mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 09:18:00 -05:00
Compare commits
86 Commits
lstein/thr
...
onnx-testi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e8299d0abb | ||
|
|
a28ab654ef | ||
|
|
8699fd7050 | ||
|
|
9e65470ada | ||
|
|
f4e52fafac | ||
|
|
ee7b36cea5 | ||
|
|
487455ef2e | ||
|
|
632346b2e2 | ||
|
|
e201ad2f51 | ||
|
|
0f18898865 | ||
|
|
700131fab2 | ||
|
|
634d6bb8a6 | ||
|
|
2fbf245c3d | ||
|
|
39c14eb2ac | ||
|
|
c89fa4b635 | ||
|
|
e943913f58 | ||
|
|
4ada094c5c | ||
|
|
893e199677 | ||
|
|
3c5a0c95b3 | ||
|
|
71a07ee5a7 | ||
|
|
2a0a765ec4 | ||
|
|
ec08151009 | ||
|
|
186e98da5e | ||
|
|
dea9a5da7a | ||
|
|
bda0000acd | ||
|
|
4b678f2416 | ||
|
|
43fbbfb848 | ||
|
|
b71bcab691 | ||
|
|
869f418b03 | ||
|
|
c364c85915 | ||
|
|
3773bfbc74 | ||
|
|
949437b4f0 | ||
|
|
efcb3a9d08 | ||
|
|
35d5ef9118 | ||
|
|
b4eeaaa63c | ||
|
|
54bd7c7f04 | ||
|
|
3240f98f4e | ||
|
|
3fa7170566 | ||
|
|
187d7c1cab | ||
|
|
9685760fac | ||
|
|
b0fb4950ed | ||
|
|
42c440c73f | ||
|
|
416afd2781 | ||
|
|
afa84a149c | ||
|
|
be659364c2 | ||
|
|
56098f370c | ||
|
|
bcce70fca6 | ||
|
|
932112b640 | ||
|
|
91112167b1 | ||
|
|
bd7b59910d | ||
|
|
524888bf3b | ||
|
|
0327eae509 | ||
|
|
bb85608890 | ||
|
|
6c7668aaca | ||
|
|
7759b3f75a | ||
|
|
4d337f6abc | ||
|
|
92c86fd0b8 | ||
|
|
46dc751139 | ||
|
|
4cefe37723 | ||
|
|
82b73c50a0 | ||
|
|
7df7a95299 | ||
|
|
85b4b359c2 | ||
|
|
cfe81b5e00 | ||
|
|
b0c4451324 | ||
|
|
d4931522d4 | ||
|
|
17e2a35228 | ||
|
|
91016d8b29 | ||
|
|
9fda21cf40 | ||
|
|
809ec7163e | ||
|
|
7c9a939b47 | ||
|
|
9634c96020 | ||
|
|
e0c105f413 | ||
|
|
f0bf32c476 | ||
|
|
28373dbb98 | ||
|
|
4133d77772 | ||
|
|
61c426f502 | ||
|
|
bf0577c882 | ||
|
|
24673fd859 | ||
|
|
dc669d1447 | ||
|
|
ce4110b9f4 | ||
|
|
0f3b7d2b3d | ||
|
|
16dc78f6c6 | ||
|
|
7a66856785 | ||
|
|
c8dfa49d86 | ||
|
|
76dd749b1e | ||
|
|
67d05d2066 |
2
.github/workflows/mkdocs-material.yml
vendored
2
.github/workflows/mkdocs-material.yml
vendored
@@ -43,7 +43,7 @@ jobs:
|
||||
--verbose
|
||||
|
||||
- name: deploy to gh-pages
|
||||
if: ${{ github.ref == 'refs/heads/v2.3' }}
|
||||
if: ${{ github.ref == 'refs/heads/main' }}
|
||||
run: |
|
||||
python -m \
|
||||
mkdocs gh-deploy \
|
||||
|
||||
@@ -617,8 +617,6 @@ sections describe what's new for InvokeAI.
|
||||
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
|
||||
backward compatibility.
|
||||
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
|
||||
- Support for [inpainting](deprecated/INPAINTING.md) and
|
||||
[outpainting](features/OUTPAINTING.md)
|
||||
- img2img runs on all k\* samplers
|
||||
- Support for
|
||||
[negative prompts](features/PROMPTS.md#negative-and-unconditioned-prompts)
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 983 KiB After Width: | Height: | Size: 1.1 MiB |
@@ -76,10 +76,10 @@ From top to bottom, these are:
|
||||
with outpainting,and modify interior portions of the image with
|
||||
inpainting, erase portions of a starting image and have the AI fill in
|
||||
the erased region from a text prompt.
|
||||
4. Workflow Management (not yet implemented) - this panel will allow you to create
|
||||
4. Node Editor - this panel allows you to create
|
||||
pipelines of common operations and combine them into workflows.
|
||||
5. Training (not yet implemented) - this panel will provide an interface to [textual
|
||||
inversion training](TEXTUAL_INVERSION.md) and fine tuning.
|
||||
5. Model Manager - this panel allows you to import and configure new
|
||||
models using URLs, local paths, or HuggingFace diffusers repo_ids.
|
||||
|
||||
The inpainting, outpainting and postprocessing tabs are currently in
|
||||
development. However, limited versions of their features can already be accessed
|
||||
|
||||
@@ -37,7 +37,7 @@ guide also covers optimizing models to load quickly.
|
||||
Teach an old model new tricks. Merge 2-3 models together to create a
|
||||
new model that combines characteristics of the originals.
|
||||
|
||||
## * [Textual Inversion](TEXTUAL_INVERSION.md)
|
||||
## * [Textual Inversion](TRAINING.md)
|
||||
Personalize models by adding your own style or subjects.
|
||||
|
||||
# Other Features
|
||||
|
||||
@@ -146,7 +146,6 @@ This method is recommended for those familiar with running Docker containers
|
||||
- [Installing](installation/050_INSTALLING_MODELS.md)
|
||||
- [Model Merging](features/MODEL_MERGING.md)
|
||||
- [Style/Subject Concepts and Embeddings](features/CONCEPTS.md)
|
||||
- [Textual Inversion](features/TEXTUAL_INVERSION.md)
|
||||
- [Not Safe for Work (NSFW) Checker](features/NSFW.md)
|
||||
<!-- seperator -->
|
||||
### Prompt Engineering
|
||||
|
||||
@@ -354,8 +354,8 @@ experimental versions later.
|
||||
|
||||
12. **InvokeAI Options**: You can launch InvokeAI with several different command-line arguments that
|
||||
customize its behavior. For example, you can change the location of the
|
||||
image output directory, or select your favorite sampler. See the
|
||||
[Command-Line Interface](../features/CLI.md) for a full list of the options.
|
||||
image output directory or balance memory usage vs performance. See
|
||||
[Configuration](../features/CONFIGURATION.md) for a full list of the options.
|
||||
|
||||
- To set defaults that will take effect every time you launch InvokeAI,
|
||||
use a text editor (e.g. Notepad) to exit the file
|
||||
|
||||
@@ -256,7 +256,7 @@ manager, please follow these steps:
|
||||
|
||||
10. Render away!
|
||||
|
||||
Browse the [features](../features/CLI.md) section to learn about all the
|
||||
Browse the [features](../features/index.md) section to learn about all the
|
||||
things you can do with InvokeAI.
|
||||
|
||||
|
||||
@@ -270,7 +270,7 @@ manager, please follow these steps:
|
||||
|
||||
12. Other scripts
|
||||
|
||||
The [Textual Inversion](../features/TEXTUAL_INVERSION.md) script can be launched with the command:
|
||||
The [Textual Inversion](../features/TRAINING.md) script can be launched with the command:
|
||||
|
||||
```bash
|
||||
invokeai-ti --gui
|
||||
|
||||
@@ -43,24 +43,7 @@ InvokeAI comes with support for a good set of starter models. You'll
|
||||
find them listed in the master models file
|
||||
`configs/INITIAL_MODELS.yaml` in the InvokeAI root directory. The
|
||||
subset that are currently installed are found in
|
||||
`configs/models.yaml`. As of v2.3.1, the list of starter models is:
|
||||
|
||||
|Model Name | HuggingFace Repo ID | Description | URL |
|
||||
|---------- | ---------- | ----------- | --- |
|
||||
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|
||||
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|
||||
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|
||||
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|
||||
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|
||||
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|
||||
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |
|
||||
|dreamlike-photoreal-2.0|dreamlike-art/dreamlike-photoreal-2.0|A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)|https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
|
||||
|inkpunk-1.0|Envvi/Inkpunk-Diffusion|Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)|https://huggingface.co/Envvi/Inkpunk-Diffusion |
|
||||
|openjourney-4.0|prompthero/openjourney|An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)|https://huggingface.co/prompthero/openjourney |
|
||||
|portrait-plus-1.0|wavymulder/portraitplus|An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)|https://huggingface.co/wavymulder/portraitplus |
|
||||
|seek-art-mega-1.0|coreco/seek.art_MEGA|A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)|https://huggingface.co/coreco/seek.art_MEGA |
|
||||
|trinart-2.0|naclbit/trinart_stable_diffusion_v2|An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)|https://huggingface.co/naclbit/trinart_stable_diffusion_v2 |
|
||||
|waifu-diffusion-1.4|hakurei/waifu-diffusion|An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)|https://huggingface.co/hakurei/waifu-diffusion |
|
||||
`configs/models.yaml`.
|
||||
|
||||
Note that these files are covered by an "Ethical AI" license which
|
||||
forbids certain uses. When you initially download them, you are asked
|
||||
@@ -71,8 +54,7 @@ with the model terms by visiting the URLs in the table above.
|
||||
|
||||
## Community-Contributed Models
|
||||
|
||||
There are too many to list here and more are being contributed every
|
||||
day. [HuggingFace](https://huggingface.co/models?library=diffusers)
|
||||
[HuggingFace](https://huggingface.co/models?library=diffusers)
|
||||
is a great resource for diffusers models, and is also the home of a
|
||||
[fast-growing repository](https://huggingface.co/sd-concepts-library)
|
||||
of embedding (".bin") models that add subjects and/or styles to your
|
||||
@@ -86,310 +68,106 @@ only `.safetensors` and `.ckpt` models, but they can be easily loaded
|
||||
into InvokeAI and/or converted into optimized `diffusers` models. Be
|
||||
aware that CIVITAI hosts many models that generate NSFW content.
|
||||
|
||||
!!! note
|
||||
|
||||
InvokeAI 2.3.x does not support directly importing and
|
||||
running Stable Diffusion version 2 checkpoint models. You may instead
|
||||
convert them into `diffusers` models using the conversion methods
|
||||
described below.
|
||||
|
||||
## Installation
|
||||
|
||||
There are multiple ways to install and manage models:
|
||||
There are two ways to install and manage models:
|
||||
|
||||
1. The `invokeai-configure` script which will download and install them for you.
|
||||
1. The `invokeai-model-install` script which will download and install
|
||||
them for you. In addition to supporting main models, you can install
|
||||
ControlNet, LoRA and Textual Inversion models.
|
||||
|
||||
2. The command-line tool (CLI) has commands that allows you to import, configure and modify
|
||||
models files.
|
||||
|
||||
3. The web interface (WebUI) has a GUI for importing and managing
|
||||
2. The web interface (WebUI) has a GUI for importing and managing
|
||||
models.
|
||||
|
||||
### Installation via `invokeai-configure`
|
||||
3. By placing models (or symbolic links to models) inside one of the
|
||||
InvokeAI root directory's `autoimport` folder.
|
||||
|
||||
From the `invoke` launcher, choose option (6) "re-run the configure
|
||||
script to download new models." This will launch the same script that
|
||||
prompted you to select models at install time. You can use this to add
|
||||
models that you skipped the first time around. It is all right to
|
||||
specify a model that was previously downloaded; the script will just
|
||||
confirm that the files are complete.
|
||||
### Installation via `invokeai-model-install`
|
||||
|
||||
### Installation via the CLI
|
||||
From the `invoke` launcher, choose option [5] "Download and install
|
||||
models." This will launch the same script that prompted you to select
|
||||
models at install time. You can use this to add models that you
|
||||
skipped the first time around. It is all right to specify a model that
|
||||
was previously downloaded; the script will just confirm that the files
|
||||
are complete.
|
||||
|
||||
You can install a new model, including any of the community-supported ones, via
|
||||
the command-line client's `!import_model` command.
|
||||
The installer has different panels for installing main models from
|
||||
HuggingFace, models from Civitai and other arbitrary web sites,
|
||||
ControlNet models, LoRA/LyCORIS models, and Textual Inversion
|
||||
embeddings. Each section has a text box in which you can enter a new
|
||||
model to install. You can refer to a model using its:
|
||||
|
||||
#### Installing individual `.ckpt` and `.safetensors` models
|
||||
1. Local path to the .ckpt, .safetensors or diffusers folder on your local machine
|
||||
2. A directory on your machine that contains multiple models
|
||||
3. A URL that points to a downloadable model
|
||||
4. A HuggingFace repo id
|
||||
|
||||
If the model is already downloaded to your local disk, use
|
||||
`!import_model /path/to/file.ckpt` to load it. For example:
|
||||
Previously-installed models are shown with checkboxes. Uncheck a box
|
||||
to unregister the model from InvokeAI. Models that are physically
|
||||
installed inside the InvokeAI root directory will be deleted and
|
||||
purged (after a confirmation warning). Models that are located outside
|
||||
the InvokeAI root directory will be unregistered but not deleted.
|
||||
|
||||
```bash
|
||||
invoke> !import_model C:/Users/fred/Downloads/martians.safetensors
|
||||
Note: The installer script uses a console-based text interface that requires
|
||||
significant amounts of horizontal and vertical space. If the display
|
||||
looks messed up, just enlarge the terminal window and/or relaunch the
|
||||
script.
|
||||
|
||||
If you wish you can script model addition and deletion, as well as
|
||||
listing installed models. Start the "developer's console" and give the
|
||||
command `invokeai-model-install --help`. This will give you a series
|
||||
of command-line parameters that will let you control model
|
||||
installation. Examples:
|
||||
|
||||
```
|
||||
# (list all controlnet models)
|
||||
invokeai-model-install --list controlnet
|
||||
|
||||
# (install the model at the indicated URL)
|
||||
invokeai-model-install --add http://civitai.com/2860
|
||||
|
||||
# (delete the named model)
|
||||
invokeai-model-install --delete sd-1/main/analog-diffusion
|
||||
```
|
||||
|
||||
!!! tip "Forward Slashes"
|
||||
On Windows systems, use forward slashes rather than backslashes
|
||||
in your file paths.
|
||||
If you do use backslashes,
|
||||
you must double them like this:
|
||||
`C:\\Users\\fred\\Downloads\\martians.safetensors`
|
||||
### Installation via the Web GUI
|
||||
|
||||
Alternatively you can directly import the file using its URL:
|
||||
To install a new model using the Web GUI, do the following:
|
||||
|
||||
```bash
|
||||
invoke> !import_model https://example.org/sd_models/martians.safetensors
|
||||
```
|
||||
1. Open the InvokeAI Model Manager (cube at the bottom of the
|
||||
left-hand panel) and navigate to *Import Models*
|
||||
|
||||
For this to work, the URL must not be password-protected. Otherwise
|
||||
you will receive a 404 error.
|
||||
2. In the field labeled *Location* type in the path to the model you
|
||||
wish to install. You may use a URL, HuggingFace repo id, or a path on
|
||||
your local disk.
|
||||
|
||||
When you import a legacy model, the CLI will first ask you what type
|
||||
of model this is. You can indicate whether it is a model based on
|
||||
Stable Diffusion 1.x (1.4 or 1.5), one based on Stable Diffusion 2.x,
|
||||
or a 1.x inpainting model. Be careful to indicate the correct model
|
||||
type, or it will not load correctly. You can correct the model type
|
||||
after the fact using the `!edit_model` command.
|
||||
3. Alternatively, the *Scan for Models* button allows you to paste in
|
||||
the path to a folder somewhere on your machine. It will be scanned for
|
||||
importable models and prompt you to add the ones of your choice.
|
||||
|
||||
The system will then ask you a few other questions about the model,
|
||||
including what size image it was trained on (usually 512x512), what
|
||||
name and description you wish to use for it, and whether you would
|
||||
like to install a custom VAE (variable autoencoder) file for the
|
||||
model. For recent models, the answer to the VAE question is usually
|
||||
"no," but it won't hurt to answer "yes".
|
||||
4. Press *Add Model* and wait for confirmation that the model
|
||||
was added.
|
||||
|
||||
After importing, the model will load. If this is successful, you will
|
||||
be asked if you want to keep the model loaded in memory to start
|
||||
generating immediately. You'll also be asked if you wish to make this
|
||||
the default model on startup. You can change this later using
|
||||
`!edit_model`.
|
||||
To delete a model, Select *Model Manager* to list all the currently
|
||||
installed models. Press the trash can icons to delete any models you
|
||||
wish to get rid of. Models whose weights are located inside the
|
||||
InvokeAI `models` directory will be purged from disk, while those
|
||||
located outside will be unregistered from InvokeAI, but not deleted.
|
||||
|
||||
#### Importing a batch of `.ckpt` and `.safetensors` models from a directory
|
||||
You can see where model weights are located by clicking on the model name.
|
||||
This will bring up an editable info panel showing the model's characteristics,
|
||||
including the `Model Location` of its files.
|
||||
|
||||
You may also point `!import_model` to a directory containing a set of
|
||||
`.ckpt` or `.safetensors` files. They will be imported _en masse_.
|
||||
### Installation via the `autoimport` function
|
||||
|
||||
!!! example
|
||||
In the InvokeAI root directory you will find a series of folders under
|
||||
`autoimport`, one each for main models, controlnets, embeddings and
|
||||
Loras. Any models that you add to these directories will be scanned
|
||||
at startup time and registered automatically.
|
||||
|
||||
```console
|
||||
invoke> !import_model C:/Users/fred/Downloads/civitai_models/
|
||||
```
|
||||
You may create symbolic links from these folders to models located
|
||||
elsewhere on disk and they will be autoimported. You can also create
|
||||
subfolders and organize them as you wish.
|
||||
|
||||
You will be given the option to import all models found in the
|
||||
directory, or select which ones to import. If there are subfolders
|
||||
within the directory, they will be searched for models to import.
|
||||
|
||||
#### Installing `diffusers` models
|
||||
|
||||
You can install a `diffusers` model from the HuggingFace site using
|
||||
`!import_model` and the HuggingFace repo_id for the model:
|
||||
|
||||
```bash
|
||||
invoke> !import_model andite/anything-v4.0
|
||||
```
|
||||
|
||||
Alternatively, you can download the model to disk and import it from
|
||||
there. The model may be distributed as a ZIP file, or as a Git
|
||||
repository:
|
||||
|
||||
```bash
|
||||
invoke> !import_model C:/Users/fred/Downloads/andite--anything-v4.0
|
||||
```
|
||||
|
||||
!!! tip "The CLI supports file path autocompletion"
|
||||
Type a bit of the path name and hit ++tab++ in order to get a choice of
|
||||
possible completions.
|
||||
|
||||
!!! tip "On Windows, you can drag model files onto the command-line"
|
||||
Once you have typed in `!import_model `, you can drag the
|
||||
model file or directory onto the command-line to insert the model path. This way, you don't need to
|
||||
type it or copy/paste. However, you will need to reverse or
|
||||
double backslashes as noted above.
|
||||
|
||||
Before installing, the CLI will ask you for a short name and
|
||||
description for the model, whether to make this the default model that
|
||||
is loaded at InvokeAI startup time, and whether to replace its
|
||||
VAE. Generally the answer to the latter question is "no".
|
||||
|
||||
### Converting legacy models into `diffusers`
|
||||
|
||||
The CLI `!convert_model` will convert a `.safetensors` or `.ckpt`
|
||||
models file into `diffusers` and install it.This will enable the model
|
||||
to load and run faster without loss of image quality.
|
||||
|
||||
The usage is identical to `!import_model`. You may point the command
|
||||
to either a downloaded model file on disk, or to a (non-password
|
||||
protected) URL:
|
||||
|
||||
```bash
|
||||
invoke> !convert_model C:/Users/fred/Downloads/martians.safetensors
|
||||
```
|
||||
|
||||
After a successful conversion, the CLI will offer you the option of
|
||||
deleting the original `.ckpt` or `.safetensors` file.
