mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-18 21:49:09 -05:00
Compare commits
228 Commits
lstein/fea
...
v4.2.6a1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
de1235c980 | ||
|
|
88c3a71586 | ||
|
|
ec1b429d45 | ||
|
|
146e3a3377 | ||
|
|
38622b0d91 | ||
|
|
7db767b7c3 | ||
|
|
b70e87f25b | ||
|
|
fea1ec9085 | ||
|
|
2e7a95998c | ||
|
|
788f90a7d5 | ||
|
|
6bf29b20af | ||
|
|
8f0edcd4f4 | ||
|
|
a7c44b4a98 | ||
|
|
48a57f0da8 | ||
|
|
dfd94bbd0b | ||
|
|
2edfb2356d | ||
|
|
58d2c1557d | ||
|
|
8fdff33cf8 | ||
|
|
a96e34d2d1 | ||
|
|
8826adad24 | ||
|
|
cdacf2ecd0 | ||
|
|
f193a576a6 | ||
|
|
b7ebdca70a | ||
|
|
c90b5541e8 | ||
|
|
a79e9caab1 | ||
|
|
4313578d8e | ||
|
|
42c2dea202 | ||
|
|
b672cc37a7 | ||
|
|
476ebd13ae | ||
|
|
9ae808712e | ||
|
|
2460689c00 | ||
|
|
781b800ef7 | ||
|
|
d38d513d23 | ||
|
|
80e1b87b9e | ||
|
|
6014382c7b | ||
|
|
af63c538ed | ||
|
|
060d698a12 | ||
|
|
637802d803 | ||
|
|
2faf1e2ed3 | ||
|
|
81cf47dd99 | ||
|
|
907b257984 | ||
|
|
e2667f957c | ||
|
|
40c3b5e727 | ||
|
|
38c5804457 | ||
|
|
faf65c988a | ||
|
|
1785825690 | ||
|
|
0e092c0fb5 | ||
|
|
79a7b11214 | ||
|
|
3a85ab15a1 | ||
|
|
9ca6980c7a | ||
|
|
bdf4fcda23 | ||
|
|
35f8781ea2 | ||
|
|
3a24d70279 | ||
|
|
7c8846e309 | ||
|
|
bd42b75d1e | ||
|
|
36202d6d25 | ||
|
|
b35f5b3877 | ||
|
|
1d449097cc | ||
|
|
9da5925287 | ||
|
|
7bbd793064 | ||
|
|
414750a45d | ||
|
|
0fe92cd406 | ||
|
|
6437ef3f82 | ||
|
|
bb6ff4cf37 | ||
|
|
e719018ba1 | ||
|
|
a11dc62c2e | ||
|
|
7c01b69c12 | ||
|
|
5578660ccb | ||
|
|
e9936c27fb | ||
|
|
3752509066 | ||
|
|
a1b7dbfa54 | ||
|
|
79640ba14e | ||
|
|
4075a81676 | ||
|
|
4d39976909 | ||
|
|
d14894b3ae | ||
|
|
6f5c5b0757 | ||
|
|
93caa23ef8 | ||
|
|
977a77f4e6 | ||
|
|
57c0fcb93d | ||
|
|
8b55900035 | ||
|
|
b1cc413bbd | ||
|
|
face94ce33 | ||
|
|
f0b1f0e5b6 | ||
|
|
390dc47db5 | ||
|
|
20d5c3a8bf | ||
|
|
134d831ebf | ||
|
|
b65ed8e8f2 | ||
|
|
93951dcf82 | ||
|
|
da05034e20 | ||
|
|
d579aefb3e | ||
|
|
5d1f6db414 | ||
|
|
f9961eceb7 | ||
|
|
10076fb1e8 | ||
|
|
d6e85e5f67 | ||
|
|
1ce459198c | ||
|
|
17d337169d | ||
|
|
1468f4d37e | ||
|
|
2b744480d6 | ||
|
|
abb8d34b56 | ||
|
|
9e664d7c58 | ||
|
|
c96ccae70b | ||
|
|
f268fe126e | ||
|
|
6109a06f04 | ||
|
|
5df2a79549 | ||
|
|
10b9088312 | ||
|
|
41f46b846b | ||
|
|
6dfc406c52 | ||
|
|
0d4b80780b | ||
|
|
15b9ece411 | ||
|
|
89fcab34d0 | ||
|
|
132289de55 | ||
|
|
9f93e9d120 | ||
|
|
b5f23292d4 | ||
|
|
a63dbb2c2d | ||
|
|
740bf80f3e | ||
|
|
dc90de600d | ||
|
|
5709f82e5f | ||
|
|
20042d99ec | ||
|
|
8fce168dc5 | ||
|
|
a7ea096b28 | ||
|
|
29eb3c8b62 | ||
|
|
071e8bcee4 | ||
|
|
68c0aa898f | ||
|
|
5120a76ce5 | ||
|
|
38a948ac9f | ||
|
|
c33111468e | ||
|
|
3e0fb45dd7 | ||
|
|
aba16085a5 | ||
|
|
14775cc9c4 | ||
|
|
c7562dd6c0 | ||
|
|
a0a0c57789 | ||
|
|
32ebf82d1a | ||
|
|
2dd172c2c6 | ||
|
|
280ec9d4b3 | ||
|
|
fde8fc7575 | ||
|
|
6dcdc87eb1 | ||
|
|
93ffcb642e | ||
|
|
4c914ef2e8 | ||
|
|
c0ad5bc4a4 | ||
|
|
8c58a180de | ||
|
|
715dd983b0 | ||
|
|
84ffd36071 | ||
|
|
9f30f1bfec | ||
|
|
bdff5c4e87 | ||
|
|
afb0651f91 | ||
|
|
66e25628c3 | ||
|
|
3a531a3c88 | ||
|
|
f01df49128 | ||
|
|
7bbe236107 | ||
|
|
719c066ac4 | ||
|
|
689dc30f87 | ||
|
|
1f22f6ae02 | ||
|
|
9c931d9ca0 | ||
|
|
e0a241fa4f | ||
|
|
6a4b4ee340 | ||
|
|
488bf21925 | ||
|
|
c9c39c02b6 | ||
|
|
5101dc4bef | ||
|
|
98c77a3ed1 | ||
|
|
4fca62680d | ||
|
|
f76282a5ff | ||
|
|
9a3b8c6fcb | ||
|
|
bd74b84cc5 | ||
|
|
dc23bebebf | ||
|
|
38b6f90c02 | ||
|
|
cd9dfefe3c | ||
|
|
b9946e50f9 | ||
|
|
06f49a30f6 | ||
|
|
e1af78c702 | ||
|
|
c5588e1ff7 | ||
|
|
07ac292680 | ||
|
|
7c032ea604 | ||
|
|
c5ee415607 | ||
|
|
fa40061eca | ||
|
|
7cafd78d6e | ||
|
|
8a43656cf9 | ||
|
|
bd3b6ca11b | ||
|
|
ceae5fe1db | ||
|
|
25067e4f0d | ||
|
|
fb0aaa3e6d | ||
|
|
c22526b9d0 | ||
|
|
c881882f73 | ||
|
|
36473fc52a | ||
|
|
b9964ecc4a | ||
|
|
051af802fe | ||
|
|
3ff2e558d9 | ||
|
|
fc187c9253 | ||
|
|
605f460c7d | ||
|
|
60d1e686d8 | ||
|
|
22704dd542 | ||
|
|
875673c9ba | ||
|
|
f604575862 | ||
|
|
80a67572f1 | ||
|
|
60ac937698 | ||
|
|
1e41949a02 | ||
|
|
5f0e330ed2 | ||
|
|
9dd779b414 | ||
|
|
fa183025ac | ||
|
|
d3c85aa91a | ||
|
|
82619602a5 | ||
|
|
196f3b721d | ||
|
|
244c28859d | ||
|
|
40ae174c41 | ||
|
|
afaebdf151 | ||
|
|
d661517d94 | ||
|
|
82a69a54ac | ||
|
|
ffc28176fe | ||
|
|
230e205541 | ||
|
|
7e94350351 | ||
|
|
c4e8549c73 | ||
|
|
350a210835 | ||
|
|
ed781dbb0c | ||
|
|
b41ea963e7 | ||
|
|
da5d105049 | ||
|
|
5301770525 | ||
|
|
d08e405017 | ||
|
|
534640ccde | ||
|
|
d5ab8cab5c | ||
|
|
4767301ad3 | ||
|
|
21d7ca45e6 | ||
|
|
020e8eb413 | ||
|
|
3d49541c09 | ||
|
|
1ef266845a | ||
|
|
a37589ca5f | ||
|
|
171a505f5e | ||
|
|
8004a0d5f5 | ||
|
|
610a1fd611 | ||
|
|
43108eec13 |
@@ -9,9 +9,9 @@ runs:
|
||||
node-version: '18'
|
||||
|
||||
- name: setup pnpm
|
||||
uses: pnpm/action-setup@v2
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8
|
||||
version: 8.15.6
|
||||
run_install: false
|
||||
|
||||
- name: get pnpm store directory
|
||||
|
||||
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@@ -8,7 +8,7 @@
|
||||
|
||||
## QA Instructions
|
||||
|
||||
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
|
||||
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
|
||||
|
||||
## Merge Plan
|
||||
|
||||
|
||||
45
README.md
45
README.md
@@ -12,12 +12,24 @@
|
||||
|
||||
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
|
||||
|
||||
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
|
||||
Invoke is available in two editions:
|
||||
|
||||
| **Community Edition** | **Professional Edition** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|
||||
| **For users looking for a locally installed, self-hosted and self-managed service** | **For users or teams looking for a cloud-hosted, fully managed service** |
|
||||
| - Free to use under a commercially-friendly license | - Monthly subscription fee with three different plan levels |
|
||||
| - Download and install on compatible hardware | - Offers additional benefits, including multi-user support, improved model training, and more |
|
||||
| - Includes all core studio features: generate, refine, iterate on images, and build workflows | - Hosted in the cloud for easy, secure model access and scalability |
|
||||
| Quick Start -> [Installation and Updates][installation docs] | More Information -> [www.invoke.com/pricing](https://www.invoke.com/pricing) |
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
# Documentation
|
||||
| **Quick Links** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
|
||||
|
||||
</div>
|
||||
|
||||
## Quick Start
|
||||
@@ -37,6 +49,33 @@ Invoke is a leading creative engine built to empower professionals and enthusias
