = app_config or get_config()
|
||||
self._jobs: Dict[int, DownloadJob] = {}
|
||||
self._download_part2parent: Dict[AnyHttpUrl, MultiFileDownloadJob] = {}
|
||||
self._next_job_id = 0
|
||||
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
|
||||
self._stop_event = threading.Event()
|
||||
self._job_completed_event = threading.Event()
|
||||
self._job_terminated_event = threading.Event()
|
||||
self._worker_pool: Set[threading.Thread] = set()
|
||||
self._lock = threading.Lock()
|
||||
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
|
||||
@@ -107,18 +113,16 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
raise ServiceInactiveException(
|
||||
"The download service is not currently accepting requests. Please call start() to initialize the service."
|
||||
)
|
||||
with self._lock:
|
||||
job.id = self._next_job_id
|
||||
self._next_job_id += 1
|
||||
job.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
self._jobs[job.id] = job
|
||||
self._queue.put(job)
|
||||
job.id = self._next_id()
|
||||
job.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
self._jobs[job.id] = job
|
||||
self._queue.put(job)
|
||||
|
||||
def download(
|
||||
self,
|
||||
@@ -141,7 +145,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
source=source,
|
||||
dest=dest,
|
||||
priority=priority,
|
||||
access_token=access_token,
|
||||
access_token=access_token or self._lookup_access_token(source),
|
||||
)
|
||||
self.submit_download_job(
|
||||
job,
|
||||
@@ -153,10 +157,63 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
)
|
||||
return job
|
||||
|
||||
def multifile_download(
|
||||
self,
|
||||
parts: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadExceptionHandler] = None,
|
||||
) -> MultiFileDownloadJob:
|
||||
mfdj = MultiFileDownloadJob(dest=dest, id=self._next_id())
|
||||
mfdj.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
|
||||
for part in parts:
|
||||
url = part.url
|
||||
path = dest / part.path
|
||||
assert path.is_relative_to(dest), "only relative download paths accepted"
|
||||
job = DownloadJob(
|
||||
source=url,
|
||||
dest=path,
|
||||
access_token=access_token,
|
||||
)
|
||||
mfdj.download_parts.add(job)
|
||||
self._download_part2parent[job.source] = mfdj
|
||||
if submit_job:
|
||||
self.submit_multifile_download(mfdj)
|
||||
return mfdj
|
||||
|
||||
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
|
||||
for download_job in job.download_parts:
|
||||
self.submit_download_job(
|
||||
download_job,
|
||||
on_start=self._mfd_started,
|
||||
on_progress=self._mfd_progress,
|
||||
on_complete=self._mfd_complete,
|
||||
on_cancelled=self._mfd_cancelled,
|
||||
on_error=self._mfd_error,
|
||||
)
|
||||
|
||||
def join(self) -> None:
|
||||
"""Wait for all jobs to complete."""
|
||||
self._queue.join()
|
||||
|
||||
def _next_id(self) -> int:
|
||||
with self._lock:
|
||||
id = self._next_job_id
|
||||
self._next_job_id += 1
|
||||
return id
|
||||
|
||||
def list_jobs(self) -> List[DownloadJob]:
|
||||
"""List all the jobs."""
|
||||
return list(self._jobs.values())
|
||||
@@ -178,14 +235,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
except KeyError as excp:
|
||||
raise UnknownJobIDException("Unrecognized job") from excp
|
||||
|
||||
def cancel_job(self, job: DownloadJob) -> None:
|
||||
def cancel_job(self, job: DownloadJobBase) -> None:
|
||||
"""
|
||||
Cancel the indicated job.
|
||||
|
||||
If it is running it will be stopped.
|
||||
job.status will be set to DownloadJobStatus.CANCELLED
|
||||
"""
|
||||
with self._lock:
|
||||
if job.status in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]:
|
||||
job.cancel()
|
||||
|
||||
def cancel_all_jobs(self) -> None:
|
||||
@@ -194,12 +251,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
if not job.in_terminal_state:
|
||||
self.cancel_job(job)
|
||||
|
||||
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
|
||||
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
|
||||
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
|
||||
start = time.time()
|
||||
while not job.in_terminal_state:
|
||||
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
|
||||
self._job_completed_event.clear()
|
||||
if self._job_terminated_event.wait(timeout=0.25): # in case we miss an event
|
||||
self._job_terminated_event.clear()
|
||||
if timeout > 0 and time.time() - start > timeout:
|
||||
raise TimeoutError("Timeout exceeded")
|
||||
return job
|
||||
@@ -228,22 +285,25 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
job.job_started = get_iso_timestamp()
|
||||
self._do_download(job)
|
||||
self._signal_job_complete(job)
|
||||
except (OSError, HTTPError) as excp:
|
||||
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
|
||||
job.error = traceback.format_exc()
|
||||
self._signal_job_error(job, excp)
|
||||
except DownloadJobCancelledException:
|
||||
self._signal_job_cancelled(job)
|
||||
self._cleanup_cancelled_job(job)
|
||||
|
||||
except Exception as excp:
|
||||
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
|
||||
job.error = traceback.format_exc()
|
||||
self._signal_job_error(job, excp)
|
||||
finally:
|
||||
job.job_ended = get_iso_timestamp()
|
||||
self._job_completed_event.set() # signal a change to terminal state
|
||||
self._job_terminated_event.set() # signal a change to terminal state
|
||||
self._download_part2parent.pop(job.source, None) # if this is a subpart of a multipart job, remove it
|
||||
self._job_terminated_event.set()
|
||||
self._queue.task_done()
|
||||
|
||||
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
|
||||
|
||||
def _do_download(self, job: DownloadJob) -> None:
|
||||
"""Do the actual download."""
|
||||
|
||||
url = job.source
|
||||
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
|
||||
open_mode = "wb"
|
||||
@@ -335,38 +395,29 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
def _in_progress_path(self, path: Path) -> Path:
|
||||
return path.with_name(path.name + ".downloading")
|
||||
|
||||
def _lookup_access_token(self, source: AnyHttpUrl) -> Optional[str]:
|
||||
# Pull the token from config if it exists and matches the URL
|
||||
token = None
|
||||
for pair in self._app_config.remote_api_tokens or []:
|
||||
if re.search(pair.url_regex, str(source)):
|
||||
token = pair.token
|
||||
break
|
||||
return token
|
||||
|
||||
def _signal_job_started(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.RUNNING
|
||||
if job.on_start:
|
||||
try:
|
||||
job.on_start(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
self._execute_cb(job, "on_start")
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_started(job)
|
||||
|
||||
def _signal_job_progress(self, job: DownloadJob) -> None:
|
||||
if job.on_progress:
|
||||
try:
|
||||
job.on_progress(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
self._execute_cb(job, "on_progress")
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_progress(job)
|
||||
|
||||
def _signal_job_complete(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.COMPLETED
|
||||
if job.on_complete:
|
||||
try:
|
||||
job.on_complete(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
self._execute_cb(job, "on_complete")
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_complete(job)
|
||||
|
||||
@@ -374,26 +425,21 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
|
||||
return
|
||||
job.status = DownloadJobStatus.CANCELLED
|
||||
if job.on_cancelled:
|
||||
try:
|
||||
job.on_cancelled(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
self._execute_cb(job, "on_cancelled")
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_cancelled(job)
|
||||
|
||||
# if multifile download, then signal the parent
|
||||
if parent_job := self._download_part2parent.get(job.source, None):
|
||||
if not parent_job.in_terminal_state:
|
||||
parent_job.status = DownloadJobStatus.CANCELLED
|
||||
self._execute_cb(parent_job, "on_cancelled")
|
||||
|
||||
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
job.status = DownloadJobStatus.ERROR
|
||||
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
|
||||
if job.on_error:
|
||||
try:
|
||||
job.on_error(job, excp)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
self._execute_cb(job, "on_error", excp)
|
||||
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_error(job)
|
||||
|
||||
@@ -406,6 +452,97 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
except OSError as excp:
|
||||
self._logger.warning(excp)
|
||||
|
||||
########################################
|
||||
# callbacks used for multifile downloads
|
||||
########################################
|
||||
def _mfd_started(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"File download started: {download_job.source}")
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
if mf_job.waiting:
|
||||
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
mf_job.status = DownloadJobStatus.RUNNING
|
||||
assert download_job.download_path is not None
|
||||
path_relative_to_destdir = download_job.download_path.relative_to(mf_job.dest)
|
||||
mf_job.download_path = (
|
||||
mf_job.dest / path_relative_to_destdir.parts[0]
|
||||
) # keep just the first component of the path
|
||||
self._execute_cb(mf_job, "on_start")
|
||||
|
||||
def _mfd_progress(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
if mf_job.cancelled:
|
||||
for part in mf_job.download_parts:
|
||||
self.cancel_job(part)
|
||||
elif mf_job.running:
|
||||
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
mf_job.bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
self._execute_cb(mf_job, "on_progress")
|
||||
|
||||
def _mfd_complete(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Download complete: {download_job.source}")
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
|
||||
# are there any more active jobs left in this task?
|
||||
if mf_job.running and all(x.complete for x in mf_job.download_parts):
|
||||
mf_job.status = DownloadJobStatus.COMPLETED
|
||||
self._execute_cb(mf_job, "on_complete")
|
||||
|
||||
# we're done with this sub-job
|
||||
self._job_terminated_event.set()
|
||||
|
||||
def _mfd_cancelled(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
assert mf_job is not None
|
||||
|
||||
if not mf_job.in_terminal_state:
|
||||
self._logger.warning(f"Download cancelled: {download_job.source}")
|
||||
mf_job.cancel()
|
||||
|
||||
for s in mf_job.download_parts:
|
||||
self.cancel_job(s)
|
||||
|
||||
def _mfd_error(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
assert mf_job is not None
|
||||
if not mf_job.in_terminal_state:
|
||||
mf_job.status = download_job.status
|
||||
mf_job.error = download_job.error
|
||||
mf_job.error_type = download_job.error_type
|
||||
self._execute_cb(mf_job, "on_error", excp)
|
||||
self._logger.error(
|
||||
f"Cancelling {mf_job.dest} due to an error while downloading {download_job.source}: {str(excp)}"
|
||||
)
|
||||
for s in [x for x in mf_job.download_parts if x.running]:
|
||||
self.cancel_job(s)
|
||||
self._download_part2parent.pop(download_job.source)
|
||||
self._job_terminated_event.set()
|
||||
|
||||
def _execute_cb(
|
||||
self,
|
||||
job: DownloadJob | MultiFileDownloadJob,
|
||||
callback_name: Literal[
|
||||
"on_start",
|
||||
"on_progress",
|
||||
"on_complete",
|
||||
"on_cancelled",
|
||||
"on_error",
|
||||
],
|
||||
excp: Optional[Exception] = None,
|
||||
) -> None:
|
||||
if callback := getattr(job, callback_name, None):
|
||||
args = [job, excp] if excp else [job]
|
||||
try:
|
||||
callback(*args)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the {callback_name} callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
|
||||
|
||||
def get_pc_name_max(directory: str) -> int:
|
||||
if hasattr(os, "pathconf"):
|
||||
|
||||
@@ -22,6 +22,7 @@ from invokeai.app.services.events.events_common import (
|
||||
ModelInstallCompleteEvent,
|
||||
ModelInstallDownloadProgressEvent,
|
||||
ModelInstallDownloadsCompleteEvent,
|
||||
ModelInstallDownloadStartedEvent,
|
||||
ModelInstallErrorEvent,
|
||||
ModelInstallStartedEvent,
|
||||
ModelLoadCompleteEvent,
|
||||
@@ -34,7 +35,6 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineInterme
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.download.download_base import DownloadJob
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
@@ -145,6 +145,10 @@ class EventServiceBase:
|
||||
|
||||
# region Model install
|
||||
|
||||
def emit_model_install_download_started(self, job: "ModelInstallJob") -> None:
|
||||
"""Emitted at intervals while the install job is started (remote models only)."""
|
||||
self.dispatch(ModelInstallDownloadStartedEvent.build(job))
|
||||
|
||||
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
|
||||
"""Emitted at intervals while the install job is in progress (remote models only)."""
|
||||
self.dispatch(ModelInstallDownloadProgressEvent.build(job))
|
||||
|
||||
@@ -3,9 +3,8 @@ from typing import TYPE_CHECKING, Any, ClassVar, Coroutine, Generic, Optional, P
|
||||
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.registry.payload_schema import registry as payload_schema
|
||||
from pydantic import BaseModel, ConfigDict, Field, SerializeAsAny, field_validator
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@@ -14,6 +13,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
SessionQueueItem,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.graph import AnyInvocation, AnyInvocationOutput
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
@@ -98,17 +98,9 @@ class InvocationEventBase(QueueItemEventBase):
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
session_id: str = Field(description="The ID of the session (aka graph execution state)")
|
||||
invocation: SerializeAsAny[BaseInvocation] = Field(description="The ID of the invocation")
|
||||
invocation: AnyInvocation = Field(description="The ID of the invocation")
|
||||
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
|
||||
|
||||
@field_validator("invocation", mode="plain")
|
||||
@classmethod
|
||||
def validate_invocation(cls, v: Any):
|
||||
"""Validates the invocation using the dynamic type adapter."""
|
||||
|
||||
invocation = BaseInvocation.get_typeadapter().validate_python(v)
|
||||
return invocation
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class InvocationStartedEvent(InvocationEventBase):
|
||||
@@ -117,7 +109,7 @@ class InvocationStartedEvent(InvocationEventBase):
|
||||
__event_name__ = "invocation_started"
|
||||
|
||||
@classmethod
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: BaseInvocation) -> "InvocationStartedEvent":
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: AnyInvocation) -> "InvocationStartedEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
@@ -144,7 +136,7 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: BaseInvocation,
|
||||
invocation: AnyInvocation,
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
progress_image: ProgressImage,
|
||||
) -> "InvocationDenoiseProgressEvent":
|
||||
@@ -182,19 +174,11 @@ class InvocationCompleteEvent(InvocationEventBase):
|
||||
|
||||
__event_name__ = "invocation_complete"
|
||||
|
||||
result: SerializeAsAny[BaseInvocationOutput] = Field(description="The result of the invocation")
|
||||
|
||||
@field_validator("result", mode="plain")
|
||||
@classmethod
|
||||
def validate_results(cls, v: Any):
|
||||
"""Validates the invocation result using the dynamic type adapter."""
|
||||
|
||||
result = BaseInvocationOutput.get_typeadapter().validate_python(v)
|
||||
return result
|
||||
result: AnyInvocationOutput = Field(description="The result of the invocation")
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls, queue_item: SessionQueueItem, invocation: BaseInvocation, result: BaseInvocationOutput
|
||||
cls, queue_item: SessionQueueItem, invocation: AnyInvocation, result: AnyInvocationOutput
|
||||
) -> "InvocationCompleteEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
@@ -223,7 +207,7 @@ class InvocationErrorEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: BaseInvocation,
|
||||
invocation: AnyInvocation,
|
||||
error_type: str,
|
||||
error_message: str,
|
||||
error_traceback: str,
|
||||
@@ -433,6 +417,42 @@ class ModelLoadCompleteEvent(ModelEventBase):
|
||||
return cls(config=config, submodel_type=submodel_type)
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class ModelInstallDownloadStartedEvent(ModelEventBase):
|
||||
"""Event model for model_install_download_started"""
|
||||
|
||||
__event_name__ = "model_install_download_started"
|
||||
|
||||
id: int = Field(description="The ID of the install job")
|
||||
source: str = Field(description="Source of the model; local path, repo_id or url")
|
||||
local_path: str = Field(description="Where model is downloading to")
|
||||
bytes: int = Field(description="Number of bytes downloaded so far")
|
||||
total_bytes: int = Field(description="Total size of download, including all files")
|
||||
parts: list[dict[str, int | str]] = Field(
|
||||
description="Progress of downloading URLs that comprise the model, if any"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadStartedEvent":
|
||||
parts: list[dict[str, str | int]] = [
|
||||
{
|
||||
"url": str(x.source),
|
||||
"local_path": str(x.download_path),
|
||||
"bytes": x.bytes,
|
||||
"total_bytes": x.total_bytes,
|
||||
}
|
||||
for x in job.download_parts
|
||||
]
|
||||
return cls(
|
||||
id=job.id,
|
||||
source=str(job.source),
|
||||
local_path=job.local_path.as_posix(),
|
||||
parts=parts,
|
||||
bytes=job.bytes,
|
||||
total_bytes=job.total_bytes,
|
||||
)
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class ModelInstallDownloadProgressEvent(ModelEventBase):
|
||||
"""Event model for model_install_download_progress"""
|
||||
|
||||
@@ -41,6 +41,7 @@ class ImageRecordStorageBase(ABC):
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
"""Gets a page of image records."""
|
||||
pass
|
||||
|
||||
@@ -148,6 +148,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
@@ -208,6 +209,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
# Search term condition
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND json_extract(images.metadata, '$') LIKE ?
|
||||
"""
|
||||
query_params.append(f'%{search_term}%')
|
||||
|
||||
query_pagination = """--sql
|
||||
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
|
||||
"""
|
||||
|
||||
@@ -120,6 +120,7 @@ class ImageServiceABC(ABC):
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a paginated list of image DTOs."""
|
||||
pass
|
||||
|
||||
@@ -206,6 +206,7 @@ class ImageService(ImageServiceABC):
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
try:
|
||||
results = self.__invoker.services.image_records.get_many(
|
||||
@@ -215,6 +216,7 @@ class ImageService(ImageServiceABC):
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
search_term
|
||||
)
|
||||
|
||||
image_dtos = [
|
||||
|
||||
@@ -13,7 +13,7 @@ from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
|
||||
from invokeai.app.services.model_records import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig
|
||||
from invokeai.backend.model_manager import AnyModelConfig
|
||||
|
||||
|
||||
class ModelInstallServiceBase(ABC):
|
||||
@@ -243,12 +243,11 @@ class ModelInstallServiceBase(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
|
||||
def download_and_cache_model(self, source: str | AnyHttpUrl) -> Path:
|
||||
"""
|
||||
Download the model file located at source to the models cache and return its Path.
|
||||
|
||||
:param source: A Url or a string that can be converted into one.
|
||||
:param access_token: Optional access token to access restricted resources.
|
||||
:param source: A string representing a URL or repo_id.
|
||||
|
||||
The model file will be downloaded into the system-wide model cache
|
||||
(`models/.cache`) if it isn't already there. Note that the model cache
|
||||
|
||||
@@ -8,7 +8,7 @@ from pydantic import BaseModel, Field, PrivateAttr, field_validator
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.services.download import DownloadJob
|
||||
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
|
||||
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
|
||||
from invokeai.backend.model_manager.config import ModelSourceType
|
||||
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
|
||||
@@ -26,13 +26,6 @@ class InstallStatus(str, Enum):
|
||||
CANCELLED = "cancelled" # terminated with an error message
|
||||
|
||||
|
||||
class ModelInstallPart(BaseModel):
|
||||
url: AnyHttpUrl
|
||||
path: Path
|
||||
bytes: int = 0
|
||||
total_bytes: int = 0
|
||||
|
||||
|
||||
class UnknownInstallJobException(Exception):
|
||||
"""Raised when the status of an unknown job is requested."""
|
||||
|
||||
@@ -169,6 +162,7 @@ class ModelInstallJob(BaseModel):
|
||||
)
|
||||
# internal flags and transitory settings
|
||||
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
|
||||
_multifile_job: Optional[MultiFileDownloadJob] = PrivateAttr(default=None)
|
||||
_exception: Optional[Exception] = PrivateAttr(default=None)
|
||||
|
||||
def set_error(self, e: Exception) -> None:
|
||||
|
||||
@@ -5,21 +5,22 @@ import os
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
from hashlib import sha256
|
||||
from pathlib import Path
|
||||
from queue import Empty, Queue
|
||||
from shutil import copyfile, copytree, move, rmtree
|
||||
from tempfile import mkdtemp
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from huggingface_hub import HfFolder
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from pydantic_core import Url
|
||||
from requests import Session
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
|
||||
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
|
||||
@@ -44,6 +45,7 @@ from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.util import InvokeAILogger
|
||||
from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.util import slugify
|
||||
|
||||
from .model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
@@ -58,9 +60,6 @@ from .model_install_common import (
|
||||
|
||||
TMPDIR_PREFIX = "tmpinstall_"
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
|
||||
class ModelInstallService(ModelInstallServiceBase):
|
||||
"""class for InvokeAI model installation."""
|
||||
@@ -91,7 +90,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._downloads_changed_event = threading.Event()
|
||||
self._install_completed_event = threading.Event()
|
||||
self._download_queue = download_queue
|
||||
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
|
||||
self._download_cache: Dict[int, ModelInstallJob] = {}
|
||||
self._running = False
|
||||
self._session = session
|
||||
self._install_thread: Optional[threading.Thread] = None
|
||||
@@ -210,33 +209,12 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
access_token: Optional[str] = None,
|
||||
inplace: Optional[bool] = False,
|
||||
) -> ModelInstallJob:
|
||||
variants = "|".join(ModelRepoVariant.__members__.values())
|
||||
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
|
||||
source_obj: Optional[StringLikeSource] = None
|
||||
|
||||
if Path(source).exists(): # A local file or directory
|
||||
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
|
||||
elif match := re.match(hf_repoid_re, source):
|
||||
source_obj = HFModelSource(
|
||||
repo_id=match.group(1),
|
||||
variant=match.group(2) if match.group(2) else None, # pass None rather than ''
|
||||
subfolder=Path(match.group(3)) if match.group(3) else None,
|
||||
access_token=access_token,
|
||||
)
|
||||
elif re.match(r"^https?://[^/]+", source):
|
||||
# Pull the token from config if it exists and matches the URL
|
||||
_token = access_token
|
||||
if _token is None:
|
||||
for pair in self.app_config.remote_api_tokens or []:
|
||||
if re.search(pair.url_regex, source):
|
||||
_token = pair.token
|
||||
break
|
||||
source_obj = URLModelSource(
|
||||
url=AnyHttpUrl(source),
|
||||
access_token=_token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported model source: '{source}'")
|
||||
"""Install a model using pattern matching to infer the type of source."""
|
||||
source_obj = self._guess_source(source)
|
||||
if isinstance(source_obj, LocalModelSource):
|
||||
source_obj.inplace = inplace
|
||||
elif isinstance(source_obj, HFModelSource) or isinstance(source_obj, URLModelSource):
|
||||
source_obj.access_token = access_token
|
||||
return self.import_model(source_obj, config)
|
||||
|
||||
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
|
||||
@@ -297,8 +275,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def cancel_job(self, job: ModelInstallJob) -> None:
|
||||
"""Cancel the indicated job."""
|
||||
job.cancel()
|
||||
with self._lock:
|
||||
self._cancel_download_parts(job)
|
||||
self._logger.warning(f"Cancelling {job.source}")
|
||||
if dj := job._multifile_job:
|
||||
self._download_queue.cancel_job(dj)
|
||||
|
||||
def prune_jobs(self) -> None:
|
||||
"""Prune all completed and errored jobs."""
|
||||
@@ -346,7 +325,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
legacy_config_path = stanza.get("config")
|
||||
if legacy_config_path:
|
||||
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
|
||||
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
|
||||
legacy_config_path = self._app_config.root_path / legacy_config_path
|
||||
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
|
||||
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
|
||||
config["config_path"] = str(legacy_config_path)
|
||||
@@ -386,38 +365,95 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
rmtree(model_path)
|
||||
self.unregister(key)
|
||||
|
||||
def download_and_cache(
|
||||
@classmethod
|
||||
def _download_cache_path(cls, source: Union[str, AnyHttpUrl], app_config: InvokeAIAppConfig) -> Path:
|
||||
escaped_source = slugify(str(source))
|
||||
return app_config.download_cache_path / escaped_source
|
||||
|
||||
def download_and_cache_model(
|
||||
self,
|
||||
source: Union[str, AnyHttpUrl],
|
||||
access_token: Optional[str] = None,
|
||||
timeout: int = 0,
|
||||
source: str | AnyHttpUrl,
|
||||
) -> Path:
|
||||
"""Download the model file located at source to the models cache and return its Path."""