|
||||
|
||||
### Optimizing a previously-installed model
|
||||
|
||||
Lastly, if you have previously installed a `.ckpt` or `.safetensors`
|
||||
file and wish to convert it into a `diffusers` model, you can do this
|
||||
without re-downloading and converting the original file using the
|
||||
`!optimize_model` command. Simply pass the short name of an existing
|
||||
installed model:
|
||||
|
||||
```bash
|
||||
invoke> !optimize_model martians-v1.0
|
||||
```
|
||||
|
||||
The model will be converted into `diffusers` format and replace the
|
||||
previously installed version. You will again be offered the
|
||||
opportunity to delete the original `.ckpt` or `.safetensors` file.
|
||||
|
||||
### Related CLI Commands
|
||||
|
||||
There are a whole series of additional model management commands in
|
||||
the CLI that you can read about in [Command-Line
|
||||
Interface](../features/CLI.md). These include:
|
||||
|
||||
* `!models` - List all installed models
|
||||
* `!switch <model name>` - Switch to the indicated model
|
||||
* `!edit_model <model name>` - Edit the indicated model to change its name, description or other properties
|
||||
* `!del_model <model name>` - Delete the indicated model
|
||||
|
||||
### Manually editing `configs/models.yaml`
|
||||
|
||||
|
||||
If you are comfortable with a text editor then you may simply edit `models.yaml`
|
||||
directly.
|
||||
|
||||
You will need to download the desired `.ckpt/.safetensors` file and
|
||||
place it somewhere on your machine's filesystem. Alternatively, for a
|
||||
`diffusers` model, record the repo_id or download the whole model
|
||||
directory. Then using a **text** editor (e.g. the Windows Notepad
|
||||
application), open the file `configs/models.yaml`, and add a new
|
||||
stanza that follows this model:
|
||||
|
||||
#### A legacy model
|
||||
|
||||
A legacy `.ckpt` or `.safetensors` entry will look like this:
|
||||
|
||||
```yaml
|
||||
arabian-nights-1.0:
|
||||
description: A great fine-tune in Arabian Nights style
|
||||
weights: ./path/to/arabian-nights-1.0.ckpt
|
||||
config: ./configs/stable-diffusion/v1-inference.yaml
|
||||
format: ckpt
|
||||
width: 512
|
||||
height: 512
|
||||
default: false
|
||||
```
|
||||
|
||||
Note that `format` is `ckpt` for both `.ckpt` and `.safetensors` files.
|
||||
|
||||
#### A diffusers model
|
||||
|
||||
A stanza for a `diffusers` model will look like this for a HuggingFace
|
||||
model with a repository ID:
|
||||
|
||||
```yaml
|
||||
arabian-nights-1.1:
|
||||
description: An even better fine-tune of the Arabian Nights
|
||||
repo_id: captahab/arabian-nights-1.1
|
||||
format: diffusers
|
||||
default: true
|
||||
```
|
||||
|
||||
And for a downloaded directory:
|
||||
|
||||
```yaml
|
||||
arabian-nights-1.1:
|
||||
description: An even better fine-tune of the Arabian Nights
|
||||
path: /path/to/captahab-arabian-nights-1.1
|
||||
format: diffusers
|
||||
default: true
|
||||
```
|
||||
|
||||
There is additional syntax for indicating an external VAE to use with
|
||||
this model. See `INITIAL_MODELS.yaml` and `models.yaml` for examples.
|
||||
|
||||
After you save the modified `models.yaml` file relaunch
|
||||
`invokeai`. The new model will now be available for your use.
|
||||
|
||||
### Installation via the WebUI
|
||||
|
||||
To access the WebUI Model Manager, click on the button that looks like
|
||||
a cube in the upper right side of the browser screen. This will bring
|
||||
up a dialogue that lists the models you have already installed, and
|
||||
allows you to load, delete or edit them:
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
To add a new model, click on **+ Add New** and select to either a
|
||||
checkpoint/safetensors model, or a diffusers model:
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
In this example, we chose **Add Diffusers**. As shown in the figure
|
||||
below, a new dialogue prompts you to enter the name to use for the
|
||||
model, its description, and either the location of the `diffusers`
|
||||
model on disk, or its Repo ID on the HuggingFace web site. If you
|
||||
choose to enter a path to disk, the system will autocomplete for you
|
||||
as you type:
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Press **Add Model** at the bottom of the dialogue (scrolled out of
|
||||
site in the figure), and the model will be downloaded, imported, and
|
||||
registered in `models.yaml`.
|
||||
|
||||
The **Add Checkpoint/Safetensor Model** option is similar, except that
|
||||
in this case you can choose to scan an entire folder for
|
||||
checkpoint/safetensors files to import. Simply type in the path of the
|
||||
directory and press the "Search" icon. This will display the
|
||||
`.ckpt` and `.safetensors` found inside the directory and its
|
||||
subfolders, and allow you to choose which ones to import:
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
## Model Management Startup Options
|
||||
|
||||
The `invoke` launcher and the `invokeai` script accept a series of
|
||||
command-line arguments that modify InvokeAI's behavior when loading
|
||||
models. These can be provided on the command line, or added to the
|
||||
InvokeAI root directory's `invokeai.init` initialization file.
|
||||
|
||||
The arguments are:
|
||||
|
||||
* `--model <model name>` -- Start up with the indicated model loaded
|
||||
* `--ckpt_convert` -- When a checkpoint/safetensors model is loaded, convert it into a `diffusers` model in memory. This does not permanently save the converted model to disk.
|
||||
* `--autoconvert <path/to/directory>` -- Scan the indicated directory path for new checkpoint/safetensors files, convert them into `diffusers` models, and import them into InvokeAI.
|
||||
|
||||
Here is an example of providing an argument on the command line using
|
||||
the `invoke.sh` launch script:
|
||||
|
||||
```bash
|
||||
invoke.sh --autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
```
|
||||
|
||||
And here is what the same argument looks like in `invokeai.init`:
|
||||
|
||||
```bash
|
||||
--outdir="/home/fred/invokeai/outputs
|
||||
--no-nsfw_checker
|
||||
--autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
```
|
||||
The location of the autoimport directories are controlled by settings
|
||||
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
|
||||
@@ -1,6 +1,14 @@
|
||||
from typing import Literal, Optional, Union, List, Annotated
|
||||
from pydantic import BaseModel, Field
|
||||
import re
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
from .model import ClipField
|
||||
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher
|
||||
|
||||
import torch
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import (Blend, Conjunction,
|
||||
@@ -331,8 +339,8 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
crop_left: int = Field(0, description="")
|
||||
target_width: int = Field(1024, description="")
|
||||
target_height: int = Field(1024, description="")
|
||||
clip1: ClipField = Field(None, description="Clip to use")
|
||||
clip2: ClipField = Field(None, description="Clip to use")
|
||||
clip: ClipField = Field(None, description="Clip to use")
|
||||
clip2: ClipField = Field(None, description="Clip2 to use")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
@@ -348,7 +356,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip1, self.prompt, False)
|
||||
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip, self.prompt, False)
|
||||
if self.style.strip() == "":
|
||||
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
|
||||
else:
|
||||
@@ -451,8 +459,8 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
crop_left: int = Field(0, description="")
|
||||
target_width: int = Field(1024, description="")
|
||||
target_height: int = Field(1024, description="")
|
||||
clip1: ClipField = Field(None, description="Clip to use")
|
||||
clip2: ClipField = Field(None, description="Clip to use")
|
||||
clip: ClipField = Field(None, description="Clip to use")
|
||||
clip2: ClipField = Field(None, description="Clip2 to use")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
@@ -468,7 +476,7 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip1, self.prompt, False)
|
||||
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip, self.prompt, False)
|
||||
if self.style.strip() == "":
|
||||
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
|
||||
else:
|
||||
|
||||
@@ -518,8 +518,8 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
|
||||
type: Literal["img_scale"] = "img_scale"
|
||||
|
||||
# Inputs
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to scale")
|
||||
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to scale")
|
||||
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
|
||||
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
|
||||
# fmt: on
|
||||
|
||||
|
||||
@@ -22,7 +22,8 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.model_management import ModelPatcher
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
|
||||
@@ -54,6 +54,7 @@ class MainModelField(BaseModel):
|
||||
|
||||
model_name: str = Field(description="Name of the model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
model_type: ModelType = Field(description="Model Type")
|
||||
|
||||
|
||||
class LoRAModelField(BaseModel):
|
||||
@@ -221,6 +222,9 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
base_model = self.lora.base_model
|
||||
lora_name = self.lora.model_name
|
||||
|
||||
# TODO: ui rewrite
|
||||
base_model = BaseModelType.StableDiffusion1
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
|
||||
591
invokeai/app/invocations/onnx.py
Normal file
591
invokeai/app/invocations/onnx.py
Normal file
@@ -0,0 +1,591 @@
|
||||
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
|
||||
|
||||
from contextlib import ExitStack
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
import re
|
||||
import inspect
|
||||
|
||||
from pydantic import BaseModel, Field, validator
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
|
||||
from ..models.image import ImageCategory, ImageField, ResourceOrigin
|
||||
from ...backend.model_management import ONNXModelPatcher
|
||||
from ...backend.util import choose_torch_device
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
from .compel import ConditioningField
|
||||
from .controlnet_image_processors import ControlField
|
||||
from .image import ImageOutput
|
||||
from .model import ModelInfo, UNetField, VaeField
|
||||
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.backend import BaseModelType, ModelType, SubModelType
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
|
||||
from tqdm import tqdm
|
||||
from .model import ClipField
|
||||
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
|
||||
from .compel import CompelOutput
|
||||
|
||||
|
||||
ORT_TO_NP_TYPE = {
|
||||
"tensor(bool)": np.bool_,
|
||||
"tensor(int8)": np.int8,
|
||||
"tensor(uint8)": np.uint8,
|
||||
"tensor(int16)": np.int16,
|
||||
"tensor(uint16)": np.uint16,
|
||||
"tensor(int32)": np.int32,
|
||||
"tensor(uint32)": np.uint32,
|
||||
"tensor(int64)": np.int64,
|
||||
"tensor(uint64)": np.uint64,
|
||||
"tensor(float16)": np.float16,
|
||||
"tensor(float)": np.float32,
|
||||
"tensor(double)": np.float64,
|
||||
}
|
||||
|
||||
|
||||
class ONNXPromptInvocation(BaseInvocation):
|
||||
type: Literal["prompt_onnx"] = "prompt_onnx"
|
||||
|
||||
prompt: str = Field(default="", description="Prompt")
|
||||
clip: ClipField = Field(None, description="Clip to use")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||
tokenizer_info = context.services.model_manager.get_model(
|
||||
**self.clip.tokenizer.dict(),
|
||||
)
|
||||
text_encoder_info = context.services.model_manager.get_model(
|
||||
**self.clip.text_encoder.dict(),
|
||||
)
|
||||
with tokenizer_info as orig_tokenizer,\
|
||||
text_encoder_info as text_encoder,\
|
||||
ExitStack() as stack:
|
||||
|
||||
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.clip.loras]
|
||||
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
#stack.enter_context(
|
||||
# context.services.model_manager.get_model(
|
||||
# model_name=name,
|
||||
# base_model=self.clip.text_encoder.base_model,
|
||||
# model_type=ModelType.TextualInversion,
|
||||
# )
|
||||
#)
|
||||
context.services.model_manager.get_model(
|
||||
model_name=name,
|
||||
base_model=self.clip.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
).context.model
|
||||
)
|
||||
except Exception:
|
||||
#print(e)
|
||||
#import traceback
|
||||
#print(traceback.format_exc())
|
||||
print(f"Warn: trigger: \"{trigger}\" not found")
|
||||
|
||||
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),\
|
||||
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager):
|
||||
|
||||
text_encoder.create_session()
|
||||
|
||||
# copy from
|
||||
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
|
||||
text_inputs = tokenizer(
|
||||
self.prompt,
|
||||
padding="max_length",
|
||||
max_length=tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="np",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
"""
|
||||
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
|
||||
|
||||
if not np.array_equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(
|
||||
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||||
)
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
"""
|
||||
|
||||
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
|
||||
|
||||
text_encoder.release_session()
|
||||
|
||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||
|
||||
# TODO: hacky but works ;D maybe rename latents somehow?
|
||||
context.services.latents.save(conditioning_name, (prompt_embeds, None))
|
||||
|
||||
return CompelOutput(
|
||||
conditioning=ConditioningField(
|
||||
conditioning_name=conditioning_name,
|
||||
),
|
||||
)
|
||||
|
||||
# Text to image
|
||||
class ONNXTextToLatentsInvocation(BaseInvocation):
|
||||
"""Generates latents from conditionings."""
|
||||
|
||||
type: Literal["t2l_onnx"] = "t2l_onnx"
|
||||
|
||||
# Inputs
|
||||
# fmt: off
|
||||
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
||||
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
||||
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
||||
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||
# fmt: on
|
||||
|
||||
@validator("cfg_scale")
|
||||
def ge_one(cls, v):
|
||||
"""validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError('cfg_scale must be greater than 1')
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError('cfg_scale must be greater than 1')
|
||||
return v
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents"],
|
||||
"type_hints": {
|
||||
"model": "model",
|
||||
# "cfg_scale": "float",
|
||||
"cfg_scale": "number"
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
# based on
|
||||
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(
|
||||
context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
if isinstance(c, torch.Tensor):
|
||||
c = c.cpu().numpy()
|
||||
if isinstance(uc, torch.Tensor):
|
||||
uc = uc.cpu().numpy()
|
||||
device = torch.device(choose_torch_device())
|
||||
prompt_embeds = np.concatenate([uc, c])
|
||||
|
||||
latents = context.services.latents.get(self.noise.latents_name)
|
||||
if isinstance(latents, torch.Tensor):
|
||||
latents = latents.cpu().numpy()
|
||||
|
||||
# TODO: better execution device handling
|
||||
latents = latents.astype(np.float16)
|
||||
|
||||
# get the initial random noise unless the user supplied it
|
||||
do_classifier_free_guidance = True
|
||||
#latents_dtype = prompt_embeds.dtype
|
||||
#latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
|
||||
#if latents.shape != latents_shape:
|
||||
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
)
|
||||
|
||||
def torch2numpy(latent: torch.Tensor):
|
||||
return latent.cpu().numpy()
|
||||
|
||||
def numpy2torch(latent, device):
|
||||
return torch.from_numpy(latent).to(device)
|
||||
|
||||
def dispatch_progress(
|
||||
self, context: InvocationContext, source_node_id: str,
|
||||
intermediate_state: PipelineIntermediateState) -> None:
|
||||
stable_diffusion_step_callback(
|
||||
context=context,
|
||||
intermediate_state=intermediate_state,
|
||||
node=self.dict(),
|
||||
source_node_id=source_node_id,
|
||||
)
|
||||
|
||||
scheduler.set_timesteps(self.steps)
|
||||
latents = latents * np.float64(scheduler.init_noise_sigma)
|
||||
|
||||
extra_step_kwargs = dict()
|
||||
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||
extra_step_kwargs.update(
|
||||
eta=0.0,
|
||||
)
|
||||
|
||||
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
|
||||
|
||||
with unet_info as unet,\
|
||||
ExitStack() as stack:
|
||||
|
||||
#loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
|
||||
loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.unet.loras]
|
||||
|
||||
with ONNXModelPatcher.apply_lora_unet(unet, loras):
|
||||
# TODO:
|
||||
unet.create_session()
|
||||
|
||||
timestep_dtype = next(
|
||||
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
|
||||
)
|
||||
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
||||
import time
|
||||
times = []
|
||||
for i in tqdm(range(len(scheduler.timesteps))):
|
||||
t = scheduler.timesteps[i]
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
|
||||
latent_model_input = latent_model_input.cpu().numpy()
|
||||
|
||||
# predict the noise residual
|
||||
timestep = np.array([t], dtype=timestep_dtype)
|
||||
start_time = time.time()
|
||||
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
|
||||
times.append(time.time() - start_time)
|
||||
noise_pred = noise_pred[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
||||
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
scheduler_output = scheduler.step(
|
||||
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
|
||||
)
|
||||
latents = torch2numpy(scheduler_output.prev_sample)
|
||||
|
||||
state = PipelineIntermediateState(
|
||||
run_id= "test",
|
||||
step=i,
|
||||
timestep=timestep,
|
||||
latents=scheduler_output.prev_sample
|
||||
)
|
||||
dispatch_progress(
|
||||
self,
|
||||
context=context,
|
||||
source_node_id=source_node_id,
|
||||
intermediate_state=state
|
||||
)
|
||||
|
||||
# call the callback, if provided
|
||||
#if callback is not None and i % callback_steps == 0:
|
||||
# callback(i, t, latents)
|
||||
print(times)
|
||||
unet.release_session()
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.save(name, latents)
|
||||
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
|
||||
|
||||
# Latent to image
|
||||
class ONNXLatentsToImageInvocation(BaseInvocation):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
type: Literal["l2i_onnx"] = "l2i_onnx"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
|
||||
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
||||
#tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents", "image"],
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
if self.vae.vae.submodel != SubModelType.VaeDecoder:
|
||||
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
|
||||
|
||||
vae_info = context.services.model_manager.get_model(
|
||||
**self.vae.vae.dict(),
|
||||
)
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
with vae_info as vae:
|
||||
vae.create_session()
|
||||
|
||||
# copied from
|
||||
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
|
||||
latents = 1 / 0.18215 * latents
|
||||
# image = self.vae_decoder(latent_sample=latents)[0]
|
||||
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
||||
image = np.concatenate(
|
||||
[vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
|
||||
)
|
||||
|
||||
image = np.clip(image / 2 + 0.5, 0, 1)
|
||||
image = image.transpose((0, 2, 3, 1))
|
||||
image = VaeImageProcessor.numpy_to_pil(image)[0]
|
||||
|
||||
vae.release_session()
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
class ONNXModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
#fmt: off
|
||||
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
|
||||
|
||||
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
|
||||
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
|
||||
#fmt: on
|
||||
|
||||
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
|
||||
"""Loading submodels of selected model."""
|
||||
|
||||
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
|
||||
|
||||
model_name: str = Field(default="", description="Model to load")
|
||||
# TODO: precision?
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["model", "loader"],
|
||||
"type_hints": {
|
||||
"model_name": "model" # TODO: rename to model_name?