|
||||
|
||||
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
|
||||
|
||||
## Docker Container
|
||||
|
||||
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
|
||||
|
||||
### Generate!
|
||||
|
||||
Run the container, modifying the command as necessary:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
|
||||
|
||||
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
|
||||
|
||||
### Persist your data
|
||||
|
||||
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
|
||||
|
||||
### DIY
|
||||
|
||||
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
|
||||
|
||||
## Troubleshooting, FAQ and Support
|
||||
|
||||
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
|
||||
@@ -114,3 +153,5 @@ Original portions of the software are Copyright © 2024 by respective contributo
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
|
||||
[translation status link]: https://hosted.weblate.org/engage/invokeai/
|
||||
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
|
||||
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
|
||||
|
||||
@@ -19,8 +19,9 @@
|
||||
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
|
||||
# INVOKEAI_PORT=9090
|
||||
|
||||
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=nvidia #| rocm
|
||||
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=cuda #| rocm
|
||||
|
||||
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
|
||||
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
|
||||
# CONTAINER_UID=1000
|
||||
|
||||
@@ -1,41 +1,75 @@
|
||||
# InvokeAI Containerized
|
||||
# Invoke in Docker
|
||||
|
||||
All commands should be run within the `docker` directory: `cd docker`
|
||||
- Ensure that Docker can use the GPU on your system
|
||||
- This documentation assumes Linux, but should work similarly under Windows with WSL2
|
||||
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
|
||||
|
||||
## Quickstart :rocket:
|
||||
## Quickstart :lightning:
|
||||
|
||||
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
|
||||
No `docker compose`, no persistence, just a simple one-liner using the official images:
|
||||
|
||||
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
|
||||
**CUDA:**
|
||||
|
||||
## Detailed setup
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
**ROCm:**
|
||||
|
||||
```bash
|
||||
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
|
||||
```
|
||||
|
||||
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
|
||||
|
||||
> [!TIP]
|
||||
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
|
||||
|
||||
## Customize the container
|
||||
|
||||
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
|
||||
|
||||
```bash
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
# edit .env to your liking if you need to; it is well commented.
|
||||
./run.sh
|
||||
```
|
||||
|
||||
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
|
||||
|
||||
## Docker setup in detail
|
||||
|
||||
#### Linux
|
||||
|
||||
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
|
||||
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
|
||||
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
|
||||
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
|
||||
3. Ensure docker daemon is able to access the GPU.
|
||||
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
|
||||
|
||||
#### macOS
|
||||
|
||||
> [!TIP]
|
||||
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
|
||||
|
||||
If you are still reading:
|
||||
|
||||
1. Ensure Docker has at least 16GB RAM
|
||||
2. Enable VirtioFS for file sharing
|
||||
3. Enable `docker compose` V2 support
|
||||
|
||||
This is done via Docker Desktop preferences
|
||||
This is done via Docker Desktop preferences.
|
||||
|
||||
### Configure Invoke environment
|
||||
### Configure the Invoke Environment
|
||||
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
|
||||
1. Execute `run.sh`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
|
||||
|
||||
### Use a GPU
|
||||
|
||||
@@ -43,9 +77,9 @@ The runtime directory (holding models and outputs) will be created in the locati
|
||||
- WSL2 is *required* for Windows.
|
||||
- only `x86_64` architecture is supported.
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
|
||||
|
||||
## Customize
|
||||
|
||||
@@ -59,10 +93,10 @@ Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The defa
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=nvidia
|
||||
GPU_DRIVER=cuda
|
||||
```
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
|
||||
## Even More Customizing!
|
||||
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
|
||||
|
||||
version: '3.8'
|
||||
|
||||
x-invokeai: &invokeai
|
||||
image: "local/invokeai:latest"
|
||||
build:
|
||||
@@ -32,7 +30,7 @@ x-invokeai: &invokeai
|
||||
|
||||
|
||||
services:
|
||||
invokeai-nvidia:
|
||||
invokeai-cuda:
|
||||
<<: *invokeai
|
||||
deploy:
|
||||
resources:
|
||||
|
||||
@@ -23,18 +23,18 @@ usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
# but it is useful to have the full SSH server e.g. on Runpod.
|
||||
# (use SCP to copy files to/from the image, etc)
|
||||
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
fi
|
||||
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
|
||||
@@ -8,11 +8,15 @@ run() {
|
||||
local build_args=""
|
||||
local profile=""
|
||||
|
||||
# create .env file if it doesn't exist, otherwise docker compose will fail
|
||||
touch .env
|
||||
|
||||
# parse .env file for build args
|
||||
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
|
||||
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
|
||||
|
||||
[[ -z "$profile" ]] && profile="nvidia"
|
||||
# default to 'cuda' profile
|
||||
[[ -z "$profile" ]] && profile="cuda"
|
||||
|
||||
local service_name="invokeai-$profile"
|
||||
|
||||
|
||||
@@ -4,50 +4,37 @@ title: Installing with Docker
|
||||
|
||||
# :fontawesome-brands-docker: Docker
|
||||
|
||||
!!! warning "macOS and AMD GPU Users"
|
||||
!!! warning "macOS users"
|
||||
|
||||
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
|
||||
because Docker containers can not access the GPU on macOS.
|
||||
|
||||
!!! warning "AMD GPU Users"
|
||||
|
||||
Container support for AMD GPUs has been reported to work by the community, but has not received
|
||||
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
|
||||
use the `build.sh` script to build the image for this to take effect at build time.
|
||||
Docker can not access the GPU on macOS, so your generation speeds will be slow. [Install InvokeAI](INSTALLATION.md) instead.
|
||||
|
||||
!!! tip "Linux and Windows Users"
|
||||
|
||||
For optimal performance, configure your Docker daemon to access your machine's GPU.
|
||||
Configure Docker to access your machine's GPU.
|
||||
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
|
||||
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
## Why containers?
|
||||
|
||||
They provide a flexible, reliable way to build and deploy InvokeAI.
|
||||
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
|
||||
methodology for details on why running applications in such a stateless fashion is important.
|
||||
|
||||
The container is configured for CUDA by default, but can be built to support AMD GPUs
|
||||
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
|
||||
|
||||
Developers on Apple silicon (M1/M2/M3): You
|
||||
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
||||
and performance is reduced compared with running it directly on macOS but for
|
||||
development purposes it's fine. Once you're done with development tasks on your
|
||||
laptop you can build for the target platform and architecture and deploy to
|
||||
another environment with NVIDIA GPUs on-premises or in the cloud.
|
||||
Linux users should follow the [NVIDIA](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) or [AMD](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) documentation.
|
||||
|
||||
## TL;DR
|
||||
|
||||
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
|
||||
Ensure your Docker setup is able to use your GPU. Then:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Once the container starts up, open http://localhost:9090 in your browser, install some models, and start generating.
|
||||
|
||||
## Build-It-Yourself
|
||||
|
||||
All the docker materials are located inside the [docker](https://github.com/invoke-ai/InvokeAI/tree/main/docker) directory in the Git repo.
|
||||
|
||||
```bash
|
||||
# docker compose commands should be run from the `docker` directory
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
docker compose up
|
||||
```
|
||||
|
||||
## Installation in a Linux container (desktop)
|
||||
We also ship the `run.sh` convenience script. See the `docker/README.md` file for detailed instructions on how to customize the docker setup to your needs.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
@@ -58,18 +45,9 @@ Preferences, Resources, Advanced. Increase the CPUs and Memory to avoid this
|
||||
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
|
||||
increase Swap and Disk image size too.
|
||||
|
||||
#### Get a Huggingface-Token
|
||||
|
||||
Besides the Docker Agent you will need an Account on
|
||||
[huggingface.co](https://huggingface.co/join).
|
||||
|
||||
After you succesfully registered your account, go to
|
||||
[huggingface.co/settings/tokens](https://huggingface.co/settings/tokens), create
|
||||
a token and copy it, since you will need in for the next step.
|
||||
|
||||
### Setup
|
||||
|
||||
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
Set up your environment variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
|
||||
|
||||
@@ -103,10 +81,9 @@ Once the container starts up (and configures the InvokeAI root directory if this
|
||||
## Troubleshooting / FAQ
|
||||
|
||||
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
|
||||
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
|
||||
and you may have cloned this repository before the issue was fixed. To solve this, please change
|
||||
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
- A: Your `docker-entrypoint.sh` might have has Windows (CRLF) line endings, depending how you cloned the repository.
|
||||
To solve this, change the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
|
||||
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
|
||||
to reset the file to its most recent version.
|
||||
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
For more information on this issue, see [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
|
||||
@@ -13,7 +13,7 @@ echo 2. Open the developer console
|
||||
echo 3. Command-line help
|
||||
echo Q - Quit
|
||||
echo.
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
echo.
|
||||
set /P choice="Please enter 1-4, Q: [1] "
|
||||
if not defined choice set choice=1
|
||||
|
||||
@@ -4,37 +4,39 @@ from logging import Logger
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from invokeai.app.services.board_images.board_images_default import BoardImagesService
|
||||
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from invokeai.app.services.boards.boards_default import BoardService
|
||||
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService
|
||||
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
|
||||
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from invokeai.app.services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images.images_default import ImageService
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
|
||||
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
|
||||
from invokeai.app.services.names.names_default import SimpleNameService
|
||||
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
|
||||
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
|
||||
from invokeai.app.services.session_processor.session_processor_default import (
|
||||
DefaultSessionProcessor,
|
||||
DefaultSessionRunner,
|
||||
)
|
||||
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.app.services.urls.urls_default import LocalUrlService
|
||||
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from ..services.board_images.board_images_default import BoardImagesService
|
||||
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from ..services.boards.boards_default import BoardService
|
||||
from ..services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from ..services.config import InvokeAIAppConfig
|
||||
from ..services.download import DownloadQueueService
|
||||
from ..services.events.events_fastapievents import FastAPIEventService
|
||||
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from ..services.images.images_default import ImageService
|
||||
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from ..services.model_manager.model_manager_default import ModelManagerService
|
||||
from ..services.model_records import ModelRecordServiceSQL
|
||||
from ..services.names.names_default import SimpleNameService
|
||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
|
||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from ..services.urls.urls_default import LocalUrlService
|
||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
|
||||
|
||||
# TODO: is there a better way to achieve this?
|
||||
def check_internet() -> bool:
|
||||
|
||||
@@ -10,14 +10,13 @@ from fastapi import Body
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.upscale import ESRGAN_MODELS
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
|
||||
from invokeai.backend.util.logging import logging
|
||||
from invokeai.version import __version__
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
|
||||
class LogLevel(int, Enum):
|
||||
NotSet = logging.NOTSET
|
||||
|
||||
@@ -2,7 +2,7 @@ from fastapi import Body, HTTPException
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
|
||||
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
|
||||
|
||||
|
||||
@@ -4,12 +4,11 @@ from fastapi import Body, HTTPException, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
|
||||
|
||||
|
||||
@@ -32,6 +31,7 @@ class DeleteBoardResult(BaseModel):
|
||||
)
|
||||
async def create_board(
|
||||
board_name: str = Query(description="The name of the board to create"),
|
||||
is_private: bool = Query(default=False, description="Whether the board is private"),
|
||||
) -> BoardDTO:
|
||||
"""Creates a board"""
|
||||
try:
|
||||
@@ -118,15 +118,13 @@ async def list_boards(
|
||||
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
|
||||
offset: Optional[int] = Query(default=None, description="The page offset"),
|
||||
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
|
||||
include_archived: bool = Query(default=False, description="Whether or not to include archived boards in list"),
|
||||
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
|
||||
"""Gets a list of boards"""
|
||||
if all:
|
||||
return ApiDependencies.invoker.services.boards.get_all()
|
||||
return ApiDependencies.invoker.services.boards.get_all(include_archived)
|
||||
elif offset is not None and limit is not None:
|
||||
return ApiDependencies.invoker.services.boards.get_many(
|
||||
offset,
|
||||
limit,
|
||||
)
|
||||
return ApiDependencies.invoker.services.boards.get_many(offset, limit, include_archived)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
|
||||
@@ -8,13 +8,12 @@ from fastapi.routing import APIRouter
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from starlette.exceptions import HTTPException
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.download import (
|
||||
DownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
|
||||
|
||||
|
||||
|
||||
@@ -8,12 +8,16 @@ from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, JsonValue
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
images_router = APIRouter(prefix="/v1/images", tags=["images"])
|
||||
|
||||
@@ -316,16 +320,14 @@ async def list_image_dtos(
|
||||
),
|
||||
offset: int = Query(default=0, description="The page offset"),
|
||||
limit: int = Query(default=10, description="The number of images per page"),
|
||||
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
|
||||
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a list of image DTOs"""
|
||||
|
||||
image_dtos = ApiDependencies.invoker.services.images.get_many(
|
||||
offset,
|
||||
limit,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
offset, limit, starred_first, order_dir, image_origin, categories, is_intermediate, board_id, search_term
|
||||
)
|
||||
|
||||
return image_dtos
|
||||
|
||||
@@ -3,9 +3,9 @@
|
||||
|
||||
import io
|
||||
import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from fastapi import Body, Path, Query, Response, UploadFile