|
||||
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
|
||||
model_path = self._app_config.convert_cache_path / model_hash
|
||||
model_path = self._download_cache_path(str(source), self._app_config)
|
||||
|
||||
# We expect the cache directory to contain one and only one downloaded file.
|
||||
# We expect the cache directory to contain one and only one downloaded file or directory.
|
||||
# We don't know the file's name in advance, as it is set by the download
|
||||
# content-disposition header.
|
||||
if model_path.exists():
|
||||
contents = [x for x in model_path.iterdir() if x.is_file()]
|
||||
contents: List[Path] = list(model_path.iterdir())
|
||||
if len(contents) > 0:
|
||||
return contents[0]
|
||||
|
||||
model_path.mkdir(parents=True, exist_ok=True)
|
||||
job = self._download_queue.download(
|
||||
source=AnyHttpUrl(str(source)),
|
||||
model_source = self._guess_source(str(source))
|
||||
remote_files, _ = self._remote_files_from_source(model_source)
|
||||
job = self._multifile_download(
|
||||
dest=model_path,
|
||||
access_token=access_token,
|
||||
on_progress=TqdmProgress().update,
|
||||
remote_files=remote_files,
|
||||
subfolder=model_source.subfolder if isinstance(model_source, HFModelSource) else None,
|
||||
)
|
||||
self._download_queue.wait_for_job(job, timeout)
|
||||
files_string = "file" if len(remote_files) == 1 else "files"
|
||||
self._logger.info(f"Queuing model download: {source} ({len(remote_files)} {files_string})")
|
||||
self._download_queue.wait_for_job(job)
|
||||
if job.complete:
|
||||
assert job.download_path is not None
|
||||
return job.download_path
|
||||
else:
|
||||
raise Exception(job.error)
|
||||
|
||||
def _remote_files_from_source(
|
||||
self, source: ModelSource
|
||||
) -> Tuple[List[RemoteModelFile], Optional[AnyModelRepoMetadata]]:
|
||||
metadata = None
|
||||
if isinstance(source, HFModelSource):
|
||||
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
return (
|
||||
metadata.download_urls(
|
||||
variant=source.variant or self._guess_variant(),
|
||||
subfolder=source.subfolder,
|
||||
session=self._session,
|
||||
),
|
||||
metadata,
|
||||
)
|
||||
|
||||
if isinstance(source, URLModelSource):
|
||||
try:
|
||||
fetcher = self.get_fetcher_from_url(str(source.url))
|
||||
kwargs: dict[str, Any] = {"session": self._session}
|
||||
metadata = fetcher(**kwargs).from_url(source.url)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
return metadata.download_urls(session=self._session), metadata
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return [RemoteModelFile(url=source.url, path=Path("."), size=0)], None
|
||||
|
||||
raise Exception(f"No files associated with {source}")
|
||||
|
||||
def _guess_source(self, source: str) -> ModelSource:
|
||||
"""Turn a source string into a ModelSource object."""
|
||||
variants = "|".join(ModelRepoVariant.__members__.values())
|
||||
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
|
||||
source_obj: Optional[StringLikeSource] = None
|
||||
|
||||
if Path(source).exists(): # A local file or directory
|
||||
source_obj = LocalModelSource(path=Path(source))
|
||||
elif match := re.match(hf_repoid_re, source):
|
||||
source_obj = HFModelSource(
|
||||
repo_id=match.group(1),
|
||||
variant=ModelRepoVariant(match.group(2)) if match.group(2) else None, # pass None rather than ''
|
||||
subfolder=Path(match.group(3)) if match.group(3) else None,
|
||||
)
|
||||
elif re.match(r"^https?://[^/]+", source):
|
||||
source_obj = URLModelSource(
|
||||
url=Url(source),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported model source: '{source}'")
|
||||
return source_obj
|
||||
|
||||
# --------------------------------------------------------------------------------------------
|
||||
# Internal functions that manage the installer threads
|
||||
# --------------------------------------------------------------------------------------------
|
||||
@@ -478,16 +514,19 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
job.config_out = self.record_store.get_model(key)
|
||||
self._signal_job_completed(job)
|
||||
|
||||
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
|
||||
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
|
||||
job.set_error(
|
||||
def _set_error(self, install_job: ModelInstallJob, excp: Exception) -> None:
|
||||
multifile_download_job = install_job._multifile_job
|
||||
if multifile_download_job and any(
|
||||
x.content_type is not None and "text/html" in x.content_type for x in multifile_download_job.download_parts
|
||||
):
|
||||
install_job.set_error(
|
||||
InvalidModelConfigException(
|
||||
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
|
||||
f"At least one file in {install_job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
|
||||
)
|
||||
)
|
||||
else:
|
||||
job.set_error(excp)
|
||||
self._signal_job_errored(job)
|
||||
install_job.set_error(excp)
|
||||
self._signal_job_errored(install_job)
|
||||
|
||||
# --------------------------------------------------------------------------------------------
|
||||
# Internal functions that manage the models directory
|
||||
@@ -513,7 +552,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
This is typically only used during testing with a new DB or when using the memory DB, because those are the
|
||||
only situations in which we may have orphaned models in the models directory.
|
||||
"""
|
||||
|
||||
installed_model_paths = {
|
||||
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
|
||||
}
|
||||
@@ -525,8 +563,13 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
if resolved_path in installed_model_paths:
|
||||
return True
|
||||
# Skip core models entirely - these aren't registered with the model manager.
|
||||
if str(resolved_path).startswith(str(self.app_config.models_path / "core")):
|
||||
return False
|
||||
for special_directory in [
|
||||
self.app_config.models_path / "core",
|
||||
self.app_config.convert_cache_dir,
|
||||
self.app_config.download_cache_dir,
|
||||
]:
|
||||
if resolved_path.is_relative_to(special_directory):
|
||||
return False
|
||||
try:
|
||||
model_id = self.register_path(model_path)
|
||||
self._logger.info(f"Registered {model_path.name} with id {model_id}")
|
||||
@@ -641,20 +684,15 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
inplace=source.inplace or False,
|
||||
)
|
||||
|
||||
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
def _import_from_hf(
|
||||
self,
|
||||
source: HFModelSource,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> ModelInstallJob:
|
||||
# Add user's cached access token to HuggingFace requests
|
||||
source.access_token = source.access_token or HfFolder.get_token()
|
||||
if not source.access_token:
|
||||
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
|
||||
|
||||
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
remote_files = metadata.download_urls(
|
||||
variant=source.variant or self._guess_variant(),
|
||||
subfolder=source.subfolder,
|
||||
session=self._session,
|
||||
)
|
||||
|
||||
if source.access_token is None:
|
||||
source.access_token = HfFolder.get_token()
|
||||
remote_files, metadata = self._remote_files_from_source(source)
|
||||
return self._import_remote_model(
|
||||
source=source,
|
||||
config=config,
|
||||
@@ -662,22 +700,12 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
# URLs from HuggingFace will be handled specially
|
||||
metadata = None
|
||||
fetcher = None
|
||||
try:
|
||||
fetcher = self.get_fetcher_from_url(str(source.url))
|
||||
except ValueError:
|
||||
pass
|
||||
kwargs: dict[str, Any] = {"session": self._session}
|
||||
if fetcher is not None:
|
||||
metadata = fetcher(**kwargs).from_url(source.url)
|
||||
self._logger.debug(f"metadata={metadata}")
|
||||
if metadata and isinstance(metadata, ModelMetadataWithFiles):
|
||||
remote_files = metadata.download_urls(session=self._session)
|
||||
else:
|
||||
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
|
||||
def _import_from_url(
|
||||
self,
|
||||
source: URLModelSource,
|
||||
config: Optional[Dict[str, Any]],
|
||||
) -> ModelInstallJob:
|
||||
remote_files, metadata = self._remote_files_from_source(source)
|
||||
return self._import_remote_model(
|
||||
source=source,
|
||||
config=config,
|
||||
@@ -692,12 +720,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
metadata: Optional[AnyModelRepoMetadata],
|
||||
config: Optional[Dict[str, Any]],
|
||||
) -> ModelInstallJob:
|
||||
# TODO: Replace with tempfile.tmpdir() when multithreading is cleaned up.
|
||||
# Currently the tmpdir isn't automatically removed at exit because it is
|
||||
# being held in a daemon thread.
|
||||
if len(remote_files) == 0:
|
||||
raise ValueError(f"{source}: No downloadable files found")
|
||||
tmpdir = Path(
|
||||
destdir = Path(
|
||||
mkdtemp(
|
||||
dir=self._app_config.models_path,
|
||||
prefix=TMPDIR_PREFIX,
|
||||
@@ -708,55 +733,28 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
source=source,
|
||||
config_in=config or {},
|
||||
source_metadata=metadata,
|
||||
local_path=tmpdir, # local path may change once the download has started due to content-disposition handling
|
||||
local_path=destdir, # local path may change once the download has started due to content-disposition handling
|
||||
bytes=0,
|
||||
total_bytes=0,
|
||||
)
|
||||
# In the event that there is a subfolder specified in the source,
|
||||
# we need to remove it from the destination path in order to avoid
|
||||
# creating unwanted subfolders
|
||||
if isinstance(source, HFModelSource) and source.subfolder:
|
||||
root = Path(remote_files[0].path.parts[0])
|
||||
subfolder = root / source.subfolder
|
||||
else:
|
||||
root = Path(".")
|
||||
subfolder = Path(".")
|
||||
# remember the temporary directory for later removal
|
||||
install_job._install_tmpdir = destdir
|
||||
install_job.total_bytes = sum((x.size or 0) for x in remote_files)
|
||||
|
||||
# we remember the path up to the top of the tmpdir so that it may be
|
||||
# removed safely at the end of the install process.
|
||||
install_job._install_tmpdir = tmpdir
|
||||
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
|
||||
multifile_job = self._multifile_download(
|
||||
remote_files=remote_files,
|
||||
dest=destdir,
|
||||
subfolder=source.subfolder if isinstance(source, HFModelSource) else None,
|
||||
access_token=source.access_token,
|
||||
submit_job=False, # Important! Don't submit the job until we have set our _download_cache dict
|
||||
)
|
||||
self._download_cache[multifile_job.id] = install_job
|
||||
install_job._multifile_job = multifile_job
|
||||
|
||||
files_string = "file" if len(remote_files) == 1 else "file"
|
||||
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
|
||||
files_string = "file" if len(remote_files) == 1 else "files"
|
||||
self._logger.info(f"Queueing model install: {source} ({len(remote_files)} {files_string})")
|
||||
self._logger.debug(f"remote_files={remote_files}")
|
||||
for model_file in remote_files:
|
||||
url = model_file.url
|
||||
path = root / model_file.path.relative_to(subfolder)
|
||||
self._logger.debug(f"Downloading {url} => {path}")
|
||||
install_job.total_bytes += model_file.size
|
||||
assert hasattr(source, "access_token")
|
||||
dest = tmpdir / path.parent
|
||||
dest.mkdir(parents=True, exist_ok=True)
|
||||
download_job = DownloadJob(
|
||||
source=url,
|
||||
dest=dest,
|
||||
access_token=source.access_token,
|
||||
)
|
||||
self._download_cache[download_job.source] = install_job # matches a download job to an install job
|
||||
install_job.download_parts.add(download_job)
|
||||
|
||||
# only start the jobs once install_job.download_parts is fully populated
|
||||
for download_job in install_job.download_parts:
|
||||
self._download_queue.submit_download_job(
|
||||
download_job,
|
||||
on_start=self._download_started_callback,
|
||||
on_progress=self._download_progress_callback,
|
||||
on_complete=self._download_complete_callback,
|
||||
on_error=self._download_error_callback,
|
||||
on_cancelled=self._download_cancelled_callback,
|
||||
)
|
||||
|
||||
self._download_queue.submit_multifile_download(multifile_job)
|
||||
return install_job
|
||||
|
||||
def _stat_size(self, path: Path) -> int:
|
||||
@@ -768,87 +766,104 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
size += sum(self._stat_size(Path(root, x)) for x in files)
|
||||
return size
|
||||
|
||||
def _multifile_download(
|
||||
self,
|
||||
remote_files: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
subfolder: Optional[Path] = None,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
) -> MultiFileDownloadJob:
|
||||
# HuggingFace repo subfolders are a little tricky. If the name of the model is "sdxl-turbo", and
|
||||
# we are installing the "vae" subfolder, we do not want to create an additional folder level, such
|
||||
# as "sdxl-turbo/vae", nor do we want to put the contents of the vae folder directly into "sdxl-turbo".
|
||||
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
|
||||
if subfolder:
|
||||
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
|
||||
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
|
||||
path_to_add = Path(f"{top}_{subfolder}")
|
||||
else:
|
||||
path_to_remove = Path(".")
|
||||
path_to_add = Path(".")
|
||||
|
||||
parts: List[RemoteModelFile] = []
|
||||
for model_file in remote_files:
|
||||
assert model_file.size is not None
|
||||
parts.append(
|
||||
RemoteModelFile(
|
||||
url=model_file.url, # if a subfolder, then sdxl-turbo_vae/config.json
|
||||
path=path_to_add / model_file.path.relative_to(path_to_remove),
|
||||
)
|
||||
)
|
||||
|
||||
return self._download_queue.multifile_download(
|
||||
parts=parts,
|
||||
dest=dest,
|
||||
access_token=access_token,
|
||||
submit_job=submit_job,
|
||||
on_start=self._download_started_callback,
|
||||
on_progress=self._download_progress_callback,
|
||||
on_complete=self._download_complete_callback,
|
||||
on_error=self._download_error_callback,
|
||||
on_cancelled=self._download_cancelled_callback,
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Callbacks are executed by the download queue in a separate thread
|
||||
# ------------------------------------------------------------------
|
||||
def _download_started_callback(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Model download started: {download_job.source}")
|
||||
def _download_started_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
with self._lock:
|
||||
install_job = self._download_cache[download_job.source]
|
||||
install_job.status = InstallStatus.DOWNLOADING
|
||||
if install_job := self._download_cache.get(download_job.id, None):
|
||||
install_job.status = InstallStatus.DOWNLOADING
|
||||
|
||||
assert download_job.download_path
|
||||
if install_job.local_path == install_job._install_tmpdir:
|
||||
partial_path = download_job.download_path.relative_to(install_job._install_tmpdir)
|
||||
dest_name = partial_path.parts[0]
|
||||
install_job.local_path = install_job._install_tmpdir / dest_name
|
||||
if install_job.local_path == install_job._install_tmpdir: # first time
|
||||
assert download_job.download_path
|
||||
install_job.local_path = download_job.download_path
|
||||
install_job.download_parts = download_job.download_parts
|
||||
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
|
||||
install_job.total_bytes = download_job.total_bytes
|
||||
self._signal_job_download_started(install_job)
|
||||
|
||||
# Update the total bytes count for remote sources.
|
||||
if not install_job.total_bytes:
|
||||
install_job.total_bytes = sum(x.total_bytes for x in install_job.download_parts)
|
||||
|
||||
def _download_progress_callback(self, download_job: DownloadJob) -> None:
|
||||
def _download_progress_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
with self._lock:
|
||||
install_job = self._download_cache[download_job.source]
|
||||
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
|
||||
self._cancel_download_parts(install_job)
|
||||
else:
|
||||
# update sizes
|
||||
install_job.bytes = sum(x.bytes for x in install_job.download_parts)
|
||||
self._signal_job_downloading(install_job)
|
||||
if install_job := self._download_cache.get(download_job.id, None):
|
||||
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
|
||||
self._download_queue.cancel_job(download_job)
|
||||
else:
|
||||
# update sizes
|
||||
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
|
||||
install_job.total_bytes = sum(x.total_bytes for x in download_job.download_parts)
|
||||
self._signal_job_downloading(install_job)
|
||||
|
||||
def _download_complete_callback(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Model download complete: {download_job.source}")
|
||||
def _download_complete_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
with self._lock:
|
||||
install_job = self._download_cache[download_job.source]
|
||||
|
||||
# are there any more active jobs left in this task?
|
||||
if install_job.downloading and all(x.complete for x in install_job.download_parts):
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
self._signal_job_downloads_done(install_job)
|
||||
self._put_in_queue(install_job)
|
||||
self._put_in_queue(install_job) # this starts the installation and registration
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._download_cache.pop(download_job.source, None)
|
||||
self._downloads_changed_event.set()
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _download_error_callback(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
def _download_error_callback(self, download_job: MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
with self._lock:
|
||||
install_job = self._download_cache.pop(download_job.source, None)
|
||||
assert install_job is not None
|
||||
assert excp is not None
|
||||
install_job.set_error(excp)
|
||||
self._logger.error(
|
||||
f"Cancelling {install_job.source} due to an error while downloading {download_job.source}: {str(excp)}"
|
||||
)
|
||||
self._cancel_download_parts(install_job)
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
assert excp is not None
|
||||
install_job.set_error(excp)
|
||||
self._download_queue.cancel_job(download_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _download_cancelled_callback(self, download_job: DownloadJob) -> None:
|
||||
def _download_cancelled_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
with self._lock:
|
||||
install_job = self._download_cache.pop(download_job.source, None)
|
||||
if not install_job:
|
||||
return
|
||||
self._downloads_changed_event.set()
|
||||
self._logger.warning(f"Model download canceled: {download_job.source}")
|
||||
# if install job has already registered an error, then do not replace its status with cancelled
|
||||
if not install_job.errored:
|
||||
install_job.cancel()
|
||||
self._cancel_download_parts(install_job)
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
self._downloads_changed_event.set()
|
||||
# if install job has already registered an error, then do not replace its status with cancelled
|
||||
if not install_job.errored:
|
||||
install_job.cancel()
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _cancel_download_parts(self, install_job: ModelInstallJob) -> None:
|
||||
# on multipart downloads, _cancel_components() will get called repeatedly from the download callbacks
|
||||
# do not lock here because it gets called within a locked context
|
||||
for s in install_job.download_parts:
|
||||
self._download_queue.cancel_job(s)
|
||||
|
||||
if all(x.in_terminal_state for x in install_job.download_parts):
|
||||
# When all parts have reached their terminal state, we finalize the job to clean up the temporary directory and other resources
|
||||
self._put_in_queue(install_job)
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Internal methods that put events on the event bus
|
||||
@@ -859,8 +874,18 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_model_install_started(job)
|
||||
|
||||
def _signal_job_download_started(self, job: ModelInstallJob) -> None:
|
||||
if self._event_bus:
|
||||
assert job._multifile_job is not None
|
||||
assert job.bytes is not None
|
||||
assert job.total_bytes is not None
|
||||
self._event_bus.emit_model_install_download_started(job)
|
||||
|
||||
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
|
||||
if self._event_bus:
|
||||
assert job._multifile_job is not None
|
||||
assert job.bytes is not None
|
||||
assert job.total_bytes is not None
|
||||
self._event_bus.emit_model_install_download_progress(job)
|
||||
|
||||
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
|
||||
@@ -875,6 +900,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._logger.info(f"Model install complete: {job.source}")
|
||||
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
|
||||
if self._event_bus:
|
||||
assert job.local_path is not None
|
||||
assert job.config_out is not None
|
||||
self._event_bus.emit_model_install_complete(job)
|
||||
|
||||
def _signal_job_errored(self, job: ModelInstallJob) -> None:
|
||||
@@ -890,7 +917,13 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._event_bus.emit_model_install_cancelled(job)
|
||||
|
||||
@staticmethod
|
||||
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
|
||||
def get_fetcher_from_url(url: str) -> Type[ModelMetadataFetchBase]:
|
||||
"""
|
||||
Return a metadata fetcher appropriate for provided url.
|
||||
|
||||
This used to be more useful, but the number of supported model
|
||||
sources has been reduced to HuggingFace alone.
|
||||
"""
|
||||
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
|
||||
return HuggingFaceMetadataFetch
|
||||
raise ValueError(f"Unsupported model source: '{url}'")
|
||||
|
||||
@@ -2,10 +2,11 @@
|
||||
"""Base class for model loader."""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
|
||||
@@ -31,3 +32,26 @@ class ModelLoadServiceBase(ABC):
|
||||
@abstractmethod
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
|
||||
@abstractmethod
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
) -> LoadedModelWithoutConfig:
|
||||
"""
|
||||
Load the model file or directory located at the indicated Path.
|
||||
|
||||
This will load an arbitrary model file into the RAM cache. If the optional loader
|
||||
argument is provided, the loader will be invoked to load the model into
|
||||
memory. Otherwise the method will call safetensors.torch.load_file() or
|
||||
torch.load() as appropriate to the file suffix.
|
||||
|
||||
Be aware that this returns a LoadedModelWithoutConfig object, which is the same as
|
||||
LoadedModel, but without the config attribute.
|
||||
|
||||
Args:
|
||||
model_path: A pathlib.Path to a checkpoint-style models file
|
||||
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
|
||||
|
||||
Returns:
|
||||
A LoadedModel object.
|
||||
"""
|
||||
|
||||
@@ -1,18 +1,26 @@
|
||||
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
||||
"""Implementation of model loader service."""
|
||||
|
||||
from typing import Optional, Type
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, Type
|
||||
|
||||
from picklescan.scanner import scan_file_path
|
||||
from safetensors.torch import load_file as safetensors_load_file
|
||||
from torch import load as torch_load
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import (
|
||||
LoadedModel,
|
||||
LoadedModelWithoutConfig,
|
||||
ModelLoaderRegistry,
|
||||
ModelLoaderRegistryBase,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
@@ -75,3 +83,41 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
|
||||
|
||||
return loaded_model
|
||||
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
) -> LoadedModelWithoutConfig:
|
||||
cache_key = str(model_path)
|
||||
ram_cache = self.ram_cache
|
||||
try:
|
||||
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
def torch_load_file(checkpoint: Path) -> AnyModel:
|
||||
scan_result = scan_file_path(checkpoint)
|
||||
if scan_result.infected_files != 0:
|
||||
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
|
||||
result = torch_load(checkpoint, map_location="cpu")
|
||||
return result
|
||||
|
||||
def diffusers_load_directory(directory: Path) -> AnyModel:
|
||||
load_class = GenericDiffusersLoader(
|
||||
app_config=self._app_config,
|
||||
logger=self._logger,
|
||||
ram_cache=self._ram_cache,
|
||||
convert_cache=self.convert_cache,
|
||||
).get_hf_load_class(directory)
|
||||
return load_class.from_pretrained(model_path, torch_dtype=TorchDevice.choose_torch_dtype())
|
||||
|
||||
loader = loader or (
|
||||
diffusers_load_directory
|
||||
if model_path.is_dir()
|
||||
else torch_load_file
|
||||
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
|
||||
else lambda path: safetensors_load_file(path, device="cpu")
|
||||
)
|
||||
assert loader is not None
|
||||
raw_model = loader(model_path)
|
||||
ram_cache.put(key=cache_key, model=raw_model)
|
||||
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
|
||||
|
||||
@@ -12,15 +12,13 @@ from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
|
||||
from invokeai.backend.model_manager import (
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import (
|
||||
ControlAdapterDefaultSettings,
|
||||
MainModelDefaultSettings,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
|
||||
@@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self.__invoker = invoker
|
||||
self._set_in_progress_to_canceled()
|
||||
prune_result = self.prune(DEFAULT_QUEUE_ID)
|
||||
|
||||
if prune_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
|
||||
if self.__invoker.services.configuration.clear_queue_on_startup:
|
||||
clear_result = self.clear(DEFAULT_QUEUE_ID)
|
||||
if clear_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
|
||||
else:
|
||||
prune_result = self.prune(DEFAULT_QUEUE_ID)
|
||||
if prune_result.deleted > 0:
|
||||
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
|
||||
|
||||
def __init__(self, db: SqliteDatabase) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -2,18 +2,19 @@
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
GetCoreSchemaHandler,
|
||||
GetJsonSchemaHandler,
|
||||
ValidationError,
|
||||
field_validator,
|
||||
)
|
||||
from pydantic.fields import Field
|
||||
from pydantic.json_schema import JsonSchemaValue
|
||||
from pydantic_core import CoreSchema
|
||||
from pydantic_core import core_schema
|
||||
|
||||
# Importing * is bad karma but needed here for node detection
|
||||
from invokeai.app.invocations import * # noqa: F401 F403
|
||||
@@ -277,73 +278,58 @@ class CollectInvocation(BaseInvocation):
|
||||
return CollectInvocationOutput(collection=copy.copy(self.collection))
|
||||
|
||||
|
||||
class AnyInvocation(BaseInvocation):
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
def validate_invocation(v: Any) -> "AnyInvocation":
|
||||
return BaseInvocation.get_typeadapter().validate_python(v)
|
||||
|
||||
return core_schema.no_info_plain_validator_function(validate_invocation)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
||||
) -> JsonSchemaValue:
|
||||
# Nodes are too powerful, we have to make our own OpenAPI schema manually
|
||||
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
|
||||
oneOf: list[dict[str, str]] = []
|
||||
names = [i.__name__ for i in BaseInvocation.get_invocations()]
|
||||
for name in sorted(names):
|
||||
oneOf.append({"$ref": f"#/components/schemas/{name}"})
|
||||
return {"oneOf": oneOf}
|
||||
|
||||
|
||||
class AnyInvocationOutput(BaseInvocationOutput):
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler):
|
||||
def validate_invocation_output(v: Any) -> "AnyInvocationOutput":
|
||||
return BaseInvocationOutput.get_typeadapter().validate_python(v)
|
||||
|
||||
return core_schema.no_info_plain_validator_function(validate_invocation_output)
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(
|
||||
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
||||
) -> JsonSchemaValue:
|
||||
# Nodes are too powerful, we have to make our own OpenAPI schema manually
|
||||
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
|
||||
|
||||
oneOf: list[dict[str, str]] = []
|
||||
names = [i.__name__ for i in BaseInvocationOutput.get_outputs()]
|
||||
for name in sorted(names):
|
||||
oneOf.append({"$ref": f"#/components/schemas/{name}"})
|
||||
return {"oneOf": oneOf}
|
||||
|
||||
|
||||
class Graph(BaseModel):
|
||||
id: str = Field(description="The id of this graph", default_factory=uuid_string)
|
||||
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
|
||||
nodes: dict[str, BaseInvocation] = Field(description="The nodes in this graph", default_factory=dict)
|
||||
nodes: dict[str, AnyInvocation] = Field(description="The nodes in this graph", default_factory=dict)
|
||||
edges: list[Edge] = Field(
|
||||
description="The connections between nodes and their fields in this graph",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
@field_validator("nodes", mode="plain")
|
||||
@classmethod
|
||||
def validate_nodes(cls, v: dict[str, Any]):
|
||||
"""Validates the nodes in the graph by retrieving a union of all node types and validating each node."""
