mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-25 07:28:18 -05:00
Compare commits
32 Commits
lstein/fea
...
ryan/lora-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ed6e65a6e | ||
|
|
52c9646f84 | ||
|
|
7662f0522b | ||
|
|
e50fe69839 | ||
|
|
5a9f884620 | ||
|
|
edc72d1739 | ||
|
|
23f521dc7c | ||
|
|
3d6b93efdd | ||
|
|
3f28d3afad | ||
|
|
9353bfbdd6 | ||
|
|
93f2bc6118 | ||
|
|
9019026d6d | ||
|
|
c195b326ec | ||
|
|
2f460d2a45 | ||
|
|
4473cba512 | ||
|
|
4c94d41fa9 | ||
|
|
4036244ee9 | ||
|
|
d06232d9ba | ||
|
|
bacbdfb8fc | ||
|
|
59f42f4682 | ||
|
|
a636ac2899 | ||
|
|
bd478360d9 | ||
|
|
ac0db07649 | ||
|
|
b7132ce9e7 | ||
|
|
90f30e7748 | ||
|
|
6b86a66bc7 | ||
|
|
aa97e626e9 | ||
|
|
c90736093f | ||
|
|
0bff4ace1b | ||
|
|
5eb382074e | ||
|
|
46aa930526 | ||
|
|
3305bad0c2 |
@@ -2,29 +2,42 @@
|
||||
|
||||
## Builder stage
|
||||
|
||||
FROM library/ubuntu:23.04 AS builder
|
||||
FROM library/ubuntu:24.04 AS builder
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt update && apt-get install -y \
|
||||
git \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
build-essential
|
||||
build-essential \
|
||||
git
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
# Install `uv` for package management
|
||||
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
|
||||
|
||||
ENV VIRTUAL_ENV=/opt/venv
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV PYTHON_VERSION=3.11
|
||||
ENV UV_COMPILE_BYTECODE=1
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
ARG BUILDPLATFORM
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
|
||||
RUN mkdir -p ${VIRTUAL_ENV} && \
|
||||
mkdir -p ${INVOKEAI_SRC} && \
|
||||
chmod -R a+w /opt
|
||||
USER ubuntu
|
||||
|
||||
# Install python and create the venv
|
||||
RUN uv python install ${PYTHON_VERSION} && \
|
||||
uv venv --relocatable --prompt "invoke" --python ${PYTHON_VERSION} ${VIRTUAL_ENV}
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
COPY invokeai ./invokeai
|
||||
COPY pyproject.toml ./
|
||||
|
||||
@@ -32,25 +45,18 @@ COPY pyproject.toml ./
|
||||
# the local working copy can be bind-mounted into the image
|
||||
# at path defined by ${INVOKEAI_SRC}
|
||||
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
|
||||
# x86_64/CUDA is default
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m venv ${VIRTUAL_ENV} &&\
|
||||
# x86_64/CUDA is the default
|
||||
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
|
||||
fi &&\
|
||||
fi && \
|
||||
uv pip install --python ${PYTHON_VERSION} $extra_index_url_arg -e "."
|
||||
|
||||
# xformers + triton fails to install on arm64
|
||||
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
|
||||
pip install $extra_index_url_arg -e ".[xformers]"; \
|
||||
else \
|
||||
pip install $extra_index_url_arg -e "."; \
|
||||
fi
|
||||
|
||||
# #### Build the Web UI ------------------------------------
|
||||
#### Build the Web UI ------------------------------------
|
||||
|
||||
FROM node:20-slim AS web-builder
|
||||
ENV PNPM_HOME="/pnpm"
|
||||
@@ -66,7 +72,7 @@ RUN npx vite build
|
||||
|
||||
#### Runtime stage ---------------------------------------
|
||||
|
||||
FROM library/ubuntu:23.04 AS runtime
|
||||
FROM library/ubuntu:24.04 AS runtime
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
@@ -83,17 +89,16 @@ RUN apt update && apt install -y --no-install-recommends \
|
||||
gosu \
|
||||
magic-wormhole \
|
||||
libglib2.0-0 \
|
||||
libgl1-mesa-glx \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
libgl1 \
|
||||
libglx-mesa0 \
|
||||
build-essential \
|
||||
libopencv-dev \
|
||||
libstdc++-10-dev &&\
|
||||
apt-get clean && apt-get autoclean
|
||||
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv
|
||||
ENV PYTHON_VERSION=3.11
|
||||
ENV INVOKEAI_ROOT=/invokeai
|
||||
ENV INVOKEAI_HOST=0.0.0.0
|
||||
ENV INVOKEAI_PORT=9090
|
||||
@@ -101,6 +106,14 @@ ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
||||
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
|
||||
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
|
||||
|
||||
# Install `uv` for package management
|
||||
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
|
||||
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
|
||||
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
|
||||
USER ubuntu
|
||||
RUN uv python install ${PYTHON_VERSION}
|
||||
USER root
|
||||
|
||||
# --link requires buldkit w/ dockerfile syntax 1.4
|
||||
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
||||
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
|
||||
@@ -115,7 +128,7 @@ WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# build patchmatch
|
||||
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
||||
RUN python3 -c "from patchmatch import patch_match"
|
||||
RUN python -c "from patchmatch import patch_match"
|
||||
|
||||
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
|
||||
|
||||
|
||||
@@ -16,6 +16,9 @@ set -e -o pipefail
|
||||
|
||||
USER_ID=${CONTAINER_UID:-1000}
|
||||
USER=ubuntu
|
||||
# if the user does not exist, create it. It is expected to be present on ubuntu >=24.x
|
||||
_=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
|
||||
# ensure the UID is correct
|
||||
usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
|
||||
### Set the $PUBLIC_KEY env var to enable SSH access.
|
||||
@@ -36,6 +39,8 @@ fi
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
export HF_HOME=${HF_HOME:-$INVOKEAI_ROOT/.cache/huggingface}
|
||||
export MPLCONFIGDIR=${MPLCONFIGDIR:-$INVOKEAI_ROOT/.matplotlib}
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
exec gosu ${USER} "$@"
|
||||
|
||||
@@ -15,6 +15,11 @@ custom_nodes_readme_path = str(custom_nodes_path / "README.md")
|
||||
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
|
||||
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
|
||||
|
||||
# set the same permissions as the destination directory, in case our source is read-only,
|
||||
# so that the files are user-writable
|
||||
for p in custom_nodes_path.glob("**/*"):
|
||||
p.chmod(custom_nodes_path.stat().st_mode)
|
||||
|
||||
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
|
||||
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
|
||||
if spec is None or spec.loader is None:
|
||||
|
||||
@@ -82,10 +82,11 @@ class CompelInvocation(BaseInvocation):
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=text_encoder,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_te_",
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
@@ -179,10 +180,11 @@ class SDXLPromptInvocationBase:
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
text_encoder,
|
||||
patches=_lora_loader(),
|
||||
prefix=lora_prefix,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
|
||||
@@ -1003,10 +1003,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
||||
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=unet,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_unet_",
|
||||
dtype=unet.dtype,
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
):
|
||||
|
||||
@@ -56,6 +56,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
CLIPLEmbedModel = "CLIPLEmbedModelField"
|
||||
CLIPGEmbedModel = "CLIPGEmbedModelField"
|
||||
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
|
||||
StructuralLoRAModel = "StructuralLoRAModelField"
|
||||
# endregion
|
||||
|
||||
# region Misc Field Types
|
||||
@@ -143,6 +144,7 @@ class FieldDescriptions:
|
||||
controlnet_model = "ControlNet model to load"
|
||||
vae_model = "VAE model to load"
|
||||
lora_model = "LoRA model to load"
|
||||
structural_lora_model = "Structural LoRA model to load"
|
||||
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||
flux_model = "Flux model (Transformer) to load"
|
||||
sd3_model = "SD3 model (MMDiTX) to load"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from contextlib import ExitStack
|
||||
from typing import Callable, Iterator, Optional, Tuple
|
||||
from typing import Callable, Iterator, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@@ -8,6 +8,8 @@ import torchvision.transforms as tv_transforms
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
@@ -22,7 +24,7 @@ from invokeai.app.invocations.fields import (
|
||||
)
|
||||
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
|
||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||
from invokeai.app.invocations.model import TransformerField, VAEField
|
||||
from invokeai.app.invocations.model import TransformerField, VAEField, StructuralLoRAField, LoRAField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
|
||||
@@ -43,6 +45,8 @@ from invokeai.backend.flux.sampling_utils import (
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.flux.flux_tools_sampling_utils import prepare_control
|
||||
from invokeai.backend.flux.modules.conditioner import HFEncoder
|
||||
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
|
||||
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
@@ -284,6 +288,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
dtype=inference_dtype,
|
||||
device=x.device,
|
||||
)
|
||||
img_cond = None
|
||||
if struct_lora := self.transformer.structural_lora:
|
||||
# What should we do when we have multiple of these?
|
||||
if not self.controlnet_vae:
|
||||
raise ValueError("controlnet_vae must be set when using a strutural lora")
|
||||
ae_info = context.models.load(self.controlnet_vae.vae)
|
||||
img = context.images.get_pil(struct_lora.img.image_name)
|
||||
with ae_info as ae:
|
||||
assert isinstance(ae, AutoEncoder)
|
||||
img_cond = prepare_control(self.height, self.width, self.seed, ae, img)
|
||||
|
||||
# Load the transformer model.
|
||||
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
|
||||
@@ -296,10 +310,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
if config.format in [ModelFormat.Checkpoint]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
|
||||
dtype=inference_dtype,
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
@@ -311,7 +326,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# The model is quantized, so apply the LoRA weights as sidecar layers. This results in slower inference,
|
||||
# than directly patching the weights, but is agnostic to the quantization format.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_sidecar_patches(
|
||||
LoRAPatcher.apply_lora_wrapper_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
|
||||
@@ -345,6 +360,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
controlnet_extensions=controlnet_extensions,
|
||||
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
|
||||
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
|
||||
img_cond=img_cond
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
@@ -682,7 +698,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
|
||||
|
||||
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.transformer.loras:
|
||||
loras: list[Union[LoRAField, StructuralLoRAField]] = [*self.transformer.loras]
|
||||
if self.transformer.structural_lora:
|
||||
loras.append(self.transformer.structural_lora)
|
||||
for lora in loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
|
||||
@@ -81,8 +81,8 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
transformer=TransformerField(transformer=transformer, loras=[], structural_loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], structural_loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
|
||||
70
invokeai/app/invocations/flux_structural_lora_loader.py
Normal file
70
invokeai/app/invocations/flux_structural_lora_loader.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from typing import Optional, Literal
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType, ImageField
|
||||
from invokeai.app.invocations.model import VAEField, StructuralLoRAField, ModelIdentifierField, TransformerField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("flux_structural_lora_loader_output")
|
||||
class FluxStructuralLoRALoaderOutput(BaseInvocationOutput):
|
||||
"""Flux Structural LoRA Loader Output"""
|
||||
|
||||
transformer: Optional[TransformerField] = OutputField(
|
||||
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_structural_lora_loader",
|
||||
title="Flux Structural LoRA",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.1.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxStructuralLoRALoaderInvocation(BaseInvocation):
|
||||
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
|
||||
|
||||
lora: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.structural_lora_model, title="Structural LoRA", ui_type=UIType.StructuralLoRAModel
|
||||
)
|
||||
transformer: TransformerField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.transformer,
|
||||
input=Input.Connection,
|
||||
title="FLUX Transformer",
|
||||
)
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode.",
|
||||
)
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxStructuralLoRALoaderOutput:
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(lora_key):
|
||||
raise ValueError(f"Unknown lora: {lora_key}!")
|
||||
|
||||
# Check for existing LoRAs with the same key.
|
||||
if self.transformer and self.transformer.structural_lora and self.transformer.structural_lora.lora.key == lora_key:
|
||||
raise ValueError(f'Structural LoRA "{lora_key}" already applied to transformer.')
|
||||
|
||||
output = FluxStructuralLoRALoaderOutput()
|
||||
|
||||
# Attach LoRA layers to the models.
|
||||
if self.transformer is not None:
|
||||
output.transformer = self.transformer.model_copy(deep=True)
|
||||
output.transformer.structural_lora = StructuralLoRAField(
|
||||
lora=self.lora,
|
||||
img=self.image,
|
||||
weight=self.weight,
|
||||
)
|
||||
|
||||
return output
|
||||
@@ -22,6 +22,7 @@ from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoRAPatcher
|
||||
from invokeai.backend.model_manager.config import ModelFormat
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -111,10 +112,11 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=clip_text_encoder,
|
||||
patches=self._clip_lora_iterator(context),
|
||||
prefix=FLUX_LORA_CLIP_PREFIX,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import copy
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -10,7 +10,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType, ImageField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -65,11 +65,6 @@ class CLIPField(BaseModel):
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class T5EncoderField(BaseModel):
|
||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||
@@ -79,6 +74,13 @@ class VAEField(BaseModel):
|
||||
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
class StructuralLoRAField(LoRAField):
|
||||
img: ImageField = Field(description="Image to use in structural conditioning")
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
structural_lora: Optional[StructuralLoRAField] = Field(description="Structural LoRAs to apply on model loading", default=None)
|
||||
|
||||
@invocation_output("unet_output")
|
||||
class UNetOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -21,6 +21,7 @@ from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoRAPatcher
|
||||
from invokeai.backend.model_manager.config import ModelFormat
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
|
||||
SD3_T5_MAX_SEQ_LEN = 256
|
||||
@@ -150,10 +151,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
|
||||
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=clip_text_encoder,
|
||||
patches=self._clip_lora_iterator(context, clip_model),
|
||||
prefix=FLUX_LORA_CLIP_PREFIX,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -207,7 +207,9 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
unet_info as unet,
|
||||
LoRAPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=unet, patches=_lora_loader(), prefix="lora_unet_", dtype=unet.dtype
|
||||
),
|
||||
):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import filecmp
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
@@ -525,9 +526,35 @@ def get_config() -> InvokeAIAppConfig:
|
||||
]
|
||||
example_config.write_file(config.config_file_path.with_suffix(".example.yaml"), as_example=True)
|
||||
|
||||
# Copy all legacy configs - We know `__path__[0]` is correct here
|
||||
# Copy all legacy configs only if needed
|
||||
# We know `__path__[0]` is correct here
|
||||
configs_src = Path(model_configs.__path__[0]) # pyright: ignore [reportUnknownMemberType, reportUnknownArgumentType, reportAttributeAccessIssue]
|
||||
shutil.copytree(configs_src, config.legacy_conf_path, dirs_exist_ok=True)
|
||||
dest_path = config.legacy_conf_path
|
||||
|
||||
# Create destination (we don't need to check for existence)
|
||||
dest_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Compare directories recursively
|
||||
comparison = filecmp.dircmp(configs_src, dest_path)
|
||||
need_copy = any(
|
||||
[
|
||||
comparison.left_only, # Files exist only in source
|
||||
comparison.diff_files, # Files that differ
|
||||
comparison.common_funny, # Files that couldn't be compared
|
||||
]
|
||||
)
|
||||
|
||||
if need_copy:
|
||||
# Get permissions from destination directory
|
||||
dest_mode = dest_path.stat().st_mode
|
||||
|
||||
# Copy directory tree
|
||||
shutil.copytree(configs_src, dest_path, dirs_exist_ok=True)
|
||||
|
||||
# Set permissions on copied files to match destination directory
|
||||
dest_path.chmod(dest_mode)
|
||||
for p in dest_path.glob("**/*"):
|
||||
p.chmod(dest_mode)
|
||||
|
||||
if config.config_file_path.exists():
|
||||
config_from_file = load_and_migrate_config(config.config_file_path)
|
||||
|
||||
@@ -379,7 +379,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
|
||||
|
||||
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
|
||||
# Make sure the cancel event is for the currently processing queue item
|
||||
if self._queue_item and self._queue_item.item_id is not event[1].item_id:
|
||||
if self._queue_item and self._queue_item.item_id != event[1].item_id:
|
||||
return
|
||||
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
|
||||
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
|
||||
|
||||
@@ -35,7 +35,7 @@ class Migration11Callback:
|
||||
|
||||
def _remove_convert_cache(self) -> None:
|
||||
"""Rename models/.cache to models/.convert_cache."""
|
||||
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
|
||||
self._logger.info("Removing models/.cache directory. Converted models will now be cached in .convert_cache.")