|
||||
@@ -16,10 +16,10 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
|
||||
from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
InvalidModelException,
|
||||
ModelRecordChanges,
|
||||
UnknownModelException,
|
||||
@@ -30,15 +30,12 @@ from invokeai.backend.model_manager.config import (
|
||||
MainCheckpointConfig,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
|
||||
|
||||
# images are immutable; set a high max-age
|
||||
@@ -174,18 +171,6 @@ async def get_model_record(
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
# @model_manager_router.get("/summary", operation_id="list_model_summary")
|
||||
# async def list_model_summary(
|
||||
# page: int = Query(default=0, description="The page to get"),
|
||||
# per_page: int = Query(default=10, description="The number of models per page"),
|
||||
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
|
||||
# ) -> PaginatedResults[ModelSummary]:
|
||||
# """Gets a page of model summary data."""
|
||||
# record_store = ApiDependencies.invoker.services.model_manager.store
|
||||
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
|
||||
# return results
|
||||
|
||||
|
||||
class FoundModel(BaseModel):
|
||||
path: str = Field(description="Path to the model")
|
||||
is_installed: bool = Field(description="Whether or not the model is already installed")
|
||||
@@ -746,39 +731,36 @@ async def convert_model(
|
||||
logger.error(f"The model with key {key} is not a main checkpoint model.")
|
||||
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
|
||||
|
||||
# loading the model will convert it into a cached diffusers file
|
||||
try:
|
||||
cc_size = loader.convert_cache.max_size
|
||||
if cc_size == 0: # temporary set the convert cache to a positive number so that cached model is written
|
||||
loader._convert_cache.max_size = 1.0
|
||||
loader.load_model(model_config, submodel_type=SubModelType.Scheduler)
|
||||
finally:
|
||||
loader._convert_cache.max_size = cc_size
|
||||
with TemporaryDirectory(dir=ApiDependencies.invoker.services.configuration.models_path) as tmpdir:
|
||||
convert_path = pathlib.Path(tmpdir) / pathlib.Path(model_config.path).stem
|
||||
converted_model = loader.load_model(model_config)
|
||||
# write the converted file to the convert path
|
||||
raw_model = converted_model.model
|
||||
assert hasattr(raw_model, "save_pretrained")
|
||||
raw_model.save_pretrained(convert_path)
|
||||
assert convert_path.exists()
|
||||
|
||||
# Get the path of the converted model from the loader
|
||||
cache_path = loader.convert_cache.cache_path(key)
|
||||
assert cache_path.exists()
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
cache_path,
|
||||
config={
|
||||
"name": original_name,
|
||||
"description": model_config.description,
|
||||
"hash": model_config.hash,
|
||||
"source": model_config.source,
|
||||
},
|
||||
)
|
||||
except DuplicateModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
convert_path,
|
||||
config={
|
||||
"name": original_name,
|
||||
"description": model_config.description,
|
||||
"hash": model_config.hash,
|
||||
"source": model_config.source,
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
store.update_model(key, changes=ModelRecordChanges(name=original_name))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
# Update the model image if the model had one
|
||||
try:
|
||||
@@ -791,8 +773,8 @@ async def convert_model(
|
||||
# delete the original safetensors file
|
||||
installer.delete(key)
|
||||
|
||||
# delete the cached version
|
||||
shutil.rmtree(cache_path)
|
||||
# delete the temporary directory
|
||||
# shutil.rmtree(cache_path)
|
||||
|
||||
# return the config record for the new diffusers directory
|
||||
new_config = store.get_model(new_key)
|
||||
|
||||
@@ -4,6 +4,7 @@ from fastapi import Body, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@@ -19,8 +20,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import CursorPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
|
||||
|
||||
|
||||
|
||||
@@ -20,14 +20,9 @@ from torch.backends.mps import is_available as is_mps_available
|
||||
# noinspection PyUnresolvedReferences
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import (
|
||||
from invokeai.app.api.routers import (
|
||||
app_info,
|
||||
board_images,
|
||||
boards,
|
||||
@@ -38,7 +33,11 @@ from .api.routers import (
|
||||
utilities,
|
||||
workflows,
|
||||
)
|
||||
from .api.sockets import SocketIO
|
||||
from invokeai.app.api.sockets import SocketIO
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
@@ -4,13 +4,12 @@
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"
|
||||
|
||||
@@ -5,6 +5,7 @@ from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
@@ -14,6 +15,7 @@ from invokeai.app.invocations.fields import (
|
||||
TensorField,
|
||||
UIComponent,
|
||||
)
|
||||
from invokeai.app.invocations.model import CLIPField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
@@ -26,9 +28,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
)
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from .model import CLIPField
|
||||
|
||||
# unconditioned: Optional[torch.Tensor]
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
@@ -11,9 +10,6 @@ factor is hard-coded to a literal '8' rather than using this constant.
|
||||
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
||||
"""
|
||||
|
||||
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
"""A literal type representing the valid scheduler names."""
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
|
||||
@@ -22,6 +22,13 @@ from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -45,8 +52,6 @@ from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(description="The control image")
|
||||
|
||||
@@ -5,13 +5,11 @@ import cv2 as cv
|
||||
import numpy
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
|
||||
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.3.1")
|
||||
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
@@ -17,7 +17,7 @@ from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
@@ -54,7 +54,9 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
TextConditioningRegions,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
from invokeai.backend.util.mask import to_standard_float_mask
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
@@ -65,6 +67,9 @@ def get_scheduler(
|
||||
scheduler_name: str,
|
||||
seed: int,
|
||||
) -> Scheduler:
|
||||
"""Load a scheduler and apply some scheduler-specific overrides."""
|
||||
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
|
||||
# possible.
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
|
||||
orig_scheduler_info = context.models.load(scheduler_info)
|
||||
with orig_scheduler_info as orig_scheduler:
|
||||
@@ -182,8 +187,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def _get_text_embeddings_and_masks(
|
||||
self,
|
||||
cond_list: list[ConditioningField],
|
||||
context: InvocationContext,
|
||||
device: torch.device,
|
||||
@@ -203,8 +208,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return text_embeddings, text_embeddings_masks
|
||||
|
||||
@staticmethod
|
||||
def _preprocess_regional_prompt_mask(
|
||||
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
|
||||
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
|
||||
) -> torch.Tensor:
|
||||
"""Preprocess a regional prompt mask to match the target height and width.
|
||||
If mask is None, returns a mask of all ones with the target height and width.
|
||||
@@ -228,8 +234,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
resized_mask = tf(mask)
|
||||
return resized_mask
|
||||
|
||||
@staticmethod
|
||||
def _concat_regional_text_embeddings(
|
||||
self,
|
||||
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
|
||||
masks: Optional[list[Optional[torch.Tensor]]],
|
||||
latent_height: int,
|
||||
@@ -279,7 +285,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
)
|
||||
processed_masks.append(
|
||||
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
|
||||
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
|
||||
mask, latent_height, latent_width, dtype=dtype
|
||||
)
|
||||
)
|
||||
|
||||
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
|
||||
@@ -301,36 +309,41 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
return BasicConditioningInfo(embeds=text_embedding), regions
|
||||
|
||||
@staticmethod
|
||||
def get_conditioning_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
|
||||
unet: UNet2DConditionModel,
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
cfg_scale: float | list[float],
|
||||
steps: int,
|
||||
cfg_rescale_multiplier: float,
|
||||
) -> TextConditioningData:
|
||||
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
|
||||
cond_list = self.positive_conditioning
|
||||
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
|
||||
cond_list = positive_conditioning_field
|
||||
if not isinstance(cond_list, list):
|
||||
cond_list = [cond_list]
|
||||
uncond_list = self.negative_conditioning
|
||||
uncond_list = negative_conditioning_field
|
||||
if not isinstance(uncond_list, list):
|
||||
uncond_list = [uncond_list]
|
||||
|
||||
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
cond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
|
||||
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
|
||||
uncond_list, context, unet.device, unet.dtype
|
||||
)
|
||||
|
||||
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
|
||||
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
text_conditionings=cond_text_embeddings,
|
||||
masks=cond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
|
||||
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
|
||||
text_conditionings=uncond_text_embeddings,
|
||||
masks=uncond_text_embedding_masks,
|
||||
latent_height=latent_height,
|
||||
@@ -338,23 +351,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
if isinstance(self.cfg_scale, list):
|
||||
assert (
|
||||
len(self.cfg_scale) == self.steps
|
||||
), "cfg_scale (list) must have the same length as the number of steps"
|
||||
if isinstance(cfg_scale, list):
|
||||
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
|
||||
|
||||
conditioning_data = TextConditioningData(
|
||||
uncond_text=uncond_text_embedding,
|
||||
cond_text=cond_text_embedding,
|
||||
uncond_regions=uncond_regions,
|
||||
cond_regions=cond_regions,
|
||||
guidance_scale=self.cfg_scale,
|
||||
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
guidance_scale=cfg_scale,
|
||||
guidance_rescale_multiplier=cfg_rescale_multiplier,
|
||||
)
|
||||
return conditioning_data
|
||||
|
||||
@staticmethod
|
||||
def create_pipeline(
|
||||
self,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Scheduler,
|
||||
) -> StableDiffusionGeneratorPipeline:
|
||||
@@ -377,38 +388,38 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def prep_control_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
control_input: Optional[Union[ControlField, List[ControlField]]],
|
||||
control_input: ControlField | list[ControlField] | None,
|
||||
latents_shape: List[int],
|
||||
exit_stack: ExitStack,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
) -> Optional[List[ControlNetData]]:
|
||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
||||
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
|
||||
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
|
||||
if control_input is None:
|
||||
control_list = None
|
||||
elif isinstance(control_input, list) and len(control_input) == 0:
|
||||
control_list = None
|
||||
elif isinstance(control_input, ControlField):
|
||||
) -> list[ControlNetData] | None:
|
||||
# Normalize control_input to a list.
|
||||
control_list: list[ControlField]
|
||||
if isinstance(control_input, ControlField):
|
||||
control_list = [control_input]
|
||||
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
|
||||
elif isinstance(control_input, list):
|
||||
control_list = control_input
|
||||
elif control_input is None:
|
||||
control_list = []
|
||||
else:
|
||||
control_list = None
|
||||
if control_list is None:
|
||||
return None
|
||||
# After above handling, any control that is not None should now be of type list[ControlField].
|
||||
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
|
||||
|
||||
# FIXME: add checks to skip entry if model or image is None
|
||||
# and if weight is None, populate with default 1.0?
|
||||
controlnet_data = []
|
||||
if len(control_list) == 0:
|
||||
return None
|
||||
|
||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
||||
_, _, latent_height, latent_width = latents_shape
|
||||
control_height_resize = latent_height * LATENT_SCALE_FACTOR
|
||||
control_width_resize = latent_width * LATENT_SCALE_FACTOR
|
||||
|
||||
controlnet_data: list[ControlNetData] = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
|
||||
assert isinstance(control_model, ControlNetModel)
|
||||
|
||||
# control_models.append(control_model)
|
||||
control_image_field = control_info.image
|
||||
input_image = context.images.get_pil(control_image_field.image_name)
|
||||
# self.image.image_type, self.image.image_name
|
||||
@@ -429,7 +440,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model, # model object
|
||||
model=control_model,
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
@@ -583,15 +594,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||
# TODO: research more for second order schedulers timesteps
|
||||
@staticmethod
|
||||
def init_scheduler(
|
||||
self,
|
||||
scheduler: Union[Scheduler, ConfigMixin],
|
||||
device: torch.device,
|
||||
steps: int,
|
||||
denoising_start: float,
|
||||
denoising_end: float,
|
||||
seed: int,
|
||||
) -> Tuple[int, List[int], int, Dict[str, Any]]:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
|
||||
assert isinstance(scheduler, ConfigMixin)
|
||||
if scheduler.config.get("cpu_only", False):
|
||||
scheduler.set_timesteps(steps, device="cpu")
|
||||
@@ -617,7 +628,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
|
||||
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
|
||||
num_inference_steps = len(timesteps) // scheduler.order
|
||||
|
||||
scheduler_step_kwargs: Dict[str, Any] = {}
|
||||
scheduler_step_signature = inspect.signature(scheduler.step)
|
||||
@@ -639,7 +649,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
if isinstance(scheduler, TCDScheduler):
|
||||
scheduler_step_kwargs.update({"eta": 1.0})
|
||||
|
||||
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
|
||||
return timesteps, init_timestep, scheduler_step_kwargs
|
||||
|
||||
def prep_inpaint_mask(
|
||||
self, context: InvocationContext, latents: torch.Tensor
|
||||
@@ -656,31 +666,52 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
return 1 - mask, masked_latents, self.denoise_mask.gradient
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed = None
|
||||
@staticmethod
|
||||
def prepare_noise_and_latents(
|
||||
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
|
||||
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
|
||||
"""Depending on the workflow, we expect different combinations of noise and latents to be provided. This
|
||||
function handles preparing these values accordingly.
|
||||
|
||||
Expected workflows:
|
||||
- Text-to-Image Denoising: `noise` is provided, `latents` is not. `latents` is initialized to zeros.
|
||||
- Image-to-Image Denoising: `noise` and `latents` are both provided.
|
||||
- Text-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
|
||||
- Image-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
|
||||
|
||||
NOTE(ryand): I wrote this docstring, but I am not the original author of this code. There may be other workflows
|
||||
I haven't considered.
|
||||
"""
|
||||
noise = None
|
||||
if self.noise is not None:
|
||||
noise = context.tensors.load(self.noise.latents_name)
|
||||
seed = self.noise.seed
|
||||
|
||||
if self.latents is not None:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
if seed is None:
|
||||
seed = self.latents.seed
|
||||
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
if noise_field is not None:
|
||||
noise = context.tensors.load(noise_field.latents_name)
|
||||
|
||||
if latents_field is not None:
|
||||
latents = context.tensors.load(latents_field.latents_name)
|
||||
elif noise is not None:
|
||||
latents = torch.zeros_like(noise)
|
||||
else:
|
||||
raise Exception("'latents' or 'noise' must be provided!")
|
||||
raise ValueError("'latents' or 'noise' must be provided!")
|
||||
|
||||
if seed is None:
|
||||
if noise is not None and noise.shape[1:] != latents.shape[1:]:
|
||||
raise ValueError(f"Incompatible 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
|
||||
|
||||
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
|
||||
seed = 0
|
||||
if noise_field is not None and noise_field.seed is not None:
|
||||
seed = noise_field.seed
|
||||
elif latents_field is not None and latents_field.seed is not None:
|
||||
seed = latents_field.seed
|
||||
else:
|
||||
seed = 0
|
||||
|
||||
return seed, noise, latents
|
||||
|
||||
@torch.no_grad()
|
||||
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
|
||||
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
|
||||
|
||||
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
|
||||
@@ -706,7 +737,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
# The image prompts are then passed to prep_ip_adapter_data().
|
||||
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
|
||||
|
||||
# get the unet's config so that we can pass the base to dispatch_progress()
|
||||
# get the unet's config so that we can pass the base to sd_step_callback()
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
@@ -754,7 +785,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
conditioning_data = self.get_conditioning_data(
|
||||
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
controlnet_data = self.prep_control_data(
|
||||
@@ -776,7 +815,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
dtype=unet.dtype,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
@@ -793,8 +832,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
seed=seed,
|
||||
mask=mask,
|
||||
masked_latents=masked_latents,
|
||||
gradient_mask=gradient_mask,
|
||||
num_inference_steps=num_inference_steps,
|
||||
is_gradient_mask=gradient_mask,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=controlnet_data,
|
||||
|
||||
@@ -160,6 +160,8 @@ class FieldDescriptions:
|
||||
fp32 = "Whether or not to use full float32 precision"
|
||||
precision = "Precision to use"
|
||||
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
||||
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the "
|
||||
"model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
|
||||
detect_res = "Pixel resolution for detection"
|
||||
image_res = "Pixel resolution for output image"
|
||||
safe_mode = "Whether or not to use safe mode"
|
||||
|
||||
@@ -6,6 +6,7 @@ import cv2
|
||||
import numpy
|
||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
@@ -21,8 +22,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
from .baseinvocation import BaseInvocation, Classification, invocation
|
||||
|
||||
|
||||
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
|
||||
class ShowImageInvocation(BaseInvocation):
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from contextlib import nullcontext
|
||||
from functools import singledispatchmethod
|
||||
|
||||
import einops
|
||||
@@ -12,7 +13,7 @@ from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -24,6 +25,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -31,7 +33,7 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_t
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
version="1.1.0",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
@@ -44,12 +46,17 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
def vae_encode(
|
||||
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
|
||||
) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
vae.to(dtype=torch.float32)
|
||||
@@ -81,9 +88,18 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=tile_size,
|
||||
tile_latent_min_size=tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode():
|
||||
with torch.inference_mode(), tiling_context:
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
@@ -101,7 +117,9 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
|
||||
latents = self.vae_encode(
|
||||
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
|
||||
)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
|
||||
@@ -3,7 +3,9 @@ from typing import Literal, get_args
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
@@ -14,10 +16,6 @@ from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, in
|
||||
from invokeai.backend.image_util.infill_methods.tile import infill_tile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention_processor import (
|
||||
@@ -8,10 +10,9 @@ from diffusers.models.attention_processor import (
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@@ -24,6 +25,7 @@ from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion import set_seamless
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@@ -32,7 +34,7 @@ from invokeai.backend.util.devices import TorchDevice
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.2.2",
|
||||
version="1.3.0",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
@@ -46,6 +48,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -53,9 +58,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
@@ -87,10 +92,19 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if self.tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=self.tile_size,
|
||||
tile_latent_min_size=self.tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
with torch.inference_mode(), tiling_context:
|
||||
# copied from diffusers pipeline
|
||||
latents = latents / vae.config.scaling_factor
|
||||
image = vae.decode(latents, return_dict=False)[0]
|
||||
|
||||
@@ -5,12 +5,11 @@ from typing import Literal
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField
|
||||
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
|
||||
|
||||
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.1")
|
||||
class AddInvocation(BaseInvocation):
|
||||
|
||||
@@ -14,8 +14,7 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
|
||||
from ...version import __version__
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
|
||||
class MetadataItemField(BaseModel):
|
||||
|
||||
@@ -3,18 +3,17 @@ from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
|
||||
class ModelIdentifierField(BaseModel):
|
||||
|
||||
@@ -4,18 +4,12 @@
|
||||
import torch
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from ...backend.util.devices import TorchDevice
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
"""
|
||||
Utilities
|
||||
|
||||
@@ -39,12 +39,11 @@ from easing_functions import (
|
||||
)
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import FloatCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_range",
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
@@ -21,13 +22,6 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
|
||||
- primitive nodes
|
||||
|
||||
@@ -5,12 +5,11 @@ import numpy as np
|
||||
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, UIComponent
|
||||
|
||||
|
||||
@invocation(
|
||||
"dynamic_prompt",
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
@@ -7,6 +6,7 @@ from invokeai.app.invocations.fields import (
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
|
||||
@@ -1,15 +1,9 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
|
||||
|
||||
@invocation_output("sdxl_model_loader_output")
|
||||
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -2,17 +2,11 @@
|
||||
|
||||
import re
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import InputField, OutputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .fields import InputField, OutputField, UIComponent
|
||||
from .primitives import StringOutput
|
||||
|
||||
|
||||
@invocation_output("string_pos_neg_output")
|
||||
class StringPosNegOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -0,0 +1,282 @@
|
||||
import copy
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import torch
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
MultiDiffusionRegionConditioning,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.tiles.tiles import (
|
||||
calc_tiles_min_overlap,
|
||||
)
|
||||
from invokeai.backend.tiles.utils import TBLR
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
|
||||
"""Crop a ControlNetData object to a region."""
|
||||
# Create a shallow copy of the control_data object.
|
||||
control_data_copy = copy.copy(control_data)
|
||||
# The ControlNet reference image is the only attribute that needs to be cropped.
|
||||
control_data_copy.image_tensor = control_data.image_tensor[
|
||||
:,
|
||||
:,
|
||||
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
|
||||
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
|
||||
]
|
||||
return control_data_copy
|
||||
|
||||
|
||||
@invocation(
|
||||
"tiled_multi_diffusion_denoise_latents",
|
||||
title="Tiled Multi-Diffusion Denoise Latents",
|
||||
tags=["upscale", "denoise"],
|
||||
category="latents",
|
||||
classification=Classification.Beta,
|
||||
version="1.0.0",
|
||||
)
|
||||
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
"""Tiled Multi-Diffusion denoising.
|
||||
|
||||
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
|
||||
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
|
||||
different parameters for each region to harness the full power of Multi-Diffusion.
|
||||
|
||||
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
|
||||
T2I-Adapter, masking, etc.).