|
||||
|
||||
# Invocations register themselves as their python modules are executed. The union of all invocations is
|
||||
# constructed at runtime. We use pydantic to validate `Graph.nodes` using that union.
|
||||
#
|
||||
# It's possible that when `graph.py` is executed, not all invocation-containing modules will have executed. If
|
||||
# we construct the invocation union as `graph.py` is executed, we may miss some invocations. Those missing
|
||||
# invocations will cause a graph to fail if they are used.
|
||||
#
|
||||
# We can get around this by validating the nodes in the graph using a "plain" validator, which overrides the
|
||||
# pydantic validation entirely. This allows us to validate the nodes using the union of invocations at runtime.
|
||||
#
|
||||
# This same pattern is used in `GraphExecutionState`.
|
||||
|
||||
nodes: dict[str, BaseInvocation] = {}
|
||||
typeadapter = BaseInvocation.get_typeadapter()
|
||||
for node_id, node in v.items():
|
||||
nodes[node_id] = typeadapter.validate_python(node)
|
||||
return nodes
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
|
||||
# We use a "plain" validator to validate the nodes in the graph. Pydantic is unable to create a JSON Schema for
|
||||
# fields that use "plain" validators, so we have to hack around this. Also, we need to add all invocations to
|
||||
# the generated schema as options for the `nodes` field.
|
||||
#
|
||||
# The workaround is to create a new BaseModel that has the same fields as `Graph` but without the validator and
|
||||
# with the invocation union as the type for the `nodes` field. Pydantic then generates the JSON Schema as
|
||||
# expected.
|
||||
#
|
||||
# You might be tempted to do something like this:
|
||||
#
|
||||
# ```py
|
||||
# cloned_model = create_model(cls.__name__, __base__=cls, nodes=...)
|
||||
# delattr(cloned_model, "validate_nodes")
|
||||
# cloned_model.model_rebuild(force=True)
|
||||
# json_schema = handler(cloned_model.__pydantic_core_schema__)
|
||||
# ```
|
||||
#
|
||||
# Unfortunately, this does not work. Calling `handler` here results in infinite recursion as pydantic attempts
|
||||
# to build the JSON Schema for the cloned model. Instead, we have to manually clone the model.
|
||||
#
|
||||
# This same pattern is used in `GraphExecutionState`.
|
||||
|
||||
class Graph(BaseModel):
|
||||
id: Optional[str] = Field(default=None, description="The id of this graph")
|
||||
nodes: dict[
|
||||
str, Annotated[Union[tuple(BaseInvocation._invocation_classes)], Field(discriminator="type")]
|
||||
] = Field(description="The nodes in this graph")
|
||||
edges: list[Edge] = Field(description="The connections between nodes and their fields in this graph")
|
||||
|
||||
json_schema = handler(Graph.__pydantic_core_schema__)
|
||||
json_schema = handler.resolve_ref_schema(json_schema)
|
||||
return json_schema
|
||||
|
||||
def add_node(self, node: BaseInvocation) -> None:
|
||||
"""Adds a node to a graph
|
||||
|
||||
@@ -774,7 +760,7 @@ class GraphExecutionState(BaseModel):
|
||||
)
|
||||
|
||||
# The results of executed nodes
|
||||
results: dict[str, BaseInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
|
||||
results: dict[str, AnyInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
|
||||
|
||||
# Errors raised when executing nodes
|
||||
errors: dict[str, str] = Field(description="Errors raised when executing nodes", default_factory=dict)
|
||||
@@ -791,52 +777,12 @@ class GraphExecutionState(BaseModel):
|
||||
default_factory=dict,
|
||||
)
|
||||
|
||||
@field_validator("results", mode="plain")
|
||||
@classmethod
|
||||
def validate_results(cls, v: dict[str, BaseInvocationOutput]):
|
||||
"""Validates the results in the GES by retrieving a union of all output types and validating each result."""
|
||||
|
||||
# See the comment in `Graph.validate_nodes` for an explanation of this logic.
|
||||
results: dict[str, BaseInvocationOutput] = {}
|
||||
typeadapter = BaseInvocationOutput.get_typeadapter()
|
||||
for result_id, result in v.items():
|
||||
results[result_id] = typeadapter.validate_python(result)
|
||||
return results
|
||||
|
||||
@field_validator("graph")
|
||||
def graph_is_valid(cls, v: Graph):
|
||||
"""Validates that the graph is valid"""
|
||||
v.validate_self()
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
|
||||
# See the comment in `Graph.__get_pydantic_json_schema__` for an explanation of this logic.
|
||||
class GraphExecutionState(BaseModel):
|
||||
"""Tracks the state of a graph execution"""
|
||||
|
||||
id: str = Field(description="The id of the execution state")
|
||||
graph: Graph = Field(description="The graph being executed")
|
||||
execution_graph: Graph = Field(description="The expanded graph of activated and executed nodes")
|
||||
executed: set[str] = Field(description="The set of node ids that have been executed")
|
||||
executed_history: list[str] = Field(
|
||||
description="The list of node ids that have been executed, in order of execution"
|
||||
)
|
||||
results: dict[
|
||||
str, Annotated[Union[tuple(BaseInvocationOutput._output_classes)], Field(discriminator="type")]
|
||||
] = Field(description="The results of node executions")
|
||||
errors: dict[str, str] = Field(description="Errors raised when executing nodes")
|
||||
prepared_source_mapping: dict[str, str] = Field(
|
||||
description="The map of prepared nodes to original graph nodes"
|
||||
)
|
||||
source_prepared_mapping: dict[str, set[str]] = Field(
|
||||
description="The map of original graph nodes to prepared nodes"
|
||||
)
|
||||
|
||||
json_schema = handler(GraphExecutionState.__pydantic_core_schema__)
|
||||
json_schema = handler.resolve_ref_schema(json_schema)
|
||||
return json_schema
|
||||
|
||||
def next(self) -> Optional[BaseInvocation]:
|
||||
"""Gets the next node ready to execute."""
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Callable, Optional, Union
|
||||
|
||||
from PIL.Image import Image
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from torch import Tensor
|
||||
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
@@ -14,8 +15,15 @@ from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.model_records.model_records_base import UnknownModelException
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
|
||||
@@ -320,8 +328,10 @@ class ConditioningInterface(InvocationContextInterface):
|
||||
|
||||
|
||||
class ModelsInterface(InvocationContextInterface):
|
||||
"""Common API for loading, downloading and managing models."""
|
||||
|
||||
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
|
||||
"""Checks if a model exists.
|
||||
"""Check if a model exists.
|
||||
|
||||
Args:
|
||||
identifier: The key or ModelField representing the model.
|
||||
@@ -331,13 +341,13 @@ class ModelsInterface(InvocationContextInterface):
|
||||
"""
|
||||
if isinstance(identifier, str):
|
||||
return self._services.model_manager.store.exists(identifier)
|
||||
|
||||
return self._services.model_manager.store.exists(identifier.key)
|
||||
else:
|
||||
return self._services.model_manager.store.exists(identifier.key)
|
||||
|
||||
def load(
|
||||
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
|
||||
) -> LoadedModel:
|
||||
"""Loads a model.
|
||||
"""Load a model.
|
||||
|
||||
Args:
|
||||
identifier: The key or ModelField representing the model.
|
||||
@@ -361,7 +371,7 @@ class ModelsInterface(InvocationContextInterface):
|
||||
def load_by_attrs(
|
||||
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
|
||||
) -> LoadedModel:
|
||||
"""Loads a model by its attributes.
|
||||
"""Load a model by its attributes.
|
||||
|
||||
Args:
|
||||
name: Name of the model.
|
||||
@@ -384,7 +394,7 @@ class ModelsInterface(InvocationContextInterface):
|
||||
return self._services.model_manager.load.load_model(configs[0], submodel_type)
|
||||
|
||||
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
|
||||
"""Gets a model's config.
|
||||
"""Get a model's config.
|
||||
|
||||
Args:
|
||||
identifier: The key or ModelField representing the model.
|
||||
@@ -394,11 +404,11 @@ class ModelsInterface(InvocationContextInterface):
|
||||
"""
|
||||
if isinstance(identifier, str):
|
||||
return self._services.model_manager.store.get_model(identifier)
|
||||
|
||||
return self._services.model_manager.store.get_model(identifier.key)
|
||||
else:
|
||||
return self._services.model_manager.store.get_model(identifier.key)
|
||||
|
||||
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
|
||||
"""Searches for models by path.
|
||||
"""Search for models by path.
|
||||
|
||||
Args:
|
||||
path: The path to search for.
|
||||
@@ -415,7 +425,7 @@ class ModelsInterface(InvocationContextInterface):
|
||||
type: Optional[ModelType] = None,
|
||||
format: Optional[ModelFormat] = None,
|
||||
) -> list[AnyModelConfig]:
|
||||
"""Searches for models by attributes.
|
||||
"""Search for models by attributes.
|
||||
|
||||
Args:
|
||||
name: The name to search for (exact match).
|
||||
@@ -434,6 +444,72 @@ class ModelsInterface(InvocationContextInterface):
|
||||
model_format=format,
|
||||
)
|
||||
|
||||
def download_and_cache_model(
|
||||
self,
|
||||
source: str | AnyHttpUrl,
|
||||
) -> Path:
|
||||
"""
|
||||
Download the model file located at source to the models cache and return its Path.
|
||||
|
||||
This can be used to single-file install models and other resources of arbitrary types
|
||||
which should not get registered with the database. If the model is already
|
||||
installed, the cached path will be returned. Otherwise it will be downloaded.
|
||||
|
||||
Args:
|
||||
source: A URL that points to the model, or a huggingface repo_id.
|
||||
|
||||
Returns:
|
||||
Path to the downloaded model
|
||||
"""
|
||||
return self._services.model_manager.install.download_and_cache_model(source=source)
|
||||
|
||||
def load_local_model(
|
||||
self,
|
||||
model_path: Path,
|
||||
loader: Optional[Callable[[Path], AnyModel]] = None,
|
||||
) -> LoadedModelWithoutConfig:
|
||||
"""
|
||||
Load the model file located at the indicated path
|
||||
|
||||
If a loader callable is provided, it will be invoked to load the model. Otherwise,
|
||||
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
|
||||
|
||||
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
|
||||
|
||||
Args:
|
||||
path: A model Path
|
||||
loader: A Callable that expects a Path and returns a dict[str|int, Any]
|
||||
|
||||
Returns:
|
||||
A LoadedModelWithoutConfig object.
|
||||
"""
|
||||
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
|
||||
|
||||
def load_remote_model(
|
||||
self,
|
||||
source: str | AnyHttpUrl,
|
||||
loader: Optional[Callable[[Path], AnyModel]] = None,
|
||||
) -> LoadedModelWithoutConfig:
|
||||
"""
|
||||
Download, cache, and load the model file located at the indicated URL or repo_id.
|
||||
|
||||
If the model is already downloaded, it will be loaded from the cache.
|
||||
|
||||
If the a loader callable is provided, it will be invoked to load the model. Otherwise,
|
||||
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
|
||||
|
||||
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
|
||||
|
||||
Args:
|
||||
source: A URL or huggingface repoid.
|
||||
loader: A Callable that expects a Path and returns a dict[str|int, Any]
|
||||
|
||||
Returns:
|
||||
A LoadedModelWithoutConfig object.
|
||||
"""
|
||||
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
|
||||
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
|
||||
|
||||
|
||||
class ConfigInterface(InvocationContextInterface):
|
||||
def get(self) -> InvokeAIAppConfig:
|
||||
|
||||
@@ -13,6 +13,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@@ -43,6 +44,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_8(app_config=config))
|
||||
migrator.register_migration(build_migration_9())
|
||||
migrator.register_migration(build_migration_10())
|
||||
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
||||
@@ -0,0 +1,75 @@
|
||||
import shutil
|
||||
import sqlite3
|
||||
from logging import Logger
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
LEGACY_CORE_MODELS = [
|
||||
# OpenPose
|
||||
"any/annotators/dwpose/yolox_l.onnx",
|
||||
"any/annotators/dwpose/dw-ll_ucoco_384.onnx",
|
||||
# DepthAnything
|
||||
"any/annotators/depth_anything/depth_anything_vitl14.pth",
|
||||
"any/annotators/depth_anything/depth_anything_vitb14.pth",
|
||||
"any/annotators/depth_anything/depth_anything_vits14.pth",
|
||||
# Lama inpaint
|
||||
"core/misc/lama/lama.pt",
|
||||
# RealESRGAN upscale
|
||||
"core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
|
||||
"core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
|
||||
"core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
||||
"core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
|
||||
]
|
||||
|
||||
|
||||
class Migration11Callback:
|
||||
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
|
||||
self._app_config = app_config
|
||||
self._logger = logger
|
||||
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._remove_convert_cache()
|
||||
self._remove_downloaded_models()
|
||||
self._remove_unused_core_models()
|
||||
|
||||
def _remove_convert_cache(self) -> None:
|
||||
"""Rename models/.cache to models/.convert_cache."""
|
||||
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
|
||||
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
|
||||
shutil.rmtree(legacy_convert_path, ignore_errors=True)
|
||||
|
||||
def _remove_downloaded_models(self) -> None:
|
||||
"""Remove models from their old locations; they will re-download when needed."""
|
||||
self._logger.info(
|
||||
"Removing legacy just-in-time models. Downloaded models will now be cached in .download_cache."
|
||||
)
|
||||
for model_path in LEGACY_CORE_MODELS:
|
||||
legacy_dest_path = self._app_config.models_path / model_path
|
||||
legacy_dest_path.unlink(missing_ok=True)
|
||||
|
||||
def _remove_unused_core_models(self) -> None:
|
||||
"""Remove unused core models and their directories."""
|
||||
self._logger.info("Removing defunct core models.")
|
||||
for dir in ["face_restoration", "misc", "upscaling"]:
|
||||
path_to_remove = self._app_config.models_path / "core" / dir
|
||||
shutil.rmtree(path_to_remove, ignore_errors=True)
|
||||
shutil.rmtree(self._app_config.models_path / "any" / "annotators", ignore_errors=True)
|
||||
|
||||
|
||||
def build_migration_11(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
|
||||
"""
|
||||
Build the migration from database version 10 to 11.
|
||||
|
||||
This migration does the following:
|
||||
- Moves "core" models previously downloaded with download_with_progress_bar() into new
|
||||
"models/.download_cache" directory.
|
||||
- Renames "models/.cache" to "models/.convert_cache".
|
||||
"""
|
||||
migration_11 = Migration(
|
||||
from_version=10,
|
||||
to_version=11,
|
||||
callback=Migration11Callback(app_config=app_config, logger=logger),
|
||||
)
|
||||
|
||||
return migration_11
|
||||
116
invokeai/app/util/custom_openapi.py
Normal file
116
invokeai/app/util/custom_openapi.py
Normal file
@@ -0,0 +1,116 @@
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
from pydantic.json_schema import models_json_schema
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, UIConfigBase
|
||||
from invokeai.app.invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
|
||||
|
||||
def move_defs_to_top_level(openapi_schema: dict[str, Any], component_schema: dict[str, Any]) -> None:
|
||||
"""Moves a component schema's $defs to the top level of the openapi schema. Useful when generating a schema
|
||||
for a single model that needs to be added back to the top level of the schema. Mutates openapi_schema and
|
||||
component_schema."""
|
||||
|
||||
defs = component_schema.pop("$defs", {})
|
||||
for schema_key, json_schema in defs.items():
|
||||
if schema_key in openapi_schema["components"]["schemas"]:
|
||||
continue
|
||||
openapi_schema["components"]["schemas"][schema_key] = json_schema
|
||||
|
||||
|
||||
def get_openapi_func(
|
||||
app: FastAPI, post_transform: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None
|
||||
) -> Callable[[], dict[str, Any]]:
|
||||
"""Gets the OpenAPI schema generator function.
|
||||
|
||||
Args:
|
||||
app (FastAPI): The FastAPI app to generate the schema for.
|
||||
post_transform (Optional[Callable[[dict[str, Any]], dict[str, Any]]], optional): A function to apply to the
|
||||
generated schema before returning it. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Callable[[], dict[str, Any]]: The OpenAPI schema generator function. When first called, the generated schema is
|
||||
cached in `app.openapi_schema`. On subsequent calls, the cached schema is returned. This caching behaviour
|
||||
matches FastAPI's default schema generation caching.
|
||||
"""
|
||||
|
||||
def openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# We'll create a map of invocation type to output schema to make some types simpler on the client.
|
||||
invocation_output_map_properties: dict[str, Any] = {}
|
||||
invocation_output_map_required: list[str] = []
|
||||
|
||||
# We need to manually add all outputs to the schema - pydantic doesn't add them because they aren't used directly.
|
||||
for output in BaseInvocationOutput.get_outputs():
|
||||
json_schema = output.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
|
||||
move_defs_to_top_level(openapi_schema, json_schema)
|
||||
openapi_schema["components"]["schemas"][output.__name__] = json_schema
|
||||
|
||||
# Technically, invocations are added to the schema by pydantic, but we still need to manually set their output
|
||||
# property, so we'll just do it all manually.
|
||||
for invocation in BaseInvocation.get_invocations():
|
||||
json_schema = invocation.model_json_schema(
|
||||
mode="serialization", ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
move_defs_to_top_level(openapi_schema, json_schema)
|
||||
output_title = invocation.get_output_annotation().__name__
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_title}"}
|
||||
json_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"][invocation.__name__] = json_schema
|
||||
|
||||
# Add this invocation and its output to the output map
|
||||
invocation_type = invocation.get_type()
|
||||
invocation_output_map_properties[invocation_type] = json_schema["output"]
|
||||
invocation_output_map_required.append(invocation_type)
|
||||
|
||||
# Add the output map to the schema
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": invocation_output_map_properties,
|
||||
"required": invocation_output_map_required,
|
||||
}
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions because they aren't used directly in the API.
|
||||
# We need to add them manually here. WARNING: Pydantic can choke if you call `model.model_json_schema()` to get
|
||||
# a schema. This has something to do with schema refs - not totally clear. For whatever reason, using
|
||||
# `models_json_schema` seems to work fine.
|
||||
additional_models = [
|
||||
*EventBase.get_events(),
|
||||
UIConfigBase,
|
||||
InputFieldJSONSchemaExtra,
|
||||
OutputFieldJSONSchemaExtra,
|
||||
ModelIdentifierField,
|
||||
ProgressImage,
|
||||
]
|
||||
|
||||
additional_schemas = models_json_schema(
|
||||
[(m, "serialization") for m in additional_models],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
# additional_schemas[1] is a dict of $defs that we need to add to the top level of the schema
|
||||
move_defs_to_top_level(openapi_schema, additional_schemas[1])
|
||||
|
||||
if post_transform is not None:
|
||||
openapi_schema = post_transform(openapi_schema)
|
||||
|
||||
openapi_schema["components"]["schemas"] = dict(sorted(openapi_schema["components"]["schemas"].items()))
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
return openapi
|
||||
@@ -1,51 +0,0 @@
|
||||
from pathlib import Path
|
||||
from urllib import request
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
|
||||
class ProgressBar:
|
||||
"""Simple progress bar for urllib.request.urlretrieve using tqdm."""
|
||||
|
||||
def __init__(self, model_name: str = "file"):
|
||||
self.pbar = None
|
||||
self.name = model_name
|
||||
|
||||
def __call__(self, block_num: int, block_size: int, total_size: int):
|
||||
if not self.pbar:
|
||||
self.pbar = tqdm(
|
||||
desc=self.name,
|
||||
initial=0,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
total=total_size,
|
||||
)
|
||||
self.pbar.update(block_size)
|
||||
|
||||
|
||||
def download_with_progress_bar(name: str, url: str, dest_path: Path) -> bool:
|
||||
"""Download a file from a URL to a destination path, with a progress bar.
|
||||
If the file already exists, it will not be downloaded again.
|
||||
|
||||
Exceptions are not caught.
|
||||
|
||||
Args:
|
||||
name (str): Name of the file being downloaded.
|
||||
url (str): URL to download the file from.
|
||||
dest_path (Path): Destination path to save the file to.
|
||||
|
||||
Returns:
|
||||
bool: True if the file was downloaded, False if it already existed.
|
||||
"""
|
||||
if dest_path.exists():
|
||||
return False # already downloaded
|
||||
|
||||
InvokeAILogger.get_logger().info(f"Downloading {name}...")