|
||||
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
|
||||
shutil.rmtree(legacy_convert_path, ignore_errors=True)
|
||||
|
||||
|
||||
@@ -1,42 +0,0 @@
|
||||
{
|
||||
"_class_name": "ControlNetModel",
|
||||
"_diffusers_version": "0.16.0.dev0",
|
||||
"_name_or_path": "controlnet_v1_1/control_v11p_sd15_canny",
|
||||
"act_fn": "silu",
|
||||
"attention_head_dim": 8,
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280,
|
||||
1280
|
||||
],
|
||||
"class_embed_type": null,
|
||||
"conditioning_embedding_out_channels": [
|
||||
16,
|
||||
32,
|
||||
96,
|
||||
256
|
||||
],
|
||||
"controlnet_conditioning_channel_order": "rgb",
|
||||
"cross_attention_dim": 768,
|
||||
"down_block_types": [
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_scale_factor": 1,
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"projection_class_embeddings_input_dim": null,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"upcast_attention": false,
|
||||
"use_linear_projection": false
|
||||
}
|
||||
@@ -1,56 +0,0 @@
|
||||
{
|
||||
"_class_name": "ControlNetModel",
|
||||
"_diffusers_version": "0.19.3",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": "text_time",
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"addition_time_embed_dim": 256,
|
||||
"attention_head_dim": [
|
||||
5,
|
||||
10,
|
||||
20
|
||||
],
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280
|
||||
],
|
||||
"class_embed_type": null,
|
||||
"conditioning_channels": 3,
|
||||
"conditioning_embedding_out_channels": [
|
||||
16,
|
||||
32,
|
||||
96,
|
||||
256
|
||||
],
|
||||
"controlnet_conditioning_channel_order": "rgb",
|
||||
"cross_attention_dim": 2048,
|
||||
"down_block_types": [
|
||||
"DownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"global_pool_conditions": false,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_scale_factor": 1,
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"projection_class_embeddings_input_dim": 2816,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"transformer_layers_per_block": [
|
||||
1,
|
||||
2,
|
||||
10
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": true
|
||||
}
|
||||
@@ -1,20 +0,0 @@
|
||||
{
|
||||
"crop_size": 224,
|
||||
"do_center_crop": true,
|
||||
"do_convert_rgb": true,
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "CLIPFeatureExtractor",
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"resample": 3,
|
||||
"size": 224
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionPipeline",
|
||||
"_diffusers_version": "0.6.0",
|
||||
"feature_extractor": [
|
||||
"transformers",
|
||||
"CLIPImageProcessor"
|
||||
],
|
||||
"safety_checker": [
|
||||
"stable_diffusion",
|
||||
"StableDiffusionSafetyChecker"
|
||||
],
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"PNDMScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
"transformers",
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"tokenizer": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -1,175 +0,0 @@
|
||||
{
|
||||
"_commit_hash": "4bb648a606ef040e7685bde262611766a5fdd67b",
|
||||
"_name_or_path": "CompVis/stable-diffusion-safety-checker",
|
||||
"architectures": [
|
||||
"StableDiffusionSafetyChecker"
|
||||
],
|
||||
"initializer_factor": 1.0,
|
||||
"logit_scale_init_value": 2.6592,
|
||||
"model_type": "clip",
|
||||
"projection_dim": 768,
|
||||
"text_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"bos_token_id": 0,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": 2,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"max_position_embeddings": 77,
|
||||
"min_length": 0,
|
||||
"model_type": "clip_text_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 12,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_hidden_layers": 12,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": 1,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.22.0.dev0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false,
|
||||
"vocab_size": 49408
|
||||
},
|
||||
"text_config_dict": {
|
||||
"hidden_size": 768,
|
||||
"intermediate_size": 3072,
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12
|
||||
},
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": null,
|
||||
"vision_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"bos_token_id": null,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": null,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "clip_vision_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 16,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"patch_size": 14,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.22.0.dev0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false
|
||||
},
|
||||
"vision_config_dict": {
|
||||
"hidden_size": 1024,
|
||||
"intermediate_size": 4096,
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14
|
||||
}
|
||||
}
|
||||
@@ -1,13 +0,0 @@
|
||||
{
|
||||
"_class_name": "PNDMScheduler",
|
||||
"_diffusers_version": "0.6.0",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"num_train_timesteps": 1000,
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"steps_offset": 1,
|
||||
"trained_betas": null,
|
||||
"clip_sample": false
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.22.0.dev0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<|endoftext|>",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"name_or_path": "openai/clip-vit-large-patch14",
|
||||
"pad_token": "<|endoftext|>",
|
||||
"special_tokens_map_file": "./special_tokens_map.json",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,36 +0,0 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.6.0",
|
||||
"act_fn": "silu",
|
||||
"attention_head_dim": 8,
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280,
|
||||
1280
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"cross_attention_dim": 768,
|
||||
"down_block_types": [
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_scale_factor": 1,
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 4,
|
||||
"sample_size": 64,
|
||||
"up_block_types": [
|
||||
"UpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,29 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.6.0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 512,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
{
|
||||
"crop_size": {
|
||||
"height": 224,
|
||||
"width": 224
|
||||
},
|
||||
"do_center_crop": true,
|
||||
"do_convert_rgb": true,
|
||||
"do_normalize": true,
|
||||
"do_rescale": true,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "CLIPFeatureExtractor",
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_processor_type": "CLIPFeatureExtractor",
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"resample": 3,
|
||||
"rescale_factor": 0.00392156862745098,
|
||||
"size": {
|
||||
"shortest_edge": 224
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionPipeline",
|
||||
"_diffusers_version": "0.18.0.dev0",
|
||||
"feature_extractor": [
|
||||
"transformers",
|
||||
"CLIPFeatureExtractor"
|
||||
],
|
||||
"requires_safety_checker": true,
|
||||
"safety_checker": [
|
||||
"stable_diffusion",
|
||||
"StableDiffusionSafetyChecker"
|
||||
],
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"DPMSolverMultistepScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
"transformers",
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"tokenizer": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -1,168 +0,0 @@
|
||||
{
|
||||
"_commit_hash": "cb41f3a270d63d454d385fc2e4f571c487c253c5",
|
||||
"_name_or_path": "CompVis/stable-diffusion-safety-checker",
|
||||
"architectures": [
|
||||
"StableDiffusionSafetyChecker"
|
||||
],
|
||||
"initializer_factor": 1.0,
|
||||
"logit_scale_init_value": 2.6592,
|
||||
"model_type": "clip",
|
||||
"projection_dim": 768,
|
||||
"text_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": 0,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": 2,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"max_position_embeddings": 77,
|
||||
"min_length": 0,
|
||||
"model_type": "clip_text_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 12,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_hidden_layers": 12,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": 1,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"projection_dim": 512,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.30.2",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false,
|
||||
"vocab_size": 49408
|
||||
},
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": null,
|
||||
"vision_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": null,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": null,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "clip_vision_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 16,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"patch_size": 14,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"projection_dim": 512,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.30.2",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false
|
||||
}
|
||||
}
|
||||
@@ -1,26 +0,0 @@
|
||||
{
|
||||
"_class_name": "DPMSolverMultistepScheduler",
|
||||
"_diffusers_version": "0.18.0.dev0",
|
||||
"algorithm_type": "dpmsolver++",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"clip_sample_range": 1.0,
|
||||
"dynamic_thresholding_ratio": 0.995,
|
||||
"lambda_min_clipped": -Infinity,
|
||||
"lower_order_final": true,
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "v_prediction",
|
||||
"rescale_betas_zero_snr": false,
|
||||
"sample_max_value": 1.0,
|
||||
"set_alpha_to_one": false,
|
||||
"solver_order": 2,
|
||||
"solver_type": "midpoint",
|
||||
"steps_offset": 1,
|
||||
"thresholding": false,
|
||||
"timestep_spacing": "leading",
|
||||
"trained_betas": null,
|
||||
"use_karras_sigmas": false,
|
||||
"variance_type": null
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.30.2",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<|endoftext|>",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,62 +0,0 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.18.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": null,
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"attention_head_dim": 8,
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280,
|
||||
1280
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"class_embed_type": null,
|
||||
"class_embeddings_concat": false,
|
||||
"conv_in_kernel": 3,
|
||||
"conv_out_kernel": 3,
|
||||
"cross_attention_dim": 768,
|
||||
"cross_attention_norm": null,
|
||||
"down_block_types": [
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"dual_cross_attention": false,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_only_cross_attention": null,
|
||||
"mid_block_scale_factor": 1,
|
||||
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"out_channels": 4,
|
||||
"projection_class_embeddings_input_dim": null,
|
||||
"resnet_out_scale_factor": 1.0,
|
||||
"resnet_skip_time_act": false,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"sample_size": 96,
|
||||
"time_cond_proj_dim": null,
|
||||
"time_embedding_act_fn": null,
|
||||
"time_embedding_dim": null,
|
||||
"time_embedding_type": "positional",
|
||||
"timestep_post_act": null,
|
||||
"up_block_types": [
|
||||
"UpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D"
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": false