|
||||
"""
|
||||
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||
)
|
||||
noise: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.noise,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tile_height: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
|
||||
)
|
||||
tile_width: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
|
||||
)
|
||||
tile_overlap: int = InputField(
|
||||
default=32,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
gt=0,
|
||||
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
|
||||
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
|
||||
"amount.",
|
||||
)
|
||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
control: ControlField | list[ControlField] | None = InputField(
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||
"""Validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def create_pipeline(
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: SchedulerMixin,
|
||||
) -> MultiDiffusionPipeline:
|
||||
# TODO(ryand): Get rid of this FakeVae hack.
|
||||
class FakeVae:
|
||||
class FakeVaeConfig:
|
||||
def __init__(self) -> None:
|
||||
self.block_out_channels = [0]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.config = FakeVae.FakeVaeConfig()
|
||||
|
||||
return MultiDiffusionPipeline(
|
||||
vae=FakeVae(),
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
# Convert tile image-space dimensions to latent-space dimensions.
|
||||
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
|
||||
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
|
||||
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
|
||||
|
||||
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
|
||||
# Calculate the tile locations to cover the latent-space image.
|
||||
tiles = calc_tiles_min_overlap(
|
||||
image_height=latent_height,
|
||||
image_width=latent_width,
|
||||
tile_height=latent_tile_height,
|
||||
tile_width=latent_tile_width,
|
||||
min_overlap=latent_tile_overlap,
|
||||
)
|
||||
|
||||
# Get the unet's config so that we can pass the base to sd_step_callback().
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
context.util.sd_step_callback(state, unet_config.base)
|
||||
|
||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_tile_height,
|
||||
latent_width=latent_tile_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=list(latents.shape),
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
# Split the controlnet_data into tiles.
|
||||
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
|
||||
controlnet_data_tiles: list[list[ControlNetData]] = []
|
||||
for tile in tiles:
|
||||
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
|
||||
controlnet_data_tiles.append(tile_controlnet_data)
|
||||
|
||||
# Prepare the MultiDiffusionRegionConditioning list.
|
||||
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
|
||||
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
|
||||
multi_diffusion_conditioning.append(
|
||||
MultiDiffusionRegionConditioning(
|
||||
region=tile,
|
||||
text_conditioning_data=conditioning_data,
|
||||
control_data=tile_controlnet_data,
|
||||
)
|
||||
)
|
||||
|
||||
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
# Run Multi-Diffusion denoising.
|
||||
result_latents = pipeline.multi_diffusion_denoise(
|
||||
multi_diffusion_conditioning=multi_diffusion_conditioning,
|
||||
target_overlap=latent_tile_overlap,
|
||||
latents=latents,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
noise=noise,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
result_latents = result_latents.to("cpu")
|
||||
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=result_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
|
||||
@@ -6,15 +6,13 @@ import numpy as np
|
||||
from PIL import Image
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
# TODO: Populate this from disk?
|
||||
# TODO: Use model manager to load?
|
||||
ESRGAN_MODELS = Literal[
|
||||
|
||||
@@ -2,12 +2,11 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Optional, cast
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .board_image_records_base import BoardImageRecordStorageBase
|
||||
|
||||
|
||||
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
|
||||
_conn: sqlite3.Connection
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
from .board_images_base import BoardImagesServiceABC
|
||||
|
||||
|
||||
class BoardImagesService(BoardImagesServiceABC):
|
||||
__invoker: Invoker
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .board_records_common import BoardChanges, BoardRecord
|
||||
|
||||
|
||||
class BoardRecordStorageBase(ABC):
|
||||
"""Low-level service responsible for interfacing with the board record store."""
|
||||
@@ -40,16 +39,12 @@ class BoardRecordStorageBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
"""Gets many board records."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
"""Gets all board records."""
|
||||
pass
|
||||
|
||||
@@ -22,6 +22,10 @@ class BoardRecord(BaseModelExcludeNull):
|
||||
"""The updated timestamp of the image."""
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
|
||||
"""The name of the cover image of the board."""
|
||||
archived: bool = Field(description="Whether or not the board is archived.")
|
||||
"""Whether or not the board is archived."""
|
||||
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
|
||||
"""Whether the board is private."""
|
||||
|
||||
|
||||
def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
@@ -35,6 +39,8 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at = board_dict.get("created_at", get_iso_timestamp())
|
||||
updated_at = board_dict.get("updated_at", get_iso_timestamp())
|
||||
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
|
||||
archived = board_dict.get("archived", False)
|
||||
is_private = board_dict.get("is_private", False)
|
||||
|
||||
return BoardRecord(
|
||||
board_id=board_id,
|
||||
@@ -43,12 +49,15 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at=created_at,
|
||||
updated_at=updated_at,
|
||||
deleted_at=deleted_at,
|
||||
archived=archived,
|
||||
is_private=is_private,
|
||||
)
|
||||
|
||||
|
||||
class BoardChanges(BaseModel, extra="forbid"):
|
||||
board_name: Optional[str] = Field(default=None, description="The board's new name.")
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
|
||||
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")
|
||||
|
||||
|
||||
class BoardRecordNotFoundException(Exception):
|
||||
|
||||
@@ -2,12 +2,8 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Union, cast
|
||||
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .board_records_base import BoardRecordStorageBase
|
||||
from .board_records_common import (
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.board_records.board_records_common import (
|
||||
BoardChanges,
|
||||
BoardRecord,
|
||||
BoardRecordDeleteException,
|
||||
@@ -15,6 +11,9 @@ from .board_records_common import (
|
||||
BoardRecordSaveException,
|
||||
deserialize_board_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
@@ -125,6 +124,17 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
(changes.cover_image_name, board_id),
|
||||
)
|
||||
|
||||
# Change the archived status of a board
|
||||
if changes.archived is not None:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE boards
|
||||
SET archived = ?
|
||||
WHERE board_id = ?;
|
||||
""",
|
||||
(changes.archived, board_id),
|
||||
)
|
||||
|
||||
self._conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._conn.rollback()
|
||||
@@ -134,35 +144,49 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
return self.get(board_id)
|
||||
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
# Build base query
|
||||
base_query = """
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ? OFFSET ?;
|
||||
""",
|
||||
(limit, offset),
|
||||
)
|
||||
"""
|
||||
|
||||
# Determine archived filter condition
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
# Execute query to fetch boards
|
||||
self._cursor.execute(final_query, (limit, offset))
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
||||
# Get the total number of boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE 1=1;
|
||||
# Determine count query
|
||||
if include_archived:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards;
|
||||
"""
|
||||
)
|
||||
else:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE archived = 0;
|
||||
"""
|
||||
|
||||
# Execute count query
|
||||
self._cursor.execute(count_query)
|
||||
|
||||
count = cast(int, self._cursor.fetchone()[0])
|
||||
|
||||
@@ -174,20 +198,25 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
base_query = """
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
"""
|
||||
)
|
||||
"""
|
||||
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
self._cursor.execute(final_query)
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_common import BoardDTO
|
||||
|
||||
|
||||
class BoardServiceABC(ABC):
|
||||
"""High-level service for board management."""
|
||||
@@ -44,16 +43,12 @@ class BoardServiceABC(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
"""Gets many boards."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardDTO]:
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
"""Gets all boards."""
|
||||
pass
|
||||
|
||||
@@ -2,7 +2,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from ..board_records.board_records_common import BoardRecord
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecord
|
||||
|
||||
|
||||
class BoardDTO(BoardRecord):
|
||||
|
||||
@@ -1,11 +1,9 @@
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_base import BoardServiceABC
|
||||
from .boards_common import board_record_to_dto
|
||||
|
||||
|
||||
class BoardService(BoardServiceABC):
|
||||
__invoker: Invoker
|
||||
@@ -48,8 +46,10 @@ class BoardService(BoardServiceABC):
|
||||
def delete(self, board_id: str) -> None:
|
||||
self.__invoker.services.board_records.delete(board_id)
|
||||
|
||||
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit)
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
|
||||
board_dtos = []
|
||||
for r in board_records.items:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
@@ -63,8 +63,8 @@ class BoardService(BoardServiceABC):
|
||||
|
||||
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
|
||||
|
||||
def get_all(self) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all()
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all(include_archived)
|
||||
board_dtos = []
|
||||
for r in board_records:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import Optional, Union
|
||||
from zipfile import ZipFile
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.bulk_download.bulk_download_common import (
|
||||
DEFAULT_BULK_DOWNLOAD_ID,
|
||||
BulkDownloadException,
|
||||
@@ -15,8 +16,6 @@ from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .bulk_download_base import BulkDownloadBase
|
||||
|
||||
|
||||
class BulkDownloadService(BulkDownloadBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
"""Init file for InvokeAI configure package."""
|
||||
|
||||
from invokeai.app.services.config.config_common import PagingArgumentParser
|
||||
|
||||
from .config_default import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
|
||||
|
||||
__all__ = ["InvokeAIAppConfig", "get_config", "PagingArgumentParser"]
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
@@ -25,14 +26,13 @@ DB_FILE = Path("invokeai.db")
|
||||
LEGACY_INIT_FILE = Path("invokeai.init")
|
||||
DEFAULT_RAM_CACHE = 10.0
|
||||
DEFAULT_VRAM_CACHE = 0.25
|
||||
DEFAULT_CONVERT_CACHE = 20.0
|
||||
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
|
||||
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
|
||||
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
|
||||
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
|
||||
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
|
||||
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
|
||||
CONFIG_SCHEMA_VERSION = "4.0.1"
|
||||
CONFIG_SCHEMA_VERSION = "4.0.2"
|
||||
|
||||
|
||||
def get_default_ram_cache_size() -> float:
|
||||
@@ -85,7 +85,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
log_tokenization: Enable logging of parsed prompt tokens.
|
||||
patchmatch: Enable patchmatch inpaint code.
|
||||
models_dir: Path to the models directory.
|
||||
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
|
||||
convert_cache_dir: Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).
|
||||
download_cache_dir: Path to the directory that contains dynamically downloaded models.
|
||||
legacy_conf_dir: Path to directory of legacy checkpoint config files.
|
||||
db_dir: Path to InvokeAI databases directory.
|
||||
@@ -102,7 +102,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path to profiles output directory.
|
||||
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
|
||||
vram: Amount of VRAM reserved for model storage (GB).
|
||||
convert_cache: Maximum size of on-disk converted models cache (GB).
|
||||
lazy_offload: Keep models in VRAM until their space is needed.
|
||||
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
|
||||
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
|
||||
@@ -148,7 +147,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
|
||||
# PATHS
|
||||
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).")
|
||||
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
|
||||
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
|
||||
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
|
||||
@@ -170,9 +169,8 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
|
||||
|
||||
# CACHE
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
convert_cache: float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB).")
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
|
||||
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
|
||||
|
||||
@@ -357,14 +355,14 @@ class DefaultInvokeAIAppConfig(InvokeAIAppConfig):
|
||||
return (init_settings,)
|
||||
|
||||
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate a v3 config dictionary to a current config object.