|
||||
|
||||
dest_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
request.urlretrieve(url, dest_path, ProgressBar(name))
|
||||
|
||||
return True
|
||||
@@ -1,5 +1,5 @@
|
||||
import pathlib
|
||||
from typing import Literal, Union
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@@ -10,28 +10,17 @@ from PIL import Image
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
|
||||
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
config = get_config()
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
|
||||
DEPTH_ANYTHING_MODELS = {
|
||||
"large": {
|
||||
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
|
||||
"local": "any/annotators/depth_anything/depth_anything_vitl14.pth",
|
||||
},
|
||||
"base": {
|
||||
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
|
||||
"local": "any/annotators/depth_anything/depth_anything_vitb14.pth",
|
||||
},
|
||||
"small": {
|
||||
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
|
||||
"local": "any/annotators/depth_anything/depth_anything_vits14.pth",
|
||||
},
|
||||
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
|
||||
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
|
||||
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
|
||||
}
|
||||
|
||||
|
||||
@@ -53,36 +42,27 @@ transform = Compose(
|
||||
|
||||
|
||||
class DepthAnythingDetector:
|
||||
def __init__(self) -> None:
|
||||
self.model = None
|
||||
self.model_size: Union[Literal["large", "base", "small"], None] = None
|
||||
self.device = TorchDevice.choose_torch_device()
|
||||
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
|
||||
self.model = model
|
||||
self.device = device
|
||||
|
||||
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
|
||||
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
|
||||
download_with_progress_bar(
|
||||
pathlib.Path(DEPTH_ANYTHING_MODELS[model_size]["url"]).name,
|
||||
DEPTH_ANYTHING_MODELS[model_size]["url"],
|
||||
DEPTH_ANYTHING_MODEL_PATH,
|
||||
)
|
||||
@staticmethod
|
||||
def load_model(
|
||||
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
|
||||
) -> DPT_DINOv2:
|
||||
match model_size:
|
||||
case "small":
|
||||
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
|
||||
case "base":
|
||||
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
|
||||
case "large":
|
||||
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
|
||||
|
||||
if not self.model or model_size != self.model_size:
|
||||
del self.model
|
||||
self.model_size = model_size
|
||||
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
|
||||
model.eval()
|
||||
|
||||
match self.model_size:
|
||||
case "small":
|
||||
self.model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
|
||||
case "base":
|
||||
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
|
||||
case "large":
|
||||
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
|
||||
|
||||
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
|
||||
self.model.eval()
|
||||
|
||||
self.model.to(self.device)
|
||||
return self.model
|
||||
model.to(device)
|
||||
return model
|
||||
|
||||
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
|
||||
if not self.model:
|
||||
|
||||
@@ -1,30 +1,53 @@
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from controlnet_aux.util import resize_image
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
|
||||
from invokeai.backend.image_util.dw_openpose.utils import NDArrayInt, draw_bodypose, draw_facepose, draw_handpose
|
||||
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
|
||||
|
||||
DWPOSE_MODELS = {
|
||||
"yolox_l.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
|
||||
"dw-ll_ucoco_384.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
|
||||
}
|
||||
|
||||
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
|
||||
|
||||
def draw_pose(
|
||||
pose: Dict[str, NDArrayInt | Dict[str, NDArrayInt]],
|
||||
H: int,
|
||||
W: int,
|
||||
draw_face: bool = True,
|
||||
draw_body: bool = True,
|
||||
draw_hands: bool = True,
|
||||
resolution: int = 512,
|
||||
) -> Image.Image:
|
||||
bodies = pose["bodies"]
|
||||
faces = pose["faces"]
|
||||
hands = pose["hands"]
|
||||
|
||||
assert isinstance(bodies, dict)
|
||||
candidate = bodies["candidate"]
|
||||
|
||||
assert isinstance(bodies, dict)
|
||||
subset = bodies["subset"]
|
||||
|
||||
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
||||
|
||||
if draw_body:
|
||||
canvas = draw_bodypose(canvas, candidate, subset)
|
||||
|
||||
if draw_hands:
|
||||
assert isinstance(hands, np.ndarray)
|
||||
canvas = draw_handpose(canvas, hands)
|
||||
|
||||
if draw_face:
|
||||
canvas = draw_facepose(canvas, faces)
|
||||
assert isinstance(hands, np.ndarray)
|
||||
canvas = draw_facepose(canvas, faces) # type: ignore
|
||||
|
||||
dwpose_image = resize_image(
|
||||
dwpose_image: Image.Image = resize_image(
|
||||
canvas,
|
||||
resolution,
|
||||
)
|
||||
@@ -39,11 +62,16 @@ class DWOpenposeDetector:
|
||||
Credits: https://github.com/IDEA-Research/DWPose
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.pose_estimation = Wholebody()
|
||||
def __init__(self, onnx_det: Path, onnx_pose: Path) -> None:
|
||||
self.pose_estimation = Wholebody(onnx_det=onnx_det, onnx_pose=onnx_pose)
|
||||
|
||||
def __call__(
|
||||
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
|
||||
self,
|
||||
image: Image.Image,
|
||||
draw_face: bool = False,
|
||||
draw_body: bool = True,
|
||||
draw_hands: bool = False,
|
||||
resolution: int = 512,
|
||||
) -> Image.Image:
|
||||
np_image = np.array(image)
|
||||
H, W, C = np_image.shape
|
||||
@@ -79,3 +107,6 @@ class DWOpenposeDetector:
|
||||
return draw_pose(
|
||||
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["DWPOSE_MODELS", "DWOpenposeDetector"]
|
||||
|
||||
@@ -5,11 +5,13 @@ import math
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
eps = 0.01
|
||||
NDArrayInt = npt.NDArray[np.uint8]
|
||||
|
||||
|
||||
def draw_bodypose(canvas, candidate, subset):
|
||||
def draw_bodypose(canvas: NDArrayInt, candidate: NDArrayInt, subset: NDArrayInt) -> NDArrayInt:
|
||||
H, W, C = canvas.shape
|
||||
candidate = np.array(candidate)
|
||||
subset = np.array(subset)
|
||||
@@ -88,7 +90,7 @@ def draw_bodypose(canvas, candidate, subset):
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_handpose(canvas, all_hand_peaks):
|
||||
def draw_handpose(canvas: NDArrayInt, all_hand_peaks: NDArrayInt) -> NDArrayInt:
|
||||
H, W, C = canvas.shape
|
||||
|
||||
edges = [
|
||||
@@ -142,7 +144,7 @@ def draw_handpose(canvas, all_hand_peaks):
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_facepose(canvas, all_lmks):
|
||||
def draw_facepose(canvas: NDArrayInt, all_lmks: NDArrayInt) -> NDArrayInt:
|
||||
H, W, C = canvas.shape
|
||||
for lmks in all_lmks:
|
||||
lmks = np.array(lmks)
|
||||
|
||||
@@ -2,47 +2,26 @@
|
||||
# Modified pathing to suit Invoke
|
||||
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
DWPOSE_MODELS = {
|
||||
"yolox_l.onnx": {
|
||||
"local": "any/annotators/dwpose/yolox_l.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
|
||||
},
|
||||
"dw-ll_ucoco_384.onnx": {
|
||||
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
|
||||
},
|
||||
}
|
||||
|
||||
config = get_config()
|
||||
|
||||
|
||||
class Wholebody:
|
||||
def __init__(self):
|
||||
def __init__(self, onnx_det: Path, onnx_pose: Path):
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
|
||||
|
||||
DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
|
||||
download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
|
||||
|
||||
POSE_MODEL_PATH = config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"]
|
||||
download_with_progress_bar(
|
||||
"dw-ll_ucoco_384.onnx", DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH
|
||||
)
|
||||
|
||||
onnx_det = DET_MODEL_PATH
|
||||
onnx_pose = POSE_MODEL_PATH
|
||||
|
||||
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
||||
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import gc
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
@@ -6,9 +6,7 @@ import torch
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.model_manager.config import AnyModel
|
||||
|
||||
|
||||
def norm_img(np_img):
|
||||
@@ -19,28 +17,11 @@ def norm_img(np_img):
|
||||
return np_img
|
||||
|
||||
|
||||
def load_jit_model(url_or_path, device):
|
||||
model_path = url_or_path
|
||||
logger.info(f"Loading model from: {model_path}")
|
||||
model = torch.jit.load(model_path, map_location="cpu").to(device)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
class LaMA:
|
||||
def __init__(self, model: AnyModel):
|
||||
self._model = model
|
||||
|
||||
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
|
||||
device = TorchDevice.choose_torch_device()
|
||||
model_location = get_config().models_path / "core/misc/lama/lama.pt"
|
||||
|
||||
if not model_location.exists():
|
||||
download_with_progress_bar(
|
||||
name="LaMa Inpainting Model",
|
||||
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
||||
dest_path=model_location,
|
||||
)
|
||||
|
||||
model = load_jit_model(model_location, device)
|
||||
|
||||
image = np.asarray(input_image.convert("RGB"))
|
||||
image = norm_img(image)
|
||||
|
||||
@@ -48,20 +29,25 @@ class LaMA:
|
||||
mask = np.asarray(mask)
|
||||
mask = np.invert(mask)
|
||||
mask = norm_img(mask)
|
||||
|
||||
mask = (mask > 0) * 1
|
||||
|
||||
device = next(self._model.buffers()).device
|
||||
image = torch.from_numpy(image).unsqueeze(0).to(device)
|
||||
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
|
||||
|
||||
with torch.inference_mode():
|
||||
infilled_image = model(image, mask)
|
||||
infilled_image = self._model(image, mask)
|
||||
|
||||
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
|
||||
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
|
||||
infilled_image = Image.fromarray(infilled_image)
|
||||
|
||||
del model
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return infilled_image
|
||||
|
||||
@staticmethod
|
||||
def load_jit_model(url_or_path: str | Path, device: torch.device | str = "cpu") -> torch.nn.Module:
|
||||
model_path = url_or_path
|
||||
logger.info(f"Loading model from: {model_path}")
|
||||
model: torch.nn.Module = torch.jit.load(model_path, map_location="cpu").to(device) # type: ignore
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import math
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
|
||||
import cv2
|
||||
@@ -11,6 +10,7 @@ from cv2.typing import MatLike
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.model_manager.config import AnyModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
"""
|
||||
@@ -52,7 +52,7 @@ class RealESRGAN:
|
||||
def __init__(
|
||||
self,
|
||||
scale: int,
|
||||
model_path: Path,
|
||||
loadnet: AnyModel,
|
||||
model: RRDBNet,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
@@ -67,8 +67,6 @@ class RealESRGAN:
|
||||
self.half = half
|
||||
self.device = TorchDevice.choose_torch_device()
|
||||
|
||||
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
|
||||
|
||||
# prefer to use params_ema
|
||||
if "params_ema" in loadnet:
|
||||
keyname = "params_ema"
|
||||
|
||||
@@ -125,13 +125,16 @@ class IPAdapter(RawModel):
|
||||
self.device, dtype=self.dtype
|
||||
)
|
||||
|
||||
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
|
||||
self.device = device
|
||||
def to(
|
||||
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
|
||||
):
|
||||
if device is not None:
|
||||
self.device = device
|
||||
if dtype is not None:
|
||||
self.dtype = dtype
|
||||
|
||||
self._image_proj_model.to(device=self.device, dtype=self.dtype)
|
||||
self.attn_weights.to(device=self.device, dtype=self.dtype)
|
||||
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
|
||||
def calc_size(self):
|
||||
# workaround for circular import
|
||||
|
||||
@@ -61,9 +61,10 @@ class LoRALayerBase:
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
@@ -109,14 +110,15 @@ class LoRALayer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
@@ -169,18 +171,19 @@ class LoHALayer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
@@ -265,6 +268,7 @@ class LoKRLayer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
@@ -273,19 +277,19 @@ class LoKRLayer(LoRALayerBase):
|
||||
else:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
else:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
class FullLayer(LoRALayerBase):
|
||||
@@ -319,10 +323,11 @@ class FullLayer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
class IA3Layer(LoRALayerBase):
|
||||
@@ -358,11 +363,12 @@ class IA3Layer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||
@@ -388,10 +394,11 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
# TODO: try revert if exception?
|
||||
for _key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
@@ -514,7 +521,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype)
|
||||
layer.to(device=device, dtype=dtype, non_blocking=True)
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
24
invokeai/backend/model_hash/hash_validator.py
Normal file
24
invokeai/backend/model_hash/hash_validator.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import json
|
||||
from base64 import b64decode
|
||||
|
||||
|
||||
def validate_hash(hash: str):
|
||||
if ":" not in hash:
|
||||
return
|
||||
for enc_hash in hashes:
|
||||
alg, hash_ = hash.split(":")
|
||||
if alg == "blake3":
|
||||
alg = "blake3_single"
|
||||
map = json.loads(b64decode(enc_hash))
|
||||
if alg in map:
|
||||
if hash_ == map[alg]:
|
||||
raise Exception("Unrecoverable Model Error")
|
||||
|
||||
|
||||
hashes: list[str] = [
|
||||
"eyJibGFrZTNfbXVsdGkiOiI3Yjc5ODZmM2QyNTk3MDZiMjVhZDRhM2NmNGM2MTcyNGNhZmQ0Yjc4NjI4MjIwNjMyZGU4NjVlM2UxNDEyMTVlIiwiYmxha2UzX3NpbmdsZSI6IjdiNzk4NmYzZDI1OTcwNmIyNWFkNGEzY2Y0YzYxNzI0Y2FmZDRiNzg2MjgyMjA2MzJkZTg2NWUzZTE0MTIxNWUiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNzdlZmU5MzRhZGQ3YmU5Njc3NmJkODM3NWJhZDQxN2QiLCJzaGExIjoiYmM2YzYxYzgwNDgyMTE2ZTY2ZGQyNTYwNjRkYTgxYjFlY2U4NzMzOCIsInNoYTIyNCI6IjgzNzNlZGM4ZTg4Y2UxMTljODdlOTM2OTY4ZWViMWNmMzdjZGY4NTBmZjhjOTZkYjNmMDc4YmE0Iiwic2hhMjU2IjoiNzNjYWMxZWRlZmUyZjdlODFkNjRiMTI2YjIxMmY2Yzk2ZTAwNjgyNGJjZmJkZDI3Y2E5NmUyNTk5ZTQwNzUwZiIsInNoYTM4NCI6IjlmNmUwNzlmOTNiNDlkMTg1YzEyNzY0OGQwNzE3YTA0N2E3MzYyNDI4YzY4MzBhNDViNzExODAwZDE4NjIwZDZjMjcwZGE3ZmY0Y2FjOTRmNGVmZDdiZWQ5OTlkOWU0ZCIsInNoYTUxMiI6IjAwNzE5MGUyYjk5ZjVlN2Q1OGZiYWI2YTk1YmY0NjJiODhkOTg1N2NlNjY4MTMyMGJmM2M0Y2ZiZmY0MjkxZmEzNTMyMTk3YzdkODc2YWQ3NjZhOTQyOTQ2Zjc1OWY2YTViNDBlM2I2MzM3YzIwNWI0M2JkOWMyN2JiMTljNzk0IiwiYmxha2UyYiI6IjlhN2VhNTQzY2ZhMmMzMWYyZDIyNjg2MjUwNzUyNDE0Mjc1OWJiZTA0MWZlMWJkMzQzNDM1MWQwNWZlYjI2OGY2MjU0OTFlMzlmMzdkYWQ4MGM2Y2UzYTE4ZjAxNGEzZjJiMmQ2OGU2OTc0MjRmNTU2M2Y5ZjlhYzc1MzJiMjEwIiwiYmxha2UycyI6ImYxZmMwMjA0YjdjNzIwNGJlNWI1YzY3NDEyYjQ2MjY5NWE3YjFlYWQ2M2E5ZGVkMjEzYjZmYTU0NGZjNjJlYzUiLCJzaGEzXzIyNCI6IjljZDQ3YTBhMzA3NmNmYzI0NjJhNTAzMjVmMjg4ZjFiYzJjMmY2NmU2ODIxODc5NjJhNzU0NjFmIiwic2hhM18yNTYiOiI4NTFlNGI1ZDI1MWZlZTFiYzk0ODU1OWNjMDNiNjhlNTllYWU5YWI1ZTUyYjA0OTgxYTRhOTU4YWQyMDdkYjYwIiwic2hhM18zODQiOiJiZDA2ZTRhZGFlMWQ0MTJmZjFjOTcxMDJkZDFlN2JmY2UzMDViYTgxMTgyNzM3NWY5NTI4OWJkOGIyYTUxNjdiMmUyNzZjODNjNTU3ODFhMTEyMDRhNzc5MTUwMzM5ZTEiLCJzaGEzXzUxMiI6ImQ1ZGQ2OGZmZmY5NGRhZjJhMDkzZTliNmM1MTBlZmZkNThmZTA0ODMyZGQzMzEyOTZmN2NkZmYzNmRhZmQ3NGMxY2VmNjUxNTBkZjk5OGM1ODgyY2MzMzk2MTk1ZTViYjc5OTY1OGFkMTQ3MzFiMjJmZWZiMWQzNmY2MWJjYzJjIiwic2hha2VfMTI4IjoiOWJlNTgwNWMwNjg1MmZmNDUzNGQ4ZDZmODYyMmFkOTJkMGUwMWE2Y2JmYjIwN2QxOTRmM2JkYThiOGNmNWU4ZiIsInNoYWtlXzI1NiI6IjRhYjgwYjY2MzcxYzdhNjBhYWM4NDVkMTZlNWMzZDNhMmM4M2FjM2FjZDNiNTBiNzdjYWYyYTNmMWMyY2ZjZjc5OGNjYjkxN2FjZjQzNzBmZDdjN2ZmODQ5M2Q3NGY1MWM4NGU3M2ViZGQ4MTRmM2MwMzk3YzI4ODlmNTI0Mzg3In0K",
|
||||
"eyJibGFrZTNfbXVsdGkiOiI4ODlmYzIwMDA4NWY1NWY4YTA4MjhiODg3MDM0OTRhMGFmNWZkZGI5N2E2YmYwMDRjM2VkYTdiYzBkNDU0MjQzIiwiYmxha2UzX3NpbmdsZSI6Ijg4OWZjMjAwMDg1ZjU1ZjhhMDgyOGI4ODcwMzQ5NGEwYWY1ZmRkYjk3YTZiZjAwNGMzZWRhN2JjMGQ0NTQyNDMiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNTIzNTRhMzkzYTVmOGNjNmMyMzQ0OThiYjcxMDljYzEiLCJzaGExIjoiMTJmYmRhOGE3ZGUwOGMwNDc2NTA5OWY2NGNmMGIzYjcxMjc1MGM1NyIsInNoYTIyNCI6IjEyZWU3N2U0Y2NhODViMDk4YjdjNWJlMWFjNGMwNzljNGM3MmJmODA2YjdlZjU1NGI0NzgxZDkxIiwic2hhMjU2IjoiMjU1NTMwZDAyYTY4MjY4OWE5ZTZjMjRhOWZhMDM2OGNhODMxZTI1OTAyYjM2NzQyNzkwZTk3NzU1ZjEzMmNmNSIsInNoYTM4NCI6IjhkMGEyMTRlNDk0NGE2NGY3ZmZjNTg3MGY0ZWUyZTA0OGIzYjRjMmQ0MGRmMWFmYTVlOGE1ZWNkN2IwOTY3M2ZjNWI5YzM5Yzg4Yjc2YmIwY2I4ZjQ1ZjAxY2MwNjZkNCIsInNoYTUxMiI6Ijg3NTM3OWNiYzdlOGYyNzU4YjVjMDY5ZTU2ZWRjODY1ODE4MGFkNDEzNGMwMzY1NzM4ZjM1YjQwYzI2M2JkMTMwMzcwZTE0MzZkNDNmOGFhMTgyMTg5MzgzMTg1ODNhOWJhYTUyYTBjMTk1Mjg5OTQzYzZiYTY2NTg1Yjg5M2ZiIiwiYmxha2UyYiI6IjBhY2MwNWEwOGE5YjhhODNmZTVjYTk4ZmExMTg3NTYwNjk0MjY0YWUxNTI4NDliYzFkNzQzNTYzMzMyMTlhYTg3N2ZiNjc4MmRjZDZiOGIyYjM1MTkyNDQzNDE2ODJiMTQ3YmY2YTY3MDU2ZWIwOTQ4MzE1M2E4Y2ZiNTNmMTI0IiwiYmxha2UycyI6ImY5ZTRhZGRlNGEzZDRhOTZhOWUyNjVjMGVmMjdmZDNiNjA0NzI1NDllMTEyMWQzOGQwMTkxNTY5ZDY5YzdhYzAiLCJzaGEzXzIyNCI6ImM0NjQ3MGRjMjkyNGI0YjZkMTA2NDY5MDRiNWM2OGVjNTU2YmQ4MTA5NmVkMTA4YjZiMzQyZmU1Iiwic2hhM18yNTYiOiIwMDBlMThiZTI1MzYxYTk0NGExZTIwNjQ5ZmY0ZGM2OGRiZTk0OGNkNTYwY2I5MTFhODU1OTE3ODdkNWQ5YWYwIiwic2hhM18zODQiOiIzNDljZmVhMGUxZGE0NWZlMmYzNjJhMWFjZjI1ZTczOWNiNGQ0NDdiM2NiODUzZDVkYWNjMzU5ZmRhMWE1M2FhYWU5OTM2ZmFhZWM1NmFhZDkwMThhYjgxMTI4ZjI3N2YiLCJzaGEzXzUxMiI6ImMxNDgwNGY1YTNjNWE4ZGEyMTAyODk1YTFjZGU4MmIwNGYwZmY4OTczMTc0MmY2NDQyY2NmNzQ1OTQzYWQ5NGViOWZmMTNhZDg3YjRmODkxN2M5NmY5ZjMwZjkwYTFhYTI4OTI3OTkwMjg0ZDJhMzcyMjA0NjE4MTNiNDI0MzEyIiwic2hha2VfMTI4IjoiN2IxY2RkMWUyMzUzMzk0OTg5M2UyMmZkMTAwZmU0YjJhMTU1MDJmMTNjMTI0YzhiZDgxY2QwZDdlOWEzMGNmOCIsInNoYWtlXzI1NiI6ImI0NjMzZThhMjNkZDM0ODk0ZTIyNzc0ODYyNTE1MzVjYWFlNjkyMTdmOTQ0NTc3MzE1NTljODBjNWQ3M2ZkOTMxZTFjMDJlZDI0Yjc3MzE3OTJjMjVlNTZhYjg3NjI4YmJiMDgxNTU0MjU2MWY5ZGI2NWE0NDk4NDFmNGQzYTU4In0K",
|
||||
"eyJibGFrZTNfbXVsdGkiOiI2Y2M0MmU4NGRiOGQyZTliYjA4YjUxNWUwYzlmYzg2NTViNDUwNGRlZDM1MzBlZjFjNTFjZWEwOWUxYThiNGYxIiwiYmxha2UzX3NpbmdsZSI6IjZjYzQyZTg0ZGI4ZDJlOWJiMDhiNTE1ZTBjOWZjODY1NWI0NTA0ZGVkMzUzMGVmMWM1MWNlYTA5ZTFhOGI0ZjEiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZDQwNjk3NTJhYjQ0NzFhZDliMDY3YmUxMmRjNTM2ZjYiLCJzaGExIjoiOGRjZmVlMjZjZjUyOTllMDBjN2QwZjJiZTc0NmVmMTlkZjliZGExNCIsInNoYTIyNCI6IjhjMzAzOTU3ZjI3NDNiMjUwNmQyYzIzY2VmNmU4MTQ5MTllZmE2MWM0MTFiMDk5ZmMzODc2MmRjIiwic2hhMjU2IjoiZDk3ZjQ2OWJjMWZkMjhjMjZkMjJhN2Y3ODczNzlhZmM4NjY3ZmZmM2FhYTQ5NTE4NmQyZTM4OTU2MTBjZDJmMyIsInNoYTM4NCI6IjY0NmY0YWM0ZDA2YWJkZmE2MDAwN2VjZWNiOWNjOTk4ZmJkOTBiYzYwMmY3NTk2M2RhZDUzMGMzNGE5ZGE1YzY4NjhlMGIwMDJkZDNlMTM4ZjhmMjA2ODcyNzFkMDVjMSIsInNoYTUxMiI6ImYzZTU4NTA0YzYyOGUwYjViNzBhOTYxYThmODA1MDA1NjQ1M2E5NDlmNTgzNDhiYTNhZTVlMjdkNDRhNGJkMjc5ZjA3MmU1OGQ5YjEyOGE1NDc1MTU2ZmM3YzcxMGJkYjI3OWQ5OGFmN2EwYTI4Y2Y1ZDY2MmQxODY4Zjg3ZjI3IiwiYmxha2UyYiI6ImFhNjgyYmJjM2U1ZGRjNDZkNWUxN2VjMzRlNmEzZGY5ZjhiNWQyNzk0YTZkNmY0M2VjODMxZjhjOTU2OGYyY2RiOGE4YjAyNTE4MDA4YmY0Y2FhYTlhY2FhYjNkNzRmZmRiNGZlNDgwOTcwODU3OGJiZjNlNzJjYTc5ZDQwYzZmIiwiYmxha2UycyI6ImQ0ZGJlZTJkMmZlNDMwOGViYTkwMTY1MDdmMzI1ZmJiODZlMWQzNDQ0MjgzNzRlMjAwNjNiNWQ1MzkzZTExNjMiLCJzaGEzXzIyNCI6ImE1ZTM5NWZlNGRlYjIyY2JhNjgwMWFiZTliZjljMjM2YmMzYjkwZDdiN2ZjMTRhZDhjZjQ0NzBlIiwic2hhM18yNTYiOiIwOWYwZGVjODk0OWEzYmQzYzU3N2RjYzUyMTMwMGRiY2UwMjVjM2VjOTJkNzQ0MDJkNTE1ZDA4NTQwODg2NGY1Iiwic2hhM18zODQiOiJmMjEyNmM5NTcxODQ3NDZmNjYyMjE4MTRkMDZkZWQ3NDBhYWU3MDA4MTc0YjI0OTEzY2YwOTQzY2IwMTA5Y2QxNWI4YmMwOGY1YjUwMWYwYzhhOTY4MzUwYzgzY2I1ZWUiLCJzaGEzXzUxMiI6ImU1ZmEwMzIwMzk2YTJjMThjN2UxZjVlZmJiODYwYTU1M2NlMTlkMDQ0MWMxNWEwZTI1M2RiNjJkM2JmNjg0ZDI1OWIxYmQ4OTJkYTcyMDVjYTYyODQ2YzU0YWI1ODYxOTBmNDUxZDlmZmNkNDA5YmU5MzlhNWM1YWIyZDdkM2ZkIiwic2hha2VfMTI4IjoiNGI2MTllM2I4N2U1YTY4OTgxMjk0YzgzMmU0NzljZGI4MWFmODdlZTE4YzM1Zjc5ZjExODY5ZWEzNWUxN2I3MiIsInNoYWtlXzI1NiI6ImYzOWVkNmMxZmQ2NzVmMDg3ODAyYTc4ZTUwYWFkN2ZiYTZiM2QxNzhlZWYzMjRkMTI3ZTZjYmEwMGRjNzkwNTkxNjQ1Y2U1Y2NmMjhjYzVkNWRkODU1OWIzMDMxYTM3ZjE5NjhmYmFhNDQzMmI2ZWU0Yzg3ZWE2YTdkMmE2NWM2In0K",
|
||||
"eyJibGFrZTNfbXVsdGkiOiJhNDRiZjJkMzVkZDI3OTZlZTI1NmY0MzVkODFhNTdhOGM0MjZhMzM5ZDc3NTVkMmNiMjdmMzU4ZjM0NTM4OWM2IiwiYmxha2UzX3NpbmdsZSI6ImE0NGJmMmQzNWRkMjc5NmVlMjU2ZjQzNWQ4MWE1N2E4YzQyNmEzMzlkNzc1NWQyY2IyN2YzNThmMzQ1Mzg5YzYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiOGU5OTMzMzEyZjg4NDY4MDg0ZmRiZWNjNDYyMTMxZTgiLCJzaGExIjoiNmI0MmZjZDFmMmQyNzUwYWNkY2JkMTUzMmQ4NjQ5YTM1YWI2NDYzNCIsInNoYTIyNCI6ImQ2Y2E2OTUxNzIzZjdjZjg0NzBjZWRjMmVhNjA2ODNmMWU4NDMzM2Q2NDM2MGIzOWIyMjZlZmQzIiwic2hhMjU2IjoiMDAxNGY5Yzg0YjcwMTFhMGJkNzliNzU0NGVjNzg4NDQzNWQ4ZGY0NmRjMDBiNDk0ZmFkYzA4NWQzNDM1NjI4MyIsInNoYTM4NCI6IjMxODg2OTYxODc4NWY3MWJlM2RlZjkyZDgyNzY2NjBhZGE0MGViYTdkMDk1M2Y0YTc5ODdlMThhNzFlNjBlY2EwY2YyM2YwMjVhMmQ4ZjUyMmNkZGY3MTcxODFhMTQxNSIsInNoYTUxMiI6IjdmZGQxN2NmOWU3ZTBhZDcwMzJjMDg1MTkyYWMxZmQ0ZmFhZjZkNWNlYzAzOTE5ZDk0MmZiZTIyNWNhNmIwZTg0NmQ4ZGI0ZjllYTQ5MjJlMTdhNTg4MTY4YzExMTM1NWZiZDQ1NTlmMmU5NDcwNjAwZWE1MzBhMDdiMzY0YWQwIiwiYmxha2UyYiI6IjI0ZjExZWI5M2VlN2YxOTI5NWZiZGU5MTczMmE0NGJkZGYxOWE1ZTQ4MWNmOWFhMjQ2M2UzNDllYjg0Mzc4ZDBkODFjNzY0YWQ1NTk1YjkxZjQzYzgxODcxNTRlYWU5NTZkY2ZjZTlkMWU2MTZjNTFkZThhZDZjZTBhODcyY2Q0IiwiYmxha2UycyI6IjVkZTUwZDUwMGYwYTBmOGRlMTEwOGE2ZmFkZGM4ODNlMTA3NmQ3MThiNmQxN2E4ZDVkMjgzZDdiNGYzZDU2OGEiLCJzaGEzXzIyNCI6IjFhNTA0OGNlYWZiYjg2ZDc4ZmNiNTI0ZTViYTc4NWQ2ZmY5NzY1ZTNlMzdhZWRjZmYxZGVjNGJhIiwic2hhM18yNTYiOiI0YjA0YjE1NTRmMzRkYTlmMjBmZDczM2IzNDg4NjE0ZWNhM2IwOWU1OTJjOGJlMmM0NjA1NjYyMWU0MjJmZDllIiwic2hhM18zODQiOiI1NjMwYjM2OGQ4MGM1YmM5MTgzM2VmNWM2YWUzOTJhNDE4NTNjYmM2MWJiNTI4ZDE4YWM1OWFjZGZiZWU1YThkMWMyZDE4MTM1ZGI2ZWQ2OTJlODFkZThmYTM3MzkxN2MiLCJzaGEzXzUxMiI6IjA2ODg4MGE1MmNiNDkzODYwZDhjOTVhOTFhZGFmZTYwZGYxODc2ZDhjYjFhNmI3NTU2ZjJjM2Y1NjFmMGYwZjMyZjZhYTA1YmVmN2FhYjQ5OWEwNTM0Zjk0Njc4MDEzODlmNDc0ODFiNzcxMjdjMDFiOGFhOTY4NGJhZGUzYmY2Iiwic2hha2VfMTI4IjoiODlmYTdjNDcwNGI4NGZkMWQ1M2E0MTBlN2ZjMzU3NWRhNmUxMGU1YzkzMjM1NWYyZWEyMWM4NDVhZDBlM2UxOCIsInNoYWtlXzI1NiI6IjE4NGNlMWY2NjdmYmIyODA5NWJhZmVkZTQzNTUzZjhkYzBhNGY1MDQwYWJlMjcxMzkzMzcwNDEyZWFiZTg0ZGJhNjI0Y2ZiZWE4YzUxZDU2YzkwMTM2Mjg2ODgyZmQ0Y2E3MzA3NzZjNWUzODFlYzI5MWYxYTczOTE1MDkyMTFmIn0K",