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
|
||||
|
||||
model_name = "stable-diffusion-v1-5"
|
||||
base_model = BaseModelType.StableDiffusion1
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=model_name,
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
model_type=ModelType.ONNX,
|
||||
):
|
||||
raise Exception(f"Unkown model name: {model_name}!")
|
||||
|
||||
|
||||
return ONNXModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
vae_decoder=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.VaeDecoder,
|
||||
),
|
||||
),
|
||||
vae_encoder=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.ONNX,
|
||||
submodel=SubModelType.VaeEncoder,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
class OnnxModelField(BaseModel):
|
||||
"""Onnx model field"""
|
||||
|
||||
model_name: str = Field(description="Name of the model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
model_type: ModelType = Field(description="Model Type")
|
||||
|
||||
class OnnxModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a main model, outputting its submodels."""
|
||||
|
||||
type: Literal["onnx_model_loader"] = "onnx_model_loader"
|
||||
|
||||
model: OnnxModelField = Field(description="The model to load")
|
||||
# TODO: precision?
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "Onnx Model Loader",
|
||||
"tags": ["model", "loader"],
|
||||
"type_hints": {"model": "model"},
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.ONNX
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||
|
||||
"""
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.Tokenizer,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.TextEncoder,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.UNet,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
"""
|
||||
|
||||
return ONNXModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
skipped_layers=0,
|
||||
),
|
||||
vae_decoder=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.VaeDecoder,
|
||||
),
|
||||
),
|
||||
vae_encoder=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.VaeEncoder,
|
||||
),
|
||||
)
|
||||
)
|
||||
@@ -1,6 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||
from pathlib import Path, PosixPath
|
||||
from typing import Literal, Union, cast
|
||||
from pathlib import Path
|
||||
from typing import Literal, Union
|
||||
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
@@ -16,19 +16,20 @@ from .image import ImageOutput
|
||||
|
||||
# TODO: Populate this from disk?
|
||||
# TODO: Use model manager to load?
|
||||
REALESRGAN_MODELS = Literal[
|
||||
ESRGAN_MODELS = Literal[
|
||||
"RealESRGAN_x4plus.pth",
|
||||
"RealESRGAN_x4plus_anime_6B.pth",
|
||||
"ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
||||
"RealESRGAN_x2plus.pth",
|
||||
]
|
||||
|
||||
|
||||
class RealESRGANInvocation(BaseInvocation):
|
||||
class ESRGANInvocation(BaseInvocation):
|
||||
"""Upscales an image using RealESRGAN."""
|
||||
|
||||
type: Literal["realesrgan"] = "realesrgan"
|
||||
type: Literal["esrgan"] = "esrgan"
|
||||
image: Union[ImageField, None] = Field(default=None, description="The input image")
|
||||
model_name: REALESRGAN_MODELS = Field(
|
||||
model_name: ESRGAN_MODELS = Field(
|
||||
default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use"
|
||||
)
|
||||
|
||||
@@ -73,19 +74,17 @@ class RealESRGANInvocation(BaseInvocation):
|
||||
scale=4,
|
||||
)
|
||||
netscale = 4
|
||||
# TODO: add x2 models handling?
|
||||
# elif self.model_name in ["RealESRGAN_x2plus"]:
|
||||
# # x2 RRDBNet model
|
||||
# model = RRDBNet(
|
||||
# num_in_ch=3,
|
||||
# num_out_ch=3,
|
||||
# num_feat=64,
|
||||
# num_block=23,
|
||||
# num_grow_ch=32,
|
||||
# scale=2,
|
||||
# )
|
||||
# model_path = Path()
|
||||
# netscale = 2
|
||||
elif self.model_name in ["RealESRGAN_x2plus.pth"]:
|
||||
# x2 RRDBNet model
|
||||
rrdbnet_model = RRDBNet(
|
||||
num_in_ch=3,
|
||||
num_out_ch=3,
|
||||
num_feat=64,
|
||||
num_block=23,
|
||||
num_grow_ch=32,
|
||||
scale=2,
|
||||
)
|
||||
netscale = 2
|
||||
else:
|
||||
msg = f"Invalid RealESRGAN model: {self.model_name}"
|
||||
context.services.logger.error(msg)
|
||||
|
||||
@@ -466,7 +466,6 @@ class Generator:
|
||||
dtype=samples.dtype,
|
||||
device=samples.device,
|
||||
)
|
||||
|
||||
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
|
||||
latents_ubyte = (
|
||||
((latent_image + 1) / 2)
|
||||
|
||||
@@ -222,7 +222,7 @@ def download_conversion_models():
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_realesrgan():
|
||||
logger.info("Installing RealESRGAN models...")
|
||||
logger.info("Installing ESRGAN Upscaling models...")
|
||||
URLs = [
|
||||
dict(
|
||||
url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
||||
@@ -239,6 +239,11 @@ def download_realesrgan():
|
||||
dest= "core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
|
||||
description = "ESRGAN_SRx4_DF2KOST_official.pth",
|
||||
),
|
||||
dict(
|
||||
url= "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
||||
dest= "core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
|
||||
description = "RealESRGAN_x2plus.pth",
|
||||
),
|
||||
]
|
||||
for model in URLs:
|
||||
download_with_progress_bar(model['url'], config.models_path / model['dest'], model['description'])
|
||||
|
||||
@@ -10,7 +10,7 @@ from tempfile import TemporaryDirectory
|
||||
from typing import List, Dict, Callable, Union, Set
|
||||
|
||||
import requests
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers import logging as dlogging
|
||||
from huggingface_hub import hf_hub_url, HfFolder, HfApi
|
||||
from omegaconf import OmegaConf
|
||||
@@ -310,6 +310,8 @@ class ModelInstall(object):
|
||||
if key := self.reverse_paths.get(path_name):
|
||||
(name, base, mtype) = ModelManager.parse_key(key)
|
||||
return name
|
||||
elif location.is_dir():
|
||||
return location.name
|
||||
else:
|
||||
return location.stem
|
||||
|
||||
@@ -365,7 +367,7 @@ class ModelInstall(object):
|
||||
model = None
|
||||
for revision in revisions:
|
||||
try:
|
||||
model = StableDiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
|
||||
model = DiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
|
||||
except: # most errors are due to fp16 not being present. Fix this to catch other errors
|
||||
pass
|
||||
if model:
|
||||
|
||||
@@ -3,6 +3,7 @@ Initialization file for invokeai.backend.model_management
|
||||
"""
|
||||
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
|
||||
from .model_cache import ModelCache
|
||||
from .lora import ModelPatcher, ONNXModelPatcher
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType, ModelNotFoundException
|
||||
from .model_merge import ModelMerger, MergeInterpolationMethod
|
||||
|
||||
|
||||
@@ -6,11 +6,22 @@ from typing import Optional, Dict, Tuple, Any, Union, List
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from torch.utils.hooks import RemovableHandle
|
||||
|
||||
from diffusers.models import UNet2DConditionModel
|
||||
from transformers import CLIPTextModel
|
||||
from onnx import numpy_helper
|
||||
from onnxruntime import OrtValue
|
||||
import numpy as np
|
||||
|
||||
from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from diffusers.models import UNet2DConditionModel
|
||||
from safetensors.torch import load_file
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
# TODO: rename and split this file
|
||||
|
||||
class LoRALayerBase:
|
||||
#rank: Optional[int]
|
||||
#alpha: Optional[float]
|
||||
@@ -708,3 +719,185 @@ class TextualInversionManager(BaseTextualInversionManager):
|
||||
|
||||
return new_token_ids
|
||||
|
||||
|
||||
class ONNXModelPatcher:
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_unet(
|
||||
cls,
|
||||
unet: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModel, float]],
|
||||
):
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModel, float]],
|
||||
):
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
# based on
|
||||
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: IAIOnnxRuntimeModel,
|
||||
loras: List[Tuple[LoraModel, float]],
|
||||
prefix: str,
|
||||
):
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
if not isinstance(model, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
|
||||
orig_weights = dict()
|
||||
|
||||
try:
|
||||
blended_loras = dict()
|
||||
|
||||
for lora, lora_weight in loras:
|
||||
for layer_key, layer in lora.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
layer_key = layer_key.replace(prefix, "")
|
||||
layer_weight = layer.get_weight().detach().cpu().numpy() * lora_weight
|
||||
if layer_key is blended_loras:
|
||||
blended_loras[layer_key] += layer_weight
|
||||
else:
|
||||
blended_loras[layer_key] = layer_weight
|
||||
|
||||
node_names = dict()
|
||||
for node in model.nodes.values():
|
||||
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
|
||||
|
||||
for layer_key, lora_weight in blended_loras.items():
|
||||
conv_key = layer_key + "_Conv"
|
||||
gemm_key = layer_key + "_Gemm"
|
||||
matmul_key = layer_key + "_MatMul"
|
||||
|
||||
if conv_key in node_names or gemm_key in node_names:
|
||||
if conv_key in node_names:
|
||||
conv_node = model.nodes[node_names[conv_key]]
|
||||
else:
|
||||
conv_node = model.nodes[node_names[gemm_key]]
|
||||
|
||||
weight_name = [n for n in conv_node.input if ".weight" in n][0]
|
||||
orig_weight = model.tensors[weight_name]
|
||||
|
||||
if orig_weight.shape[-2:] == (1, 1):
|
||||
if lora_weight.shape[-2:] == (1, 1):
|
||||
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
|
||||
else:
|
||||
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
|
||||
|
||||
new_weight = np.expand_dims(new_weight, (2, 3))
|
||||
else:
|
||||
if orig_weight.shape != lora_weight.shape:
|
||||
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
|
||||
else:
|
||||
new_weight = orig_weight + lora_weight
|
||||
|
||||
orig_weights[weight_name] = orig_weight
|
||||
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
|
||||
|
||||
elif matmul_key in node_names:
|
||||
weight_node = model.nodes[node_names[matmul_key]]
|
||||
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
|
||||
|
||||
orig_weight = model.tensors[matmul_name]
|
||||
new_weight = orig_weight + lora_weight.transpose()
|
||||
|
||||
orig_weights[matmul_name] = orig_weight
|
||||
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
|
||||
|
||||
else:
|
||||
# warn? err?
|
||||
pass
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
# restore original weights
|
||||
for name, orig_weight in orig_weights.items():
|
||||
model.tensors[name] = orig_weight
|
||||
|
||||
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_ti(
|
||||
cls,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: IAIOnnxRuntimeModel,
|
||||
ti_list: List[Any],
|
||||
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
|
||||
orig_embeddings = None
|
||||
|
||||
try:
|
||||
ti_tokenizer = copy.deepcopy(tokenizer)
|
||||
ti_manager = TextualInversionManager(ti_tokenizer)
|
||||
|
||||
def _get_trigger(ti, index):
|
||||
trigger = ti.name
|
||||
if index > 0:
|
||||
trigger += f"-!pad-{i}"
|
||||
return f"<{trigger}>"
|
||||
|
||||
# modify tokenizer
|
||||
new_tokens_added = 0
|
||||
for ti in ti_list:
|
||||
for i in range(ti.embedding.shape[0]):
|
||||
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
|
||||
|
||||
# modify text_encoder
|
||||
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
|
||||
|
||||
embeddings = np.concatenate(
|
||||
(
|
||||
np.copy(orig_embeddings),
|
||||
np.zeros((new_tokens_added, orig_embeddings.shape[1]))
|
||||
),
|
||||
axis=0,
|
||||
)
|
||||
|
||||
for ti in ti_list:
|
||||
ti_tokens = []
|
||||
for i in range(ti.embedding.shape[0]):
|
||||
embedding = ti.embedding[i].detach().numpy()
|
||||
trigger = _get_trigger(ti, i)
|
||||
|
||||
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
|
||||
if token_id == ti_tokenizer.unk_token_id:
|
||||
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
|
||||
|
||||
if embeddings[token_id].shape != embedding.shape:
|
||||
raise ValueError(
|
||||
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {embeddings[token_id].shape[0]}."
|
||||
)
|
||||
|
||||
embeddings[token_id] = embedding
|
||||
ti_tokens.append(token_id)
|
||||
|
||||
if len(ti_tokens) > 1:
|
||||
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
|
||||
|
||||
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(orig_embeddings.dtype)
|
||||
|
||||
yield ti_tokenizer, ti_manager
|
||||
|
||||
finally:
|
||||
# restore
|
||||
if orig_embeddings is not None:
|
||||
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings
|
||||
|
||||
@@ -328,6 +328,25 @@ class ModelCache(object):
|
||||
|
||||
refs = sys.getrefcount(cache_entry.model)
|
||||
|
||||
# manualy clear local variable references of just finished function calls
|
||||
# for some reason python don't want to collect it even by gc.collect() immidiately
|
||||
if refs > 2:
|
||||
while True:
|
||||
cleared = False
|
||||
for referrer in gc.get_referrers(cache_entry.model):
|
||||
if type(referrer).__name__ == "frame":
|
||||
# RuntimeError: cannot clear an executing frame
|
||||
with suppress(RuntimeError):
|
||||
referrer.clear()
|
||||
cleared = True
|
||||
#break
|
||||
|
||||
# repeat if referrers changes(due to frame clear), else exit loop
|
||||
if cleared:
|
||||
gc.collect()
|
||||
else:
|
||||
break
|
||||
|
||||
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
|
||||
self.logger.debug(f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}")
|
||||
|
||||
@@ -363,6 +382,9 @@ class ModelCache(object):
|
||||
self.logger.debug(f'GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB')
|
||||
vram_in_use += mem.vram_used # note vram_used is negative
|
||||
self.logger.debug(f'{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB')
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def _local_model_hash(self, model_path: Union[str, Path]) -> str:
|
||||
sha = hashlib.sha256()
|
||||
|
||||
@@ -106,16 +106,16 @@ providing information about a model defined in models.yaml. For example:
|
||||
|
||||
>>> models = mgr.list_models()
|
||||
>>> json.dumps(models[0])
|
||||
{"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny",
|
||||
"model_format": "diffusers",
|
||||
"name": "canny",
|
||||
"base_model": "sd-1",
|
||||
{"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny",
|
||||
"model_format": "diffusers",
|
||||
"name": "canny",
|
||||
"base_model": "sd-1",
|
||||
"type": "controlnet"
|
||||
}
|
||||
|
||||
You can filter by model type and base model as shown here:
|
||||
|
||||
|
||||
|
||||
controlnets = mgr.list_models(model_type=ModelType.ControlNet,
|
||||
base_model=BaseModelType.StableDiffusion1)
|
||||
for c in controlnets:
|
||||
@@ -140,14 +140,14 @@ Layout of the `models` directory:
|
||||
|
||||
models
|
||||
├── sd-1
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
├── sd-2
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
└── core
|
||||
├── face_reconstruction
|
||||
@@ -195,7 +195,7 @@ name, base model, type and a dict of model attributes. See
|
||||
`invokeai/backend/model_management/models` for the attributes required
|
||||
by each model type.
|
||||
|
||||
A model can be deleted using `del_model()`, providing the same
|
||||
A model can be deleted using `del_model()`, providing the same
|
||||
identifying information as `get_model()`
|
||||
|
||||
The `heuristic_import()` method will take a set of strings
|
||||
@@ -304,7 +304,7 @@ class ModelManager(object):
|
||||
logger: types.ModuleType = logger,
|
||||
):
|
||||
"""
|
||||
Initialize with the path to the models.yaml config file.
|
||||
Initialize with the path to the models.yaml config file.
|
||||
Optional parameters are the torch device type, precision, max_models,
|
||||
and sequential_offload boolean. Note that the default device
|
||||
type and precision are set up for a CUDA system running at half precision.
|
||||
@@ -323,7 +323,7 @@ class ModelManager(object):
|
||||
self.config_meta = ConfigMeta(**config.pop("__metadata__"))
|
||||
# TODO: metadata not found
|
||||
# TODO: version check
|
||||
|
||||
|
||||
self.app_config = InvokeAIAppConfig.get_config()
|
||||
self.logger = logger
|
||||
self.cache = ModelCache(
|
||||
@@ -431,7 +431,7 @@ class ModelManager(object):
|
||||
:param model_name: symbolic name of the model in models.yaml
|
||||
:param model_type: ModelType enum indicating the type of model to return
|
||||
:param base_model: BaseModelType enum indicating the base model used by this model
|
||||
:param submode_typel: an ModelType enum indicating the portion of
|
||||
:param submode_typel: an ModelType enum indicating the portion of
|
||||
the model to retrieve (e.g. ModelType.Vae)
|
||||
"""
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
@@ -456,7 +456,7 @@ class ModelManager(object):
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
# TODO:
|
||||
if submodel_type is not None and hasattr(model_config, submodel_type):
|
||||
override_path = getattr(model_config, submodel_type)
|
||||
if override_path:
|
||||
@@ -489,7 +489,7 @@ class ModelManager(object):
|
||||
self.cache_keys[model_key].add(model_context.key)
|
||||
|
||||
model_hash = "<NO_HASH>" # TODO:
|
||||
|
||||
|
||||
return ModelInfo(
|
||||
context = model_context,
|
||||
name = model_name,
|
||||
@@ -518,7 +518,7 @@ class ModelManager(object):
|
||||
|
||||
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
||||
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
||||
known to the configuration.
|
||||
"""
|
||||
return [(self.parse_key(x)) for x in self.models.keys()]
|
||||
@@ -692,12 +692,12 @@ class ModelManager(object):
|
||||
if new_name is None and new_base is None:
|
||||
self.logger.error("rename_model() called with neither a new_name nor a new_base. {model_name} unchanged.")
|
||||
return
|
||||
|
||||
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
model_cfg = self.models.get(model_key, None)
|
||||
if not model_cfg:
|
||||
raise ModelNotFoundException(f"Unknown model: {model_key}")
|
||||
|
||||
|
||||
old_path = self.app_config.root_path / model_cfg.path
|
||||
new_name = new_name or model_name
|
||||
new_base = new_base or base_model
|
||||
@@ -726,7 +726,7 @@ class ModelManager(object):
|
||||
self.models.pop(model_key, None) # delete
|
||||
self.models[new_key] = model_cfg
|
||||
self.commit()
|
||||
|
||||
|
||||
def convert_model (
|
||||
self,
|
||||
model_name: str,
|
||||
@@ -776,12 +776,12 @@ class ModelManager(object):
|
||||
# something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error!
|
||||
rmtree(new_diffusers_path)
|
||||
raise
|
||||
|
||||
|
||||
if checkpoint_path.exists() and checkpoint_path.is_relative_to(self.app_config.models_path):
|
||||
checkpoint_path.unlink()
|
||||
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def search_models(self, search_folder):
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
@@ -824,10 +824,14 @@ class ModelManager(object):
|
||||
assert config_file_path is not None,'no config file path to write to'
|
||||
config_file_path = self.app_config.root_path / config_file_path
|
||||
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
outfile.write(yaml_str)
|
||||
os.replace(tmpfile, config_file_path)
|
||||
try:
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
outfile.write(yaml_str)
|
||||
os.replace(tmpfile, config_file_path)
|
||||
except OSError as err:
|
||||
self.logger.warning(f"Could not modify the config file at {config_file_path}")
|
||||
self.logger.warning(err)
|
||||
|
||||
def preamble(self) -> str:
|
||||
"""
|
||||
@@ -977,13 +981,12 @@ class ModelManager(object):
|
||||
# avoid circular import here
|
||||
from invokeai.backend.install.model_install_backend import ModelInstall
|
||||
successfully_installed = dict()
|
||||
|
||||
|
||||
installer = ModelInstall(config = self.app_config,
|
||||
prediction_type_helper = prediction_type_helper,
|
||||
model_manager = self)
|
||||
for thing in items_to_import:
|
||||
installed = installer.heuristic_import(thing)
|
||||
successfully_installed.update(installed)
|
||||
self.commit()
|
||||
self.commit()
|
||||
return successfully_installed
|
||||
|
||||
|
||||
@@ -23,7 +23,7 @@ class ModelProbeInfo(object):
|
||||
variant_type: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
format: Literal['diffusers','checkpoint', 'lycoris']
|
||||
format: Literal['diffusers','checkpoint', 'lycoris', 'olive']
|
||||
image_size: int
|
||||
|
||||
class ProbeBase(object):
|
||||
|
||||
@@ -10,8 +10,11 @@ from .lora import LoRAModel
|
||||
from .controlnet import ControlNetModel # TODO:
|
||||
from .textual_inversion import TextualInversionModel
|
||||
|
||||
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
|
||||
|
||||
MODEL_CLASSES = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
ModelType.ONNX: ONNXStableDiffusion1Model,
|
||||
ModelType.Main: StableDiffusion1Model,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoRAModel,
|
||||
@@ -19,6 +22,7 @@ MODEL_CLASSES = {
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
ModelType.Main: StableDiffusion2Model,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoRAModel,
|
||||
@@ -32,6 +36,7 @@ MODEL_CLASSES = {
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
},
|
||||
BaseModelType.StableDiffusionXLRefiner: {
|
||||
ModelType.Main: StableDiffusionXLModel,
|
||||
@@ -40,6 +45,7 @@ MODEL_CLASSES = {
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
},
|
||||
#BaseModelType.Kandinsky2_1: {
|
||||
# ModelType.Main: Kandinsky2_1Model,
|
||||
|
||||
@@ -8,13 +8,19 @@ from abc import ABCMeta, abstractmethod
|
||||
from pathlib import Path
|
||||
from picklescan.scanner import scan_file_path
|
||||
import torch
|
||||
import numpy as np
|
||||
import safetensors.torch
|
||||
from diffusers import DiffusionPipeline, ConfigMixin
|
||||
from pathlib import Path
|
||||
from diffusers import DiffusionPipeline, ConfigMixin, OnnxRuntimeModel
|
||||
|
||||
from contextlib import suppress
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
|
||||
|
||||
import onnx
|
||||
from onnx import numpy_helper
|
||||
from onnx.external_data_helper import set_external_data
|
||||
from onnxruntime import InferenceSession, OrtValue, SessionOptions, ExecutionMode, GraphOptimizationLevel
|
||||
class InvalidModelException(Exception):
|
||||
pass
|
||||
|
||||
@@ -29,6 +35,7 @@ class BaseModelType(str, Enum):
|
||||
#Kandinsky2_1 = "kandinsky-2.1"
|
||||
|
||||
class ModelType(str, Enum):
|
||||
ONNX = "onnx"
|
||||
Main = "main"
|
||||
Vae = "vae"
|
||||
Lora = "lora"
|
||||
@@ -42,6 +49,8 @@ class SubModelType(str, Enum):
|
||||
Tokenizer = "tokenizer"
|
||||
Tokenizer2 = "tokenizer_2"
|
||||
Vae = "vae"
|
||||
VaeDecoder = "vae_decoder"
|
||||
VaeEncoder = "vae_encoder"
|
||||
Scheduler = "scheduler"
|
||||
SafetyChecker = "safety_checker"
|
||||
#MoVQ = "movq"
|
||||
@@ -254,16 +263,18 @@ class DiffusersModel(ModelBase):
|
||||
try:
|
||||
# TODO: set cache_dir to /dev/null to be sure that cache not used?
|
||||
model = self.child_types[child_type].from_pretrained(
|
||||
self.model_path,
|
||||
subfolder=child_type.value,
|
||||
os.path.join(self.model_path, child_type.value),
|
||||
#subfolder=child_type.value,
|
||||
torch_dtype=torch_dtype,
|
||||
variant=variant,
|
||||
local_files_only=True,
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
#print("====ERR LOAD====")
|
||||
#print(f"{variant}: {e}")
|
||||
print("====ERR LOAD====")
|
||||
print(f"{variant}: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
pass
|
||||
else:
|
||||
raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model")
|
||||
@@ -430,3 +441,188 @@ class SilenceWarnings(object):
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
warnings.simplefilter('default')
|
||||
|
||||
ONNX_WEIGHTS_NAME = "model.onnx"
|
||||
class IAIOnnxRuntimeModel:
|
||||
class _tensor_access:
|
||||
|
||||
def __init__(self, model):
|
||||
self.model = model
|
||||
self.indexes = dict()
|
||||
for idx, obj in enumerate(self.model.proto.graph.initializer):
|
||||
self.indexes[obj.name] = idx
|
||||
|
||||
def __getitem__(self, key: str):
|
||||
return self.model.data[key].numpy()
|
||||
|
||||
def __setitem__(self, key: str, value: np.ndarray):
|
||||
new_node = numpy_helper.from_array(value)
|
||||
# set_external_data(new_node, location="in-memory-location")
|
||||
new_node.name = key
|
||||
# new_node.ClearField("raw_data")
|
||||
del self.model.proto.graph.initializer[self.indexes[key]]
|
||||
self.model.proto.graph.initializer.insert(self.indexes[key], new_node)
|
||||
self.model.data[key] = OrtValue.ortvalue_from_numpy(value)
|
||||
|
||||
# __delitem__
|
||||
|
||||
def __contains__(self, key: str):
|
||||
return key in self.model.data
|
||||
|
||||
def items(self):
|
||||
raise NotImplementedError("tensor.items")
|
||||
#return [(obj.name, obj) for obj in self.raw_proto]
|
||||
|
||||
def keys(self):
|
||||
return self.model.data.keys()
|
||||
|
||||
def values(self):
|
||||
raise NotImplementedError("tensor.values")
|
||||
#return [obj for obj in self.raw_proto]
|
||||
|
||||
|
||||
|
||||
class _access_helper:
|
||||
def __init__(self, raw_proto):
|
||||
self.indexes = dict()
|
||||
self.raw_proto = raw_proto
|
||||
for idx, obj in enumerate(raw_proto):
|
||||
self.indexes[obj.name] = idx
|
||||
|
||||
def __getitem__(self, key: str):
|
||||
return self.raw_proto[self.indexes[key]]
|
||||
|
||||
def __setitem__(self, key: str, value):
|
||||
index = self.indexes[key]
|
||||
del self.raw_proto[index]
|
||||
self.raw_proto.insert(index, value)
|
||||
|
||||
# __delitem__
|
||||
|
||||
def __contains__(self, key: str):
|
||||
return key in self.indexes
|
||||
|
||||
def items(self):
|
||||
return [(obj.name, obj) for obj in self.raw_proto]
|
||||
|
||||
def keys(self):
|
||||
return self.indexes.keys()
|
||||
|
||||
def values(self):
|
||||
return [obj for obj in self.raw_proto]
|
||||
|
||||
def __init__(self, model_path: str, provider: Optional[str]):
|
||||
self.path = model_path
|
||||
self.session = None
|
||||
self.provider = provider or "CPUExecutionProvider"
|
||||
"""
|
||||
self.data_path = self.path + "_data"
|
||||
if not os.path.exists(self.data_path):
|
||||
print(f"Moving model tensors to separate file: {self.data_path}")
|
||||
tmp_proto = onnx.load(model_path, load_external_data=True)
|
||||
onnx.save_model(tmp_proto, self.path, save_as_external_data=True, all_tensors_to_one_file=True, location=os.path.basename(self.data_path), size_threshold=1024, convert_attribute=False)
|
||||
del tmp_proto
|
||||
gc.collect()
|
||||
|
||||
self.proto = onnx.load(model_path, load_external_data=False)
|
||||
"""
|
||||
|
||||
self.proto = onnx.load(model_path, load_external_data=True)
|
||||
self.data = dict()
|
||||
for tensor in self.proto.graph.initializer:
|
||||
name = tensor.name
|
||||
|
||||
if tensor.HasField("raw_data"):
|
||||
npt = numpy_helper.to_array(tensor)
|
||||
orv = OrtValue.ortvalue_from_numpy(npt)
|
||||
self.data[name] = orv
|
||||
# set_external_data(tensor, location="in-memory-location")
|
||||
tensor.name = name
|
||||
# tensor.ClearField("raw_data")
|
||||
|
||||
self.nodes = self._access_helper(self.proto.graph.node)
|
||||
self.initializers = self._access_helper(self.proto.graph.initializer)
|
||||
# print(self.proto.graph.input)
|
||||
# print(self.proto.graph.initializer)
|
||||
|
||||
self.tensors = self._tensor_access(self)
|
||||
|
||||
# TODO: integrate with model manager/cache
|
||||
def create_session(self):
|
||||
if self.session is None:
|
||||
#onnx.save(self.proto, "tmp.onnx")
|
||||
#onnx.save_model(self.proto, "tmp.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="tmp.onnx_data", size_threshold=1024, convert_attribute=False)
|
||||
# TODO: something to be able to get weight when they already moved outside of model proto
|
||||
#(trimmed_model, external_data) = buffer_external_data_tensors(self.proto)
|
||||
sess = SessionOptions()
|
||||
#self._external_data.update(**external_data)
|
||||
# sess.add_external_initializers(list(self.data.keys()), list(self.data.values()))
|
||||
# sess.enable_profiling = True
|
||||
|
||||
# sess.intra_op_num_threads = 1
|
||||
# sess.inter_op_num_threads = 1
|
||||
# sess.execution_mode = ExecutionMode.ORT_SEQUENTIAL
|
||||
# sess.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
# sess.enable_cpu_mem_arena = True
|
||||
# sess.enable_mem_pattern = True
|
||||
# sess.add_session_config_entry("session.intra_op.use_xnnpack_threadpool", "1") ########### It's the key code
|
||||
|
||||
|
||||
sess.add_free_dimension_override_by_name("unet_sample_batch", 2)
|
||||
sess.add_free_dimension_override_by_name("unet_sample_channels", 4)
|
||||
sess.add_free_dimension_override_by_name("unet_hidden_batch", 2)
|
||||
sess.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
|
||||
sess.add_free_dimension_override_by_name("unet_sample_height", 64)
|
||||
sess.add_free_dimension_override_by_name("unet_sample_width", 64)
|
||||
sess.add_free_dimension_override_by_name("unet_time_batch", 1)
|
||||
self.session = InferenceSession(self.proto.SerializeToString(), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'], sess_options=sess)
|
||||
#self.session = InferenceSession("tmp.onnx", providers=[self.provider], sess_options=self.sess_options)
|
||||
self.io_binding = self.session.io_binding()
|
||||
|
||||
def release_session(self):
|
||||
self.session = None
|
||||
import gc
|
||||
gc.collect()
|
||||
|
||||
def __call__(self, **kwargs):
|
||||
if self.session is None:
|
||||
raise Exception("You should call create_session before running model")
|
||||
|
||||
inputs = {k: np.array(v) for k, v in kwargs.items()}
|
||||
output_names = self.session.get_outputs()
|
||||
for k in inputs:
|
||||
self.io_binding.bind_cpu_input(k, inputs[k])
|
||||
for name in output_names:
|
||||
self.io_binding.bind_output(name.name)
|
||||
self.session.run_with_iobinding(self.io_binding, None)
|
||||
return self.io_binding.copy_outputs_to_cpu()
|
||||
|
||||
# compatability with diffusers load code
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
model_id: Union[str, Path],
|
||||
subfolder: Union[str, Path] = None,
|
||||
file_name: Optional[str] = None,
|
||||
provider: Optional[str] = None,
|
||||
sess_options: Optional["SessionOptions"] = None,
|
||||
**kwargs,
|
||||
):
|
||||
file_name = file_name or ONNX_WEIGHTS_NAME
|
||||
|
||||
if os.path.isdir(model_id):
|
||||
model_path = model_id
|
||||
if subfolder is not None:
|
||||
model_path = os.path.join(model_path, subfolder)
|
||||
model_path = os.path.join(model_path, file_name)
|
||||
|
||||
else:
|
||||
model_path = model_id
|
||||
|
||||
# load model from local directory
|
||||
if not os.path.isfile(model_path):
|
||||
raise Exception(f"Model not found: {model_path}")
|
||||
|
||||
# TODO: session options
|
||||
return cls(model_path, provider=provider)
|
||||
|
||||
|
||||
@@ -0,0 +1,156 @@
|
||||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
from pydantic import Field
|
||||
from pathlib import Path
|
||||
from typing import Literal, Optional, Union
|
||||
from .base import (
|
||||
ModelBase,
|
||||
ModelConfigBase,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
ModelVariantType,
|
||||
DiffusersModel,
|
||||
SchedulerPredictionType,
|
||||
SilenceWarnings,
|
||||
read_checkpoint_meta,
|
||||
classproperty,
|
||||
OnnxRuntimeModel,
|
||||
IAIOnnxRuntimeModel,
|
||||
)
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
class ONNXStableDiffusion1Model(DiffusersModel):
|
||||
|
||||
class Config(ModelConfigBase):
|
||||
model_format: None
|
||||
variant: ModelVariantType
|
||||
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusion1
|
||||
assert model_type == ModelType.ONNX
|
||||
super().__init__(
|
||||
model_path=model_path,
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
model_type=ModelType.ONNX,
|
||||
)
|
||||
|
||||
for child_name, child_type in self.child_types.items():
|
||||
if child_type is OnnxRuntimeModel:
|
||||
self.child_types[child_name] = IAIOnnxRuntimeModel
|
||||
|
||||
# TODO: check that no optimum models provided
|
||||
|
||||
@classmethod
|
||||
def probe_config(cls, path: str, **kwargs):
|
||||
model_format = cls.detect_format(path)
|
||||
in_channels = 4 # TODO:
|
||||
|
||||
if in_channels == 9:
|
||||
variant = ModelVariantType.Inpaint
|
||||
elif in_channels == 4:
|
||||
variant = ModelVariantType.Normal
|
||||
else:
|
||||
raise Exception("Unkown stable diffusion 1.* model format")
|
||||
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
model_format=model_format,
|
||||
|
||||
variant=variant,
|
||||
)
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
return model_path
|
||||
|
||||
class ONNXStableDiffusion2Model(DiffusersModel):
|
||||
|
||||
# TODO: check that configs overwriten properly
|
||||
class Config(ModelConfigBase):
|
||||
model_format: None
|
||||
variant: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert base_model == BaseModelType.StableDiffusion2
|
||||
assert model_type == ModelType.ONNX
|
||||
super().__init__(
|
||||
model_path=model_path,
|
||||
base_model=BaseModelType.StableDiffusion2,
|
||||
model_type=ModelType.ONNX,
|
||||
)
|
||||
|
||||
for child_name, child_type in self.child_types.items():
|
||||
if child_type is OnnxRuntimeModel:
|
||||
self.child_types[child_name] = IAIOnnxRuntimeModel
|
||||
# TODO: check that no optimum models provided
|
||||
|
||||
@classmethod
|
||||
def probe_config(cls, path: str, **kwargs):
|
||||
model_format = cls.detect_format(path)
|
||||
in_channels = 4 # TODO:
|
||||
|
||||
if in_channels == 9:
|
||||
variant = ModelVariantType.Inpaint
|
||||
elif in_channels == 5:
|
||||
variant = ModelVariantType.Depth
|
||||
elif in_channels == 4:
|
||||
variant = ModelVariantType.Normal
|
||||
else:
|
||||
raise Exception("Unkown stable diffusion 2.* model format")
|
||||
|
||||
if variant == ModelVariantType.Normal:
|
||||
prediction_type = SchedulerPredictionType.VPrediction
|
||||
upcast_attention = True
|
||||
|
||||
else:
|
||||
prediction_type = SchedulerPredictionType.Epsilon
|
||||
upcast_attention = False
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
model_format=model_format,
|
||||
|
||||
variant=variant,
|
||||
prediction_type=prediction_type,
|
||||
upcast_attention=upcast_attention,
|
||||
)
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
return model_path
|
||||
|
||||
@@ -1,10 +1,4 @@
|
||||
# This file predefines a few models that the user may want to install.
|
||||
sd-1/main/stable-diffusion-xdl-base:
|
||||
description: Stable Diffusion XL base model - NOT YET RELEASED!! (70 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-base
|
||||
sd-1/main/stable-diffusion-xdl-refiner:
|
||||
description: Stable Diffusion XL refiner model - NOT YET RELEASED!! (60 GB)
|
||||
repo_id: stabilityai/stable-diffusion-xl-refiner
|
||||
sd-1/main/stable-diffusion-v1-5:
|
||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-v1-5
|
||||
@@ -22,6 +16,14 @@ sd-2/main/stable-diffusion-2-inpainting:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-inpainting
|
||||
recommended: False
|
||||
sdxl/main/stable-diffusion-xl-base-0-9:
|
||||
description: Stable Diffusion XL base model (12 GB; access token required)
|
||||
repo_id: stabilityai/stable-diffusion-xl-base-0.9
|
||||
recommended: False
|
||||
sdxl-refiner/main/stable-diffusion-xl-refiner-0-9:
|
||||
description: Stable Diffusion XL refiner model (12 GB; access token required)
|
||||
repo_id: stabilityai/stable-diffusion-xl-refiner-0.9
|
||||
recommended: False
|
||||
sd-1/main/Analog-Diffusion:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
repo_id: wavymulder/Analog-Diffusion
|
||||
|
||||
199
invokeai/frontend/web/dist/assets/App-196ba8f8.js
vendored
199
invokeai/frontend/web/dist/assets/App-196ba8f8.js
vendored
File diff suppressed because one or more lines are too long
169
invokeai/frontend/web/dist/assets/App-3986879c.js
vendored
169
invokeai/frontend/web/dist/assets/App-3986879c.js
vendored
File diff suppressed because one or more lines are too long
169
invokeai/frontend/web/dist/assets/App-879ff07f.js
vendored
Normal file
169
invokeai/frontend/web/dist/assets/App-879ff07f.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1
invokeai/frontend/web/dist/assets/MantineProvider-81517a17.js
vendored
Normal file
1
invokeai/frontend/web/dist/assets/MantineProvider-81517a17.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
302
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-49b5c7c4.js
vendored
Normal file
302
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-49b5c7c4.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-15b43c6c.js
vendored
125
invokeai/frontend/web/dist/assets/index-15b43c6c.js
vendored
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-ba194473.js
vendored
Normal file
125
invokeai/frontend/web/dist/assets/index-ba194473.js
vendored
Normal file
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-f1a5f9cf.js
vendored
125
invokeai/frontend/web/dist/assets/index-f1a5f9cf.js
vendored
File diff suppressed because one or more lines are too long
2
invokeai/frontend/web/dist/index.html
vendored
2
invokeai/frontend/web/dist/index.html
vendored
@@ -12,7 +12,7 @@
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
<script type="module" crossorigin src="./assets/index-f1a5f9cf.js"></script>
|
||||
<script type="module" crossorigin src="./assets/index-ba194473.js"></script>
|
||||
</head>
|
||||
|
||||
<body dir="ltr">
|
||||
|
||||
21
invokeai/frontend/web/dist/locales/en.json
vendored
21
invokeai/frontend/web/dist/locales/en.json
vendored
@@ -399,6 +399,8 @@
|
||||
"deleteModel": "Delete Model",
|
||||
"deleteConfig": "Delete Config",
|
||||
"deleteMsg1": "Are you sure you want to delete this model from InvokeAI?",
|
||||
"modelDeleted": "Model Deleted",
|
||||
"modelDeleteFailed": "Failed to delete model",
|
||||
"deleteMsg2": "This WILL delete the model from disk if it is in the InvokeAI root folder. If you are using a custom location, then the model WILL NOT be deleted from disk.",
|
||||
"formMessageDiffusersModelLocation": "Diffusers Model Location",
|
||||
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
|
||||
@@ -408,11 +410,13 @@
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on disk WILL be deleted if it is in InvokeAI root folder. If it is in a custom location, then it WILL NOT be deleted.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
"convertToDiffusersSaveLocation": "Save Location",
|
||||
"noCustomLocationProvided": "No Custom Location Provided",
|
||||
"convertingModelBegin": "Converting Model. Please wait.",
|
||||
"v1": "v1",
|
||||
"v2_base": "v2 (512px)",
|
||||
"v2_768": "v2 (768px)",
|
||||
@@ -450,7 +454,8 @@
|
||||
"none": "none",
|
||||
"addDifference": "Add Difference",
|
||||
"pickModelType": "Pick Model Type",
|
||||
"selectModel": "Select Model"
|
||||
"selectModel": "Select Model",
|
||||
"importModels": "Import Models"
|
||||
},
|
||||
"parameters": {
|
||||
"general": "General",
|
||||
@@ -572,6 +577,7 @@
|
||||
"uploadFailedInvalidUploadDesc": "Must be single PNG or JPEG image",
|
||||
"downloadImageStarted": "Image Download Started",
|
||||
"imageCopied": "Image Copied",
|
||||
"problemCopyingImage": "Unable to Copy Image",