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate a v3 config dictionary to a v4.0.0.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v3 config file.
|
||||
|
||||
Returns:
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
An `InvokeAIAppConfig` config dict.
|
||||
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
@@ -398,32 +396,41 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
elif k in InvokeAIAppConfig.model_fields:
|
||||
# skip unknown fields
|
||||
parsed_config_dict[k] = v
|
||||
# When migrating the config file, we should not include currently-set environment variables.
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
|
||||
return config
|
||||
parsed_config_dict["schema_version"] = "4.0.0"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate v4.0.0 config dictionary to a current config object.
|
||||
def migrate_v4_0_0_to_4_0_1_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.0 config dictionary to a v4.0.1 config dictionary
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.0 config file.
|
||||
|
||||
Returns:
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
A config dict with the settings migrated to v4.0.1.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
for k, v in config_dict.items():
|
||||
# autocast was removed from precision in v4.0.1
|
||||
if k == "precision" and v == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
else:
|
||||
parsed_config_dict[k] = v
|
||||
if k == "schema_version":
|
||||
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
return config
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# precision "autocast" was replaced by "auto" in v4.0.1
|
||||
if parsed_config_dict.get("precision") == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
parsed_config_dict["schema_version"] = "4.0.1"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def migrate_v4_0_1_to_4_0_2_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.1 config dictionary to a v4.0.2 config dictionary.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.1 config file.
|
||||
|
||||
Returns:
|
||||
An config dict with the settings migrated to v4.0.2.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# convert_cache was removed in 4.0.2
|
||||
parsed_config_dict.pop("convert_cache", None)
|
||||
parsed_config_dict["schema_version"] = "4.0.2"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
@@ -437,27 +444,31 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
"""
|
||||
assert config_path.suffix == ".yaml"
|
||||
with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
|
||||
loaded_config_dict = yaml.safe_load(file)
|
||||
loaded_config_dict: dict[str, Any] = yaml.safe_load(file)
|
||||
|
||||
assert isinstance(loaded_config_dict, dict)
|
||||
|
||||
migrated = False
|
||||
if "InvokeAI" in loaded_config_dict:
|
||||
# This is a v3 config file, attempt to migrate it
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_0_to_4_0_1_config_dict(loaded_config_dict)
|
||||
if loaded_config_dict["schema_version"] == "4.0.1":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_1_to_4_0_2_config_dict(loaded_config_dict)
|
||||
|
||||
if migrated:
|
||||
shutil.copy(config_path, config_path.with_suffix(".yaml.bak"))
|
||||
try:
|
||||
# loaded_config_dict could be the wrong shape, but we will catch all exceptions below
|
||||
migrated_config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
# load and write without environment variables
|
||||
migrated_config = DefaultInvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
migrated_config.write_file(config_path)
|
||||
except Exception as e:
|
||||
shutil.copy(config_path.with_suffix(".yaml.bak"), config_path)
|
||||
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
|
||||
migrated_config.write_file(config_path)
|
||||
return migrated_config
|
||||
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
|
||||
loaded_config_dict.write_file(config_path)
|
||||
|
||||
# Attempt to load as a v4 config file
|
||||
try:
|
||||
# Meta is not included in the model fields, so we need to validate it separately
|
||||
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
"""Init file for download queue."""
|
||||
|
||||
from .download_base import (
|
||||
from invokeai.app.services.download.download_base import (
|
||||
DownloadJob,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from .download_default import DownloadQueueService, TqdmProgress
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService, TqdmProgress
|
||||
|
||||
__all__ = [
|
||||
"DownloadJob",
|
||||
|
||||
@@ -16,12 +16,7 @@ from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .download_base import (
|
||||
from invokeai.app.services.download.download_base import (
|
||||
DownloadEventHandler,
|
||||
DownloadExceptionHandler,
|
||||
DownloadJob,
|
||||
@@ -33,6 +28,10 @@ from .download_base import (
|
||||
ServiceInactiveException,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
# Maximum number of bytes to download during each call to requests.iter_content()
|
||||
DOWNLOAD_CHUNK_SIZE = 100000
|
||||
@@ -185,7 +184,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
job = DownloadJob(
|
||||
source=url,
|
||||
dest=path,
|
||||
access_token=access_token,
|
||||
access_token=access_token or self._lookup_access_token(url),
|
||||
)
|
||||
mfdj.download_parts.add(job)
|
||||
self._download_part2parent[job.source] = mfdj
|
||||
|
||||
@@ -6,12 +6,11 @@ from queue import Empty, Queue
|
||||
|
||||
from fastapi_events.dispatcher import dispatch
|
||||
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.events.events_common import (
|
||||
EventBase,
|
||||
)
|
||||
|
||||
from .events_base import EventServiceBase
|
||||
|
||||
|
||||
class FastAPIEventService(EventServiceBase):
|
||||
def __init__(self, event_handler_id: int) -> None:
|
||||
|
||||
@@ -7,12 +7,15 @@ from PIL import Image, PngImagePlugin
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
|
||||
|
||||
from .image_files_base import ImageFileStorageBase
|
||||
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
|
||||
|
||||
|
||||
class DiskImageFileStorage(ImageFileStorageBase):
|
||||
"""Stores images on disk"""
|
||||
|
||||
@@ -3,9 +3,14 @@ from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageRecordStorageBase(ABC):
|
||||
@@ -37,10 +42,13 @@ class ImageRecordStorageBase(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
"""Gets a page of image records."""
|
||||
pass
|
||||
|
||||
@@ -4,11 +4,8 @@ from datetime import datetime
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .image_records_base import ImageRecordStorageBase
|
||||
from .image_records_common import (
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
IMAGE_DTO_COLS,
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
@@ -19,6 +16,9 @@ from .image_records_common import (
|
||||
ResourceOrigin,
|
||||
deserialize_image_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
|
||||
class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
@@ -144,10 +144,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
@@ -208,9 +211,21 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
query_pagination = """--sql
|
||||
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
|
||||
"""
|
||||
# Search term condition
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND images.metadata LIKE ?
|
||||
"""
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
if starred_first:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
else:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
|
||||
# Final images query with pagination
|
||||
images_query += query_conditions + query_pagination + ";"
|
||||
|
||||
@@ -12,6 +12,7 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageServiceABC(ABC):
|
||||
@@ -116,10 +117,13 @@ class ImageServiceABC(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a paginated list of image DTOs."""
|
||||
pass
|
||||
|
||||
@@ -3,15 +3,12 @@ from typing import Optional
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..image_files.image_files_common import (
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from ..image_records.image_records_common import (
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
@@ -22,8 +19,11 @@ from ..image_records.image_records_common import (
|
||||
InvalidOriginException,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from .images_base import ImageServiceABC
|
||||
from .images_common import ImageDTO, image_record_to_dto
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.images.images_common import ImageDTO, image_record_to_dto
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageService(ImageServiceABC):
|
||||
@@ -73,7 +73,12 @@ class ImageService(ImageServiceABC):
|
||||
session_id=session_id,
|
||||
)
|
||||
if board_id is not None:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
|
||||
try:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(
|
||||
board_id=board_id, image_name=image_name
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.warn(f"Failed to add image to board {board_id}: {str(e)}")
|
||||
self.__invoker.services.image_files.save(
|
||||
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
|
||||
)
|
||||
@@ -202,19 +207,25 @@ class ImageService(ImageServiceABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
try:
|
||||
results = self.__invoker.services.image_records.get_many(
|
||||
offset,
|
||||
limit,
|
||||
starred_first,
|
||||
order_dir,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
search_term,
|
||||
)
|
||||
|
||||
image_dtos = [
|
||||
|
||||
@@ -10,29 +10,28 @@ if TYPE_CHECKING:
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.names.names_base import NameServiceBase
|
||||
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
|
||||
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
|
||||
from invokeai.app.services.urls.urls_base import UrlServiceBase
|
||||
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
|
||||
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from .board_images.board_images_base import BoardImagesServiceABC
|
||||
from .board_records.board_records_base import BoardRecordStorageBase
|
||||
from .boards.boards_base import BoardServiceABC
|
||||
from .bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from .config import InvokeAIAppConfig
|
||||
from .download import DownloadQueueServiceBase
|
||||
from .events.events_base import EventServiceBase
|
||||
from .image_files.image_files_base import ImageFileStorageBase
|
||||
from .image_records.image_records_base import ImageRecordStorageBase
|
||||
from .images.images_base import ImageServiceABC
|
||||
from .invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from .model_images.model_images_base import ModelImageFileStorageBase
|
||||
from .model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from .names.names_base import NameServiceBase
|
||||
from .session_processor.session_processor_base import SessionProcessorBase
|
||||
from .session_queue.session_queue_base import SessionQueueBase
|
||||
from .urls.urls_base import UrlServiceBase
|
||||
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
|
||||
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
|
||||
@@ -9,11 +9,8 @@ import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
from .invocation_stats_base import InvocationStatsServiceBase
|
||||
from .invocation_stats_common import (
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import (
|
||||
GESStatsNotFoundError,
|
||||
GraphExecutionStats,
|
||||
GraphExecutionStatsSummary,
|
||||
@@ -22,6 +19,8 @@ from .invocation_stats_common import (
|
||||
NodeExecutionStats,
|
||||
NodeExecutionStatsSummary,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
# Size of 1GB in bytes.
|
||||
GB = 2**30
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
|
||||
from .invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
|
||||
|
||||
class Invoker:
|
||||
|
||||
@@ -5,15 +5,14 @@ from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
from .model_images_base import ModelImageFileStorageBase
|
||||
from .model_images_common import (
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_images.model_images_common import (
|
||||
ModelImageFileDeleteException,
|
||||
ModelImageFileNotFoundException,
|
||||
ModelImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
|
||||
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
"""Initialization file for model install service package."""
|
||||
|
||||
from .model_install_base import (
|
||||
ModelInstallServiceBase,
|
||||
)
|
||||
from .model_install_common import (
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
@@ -12,7 +10,7 @@ from .model_install_common import (
|
||||
UnknownInstallJobException,
|
||||
URLModelSource,
|
||||
)
|
||||
from .model_install_default import ModelInstallService
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
|
||||
__all__ = [
|
||||
"ModelInstallServiceBase",
|
||||
|
||||
@@ -23,6 +23,16 @@ from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDo
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -47,17 +57,6 @@ from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.util import slugify
|
||||
|
||||
from .model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
|
||||
TMPDIR_PREFIX = "tmpinstall_"
|
||||
|
||||
|
||||
@@ -848,7 +847,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
assert excp is not None
|
||||
install_job.set_error(excp)
|
||||
self._set_error(install_job, excp)
|
||||
self._download_queue.cancel_job(download_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Initialization file for model load service module."""