|
||||
"eyJibGFrZTNfbXVsdGkiOiJhYjA2YjNmMDliNTExOTAzMTMzMzY5NDE2MTc4ZDk2ZjlkYTc3ZGEwOTgyNDJmN2VlMTVjNTNhNTRkMDZhNWVmIiwiYmxha2UzX3NpbmdsZSI6ImFiMDZiM2YwOWI1MTE5MDMxMzMzNjk0MTYxNzhkOTZmOWRhNzdkYTA5ODI0MmY3ZWUxNWM1M2E1NGQwNmE1ZWYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZWY0MjcxYjU3NTQwMjU4NGQ2OTI5ZWJkMGI3Nzk5NzYiLCJzaGExIjoiMzgzNzliYWQzZjZiZjc4MmM4OTgzOGY3YWVkMzRkNDNkMzNlYWM2MSIsInNoYTIyNCI6ImQ5ZDNiMjJkYmZlY2M1NTdlODAzNjg5M2M3ZWE0N2I0NTQzYzM2NzZhMDk4NzMxMzRhNjQ0OWEwIiwic2hhMjU2IjoiMjYxZGI3NmJlMGYxMzdlZWJkYmI5OGRlYWM0ZjcyMDdiOGUxMjdiY2MyZmMwODI5OGVjZDczYjQ3MjYxNjQ1NiIsInNoYTM4NCI6IjMzMjkwYWQxYjlhMmRkYmU0ODY3MWZiMTIxNDdiZWJhNjI4MjA1MDcwY2VkNjNiZTFmNGU5YWRhMjgwYWU2ZjZjNDkzYTY2MDllMGQ2YTIzMWU2ODU5ZmIyNGZhM2FjMCIsInNoYTUxMiI6IjAzMDZhMWI1NmNiYTdjNjJiNTNmNTk4MTAwMTQ3MDQ5ODBhNGRmZTdjZjQ5NTU4ZmMyMmQxZDczZDc5NzJmZTllODk2ZWRjMmEyYTQxYWVjNjRjZjkwZGUwYjI1NGM0MDBlZTU1YzcwZjk3OGVlMzk5NmM2YzhkNTBjYTI4YTdiIiwiYmxha2UyYiI6IjY1MDZhMDg1YWQ5MGZkZjk2NGJmMGE5NTFkZmVkMTllZTc0NGVjY2EyODQzZjQzYTI5NmFjZDM0M2RiODhhMDNlNTlkNmFmMGM1YWJkNTEzMzc4MTQ5Yjg3OTExMTVmODRmMDIyZWM1M2JmNGFjNDZhZDczNWIwMmJlYTM0MDk5IiwiYmxha2UycyI6IjdlZDQ3ZWQxOTg3MTk0YWFmNGIwMjQ3MWFkNTMyMmY3NTE3ZjI0OTcwMDc2Y2NmNDkzMWI0MzYxMDU1NzBlNDAiLCJzaGEzXzIyNCI6Ijk2MGM4MDExOTlhMGUzYWExNjdiNmU2MWVkMzE2ZDUzMDM2Yjk4M2UyOThkNWI5MjZmMDc3NDlhIiwic2hhM18yNTYiOiIzYzdmYWE1ZDE3Zjk2MGYxOTI2ZjNlNGIyZjc1ZjdiOWIyZDQ4NGFhNmEwM2ViOWNlMTI4NmM2OTE2YWEyM2RlIiwic2hhM18zODQiOiI5Y2Y0NDA1NWFjYzFlYjZmMDY1YjRjODcxYTYzNTM1MGE1ZjY0ODQwM2YwYTU0MWEzYzZhNjI3N2ViZjZmYTNjYmM1YmJiNjQwMDE4OGFlMWIxMTI2OGZmMDJiMzYzZDUiLCJzaGEzXzUxMiI6ImEyZDk3ZDRlYjYxM2UwZDViYTc2OTk2MzE2MzcxOGEwNDIxZDkxNTNiNjllYjM5MDRmZjI4ODRhZDdjNGJiYmIwNGY2Nzc1OTA1YmQxNGI2NTJmZTQ1Njg0YmI5MTQ3ZjBkYWViZjAxZjIzY2MzZDhkMjIzMTE0MGUzNjI4NTE5Iiwic2hha2VfMTI4IjoiNjkwMWMwYjg1MTg5ZTkyNTJiODI3MTc5NjE2MjRlMTM0MDQ1ZjlkMmI5MzM0MzVkM2Y0OThiZWIyN2Q3N2JiNSIsInNoYWtlXzI1NiI6ImIwMjA4ZTFkNDVjZWI0ODdiZDUwNzk3MWJiNWI3MjdjN2UyYmE3ZDliNWM2ZTEyYWE5YTNhOTY5YzcyNDRjODIwZDcyNDY1ODhlZWU3Yjk4ZWM1NzhjZWIxNjc3OTkxODljMWRkMmZkMmZmYWM4MWExZDAzZDFiNjMxOGRkMjBiIn0K",
|
||||
]
|
||||
@@ -31,12 +31,13 @@ from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
|
||||
from ..raw_model import RawModel
|
||||
|
||||
# ModelMixin is the base class for all diffusers and transformers models
|
||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
@@ -115,7 +116,7 @@ class SchedulerPredictionType(str, Enum):
|
||||
class ModelRepoVariant(str, Enum):
|
||||
"""Various hugging face variants on the diffusers format."""
|
||||
|
||||
Default = "" # model files without "fp16" or other qualifier - empty str
|
||||
Default = "" # model files without "fp16" or other qualifier
|
||||
FP16 = "fp16"
|
||||
FP32 = "fp32"
|
||||
ONNX = "onnx"
|
||||
@@ -448,4 +449,6 @@ class ModelConfigFactory(object):
|
||||
model.key = key
|
||||
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
|
||||
model.converted_at = timestamp
|
||||
if model:
|
||||
validate_hash(model.hash)
|
||||
return model # type: ignore
|
||||
|
||||
@@ -7,7 +7,7 @@ from importlib import import_module
|
||||
from pathlib import Path
|
||||
|
||||
from .convert_cache.convert_cache_default import ModelConvertCache
|
||||
from .load_base import LoadedModel, ModelLoaderBase
|
||||
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from .load_default import ModelLoader
|
||||
from .model_cache.model_cache_default import ModelCache
|
||||
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
@@ -19,6 +19,7 @@ for module in loaders:
|
||||
|
||||
__all__ = [
|
||||
"LoadedModel",
|
||||
"LoadedModelWithoutConfig",
|
||||
"ModelCache",
|
||||
"ModelConvertCache",
|
||||
"ModelLoaderBase",
|
||||
|
||||
@@ -7,6 +7,7 @@ from pathlib import Path
|
||||
|
||||
from invokeai.backend.util import GIG, directory_size
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import safe_filename
|
||||
|
||||
from .convert_cache_base import ModelConvertCacheBase
|
||||
|
||||
@@ -35,6 +36,7 @@ class ModelConvertCache(ModelConvertCacheBase):
|
||||
|
||||
def cache_path(self, key: str) -> Path:
|
||||
"""Return the path for a model with the indicated key."""
|
||||
key = safe_filename(self._cache_path, key)
|
||||
return self._cache_path / key
|
||||
|
||||
def make_room(self, size: float) -> None:
|
||||
|
||||
@@ -4,10 +4,13 @@ Base class for model loading in InvokeAI.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Dict, Generator, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -20,10 +23,44 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Mod
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadedModel:
|
||||
"""Context manager object that mediates transfer from RAM<->VRAM."""
|
||||
class LoadedModelWithoutConfig:
|
||||
"""
|
||||
Context manager object that mediates transfer from RAM<->VRAM.
|
||||
|
||||
This is a context manager object that has two distinct APIs:
|
||||
|
||||
1. Older API (deprecated):
|
||||
Use the LoadedModel object directly as a context manager.
|
||||
It will move the model into VRAM (on CUDA devices), and
|
||||
return the model in a form suitable for passing to torch.
|
||||
Example:
|
||||
```
|
||||
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
|
||||
with loaded_model as vae:
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
2. Newer API (recommended):
|
||||
Call the LoadedModel's `model_on_device()` method in a
|
||||
context. It returns a tuple consisting of a copy of
|
||||
the model's state dict in CPU RAM followed by a copy
|
||||
of the model in VRAM. The state dict is provided to allow
|
||||
LoRAs and other model patchers to return the model to
|
||||
its unpatched state without expensive copy and restore
|
||||
operations.
|
||||
|
||||
Example:
|
||||
```
|
||||
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
|
||||
with loaded_model.model_on_device() as (state_dict, vae):
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
The state_dict should be treated as a read-only object and
|
||||
never modified. Also be aware that some loadable models do
|
||||
not have a state_dict, in which case this value will be None.
|
||||
"""
|
||||
|
||||
config: AnyModelConfig
|
||||
_locker: ModelLockerBase
|
||||
|
||||
def __enter__(self) -> AnyModel:
|
||||
@@ -35,12 +72,29 @@ class LoadedModel:
|
||||
"""Context exit."""
|
||||
self._locker.unlock()
|
||||
|
||||
@contextmanager
|
||||
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
|
||||
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
|
||||
locked_model = self._locker.lock()
|
||||
try:
|
||||
state_dict = self._locker.get_state_dict()
|
||||
yield (state_dict, locked_model)
|
||||
finally:
|
||||
self._locker.unlock()
|
||||
|
||||
@property
|
||||
def model(self) -> AnyModel:
|
||||
"""Return the model without locking it."""
|
||||
return self._locker.model
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadedModel(LoadedModelWithoutConfig):
|
||||
"""Context manager object that mediates transfer from RAM<->VRAM."""
|
||||
|
||||
config: Optional[AnyModelConfig] = None
|
||||
|
||||
|
||||
# TODO(MM2):
|
||||
# Some "intermediary" subclasses in the ModelLoaderBase class hierarchy define methods that their subclasses don't
|
||||
# know about. I think the problem may be related to this class being an ABC.
|
||||
|
||||
@@ -16,7 +16,7 @@ from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
@@ -84,7 +84,7 @@ class ModelLoader(ModelLoaderBase):
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
cache_path: Path = self._convert_cache.cache_path(config.key)
|
||||
cache_path: Path = self._convert_cache.cache_path(str(model_path))
|
||||
if self._needs_conversion(config, model_path, cache_path):
|
||||
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)
|
||||
else:
|
||||
@@ -95,7 +95,6 @@ class ModelLoader(ModelLoaderBase):
|
||||
config.key,
|
||||
submodel_type=submodel_type,
|
||||
model=loaded_model,
|
||||
size=calc_model_size_by_data(loaded_model),
|
||||
)
|
||||
|
||||
return self._ram_cache.get(
|
||||
@@ -126,9 +125,7 @@ class ModelLoader(ModelLoaderBase):
|
||||
if subtype == submodel_type:
|
||||
continue
|
||||
if submodel := getattr(pipeline, subtype.value, None):
|
||||
self._ram_cache.put(
|
||||
config.key, submodel_type=subtype, model=submodel, size=calc_model_size_by_data(submodel)
|
||||
)
|
||||
self._ram_cache.put(config.key, submodel_type=subtype, model=submodel)
|
||||
return getattr(pipeline, submodel_type.value) if submodel_type else pipeline
|
||||
|
||||
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
|
||||
|
||||
@@ -30,6 +30,11 @@ class ModelLockerBase(ABC):
|
||||
"""Unlock the contained model, and remove it from VRAM."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
|
||||
"""Return the state dict (if any) for the cached model."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def model(self) -> AnyModel:
|
||||
@@ -56,6 +61,11 @@ class CacheRecord(Generic[T]):
|
||||
and then injected into the model. When the model is finished, the VRAM
|
||||
copy of the state dict is deleted, and the RAM version is reinjected
|
||||
into the model.
|
||||
|
||||
The state_dict should be treated as a read-only attribute. Do not attempt
|
||||
to patch or otherwise modify it. Instead, patch the copy of the state_dict
|
||||
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
|
||||
context manager call `model_on_device()`.
|
||||
"""
|
||||
|
||||
key: str
|
||||
@@ -159,7 +169,6 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
self,
|
||||
key: str,
|
||||
model: T,
|
||||
size: int,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> None:
|
||||
"""Store model under key and optional submodel_type."""
|
||||
|
||||
@@ -29,6 +29,7 @@ import torch
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
||||
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
@@ -153,13 +154,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
self,
|
||||
key: str,
|
||||
model: AnyModel,
|
||||
size: int,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> None:
|
||||
"""Store model under key and optional submodel_type."""
|
||||
key = self._make_cache_key(key, submodel_type)
|
||||
if key in self._cached_models:
|
||||
return
|
||||
size = calc_model_size_by_data(model)
|
||||
self.make_room(size)
|
||||
|
||||
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
|
||||
@@ -252,12 +253,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
|
||||
May raise a torch.cuda.OutOfMemoryError
|
||||
"""
|
||||
# These attributes are not in the base ModelMixin class but in various derived classes.
|
||||
# Some models don't have these attributes, in which case they run in RAM/CPU.
|
||||
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
|
||||
if not (hasattr(cache_entry.model, "device") and hasattr(cache_entry.model, "to")):
|
||||
return
|
||||
|
||||
source_device = cache_entry.device
|
||||
|
||||
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
|
||||
@@ -265,6 +261,10 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
if torch.device(source_device).type == torch.device(target_device).type:
|
||||
return
|
||||
|
||||
# Some models don't have a `to` method, in which case they run in RAM/CPU.
|
||||
if not hasattr(cache_entry.model, "to"):
|
||||
return
|
||||
|
||||
# This roundabout method for moving the model around is done to avoid
|
||||
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
|
||||
# When moving to VRAM, we copy (not move) each element of the state dict from
|
||||
@@ -285,9 +285,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
else:
|
||||
new_dict: Dict[str, torch.Tensor] = {}
|
||||
for k, v in cache_entry.state_dict.items():
|
||||
new_dict[k] = v.to(torch.device(target_device), copy=True)
|
||||
new_dict[k] = v.to(torch.device(target_device), copy=True, non_blocking=True)
|
||||
cache_entry.model.load_state_dict(new_dict, assign=True)
|
||||
cache_entry.model.to(target_device)
|
||||
cache_entry.model.to(target_device, non_blocking=True)
|
||||
cache_entry.device = target_device
|
||||
except Exception as e: # blow away cache entry
|
||||
self._delete_cache_entry(cache_entry)
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
Base class and implementation of a class that moves models in and out of VRAM.
|
||||
"""
|
||||
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
@@ -27,20 +29,18 @@ class ModelLocker(ModelLockerBase):
|
||||
"""Return the model without moving it around."""
|
||||
return self._cache_entry.model
|
||||
|
||||
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
|
||||
"""Return the state dict (if any) for the cached model."""
|
||||
return self._cache_entry.state_dict
|
||||
|
||||
def lock(self) -> AnyModel:
|
||||
"""Move the model into the execution device (GPU) and lock it."""
|
||||
if not hasattr(self.model, "to"):
|
||||
return self.model
|
||||
|
||||
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
|
||||
self._cache_entry.lock()
|
||||
try:
|
||||
if self._cache.lazy_offloading:
|
||||
self._cache.offload_unlocked_models(self._cache_entry.size)
|
||||
|
||||
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
|
||||
self._cache_entry.loaded = True
|
||||
|
||||
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
|
||||
self._cache.print_cuda_stats()
|
||||
except torch.cuda.OutOfMemoryError:
|
||||
@@ -55,10 +55,7 @@ class ModelLocker(ModelLockerBase):
|
||||
|
||||
def unlock(self) -> None:
|
||||
"""Call upon exit from context."""
|
||||
if not hasattr(self.model, "to"):
|
||||
return
|
||||
|
||||
self._cache_entry.unlock()
|
||||
if not self._cache.lazy_offloading:
|
||||
self._cache.offload_unlocked_models(self._cache_entry.size)
|
||||
self._cache.offload_unlocked_models(0)
|
||||
self._cache.print_cuda_stats()
|
||||
|
||||
@@ -65,14 +65,11 @@ class GenericDiffusersLoader(ModelLoader):
|
||||
else:
|
||||
try:
|
||||
config = self._load_diffusers_config(model_path, config_name="config.json")
|
||||
class_name = config.get("_class_name", None)
|
||||
if class_name:
|
||||
if class_name := config.get("_class_name"):
|
||||
result = self._hf_definition_to_type(module="diffusers", class_name=class_name)
|
||||
if config.get("model_type", None) == "clip_vision_model":
|
||||
class_name = config.get("architectures")
|
||||
assert class_name is not None
|
||||
elif class_name := config.get("architectures"):
|
||||
result = self._hf_definition_to_type(module="transformers", class_name=class_name[0])
|
||||
if not class_name:
|
||||
else:
|
||||
raise InvalidModelConfigException("Unable to decipher Load Class based on given config.json")
|
||||
except KeyError as e:
|
||||
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e
|
||||
|
||||
@@ -22,8 +22,7 @@ from .generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Checkpoint)
|
||||
class VAELoader(GenericDiffusersLoader):
|
||||
"""Class to load VAE models."""
|
||||
|
||||
@@ -40,12 +39,8 @@ class VAELoader(GenericDiffusersLoader):
|
||||
return True
|
||||
|
||||
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
|
||||
# TODO(MM2): check whether sdxl VAE models convert.
|
||||
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
|
||||
raise Exception(f"VAE conversion not supported for model type: {config.base}")
|
||||
else:
|
||||
assert isinstance(config, CheckpointConfigBase)
|
||||
config_file = self._app_config.legacy_conf_path / config.config_path
|
||||
assert isinstance(config, CheckpointConfigBase)
|
||||
config_file = self._app_config.legacy_conf_path / config.config_path
|
||||
|
||||
if model_path.suffix == ".safetensors":
|
||||
checkpoint = safetensors_load_file(model_path, device="cpu")
|
||||
|
||||
@@ -83,7 +83,7 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
|
||||
assert s.size is not None
|
||||
files.append(
|
||||
RemoteModelFile(
|
||||
url=hf_hub_url(id, s.rfilename, revision=variant),
|
||||
url=hf_hub_url(id, s.rfilename, revision=variant or "main"),
|
||||
path=Path(name, s.rfilename),
|
||||
size=s.size,
|
||||
sha256=s.lfs.get("sha256") if s.lfs else None,
|
||||
|
||||
@@ -37,9 +37,12 @@ class RemoteModelFile(BaseModel):
|
||||
|
||||
url: AnyHttpUrl = Field(description="The url to download this model file")
|
||||
path: Path = Field(description="The path to the file, relative to the model root")
|
||||
size: int = Field(description="The size of this file, in bytes")
|
||||
size: Optional[int] = Field(description="The size of this file, in bytes", default=0)
|
||||
sha256: Optional[str] = Field(description="SHA256 hash of this model (not always available)", default=None)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(str(self))
|
||||
|
||||
|
||||
class ModelMetadataBase(BaseModel):
|
||||
"""Base class for model metadata information."""
|
||||
|
||||
@@ -10,7 +10,7 @@ from picklescan.scanner import scan_file_path
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.util.util import SilenceWarnings
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
from .config import (
|
||||
AnyModelConfig,
|
||||
@@ -451,8 +451,16 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
|
||||
class VaeCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
# I can't find any standalone 2.X VAEs to test with!
|
||||
return BaseModelType.StableDiffusion1
|
||||
# VAEs of all base types have the same structure, so we wimp out and
|
||||
# guess using the name.
|
||||
for regexp, basetype in [
|
||||
(r"xl", BaseModelType.StableDiffusionXL),
|
||||
(r"sd2", BaseModelType.StableDiffusion2),
|
||||
(r"vae", BaseModelType.StableDiffusion1),
|
||||
]:
|
||||
if re.search(regexp, self.model_path.name, re.IGNORECASE):
|
||||
return basetype
|
||||
raise InvalidModelConfigException("Cannot determine base type")
|
||||
|
||||
|
||||
class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
|
||||
@@ -5,7 +5,7 @@ from __future__ import annotations
|
||||
|
||||
import pickle
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -66,8 +66,14 @@ class ModelPatcher:
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(
|
||||
unet,
|
||||
loras=loras,
|
||||
prefix="lora_unet_",
|
||||
model_state_dict=model_state_dict,
|
||||
):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@@ -76,28 +82,9 @@ class ModelPatcher:
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_sdxl_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_sdxl_lora_text_encoder2(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
|
||||
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@@ -107,7 +94,16 @@ class ModelPatcher:
|
||||
model: AnyModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> None:
|
||||
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
"""
|
||||
Apply one or more LoRAs to a model.
|
||||
|
||||
:param model: The model to patch.
|
||||
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes.
|
||||
"""
|
||||
original_weights = {}
|
||||
try:
|
||||
with torch.no_grad():
|
||||
@@ -133,19 +129,22 @@ class ModelPatcher:
|
||||
dtype = module.weight.dtype
|
||||
|
||||
if module_key not in original_weights:
|
||||
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
|
||||
original_weights[module_key] = model_state_dict[module_key + ".weight"]
|
||||
else:
|
||||
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
layer.to(device=device, non_blocking=True)
|
||||
layer.to(dtype=torch.float32, non_blocking=True)
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
||||
layer.to(device=torch.device("cpu"))
|
||||
layer.to(device=torch.device("cpu"), non_blocking=True)
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
if module.weight.shape != layer_weight.shape:
|
||||
@@ -154,7 +153,7 @@ class ModelPatcher:
|
||||
layer_weight = layer_weight.reshape(module.weight.shape)
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
module.weight += layer_weight.to(dtype=dtype)
|
||||
module.weight += layer_weight.to(dtype=dtype, non_blocking=True)
|
||||
|
||||
yield # wait for context manager exit
|
||||
|
||||
@@ -162,7 +161,7 @@ class ModelPatcher:
|
||||
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
||||
with torch.no_grad():
|
||||
for module_key, weight in original_weights.items():
|
||||
model.get_submodule(module_key).weight.copy_(weight)
|
||||
model.get_submodule(module_key).weight.copy_(weight, non_blocking=True)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Any, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import torch
|
||||
from onnx import numpy_helper
|
||||
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
||||
|
||||
@@ -188,6 +189,15 @@ class IAIOnnxRuntimeModel(RawModel):
|
||||
# return self.io_binding.copy_outputs_to_cpu()
|
||||
return self.session.run(None, inputs)
|
||||
|
||||
# compatability with RawModel ABC
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
# compatability with diffusers load code
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
|
||||
@@ -10,6 +10,20 @@ The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
|
||||
that adds additional methods and attributes.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
class RawModel:
|
||||
"""Base class for 'Raw' model wrappers."""