|
||||
"imageLinkCopied": "Image Link Copied",
|
||||
"problemCopyingImageLink": "Unable to Copy Image Link",
|
||||
"imageNotLoaded": "No Image Loaded",
|
||||
@@ -688,6 +694,15 @@
|
||||
"reloadSchema": "Reload Schema",
|
||||
"saveNodes": "Save Nodes",
|
||||
"loadNodes": "Load Nodes",
|
||||
"clearNodes": "Clear Nodes"
|
||||
"clearNodes": "Clear Nodes",
|
||||
"zoomInNodes": "Zoom In",
|
||||
"zoomOutNodes": "Zoom Out",
|
||||
"fitViewportNodes": "Fit View",
|
||||
"hideGraphNodes": "Hide Graph Overlay",
|
||||
"showGraphNodes": "Show Graph Overlay",
|
||||
"hideLegendNodes": "Hide Field Type Legend",
|
||||
"showLegendNodes": "Show Field Type Legend",
|
||||
"hideMinimapnodes": "Hide MiniMap",
|
||||
"showMinimapnodes": "Show MiniMap"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -59,15 +59,8 @@ export const SCHEDULER_LABEL_MAP: Record<SchedulerParam, string> = {
|
||||
|
||||
export type Scheduler = (typeof SCHEDULER_NAMES)[number];
|
||||
|
||||
// Valid upscaling levels
|
||||
export const UPSCALING_LEVELS: Array<{ label: string; value: string }> = [
|
||||
{ label: '2x', value: '2' },
|
||||
{ label: '4x', value: '4' },
|
||||
];
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
|
||||
export const NUMPY_RAND_MAX = 2147483647;
|
||||
|
||||
export const FACETOOL_TYPES = ['gfpgan', 'codeformer'] as const;
|
||||
|
||||
export const NODE_MIN_WIDTH = 250;
|
||||
|
||||
@@ -90,6 +90,7 @@ import { addUserInvokedNodesListener } from './listeners/userInvokedNodes';
|
||||
import { addUserInvokedTextToImageListener } from './listeners/userInvokedTextToImage';
|
||||
import { addModelLoadStartedEventListener } from './listeners/socketio/socketModelLoadStarted';
|
||||
import { addModelLoadCompletedEventListener } from './listeners/socketio/socketModelLoadCompleted';
|
||||
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
|
||||
|
||||
export const listenerMiddleware = createListenerMiddleware();
|
||||
|
||||
@@ -228,3 +229,5 @@ addModelSelectedListener();
|
||||
addAppStartedListener();
|
||||
addModelsLoadedListener();
|
||||
addAppConfigReceivedListener();
|
||||
|
||||
addUpscaleRequestedListener();
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { startAppListening } from '..';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'session' });
|
||||
|
||||
|
||||
@@ -0,0 +1,37 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { buildAdHocUpscaleGraph } from 'features/nodes/util/graphBuilders/buildAdHocUpscaleGraph';
|
||||
import { sessionReadyToInvoke } from 'features/system/store/actions';
|
||||
import { sessionCreated } from 'services/api/thunks/session';
|
||||
import { startAppListening } from '..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'upscale' });
|
||||
|
||||
export const upscaleRequested = createAction<{ image_name: string }>(
|
||||
`upscale/upscaleRequested`
|
||||
);
|
||||
|
||||
export const addUpscaleRequestedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: upscaleRequested,
|
||||
effect: async (
|
||||
action,
|
||||
{ dispatch, getState, take, unsubscribe, subscribe }
|
||||
) => {
|
||||
const { image_name } = action.payload;
|
||||
const { esrganModelName } = getState().postprocessing;
|
||||
|
||||
const graph = buildAdHocUpscaleGraph({
|
||||
image_name,
|
||||
esrganModelName,
|
||||
});
|
||||
|
||||
// Create a session to run the graph & wait til it's ready to invoke
|
||||
dispatch(sessionCreated({ graph }));
|
||||
|
||||
await take(sessionCreated.fulfilled.match);
|
||||
|
||||
dispatch(sessionReadyToInvoke());
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -11,7 +11,7 @@ interface ItemProps extends React.ComponentPropsWithoutRef<'div'> {
|
||||
|
||||
const IAIMantineSelectItemWithTooltip = forwardRef<HTMLDivElement, ItemProps>(
|
||||
({ label, tooltip, description, disabled, ...others }: ItemProps, ref) => (
|
||||
<Tooltip label={tooltip} placement="top" hasArrow>
|
||||
<Tooltip label={tooltip} placement="top" hasArrow openDelay={500}>
|
||||
<Box ref={ref} {...others}>
|
||||
<Box>
|
||||
<Text>{label}</Text>
|
||||
|
||||
@@ -5,34 +5,26 @@ import {
|
||||
ButtonGroup,
|
||||
Flex,
|
||||
FlexProps,
|
||||
Link,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuItem,
|
||||
MenuList,
|
||||
} from '@chakra-ui/react';
|
||||
// import { runESRGAN, runFacetool } from 'app/socketio/actions';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
|
||||
import { skipToken } from '@reduxjs/toolkit/dist/query';
|
||||
import { useAppToaster } from 'app/components/Toaster';
|
||||
import { upscaleRequested } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
|
||||
import { DeleteImageButton } from 'features/imageDeletion/components/DeleteImageButton';
|
||||
import { imageToDeleteSelected } from 'features/imageDeletion/store/imageDeletionSlice';
|
||||
import FaceRestoreSettings from 'features/parameters/components/Parameters/FaceRestore/FaceRestoreSettings';
|
||||
import UpscaleSettings from 'features/parameters/components/Parameters/Upscale/UpscaleSettings';
|
||||
import ParamUpscalePopover from 'features/parameters/components/Parameters/Upscale/ParamUpscaleSettings';
|
||||
import { useRecallParameters } from 'features/parameters/hooks/useRecallParameters';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { useCopyImageToClipboard } from 'features/ui/hooks/useCopyImageToClipboard';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import {
|
||||
setActiveTab,
|
||||
setShouldShowImageDetails,
|
||||
setShouldShowProgressInViewer,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
@@ -42,38 +34,25 @@ import { useTranslation } from 'react-i18next';
|
||||
import {
|
||||
FaAsterisk,
|
||||
FaCode,
|
||||
FaCopy,
|
||||
FaDownload,
|
||||
FaExpandArrowsAlt,
|
||||
FaGrinStars,
|
||||
FaHourglassHalf,
|
||||
FaQuoteRight,
|
||||
FaSeedling,
|
||||
FaShare,
|
||||
FaShareAlt,
|
||||
} from 'react-icons/fa';
|
||||
import {
|
||||
useGetImageDTOQuery,
|
||||
useGetImageMetadataQuery,
|
||||
} from 'services/api/endpoints/images';
|
||||
import { useDebounce } from 'use-debounce';
|
||||
import { sentImageToCanvas, sentImageToImg2Img } from '../../store/actions';
|
||||
import { menuListMotionProps } from 'theme/components/menu';
|
||||
import { useDebounce } from 'use-debounce';
|
||||
import { sentImageToImg2Img } from '../../store/actions';
|
||||
import SingleSelectionMenuItems from '../ImageContextMenu/SingleSelectionMenuItems';
|
||||
|
||||
const currentImageButtonsSelector = createSelector(
|
||||
[stateSelector, activeTabNameSelector],
|
||||
({ gallery, system, postprocessing, ui }, activeTabName) => {
|
||||
const {
|
||||
isProcessing,
|
||||
isConnected,
|
||||
isGFPGANAvailable,
|
||||
isESRGANAvailable,
|
||||
shouldConfirmOnDelete,
|
||||
progressImage,
|
||||
} = system;
|
||||
|
||||
const { upscalingLevel, facetoolStrength } = postprocessing;
|
||||
({ gallery, system, ui }, activeTabName) => {
|
||||
const { isProcessing, isConnected, shouldConfirmOnDelete, progressImage } =
|
||||
system;
|
||||
|
||||
const {
|
||||
shouldShowImageDetails,
|
||||
@@ -88,10 +67,6 @@ const currentImageButtonsSelector = createSelector(
|
||||
shouldConfirmOnDelete,
|
||||
isProcessing,
|
||||
isConnected,
|
||||
isGFPGANAvailable,
|
||||
isESRGANAvailable,
|
||||
upscalingLevel,
|
||||
facetoolStrength,
|
||||
shouldDisableToolbarButtons: Boolean(progressImage) || !lastSelectedImage,
|
||||
shouldShowImageDetails,
|
||||
activeTabName,
|
||||
@@ -114,27 +89,17 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
const {
|
||||
isProcessing,
|
||||
isConnected,
|
||||
isGFPGANAvailable,
|
||||
isESRGANAvailable,
|
||||
upscalingLevel,
|
||||
facetoolStrength,
|
||||
shouldDisableToolbarButtons,
|
||||
shouldShowImageDetails,
|
||||
activeTabName,
|
||||
lastSelectedImage,
|
||||
shouldShowProgressInViewer,
|
||||
} = useAppSelector(currentImageButtonsSelector);
|
||||
|
||||
const isCanvasEnabled = useFeatureStatus('unifiedCanvas').isFeatureEnabled;
|
||||
const isUpscalingEnabled = useFeatureStatus('upscaling').isFeatureEnabled;
|
||||
const isFaceRestoreEnabled = useFeatureStatus('faceRestore').isFeatureEnabled;
|
||||
|
||||
const toaster = useAppToaster();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { isClipboardAPIAvailable, copyImageToClipboard } =
|
||||
useCopyImageToClipboard();
|
||||
|
||||
const { recallBothPrompts, recallSeed, recallAllParameters } =
|
||||
useRecallParameters();
|
||||
|
||||
@@ -155,42 +120,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
|
||||
const metadata = metadataData?.metadata;
|
||||
|
||||
const handleCopyImageLink = useCallback(() => {
|
||||
const getImageUrl = () => {
|
||||
if (!imageDTO) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (imageDTO.image_url.startsWith('http')) {
|
||||
return imageDTO.image_url;
|
||||
}
|
||||
|
||||
return window.location.toString() + imageDTO.image_url;
|
||||
};
|
||||
|
||||
const url = getImageUrl();
|
||||
|
||||
if (!url) {
|
||||
toaster({
|
||||
title: t('toast.problemCopyingImageLink'),
|
||||
status: 'error',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
navigator.clipboard.writeText(url).then(() => {
|
||||
toaster({
|
||||
title: t('toast.imageLinkCopied'),
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
});
|
||||
});
|
||||
}, [toaster, t, imageDTO]);
|
||||
|
||||
const handleClickUseAllParameters = useCallback(() => {
|
||||
recallAllParameters(metadata);
|
||||
}, [metadata, recallAllParameters]);
|
||||
@@ -223,8 +152,11 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
useHotkeys('shift+i', handleSendToImageToImage, [imageDTO]);
|
||||
|
||||
const handleClickUpscale = useCallback(() => {
|
||||
// selectedImage && dispatch(runESRGAN(selectedImage));
|
||||
}, []);
|
||||
if (!imageDTO) {
|
||||
return;
|
||||
}
|
||||
dispatch(upscaleRequested({ image_name: imageDTO.image_name }));
|
||||
}, [dispatch, imageDTO]);
|
||||
|
||||
const handleDelete = useCallback(() => {
|
||||
if (!imageDTO) {
|
||||
@@ -242,53 +174,17 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
enabled: () =>
|
||||
Boolean(
|
||||
isUpscalingEnabled &&
|
||||
isESRGANAvailable &&
|
||||
!shouldDisableToolbarButtons &&
|
||||
isConnected &&
|
||||
!isProcessing &&
|
||||
upscalingLevel
|
||||
!isProcessing
|
||||
),
|
||||
},
|
||||
[
|
||||
isUpscalingEnabled,
|
||||
imageDTO,
|
||||
isESRGANAvailable,
|
||||
shouldDisableToolbarButtons,
|
||||
isConnected,
|
||||
isProcessing,
|
||||
upscalingLevel,
|
||||
]
|
||||
);
|
||||
|
||||
const handleClickFixFaces = useCallback(() => {
|
||||
// selectedImage && dispatch(runFacetool(selectedImage));
|
||||
}, []);
|
||||
|
||||
useHotkeys(
|
||||
'Shift+R',
|
||||
() => {
|
||||
handleClickFixFaces();
|
||||
},
|
||||
{
|
||||
enabled: () =>
|
||||
Boolean(
|
||||
isFaceRestoreEnabled &&
|
||||
isGFPGANAvailable &&
|
||||
!shouldDisableToolbarButtons &&
|
||||
isConnected &&
|
||||
!isProcessing &&
|
||||
facetoolStrength
|
||||
),
|
||||
},
|
||||
|
||||
[
|
||||
isFaceRestoreEnabled,
|
||||
imageDTO,
|
||||
isGFPGANAvailable,
|
||||
shouldDisableToolbarButtons,
|
||||
isConnected,
|
||||
isProcessing,
|
||||
facetoolStrength,
|
||||
]
|
||||
);
|
||||
|
||||
@@ -297,25 +193,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
[dispatch, shouldShowImageDetails]
|
||||
);
|
||||
|
||||
const handleSendToCanvas = useCallback(() => {
|
||||
if (!imageDTO) return;
|
||||
dispatch(sentImageToCanvas());
|
||||
|
||||
dispatch(setInitialCanvasImage(imageDTO));
|
||||
dispatch(requestCanvasRescale());
|
||||
|
||||
if (activeTabName !== 'unifiedCanvas') {
|
||||
dispatch(setActiveTab('unifiedCanvas'));
|
||||
}
|
||||
|
||||
toaster({
|
||||
title: t('toast.sentToUnifiedCanvas'),
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
});
|
||||
}, [imageDTO, dispatch, activeTabName, toaster, t]);
|
||||
|
||||
useHotkeys(
|
||||
'i',
|
||||
() => {
|
||||
@@ -337,13 +214,6 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
dispatch(setShouldShowProgressInViewer(!shouldShowProgressInViewer));
|
||||
}, [dispatch, shouldShowProgressInViewer]);
|
||||
|
||||
const handleCopyImage = useCallback(() => {
|
||||
if (!imageDTO) {
|
||||
return;
|
||||
}
|
||||
copyImageToClipboard(imageDTO.image_url);
|
||||
}, [copyImageToClipboard, imageDTO]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<Flex
|
||||
@@ -396,72 +266,12 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
|
||||
/>
|
||||
</ButtonGroup>
|
||||
|
||||
{(isUpscalingEnabled || isFaceRestoreEnabled) && (
|
||||
{isUpscalingEnabled && (
|
||||
<ButtonGroup
|
||||
isAttached={true}
|
||||
isDisabled={shouldDisableToolbarButtons}
|
||||
>
|
||||
{isFaceRestoreEnabled && (
|
||||
<IAIPopover
|
||||
triggerComponent={
|
||||
<IAIIconButton
|
||||
icon={<FaGrinStars />}
|
||||
aria-label={t('parameters.restoreFaces')}
|
||||
/>
|
||||
}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
flexDirection: 'column',
|
||||
rowGap: 4,
|
||||
}}
|
||||
>
|
||||
<FaceRestoreSettings />
|
||||
<IAIButton
|
||||
isDisabled={
|
||||
!isGFPGANAvailable ||
|
||||
!imageDTO ||
|
||||
!(isConnected && !isProcessing) ||
|
||||
!facetoolStrength
|
||||
}
|
||||
onClick={handleClickFixFaces}
|
||||
>
|
||||
{t('parameters.restoreFaces')}
|
||||
</IAIButton>
|
||||
</Flex>
|
||||
</IAIPopover>
|
||||
)}
|
||||
|
||||
{isUpscalingEnabled && (
|
||||
<IAIPopover
|
||||
triggerComponent={
|
||||
<IAIIconButton
|
||||
icon={<FaExpandArrowsAlt />}
|
||||
aria-label={t('parameters.upscale')}
|
||||
/>
|
||||
}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
flexDirection: 'column',
|
||||
gap: 4,
|
||||
}}
|
||||
>
|
||||
<UpscaleSettings />
|
||||
<IAIButton
|
||||
isDisabled={
|
||||
!isESRGANAvailable ||
|
||||
!imageDTO ||
|
||||
!(isConnected && !isProcessing) ||
|
||||
!upscalingLevel
|
||||
}
|
||||
onClick={handleClickUpscale}
|
||||
>
|
||||
{t('parameters.upscaleImage')}
|
||||
</IAIButton>
|
||||
</Flex>
|
||||
</IAIPopover>
|
||||
)}
|
||||
{isUpscalingEnabled && <ParamUpscalePopover imageDTO={imageDTO} />}
|
||||
</ButtonGroup>
|
||||
)}
|
||||
|
||||
|
||||
@@ -12,7 +12,10 @@ import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainM
|
||||
import { forEach } from 'lodash-es';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
import {
|
||||
useGetMainModelsQuery,
|
||||
useGetOnnxModelsQuery,
|
||||
} from 'services/api/endpoints/models';
|
||||
import { FieldComponentProps } from './types';
|
||||
|
||||
const ModelInputFieldComponent = (
|
||||
@@ -23,6 +26,7 @@ const ModelInputFieldComponent = (
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { data: onnxModels } = useGetOnnxModelsQuery();
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
|
||||
const data = useMemo(() => {
|
||||
@@ -44,17 +48,39 @@ const ModelInputFieldComponent = (
|
||||
});
|
||||
});
|
||||
|
||||
if (onnxModels) {
|
||||
forEach(onnxModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: BASE_MODEL_NAME_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
}
|
||||
return data;
|
||||
}, [mainModels]);
|
||||
}, [mainModels, onnxModels]);
|
||||
|
||||
// grab the full model entity from the RTK Query cache
|
||||
// TODO: maybe we should just store the full model entity in state?
|
||||
const selectedModel = useMemo(
|
||||
() =>
|
||||
mainModels?.entities[
|
||||
(mainModels?.entities[
|
||||
`${field.value?.base_model}/main/${field.value?.model_name}`
|
||||
] ?? null,
|
||||
[field.value?.base_model, field.value?.model_name, mainModels?.entities]
|
||||
] ||
|
||||
onnxModels?.entities[
|
||||
`${field.value?.base_model}/onnx/${field.value?.model_name}`
|
||||
]) ??
|
||||
null,
|
||||
[
|
||||
field.value?.base_model,
|
||||
field.value?.model_name,
|
||||
mainModels?.entities,
|
||||
onnxModels?.entities,
|
||||
]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
|
||||
@@ -9,6 +9,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LORA_LOADER,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
@@ -17,7 +18,8 @@ import {
|
||||
export const addLoRAsToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph,
|
||||
baseNodeId: string
|
||||
baseNodeId: string,
|
||||
modelLoader: string = MAIN_MODEL_LOADER
|
||||
): void => {
|
||||
/**
|
||||
* LoRA nodes get the UNet and CLIP models from the main model loader and apply the LoRA to them.