|
||||
}
|
||||
@@ -1,30 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.18.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 768,
|
||||
"scaling_factor": 0.18215,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,20 +0,0 @@
|
||||
{
|
||||
"crop_size": 224,
|
||||
"do_center_crop": true,
|
||||
"do_convert_rgb": true,
|
||||
"do_normalize": true,
|
||||
"do_resize": true,
|
||||
"feature_extractor_type": "CLIPFeatureExtractor",
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"resample": 3,
|
||||
"size": 224
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionPipeline",
|
||||
"_diffusers_version": "0.8.0",
|
||||
"feature_extractor": [
|
||||
"transformers",
|
||||
"CLIPImageProcessor"
|
||||
],
|
||||
"requires_safety_checker": false,
|
||||
"safety_checker": [
|
||||
null,
|
||||
null
|
||||
],
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"DDIMScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
"transformers",
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"tokenizer": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
{
|
||||
"_class_name": "DDIMScheduler",
|
||||
"_diffusers_version": "0.8.0",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "v_prediction",
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"steps_offset": 1,
|
||||
"trained_betas": null
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
{
|
||||
"_name_or_path": "hf-models/stable-diffusion-v2-768x768/text_encoder",
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1024,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 23,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 512,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.25.0.dev0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "!",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"name_or_path": "hf-models/stable-diffusion-v2-768x768/tokenizer",
|
||||
"pad_token": "<|endoftext|>",
|
||||
"special_tokens_map_file": "./special_tokens_map.json",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,46 +0,0 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.10.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"attention_head_dim": [
|
||||
5,
|
||||
10,
|
||||
20,
|
||||
20
|
||||
],
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280,
|
||||
1280
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"cross_attention_dim": 1024,
|
||||
"down_block_types": [
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"dual_cross_attention": false,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_scale_factor": 1,
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"out_channels": 4,
|
||||
"sample_size": 96,
|
||||
"up_block_types": [
|
||||
"UpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D"
|
||||
],
|
||||
"use_linear_projection": true,
|
||||
"upcast_attention": true
|
||||
}
|
||||
@@ -1,30 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.8.0",
|
||||
"_name_or_path": "hf-models/stable-diffusion-v2-768x768/vae",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 768,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionXLPipeline",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"force_zeros_for_empty_prompt": true,
|
||||
"add_watermarker": null,
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"EulerDiscreteScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
"transformers",
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"text_encoder_2": [
|
||||
"transformers",
|
||||
"CLIPTextModelWithProjection"
|
||||
],
|
||||
"tokenizer": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"tokenizer_2": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
{
|
||||
"_class_name": "EulerDiscreteScheduler",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"interpolation_type": "linear",
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "epsilon",
|
||||
"sample_max_value": 1.0,
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"steps_offset": 1,
|
||||
"timestep_spacing": "leading",
|
||||
"trained_betas": null,
|
||||
"use_karras_sigmas": false
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"architectures": [
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.32.0.dev0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"architectures": [
|
||||
"CLIPTextModelWithProjection"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 20,
|
||||
"num_hidden_layers": 32,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.32.0.dev0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<|endoftext|>",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"pad_token": "<|endoftext|>",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "!",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"pad_token": "!",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,69 +0,0 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": "text_time",
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"addition_time_embed_dim": 256,
|
||||
"attention_head_dim": [
|
||||
5,
|
||||
10,
|
||||
20
|
||||
],
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"class_embed_type": null,
|
||||
"class_embeddings_concat": false,
|
||||
"conv_in_kernel": 3,
|
||||
"conv_out_kernel": 3,
|
||||
"cross_attention_dim": 2048,
|
||||
"cross_attention_norm": null,
|
||||
"down_block_types": [
|
||||
"DownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"dual_cross_attention": false,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_only_cross_attention": null,
|
||||
"mid_block_scale_factor": 1,
|
||||
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"out_channels": 4,
|
||||
"projection_class_embeddings_input_dim": 2816,
|
||||
"resnet_out_scale_factor": 1.0,
|
||||
"resnet_skip_time_act": false,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"sample_size": 128,
|
||||
"time_cond_proj_dim": null,
|
||||
"time_embedding_act_fn": null,
|
||||
"time_embedding_dim": null,
|
||||
"time_embedding_type": "positional",
|
||||
"timestep_post_act": null,
|
||||
"transformer_layers_per_block": [
|
||||
1,
|
||||
2,
|
||||
10
|
||||
],
|
||||
"up_block_types": [
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"UpBlock2D"
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": true
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.20.0.dev0",
|
||||
"_name_or_path": "../sdxl-vae/",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,35 +0,0 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionXLImg2ImgPipeline",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"force_zeros_for_empty_prompt": false,
|
||||
"add_watermarker": null,
|
||||
"requires_aesthetics_score": true,
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"EulerDiscreteScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
null,
|
||||
null
|
||||
],
|
||||
"text_encoder_2": [
|
||||
"transformers",
|
||||
"CLIPTextModelWithProjection"
|
||||
],
|
||||
"tokenizer": [
|
||||
null,
|
||||
null
|
||||
],
|
||||
"tokenizer_2": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -1,18 +0,0 @@
|
||||
{
|
||||
"_class_name": "EulerDiscreteScheduler",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"interpolation_type": "linear",
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "epsilon",
|
||||
"sample_max_value": 1.0,
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"steps_offset": 1,
|
||||
"timestep_spacing": "leading",
|
||||
"trained_betas": null,
|
||||
"use_karras_sigmas": false
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"architectures": [
|
||||
"CLIPTextModelWithProjection"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": 0,
|
||||
"dropout": 0.0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 77,
|
||||
"model_type": "clip_text_model",
|
||||
"num_attention_heads": 20,
|
||||
"num_hidden_layers": 32,
|
||||
"pad_token_id": 1,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.32.0.dev0",
|
||||
"vocab_size": 49408
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"bos_token": {
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"eos_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "!",
|
||||
"unk_token": {
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
@@ -1,33 +0,0 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"bos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|startoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"clean_up_tokenization_spaces": true,
|
||||
"do_lower_case": true,
|
||||
"eos_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"errors": "replace",
|
||||
"model_max_length": 77,
|
||||
"pad_token": "!",
|
||||
"tokenizer_class": "CLIPTokenizer",
|
||||
"unk_token": {
|
||||
"__type": "AddedToken",
|
||||
"content": "<|endoftext|>",
|
||||
"lstrip": false,
|
||||
"normalized": true,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,69 +0,0 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": "text_time",
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"addition_time_embed_dim": 256,
|
||||
"attention_head_dim": [
|
||||
6,
|
||||
12,
|
||||
24,
|
||||
24
|
||||
],
|
||||
"block_out_channels": [
|
||||
384,
|
||||
768,
|
||||
1536,
|
||||
1536
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"class_embed_type": null,
|
||||
"class_embeddings_concat": false,
|
||||
"conv_in_kernel": 3,
|
||||
"conv_out_kernel": 3,
|
||||
"cross_attention_dim": 1280,
|
||||
"cross_attention_norm": null,
|
||||
"down_block_types": [
|
||||
"DownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"dual_cross_attention": false,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_only_cross_attention": null,
|
||||
"mid_block_scale_factor": 1,
|
||||
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"out_channels": 4,
|
||||
"projection_class_embeddings_input_dim": 2560,
|
||||
"resnet_out_scale_factor": 1.0,
|
||||
"resnet_skip_time_act": false,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"sample_size": 128,
|
||||
"time_cond_proj_dim": null,
|
||||
"time_embedding_act_fn": null,
|
||||
"time_embedding_dim": null,
|
||||
"time_embedding_type": "positional",
|
||||
"timestep_post_act": null,
|
||||
"transformer_layers_per_block": 4,
|
||||
"up_block_types": [
|
||||
"UpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"UpBlock2D"
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": true
|
||||
}
|
||||
@@ -1,32 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.20.0.dev0",
|
||||
"_name_or_path": "../sdxl-vae/",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -1,31 +0,0 @@
|
||||
{
|
||||
"_class_name": "AutoencoderKL",
|
||||
"_diffusers_version": "0.19.0.dev0",
|
||||
"act_fn": "silu",
|
||||
"block_out_channels": [
|
||||
128,
|
||||
256,
|
||||
512,
|
||||
512
|
||||
],
|
||||
"down_block_types": [
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D",
|
||||
"DownEncoderBlock2D"
|
||||
],
|
||||
"force_upcast": true,
|
||||
"in_channels": 3,
|
||||
"latent_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"norm_num_groups": 32,
|
||||
"out_channels": 3,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 0.13025,
|
||||
"up_block_types": [
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D",
|
||||
"UpDecoderBlock2D"
|
||||
]
|
||||
}
|
||||
@@ -30,6 +30,8 @@ def denoise(
|
||||
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
|
||||
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
# extra img tokens
|
||||
img_cond: torch.Tensor | None = None,
|
||||
):