|
||||
import torch
|
||||
|
||||
|
||||
class RawModel(ABC):
|
||||
"""Abstract base class for 'Raw' model wrappers."""
|
||||
|
||||
@abstractmethod
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
@@ -65,6 +65,18 @@ class TextualInversionModelRaw(RawModel):
|
||||
|
||||
return result
|
||||
|
||||
def to(
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
non_blocking: bool = False,
|
||||
) -> None:
|
||||
if not torch.cuda.is_available():
|
||||
return
|
||||
for emb in [self.embedding, self.embedding_2]:
|
||||
if emb is not None:
|
||||
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
|
||||
|
||||
|
||||
class TextualInversionManager(BaseTextualInversionManager):
|
||||
"""TextualInversionManager implements the BaseTextualInversionManager ABC from the compel library."""
|
||||
|
||||
@@ -1,29 +1,36 @@
|
||||
"""Context class to silence transformers and diffusers warnings."""
|
||||
|
||||
import warnings
|
||||
from typing import Any
|
||||
from contextlib import ContextDecorator
|
||||
|
||||
from diffusers import logging as diffusers_logging
|
||||
from diffusers.utils import logging as diffusers_logging
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Use in context to temporarily turn off warnings from transformers & diffusers modules.
|
||||
# Inherit from ContextDecorator to allow using SilenceWarnings as both a context manager and a decorator.
|
||||
class SilenceWarnings(ContextDecorator):
|
||||
"""A context manager that disables warnings from transformers & diffusers modules while active.
|
||||
|
||||
As context manager:
|
||||
```
|
||||
with SilenceWarnings():
|
||||
# do something
|
||||
```
|
||||
|
||||
As decorator:
|
||||
```
|
||||
@SilenceWarnings()
|
||||
def some_function():
|
||||
# do something
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
|
||||
def __enter__(self) -> None:
|
||||
self._transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self._diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
def __exit__(self, *args) -> None:
|
||||
transformers_logging.set_verbosity(self._transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self._diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
||||
|
||||
@@ -1,17 +1,43 @@
|
||||
import base64
|
||||
import io
|
||||
import os
|
||||
import warnings
|
||||
import re
|
||||
import unicodedata
|
||||
from pathlib import Path
|
||||
|
||||
from diffusers import logging as diffusers_logging
|
||||
from PIL import Image
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
|
||||
|
||||
def slugify(value: str, allow_unicode: bool = False) -> str:
|
||||
"""
|
||||
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
|
||||
dashes to single dashes. Remove characters that aren't alphanumerics,
|
||||
underscores, or hyphens. Replace slashes with underscores.
|
||||
Convert to lowercase. Also strip leading and
|
||||
trailing whitespace, dashes, and underscores.
|
||||
|
||||
Adapted from Django: https://github.com/django/django/blob/main/django/utils/text.py
|
||||
"""
|
||||
value = str(value)
|
||||
if allow_unicode:
|
||||
value = unicodedata.normalize("NFKC", value)
|
||||
else:
|
||||
value = unicodedata.normalize("NFKD", value).encode("ascii", "ignore").decode("ascii")
|
||||
value = re.sub(r"[/]", "_", value.lower())
|
||||
value = re.sub(r"[^.\w\s-]", "", value.lower())
|
||||
return re.sub(r"[-\s]+", "-", value).strip("-_")
|
||||
|
||||
|
||||
def safe_filename(directory: Path, value: str) -> str:
|
||||
"""Make a string safe to use as a filename."""
|
||||
escaped_string = slugify(value)
|
||||
max_name_length = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 256
|
||||
return escaped_string[len(escaped_string) - max_name_length :]
|
||||
|
||||
|
||||
def directory_size(directory: Path) -> int:
|
||||
"""
|
||||
Return the aggregate size of all files in a directory (bytes).
|
||||
@@ -51,21 +77,3 @@ class Chdir(object):
|
||||
|
||||
def __exit__(self, *args):
|
||||
os.chdir(self.original)
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Context manager to temporarily lower verbosity of diffusers & transformers warning messages."""
|
||||
|
||||
def __enter__(self):
|
||||
"""Set verbosity to error."""
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""Restore logger verbosity to state before context was entered."""
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
||||
|
||||
@@ -1021,7 +1021,8 @@
|
||||
"float": "Kommazahlen",
|
||||
"enum": "Aufzählung",
|
||||
"fullyContainNodes": "Vollständig ausgewählte Nodes auswählen",
|
||||
"editMode": "Im Workflow-Editor bearbeiten"
|
||||
"editMode": "Im Workflow-Editor bearbeiten",
|
||||
"resetToDefaultValue": "Auf Standardwert zurücksetzen"
|
||||
},
|
||||
"hrf": {
|
||||
"enableHrf": "Korrektur für hohe Auflösungen",
|
||||
|
||||
@@ -37,7 +37,11 @@
|
||||
"selectBoard": "Select a Board",
|
||||
"topMessage": "This board contains images used in the following features:",
|
||||
"uncategorized": "Uncategorized",
|
||||
"downloadBoard": "Download Board"
|
||||
"downloadBoard": "Download Board",
|
||||
"imagesWithCount_one": "{{count}} image",
|
||||
"imagesWithCount_other": "{{count}} images",
|
||||
"assetsWithCount_one": "{{count}} asset",
|
||||
"assetsWithCount_other": "{{count}} assets"
|
||||
},
|
||||
"accordions": {
|
||||
"generation": {
|
||||
@@ -148,6 +152,8 @@
|
||||
"viewingDesc": "Review images in a large gallery view",
|
||||
"editing": "Editing",
|
||||
"editingDesc": "Edit on the Control Layers canvas",
|
||||
"comparing": "Comparing",
|
||||
"comparingDesc": "Comparing two images",
|
||||
"enabled": "Enabled",
|
||||
"disabled": "Disabled"
|
||||
},
|
||||
@@ -375,7 +381,27 @@
|
||||
"bulkDownloadRequestFailed": "Problem Preparing Download",
|
||||
"bulkDownloadFailed": "Download Failed",
|
||||
"problemDeletingImages": "Problem Deleting Images",
|
||||
"problemDeletingImagesDesc": "One or more images could not be deleted"
|
||||
"problemDeletingImagesDesc": "One or more images could not be deleted",
|
||||
"viewerImage": "Viewer Image",
|
||||
"compareImage": "Compare Image",
|
||||
"noActiveSearch": "No active search",
|
||||
"openInViewer": "Open in Viewer",
|
||||
"searchingBy": "Searching by",
|
||||
"selectAllOnPage": "Select All On Page",
|
||||
"selectAllOnBoard": "Select All On Board",
|
||||
"selectForCompare": "Select for Compare",
|
||||
"selectAnImageToCompare": "Select an Image to Compare",
|
||||
"slider": "Slider",
|
||||
"sideBySide": "Side-by-Side",
|
||||
"hover": "Hover",
|
||||
"swapImages": "Swap Images",
|
||||
"compareOptions": "Comparison Options",
|
||||
"stretchToFit": "Stretch to Fit",
|
||||
"exitCompare": "Exit Compare",
|
||||
"compareHelp1": "Hold <Kbd>Alt</Kbd> while clicking a gallery image or using the arrow keys to change the compare image.",
|
||||
"compareHelp2": "Press <Kbd>M</Kbd> to cycle through comparison modes.",
|
||||
"compareHelp3": "Press <Kbd>C</Kbd> to swap the compared images.",
|
||||
"compareHelp4": "Press <Kbd>Z</Kbd> or <Kbd>Esc</Kbd> to exit."
|
||||
},
|
||||
"hotkeys": {
|
||||
"searchHotkeys": "Search Hotkeys",
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
"settingsLabel": "Ajustes",
|
||||
"img2img": "Imagen a Imagen",
|
||||
"unifiedCanvas": "Lienzo Unificado",
|
||||
"nodes": "Editor del flujo de trabajo",
|
||||
"nodes": "Flujos de trabajo",
|
||||
"upload": "Subir imagen",
|
||||
"load": "Cargar",
|
||||
"statusDisconnected": "Desconectado",
|
||||
@@ -14,7 +14,7 @@
|
||||
"discordLabel": "Discord",
|
||||
"back": "Atrás",
|
||||
"loading": "Cargando",
|
||||
"postprocessing": "Tratamiento posterior",
|
||||
"postprocessing": "Postprocesado",
|
||||
"txt2img": "De texto a imagen",
|
||||
"accept": "Aceptar",
|
||||
"cancel": "Cancelar",
|
||||
@@ -42,7 +42,42 @@
|
||||
"copy": "Copiar",
|
||||
"beta": "Beta",
|
||||
"on": "En",
|
||||
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:"
|
||||
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:",
|
||||
"installed": "Instalado",
|
||||
"green": "Verde",
|
||||
"editor": "Editor",
|
||||
"orderBy": "Ordenar por",
|
||||
"file": "Archivo",
|
||||
"goTo": "Ir a",
|
||||
"imageFailedToLoad": "No se puede cargar la imagen",
|
||||
"saveAs": "Guardar Como",
|
||||
"somethingWentWrong": "Algo salió mal",
|
||||
"nextPage": "Página Siguiente",
|
||||
"selected": "Seleccionado",
|
||||
"tab": "Tabulador",
|
||||
"positivePrompt": "Prompt Positivo",
|
||||
"negativePrompt": "Prompt Negativo",
|
||||
"error": "Error",
|
||||
"format": "formato",
|
||||
"unknown": "Desconocido",
|
||||
"input": "Entrada",
|
||||
"nodeEditor": "Editor de nodos",
|
||||
"template": "Plantilla",
|
||||
"prevPage": "Página Anterior",
|
||||
"red": "Rojo",
|
||||
"alpha": "Transparencia",
|
||||
"outputs": "Salidas",
|
||||
"editing": "Editando",
|
||||
"learnMore": "Aprende más",
|
||||
"enabled": "Activado",
|
||||
"disabled": "Desactivado",
|
||||
"folder": "Carpeta",
|
||||
"updated": "Actualizado",
|
||||
"created": "Creado",
|
||||
"save": "Guardar",
|
||||
"unknownError": "Error Desconocido",
|
||||
"blue": "Azul",
|
||||
"viewingDesc": "Revisar imágenes en una vista de galería grande"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Tamaño de la imagen",
|
||||
@@ -467,7 +502,8 @@
|
||||
"about": "Acerca de",
|
||||
"createIssue": "Crear un problema",
|
||||
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
|
||||
"mode": "Modo"
|
||||
"mode": "Modo",
|
||||
"submitSupportTicket": "Enviar Ticket de Soporte"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomInNodes": "Acercar",
|
||||
@@ -543,5 +579,17 @@
|
||||
"layers_one": "Capa",
|
||||
"layers_many": "Capas",
|
||||
"layers_other": "Capas"
|
||||
},
|
||||
"controlnet": {
|
||||
"crop": "Cortar",
|
||||
"delete": "Eliminar",
|
||||
"depthAnythingDescription": "Generación de mapa de profundidad usando la técnica de Depth Anything",
|
||||
"duplicate": "Duplicar",
|
||||
"colorMapDescription": "Genera un mapa de color desde la imagen",
|
||||
"depthMidasDescription": "Crea un mapa de profundidad con Midas",
|
||||
"balanced": "Equilibrado",
|
||||
"beginEndStepPercent": "Inicio / Final Porcentaje de pasos",
|
||||
"detectResolution": "Detectar resolución",
|
||||
"beginEndStepPercentShort": "Inicio / Final %"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -45,7 +45,7 @@
|
||||
"outputs": "Risultati",
|
||||
"data": "Dati",
|
||||
"somethingWentWrong": "Qualcosa è andato storto",
|
||||
"copyError": "$t(gallery.copy) Errore",
|
||||
"copyError": "Errore $t(gallery.copy)",
|
||||
"input": "Ingresso",
|
||||
"notInstalled": "Non $t(common.installed)",
|
||||
"unknownError": "Errore sconosciuto",
|
||||
@@ -85,7 +85,11 @@
|
||||
"viewing": "Visualizza",
|
||||
"viewingDesc": "Rivedi le immagini in un'ampia vista della galleria",
|
||||
"editing": "Modifica",
|
||||
"editingDesc": "Modifica nell'area Livelli di controllo"
|
||||
"editingDesc": "Modifica nell'area Livelli di controllo",
|
||||
"enabled": "Abilitato",
|
||||
"disabled": "Disabilitato",
|
||||
"comparingDesc": "Confronta due immagini",
|
||||
"comparing": "Confronta"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Dimensione dell'immagine",
|
||||
@@ -122,14 +126,30 @@
|
||||
"bulkDownloadRequestedDesc": "La tua richiesta di download è in preparazione. L'operazione potrebbe richiedere alcuni istanti.",
|
||||
"bulkDownloadRequestFailed": "Problema durante la preparazione del download",
|
||||
"bulkDownloadFailed": "Scaricamento fallito",
|
||||
"alwaysShowImageSizeBadge": "Mostra sempre le dimensioni dell'immagine"
|
||||
"alwaysShowImageSizeBadge": "Mostra sempre le dimensioni dell'immagine",
|
||||
"openInViewer": "Apri nel visualizzatore",
|
||||
"selectForCompare": "Seleziona per il confronto",
|
||||
"selectAnImageToCompare": "Seleziona un'immagine da confrontare",
|
||||
"slider": "Cursore",
|
||||
"sideBySide": "Fianco a Fianco",
|
||||
"compareImage": "Immagine di confronto",
|
||||
"viewerImage": "Immagine visualizzata",
|
||||
"hover": "Al passaggio del mouse",
|
||||
"swapImages": "Scambia le immagini",
|
||||
"compareOptions": "Opzioni di confronto",
|
||||
"stretchToFit": "Scala per adattare",
|
||||
"exitCompare": "Esci dal confronto",
|
||||
"compareHelp1": "Tieni premuto <Kbd>Alt</Kbd> mentre fai clic su un'immagine della galleria o usi i tasti freccia per cambiare l'immagine di confronto.",
|
||||
"compareHelp2": "Premi <Kbd>M</Kbd> per scorrere le modalità di confronto.",
|
||||
"compareHelp3": "Premi <Kbd>C</Kbd> per scambiare le immagini confrontate.",
|
||||
"compareHelp4": "Premi <Kbd>Z</Kbd> o <Kbd>Esc</Kbd> per uscire."
|
||||
},
|
||||
"hotkeys": {
|
||||
"keyboardShortcuts": "Tasti di scelta rapida",
|
||||
"appHotkeys": "Applicazione",
|
||||
"generalHotkeys": "Generale",
|
||||
"galleryHotkeys": "Galleria",
|
||||
"unifiedCanvasHotkeys": "Tela Unificata",
|
||||
"unifiedCanvasHotkeys": "Tela",
|
||||
"invoke": {
|
||||
"title": "Invoke",
|
||||
"desc": "Genera un'immagine"
|
||||
@@ -147,8 +167,8 @@
|
||||
"desc": "Apre e chiude il pannello delle opzioni"
|
||||
},
|
||||
"pinOptions": {
|
||||
"title": "Appunta le opzioni",
|
||||
"desc": "Blocca il pannello delle opzioni"
|
||||
"title": "Fissa le opzioni",
|
||||
"desc": "Fissa il pannello delle opzioni"
|
||||
},
|
||||
"toggleGallery": {
|
||||
"title": "Attiva/disattiva galleria",
|
||||
@@ -332,14 +352,14 @@
|
||||
"title": "Annulla e cancella"
|
||||
},
|
||||
"resetOptionsAndGallery": {
|
||||
"title": "Ripristina Opzioni e Galleria",
|
||||
"desc": "Reimposta le opzioni e i pannelli della galleria"
|
||||
"title": "Ripristina le opzioni e la galleria",
|
||||
"desc": "Reimposta i pannelli delle opzioni e della galleria"
|
||||
},
|
||||
"searchHotkeys": "Cerca tasti di scelta rapida",
|
||||
"noHotkeysFound": "Nessun tasto di scelta rapida trovato",
|
||||
"toggleOptionsAndGallery": {
|
||||
"desc": "Apre e chiude le opzioni e i pannelli della galleria",
|
||||
"title": "Attiva/disattiva le Opzioni e la Galleria"
|
||||
"title": "Attiva/disattiva le opzioni e la galleria"
|
||||
},
|
||||
"clearSearch": "Cancella ricerca",
|
||||
"remixImage": {
|
||||
@@ -348,7 +368,7 @@
|
||||
},
|
||||
"toggleViewer": {
|
||||
"title": "Attiva/disattiva il visualizzatore di immagini",
|
||||
"desc": "Passa dal Visualizzatore immagini all'area di lavoro per la scheda corrente."
|
||||
"desc": "Passa dal visualizzatore immagini all'area di lavoro per la scheda corrente."
|
||||
}
|
||||
},
|
||||
"modelManager": {
|
||||
@@ -378,7 +398,7 @@
|
||||
"convertToDiffusers": "Converti in Diffusori",
|
||||
"convertToDiffusersHelpText2": "Questo processo sostituirà la voce in Gestione Modelli con la versione Diffusori dello stesso modello.",
|
||||
"convertToDiffusersHelpText4": "Questo è un processo una tantum. Potrebbero essere necessari circa 30-60 secondi a seconda delle specifiche del tuo computer.",
|
||||
"convertToDiffusersHelpText5": "Assicurati di avere spazio su disco sufficiente. I modelli generalmente variano tra 2 GB e 7 GB di dimensioni.",
|
||||
"convertToDiffusersHelpText5": "Assicurati di avere spazio su disco sufficiente. I modelli generalmente variano tra 2 GB e 7 GB in dimensione.",
|
||||
"convertToDiffusersHelpText6": "Vuoi convertire questo modello?",
|
||||
"modelConverted": "Modello convertito",
|
||||
"alpha": "Alpha",
|
||||
@@ -528,7 +548,7 @@
|
||||
"layer": {
|
||||
"initialImageNoImageSelected": "Nessuna immagine iniziale selezionata",
|
||||
"t2iAdapterIncompatibleDimensions": "L'adattatore T2I richiede che la dimensione dell'immagine sia un multiplo di {{multiple}}",
|
||||
"controlAdapterNoModelSelected": "Nessun modello di Adattatore di Controllo selezionato",
|
||||
"controlAdapterNoModelSelected": "Nessun modello di adattatore di controllo selezionato",
|
||||
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
|
||||
"controlAdapterNoImageSelected": "Nessuna immagine dell'adattatore di controllo selezionata",
|
||||
"controlAdapterImageNotProcessed": "Immagine dell'adattatore di controllo non elaborata",
|
||||
@@ -606,25 +626,25 @@
|
||||
"canvasMerged": "Tela unita",
|
||||
"sentToImageToImage": "Inviato a Generazione da immagine",
|
||||
"sentToUnifiedCanvas": "Inviato alla Tela",
|
||||
"parametersNotSet": "Parametri non impostati",
|
||||
"parametersNotSet": "Parametri non richiamati",
|
||||
"metadataLoadFailed": "Impossibile caricare i metadati",
|
||||
"serverError": "Errore del Server",
|
||||
"connected": "Connesso al Server",
|
||||
"connected": "Connesso al server",
|
||||
"canceled": "Elaborazione annullata",
|
||||
"uploadFailedInvalidUploadDesc": "Deve essere una singola immagine PNG o JPEG",
|
||||
"parameterSet": "{{parameter}} impostato",
|
||||
"parameterNotSet": "{{parameter}} non impostato",
|
||||
"parameterSet": "Parametro richiamato",
|
||||
"parameterNotSet": "Parametro non richiamato",
|
||||
"problemCopyingImage": "Impossibile copiare l'immagine",
|
||||
"baseModelChangedCleared_one": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modello incompatibile",
|
||||
"baseModelChangedCleared_many": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
|
||||
"baseModelChangedCleared_other": "Il modello base è stato modificato, cancellato o disabilitato {{count}} sotto-modelli incompatibili",
|
||||
"baseModelChangedCleared_one": "Cancellato o disabilitato {{count}} sottomodello incompatibile",
|
||||
"baseModelChangedCleared_many": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"baseModelChangedCleared_other": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"imageSavingFailed": "Salvataggio dell'immagine non riuscito",
|
||||
"canvasSentControlnetAssets": "Tela inviata a ControlNet & Risorse",
|
||||
"problemCopyingCanvasDesc": "Impossibile copiare la tela",
|
||||
"loadedWithWarnings": "Flusso di lavoro caricato con avvisi",
|
||||
"canvasCopiedClipboard": "Tela copiata negli appunti",
|
||||
"maskSavedAssets": "Maschera salvata nelle risorse",
|
||||
"problemDownloadingCanvas": "Problema durante il download della tela",
|
||||
"problemDownloadingCanvas": "Problema durante lo scarico della tela",
|
||||
"problemMergingCanvas": "Problema nell'unione delle tele",
|
||||
"imageUploaded": "Immagine caricata",
|
||||
"addedToBoard": "Aggiunto alla bacheca",
|
||||
@@ -658,7 +678,17 @@
|
||||
"problemDownloadingImage": "Impossibile scaricare l'immagine",
|
||||
"prunedQueue": "Coda ripulita",
|
||||
"modelImportCanceled": "Importazione del modello annullata",
|
||||
"parameters": "Parametri"
|
||||
"parameters": "Parametri",
|
||||
"parameterSetDesc": "{{parameter}} richiamato",
|
||||
"parameterNotSetDesc": "Impossibile richiamare {{parameter}}",
|
||||
"parameterNotSetDescWithMessage": "Impossibile richiamare {{parameter}}: {{message}}",
|
||||
"parametersSet": "Parametri richiamati",
|
||||
"errorCopied": "Errore copiato",
|
||||
"outOfMemoryError": "Errore di memoria esaurita",
|
||||
"baseModelChanged": "Modello base modificato",
|
||||
"sessionRef": "Sessione: {{sessionId}}",
|
||||
"somethingWentWrong": "Qualcosa è andato storto",
|
||||
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@@ -674,7 +704,7 @@
|
||||
"layer": "Livello",
|
||||
"base": "Base",
|
||||
"mask": "Maschera",
|
||||
"maskingOptions": "Opzioni di mascheramento",
|
||||
"maskingOptions": "Opzioni maschera",
|
||||
"enableMask": "Abilita maschera",
|
||||
"preserveMaskedArea": "Mantieni area mascherata",
|
||||
"clearMask": "Cancella maschera (Shift+C)",
|
||||
@@ -745,7 +775,8 @@
|
||||
"mode": "Modalità",
|
||||
"resetUI": "$t(accessibility.reset) l'Interfaccia Utente",
|
||||
"createIssue": "Segnala un problema",
|
||||
"about": "Informazioni"
|
||||
"about": "Informazioni",
|
||||
"submitSupportTicket": "Invia ticket di supporto"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomOutNodes": "Rimpicciolire",
|
||||
@@ -790,7 +821,7 @@
|
||||
"workflowNotes": "Note",
|
||||
"versionUnknown": " Versione sconosciuta",
|
||||
"unableToValidateWorkflow": "Impossibile convalidare il flusso di lavoro",
|
||||
"updateApp": "Aggiorna App",
|
||||
"updateApp": "Aggiorna Applicazione",
|
||||
"unableToLoadWorkflow": "Impossibile caricare il flusso di lavoro",
|
||||
"updateNode": "Aggiorna nodo",
|
||||
"version": "Versione",
|
||||
@@ -882,11 +913,14 @@
|
||||
"missingNode": "Nodo di invocazione mancante",
|
||||
"missingInvocationTemplate": "Modello di invocazione mancante",
|
||||
"missingFieldTemplate": "Modello di campo mancante",
|
||||
"singleFieldType": "{{name}} (Singola)"
|
||||
"singleFieldType": "{{name}} (Singola)",
|
||||
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino delle impostazioni predefinite",
|
||||
"boardAccessError": "Impossibile trovare la bacheca {{board_id}}, ripristino ai valori predefiniti",
|
||||
"modelAccessError": "Impossibile trovare il modello {{key}}, ripristino ai valori predefiniti"
|
||||
},
|
||||
"boards": {
|
||||
"autoAddBoard": "Aggiungi automaticamente bacheca",
|
||||
"menuItemAutoAdd": "Aggiungi automaticamente a questa Bacheca",
|
||||
"menuItemAutoAdd": "Aggiungi automaticamente a questa bacheca",
|
||||
"cancel": "Annulla",
|
||||
"addBoard": "Aggiungi Bacheca",
|
||||
"bottomMessage": "L'eliminazione di questa bacheca e delle sue immagini ripristinerà tutte le funzionalità che le stanno attualmente utilizzando.",
|
||||
@@ -898,7 +932,7 @@
|
||||
"myBoard": "Bacheca",
|
||||
"searchBoard": "Cerca bacheche ...",
|
||||
"noMatching": "Nessuna bacheca corrispondente",
|
||||
"selectBoard": "Seleziona una Bacheca",
|
||||
"selectBoard": "Seleziona una bacheca",
|
||||
"uncategorized": "Non categorizzato",
|
||||
"downloadBoard": "Scarica la bacheca",
|
||||
"deleteBoardOnly": "solo la Bacheca",
|
||||
@@ -919,7 +953,7 @@
|
||||
"control": "Controllo",
|
||||
"crop": "Ritaglia",
|
||||
"depthMidas": "Profondità (Midas)",
|
||||
"detectResolution": "Rileva risoluzione",
|
||||
"detectResolution": "Rileva la risoluzione",
|
||||
"controlMode": "Modalità di controllo",
|
||||
"cannyDescription": "Canny rilevamento bordi",
|
||||
"depthZoe": "Profondità (Zoe)",
|
||||
@@ -930,7 +964,7 @@
|
||||
"showAdvanced": "Mostra opzioni Avanzate",
|
||||
"bgth": "Soglia rimozione sfondo",
|
||||
"importImageFromCanvas": "Importa immagine dalla Tela",
|
||||
"lineartDescription": "Converte l'immagine in lineart",
|
||||
"lineartDescription": "Converte l'immagine in linea",
|
||||
"importMaskFromCanvas": "Importa maschera dalla Tela",
|
||||
"hideAdvanced": "Nascondi opzioni avanzate",
|
||||
"resetControlImage": "Reimposta immagine di controllo",
|
||||
@@ -946,7 +980,7 @@
|
||||
"pidiDescription": "Elaborazione immagini PIDI",
|
||||
"fill": "Riempie",
|
||||
"colorMapDescription": "Genera una mappa dei colori dall'immagine",
|
||||
"lineartAnimeDescription": "Elaborazione lineart in stile anime",
|
||||
"lineartAnimeDescription": "Elaborazione linea in stile anime",
|
||||
"imageResolution": "Risoluzione dell'immagine",
|
||||
"colorMap": "Colore",
|
||||
"lowThreshold": "Soglia inferiore",
|
||||
|
||||
@@ -87,7 +87,11 @@
|
||||
"viewing": "Просмотр",
|
||||
"editing": "Редактирование",
|
||||
"viewingDesc": "Просмотр изображений в режиме большой галереи",
|
||||
"editingDesc": "Редактировать на холсте слоёв управления"
|
||||
"editingDesc": "Редактировать на холсте слоёв управления",
|
||||
"enabled": "Включено",
|
||||
"disabled": "Отключено",
|
||||
"comparingDesc": "Сравнение двух изображений",
|
||||
"comparing": "Сравнение"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Размер изображений",
|
||||
@@ -124,7 +128,23 @@
|
||||
"bulkDownloadRequested": "Подготовка к скачиванию",
|
||||
"bulkDownloadRequestedDesc": "Ваш запрос на скачивание готовится. Это может занять несколько минут.",
|
||||
"bulkDownloadRequestFailed": "Возникла проблема при подготовке скачивания",
|
||||
"alwaysShowImageSizeBadge": "Всегда показывать значок размера изображения"
|
||||
"alwaysShowImageSizeBadge": "Всегда показывать значок размера изображения",
|
||||
"openInViewer": "Открыть в просмотрщике",
|
||||
"selectForCompare": "Выбрать для сравнения",
|
||||
"hover": "Наведение",
|
||||
"swapImages": "Поменять местами",
|
||||
"stretchToFit": "Растягивание до нужного размера",
|
||||
"exitCompare": "Выйти из сравнения",
|
||||
"compareHelp4": "Нажмите <Kbd>Z</Kbd> или <Kbd>Esc</Kbd> для выхода.",
|
||||
"compareImage": "Сравнить изображение",
|
||||
"viewerImage": "Изображение просмотрщика",
|
||||
"selectAnImageToCompare": "Выберите изображение для сравнения",
|
||||
"slider": "Слайдер",
|
||||
"sideBySide": "Бок о бок",
|
||||
"compareOptions": "Варианты сравнения",
|
||||
"compareHelp1": "Удерживайте <Kbd>Alt</Kbd> при нажатии на изображение в галерее или при помощи клавиш со стрелками, чтобы изменить сравниваемое изображение.",
|
||||
"compareHelp2": "Нажмите <Kbd>M</Kbd>, чтобы переключиться между режимами сравнения.",
|
||||
"compareHelp3": "Нажмите <Kbd>C</Kbd>, чтобы поменять местами сравниваемые изображения."