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
from .model_load_default import ModelLoadService
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
|
||||
__all__ = ["ModelLoadServiceBase", "ModelLoadService"]
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import Callable, Optional
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
|
||||
|
||||
@@ -28,11 +27,6 @@ class ModelLoadServiceBase(ABC):
|
||||
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
||||
"""Return the RAM cache used by this loader."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
|
||||
@abstractmethod
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
|
||||
@@ -10,6 +10,7 @@ from torch import load as torch_load
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import (
|
||||
LoadedModel,
|
||||
@@ -17,14 +18,11 @@ from invokeai.backend.model_manager.load import (
|
||||
ModelLoaderRegistry,
|
||||
ModelLoaderRegistryBase,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
|
||||
|
||||
class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Wrapper around ModelLoaderRegistry."""
|
||||
@@ -33,7 +31,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
ram_cache: ModelCacheBase[AnyModel],
|
||||
convert_cache: ModelConvertCacheBase,
|
||||
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
|
||||
):
|
||||
"""Initialize the model load service."""
|
||||
@@ -42,7 +39,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self._logger = logger
|
||||
self._app_config = app_config
|
||||
self._ram_cache = ram_cache
|
||||
self._convert_cache = convert_cache
|
||||
self._registry = registry
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
@@ -53,11 +49,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Return the RAM cache used by this loader."""
|
||||
return self._ram_cache
|
||||
|
||||
@property
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
return self._convert_cache
|
||||
|
||||
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
||||
"""
|
||||
Given a model's configuration, load it and return the LoadedModel object.
|
||||
@@ -76,7 +67,6 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
app_config=self._app_config,
|
||||
logger=self._logger,
|
||||
ram_cache=self._ram_cache,
|
||||
convert_cache=self._convert_cache,
|
||||
).load_model(model_config, submodel_type)
|
||||
|
||||
if hasattr(self, "_invoker"):
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
"""Initialization file for model manager service."""
|
||||
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
|
||||
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
|
||||
__all__ = [
|
||||
"ModelManagerServiceBase",
|
||||
"ModelManagerService",
|
||||
|
||||
@@ -5,14 +5,13 @@ from abc import ABC, abstractmethod
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
|
||||
|
||||
class ModelManagerServiceBase(ABC):
|
||||
|
||||
@@ -6,19 +6,20 @@ from typing import Optional
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallService, ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadService, ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
from .model_manager_base import ModelManagerServiceBase
|
||||
|
||||
|
||||
class ModelManagerService(ModelManagerServiceBase):
|
||||
"""
|
||||
@@ -86,11 +87,9 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
logger=logger,
|
||||
execution_device=execution_device or TorchDevice.choose_torch_device(),
|
||||
)
|
||||
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
|
||||
loader = ModelLoadService(
|
||||
app_config=app_config,
|
||||
ram_cache=ram_cache,
|
||||
convert_cache=convert_cache,
|
||||
registry=ModelLoaderRegistry,
|
||||
)
|
||||
installer = ModelInstallService(
|
||||
|
||||
@@ -45,17 +45,7 @@ from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelConfigFactory,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
|
||||
from ..shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from .model_records_base import (
|
||||
from invokeai.app.services.model_records.model_records_base import (
|
||||
DuplicateModelException,
|
||||
ModelRecordChanges,
|
||||
ModelRecordOrderBy,
|
||||
@@ -63,6 +53,15 @@ from .model_records_base import (
|
||||
ModelSummary,
|
||||
UnknownModelException,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelConfigFactory,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
|
||||
|
||||
class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from invokeai.app.services.names.names_base import NameServiceBase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .names_base import NameServiceBase
|
||||
|
||||
|
||||
class SimpleNameService(NameServiceBase):
|
||||
"""Creates image names from UUIDs."""
|
||||
|
||||
@@ -13,24 +13,24 @@ from invokeai.app.services.events.events_common import (
|
||||
register_events,
|
||||
)
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.session_processor.session_processor_base import (
|
||||
InvocationServices,
|
||||
OnAfterRunNode,
|
||||
OnAfterRunSession,
|
||||
OnBeforeRunNode,
|
||||
OnBeforeRunSession,
|
||||
OnNodeError,
|
||||
OnNonFatalProcessorError,
|
||||
SessionProcessorBase,
|
||||
SessionRunnerBase,
|
||||
)
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException, SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem, SessionQueueItemNotFoundError
|
||||
from invokeai.app.services.shared.graph import NodeInputError
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
|
||||
from invokeai.app.util.profiler import Profiler
|
||||
|
||||
from ..invoker import Invoker
|
||||
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
|
||||
from .session_processor_common import SessionProcessorStatus
|
||||
|
||||
|
||||
class DefaultSessionRunner(SessionRunnerBase):
|
||||
"""Processes a single session's invocations."""
|
||||
|
||||
@@ -652,7 +652,7 @@ class Graph(BaseModel):
|
||||
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
|
||||
|
||||
# Input type must be a list
|
||||
if get_origin(input_field) != list:
|
||||
if get_origin(input_field) is not list:
|
||||
return False
|
||||
|
||||
# Validate that all outputs match the input type
|
||||
|
||||
@@ -14,6 +14,8 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@@ -45,6 +47,8 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_9())
|
||||
migrator.register_migration(build_migration_10())
|
||||
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
|
||||
migrator.register_migration(build_migration_12(app_config=config))
|
||||
migrator.register_migration(build_migration_13())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
import shutil
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration12Callback:
|
||||
def __init__(self, app_config: InvokeAIAppConfig) -> None:
|
||||
self._app_config = app_config
|
||||
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._remove_model_convert_cache_dir()
|
||||
|
||||
def _remove_model_convert_cache_dir(self) -> None:
|
||||
"""
|
||||
Removes unused model convert cache directory
|
||||
"""
|
||||
convert_cache = self._app_config.convert_cache_path
|
||||
shutil.rmtree(convert_cache, ignore_errors=True)
|
||||
|
||||
|
||||
def build_migration_12(app_config: InvokeAIAppConfig) -> Migration:
|
||||
"""
|
||||
Build the migration from database version 11 to 12.
|
||||
|
||||
This migration removes the now-unused model convert cache directory.
|
||||
"""
|
||||
migration_12 = Migration(
|
||||
from_version=11,
|
||||
to_version=12,
|
||||
callback=Migration12Callback(app_config),
|
||||
)
|
||||
|
||||
return migration_12
|
||||
@@ -0,0 +1,31 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration13Callback:
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._add_archived_col(cursor)
|
||||
|
||||
def _add_archived_col(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
- Adds `archived` columns to the board table.
|
||||
"""
|
||||
|
||||
cursor.execute("ALTER TABLE boards ADD COLUMN archived BOOLEAN DEFAULT FALSE;")
|
||||
|
||||
|
||||
def build_migration_13() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 12 to 13..
|
||||
|
||||
This migration does the following:
|
||||
- Adds `archived` columns to the board table.
|
||||
"""
|
||||
migration_13 = Migration(
|
||||
from_version=12,
|
||||
to_version=13,
|
||||
callback=Migration13Callback(),
|
||||
)
|
||||
|
||||
return migration_13
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
from .urls_base import UrlServiceBase
|
||||
from invokeai.app.services.urls.urls_base import UrlServiceBase
|
||||
|
||||
|
||||
class LocalUrlService(UrlServiceBase):
|
||||
|
||||
@@ -289,7 +289,7 @@ def prepare_control_image(
|
||||
width: int,
|
||||
height: int,
|
||||
num_channels: int = 3,
|
||||
device: str = "cuda",
|
||||
device: str | torch.device = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
@@ -304,7 +304,7 @@ def prepare_control_image(
|
||||
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
|
||||
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
|
||||
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
|
||||
device (str, optional): The target device for the output image. Defaults to "cuda".
|
||||
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
|
||||
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
|
||||
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
|
||||
Defaults to True.
|
||||
|
||||
@@ -5,9 +5,8 @@ from PIL import Image
|
||||
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.util.util import image_to_dataURL
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.util.util import image_to_dataURL
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
@@ -2,6 +2,11 @@
|
||||
Initialization file for invokeai.backend.image_util methods.
|
||||
"""
|
||||
|
||||
from .infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
|
||||
from .util import InitImageResizer, make_grid # noqa: F401
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch # noqa: F401
|
||||
from invokeai.backend.image_util.pngwriter import ( # noqa: F401
|
||||
PngWriter,
|
||||
PromptFormatter,
|
||||
retrieve_metadata,
|
||||
write_metadata,
|
||||
)
|
||||
from invokeai.backend.image_util.util import InitImageResizer, make_grid # noqa: F401
|
||||
|
||||
@@ -2,7 +2,7 @@ import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
from invokeai.backend.image_util.basicsr.arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
|
||||
@@ -4,7 +4,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .blocks import FeatureFusionBlock, _make_scratch
|
||||
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
|
||||
|
||||
torchhub_path = Path(__file__).parent.parent / "torchhub"
|
||||
|
||||
|
||||
@@ -8,11 +8,10 @@ import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.image_util.dw_openpose.onnxdet import inference_detector
|
||||
from invokeai.backend.image_util.dw_openpose.onnxpose import inference_pose
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
config = get_config()
|
||||
|
||||
|
||||
|
||||
@@ -11,9 +11,8 @@ from PIL import Image
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||
|
||||
from ..raw_model import RawModel
|
||||
from .resampler import Resampler
|
||||
from invokeai.backend.ip_adapter.resampler import Resampler
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class IPAdapterStateDict(TypedDict):
|
||||
@@ -136,11 +135,11 @@ class IPAdapter(RawModel):
|
||||
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||
|
||||
def calc_size(self):
|
||||
# workaround for circular import
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
|
||||
def calc_size(self) -> int:
|
||||
# HACK(ryand): Fix this issue with circular imports.
|
||||
from invokeai.backend.model_manager.load.model_util import calc_module_size
|
||||
|
||||
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
|
||||
return calc_module_size(self._image_proj_model) + calc_module_size(self.attn_weights)
|
||||
|
||||
def _init_image_proj_model(
|
||||
self, state_dict: dict[str, torch.Tensor]
|
||||
|
||||
@@ -10,8 +10,8 @@ from safetensors.torch import load_file
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
|
||||
from .raw_model import RawModel
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
@@ -521,7 +521,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype, non_blocking=True)
|
||||
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
@@ -12,7 +12,9 @@ def validate_hash(hash: str):
|
||||
map = json.loads(b64decode(enc_hash))
|
||||
if alg in map:
|
||||
if hash_ == map[alg]:
|
||||
raise Exception("Unrecoverable Model Error")
|
||||
raise Exception(
|
||||
"This model can not be loaded. If you're looking for help, consider visiting https://www.redirectionprogram.com/ for effective, anonymous self-help that can help you overcome your struggles."
|
||||
)
|
||||
|
||||
|
||||
hashes: list[str] = [
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Re-export frequently-used symbols from the Model Manager backend."""
|
||||
|
||||
from .config import (
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
@@ -13,9 +13,9 @@ from .config import (
|
||||
SchedulerPredictionType,
|
||||
SubModelType,
|
||||
)
|
||||
from .load import LoadedModel
|
||||
from .probe import ModelProbe
|
||||
from .search import ModelSearch
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
from invokeai.backend.model_manager.probe import ModelProbe
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
|
||||
__all__ = [
|
||||
"AnyModel",
|
||||
|
||||
@@ -24,20 +24,20 @@ import time
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Type, TypeAlias, Union
|
||||
|
||||
import diffusers
|
||||
import torch
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||
from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
|
||||
from ..raw_model import RawModel
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
# ModelMixin is the base class for all diffusers and transformers models
|
||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
|
||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
|
||||
@@ -1,83 +0,0 @@
|
||||
# Adapted for use in InvokeAI by Lincoln Stein, July 2023
|
||||
#
|
||||
"""Conversion script for the Stable Diffusion checkpoints."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
convert_ldm_vae_checkpoint,
|
||||
create_vae_diffusers_config,
|
||||
download_controlnet_from_original_ckpt,
|
||||
download_from_original_stable_diffusion_ckpt,
|
||||
)
|
||||
from omegaconf import DictConfig
|
||||
|
||||
from . import AnyModel
|
||||
|
||||
|
||||
def convert_ldm_vae_to_diffusers(
|
||||
checkpoint: torch.Tensor | dict[str, torch.Tensor],
|
||||
vae_config: DictConfig,
|
||||
image_size: int,
|
||||
dump_path: Optional[Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
) -> AutoencoderKL:
|
||||
"""Convert a checkpoint-style VAE into a Diffusers VAE"""
|
||||
vae_config = create_vae_diffusers_config(vae_config, image_size=image_size)
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
||||
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
vae.to(precision)
|
||||
|
||||
if dump_path:
|
||||
vae.save_pretrained(dump_path, safe_serialization=True)
|
||||
|
||||
return vae
|
||||
|
||||
|
||||
def convert_ckpt_to_diffusers(
|
||||
checkpoint_path: str | Path,
|
||||
dump_path: Optional[str | Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
use_safetensors: bool = True,
|
||||
**kwargs,
|
||||
) -> AnyModel:
|
||||
"""
|
||||
Takes all the arguments of download_from_original_stable_diffusion_ckpt(),
|
||||
and in addition a path-like object indicating the location of the desired diffusers
|
||||
model to be written.