|
||||
# step 0 is the initial state
|
||||
total_steps = len(timesteps) - 1
|
||||
@@ -69,9 +71,9 @@ def denoise(
|
||||
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
|
||||
# tensors. Calculating the sum materializes each tensor into its own instance.
|
||||
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
|
||||
|
||||
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
|
||||
pred = model(
|
||||
img=img,
|
||||
img=pred_img,
|
||||
img_ids=img_ids,
|
||||
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
|
||||
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
|
||||
|
||||
27
invokeai/backend/flux/flux_tools_sampling_utils.py
Normal file
27
invokeai/backend/flux/flux_tools_sampling_utils.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from einops import rearrange
|
||||
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
|
||||
def prepare_control(
|
||||
height: int,
|
||||
width: int,
|
||||
seed: int,
|
||||
ae: AutoEncoder,
|
||||
cond_image: Image.Image,
|
||||
) -> torch.Tensor:
|
||||
# load and encode the conditioning image
|
||||
img_cond = cond_image.convert("RGB")
|
||||
img_cond = img_cond.resize((width, height), Image.Resampling.LANCZOS)
|
||||
img_cond = np.array(img_cond)
|
||||
img_cond = torch.from_numpy(img_cond).float()
|
||||
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
|
||||
ae_dtype = next(iter(ae.parameters())).dtype
|
||||
ae_device = next(iter(ae.parameters())).device
|
||||
img_cond = img_cond.to(device=ae_device, dtype=ae_dtype)
|
||||
generator = torch.Generator(device=ae_device).manual_seed(seed)
|
||||
img_cond = ae.encode(img_cond, sample=True, generator=generator)
|
||||
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
return img_cond
|
||||
@@ -32,4 +32,4 @@ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tenso
|
||||
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.view(*xq.shape), xk_out.view(*xk.shape)
|
||||
return xq_out.view(*xq.shape).type_as(xq), xk_out.view(*xk.shape).type_as(xk)
|
||||
|
||||
@@ -4,6 +4,7 @@ from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.backend.flux.custom_block_processor import (
|
||||
CustomDoubleStreamBlockProcessor,
|
||||
@@ -35,6 +36,7 @@ class FluxParams:
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
out_channels: Optional[int] = None
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
@@ -47,7 +49,7 @@ class Flux(nn.Module):
|
||||
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = self.in_channels
|
||||
self.out_channels = params.out_channels or self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
|
||||
50
invokeai/backend/flux/modules/image_embedders.py
Normal file
50
invokeai/backend/flux/modules/image_embedders.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from PIL import Image
|
||||
from safetensors.torch import load_file as load_sft
|
||||
from torch import nn
|
||||
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
|
||||
|
||||
class DepthImageEncoder:
|
||||
depth_model_name = "LiheYoung/depth-anything-large-hf"
|
||||
def __init__(self, device):
|
||||
self.device = device
|
||||
self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device)
|
||||
self.processor = AutoProcessor.from_pretrained(self.depth_model_name)
|
||||
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
||||
hw = img.shape[-2:]
|
||||
img = torch.clamp(img, -1.0, 1.0)
|
||||
img_byte = ((img + 1.0) * 127.5).byte()
|
||||
img = self.processor(img_byte, return_tensors="pt")["pixel_values"]
|
||||
depth = self.depth_model(img.to(self.device)).predicted_depth
|
||||
depth = repeat(depth, "b h w -> b 3 h w")
|
||||
depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True)
|
||||
depth = depth / 127.5 - 1.0
|
||||
return depth
|
||||
|
||||
class CannyImageEncoder:
|
||||
def __init__(
|
||||
self,
|
||||
device,
|
||||
min_t: int = 50,
|
||||
max_t: int = 200,
|
||||
):
|
||||
self.device = device
|
||||
self.min_t = min_t
|
||||
self.max_t = max_t
|
||||
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
||||
assert img.shape[0] == 1, "Only batch size 1 is supported"
|
||||
img = rearrange(img[0], "c h w -> h w c")
|
||||
img = torch.clamp(img, -1.0, 1.0)
|
||||
img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8)
|
||||
# Apply Canny edge detection
|
||||
canny = cv2.Canny(img_np, self.min_t, self.max_t)
|
||||
# Convert back to torch tensor and reshape
|
||||
canny = torch.from_numpy(canny).float() / 127.5 - 1.0
|
||||
canny = rearrange(canny, "h w -> 1 1 h w")
|
||||
canny = repeat(canny, "b 1 ... -> b 3 ...")
|
||||
return canny.to(self.device)
|
||||
65
invokeai/backend/lora/conversions/flux_control_lora_utils.py
Normal file
65
invokeai/backend/lora/conversions/flux_control_lora_utils.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import re
|
||||
import torch
|
||||
|
||||
from typing import Any, Dict
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
|
||||
# A regex pattern that matches all of the keys in the Flux Dev/Canny LoRA format.
|
||||
# Example keys:
|
||||
# guidance_in.in_layer.lora_B.bias
|
||||
# single_blocks.0.linear1.lora_A.weight
|
||||
# double_blocks.0.img_attn.norm.key_norm.scale
|
||||
FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX = r"(final_layer|vector_in|txt_in|time_in|img_in|guidance_in|\w+_blocks)(\.(\d+))?\.(lora_(A|B)|(in|out)_layer|adaLN_modulation|img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear|linear1|linear2|modulation|norm)\.?(.*)"
|
||||
|
||||
def is_state_dict_likely_flux_control(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the FLUX Control LoRA format.
|
||||
|
||||
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
return all(
|
||||
re.match(FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX, k) or re.match(FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX, k)
|
||||
for k in state_dict.keys()
|
||||
)
|
||||
|
||||
def lora_model_from_flux_control_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
# converted_state_dict = _convert_lora_bfl_control(state_dict=state_dict)
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key, value in state_dict.items():
|
||||
key_props = key.split(".")
|
||||
# Got it loading using lora_down and lora_up but it didn't seem to match this lora's structure
|
||||
# Leaving this in since it doesn't hurt anything and may be better
|
||||
layer_prop_size = -2 if any(prop in key for prop in ["lora_B", "lora_A"]) else -1
|
||||
layer_name = ".".join(key_props[:layer_prop_size])
|
||||
param_name = ".".join(key_props[layer_prop_size:])
|
||||
if layer_name not in grouped_state_dict:
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, layer_state_dict in grouped_state_dict.items():
|
||||
# Convert to a full layer diff
|
||||
prefixed_key = f"{FLUX_LORA_TRANSFORMER_PREFIX}{layer_key}"
|
||||
if all(k in layer_state_dict for k in ["lora_A.weight", "lora_B.bias", "lora_B.weight"]):
|
||||
layers[prefixed_key] = LoRALayer(
|
||||
layer_state_dict["lora_B.weight"],
|
||||
None,
|
||||
layer_state_dict["lora_A.weight"],
|
||||
None,
|
||||
layer_state_dict["lora_B.bias"]
|
||||
)
|
||||
elif "scale" in layer_state_dict:
|
||||
layers[prefixed_key] = SetParameterLayer("scale", layer_state_dict["scale"])
|
||||
else:
|
||||
raise AssertionError(f"{layer_key} not expected")
|
||||
# Create and return the LoRAModelRaw.
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
@@ -7,5 +7,6 @@ from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer]
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer, SetParameterLayer]
|
||||
|
||||
34
invokeai/backend/lora/layers/reshape_weight_layer.py
Normal file
34
invokeai/backend/lora/layers/reshape_weight_layer.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||
|
||||
|
||||
class ReshapeWeightLayer(LoRALayerBase):
|
||||
# TODO: Just everything in this class
|
||||
def __init__(self, weight: Optional[torch.Tensor], bias: Optional[torch.Tensor], scale: Optional[torch.Tensor]):
|
||||
super().__init__(alpha=None, bias=bias)
|
||||
self.weight = torch.nn.Parameter(weight) if weight is not None else None
|
||||
self.bias = torch.nn.Parameter(bias) if bias is not None else None
|
||||
self.manual_scale = scale
|
||||
|
||||
def scale(self):
|
||||
return self.manual_scale.float() if self.manual_scale is not None else super().scale()
|
||||
|
||||
def rank(self) -> int | None:
|
||||
return None
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return orig_weight
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
if self.weight is not None:
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
if self.manual_scale is not None:
|
||||
self.manual_scale = self.manual_scale.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + calc_tensor_size(self.manual_scale)
|
||||
29
invokeai/backend/lora/layers/set_parameter_layer.py
Normal file
29
invokeai/backend/lora/layers/set_parameter_layer.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||
|
||||
|
||||
class SetParameterLayer(LoRALayerBase):
|
||||
def __init__(self, param_name: str, weight: torch.Tensor):
|
||||
super().__init__(None, None)
|
||||
self.weight = weight
|
||||
self.param_name = param_name
|
||||
|
||||
def rank(self) -> int | None:
|
||||
return None
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight - orig_weight
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
return {self.param_name: self.get_weight(orig_module.get_parameter(self.param_name))}
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + calc_tensor_size(self.weight)
|
||||
@@ -9,6 +9,7 @@ from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
|
||||
def any_lora_layer_from_state_dict(state_dict: Dict[str, torch.Tensor]) -> AnyLoRALayer:
|
||||
|
||||
133
invokeai/backend/lora/lora_layer_wrappers.py
Normal file
133
invokeai/backend/lora/lora_layer_wrappers.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
|
||||
|
||||
class LoRASidecarWrapper(torch.nn.Module):
|
||||
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[AnyLoRALayer], lora_weights: list[float]):
|
||||
super().__init__()
|
||||
self._orig_module = orig_module
|
||||
self._lora_layers = lora_layers
|
||||
self._lora_weights = lora_weights
|
||||
|
||||
@property
|
||||
def orig_module(self) -> torch.nn.Module:
|
||||
return self._orig_module
|
||||
|
||||
def add_lora_layer(self, lora_layer: AnyLoRALayer, lora_weight: float):
|
||||
self._lora_layers.append(lora_layer)
|
||||
self._lora_weights.append(lora_weight)
|
||||
|
||||
@torch.no_grad()
|
||||
def _get_lora_patched_parameters(
|
||||
self, orig_params: dict[str, torch.Tensor], lora_layers: list[AnyLoRALayer], lora_weights: list[float]
|
||||
) -> dict[str, torch.Tensor]:
|
||||
params: dict[str, torch.Tensor] = {}
|
||||
for lora_layer, lora_weight in zip(lora_layers, lora_weights, strict=True):
|
||||
layer_params = lora_layer.get_parameters(self._orig_module)
|
||||
for param_name, param_weight in layer_params.items():
|
||||
if orig_params[param_name].shape != param_weight.shape:
|
||||
param_weight = param_weight.reshape(orig_params[param_name].shape)
|
||||
|
||||
if param_name not in params:
|
||||
params[param_name] = param_weight * (lora_layer.scale() * lora_weight)
|
||||
else:
|
||||
params[param_name] += param_weight * (lora_layer.scale() * lora_weight)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
class LoRALinearWrapper(LoRASidecarWrapper):
|
||||
def _lora_linear_forward(self, input: torch.Tensor, lora_layer: LoRALayer, lora_weight: float) -> torch.Tensor:
|
||||
"""An optimized implementation of the residual calculation for a Linear LoRALayer."""