|
||||
@@ -40,6 +42,10 @@ export const addLoRAsToGraph = (
|
||||
!(
|
||||
e.source.node_id === MAIN_MODEL_LOADER &&
|
||||
['unet'].includes(e.source.field)
|
||||
) &&
|
||||
!(
|
||||
e.source.node_id === ONNX_MODEL_LOADER &&
|
||||
['unet'].includes(e.source.field)
|
||||
)
|
||||
);
|
||||
// Remove CLIP_SKIP connections to conditionings to feed it through LoRAs
|
||||
@@ -74,12 +80,11 @@ export const addLoRAsToGraph = (
|
||||
|
||||
// add to graph
|
||||
graph.nodes[currentLoraNodeId] = loraLoaderNode;
|
||||
|
||||
if (currentLoraIndex === 0) {
|
||||
// first lora = start the lora chain, attach directly to model loader
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: modelLoader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
|
||||
@@ -9,13 +9,15 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
ONNX_MODEL_LOADER,
|
||||
TEXT_TO_IMAGE_GRAPH,
|
||||
VAE_LOADER,
|
||||
} from './constants';
|
||||
|
||||
export const addVAEToGraph = (
|
||||
state: RootState,
|
||||
graph: NonNullableGraph
|
||||
graph: NonNullableGraph,
|
||||
modelLoader: string = MAIN_MODEL_LOADER
|
||||
): void => {
|
||||
const { vae } = state.generation;
|
||||
|
||||
@@ -31,12 +33,12 @@ export const addVAEToGraph = (
|
||||
vae_model: vae,
|
||||
};
|
||||
}
|
||||
|
||||
const isOnnxModel = modelLoader == ONNX_MODEL_LOADER;
|
||||
if (graph.id === TEXT_TO_IMAGE_GRAPH || graph.id === IMAGE_TO_IMAGE_GRAPH) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
node_id: isAutoVae ? modelLoader : VAE_LOADER,
|
||||
field: isAutoVae && isOnnxModel ? 'vae_decoder' : 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: LATENTS_TO_IMAGE,
|
||||
@@ -48,8 +50,8 @@ export const addVAEToGraph = (
|
||||
if (graph.id === IMAGE_TO_IMAGE_GRAPH) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
node_id: isAutoVae ? modelLoader : VAE_LOADER,
|
||||
field: isAutoVae && isOnnxModel ? 'vae_decoder' : 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: IMAGE_TO_LATENTS,
|
||||
@@ -61,8 +63,8 @@ export const addVAEToGraph = (
|
||||
if (graph.id === INPAINT_GRAPH) {
|
||||
graph.edges.push({
|
||||
source: {
|
||||
node_id: isAutoVae ? MAIN_MODEL_LOADER : VAE_LOADER,
|
||||
field: 'vae',
|
||||
node_id: isAutoVae ? modelLoader : VAE_LOADER,
|
||||
field: isAutoVae && isOnnxModel ? 'vae_decoder' : 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT,
|
||||
|
||||
@@ -0,0 +1,32 @@
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { ESRGANModelName } from 'features/parameters/store/postprocessingSlice';
|
||||
import { Graph, ESRGANInvocation } from 'services/api/types';
|
||||
import { REALESRGAN as ESRGAN } from './constants';
|
||||
|
||||
type Arg = {
|
||||
image_name: string;
|
||||
esrganModelName: ESRGANModelName;
|
||||
};
|
||||
|
||||
export const buildAdHocUpscaleGraph = ({
|
||||
image_name,
|
||||
esrganModelName,
|
||||
}: Arg): Graph => {
|
||||
const realesrganNode: ESRGANInvocation = {
|
||||
id: ESRGAN,
|
||||
type: 'esrgan',
|
||||
image: { image_name },
|
||||
model_name: esrganModelName,
|
||||
is_intermediate: false,
|
||||
};
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: `adhoc-esrgan-graph`,
|
||||
nodes: {
|
||||
[ESRGAN]: realesrganNode,
|
||||
},
|
||||
edges: [],
|
||||
};
|
||||
|
||||
return graph;
|
||||
};
|
||||
@@ -18,6 +18,7 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
@@ -59,6 +60,9 @@ export const buildCanvasImageToImageGraph = (
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
const onnx_model_type = model.model_type.includes('onnx');
|
||||
const model_loader = onnx_model_type ? ONNX_MODEL_LOADER : MAIN_MODEL_LOADER;
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@@ -69,16 +73,17 @@ export const buildCanvasImageToImageGraph = (
|
||||
*/
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
// TODO: Actually create the graph correctly for ONNX
|
||||
const graph: NonNullableGraph = {
|
||||
id: IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
@@ -87,9 +92,9 @@ export const buildCanvasImageToImageGraph = (
|
||||
id: NOISE,
|
||||
use_cpu,
|
||||
},
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
[model_loader]: {
|
||||
type: model_loader,
|
||||
id: model_loader,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@@ -98,11 +103,11 @@ export const buildCanvasImageToImageGraph = (
|
||||
skipped_layers: clipSkip,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
type: onnx_model_type ? 'l2i_onnx' : 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
},
|
||||
[LATENTS_TO_LATENTS]: {
|
||||
type: 'l2l',
|
||||
type: onnx_model_type ? 'l2l_onnx' : 'l2l',
|
||||
id: LATENTS_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
@@ -110,7 +115,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
strength,
|
||||
},
|
||||
[IMAGE_TO_LATENTS]: {
|
||||
type: 'i2l',
|
||||
type: onnx_model_type ? 'i2l_onnx' : 'i2l',
|
||||
id: IMAGE_TO_LATENTS,
|
||||
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
||||
// image: {
|
||||
@@ -121,7 +126,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@@ -181,7 +186,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@@ -313,10 +318,10 @@ export const buildCanvasImageToImageGraph = (
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS, model_loader);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
addVAEToGraph(state, graph, model_loader);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
@@ -15,6 +15,7 @@ import {
|
||||
INPAINT_GRAPH,
|
||||
ITERATE,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
NEGATIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING,
|
||||
RANDOM_INT,
|
||||
@@ -63,6 +64,11 @@ export const buildCanvasInpaintGraph = (
|
||||
// We may need to set the inpaint width and height to scale the image
|
||||
const { scaledBoundingBoxDimensions, boundingBoxScaleMethod } = state.canvas;
|
||||
|
||||
const model_loader = model.model_type.includes('onnx')
|
||||
? ONNX_MODEL_LOADER
|
||||
: MAIN_MODEL_LOADER;
|
||||
|
||||
// TODO: Actually create the graph correctly for ONNX
|
||||
const graph: NonNullableGraph = {
|
||||
id: INPAINT_GRAPH,
|
||||
nodes: {
|
||||
@@ -107,9 +113,9 @@ export const buildCanvasInpaintGraph = (
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
[model_loader]: {
|
||||
type: model_loader,
|
||||
id: model_loader,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@@ -133,7 +139,7 @@ export const buildCanvasInpaintGraph = (
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@@ -143,7 +149,7 @@ export const buildCanvasInpaintGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
|
||||
@@ -10,6 +10,7 @@ import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
@@ -49,7 +50,8 @@ export const buildCanvasTextToImageGraph = (
|
||||
const use_cpu = shouldUseNoiseSettings
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
const onnx_model_type = model.model_type.includes('onnx');
|
||||
const model_loader = onnx_model_type ? ONNX_MODEL_LOADER : MAIN_MODEL_LOADER;
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@@ -60,16 +62,17 @@ export const buildCanvasTextToImageGraph = (
|
||||
*/
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
// TODO: Actually create the graph correctly for ONNX
|
||||
const graph: NonNullableGraph = {
|
||||
id: TEXT_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
@@ -81,15 +84,15 @@ export const buildCanvasTextToImageGraph = (
|
||||
use_cpu,
|
||||
},
|
||||
[TEXT_TO_LATENTS]: {
|
||||
type: 't2l',
|
||||
type: onnx_model_type ? 't2l_onnx' : 't2l',
|
||||
id: TEXT_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
},
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
[model_loader]: {
|
||||
type: model_loader,
|
||||
id: model_loader,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@@ -98,7 +101,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
skipped_layers: clipSkip,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
type: onnx_model_type ? 'l2i_onnx' : 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
},
|
||||
},
|
||||
@@ -125,7 +128,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@@ -155,7 +158,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@@ -219,10 +222,10 @@ export const buildCanvasTextToImageGraph = (
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS, model_loader);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
addVAEToGraph(state, graph, model_loader);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
@@ -17,6 +17,7 @@ import {
|
||||
LATENTS_TO_IMAGE,
|
||||
LATENTS_TO_LATENTS,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
@@ -82,13 +83,17 @@ export const buildLinearImageToImageGraph = (
|
||||
? shouldUseCpuNoise
|
||||
: initialGenerationState.shouldUseCpuNoise;
|
||||
|
||||
const onnx_model_type = model.model_type.includes('onnx');
|
||||
const model_loader = onnx_model_type ? ONNX_MODEL_LOADER : MAIN_MODEL_LOADER;
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
// TODO: Actually create the graph correctly for ONNX
|
||||
const graph: NonNullableGraph = {
|
||||
id: IMAGE_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
[model_loader]: {
|
||||
type: model_loader,
|
||||
id: model_loader,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@@ -97,12 +102,12 @@ export const buildLinearImageToImageGraph = (
|
||||
skipped_layers: clipSkip,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
@@ -112,11 +117,11 @@ export const buildLinearImageToImageGraph = (
|
||||
use_cpu,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
type: onnx_model_type ? 'l2i_onnx' : 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
},
|
||||
[LATENTS_TO_LATENTS]: {
|
||||
type: 'l2l',
|
||||
type: onnx_model_type ? 'l2l_onnx' : 'l2l',
|
||||
id: LATENTS_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
@@ -124,7 +129,7 @@ export const buildLinearImageToImageGraph = (
|
||||
strength,
|
||||
},
|
||||
[IMAGE_TO_LATENTS]: {
|
||||
type: 'i2l',
|
||||
type: onnx_model_type ? 'i2l_onnx' : 'i2l',
|
||||
id: IMAGE_TO_LATENTS,
|
||||
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
||||
// image: {
|
||||
@@ -135,7 +140,7 @@ export const buildLinearImageToImageGraph = (
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@@ -145,7 +150,7 @@ export const buildLinearImageToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@@ -366,10 +371,10 @@ export const buildLinearImageToImageGraph = (
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS);
|
||||
addLoRAsToGraph(state, graph, LATENTS_TO_LATENTS, model_loader);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
addVAEToGraph(state, graph, model_loader);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
@@ -6,10 +6,13 @@ import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
|
||||
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
|
||||
import { addLoRAsToGraph } from './addLoRAsToGraph';
|
||||
import { addVAEToGraph } from './addVAEToGraph';
|
||||
import { BaseModelType, OnnxModelField } from 'services/api/types';
|
||||
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
ONNX_MODEL_LOADER,
|
||||
METADATA_ACCUMULATOR,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NOISE,
|
||||
@@ -46,6 +49,8 @@ export const buildLinearTextToImageGraph = (
|
||||
throw new Error('No model found in state');
|
||||
}
|
||||
|
||||
const onnx_model_type = model.model_type.includes('onnx');
|
||||
const model_loader = onnx_model_type ? ONNX_MODEL_LOADER : MAIN_MODEL_LOADER;
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@@ -56,12 +61,14 @@ export const buildLinearTextToImageGraph = (
|
||||
*/
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
|
||||
// TODO: Actually create the graph correctly for ONNX
|
||||
const graph: NonNullableGraph = {
|
||||
id: TEXT_TO_IMAGE_GRAPH,
|
||||
nodes: {
|
||||
[MAIN_MODEL_LOADER]: {
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
[model_loader]: {
|
||||
type: model_loader,
|
||||
id: model_loader,
|
||||
model,
|
||||
},
|
||||
[CLIP_SKIP]: {
|
||||
@@ -70,12 +77,12 @@ export const buildLinearTextToImageGraph = (
|
||||
skipped_layers: clipSkip,
|
||||
},
|
||||
[POSITIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
},
|
||||
[NEGATIVE_CONDITIONING]: {
|
||||
type: 'compel',
|
||||
type: onnx_model_type ? 'prompt_onnx' : 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
@@ -87,21 +94,21 @@ export const buildLinearTextToImageGraph = (
|
||||
use_cpu,
|
||||
},
|
||||
[TEXT_TO_LATENTS]: {
|
||||
type: 't2l',
|
||||
type: onnx_model_type ? 't2l_onnx' : 't2l',
|
||||
id: TEXT_TO_LATENTS,
|
||||
cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
type: onnx_model_type ? 'l2i_onnx' : 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
},
|
||||
},
|
||||
edges: [
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'clip',
|
||||
},
|
||||
destination: {
|
||||
@@ -111,7 +118,7 @@ export const buildLinearTextToImageGraph = (
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: MAIN_MODEL_LOADER,
|
||||
node_id: model_loader,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
@@ -215,10 +222,10 @@ export const buildLinearTextToImageGraph = (
|
||||
});
|
||||
|
||||
// add LoRA support
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS);
|
||||
addLoRAsToGraph(state, graph, TEXT_TO_LATENTS, model_loader);
|
||||
|
||||
// optionally add custom VAE
|
||||
addVAEToGraph(state, graph);
|
||||
addVAEToGraph(state, graph, model_loader);
|
||||
|
||||
// add dynamic prompts - also sets up core iteration and seed
|
||||
addDynamicPromptsToGraph(state, graph);
|
||||
|
||||
@@ -8,6 +8,7 @@ export const RANDOM_INT = 'rand_int';
|
||||
export const RANGE_OF_SIZE = 'range_of_size';
|
||||
export const ITERATE = 'iterate';
|
||||
export const MAIN_MODEL_LOADER = 'main_model_loader';
|
||||
export const ONNX_MODEL_LOADER = 'onnx_model_loader';
|
||||
export const VAE_LOADER = 'vae_loader';
|
||||
export const LORA_LOADER = 'lora_loader';
|
||||
export const CLIP_SKIP = 'clip_skip';
|
||||
@@ -20,6 +21,9 @@ export const DYNAMIC_PROMPT = 'dynamic_prompt';
|
||||
export const IMAGE_COLLECTION = 'image_collection';
|
||||
export const IMAGE_COLLECTION_ITERATE = 'image_collection_iterate';
|
||||
export const METADATA_ACCUMULATOR = 'metadata_accumulator';
|
||||
export const REALESRGAN = 'esrgan';
|
||||
export const DIVIDE = 'divide';
|
||||
export const SCALE = 'scale_image';
|
||||
|
||||
// friendly graph ids
|
||||
export const TEXT_TO_IMAGE_GRAPH = 'text_to_image_graph';
|
||||
|
||||
@@ -0,0 +1,17 @@
|
||||
import { BaseModelType, MainModelField, ModelType } from 'services/api/types';
|
||||
|
||||
/**
|
||||
* Crudely converts a model id to a main model field
|
||||
* TODO: Make better
|
||||
*/
|
||||
export const modelIdToMainModelField = (modelId: string): MainModelField => {
|
||||
const [base_model, model_type, model_name] = modelId.split('/');
|
||||
|
||||
const field: MainModelField = {
|
||||
base_model: base_model as BaseModelType,
|
||||
model_type: model_type as ModelType,
|
||||
model_name,
|
||||
};
|
||||
|
||||
return field;
|
||||
};
|
||||
@@ -0,0 +1,17 @@
|
||||
import { BaseModelType, OnnxModelField, ModelType } from 'services/api/types';
|
||||
|
||||
/**
|
||||
* Crudely converts a model id to a main model field
|
||||
* TODO: Make better
|
||||
*/
|
||||
export const modelIdToOnnxModelField = (modelId: string): OnnxModelField => {
|
||||
const [base_model, model_type, model_name] = modelId.split('/');
|
||||
|
||||
const field: OnnxModelField = {
|
||||
base_model: base_model as BaseModelType,
|
||||
model_name,
|
||||
model_type: model_type as ModelType,
|
||||
};
|
||||
|
||||
return field;
|
||||
};
|
||||
@@ -1,34 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setCodeformerFidelity } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function CodeformerFidelity() {
|
||||
const isGFPGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isGFPGANAvailable
|
||||
);
|
||||
|
||||
const codeformerFidelity = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.codeformerFidelity
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
isDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters.codeformerFidelity')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={(v) => dispatch(setCodeformerFidelity(v))}
|
||||
handleReset={() => dispatch(setCodeformerFidelity(1))}
|
||||
value={codeformerFidelity}
|
||||
withReset
|
||||
withSliderMarks
|
||||
withInput
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,25 +0,0 @@
|
||||
import { VStack } from '@chakra-ui/react';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import FaceRestoreType from './FaceRestoreType';
|
||||
import FaceRestoreStrength from './FaceRestoreStrength';
|
||||
import CodeformerFidelity from './CodeformerFidelity';
|
||||
|
||||
/**
|
||||
* Displays face-fixing/GFPGAN options (strength).
|
||||
*/
|
||||
const FaceRestoreSettings = () => {
|
||||
const facetoolType = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolType
|
||||
);
|
||||
|
||||
return (
|
||||
<VStack gap={2} alignItems="stretch">
|
||||
<FaceRestoreType />
|
||||
<FaceRestoreStrength />
|
||||
{facetoolType === 'codeformer' && <CodeformerFidelity />}
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
|
||||
export default FaceRestoreSettings;
|
||||
@@ -1,34 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setFacetoolStrength } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function FaceRestoreStrength() {
|
||||
const isGFPGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isGFPGANAvailable
|
||||
);
|
||||
|
||||
const facetoolStrength = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolStrength
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
isDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters.strength')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={(v) => dispatch(setFacetoolStrength(v))}
|
||||
handleReset={() => dispatch(setFacetoolStrength(0.75))}
|
||||
value={facetoolStrength}
|
||||
withReset
|
||||
withSliderMarks
|
||||
withInput
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import { setShouldRunFacetool } from 'features/parameters/store/postprocessingSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
|
||||
export default function FaceRestoreToggle() {
|
||||
const isGFPGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isGFPGANAvailable
|
||||
);
|
||||
|
||||
const shouldRunFacetool = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.shouldRunFacetool
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChangeShouldRunFacetool = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setShouldRunFacetool(e.target.checked));
|
||||
|
||||
return (
|
||||
<IAISwitch
|
||||
isDisabled={!isGFPGANAvailable}
|
||||
isChecked={shouldRunFacetool}
|
||||
onChange={handleChangeShouldRunFacetool}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,30 +0,0 @@
|
||||
import { FACETOOL_TYPES } from 'app/constants';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import {
|
||||
FacetoolType,
|
||||
setFacetoolType,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function FaceRestoreType() {
|
||||
const facetoolType = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolType
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeFacetoolType = (v: string) =>
|
||||
dispatch(setFacetoolType(v as FacetoolType));
|
||||
|
||||
return (
|
||||
<IAIMantineSearchableSelect
|
||||
label={t('parameters.type')}
|
||||
data={FACETOOL_TYPES.concat()}
|
||||
value={facetoolType}
|
||||
onChange={handleChangeFacetoolType}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import IAICollapse from 'common/components/IAICollapse';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ParamHiresStrength } from './ParamHiresStrength';
|
||||
import { ParamHiresToggle } from './ParamHiresToggle';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => {
|
||||
const activeLabel = state.postprocessing.hiresFix ? 'Enabled' : undefined;
|
||||
|
||||
return { activeLabel };
|
||||
},
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ParamHiresCollapse = () => {
|
||||
const { t } = useTranslation();
|
||||
const { activeLabel } = useAppSelector(selector);
|
||||
|
||||
const isHiresEnabled = useFeatureStatus('hires').isFeatureEnabled;
|
||||
|
||||
if (!isHiresEnabled) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<IAICollapse label={t('parameters.hiresOptim')} activeLabel={activeLabel}>
|
||||
<Flex sx={{ gap: 2, flexDirection: 'column' }}>
|
||||
<ParamHiresToggle />
|
||||
<ParamHiresStrength />
|
||||
</Flex>
|
||||
</IAICollapse>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamHiresCollapse);
|
||||
@@ -1,3 +0,0 @@
|
||||
// TODO
|
||||
|
||||
export default {};
|
||||
@@ -1,3 +0,0 @@
|
||||
// TODO
|
||||
|
||||
export default {};
|
||||
@@ -1,51 +0,0 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { postprocessingSelector } from 'features/parameters/store/postprocessingSelectors';
|
||||
import { setHiresStrength } from 'features/parameters/store/postprocessingSlice';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const hiresStrengthSelector = createSelector(
|
||||
[postprocessingSelector],
|
||||
({ hiresFix, hiresStrength }) => ({ hiresFix, hiresStrength }),
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
export const ParamHiresStrength = () => {
|
||||
const { hiresFix, hiresStrength } = useAppSelector(hiresStrengthSelector);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleHiresStrength = (v: number) => {
|
||||
dispatch(setHiresStrength(v));
|
||||
};
|
||||
|
||||
const handleHiResStrengthReset = () => {
|
||||
dispatch(setHiresStrength(0.75));
|
||||
};
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.hiresStrength')}
|
||||
step={0.01}
|
||||
min={0.01}
|
||||
max={0.99}
|
||||
onChange={handleHiresStrength}
|
||||
value={hiresStrength}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withSliderMarks
|
||||
// inputWidth={22}
|
||||
withReset
|
||||
handleReset={handleHiResStrengthReset}
|
||||
isDisabled={!hiresFix}
|
||||
/>
|
||||
);
|
||||
};
|
||||
@@ -1,30 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import { setHiresFix } from 'features/parameters/store/postprocessingSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
/**
|
||||
* Hires Fix Toggle
|
||||
*/
|
||||
export const ParamHiresToggle = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const hiresFix = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.hiresFix
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeHiresFix = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setHiresFix(e.target.checked));
|
||||
|
||||
return (
|
||||
<IAISwitch
|
||||
label={t('parameters.hiresOptim')}
|
||||
isChecked={hiresFix}
|
||||
onChange={handleChangeHiresFix}
|
||||
/>
|
||||
);
|
||||
};
|
||||
@@ -1,3 +0,0 @@
|
||||
// TODO
|
||||
|
||||
export default {};
|
||||
@@ -12,7 +12,11 @@ import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { MODEL_TYPE_MAP } from 'features/parameters/types/constants';
|
||||
import { modelIdToMainModelParam } from 'features/parameters/util/modelIdToMainModelParam';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { useGetMainModelsQuery } from 'services/api/endpoints/models';
|
||||
import {
|
||||
useGetMainModelsQuery,
|
||||
useGetOnnxModelsQuery,
|
||||
} from 'services/api/endpoints/models';
|
||||
import { modelIdToOnnxModelField } from 'features/nodes/util/modelIdToOnnxModelField';
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
@@ -27,6 +31,7 @@ const ParamMainModelSelect = () => {
|
||||
const { model } = useAppSelector(selector);
|
||||
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
const { data: onnxModels, isLoading: onnxLoading } = useGetOnnxModelsQuery();
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!mainModels) {
|
||||
@@ -46,17 +51,31 @@ const ParamMainModelSelect = () => {
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
forEach(onnxModels?.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [mainModels]);
|
||||
}, [mainModels, onnxModels]);
|
||||
|
||||
// grab the full model entity from the RTK Query cache
|
||||
// TODO: maybe we should just store the full model entity in state?
|
||||
const selectedModel = useMemo(
|
||||
() =>
|
||||
mainModels?.entities[`${model?.base_model}/main/${model?.model_name}`] ??
|
||||
(mainModels?.entities[`${model?.base_model}/main/${model?.model_name}`] ||
|
||||
onnxModels?.entities[
|
||||
`${model?.base_model}/onnx/${model?.model_name}`
|
||||
]) ??