|
||||
"""
|
||||
pipe = download_from_original_stable_diffusion_ckpt(Path(checkpoint_path).as_posix(), **kwargs)
|
||||
pipe = pipe.to(precision)
|
||||
|
||||
# TO DO: save correct repo variant
|
||||
if dump_path:
|
||||
pipe.save_pretrained(
|
||||
dump_path,
|
||||
safe_serialization=use_safetensors,
|
||||
)
|
||||
return pipe
|
||||
|
||||
|
||||
def convert_controlnet_to_diffusers(
|
||||
checkpoint_path: Path,
|
||||
dump_path: Optional[Path] = None,
|
||||
precision: torch.dtype = torch.float16,
|
||||
**kwargs,
|
||||
) -> AnyModel:
|
||||
"""
|
||||
Takes all the arguments of download_controlnet_from_original_ckpt(),
|
||||
and in addition a path-like object indicating the location of the desired diffusers
|
||||
model to be written.
|
||||
"""
|
||||
pipe = download_controlnet_from_original_ckpt(checkpoint_path.as_posix(), **kwargs)
|
||||
pipe = pipe.to(precision)
|
||||
|
||||
# TO DO: save correct repo variant
|
||||
if dump_path:
|
||||
pipe.save_pretrained(dump_path, safe_serialization=True)
|
||||
return pipe
|
||||
@@ -1,75 +0,0 @@
|
||||
import ctypes
|
||||
|
||||
|
||||
class Struct_mallinfo2(ctypes.Structure):
|
||||
"""A ctypes Structure that matches the libc mallinfo2 struct.
|
||||
|
||||
Docs:
|
||||
- https://man7.org/linux/man-pages/man3/mallinfo.3.html
|
||||
- https://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
|
||||
|
||||
struct mallinfo2 {
|
||||
size_t arena; /* Non-mmapped space allocated (bytes) */
|
||||
size_t ordblks; /* Number of free chunks */
|
||||
size_t smblks; /* Number of free fastbin blocks */
|
||||
size_t hblks; /* Number of mmapped regions */
|
||||
size_t hblkhd; /* Space allocated in mmapped regions (bytes) */
|
||||
size_t usmblks; /* See below */
|
||||
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
|
||||
size_t uordblks; /* Total allocated space (bytes) */
|
||||
size_t fordblks; /* Total free space (bytes) */
|
||||
size_t keepcost; /* Top-most, releasable space (bytes) */
|
||||
};
|
||||
"""
|
||||
|
||||
_fields_ = [
|
||||
("arena", ctypes.c_size_t),
|
||||
("ordblks", ctypes.c_size_t),
|
||||
("smblks", ctypes.c_size_t),
|
||||
("hblks", ctypes.c_size_t),
|
||||
("hblkhd", ctypes.c_size_t),
|
||||
("usmblks", ctypes.c_size_t),
|
||||
("fsmblks", ctypes.c_size_t),
|
||||
("uordblks", ctypes.c_size_t),
|
||||
("fordblks", ctypes.c_size_t),
|
||||
("keepcost", ctypes.c_size_t),
|
||||
]
|
||||
|
||||
def __str__(self):
|
||||
s = ""
|
||||
s += f"{'arena': <10}= {(self.arena/2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
|
||||
s += f"{'ordblks': <10}= {(self.ordblks): >15} # Number of free chunks\n"
|
||||
s += f"{'smblks': <10}= {(self.smblks): >15} # Number of free fastbin blocks \n"
|
||||
s += f"{'hblks': <10}= {(self.hblks): >15} # Number of mmapped regions \n"
|
||||
s += f"{'hblkhd': <10}= {(self.hblkhd/2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
|
||||
s += f"{'usmblks': <10}= {(self.usmblks): >15} # Unused\n"
|
||||
s += f"{'fsmblks': <10}= {(self.fsmblks/2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
|
||||
s += (
|
||||
f"{'uordblks': <10}= {(self.uordblks/2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
|
||||
" (GB)\n"
|
||||
)
|
||||
s += f"{'fordblks': <10}= {(self.fordblks/2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
|
||||
s += f"{'keepcost': <10}= {(self.keepcost/2**30):15.5f} # Top-most, releasable space (GB)\n"
|
||||
return s
|
||||
|
||||
|
||||
class LibcUtil:
|
||||
"""A utility class for interacting with the C Standard Library (`libc`) via ctypes.
|
||||
|
||||
Note that this class will raise on __init__() if 'libc.so.6' can't be found. Take care to handle environments where
|
||||
this shared library is not available.
|
||||
|
||||
TODO: Improve cross-OS compatibility of this class.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._libc = ctypes.cdll.LoadLibrary("libc.so.6")
|
||||
|
||||
def mallinfo2(self) -> Struct_mallinfo2:
|
||||
"""Calls `libc` `mallinfo2`.
|
||||
|
||||
Docs: https://man7.org/linux/man-pages/man3/mallinfo.3.html
|
||||
"""
|
||||
mallinfo2 = self._libc.mallinfo2
|
||||
mallinfo2.restype = Struct_mallinfo2
|
||||
return mallinfo2()
|
||||
@@ -6,11 +6,10 @@ Init file for the model loader.
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
|
||||
from .convert_cache.convert_cache_default import ModelConvertCache
|
||||
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from .load_default import ModelLoader
|
||||
from .model_cache.model_cache_default import ModelCache
|
||||
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
|
||||
|
||||
# This registers the subclasses that implement loaders of specific model types
|
||||
loaders = [x.stem for x in Path(Path(__file__).parent, "model_loaders").glob("*.py") if x.stem != "__init__"]
|
||||
@@ -21,7 +20,6 @@ __all__ = [
|
||||
"LoadedModel",
|
||||
"LoadedModelWithoutConfig",
|
||||
"ModelCache",
|
||||
"ModelConvertCache",
|
||||
"ModelLoaderBase",
|
||||
"ModelLoader",
|
||||
"ModelLoaderRegistryBase",
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
from .convert_cache_base import ModelConvertCacheBase
|
||||
from .convert_cache_default import ModelConvertCache
|
||||
|
||||
__all__ = ["ModelConvertCacheBase", "ModelConvertCache"]
|
||||
@@ -1,28 +0,0 @@
|
||||
"""
|
||||
Disk-based converted model cache.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class ModelConvertCacheBase(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_size(self) -> float:
|
||||
"""Return the maximum size of this cache directory."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def make_room(self, size: float) -> None:
|
||||
"""
|
||||
Make sufficient room in the cache directory for a model of max_size.
|
||||
|
||||
:param size: Size required (GB)
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cache_path(self, key: str) -> Path:
|
||||
"""Return the path for a model with the indicated key."""
|
||||
pass
|
||||
@@ -1,83 +0,0 @@
|
||||
"""
|
||||
Placeholder for convert cache implementation.
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
from invokeai.backend.util import GIG, directory_size
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import safe_filename
|
||||
|
||||
from .convert_cache_base import ModelConvertCacheBase
|
||||
|
||||
|
||||
class ModelConvertCache(ModelConvertCacheBase):
|
||||
def __init__(self, cache_path: Path, max_size: float = 10.0):
|
||||
"""Initialize the convert cache with the base directory and a limit on its maximum size (in GBs)."""
|
||||
if not cache_path.exists():
|
||||
cache_path.mkdir(parents=True)
|
||||
self._cache_path = cache_path
|
||||
self._max_size = max_size
|
||||
|
||||
# adjust cache size at startup in case it has been changed
|
||||
if self._cache_path.exists():
|
||||
self.make_room(0.0)
|
||||
|
||||
@property
|
||||
def max_size(self) -> float:
|
||||
"""Return the maximum size of this cache directory (GB)."""
|
||||
return self._max_size
|
||||
|
||||
@max_size.setter
|
||||
def max_size(self, value: float) -> None:
|
||||
"""Set the maximum size of this cache directory (GB)."""
|
||||
self._max_size = value
|
||||
|
||||
def cache_path(self, key: str) -> Path:
|
||||
"""Return the path for a model with the indicated key."""
|
||||
key = safe_filename(self._cache_path, key)
|
||||
return self._cache_path / key
|
||||
|
||||
def make_room(self, size: float) -> None:
|
||||
"""
|
||||
Make sufficient room in the cache directory for a model of max_size.
|
||||
|
||||
:param size: Size required (GB)
|
||||
"""
|
||||
size_needed = directory_size(self._cache_path) + size
|
||||
max_size = int(self.max_size) * GIG
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
if size_needed <= max_size:
|
||||
return
|
||||
|
||||
logger.debug(
|
||||
f"Convert cache has gotten too large {(size_needed / GIG):4.2f} > {(max_size / GIG):4.2f}G.. Trimming."
|
||||
)
|
||||
|
||||
# For this to work, we make the assumption that the directory contains
|
||||
# a 'model_index.json', 'unet/config.json' file, or a 'config.json' file at top level.
|
||||
# This should be true for any diffusers model.
|
||||
def by_atime(path: Path) -> float:
|
||||
for config in ["model_index.json", "unet/config.json", "config.json"]:
|
||||
sentinel = path / config
|
||||
if sentinel.exists():
|
||||
return sentinel.stat().st_atime
|
||||
|
||||
# no sentinel file found! - pick the most recent file in the directory
|
||||
try:
|
||||
atimes = sorted([x.stat().st_atime for x in path.iterdir() if x.is_file()], reverse=True)
|
||||
return atimes[0]
|
||||
except IndexError:
|
||||
return 0.0
|
||||
|
||||
# sort by last access time - least accessed files will be at the end
|
||||
lru_models = sorted(self._cache_path.iterdir(), key=by_atime, reverse=True)
|
||||
logger.debug(f"cached models in descending atime order: {lru_models}")
|
||||
while size_needed > max_size and len(lru_models) > 0:
|
||||
next_victim = lru_models.pop()
|
||||
victim_size = directory_size(next_victim)
|
||||
logger.debug(f"Removing cached converted model {next_victim} to free {victim_size / GIG} GB")
|
||||
shutil.rmtree(next_victim)
|
||||
size_needed -= victim_size
|
||||
@@ -18,7 +18,6 @@ from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache.convert_cache_base import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
||||
|
||||
|
||||
@@ -112,7 +111,6 @@ class ModelLoaderBase(ABC):
|
||||
app_config: InvokeAIAppConfig,
|
||||
logger: Logger,
|
||||
ram_cache: ModelCacheBase[AnyModel],
|
||||
convert_cache: ModelConvertCacheBase,
|
||||
):
|
||||
"""Initialize the loader."""
|
||||
pass
|
||||
@@ -138,12 +136,6 @@ class ModelLoaderBase(ABC):
|
||||
"""Return size in bytes of the model, calculated before loading."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the convert cache associated with this loader."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user