|
||||
x = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x = torch.nn.functional.linear(x, lora_layer.mid)
|
||||
x = torch.nn.functional.linear(x, lora_layer.up, bias=lora_layer.bias)
|
||||
x *= lora_weight * lora_layer.scale()
|
||||
return x
|
||||
|
||||
def _concatenated_lora_forward(
|
||||
self, input: torch.Tensor, concatenated_lora_layer: ConcatenatedLoRALayer, lora_weight: float
|
||||
) -> torch.Tensor:
|
||||
"""An optimized implementation of the residual calculation for a Linear ConcatenatedLoRALayer."""
|
||||
x_chunks: list[torch.Tensor] = []
|
||||
for lora_layer in concatenated_lora_layer.lora_layers:
|
||||
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
|
||||
x_chunk *= lora_weight * lora_layer.scale()
|
||||
x_chunks.append(x_chunk)
|
||||
|
||||
# TODO(ryand): Generalize to support concat_axis != 0.
|
||||
assert concatenated_lora_layer.concat_axis == 0
|
||||
x = torch.cat(x_chunks, dim=-1)
|
||||
return x
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# Split the LoRA layers into those that have optimized implementations and those that don't.
|
||||
optimized_layer_types = (LoRALayer, ConcatenatedLoRALayer)
|
||||
optimized_layers = [
|
||||
(layer, weight)
|
||||
for layer, weight in zip(self._lora_layers, self._lora_weights, strict=True)
|
||||
if isinstance(layer, optimized_layer_types)
|
||||
]
|
||||
non_optimized_layers = [
|
||||
(layer, weight)
|
||||
for layer, weight in zip(self._lora_layers, self._lora_weights, strict=True)
|
||||
if not isinstance(layer, optimized_layer_types)
|
||||
]
|
||||
|
||||
# First, calculate the residual for LoRA layers for which there is an optimized implementation.
|
||||
residual = None
|
||||
for lora_layer, lora_weight in optimized_layers:
|
||||
if isinstance(lora_layer, LoRALayer):
|
||||
added_residual = self._lora_linear_forward(input, lora_layer, lora_weight)
|
||||
elif isinstance(lora_layer, ConcatenatedLoRALayer):
|
||||
added_residual = self._concatenated_lora_forward(input, lora_layer, lora_weight)
|
||||
else:
|
||||
raise ValueError(f"Unsupported LoRA layer type: {type(lora_layer)}")
|
||||
|
||||
if residual is None:
|
||||
residual = added_residual
|
||||
else:
|
||||
residual += added_residual
|
||||
|
||||
# Next, calculate the residuals for the LoRA layers for which there is no optimized implementation.
|
||||
if non_optimized_layers:
|
||||
unoptimized_layers, unoptimized_weights = zip(*non_optimized_layers, strict=True)
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=unoptimized_layers,
|
||||
lora_weights=unoptimized_weights,
|
||||
)
|
||||
added_residual = torch.nn.functional.linear(input, params["weight"], params.get("bias", None))
|
||||
if residual is None:
|
||||
residual = added_residual
|
||||
else:
|
||||
residual += added_residual
|
||||
|
||||
return self.orig_module(input) + residual
|
||||
|
||||
|
||||
class LoRAConv1dWrapper(LoRASidecarWrapper):
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=self._lora_layers,
|
||||
lora_weights=self._lora_weights,
|
||||
)
|
||||
return self.orig_module(input) + torch.nn.functional.conv1d(input, params["weight"], params.get("bias", None))
|
||||
|
||||
|
||||
class LoRAConv2dWrapper(LoRASidecarWrapper):
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=self._lora_layers,
|
||||
lora_weights=self._lora_weights,
|
||||
)
|
||||
return self.orig_module(input) + torch.nn.functional.conv2d(input, params["weight"], params.get("bias", None))
|
||||
@@ -4,19 +4,126 @@ from typing import Dict, Iterable, Optional, Tuple
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.sidecar_layers.concatenated_lora.concatenated_lora_linear_sidecar_layer import (
|
||||
ConcatenatedLoRALinearSidecarLayer,
|
||||
from invokeai.backend.lora.lora_layer_wrappers import (
|
||||
LoRAConv1dWrapper,
|
||||
LoRAConv2dWrapper,
|
||||
LoRALinearWrapper,
|
||||
LoRASidecarWrapper,
|
||||
)
|
||||
from invokeai.backend.lora.sidecar_layers.lora.lora_linear_sidecar_layer import LoRALinearSidecarLayer
|
||||
from invokeai.backend.lora.sidecar_layers.lora_sidecar_module import LoRASidecarModule
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
class LoRAPatcher:
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_smart_lora_patches(
|
||||
model: torch.nn.Module,
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
dtype: torch.dtype,
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
):
|
||||
"""Apply 'smart' LoRA patching that chooses whether to use direct patching or a sidecar wrapper for each module."""
|
||||
|
||||
# original_weights are stored for unpatching layers that are directly patched.
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
# original_modules are stored for unpatching layers that are wrapped in a LoRASidecarWrapper.
|
||||
original_modules: dict[str, torch.nn.Module] = {}
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher._apply_smart_lora_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
yield
|
||||
finally:
|
||||
# Restore directly patched layers.
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
|
||||
# Restore LoRASidecarWrapper modules.
|
||||
# Note: This logic assumes no nested modules in original_modules.
|
||||
for module_key, orig_module in original_modules.items():
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
|
||||
parent_module = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(parent_module, module_name, orig_module)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_smart_lora_patch(
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA patch to a model using the 'smart' patching strategy that chooses whether to use direct
|
||||
patching or a sidecar wrapper for each module.
|
||||
"""
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
|
||||
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
|
||||
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
|
||||
# without searching, but some legacy code still uses flattened keys.
|
||||
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
|
||||
|
||||
prefix_len = len(prefix)
|
||||
|
||||
for layer_key, layer in patch.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
module_key, module = LoRAPatcher._get_submodule(
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# Decide whether to use direct patching or a sidecar wrapper.