|
||||
},
|
||||
"hotkeys": {
|
||||
"keyboardShortcuts": "Горячие клавиши",
|
||||
@@ -528,7 +548,20 @@
|
||||
"missingFieldTemplate": "Отсутствует шаблон поля",
|
||||
"addingImagesTo": "Добавление изображений в",
|
||||
"invoke": "Создать",
|
||||
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается"
|
||||
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается",
|
||||
"layer": {
|
||||
"controlAdapterImageNotProcessed": "Изображение адаптера контроля не обработано",
|
||||
"ipAdapterNoModelSelected": "IP адаптер не выбран",
|
||||
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
|
||||
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
|
||||
"controlAdapterNoImageSelected": "не выбрано изображение контрольного адаптера",
|
||||
"initialImageNoImageSelected": "начальное изображение не выбрано",
|
||||
"rgNoRegion": "регион не выбран",
|
||||
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
|
||||
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
|
||||
"t2iAdapterIncompatibleDimensions": "Адаптер T2I требует, чтобы размеры изображения были кратны {{multiple}}",
|
||||
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано"
|
||||
}
|
||||
},
|
||||
"isAllowedToUpscale": {
|
||||
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
|
||||
@@ -606,12 +639,12 @@
|
||||
"connected": "Подключено к серверу",
|
||||
"canceled": "Обработка отменена",
|
||||
"uploadFailedInvalidUploadDesc": "Должно быть одно изображение в формате PNG или JPEG",
|
||||
"parameterNotSet": "Параметр {{parameter}} не задан",
|
||||
"parameterSet": "Параметр {{parameter}} задан",
|
||||
"parameterNotSet": "Параметр не задан",
|
||||
"parameterSet": "Параметр задан",
|
||||
"problemCopyingImage": "Не удается скопировать изображение",
|
||||
"baseModelChangedCleared_one": "Базовая модель изменила, очистила или отключила {{count}} несовместимую подмодель",
|
||||
"baseModelChangedCleared_few": "Базовая модель изменила, очистила или отключила {{count}} несовместимые подмодели",
|
||||
"baseModelChangedCleared_many": "Базовая модель изменила, очистила или отключила {{count}} несовместимых подмоделей",
|
||||
"baseModelChangedCleared_one": "Очищена или отключена {{count}} несовместимая подмодель",
|
||||
"baseModelChangedCleared_few": "Очищены или отключены {{count}} несовместимые подмодели",
|
||||
"baseModelChangedCleared_many": "Очищены или отключены {{count}} несовместимых подмоделей",
|
||||
"imageSavingFailed": "Не удалось сохранить изображение",
|
||||
"canvasSentControlnetAssets": "Холст отправлен в ControlNet и ресурсы",
|
||||
"problemCopyingCanvasDesc": "Невозможно экспортировать базовый слой",
|
||||
@@ -652,7 +685,17 @@
|
||||
"resetInitialImage": "Сбросить начальное изображение",
|
||||
"prunedQueue": "Урезанная очередь",
|
||||
"modelImportCanceled": "Импорт модели отменен",
|
||||
"parameters": "Параметры"
|
||||
"parameters": "Параметры",
|
||||
"parameterSetDesc": "Задан {{parameter}}",
|
||||
"parameterNotSetDesc": "Невозможно задать {{parameter}}",
|
||||
"baseModelChanged": "Базовая модель сменена",
|
||||
"parameterNotSetDescWithMessage": "Не удалось задать {{parameter}}: {{message}}",
|
||||
"parametersSet": "Параметры заданы",
|
||||
"errorCopied": "Ошибка скопирована",
|
||||
"sessionRef": "Сессия: {{sessionId}}",
|
||||
"outOfMemoryError": "Ошибка нехватки памяти",
|
||||
"outOfMemoryErrorDesc": "Ваши текущие настройки генерации превышают возможности системы. Пожалуйста, измените настройки и повторите попытку.",
|
||||
"somethingWentWrong": "Что-то пошло не так"
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@@ -739,7 +782,8 @@
|
||||
"loadMore": "Загрузить больше",
|
||||
"resetUI": "$t(accessibility.reset) интерфейс",
|
||||
"createIssue": "Сообщить о проблеме",
|
||||
"about": "Об этом"
|
||||
"about": "Об этом",
|
||||
"submitSupportTicket": "Отправить тикет в службу поддержки"
|
||||
},
|
||||
"nodes": {
|
||||
"zoomInNodes": "Увеличьте масштаб",
|
||||
@@ -832,7 +876,7 @@
|
||||
"workflowName": "Название",
|
||||
"collection": "Коллекция",
|
||||
"unknownErrorValidatingWorkflow": "Неизвестная ошибка при проверке рабочего процесса",
|
||||
"collectionFieldType": "Коллекция {{name}}",
|
||||
"collectionFieldType": "{{name}} (Коллекция)",
|
||||
"workflowNotes": "Примечания",
|
||||
"string": "Строка",
|
||||
"unknownNodeType": "Неизвестный тип узла",
|
||||
@@ -848,7 +892,7 @@
|
||||
"targetNodeDoesNotExist": "Недопустимое ребро: целевой/входной узел {{node}} не существует",
|
||||
"mismatchedVersion": "Недопустимый узел: узел {{node}} типа {{type}} имеет несоответствующую версию (попробовать обновить?)",
|
||||
"unknownFieldType": "$t(nodes.unknownField) тип: {{type}}",
|
||||
"collectionOrScalarFieldType": "Коллекция | Скаляр {{name}}",
|
||||
"collectionOrScalarFieldType": "{{name}} (Один или коллекция)",
|
||||
"betaDesc": "Этот вызов находится в бета-версии. Пока он не станет стабильным, в нем могут происходить изменения при обновлении приложений. Мы планируем поддерживать этот вызов в течение длительного времени.",
|
||||
"nodeVersion": "Версия узла",
|
||||
"loadingNodes": "Загрузка узлов...",
|
||||
@@ -870,7 +914,16 @@
|
||||
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений.",
|
||||
"graph": "График",
|
||||
"showEdgeLabels": "Показать метки на ребрах",
|
||||
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы"
|
||||
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы",
|
||||
"cannotMixAndMatchCollectionItemTypes": "Невозможно смешивать и сопоставлять типы элементов коллекции",
|
||||
"missingNode": "Отсутствует узел вызова",
|
||||
"missingInvocationTemplate": "Отсутствует шаблон вызова",
|
||||
"missingFieldTemplate": "Отсутствующий шаблон поля",
|
||||
"singleFieldType": "{{name}} (Один)",
|
||||
"noGraph": "Нет графика",
|
||||
"imageAccessError": "Невозможно найти изображение {{image_name}}, сбрасываем на значение по умолчанию",
|
||||
"boardAccessError": "Невозможно найти доску {{board_id}}, сбрасываем на значение по умолчанию",
|
||||
"modelAccessError": "Невозможно найти модель {{key}}, сброс на модель по умолчанию"
|
||||
},
|
||||
"controlnet": {
|
||||
"amult": "a_mult",
|
||||
@@ -1441,7 +1494,16 @@
|
||||
"clearQueueAlertDialog2": "Вы уверены, что хотите очистить очередь?",
|
||||
"item": "Элемент",
|
||||
"graphFailedToQueue": "Не удалось поставить график в очередь",
|
||||
"openQueue": "Открыть очередь"
|
||||
"openQueue": "Открыть очередь",
|
||||
"prompts_one": "Запрос",
|
||||
"prompts_few": "Запроса",
|
||||
"prompts_many": "Запросов",
|
||||
"iterations_one": "Итерация",
|
||||
"iterations_few": "Итерации",
|
||||
"iterations_many": "Итераций",
|
||||
"generations_one": "Генерация",
|
||||
"generations_few": "Генерации",
|
||||
"generations_many": "Генераций"
|
||||
},
|
||||
"sdxl": {
|
||||
"refinerStart": "Запуск доработчика",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"common": {
|
||||
"nodes": "節點",
|
||||
"nodes": "工作流程",
|
||||
"img2img": "圖片轉圖片",
|
||||
"statusDisconnected": "已中斷連線",
|
||||
"back": "返回",
|
||||
@@ -11,17 +11,239 @@
|
||||
"reportBugLabel": "回報錯誤",
|
||||
"githubLabel": "GitHub",
|
||||
"hotkeysLabel": "快捷鍵",
|
||||
"languagePickerLabel": "切換語言",
|
||||
"languagePickerLabel": "語言",
|
||||
"unifiedCanvas": "統一畫布",
|
||||
"cancel": "取消",
|
||||
"txt2img": "文字轉圖片"
|
||||
"txt2img": "文字轉圖片",
|
||||
"controlNet": "ControlNet",
|
||||
"advanced": "進階",
|
||||
"folder": "資料夾",
|
||||
"installed": "已安裝",
|
||||
"accept": "接受",
|
||||
"goTo": "前往",
|
||||
"input": "輸入",
|
||||
"random": "隨機",
|
||||
"selected": "已選擇",
|
||||
"communityLabel": "社群",
|
||||
"loading": "載入中",
|
||||
"delete": "刪除",
|
||||
"copy": "複製",
|
||||
"error": "錯誤",
|
||||
"file": "檔案",
|
||||
"format": "格式",
|
||||
"imageFailedToLoad": "無法載入圖片"
|
||||
},
|
||||
"accessibility": {
|
||||
"invokeProgressBar": "Invoke 進度條",
|
||||
"uploadImage": "上傳圖片",
|
||||
"reset": "重設",
|
||||
"reset": "重置",
|
||||
"nextImage": "下一張圖片",
|
||||
"previousImage": "上一張圖片",
|
||||
"menu": "選單"
|
||||
"menu": "選單",
|
||||
"loadMore": "載入更多",
|
||||
"about": "關於",
|
||||
"createIssue": "建立問題",
|
||||
"resetUI": "$t(accessibility.reset) 介面",
|
||||
"submitSupportTicket": "提交支援工單",
|
||||
"mode": "模式"
|
||||
},
|
||||
"boards": {
|
||||
"loading": "載入中…",
|
||||
"movingImagesToBoard_other": "正在移動 {{count}} 張圖片至板上:",
|
||||
"move": "移動",
|
||||
"uncategorized": "未分類",
|
||||
"cancel": "取消"
|
||||
},
|
||||
"metadata": {
|
||||
"workflow": "工作流程",
|
||||
"steps": "步數",
|
||||
"model": "模型",
|
||||
"seed": "種子",
|
||||
"vae": "VAE",
|
||||
"seamless": "無縫",
|
||||
"metadata": "元數據",
|
||||
"width": "寬度",
|
||||
"height": "高度"
|
||||
},
|
||||
"accordions": {
|
||||
"control": {
|
||||
"title": "控制"
|
||||
},
|
||||
"compositing": {
|
||||
"title": "合成"
|
||||
},
|
||||
"advanced": {
|
||||
"title": "進階",
|
||||
"options": "$t(accordions.advanced.title) 選項"
|
||||
}
|
||||
},
|
||||
"hotkeys": {
|
||||
"nodesHotkeys": "節點",
|
||||
"cancel": {
|
||||
"title": "取消"
|
||||
},
|
||||
"generalHotkeys": "一般",
|
||||
"keyboardShortcuts": "快捷鍵",
|
||||
"appHotkeys": "應用程式"
|
||||
},
|
||||
"modelManager": {
|
||||
"advanced": "進階",
|
||||
"allModels": "全部模型",
|
||||
"variant": "變體",
|
||||
"config": "配置",
|
||||
"model": "模型",
|
||||
"selected": "已選擇",
|
||||
"huggingFace": "HuggingFace",
|
||||
"install": "安裝",
|
||||
"metadata": "元數據",
|
||||
"delete": "刪除",
|
||||
"description": "描述",
|
||||
"cancel": "取消",
|
||||
"convert": "轉換",
|
||||
"manual": "手動",
|
||||
"none": "無",
|
||||
"name": "名稱",
|
||||
"load": "載入",
|
||||
"height": "高度",
|
||||
"width": "寬度",
|
||||
"search": "搜尋",
|
||||
"vae": "VAE",
|
||||
"settings": "設定"
|
||||
},
|
||||
"controlnet": {
|
||||
"mlsd": "M-LSD",
|
||||
"canny": "Canny",
|
||||
"duplicate": "重複",
|
||||
"none": "無",
|
||||
"pidi": "PIDI",
|
||||
"h": "H",
|
||||
"balanced": "平衡",
|
||||
"crop": "裁切",
|
||||
"processor": "處理器",
|
||||
"control": "控制",
|
||||
"f": "F",
|
||||
"lineart": "線條藝術",
|
||||
"w": "W",
|
||||
"hed": "HED",
|
||||
"delete": "刪除"
|
||||
},
|
||||
"queue": {
|
||||
"queue": "佇列",
|
||||
"canceled": "已取消",
|
||||
"failed": "已失敗",
|
||||
"completed": "已完成",
|
||||
"cancel": "取消",
|
||||
"session": "工作階段",
|
||||
"batch": "批量",
|
||||
"item": "項目",
|
||||
"completedIn": "完成於",
|
||||
"notReady": "無法排隊"
|
||||
},
|
||||
"parameters": {
|
||||
"cancel": {
|
||||
"cancel": "取消"
|
||||
},
|
||||
"height": "高度",
|
||||
"type": "類型",
|
||||
"symmetry": "對稱性",
|
||||
"images": "圖片",
|
||||
"width": "寬度",
|
||||
"coherenceMode": "模式",
|
||||
"seed": "種子",
|
||||
"general": "一般",
|
||||
"strength": "強度",
|
||||
"steps": "步數",
|
||||
"info": "資訊"
|
||||
},
|
||||
"settings": {
|
||||
"beta": "Beta",
|
||||
"developer": "開發者",
|
||||
"general": "一般",
|
||||
"models": "模型"
|
||||
},
|
||||
"popovers": {
|
||||
"paramModel": {
|
||||
"heading": "模型"
|
||||
},
|
||||
"compositingCoherenceMode": {
|
||||
"heading": "模式"
|
||||
},
|
||||
"paramSteps": {
|
||||
"heading": "步數"
|
||||
},
|
||||
"controlNetProcessor": {
|
||||
"heading": "處理器"
|
||||
},
|
||||
"paramVAE": {
|
||||
"heading": "VAE"
|
||||
},
|
||||
"paramHeight": {
|
||||
"heading": "高度"
|
||||
},
|
||||
"paramSeed": {
|
||||
"heading": "種子"
|
||||
},
|
||||
"paramWidth": {
|
||||
"heading": "寬度"
|
||||
},
|
||||
"refinerSteps": {
|
||||
"heading": "步數"
|
||||
}
|
||||
},
|
||||
"unifiedCanvas": {
|
||||
"undo": "復原",
|
||||
"mask": "遮罩",
|
||||
"eraser": "橡皮擦",
|
||||
"antialiasing": "抗鋸齒",
|
||||
"redo": "重做",
|
||||
"layer": "圖層",
|
||||
"accept": "接受",
|
||||
"brush": "刷子",
|
||||
"move": "移動",
|
||||
"brushSize": "大小"
|
||||
},
|
||||
"nodes": {
|
||||
"workflowName": "名稱",
|
||||
"notes": "註釋",
|
||||
"workflowVersion": "版本",
|
||||
"workflowNotes": "註釋",
|
||||
"executionStateError": "錯誤",
|
||||
"unableToUpdateNodes_other": "無法更新 {{count}} 個節點",
|
||||
"integer": "整數",
|
||||
"workflow": "工作流程",
|
||||
"enum": "枚舉",
|
||||
"edit": "編輯",
|
||||
"string": "字串",
|
||||
"workflowTags": "標籤",
|
||||
"node": "節點",
|
||||
"boolean": "布林值",
|
||||
"workflowAuthor": "作者",
|
||||
"version": "版本",
|
||||
"executionStateCompleted": "已完成",
|
||||
"edge": "邊緣",
|
||||
"versionUnknown": " 版本未知"
|
||||
},
|
||||
"sdxl": {
|
||||
"steps": "步數",
|
||||
"loading": "載入中…",
|
||||
"refiner": "精煉器"
|
||||
},
|
||||
"gallery": {
|
||||
"copy": "複製",
|
||||
"download": "下載",
|
||||
"loading": "載入中"
|
||||
},
|
||||
"ui": {
|
||||
"tabs": {
|
||||
"models": "模型",
|
||||
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
|
||||
"queue": "佇列"
|
||||
}
|
||||
},
|
||||
"models": {
|
||||
"loading": "載入中"
|
||||
},
|
||||
"workflows": {
|
||||
"name": "名稱"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -19,6 +19,13 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
return extendTheme({
|
||||
..._theme,
|
||||
direction,
|
||||
shadows: {
|
||||
..._theme.shadows,
|
||||
selectedForCompare:
|
||||
'0px 0px 0px 1px var(--invoke-colors-base-900), 0px 0px 0px 4px var(--invoke-colors-green-400)',
|
||||
hoverSelectedForCompare:
|
||||
'0px 0px 0px 1px var(--invoke-colors-base-900), 0px 0px 0px 4px var(--invoke-colors-green-300)',
|
||||
},
|
||||
});
|
||||
}, [direction]);
|
||||
|
||||
|
||||
@@ -2,8 +2,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageCache } from 'services/api/types';
|
||||
import { getListImagesUrl, imagesSelectors } from 'services/api/util';
|
||||
import { getListImagesUrl } from 'services/api/util';
|
||||
|
||||
export const addFirstListImagesListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
@@ -18,13 +17,10 @@ export const addFirstListImagesListener = (startAppListening: AppStartListening)
|
||||
cancelActiveListeners();
|
||||
unsubscribe();
|
||||
|
||||
// TODO: figure out how to type the predicate
|
||||
const data = action.payload as ImageCache;
|
||||
const data = action.payload;
|
||||
|
||||
if (data.ids.length > 0) {
|
||||
// Select the first image
|
||||
const firstImage = imagesSelectors.selectAll(data)[0];
|
||||
dispatch(imageSelected(firstImage ?? null));
|
||||
if (data.items.length > 0) {
|
||||
dispatch(imageSelected(data.items[0] ?? null));
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { boardIdSelected, galleryViewChanged, imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { ASSETS_CATEGORIES, IMAGE_CATEGORIES } from 'features/gallery/store/types';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import {
|
||||
boardIdSelected,
|
||||
galleryViewChanged,
|
||||
imageSelected,
|
||||
selectionChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import { imagesSelectors } from 'services/api/util';
|
||||
|
||||
export const addBoardIdSelectedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
@@ -14,14 +18,9 @@ export const addBoardIdSelectedListener = (startAppListening: AppStartListening)
|
||||
|
||||
const state = getState();
|
||||
|
||||
const board_id = boardIdSelected.match(action) ? action.payload.boardId : state.gallery.selectedBoardId;
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
|
||||
const galleryView = galleryViewChanged.match(action) ? action.payload : state.gallery.galleryView;
|
||||
|
||||
// when a board is selected, we need to wait until the board has loaded *some* images, then select the first one
|
||||
const categories = galleryView === 'images' ? IMAGE_CATEGORIES : ASSETS_CATEGORIES;
|
||||
|
||||
const queryArgs = { board_id: board_id ?? 'none', categories };
|
||||
dispatch(selectionChanged([]));
|
||||
|
||||
// wait until the board has some images - maybe it already has some from a previous fetch
|
||||
// must use getState() to ensure we do not have stale state
|
||||
@@ -35,11 +34,12 @@ export const addBoardIdSelectedListener = (startAppListening: AppStartListening)
|
||||
const { data: boardImagesData } = imagesApi.endpoints.listImages.select(queryArgs)(getState());
|
||||
|
||||
if (boardImagesData && boardIdSelected.match(action) && action.payload.selectedImageName) {
|
||||
const selectedImage = imagesSelectors.selectById(boardImagesData, action.payload.selectedImageName);
|
||||
const selectedImage = boardImagesData.items.find(
|
||||
(item) => item.image_name === action.payload.selectedImageName
|
||||
);
|
||||
dispatch(imageSelected(selectedImage || null));
|
||||
} else if (boardImagesData) {
|
||||
const firstImage = imagesSelectors.selectAll(boardImagesData)[0];
|
||||
dispatch(imageSelected(firstImage || null));
|
||||
dispatch(imageSelected(boardImagesData.items[0] || null));
|
||||
} else {
|
||||
// board has no images - deselect
|
||||
dispatch(imageSelected(null));
|
||||
|
||||
@@ -13,7 +13,6 @@ import {
|
||||
isControlAdapterLayer,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { isEqual } from 'lodash-es';
|
||||
@@ -23,7 +22,13 @@ import type { BatchConfig } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
|
||||
const matcher = isAnyOf(
|
||||
caLayerImageChanged,
|
||||
caLayerProcessedImageChanged,
|
||||
caLayerProcessorConfigChanged,
|
||||
caLayerModelChanged,
|
||||
caLayerRecalled
|
||||
);
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
const log = logger('session');
|
||||
@@ -74,9 +79,10 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
|
||||
const originalConfig = originalLayer?.controlAdapter.processorConfig;
|
||||
|
||||
const image = layer.controlAdapter.image;
|
||||
const processedImage = layer.controlAdapter.processedImage;
|
||||
const config = layer.controlAdapter.processorConfig;
|
||||
|
||||
if (isEqual(config, originalConfig) && isEqual(image, originalImage)) {
|
||||
if (isEqual(config, originalConfig) && isEqual(image, originalImage) && processedImage) {
|
||||
// Neither config nor image have changed, we can bail
|
||||
return;
|
||||
}
|
||||
@@ -139,7 +145,7 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
|
||||
|
||||
// We still have to check the output type
|
||||
assert(
|
||||
isImageOutput(invocationCompleteAction.payload.data.result),
|
||||
invocationCompleteAction.payload.data.result.type === 'image_output',
|
||||
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
|
||||
);
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
@@ -9,7 +9,6 @@ import {
|
||||
selectControlAdapterById,
|
||||
} from 'features/controlAdapters/store/controlAdaptersSlice';
|
||||
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
@@ -74,7 +73,7 @@ export const addControlNetImageProcessedListener = (startAppListening: AppStartL
|
||||
);
|
||||
|
||||
// We still have to check the output type
|
||||
if (isImageOutput(invocationCompleteAction.payload.data.result)) {
|
||||
if (invocationCompleteAction.payload.data.result.type === 'image_output') {
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
// Wait for the ImageDTO to be received
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
import { imagesSelectors } from 'services/api/util';
|
||||
|
||||
export const galleryImageClicked = createAction<{
|
||||
imageDTO: ImageDTO;
|
||||
shiftKey: boolean;
|
||||
ctrlKey: boolean;
|
||||
metaKey: boolean;
|
||||
altKey: boolean;
|
||||
}>('gallery/imageClicked');
|
||||
|
||||
/**
|
||||
@@ -28,20 +28,26 @@ export const addGalleryImageClickedListener = (startAppListening: AppStartListen
|
||||
startAppListening({
|
||||
actionCreator: galleryImageClicked,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { imageDTO, shiftKey, ctrlKey, metaKey } = action.payload;
|
||||
const { imageDTO, shiftKey, ctrlKey, metaKey, altKey } = action.payload;
|
||||
const state = getState();
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
const { data: listImagesData } = imagesApi.endpoints.listImages.select(queryArgs)(state);
|
||||
const queryResult = imagesApi.endpoints.listImages.select(queryArgs)(state);
|
||||
|
||||
if (!listImagesData) {
|
||||
if (!queryResult.data) {
|
||||
// Should never happen if we have clicked a gallery image
|
||||
return;
|
||||
}
|
||||
|
||||
const imageDTOs = imagesSelectors.selectAll(listImagesData);
|
||||
const imageDTOs = queryResult.data.items;
|
||||
const selection = state.gallery.selection;
|
||||
|
||||
if (shiftKey) {
|
||||
if (altKey) {
|
||||
if (state.gallery.imageToCompare?.image_name === imageDTO.image_name) {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
} else {
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
}
|
||||
} else if (shiftKey) {
|
||||
const rangeEndImageName = imageDTO.image_name;
|
||||
const lastSelectedImage = selection[selection.length - 1]?.image_name;
|
||||
const lastClickedIndex = imageDTOs.findIndex((n) => n.image_name === lastSelectedImage);
|
||||
|
||||