|
||||
null,
|
||||
[mainModels?.entities, model]
|
||||
[mainModels?.entities, model, onnxModels?.entities]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
@@ -65,7 +84,11 @@ const ParamMainModelSelect = () => {
|
||||
return;
|
||||
}
|
||||
|
||||
const newModel = modelIdToMainModelParam(v);
|
||||
let newModel = modelIdToMainModelParam(v);
|
||||
|
||||
if (v.includes('onnx')) {
|
||||
newModel = modelIdToOnnxModelField(v);
|
||||
}
|
||||
|
||||
if (!newModel) {
|
||||
return;
|
||||
@@ -76,7 +99,7 @@ const ParamMainModelSelect = () => {
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return isLoading ? (
|
||||
return isLoading || onnxLoading ? (
|
||||
<IAIMantineSearchableSelect
|
||||
label={t('modelManager.model')}
|
||||
placeholder="Loading..."
|
||||
|
||||
@@ -0,0 +1,58 @@
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import IAIMantineSelectItemWithTooltip from 'common/components/IAIMantineSelectItemWithTooltip';
|
||||
import {
|
||||
ESRGANModelName,
|
||||
esrganModelNameChanged,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export const ESRGAN_MODEL_NAMES: SelectItem[] = [
|
||||
{
|
||||
label: 'RealESRGAN x2 Plus',
|
||||
value: 'RealESRGAN_x2plus.pth',
|
||||
tooltip: 'Attempts to retain sharpness, low smoothing',
|
||||
group: 'x2 Upscalers',
|
||||
},
|
||||
{
|
||||
label: 'RealESRGAN x4 Plus',
|
||||
value: 'RealESRGAN_x4plus.pth',
|
||||
tooltip: 'Best for photos and highly detailed images, medium smoothing',
|
||||
group: 'x4 Upscalers',
|
||||
},
|
||||
{
|
||||
label: 'RealESRGAN x4 Plus (anime 6B)',
|
||||
value: 'RealESRGAN_x4plus_anime_6B.pth',
|
||||
tooltip: 'Best for anime/manga, high smoothing',
|
||||
group: 'x4 Upscalers',
|
||||
},
|
||||
{
|
||||
label: 'ESRGAN SRx4',
|
||||
value: 'ESRGAN_SRx4_DF2KOST_official-ff704c30.pth',
|
||||
tooltip: 'Retains sharpness, low smoothing',
|
||||
group: 'x4 Upscalers',
|
||||
},
|
||||
];
|
||||
|
||||
export default function ParamESRGANModel() {
|
||||
const esrganModelName = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.esrganModelName
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChange = (v: string) =>
|
||||
dispatch(esrganModelNameChanged(v as ESRGANModelName));
|
||||
|
||||
return (
|
||||
<IAIMantineSelect
|
||||
label="ESRGAN Model"
|
||||
value={esrganModelName}
|
||||
itemComponent={IAIMantineSelectItemWithTooltip}
|
||||
onChange={handleChange}
|
||||
data={ESRGAN_MODEL_NAMES}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,62 @@
|
||||
import { Flex, useDisclosure } from '@chakra-ui/react';
|
||||
import { upscaleRequested } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import IAIPopover from 'common/components/IAIPopover';
|
||||
import { selectIsBusy } from 'features/system/store/systemSelectors';
|
||||
import { useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { FaExpandArrowsAlt } from 'react-icons/fa';
|
||||
import { ImageDTO } from 'services/api/types';
|
||||
import ParamESRGANModel from './ParamRealESRGANModel';
|
||||
|
||||
type Props = { imageDTO?: ImageDTO };
|
||||
|
||||
const ParamUpscalePopover = (props: Props) => {
|
||||
const { imageDTO } = props;
|
||||
const dispatch = useAppDispatch();
|
||||
const isBusy = useAppSelector(selectIsBusy);
|
||||
const { t } = useTranslation();
|
||||
const { isOpen, onOpen, onClose } = useDisclosure();
|
||||
|
||||
const handleClickUpscale = useCallback(() => {
|
||||
onClose();
|
||||
if (!imageDTO) {
|
||||
return;
|
||||
}
|
||||
dispatch(upscaleRequested({ image_name: imageDTO.image_name }));
|
||||
}, [dispatch, imageDTO, onClose]);
|
||||
|
||||
return (
|
||||
<IAIPopover
|
||||
isOpen={isOpen}
|
||||
onClose={onClose}
|
||||
triggerComponent={
|
||||
<IAIIconButton
|
||||
onClick={onOpen}
|
||||
icon={<FaExpandArrowsAlt />}
|
||||
aria-label={t('parameters.upscale')}
|
||||
/>
|
||||
}
|
||||
>
|
||||
<Flex
|
||||
sx={{
|
||||
flexDirection: 'column',
|
||||
gap: 4,
|
||||
}}
|
||||
>
|
||||
<ParamESRGANModel />
|
||||
<IAIButton
|
||||
size="sm"
|
||||
isDisabled={!imageDTO || isBusy}
|
||||
onClick={handleClickUpscale}
|
||||
>
|
||||
{t('parameters.upscaleImage')}
|
||||
</IAIButton>
|
||||
</Flex>
|
||||
</IAIPopover>
|
||||
);
|
||||
};
|
||||
|
||||
export default ParamUpscalePopover;
|
||||
@@ -1,36 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setUpscalingDenoising } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleDenoisingStrength() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
|
||||
const upscalingDenoising = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingDenoising
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters.denoisingStrength')}
|
||||
value={upscalingDenoising}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
onChange={(v) => {
|
||||
dispatch(setUpscalingDenoising(v));
|
||||
}}
|
||||
handleReset={() => dispatch(setUpscalingDenoising(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,35 +0,0 @@
|
||||
import { UPSCALING_LEVELS } from 'app/constants';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSearchableSelect from 'common/components/IAIMantineSearchableSelect';
|
||||
import {
|
||||
UpscalingLevel,
|
||||
setUpscalingLevel,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleScale() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
|
||||
const upscalingLevel = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingLevel
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChangeLevel = (v: string) =>
|
||||
dispatch(setUpscalingLevel(Number(v) as UpscalingLevel));
|
||||
|
||||
return (
|
||||
<IAIMantineSearchableSelect
|
||||
disabled={!isESRGANAvailable}
|
||||
label={t('parameters.scale')}
|
||||
value={String(upscalingLevel)}
|
||||
onChange={handleChangeLevel}
|
||||
data={UPSCALING_LEVELS}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
import { VStack } from '@chakra-ui/react';
|
||||
import UpscaleDenoisingStrength from './UpscaleDenoisingStrength';
|
||||
import UpscaleStrength from './UpscaleStrength';
|
||||
import UpscaleScale from './UpscaleScale';
|
||||
|
||||
/**
|
||||
* Displays upscaling/ESRGAN options (level and strength).
|
||||
*/
|
||||
const UpscaleSettings = () => {
|
||||
return (
|
||||
<VStack gap={2} alignItems="stretch">
|
||||
<UpscaleScale />
|
||||
<UpscaleDenoisingStrength />
|
||||
<UpscaleStrength />
|
||||
</VStack>
|
||||
);
|
||||
};
|
||||
|
||||
export default UpscaleSettings;
|
||||
@@ -1,33 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setUpscalingStrength } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleStrength() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
const upscalingStrength = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingStrength
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={`${t('parameters.upscale')} ${t('parameters.strength')}`}
|
||||
value={upscalingStrength}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.05}
|
||||
onChange={(v) => dispatch(setUpscalingStrength(v))}
|
||||
handleReset={() => dispatch(setUpscalingStrength(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,26 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import { setShouldRunESRGAN } from 'features/parameters/store/postprocessingSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
|
||||
export default function UpscaleToggle() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
|
||||
const shouldRunESRGAN = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.shouldRunESRGAN
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const handleChangeShouldRunESRGAN = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setShouldRunESRGAN(e.target.checked));
|
||||
return (
|
||||
<IAISwitch
|
||||
isDisabled={!isESRGANAvailable}
|
||||
isChecked={shouldRunESRGAN}
|
||||
onChange={handleChangeShouldRunESRGAN}
|
||||
/>
|
||||
);
|
||||
}
|
||||
@@ -1,10 +1,10 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { ImageDTO, MainModelField } from 'services/api/types';
|
||||
import { ImageDTO, MainModelField, OnnxModelField } from 'services/api/types';
|
||||
|
||||
export const initialImageSelected = createAction<ImageDTO | string | undefined>(
|
||||
'generation/initialImageSelected'
|
||||
);
|
||||
|
||||
export const modelSelected = createAction<MainModelField>(
|
||||
export const modelSelected = createAction<MainModelField | OnnxModelField>(
|
||||
'generation/modelSelected'
|
||||
);
|
||||
|
||||
@@ -8,7 +8,7 @@ import {
|
||||
setShouldShowAdvancedOptions,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
import { clamp } from 'lodash-es';
|
||||
import { ImageDTO, MainModelField } from 'services/api/types';
|
||||
import { ImageDTO, MainModelField, OnnxModelField } from 'services/api/types';
|
||||
import { clipSkipMap } from '../components/Parameters/Advanced/ParamClipSkip';
|
||||
import {
|
||||
CfgScaleParam,
|
||||
@@ -54,7 +54,7 @@ export interface GenerationState {
|
||||
shouldUseSymmetry: boolean;
|
||||
horizontalSymmetrySteps: number;
|
||||
verticalSymmetrySteps: number;
|
||||
model: MainModelField | null;
|
||||
model: MainModelField | OnnxModelField | null;
|
||||
vae: VaeModelParam | null;
|
||||
seamlessXAxis: boolean;
|
||||
seamlessYAxis: boolean;
|
||||
@@ -227,7 +227,10 @@ export const generationSlice = createSlice({
|
||||
const { image_name, width, height } = action.payload;
|
||||
state.initialImage = { imageName: image_name, width, height };
|
||||
},
|
||||
modelChanged: (state, action: PayloadAction<MainModelParam | null>) => {
|
||||
modelChanged: (
|
||||
state,
|
||||
action: PayloadAction<MainModelParam | OnnxModelField | null>
|
||||
) => {
|
||||
state.model = action.payload;
|
||||
|
||||
if (state.model === null) {
|
||||
@@ -259,6 +262,7 @@ export const generationSlice = createSlice({
|
||||
const result = zMainModel.safeParse({
|
||||
model_name,
|
||||
base_model,
|
||||
model_type,
|
||||
});
|
||||
|
||||
if (result.success) {
|
||||
|
||||
@@ -1,98 +1,27 @@
|
||||
import type { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import { FACETOOL_TYPES } from 'app/constants';
|
||||
import { ESRGANInvocation } from 'services/api/types';
|
||||
|
||||
export type UpscalingLevel = 2 | 4;
|
||||
|
||||
export type FacetoolType = (typeof FACETOOL_TYPES)[number];
|
||||
export type ESRGANModelName = NonNullable<ESRGANInvocation['model_name']>;
|
||||
|
||||
export interface PostprocessingState {
|
||||
codeformerFidelity: number;
|
||||
facetoolStrength: number;
|
||||
facetoolType: FacetoolType;
|
||||
hiresFix: boolean;
|
||||
hiresStrength: number;
|
||||
shouldLoopback: boolean;
|
||||
shouldRunESRGAN: boolean;
|
||||
shouldRunFacetool: boolean;
|
||||
upscalingLevel: UpscalingLevel;
|
||||
upscalingDenoising: number;
|
||||
upscalingStrength: number;
|
||||
esrganModelName: ESRGANModelName;
|
||||
}
|
||||
|
||||
export const initialPostprocessingState: PostprocessingState = {
|
||||
codeformerFidelity: 0.75,
|
||||
facetoolStrength: 0.75,
|
||||
facetoolType: 'gfpgan',
|
||||
hiresFix: false,
|
||||
hiresStrength: 0.75,
|
||||
shouldLoopback: false,
|
||||
shouldRunESRGAN: false,
|
||||
shouldRunFacetool: false,
|
||||
upscalingLevel: 4,
|
||||
upscalingDenoising: 0.75,
|
||||
upscalingStrength: 0.75,
|
||||
esrganModelName: 'RealESRGAN_x4plus.pth',
|
||||
};
|
||||
|
||||
export const postprocessingSlice = createSlice({
|
||||
name: 'postprocessing',
|
||||
initialState: initialPostprocessingState,
|
||||
reducers: {
|
||||
setFacetoolStrength: (state, action: PayloadAction<number>) => {
|
||||
state.facetoolStrength = action.payload;
|
||||
},
|
||||
setCodeformerFidelity: (state, action: PayloadAction<number>) => {
|
||||
state.codeformerFidelity = action.payload;
|
||||
},
|
||||
setUpscalingLevel: (state, action: PayloadAction<UpscalingLevel>) => {
|
||||
state.upscalingLevel = action.payload;
|
||||
},
|
||||
setUpscalingDenoising: (state, action: PayloadAction<number>) => {
|
||||
state.upscalingDenoising = action.payload;
|
||||
},
|
||||
setUpscalingStrength: (state, action: PayloadAction<number>) => {
|
||||
state.upscalingStrength = action.payload;
|
||||
},
|
||||
setHiresFix: (state, action: PayloadAction<boolean>) => {
|
||||
state.hiresFix = action.payload;
|
||||
},
|
||||
setHiresStrength: (state, action: PayloadAction<number>) => {
|
||||
state.hiresStrength = action.payload;
|
||||
},
|
||||
resetPostprocessingState: (state) => {
|
||||
return {
|
||||
...state,
|
||||
...initialPostprocessingState,
|
||||
};
|
||||
},
|
||||
setShouldRunFacetool: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldRunFacetool = action.payload;
|
||||
},
|
||||
setFacetoolType: (state, action: PayloadAction<FacetoolType>) => {
|
||||
state.facetoolType = action.payload;
|
||||
},
|
||||
setShouldRunESRGAN: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldRunESRGAN = action.payload;
|
||||
},
|
||||
setShouldLoopback: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldLoopback = action.payload;
|
||||
esrganModelNameChanged: (state, action: PayloadAction<ESRGANModelName>) => {
|
||||
state.esrganModelName = action.payload;
|
||||
},
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
resetPostprocessingState,
|
||||
setCodeformerFidelity,
|
||||
setFacetoolStrength,
|
||||
setFacetoolType,
|
||||
setHiresFix,
|
||||
setHiresStrength,
|
||||
setShouldLoopback,
|
||||
setShouldRunESRGAN,
|
||||
setShouldRunFacetool,
|
||||
setUpscalingLevel,
|
||||
setUpscalingDenoising,
|
||||
setUpscalingStrength,
|
||||
} = postprocessingSlice.actions;
|
||||
export const { esrganModelNameChanged } = postprocessingSlice.actions;
|
||||
|
||||
export default postprocessingSlice.reducer;
|
||||
|
||||
@@ -126,6 +126,14 @@ export type HeightParam = z.infer<typeof zHeight>;
|
||||
export const isValidHeight = (val: unknown): val is HeightParam =>
|
||||
zHeight.safeParse(val).success;
|
||||
|
||||
const zModelType = z.enum([
|
||||
'vae',
|
||||
'lora',
|
||||
'onnx',
|
||||
'main',
|
||||
'controlnet',
|
||||
'embedding',
|
||||
]);
|
||||
const zBaseModel = z.enum(['sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
|
||||
|
||||
export type BaseModelParam = z.infer<typeof zBaseModel>;
|
||||
@@ -137,6 +145,7 @@ export type BaseModelParam = z.infer<typeof zBaseModel>;
|
||||
export const zMainModel = z.object({
|
||||
model_name: z.string().min(1),
|
||||
base_model: zBaseModel,
|
||||
model_type: zModelType,
|
||||
});
|
||||
|
||||
/**
|
||||
|
||||
@@ -14,6 +14,7 @@ export const modelIdToMainModelParam = (
|
||||
const result = zMainModel.safeParse({
|
||||
base_model,
|
||||
model_name,
|
||||
model_type,
|
||||
});
|
||||
|
||||
if (!result.success) {
|
||||
|
||||
@@ -5,7 +5,11 @@ import { useRef } from 'react';
|
||||
import { useHoverDirty } from 'react-use';
|
||||
import { useGetAppVersionQuery } from 'services/api/endpoints/appInfo';
|
||||
|
||||
const InvokeAILogoComponent = () => {
|
||||
interface Props {
|
||||
showVersion?: boolean;
|
||||
}
|
||||
|
||||
const InvokeAILogoComponent = ({ showVersion = true }: Props) => {
|
||||
const { data: appVersion } = useGetAppVersionQuery();
|
||||
const ref = useRef(null);
|
||||
const isHovered = useHoverDirty(ref);
|
||||
@@ -28,7 +32,7 @@ const InvokeAILogoComponent = () => {
|
||||
invoke <strong>ai</strong>
|
||||
</Text>
|
||||
<AnimatePresence>
|
||||
{isHovered && appVersion && (
|
||||
{showVersion && isHovered && appVersion && (
|
||||
<motion.div
|
||||
key="statusText"
|
||||
initial={{
|
||||
|
||||
@@ -0,0 +1,119 @@
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { stateSelector } from 'app/store/store';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { modelIdToMainModelField } from 'features/nodes/util/modelIdToMainModelField';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { forEach } from 'lodash-es';
|
||||
import {
|
||||
useGetMainModelsQuery,
|
||||
useGetOnnxModelsQuery,
|
||||
} from 'services/api/endpoints/models';
|
||||
import { modelIdToOnnxModelField } from 'features/nodes/util/modelIdToOnnxModelField';
|
||||
|
||||
export const MODEL_TYPE_MAP = {
|
||||
'sd-1': 'Stable Diffusion 1.x',
|
||||
'sd-2': 'Stable Diffusion 2.x',
|
||||
};
|
||||
|
||||
const selector = createSelector(
|
||||
stateSelector,
|
||||
(state) => ({ currentModel: state.generation.model }),
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
||||
const ModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { currentModel } = useAppSelector(selector);
|
||||
|
||||
const { data: mainModels, isLoading } = useGetMainModelsQuery();
|
||||
const { data: onnxModels, isLoading: onnxLoading } = useGetOnnxModelsQuery();
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!mainModels) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(mainModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
forEach(onnxModels?.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.model_name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [mainModels, onnxModels]);
|
||||
|
||||
const selectedModel = useMemo(
|
||||
() =>
|
||||
mainModels?.entities[
|
||||
`${currentModel?.base_model}/main/${currentModel?.model_name}`
|
||||
] ||
|
||||
onnxModels?.entities[
|
||||
`${currentModel?.base_model}/onnx/${currentModel?.model_name}`
|
||||
],
|
||||
[mainModels?.entities, onnxModels?.entities, currentModel]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
let modelField = modelIdToMainModelField(v);
|
||||
if (v.includes('onnx')) {
|
||||
modelField = modelIdToOnnxModelField(v);
|
||||
}
|
||||
dispatch(modelSelected(modelField));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return isLoading || onnxLoading ? (
|
||||
<IAIMantineSelect
|
||||
label={t('modelManager.model')}
|
||||
placeholder="Loading..."