|
||||
# Direct patching is preferred, because it results in better runtime speed.
|
||||
# Reasons to use sidecar patching:
|
||||
# - The module is already wrapped in a LoRASidecarWrapper.
|
||||
# - The module is quantized.
|
||||
# - The module is on the CPU (and we don't want to store a second full copy of the original weights on the
|
||||
# CPU, since this would double the RAM usage)
|
||||
# NOTE: For now, we don't check if the layer is quantized here. We assume that this is checked in the caller
|
||||
# and that the caller will use the 'apply_lora_wrapper_patches' method if the layer is quantized.
|
||||
# TODO(ryand): Handle the case where we are running without a GPU. Should we set a config flag that allows
|
||||
# forcing full patching even on the CPU?
|
||||
if isinstance(module, LoRASidecarWrapper) or LoRAPatcher._is_any_part_of_layer_on_cpu(module):
|
||||
LoRAPatcher._apply_lora_layer_wrapper_patch(
|
||||
model=model,
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
else:
|
||||
LoRAPatcher._apply_lora_layer_patch(
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _is_any_part_of_layer_on_cpu(layer: torch.nn.Module) -> bool:
|
||||
return any(p.device.type == "cpu" for p in layer.parameters())
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
@@ -40,7 +147,7 @@ class LoRAPatcher:
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher.apply_lora_patch(
|
||||
LoRAPatcher._apply_lora_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
@@ -52,11 +159,12 @@ class LoRAPatcher:
|
||||
yield
|
||||
finally:
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
cur_param = model.get_parameter(param_key)
|
||||
cur_param.data = weight.to(dtype=cur_param.dtype, device=cur_param.device, copy=True)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def apply_lora_patch(
|
||||
def _apply_lora_patch(
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
@@ -91,48 +199,84 @@ class LoRAPatcher:
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
LoRAPatcher._apply_lora_layer_patch(
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
|
||||
layer_scale = layer.scale()
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_lora_layer_patch(
|
||||
module_to_patch: torch.nn.Module,
|
||||
module_to_patch_key: str,
|
||||
patch: AnyLoRALayer,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
first_param = next(module_to_patch.parameters())
|
||||
device = first_param.device
|
||||
dtype = first_param.dtype
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
layer_scale = patch.scale()
|
||||
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in layer.get_parameters(module).items():
|
||||
param_key = module_key + "." + param_name
|
||||
module_param = module.get_parameter(param_name)
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
patch.to(device=device)
|
||||
patch.to(dtype=torch.float32)
|
||||
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in patch.get_parameters(module_to_patch).items():
|
||||
param_key = module_to_patch_key + "." + param_name
|
||||
module_param = module_to_patch.get_parameter(param_name)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
if module_param.nelement() == lora_param_weight.nelement():
|
||||
lora_param_weight = lora_param_weight.reshape(module_param.shape)
|
||||
else:
|
||||
# This condition was added to handle layers in FLUX control LoRAs.
|
||||
# TODO(ryand): Move the weight update into the LoRA layer so that the LoRAPatcher doesn't need
|
||||
# to worry about this?
|
||||
expanded_weight = torch.zeros_like(
|
||||
lora_param_weight, dtype=module_param.dtype, device=module_param.device
|
||||
)
|
||||
slices = tuple(slice(0, dim) for dim in module_param.shape)
|
||||
expanded_weight[slices] = module_param
|
||||
setattr(
|
||||
module,
|
||||
param_name,
|
||||
torch.nn.Parameter(expanded_weight, requires_grad=module_param.requires_grad),
|
||||
)
|
||||
module_param = expanded_weight
|
||||
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
|
||||
layer.to(device=TorchDevice.CPU_DEVICE)
|
||||
patch.to(device=TorchDevice.CPU_DEVICE)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_lora_sidecar_patches(
|
||||
def apply_lora_wrapper_patches(
|
||||
model: torch.nn.Module,
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply one or more LoRA sidecar patches to a model within a context manager. Sidecar patches incur some
|
||||
overhead compared to normal LoRA patching, but they allow for LoRA layers to applied to base layers in any
|
||||
quantization format.
|
||||
"""Apply one or more LoRA wrapper patches to a model within a context manager. Wrapper patches incur some
|
||||
runtime overhead compared to normal LoRA patching, but they enable:
|
||||
- LoRA layers to be applied to quantized models
|
||||
- LoRA layers to be applied to CPU layers without needing to store a full copy of the original weights (i.e.
|
||||
avoid doubling the memory requirements).
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to patch.
|
||||
@@ -140,14 +284,11 @@ class LoRAPatcher:
|
||||
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
|
||||
all at once.
|
||||
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
|
||||
dtype (torch.dtype): The compute dtype of the sidecar layers. This cannot easily be inferred from the model,
|
||||
since the sidecar layers are typically applied on top of quantized layers whose weight dtype is
|
||||
different from their compute dtype.
|
||||
"""
|
||||
original_modules: dict[str, torch.nn.Module] = {}
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher._apply_lora_sidecar_patch(
|
||||
LoRAPatcher._apply_lora_wrapper_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
@@ -165,7 +306,7 @@ class LoRAPatcher:
|
||||
LoRAPatcher._set_submodule(parent_module, module_name, orig_module)
|
||||
|
||||
@staticmethod
|
||||
def _apply_lora_sidecar_patch(
|
||||
def _apply_lora_wrapper_patch(
|
||||
model: torch.nn.Module,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
@@ -173,7 +314,7 @@ class LoRAPatcher:
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA sidecar patch to a model."""
|
||||
"""Apply a single LoRA wrapper patch to a model."""
|
||||
|
||||
if patch_weight == 0:
|
||||
return
|
||||
@@ -194,28 +335,47 @@ class LoRAPatcher:
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# Initialize the LoRA sidecar layer.
|
||||
lora_sidecar_layer = LoRAPatcher._initialize_lora_sidecar_layer(module, layer, patch_weight)
|
||||
LoRAPatcher._apply_lora_layer_wrapper_patch(
|
||||
model=model,
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Replace the original module with a LoRASidecarModule if it has not already been done.
|
||||
if module_key in original_modules:
|
||||
# The module has already been patched with a LoRASidecarModule. Append to it.
|
||||
assert isinstance(module, LoRASidecarModule)
|
||||
lora_sidecar_module = module
|
||||
else:
|
||||
# The module has not yet been patched with a LoRASidecarModule. Create one.
|
||||
lora_sidecar_module = LoRASidecarModule(module, [])
|
||||
original_modules[module_key] = module
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
|
||||
module_parent = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(module_parent, module_name, lora_sidecar_module)
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_lora_layer_wrapper_patch(
|
||||
model: torch.nn.Module,
|
||||
module_to_patch: torch.nn.Module,
|
||||
module_to_patch_key: str,
|
||||
patch: AnyLoRALayer,
|
||||
patch_weight: float,
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA wrapper patch to a model."""
|
||||
|
||||
# Move the LoRA sidecar layer to the same device/dtype as the orig module.
|
||||
# TODO(ryand): Experiment with moving to the device first, then casting. This could be faster.
|
||||
lora_sidecar_layer.to(device=lora_sidecar_module.orig_module.weight.device, dtype=dtype)
|
||||
# Replace the original module with a LoRASidecarWrapper if it has not already been done.
|
||||
if not isinstance(module_to_patch, LoRASidecarWrapper):
|
||||
lora_wrapper_layer = LoRAPatcher._initialize_lora_wrapper_layer(module_to_patch)
|
||||
original_modules[module_to_patch_key] = module_to_patch
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_to_patch_key)
|
||||
module_parent = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(module_parent, module_name, lora_wrapper_layer)
|
||||
orig_module = module_to_patch
|
||||
else:
|
||||
assert module_to_patch_key in original_modules
|
||||
lora_wrapper_layer = module_to_patch
|
||||
orig_module = module_to_patch.orig_module
|
||||
|
||||
# Add the LoRA sidecar layer to the LoRASidecarModule.
|
||||
lora_sidecar_module.add_lora_layer(lora_sidecar_layer)
|
||||
# Move the LoRA layer to the same device/dtype as the orig module.
|
||||
patch.to(device=orig_module.weight.device, dtype=dtype)
|
||||
|
||||
# Add the LoRA wrapper layer to the LoRASidecarWrapper.
|
||||
lora_wrapper_layer.add_lora_layer(patch, patch_weight)
|
||||
|
||||
@staticmethod
|
||||
def _split_parent_key(module_key: str) -> tuple[str, str]:
|
||||
@@ -236,17 +396,13 @@ class LoRAPatcher:
|
||||
raise ValueError(f"Invalid module key: {module_key}")
|
||||
|
||||
@staticmethod
|
||||
def _initialize_lora_sidecar_layer(orig_layer: torch.nn.Module, lora_layer: AnyLoRALayer, patch_weight: float):
|
||||
# TODO(ryand): Add support for more original layer types and LoRA layer types.
|
||||
if isinstance(orig_layer, torch.nn.Linear) or (
|
||||
isinstance(orig_layer, LoRASidecarModule) and isinstance(orig_layer.orig_module, torch.nn.Linear)
|
||||
):
|
||||
if isinstance(lora_layer, LoRALayer):
|
||||
return LoRALinearSidecarLayer(lora_layer=lora_layer, weight=patch_weight)
|
||||
elif isinstance(lora_layer, ConcatenatedLoRALayer):
|
||||
return ConcatenatedLoRALinearSidecarLayer(concatenated_lora_layer=lora_layer, weight=patch_weight)
|
||||
else:
|
||||
raise ValueError(f"Unsupported Linear LoRA layer type: {type(lora_layer)}")
|
||||
def _initialize_lora_wrapper_layer(orig_layer: torch.nn.Module):
|
||||
if isinstance(orig_layer, torch.nn.Linear):
|
||||
return LoRALinearWrapper(orig_layer, [], [])
|
||||
elif isinstance(orig_layer, torch.nn.Conv1d):
|
||||
return LoRAConv1dWrapper(orig_layer, [], [])
|
||||
elif isinstance(orig_layer, torch.nn.Conv2d):
|
||||
return LoRAConv2dWrapper(orig_layer, [], [])
|
||||
else:
|
||||
raise ValueError(f"Unsupported layer type: {type(orig_layer)}")
|
||||
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
|
||||
|
||||
class ConcatenatedLoRALinearSidecarLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
concatenated_lora_layer: ConcatenatedLoRALayer,
|
||||
weight: float,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self._concatenated_lora_layer = concatenated_lora_layer
|
||||
self._weight = weight
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x_chunks: list[torch.Tensor] = []
|
||||
for lora_layer in self._concatenated_lora_layer.lora_layers:
|
||||
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
|
||||
x_chunk *= self._weight * lora_layer.scale()
|
||||
x_chunks.append(x_chunk)