@@ -22,11 +22,10 @@ import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { isImageFieldInputInstance } from 'features/nodes/types/field';
|
||||
import { isInvocationNode } from 'features/nodes/types/invocation';
|
||||
import { clamp, forEach } from 'lodash-es';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { api } from 'services/api';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
import { imagesSelectors } from 'services/api/util';
|
||||
|
||||
const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
|
||||
state.nodes.present.nodes.forEach((node) => {
|
||||
@@ -118,32 +117,7 @@ export const addRequestedSingleImageDeletionListener = (startAppListening: AppSt
|
||||
}
|
||||
|
||||
dispatch(isModalOpenChanged(false));
|
||||
|
||||
const state = getState();
|
||||
const lastSelectedImage = state.gallery.selection[state.gallery.selection.length - 1]?.image_name;
|
||||
|
||||
if (imageDTO && imageDTO?.image_name === lastSelectedImage) {
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
const baseQueryArgs = selectListImagesQueryArgs(state);
|
||||
const { data } = imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
|
||||
|
||||
const cachedImageDTOs = data ? imagesSelectors.selectAll(data) : [];
|
||||
|
||||
const deletedImageIndex = cachedImageDTOs.findIndex((i) => i.image_name === image_name);
|
||||
|
||||
const filteredImageDTOs = cachedImageDTOs.filter((i) => i.image_name !== image_name);
|
||||
|
||||
const newSelectedImageIndex = clamp(deletedImageIndex, 0, filteredImageDTOs.length - 1);
|
||||
|
||||
const newSelectedImageDTO = filteredImageDTOs[newSelectedImageIndex];
|
||||
|
||||
if (newSelectedImageDTO) {
|
||||
dispatch(imageSelected(newSelectedImageDTO));
|
||||
} else {
|
||||
dispatch(imageSelected(null));
|
||||
}
|
||||
}
|
||||
|
||||
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist
|
||||
if (imageUsage.isCanvasImage) {
|
||||
@@ -168,6 +142,20 @@ export const addRequestedSingleImageDeletionListener = (startAppListening: AppSt
|
||||
if (wasImageDeleted) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'Board', id: imageDTO.board_id ?? 'none' }]));
|
||||
}
|
||||
|
||||
const lastSelectedImage = state.gallery.selection[state.gallery.selection.length - 1]?.image_name;
|
||||
|
||||
if (imageDTO && imageDTO?.image_name === lastSelectedImage) {
|
||||
const baseQueryArgs = selectListImagesQueryArgs(state);
|
||||
const { data } = imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
|
||||
|
||||
if (data && data.items) {
|
||||
const newlySelectedImage = data?.items.find((img) => img.image_name !== imageDTO?.image_name);
|
||||
dispatch(imageSelected(newlySelectedImage || null));
|
||||
} else {
|
||||
dispatch(imageSelected(null));
|
||||
}
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
@@ -188,10 +176,8 @@ export const addRequestedSingleImageDeletionListener = (startAppListening: AppSt
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
const { data } = imagesApi.endpoints.listImages.select(queryArgs)(state);
|
||||
|
||||
const newSelectedImageDTO = data ? imagesSelectors.selectAll(data)[0] : undefined;
|
||||
|
||||
if (newSelectedImageDTO) {
|
||||
dispatch(imageSelected(newSelectedImageDTO));
|
||||
if (data && data.items[0]) {
|
||||
dispatch(imageSelected(data.items[0]));
|
||||
} else {
|
||||
dispatch(imageSelected(null));
|
||||
}
|
||||
|
||||
@@ -14,7 +14,13 @@ import {
|
||||
rgLayerIPAdapterImageChanged,
|
||||
} from 'features/controlLayers/store/controlLayersSlice';
|
||||
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { isValidDrop } from 'features/dnd/util/isValidDrop';
|
||||
import {
|
||||
imageSelected,
|
||||
imageToCompareChanged,
|
||||
isImageViewerOpenChanged,
|
||||
selectionChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
@@ -30,6 +36,9 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('dnd');
|
||||
const { activeData, overData } = action.payload;
|
||||
if (!isValidDrop(overData, activeData)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (activeData.payloadType === 'IMAGE_DTO') {
|
||||
log.debug({ activeData, overData }, 'Image dropped');
|
||||
@@ -50,6 +59,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
dispatch(imageSelected(activeData.payload.imageDTO));
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -182,24 +192,18 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
}
|
||||
|
||||
/**
|
||||
* TODO
|
||||
* Image selection dropped on node image collection field
|
||||
* Image selected for compare
|
||||
*/
|
||||
// if (
|
||||
// overData.actionType === 'SET_MULTI_NODES_IMAGE' &&
|
||||
// activeData.payloadType === 'IMAGE_DTO' &&
|
||||
// activeData.payload.imageDTO
|
||||
// ) {
|
||||
// const { fieldName, nodeId } = overData.context;
|
||||
// dispatch(
|
||||
// fieldValueChanged({
|
||||
// nodeId,
|
||||
// fieldName,
|
||||
// value: [activeData.payload.imageDTO],
|
||||
// })
|
||||
// );
|
||||
// return;
|
||||
// }
|
||||
if (
|
||||
overData.actionType === 'SELECT_FOR_COMPARE' &&
|
||||
activeData.payloadType === 'IMAGE_DTO' &&
|
||||
activeData.payload.imageDTO
|
||||
) {
|
||||
const { imageDTO } = activeData.payload;
|
||||
dispatch(imageToCompareChanged(imageDTO));
|
||||
dispatch(isImageViewerOpenChanged(true));
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Image dropped on user board
|
||||
@@ -217,6 +221,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
board_id: boardId,
|
||||
})
|
||||
);
|
||||
dispatch(selectionChanged([]));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -234,6 +239,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
imageDTO,
|
||||
})
|
||||
);
|
||||
dispatch(selectionChanged([]));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -249,6 +255,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
board_id: boardId,
|
||||
})
|
||||
);
|
||||
dispatch(selectionChanged([]));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -262,6 +269,7 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
|
||||
imageDTOs,
|
||||
})
|
||||
);
|
||||
dispatch(selectionChanged([]));
|
||||
return;
|
||||
}
|
||||
},
|
||||
|
||||
@@ -8,15 +8,14 @@ import {
|
||||
galleryViewChanged,
|
||||
imageSelected,
|
||||
isImageViewerOpenChanged,
|
||||
offsetChanged,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
|
||||
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
|
||||
import { isImageOutput } from 'features/nodes/types/common';
|
||||
import { zNodeStatus } from 'features/nodes/types/invocation';
|
||||
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import { imagesAdapter } from 'services/api/util';
|
||||
import { getCategories, getListImagesUrl } from 'services/api/util';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
|
||||
// These nodes output an image, but do not actually *save* an image, so we don't want to handle the gallery logic on them
|
||||
@@ -33,7 +32,7 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
|
||||
|
||||
const { result, invocation_source_id } = data;
|
||||
// This complete event has an associated image output
|
||||
if (isImageOutput(data.result) && !nodeTypeDenylist.includes(data.invocation.type)) {
|
||||
if (data.result.type === 'image_output' && !nodeTypeDenylist.includes(data.invocation.type)) {
|
||||
const { image_name } = data.result.image;
|
||||
const { canvas, gallery } = getState();
|
||||
|
||||
@@ -53,24 +52,6 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
|
||||
}
|
||||
|
||||
if (!imageDTO.is_intermediate) {
|
||||
/**
|
||||
* Cache updates for when an image result is received
|
||||
* - add it to the no_board/images
|
||||
*/
|
||||
|
||||
dispatch(
|
||||
imagesApi.util.updateQueryData(
|
||||
'listImages',
|
||||
{
|
||||
board_id: imageDTO.board_id ?? 'none',
|
||||
categories: IMAGE_CATEGORIES,
|
||||
},
|
||||
(draft) => {
|
||||
imagesAdapter.addOne(draft, imageDTO);
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
// update the total images for the board
|
||||
dispatch(
|
||||
boardsApi.util.updateQueryData('getBoardImagesTotal', imageDTO.board_id ?? 'none', (draft) => {
|
||||
@@ -79,7 +60,18 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
|
||||
})
|
||||
);
|
||||
|
||||
dispatch(imagesApi.util.invalidateTags([{ type: 'Board', id: imageDTO.board_id ?? 'none' }]));
|
||||
dispatch(
|
||||
imagesApi.util.invalidateTags([
|
||||
{ type: 'Board', id: imageDTO.board_id ?? 'none' },
|
||||
{
|
||||
type: 'ImageList',
|
||||
id: getListImagesUrl({
|
||||
board_id: imageDTO.board_id ?? 'none',
|
||||
categories: getCategories(imageDTO),
|
||||
}),
|
||||
},
|
||||
])
|
||||
);
|
||||
|
||||
const { shouldAutoSwitch } = gallery;
|
||||
|
||||
@@ -99,6 +91,8 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
|
||||
);
|
||||
}
|
||||
|
||||
dispatch(offsetChanged(0));
|
||||
|
||||
if (!imageDTO.board_id && gallery.selectedBoardId !== 'none') {
|
||||
dispatch(
|
||||
boardIdSelected({
|
||||
|
||||
@@ -5,43 +5,122 @@ import {
|
||||
socketModelInstallCancelled,
|
||||
socketModelInstallComplete,
|
||||
socketModelInstallDownloadProgress,
|
||||
socketModelInstallDownloadsComplete,
|
||||
socketModelInstallDownloadStarted,
|
||||
socketModelInstallError,
|
||||
socketModelInstallStarted,
|
||||
} from 'services/events/actions';
|
||||
|
||||
/**
|
||||
* A model install has two main stages - downloading and installing. All these events are namespaced under `model_install_`
|
||||
* which is a bit misleading. For example, a `model_install_started` event is actually fired _after_ the model has fully
|
||||
* downloaded and is being "physically" installed.
|
||||
*
|
||||
* Note: the download events are only fired for remote model installs, not local.
|
||||
*
|
||||
* Here's the expected flow:
|
||||
* - API receives install request, model manager preps the install
|
||||
* - `model_install_download_started` fired when the download starts
|
||||
* - `model_install_download_progress` fired continually until the download is complete
|
||||
* - `model_install_download_complete` fired when the download is complete
|
||||
* - `model_install_started` fired when the "physical" installation starts
|
||||
* - `model_install_complete` fired when the installation is complete
|
||||
* - `model_install_cancelled` fired if the installation is cancelled
|
||||
* - `model_install_error` fired if the installation has an error
|
||||
*/
|
||||
|
||||
const selectModelInstalls = modelsApi.endpoints.listModelInstalls.select();
|
||||
|
||||
export const addModelInstallEventListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallDownloadProgress,
|
||||
effect: async (action, { dispatch }) => {
|
||||
const { bytes, total_bytes, id } = action.payload.data;
|
||||
actionCreator: socketModelInstallDownloadStarted,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { id } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.bytes = bytes;
|
||||
modelImport.total_bytes = total_bytes;
|
||||
modelImport.status = 'downloading';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'downloading';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallStarted,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { id } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'running';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallDownloadProgress,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { bytes, total_bytes, id } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.bytes = bytes;
|
||||
modelImport.total_bytes = total_bytes;
|
||||
modelImport.status = 'downloading';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallComplete,
|
||||
effect: (action, { dispatch }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { id } = action.payload.data;
|
||||
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'completed';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'completed';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelConfig', id: LIST_TAG }]));
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelScanFolderResults', id: LIST_TAG }]));
|
||||
},
|
||||
@@ -49,37 +128,69 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallError,
|
||||
effect: (action, { dispatch }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { id, error, error_type } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'error';
|
||||
modelImport.error_reason = error_type;
|
||||
modelImport.error = error;
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'error';
|
||||
modelImport.error_reason = error_type;
|
||||
modelImport.error = error;
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallCancelled,
|
||||
effect: (action, { dispatch }) => {
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { id } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'cancelled';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'cancelled';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
startAppListening({
|
||||
actionCreator: socketModelInstallDownloadsComplete,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { id } = action.payload.data;
|
||||
const { data } = selectModelInstalls(getState());
|
||||
|
||||
if (!data || !data.find((m) => m.id === id)) {
|
||||
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
|
||||
} else {
|
||||
dispatch(
|
||||
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
|
||||
const modelImport = draft.find((m) => m.id === id);
|
||||
if (modelImport) {
|
||||
modelImport.status = 'downloads_done';
|
||||
}
|
||||
return draft;
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { workflowLoaded, workflowLoadRequested } from 'features/nodes/store/actions';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { $flow } from 'features/nodes/store/reactFlowInstance';
|
||||
import { $needsFit } from 'features/nodes/store/reactFlowInstance';
|
||||
import type { Templates } from 'features/nodes/store/types';
|
||||
import { WorkflowMigrationError, WorkflowVersionError } from 'features/nodes/types/error';
|
||||
import { graphToWorkflow } from 'features/nodes/util/workflow/graphToWorkflow';
|
||||
@@ -65,9 +65,7 @@ export const addWorkflowLoadRequestedListener = (startAppListening: AppStartList
|
||||
});
|
||||
}
|
||||
|
||||
requestAnimationFrame(() => {
|
||||
$flow.get()?.fitView();
|
||||
});
|
||||
$needsFit.set(true);
|
||||
} catch (e) {
|
||||
if (e instanceof WorkflowVersionError) {
|
||||
// The workflow version was not recognized in the valid list of versions
|
||||
|
||||
@@ -35,6 +35,7 @@ type IAIDndImageProps = FlexProps & {
|
||||
draggableData?: TypesafeDraggableData;
|
||||
dropLabel?: ReactNode;
|
||||
isSelected?: boolean;
|
||||
isSelectedForCompare?: boolean;
|
||||
thumbnail?: boolean;
|
||||
noContentFallback?: ReactElement;
|
||||
useThumbailFallback?: boolean;
|
||||
@@ -61,6 +62,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
|
||||
draggableData,
|
||||
dropLabel,
|
||||
isSelected = false,
|
||||
isSelectedForCompare = false,
|
||||
thumbnail = false,
|
||||
noContentFallback = defaultNoContentFallback,
|
||||
uploadElement = defaultUploadElement,
|
||||
@@ -165,7 +167,11 @@ const IAIDndImage = (props: IAIDndImageProps) => {
|
||||
data-testid={dataTestId}
|
||||
/>
|
||||
{withMetadataOverlay && <ImageMetadataOverlay imageDTO={imageDTO} />}
|
||||
<SelectionOverlay isSelected={isSelected} isHovered={withHoverOverlay ? isHovered : false} />
|
||||
<SelectionOverlay
|
||||
isSelected={isSelected}
|
||||
isSelectedForCompare={isSelectedForCompare}
|
||||
isHovered={withHoverOverlay ? isHovered : false}
|
||||
/>
|
||||
</Flex>
|
||||
)}
|
||||
{!imageDTO && !isUploadDisabled && (
|
||||
|
||||
@@ -1,47 +1,37 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import type { IconButtonProps, SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import type { MouseEvent, ReactElement } from 'react';
|
||||
import { memo, useMemo } from 'react';
|
||||
import type { MouseEvent } from 'react';
|
||||
import { memo } from 'react';
|
||||
|
||||
type Props = {
|
||||
const sx: SystemStyleObject = {
|
||||
minW: 0,
|
||||
svg: {
|
||||
transitionProperty: 'common',
|
||||
transitionDuration: 'normal',
|
||||
fill: 'base.100',
|
||||
_hover: { fill: 'base.50' },
|
||||
filter: 'drop-shadow(0px 0px 0.1rem var(--invoke-colors-base-800))',
|
||||
},
|
||||
};
|
||||
|
||||
type Props = Omit<IconButtonProps, 'aria-label' | 'onClick' | 'tooltip'> & {
|
||||
onClick: (event: MouseEvent<HTMLButtonElement>) => void;
|
||||
tooltip: string;
|
||||
icon?: ReactElement;
|
||||
styleOverrides?: SystemStyleObject;
|
||||
};
|
||||
|
||||
const IAIDndImageIcon = (props: Props) => {
|
||||
const { onClick, tooltip, icon, styleOverrides } = props;
|
||||
|
||||
const sx = useMemo(
|
||||
() => ({
|
||||
position: 'absolute',
|
||||
top: 1,
|
||||
insetInlineEnd: 1,
|
||||
p: 0,
|
||||
minW: 0,
|
||||
svg: {
|
||||
transitionProperty: 'common',
|
||||
transitionDuration: 'normal',
|
||||
fill: 'base.100',
|
||||
_hover: { fill: 'base.50' },
|
||||
filter: 'drop-shadow(0px 0px 0.1rem var(--invoke-colors-base-800))',
|
||||
},
|
||||
...styleOverrides,
|
||||
}),
|
||||
[styleOverrides]
|
||||
);
|
||||
const { onClick, tooltip, icon, ...rest } = props;
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
onClick={onClick}
|
||||
aria-label={tooltip}
|
||||
tooltip={tooltip}
|
||||
icon={icon}
|
||||
size="sm"
|
||||
variant="link"
|
||||
sx={sx}
|
||||
data-testid={tooltip}
|
||||
{...rest}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -36,7 +36,7 @@ const IAIDroppable = (props: IAIDroppableProps) => {
|
||||
pointerEvents={active ? 'auto' : 'none'}
|
||||
>
|
||||
<AnimatePresence>
|
||||
{isValidDrop(data, active) && <IAIDropOverlay isOver={isOver} label={dropLabel} />}
|
||||
{isValidDrop(data, active?.data.current) && <IAIDropOverlay isOver={isOver} label={dropLabel} />}
|
||||
</AnimatePresence>
|
||||
</Box>
|
||||
);
|
||||
|
||||
@@ -3,10 +3,17 @@ import { memo, useMemo } from 'react';
|
||||
|
||||
type Props = {
|
||||
isSelected: boolean;
|
||||
isSelectedForCompare: boolean;
|
||||
isHovered: boolean;
|
||||
};
|
||||
const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
const SelectionOverlay = ({ isSelected, isSelectedForCompare, isHovered }: Props) => {
|
||||
const shadow = useMemo(() => {
|
||||
if (isSelectedForCompare && isHovered) {
|
||||
return 'hoverSelectedForCompare';
|
||||
}
|
||||
if (isSelectedForCompare && !isHovered) {
|
||||
return 'selectedForCompare';
|
||||
}
|
||||
if (isSelected && isHovered) {
|
||||
return 'hoverSelected';
|
||||
}
|
||||
@@ -17,7 +24,7 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
return 'hoverUnselected';
|
||||
}
|
||||
return undefined;
|
||||
}, [isHovered, isSelected]);
|
||||
}, [isHovered, isSelected, isSelectedForCompare]);
|
||||
return (
|
||||
<Box
|
||||
className="selection-box"
|
||||
@@ -27,7 +34,7 @@ const SelectionOverlay = ({ isSelected, isHovered }: Props) => {
|
||||
bottom={0}
|
||||
insetInlineStart={0}
|
||||
borderRadius="base"
|
||||
opacity={isSelected ? 1 : 0.7}
|
||||
opacity={isSelected || isSelectedForCompare ? 1 : 0.7}
|
||||
transitionProperty="common"
|
||||
transitionDuration="0.1s"
|
||||
pointerEvents="none"
|
||||
|
||||
21
invokeai/frontend/web/src/common/hooks/useBoolean.ts
Normal file
21
invokeai/frontend/web/src/common/hooks/useBoolean.ts
Normal file
@@ -0,0 +1,21 @@
|
||||
import { useCallback, useMemo, useState } from 'react';
|
||||
|
||||
export const useBoolean = (initialValue: boolean) => {
|
||||
const [isTrue, set] = useState(initialValue);
|
||||
const setTrue = useCallback(() => set(true), []);
|
||||
const setFalse = useCallback(() => set(false), []);
|
||||
const toggle = useCallback(() => set((v) => !v), []);
|
||||
|
||||
const api = useMemo(
|
||||
() => ({
|
||||
isTrue,
|
||||
set,
|
||||
setTrue,
|
||||
setFalse,
|
||||
toggle,
|
||||
}),
|
||||
[isTrue, set, setTrue, setFalse, toggle]
|
||||
);
|
||||
|
||||
return api;
|
||||
};
|
||||
@@ -1,16 +0,0 @@
|
||||
/**
|
||||
* Comparator function for sorting dates in ascending order
|
||||
*/
|
||||
export const dateComparator = (a: string, b: string) => {
|
||||
const dateA = new Date(a);
|
||||
const dateB = new Date(b);
|
||||
|
||||
// sort in ascending order
|
||||
if (dateA > dateB) {
|
||||
return 1;
|
||||
}
|
||||
if (dateA < dateB) {
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
@@ -1,3 +1,7 @@
|
||||
export const stopPropagation = (e: React.MouseEvent) => {
|
||||
e.stopPropagation();
|
||||
};
|
||||
|
||||
export const preventDefault = (e: React.MouseEvent) => {
|
||||
e.preventDefault();
|
||||
};
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user