|
||||
|
||||
# TODO(ryand): Generalize to support concat_axis != 0.
|
||||
assert self._concatenated_lora_layer.concat_axis == 0
|
||||
x = torch.cat(x_chunks, dim=-1)
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._concatenated_lora_layer.to(device=device, dtype=dtype)
|
||||
return self
|
||||
@@ -1,27 +0,0 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
|
||||
|
||||
class LoRALinearSidecarLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
lora_layer: LoRALayer,
|
||||
weight: float,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self._lora_layer = lora_layer
|
||||
self._weight = weight
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.down)
|
||||
if self._lora_layer.mid is not None:
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.mid)
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.up, bias=self._lora_layer.bias)
|
||||
x *= self._weight * self._lora_layer.scale()
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._lora_layer.to(device=device, dtype=dtype)
|
||||
return self
|
||||
@@ -1,24 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
class LoRASidecarModule(torch.nn.Module):
|
||||
"""A LoRA sidecar module that wraps an original module and adds LoRA layers to it."""
|
||||
|
||||
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[torch.nn.Module]):
|
||||
super().__init__()
|
||||
self.orig_module = orig_module
|
||||
self._lora_layers = lora_layers
|
||||
|
||||
def add_lora_layer(self, lora_layer: torch.nn.Module):
|
||||
self._lora_layers.append(lora_layer)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = self.orig_module(input)
|
||||
for lora_layer in self._lora_layers:
|
||||
x += lora_layer(input)
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._orig_module.to(device=device, dtype=dtype)
|
||||
for lora_layer in self._lora_layers:
|
||||
lora_layer.to(device=device, dtype=dtype)
|
||||
@@ -67,6 +67,7 @@ class ModelType(str, Enum):
|
||||
Main = "main"
|
||||
VAE = "vae"
|
||||
LoRA = "lora"
|
||||
StructuralLoRa = "structural_lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ip_adapter"
|
||||
@@ -273,6 +274,18 @@ class LoRALyCORISConfig(LoRAConfigBase):
|
||||
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
|
||||
|
||||
|
||||
class StructuralLoRALyCORISConfig(ModelConfigBase):
|
||||
"""Model config for Structural LoRA/Lycoris models."""
|
||||
|
||||
type: Literal[ModelType.StructuralLoRa] = ModelType.StructuralLoRa
|
||||
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
|
||||
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.StructuralLoRa.value}.{ModelFormat.LyCORIS.value}")
|
||||
|
||||
|
||||
class LoRADiffusersConfig(LoRAConfigBase):
|
||||
"""Model config for LoRA/Diffusers models."""
|
||||
|
||||
@@ -535,6 +548,7 @@ AnyModelConfig = Annotated[
|
||||
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
|
||||
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
|
||||
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
|
||||
Annotated[StructuralLoRALyCORISConfig, StructuralLoRALyCORISConfig.get_tag()],
|
||||
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
|
||||
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
|
||||
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
|
||||
|
||||
@@ -1,12 +1,10 @@
|
||||
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""Class for ControlNet model loading in InvokeAI."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from diffusers import ControlNetModel
|
||||
|
||||
import invokeai.backend.assets.model_base_conf_files as conf_file_cache
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -48,20 +46,9 @@ class ControlNetLoader(GenericDiffusersLoader):
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
config_dirs = {
|
||||
BaseModelType.StableDiffusion1: "controlnet_sd15",
|
||||
BaseModelType.StableDiffusionXL: "controlnet_sdxl",
|
||||
}
|
||||
try:
|
||||
config_dir = config_dirs[config.base]
|
||||
except KeyError:
|
||||
raise Exception(f"No configuration template known for controlnet model with base={config.base}")
|
||||
|
||||
if isinstance(config, ControlNetCheckpointConfig):
|
||||
return ControlNetModel.from_single_file(
|
||||
config.path,
|
||||
config=Path(conf_file_cache.__path__[0], config_dir).as_posix(),
|
||||
local_files_only=True,
|
||||
torch_dtype=self._torch_dtype,
|
||||
)
|
||||
else:
|
||||
|
||||
@@ -13,8 +13,9 @@ from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils impo
|
||||
lora_model_from_flux_diffusers_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
is_state_dict_likely_in_flux_kohya_format, lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_control_lora_utils import is_state_dict_likely_flux_control, lora_model_from_flux_control_state_dict
|
||||
from invokeai.backend.lora.conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
|
||||
from invokeai.backend.lora.conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
from invokeai.backend.model_manager import (
|
||||
@@ -32,6 +33,7 @@ from invokeai.backend.model_manager.load.model_loader_registry import ModelLoade
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.StructuralLoRa, format=ModelFormat.LyCORIS)
|
||||
class LoRALoader(ModelLoader):
|
||||
"""Class to load LoRA models."""
|
||||
|
||||
@@ -75,7 +77,10 @@ class LoRALoader(ModelLoader):
|
||||
# https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_flux.py#L1194
|
||||
model = lora_model_from_flux_diffusers_state_dict(state_dict=state_dict, alpha=None)
|
||||
elif config.format == ModelFormat.LyCORIS:
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
if is_state_dict_likely_in_flux_kohya_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_flux_control(state_dict=state_dict):
|
||||
model = lora_model_from_flux_control_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
|
||||
@@ -11,7 +11,6 @@ from diffusers import (
|
||||
StableDiffusionXLPipeline,
|
||||
)
|
||||
|
||||
import invokeai.backend.assets.model_base_conf_files as conf_file_cache
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -19,7 +18,6 @@ from invokeai.backend.model_manager import (
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
SchedulerPredictionType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -108,33 +106,11 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
|
||||
ModelVariantType.Normal: StableDiffusionXLPipeline,
|
||||
},
|
||||
}
|
||||
config_dirs = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
SchedulerPredictionType.Epsilon: "stable-diffusion-1.5-epsilon",
|
||||
SchedulerPredictionType.VPrediction: "stable-diffusion-1.5-v_prediction",
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
SchedulerPredictionType.VPrediction: "stable-diffusion-2.0-v_prediction",
|
||||
},
|
||||
BaseModelType.StableDiffusionXL: {
|
||||
SchedulerPredictionType.Epsilon: "stable-diffusion-xl-base-1.0",
|
||||
},
|
||||
BaseModelType.StableDiffusionXLRefiner: {
|
||||
SchedulerPredictionType.Epsilon: "stable-diffusion-xl-refiner-1.0",
|
||||
},
|
||||
}
|
||||
|
||||
assert isinstance(config, MainCheckpointConfig)
|
||||
try:
|
||||
load_class = load_classes[config.base][config.variant]
|
||||
except KeyError as e:
|
||||
raise Exception(f"No diffusers pipeline known for base={config.base}, variant={config.variant}") from e
|
||||
try:
|
||||
config_dir = config_dirs[config.base][config.prediction_type]
|
||||
except KeyError as e:
|
||||
raise Exception(
|
||||
f"No configuration template known for base={config.base}, prediction_type={config.prediction_type}"
|
||||
) from e
|
||||
|
||||
# Without SilenceWarnings we get log messages like this:
|
||||
# site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
|
||||
@@ -144,17 +120,8 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
|
||||
# Some weights of the model checkpoint were not used when initializing CLIPTextModelWithProjection:
|
||||
# ['text_model.embeddings.position_ids']
|
||||
|
||||
original_config_file = self._app_config.legacy_conf_path / config.config_path
|
||||
|
||||
with SilenceWarnings():
|
||||
pipeline = load_class.from_single_file(
|
||||
config.path,
|
||||
config=Path(conf_file_cache.__path__[0], config_dir).as_posix(),
|
||||
original_config=original_config_file,
|
||||
torch_dtype=self._torch_dtype,
|
||||
local_files_only=True,
|
||||
kwargs={"load_safety_checker": False},
|
||||
)
|
||||
pipeline = load_class.from_single_file(config.path, torch_dtype=self._torch_dtype)
|
||||
|
||||
if not submodel_type:
|
||||
return pipeline
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user