|
||||
disabled={true}
|
||||
data={[]}
|
||||
/>
|
||||
) : (
|
||||
<IAIMantineSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label={t('modelManager.model')}
|
||||
value={selectedModel?.id}
|
||||
placeholder={data.length > 0 ? 'Select a model' : 'No models available'}
|
||||
data={data}
|
||||
error={data.length === 0}
|
||||
disabled={data.length === 0}
|
||||
onChange={handleChangeModel}
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ModelSelect);
|
||||
@@ -0,0 +1,56 @@
|
||||
import { createEntityAdapter, createSlice } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import {
|
||||
StableDiffusion1ModelCheckpointConfig,
|
||||
StableDiffusion1ModelDiffusersConfig,
|
||||
} from 'services/api';
|
||||
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
|
||||
export type SD1PipelineModel = (
|
||||
| StableDiffusion1ModelCheckpointConfig
|
||||
| StableDiffusion1ModelDiffusersConfig
|
||||
) & {
|
||||
name: string;
|
||||
};
|
||||
|
||||
export const sd1PipelineModelsAdapter = createEntityAdapter<SD1PipelineModel>({
|
||||
selectId: (model) => model.name,
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
});
|
||||
|
||||
export const sd1InitialPipelineModelsState =
|
||||
sd1PipelineModelsAdapter.getInitialState();
|
||||
|
||||
export type SD1PipelineModelState = typeof sd1InitialPipelineModelsState;
|
||||
|
||||
export const sd1PipelineModelsSlice = createSlice({
|
||||
name: 'sd1PipelineModels',
|
||||
initialState: sd1InitialPipelineModelsState,
|
||||
reducers: {
|
||||
modelAdded: sd1PipelineModelsAdapter.upsertOne,
|
||||
},
|
||||
extraReducers(builder) {
|
||||
/**
|
||||
* Received Models - FULFILLED
|
||||
*/
|
||||
builder.addCase(receivedModels.fulfilled, (state, action) => {
|
||||
if (action.meta.arg.baseModel !== 'sd-1') return;
|
||||
sd1PipelineModelsAdapter.setAll(state, action.payload);
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
selectAll: selectAllSD1PipelineModels,
|
||||
selectById: selectByIdSD1PipelineModels,
|
||||
selectEntities: selectEntitiesSD1PipelineModels,
|
||||
selectIds: selectIdsSD1PipelineModels,
|
||||
selectTotal: selectTotalSD1PipelineModels,
|
||||
} = sd1PipelineModelsAdapter.getSelectors<RootState>(
|
||||
(state) => state.sd1pipelinemodels
|
||||
);
|
||||
|
||||
export const { modelAdded } = sd1PipelineModelsSlice.actions;
|
||||
|
||||
export default sd1PipelineModelsSlice.reducer;
|
||||
@@ -0,0 +1,56 @@
|
||||
import { createEntityAdapter, createSlice } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import {
|
||||
StableDiffusion2ModelCheckpointConfig,
|
||||
StableDiffusion2ModelDiffusersConfig,
|
||||
} from 'services/api';
|
||||
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
|
||||
export type SD2PipelineModel = (
|
||||
| StableDiffusion2ModelCheckpointConfig
|
||||
| StableDiffusion2ModelDiffusersConfig
|
||||
) & {
|
||||
name: string;
|
||||
};
|
||||
|
||||
export const sd2PipelineModelsAdapater = createEntityAdapter<SD2PipelineModel>({
|
||||
selectId: (model) => model.name,
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
});
|
||||
|
||||
export const sd2InitialPipelineModelsState =
|
||||
sd2PipelineModelsAdapater.getInitialState();
|
||||
|
||||
export type SD2PipelineModelState = typeof sd2InitialPipelineModelsState;
|
||||
|
||||
export const sd2PipelineModelsSlice = createSlice({
|
||||
name: 'sd2PipelineModels',
|
||||
initialState: sd2InitialPipelineModelsState,
|
||||
reducers: {
|
||||
modelAdded: sd2PipelineModelsAdapater.upsertOne,
|
||||
},
|
||||
extraReducers(builder) {
|
||||
/**
|
||||
* Received Models - FULFILLED
|
||||
*/
|
||||
builder.addCase(receivedModels.fulfilled, (state, action) => {
|
||||
if (action.meta.arg.baseModel !== 'sd-2') return;
|
||||
sd2PipelineModelsAdapater.setAll(state, action.payload);
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
selectAll: selectAllSD2PipelineModels,
|
||||
selectById: selectByIdSD2PipelineModels,
|
||||
selectEntities: selectEntitiesSD2PipelineModels,
|
||||
selectIds: selectIdsSD2PipelineModels,
|
||||
selectTotal: selectTotalSD2PipelineModels,
|
||||
} = sd2PipelineModelsAdapater.getSelectors<RootState>(
|
||||
(state) => state.sd2pipelinemodels
|
||||
);
|
||||
|
||||
export const { modelAdded } = sd2PipelineModelsSlice.actions;
|
||||
|
||||
export default sd2PipelineModelsSlice.reducer;
|
||||
@@ -85,7 +85,7 @@ export default function SimpleAddModels() {
|
||||
<Flex flexDirection="column" width="100%" gap={4}>
|
||||
<IAIMantineTextInput
|
||||
label="Model Location"
|
||||
placeholder="Provide a path to a local Diffusers model, local checkpoint / safetensors model or a HuggingFace Repo ID"
|
||||
placeholder="Provide a path to a local Diffusers model, local checkpoint / safetensors model a HuggingFace Repo ID, or a checkpoint/diffusers model URL."
|
||||
w="100%"
|
||||
{...addModelForm.getInputProps('location')}
|
||||
/>
|
||||
|
||||
@@ -17,7 +17,7 @@ type ModelListProps = {
|
||||
setSelectedModelId: (name: string | undefined) => void;
|
||||
};
|
||||
|
||||
type ModelFormat = 'all' | 'checkpoint' | 'diffusers';
|
||||
type ModelFormat = 'all' | 'checkpoint' | 'diffusers' | 'olive';
|
||||
|
||||
const ModelList = (props: ModelListProps) => {
|
||||
const { selectedModelId, setSelectedModelId } = props;
|
||||
|
||||
@@ -4,7 +4,6 @@ import ParamAdvancedCollapse from 'features/parameters/components/Parameters/Adv
|
||||
import ParamControlNetCollapse from 'features/parameters/components/Parameters/ControlNet/ParamControlNetCollapse';
|
||||
import ParamNegativeConditioning from 'features/parameters/components/Parameters/Core/ParamNegativeConditioning';
|
||||
import ParamPositiveConditioning from 'features/parameters/components/Parameters/Core/ParamPositiveConditioning';
|
||||
import ParamHiresCollapse from 'features/parameters/components/Parameters/Hires/ParamHiresCollapse';
|
||||
import ParamNoiseCollapse from 'features/parameters/components/Parameters/Noise/ParamNoiseCollapse';
|
||||
import ParamSeamlessCollapse from 'features/parameters/components/Parameters/Seamless/ParamSeamlessCollapse';
|
||||
import ParamSymmetryCollapse from 'features/parameters/components/Parameters/Symmetry/ParamSymmetryCollapse';
|
||||
@@ -26,7 +25,6 @@ const TextToImageTabParameters = () => {
|
||||
<ParamVariationCollapse />
|
||||
<ParamNoiseCollapse />
|
||||
<ParamSymmetryCollapse />
|
||||
<ParamHiresCollapse />
|
||||
<ParamSeamlessCollapse />
|
||||
<ParamAdvancedCollapse />
|
||||
</>
|
||||
|
||||
@@ -10,6 +10,7 @@ import {
|
||||
ImportModelConfig,
|
||||
LoRAModelConfig,
|
||||
MainModelConfig,
|
||||
OnnxModelConfig,
|
||||
MergeModelConfig,
|
||||
TextualInversionModelConfig,
|
||||
VaeModelConfig,
|
||||
@@ -27,6 +28,8 @@ export type MainModelConfigEntity =
|
||||
| DiffusersModelConfigEntity
|
||||
| CheckpointModelConfigEntity;
|
||||
|
||||
export type OnnxModelConfigEntity = OnnxModelConfig & { id: string };
|
||||
|
||||
export type LoRAModelConfigEntity = LoRAModelConfig & { id: string };
|
||||
|
||||
export type ControlNetModelConfigEntity = ControlNetModelConfig & {
|
||||
@@ -41,6 +44,7 @@ export type VaeModelConfigEntity = VaeModelConfig & { id: string };
|
||||
|
||||
type AnyModelConfigEntity =
|
||||
| MainModelConfigEntity
|
||||
| OnnxModelConfigEntity
|
||||
| LoRAModelConfigEntity
|
||||
| ControlNetModelConfigEntity
|
||||
| TextualInversionModelConfigEntity
|
||||
@@ -104,6 +108,10 @@ type SearchFolderArg = operations['search_for_models']['parameters']['query'];
|
||||
const mainModelsAdapter = createEntityAdapter<MainModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
|
||||
const onnxModelsAdapter = createEntityAdapter<OnnxModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
const loraModelsAdapter = createEntityAdapter<LoRAModelConfigEntity>({
|
||||
sortComparer: (a, b) => a.model_name.localeCompare(b.model_name),
|
||||
});
|
||||
@@ -141,6 +149,38 @@ const createModelEntities = <T extends AnyModelConfigEntity>(
|
||||
|
||||
export const modelsApi = api.injectEndpoints({
|
||||
endpoints: (build) => ({
|
||||
getOnnxModels: build.query<EntityState<OnnxModelConfigEntity>, void>({
|
||||
query: () => ({ url: 'models/', params: { model_type: 'onnx' } }),
|
||||
providesTags: (result, error, arg) => {
|
||||
const tags: ApiFullTagDescription[] = [
|
||||
{ id: 'OnnxModel', type: LIST_TAG },
|
||||
];
|
||||
|
||||
if (result) {
|
||||
tags.push(
|
||||
...result.ids.map((id) => ({
|
||||
type: 'OnnxModel' as const,
|
||||
id,
|
||||
}))
|
||||
);
|
||||
}
|
||||
|
||||
return tags;
|
||||
},
|
||||
transformResponse: (
|
||||
response: { models: OnnxModelConfig[] },
|
||||
meta,
|
||||
arg
|
||||
) => {
|
||||
const entities = createModelEntities<OnnxModelConfigEntity>(
|
||||
response.models
|
||||
);
|
||||
return onnxModelsAdapter.setAll(
|
||||
onnxModelsAdapter.getInitialState(),
|
||||
entities
|
||||
);
|
||||
},
|
||||
}),
|
||||
getMainModels: build.query<EntityState<MainModelConfigEntity>, void>({
|
||||
query: () => ({ url: 'models/', params: { model_type: 'main' } }),
|
||||
providesTags: (result, error, arg) => {
|
||||
@@ -413,6 +453,7 @@ export const modelsApi = api.injectEndpoints({
|
||||
|
||||
export const {
|
||||
useGetMainModelsQuery,
|
||||
useGetOnnxModelsQuery,
|
||||
useGetControlNetModelsQuery,
|
||||
useGetLoRAModelsQuery,
|
||||
useGetTextualInversionModelsQuery,
|
||||
|
||||
@@ -8,6 +8,132 @@ import {
|
||||
} from '@reduxjs/toolkit/query/react';
|
||||
import { $authToken, $baseUrl } from 'services/api/client';
|
||||
|
||||
export type { AddInvocation } from './models/AddInvocation';
|
||||
export type { BoardChanges } from './models/BoardChanges';
|
||||
export type { BoardDTO } from './models/BoardDTO';
|
||||
export type { Body_create_board_image } from './models/Body_create_board_image';
|
||||
export type { Body_remove_board_image } from './models/Body_remove_board_image';
|
||||
export type { Body_upload_image } from './models/Body_upload_image';
|
||||
export type { CannyImageProcessorInvocation } from './models/CannyImageProcessorInvocation';
|
||||
export type { CkptModelInfo } from './models/CkptModelInfo';
|
||||
export type { ClipField } from './models/ClipField';
|
||||
export type { CollectInvocation } from './models/CollectInvocation';
|
||||
export type { CollectInvocationOutput } from './models/CollectInvocationOutput';
|
||||
export type { ColorField } from './models/ColorField';
|
||||
export type { CompelInvocation } from './models/CompelInvocation';
|
||||
export type { CompelOutput } from './models/CompelOutput';
|
||||
export type { ConditioningField } from './models/ConditioningField';
|
||||
export type { ContentShuffleImageProcessorInvocation } from './models/ContentShuffleImageProcessorInvocation';
|
||||
export type { ControlField } from './models/ControlField';
|
||||
export type { ControlNetInvocation } from './models/ControlNetInvocation';
|
||||
export type { ControlNetModelConfig } from './models/ControlNetModelConfig';
|
||||
export type { ControlOutput } from './models/ControlOutput';
|
||||
export type { CreateModelRequest } from './models/CreateModelRequest';
|
||||
export type { CvInpaintInvocation } from './models/CvInpaintInvocation';
|
||||
export type { DiffusersModelInfo } from './models/DiffusersModelInfo';
|
||||
export type { DivideInvocation } from './models/DivideInvocation';
|
||||
export type { DynamicPromptInvocation } from './models/DynamicPromptInvocation';
|
||||
export type { Edge } from './models/Edge';
|
||||
export type { EdgeConnection } from './models/EdgeConnection';
|
||||
export type { FloatCollectionOutput } from './models/FloatCollectionOutput';
|
||||
export type { FloatLinearRangeInvocation } from './models/FloatLinearRangeInvocation';
|
||||
export type { FloatOutput } from './models/FloatOutput';
|
||||
export type { Graph } from './models/Graph';
|
||||
export type { GraphExecutionState } from './models/GraphExecutionState';
|
||||
export type { GraphInvocation } from './models/GraphInvocation';
|
||||
export type { GraphInvocationOutput } from './models/GraphInvocationOutput';
|
||||
export type { HTTPValidationError } from './models/HTTPValidationError';
|
||||
export type { ImageBlurInvocation } from './models/ImageBlurInvocation';
|
||||
export type { ImageChannelInvocation } from './models/ImageChannelInvocation';
|
||||
export type { ImageConvertInvocation } from './models/ImageConvertInvocation';
|
||||
export type { ImageCropInvocation } from './models/ImageCropInvocation';
|
||||
export type { ImageDTO } from './models/ImageDTO';
|
||||
export type { ImageField } from './models/ImageField';
|
||||
export type { ImageInverseLerpInvocation } from './models/ImageInverseLerpInvocation';
|
||||
export type { ImageLerpInvocation } from './models/ImageLerpInvocation';
|
||||
export type { ImageMetadata } from './models/ImageMetadata';
|
||||
export type { ImageMultiplyInvocation } from './models/ImageMultiplyInvocation';
|
||||
export type { ImageOutput } from './models/ImageOutput';
|
||||
export type { ImagePasteInvocation } from './models/ImagePasteInvocation';
|
||||
export type { ImageProcessorInvocation } from './models/ImageProcessorInvocation';
|
||||
export type { ImageRecordChanges } from './models/ImageRecordChanges';
|
||||
export type { ImageResizeInvocation } from './models/ImageResizeInvocation';
|
||||
export type { ImageScaleInvocation } from './models/ImageScaleInvocation';
|
||||
export type { ImageToLatentsInvocation } from './models/ImageToLatentsInvocation';
|
||||
export type { ImageUrlsDTO } from './models/ImageUrlsDTO';
|
||||
export type { InfillColorInvocation } from './models/InfillColorInvocation';
|
||||
export type { InfillPatchMatchInvocation } from './models/InfillPatchMatchInvocation';
|
||||
export type { InfillTileInvocation } from './models/InfillTileInvocation';
|
||||
export type { InpaintInvocation } from './models/InpaintInvocation';
|
||||
export type { IntCollectionOutput } from './models/IntCollectionOutput';
|
||||
export type { IntOutput } from './models/IntOutput';
|
||||
export type { IterateInvocation } from './models/IterateInvocation';
|
||||
export type { IterateInvocationOutput } from './models/IterateInvocationOutput';
|
||||
export type { LatentsField } from './models/LatentsField';
|
||||
export type { LatentsOutput } from './models/LatentsOutput';
|
||||
export type { LatentsToImageInvocation } from './models/LatentsToImageInvocation';
|
||||
export type { LatentsToLatentsInvocation } from './models/LatentsToLatentsInvocation';
|
||||
export type { LineartAnimeImageProcessorInvocation } from './models/LineartAnimeImageProcessorInvocation';
|
||||
export type { LineartImageProcessorInvocation } from './models/LineartImageProcessorInvocation';
|
||||
export type { LoadImageInvocation } from './models/LoadImageInvocation';
|
||||
export type { LoraInfo } from './models/LoraInfo';
|
||||
export type { LoraLoaderInvocation } from './models/LoraLoaderInvocation';
|
||||
export type { LoraLoaderOutput } from './models/LoraLoaderOutput';
|
||||
export type { MaskFromAlphaInvocation } from './models/MaskFromAlphaInvocation';
|
||||
export type { MaskOutput } from './models/MaskOutput';
|
||||
export type { MediapipeFaceProcessorInvocation } from './models/MediapipeFaceProcessorInvocation';
|
||||
export type { MidasDepthImageProcessorInvocation } from './models/MidasDepthImageProcessorInvocation';
|
||||
export type { MlsdImageProcessorInvocation } from './models/MlsdImageProcessorInvocation';
|
||||
export type { ModelInfo } from './models/ModelInfo';
|
||||
export type { ModelLoaderOutput } from './models/ModelLoaderOutput';
|
||||
export type { ModelsList } from './models/ModelsList';
|
||||
export type { ModelType } from './models/ModelType';
|
||||
export type { MultiplyInvocation } from './models/MultiplyInvocation';
|
||||
export type { NoiseInvocation } from './models/NoiseInvocation';
|
||||
export type { NoiseOutput } from './models/NoiseOutput';
|
||||
export type { NormalbaeImageProcessorInvocation } from './models/NormalbaeImageProcessorInvocation';
|
||||
export type { OffsetPaginatedResults_BoardDTO_ } from './models/OffsetPaginatedResults_BoardDTO_';
|
||||
export type { OffsetPaginatedResults_ImageDTO_ } from './models/OffsetPaginatedResults_ImageDTO_';
|
||||
export type { ONNXLatentsToImageInvocation } from './models/ONNXLatentsToImageInvocation';
|
||||
export type { ONNXModelLoaderOutput } from './models/ONNXModelLoaderOutput';
|
||||
export type { ONNXPromptInvocation } from './models/ONNXPromptInvocation';
|
||||
export type { ONNXSD1ModelLoaderInvocation } from './models/ONNXSD1ModelLoaderInvocation';
|
||||
export type { ONNXStableDiffusion1ModelConfig } from './models/ONNXStableDiffusion1ModelConfig';
|
||||
export type { ONNXStableDiffusion2ModelConfig } from './models/ONNXStableDiffusion2ModelConfig';
|
||||
export type { ONNXTextToLatentsInvocation } from './models/ONNXTextToLatentsInvocation';
|
||||
export type { OpenposeImageProcessorInvocation } from './models/OpenposeImageProcessorInvocation';
|
||||
export type { PaginatedResults_GraphExecutionState_ } from './models/PaginatedResults_GraphExecutionState_';
|
||||
export type { ParamFloatInvocation } from './models/ParamFloatInvocation';
|
||||
export type { ParamIntInvocation } from './models/ParamIntInvocation';
|
||||
export type { PidiImageProcessorInvocation } from './models/PidiImageProcessorInvocation';
|
||||
export type { PipelineModelField } from './models/PipelineModelField';
|
||||
export type { PipelineModelLoaderInvocation } from './models/PipelineModelLoaderInvocation';
|
||||
export type { PromptCollectionOutput } from './models/PromptCollectionOutput';
|
||||
export type { PromptOutput } from './models/PromptOutput';
|
||||
export type { RandomIntInvocation } from './models/RandomIntInvocation';
|
||||
export type { RandomRangeInvocation } from './models/RandomRangeInvocation';
|
||||
export type { RangeInvocation } from './models/RangeInvocation';
|
||||
export type { RangeOfSizeInvocation } from './models/RangeOfSizeInvocation';
|
||||
export type { ResizeLatentsInvocation } from './models/ResizeLatentsInvocation';
|
||||
export type { RestoreFaceInvocation } from './models/RestoreFaceInvocation';
|
||||
export type { ScaleLatentsInvocation } from './models/ScaleLatentsInvocation';
|
||||
export type { ShowImageInvocation } from './models/ShowImageInvocation';
|
||||
export type { StableDiffusion1ModelCheckpointConfig } from './models/StableDiffusion1ModelCheckpointConfig';
|
||||
export type { StableDiffusion1ModelDiffusersConfig } from './models/StableDiffusion1ModelDiffusersConfig';
|
||||
export type { StableDiffusion2ModelCheckpointConfig } from './models/StableDiffusion2ModelCheckpointConfig';
|
||||
export type { StableDiffusion2ModelDiffusersConfig } from './models/StableDiffusion2ModelDiffusersConfig';
|
||||
export type { StepParamEasingInvocation } from './models/StepParamEasingInvocation';
|
||||
export type { SubModelType } from './models/SubModelType';
|
||||
export type { SubtractInvocation } from './models/SubtractInvocation';
|
||||
export type { TextToLatentsInvocation } from './models/TextToLatentsInvocation';
|
||||
export type { TextualInversionModelConfig } from './models/TextualInversionModelConfig';
|
||||
export type { UNetField } from './models/UNetField';
|
||||
export type { UpscaleInvocation } from './models/UpscaleInvocation';
|
||||
export type { VaeField } from './models/VaeField';
|
||||
export type { VaeModelConfig } from './models/VaeModelConfig';
|
||||
export type { VaeRepo } from './models/VaeRepo';
|
||||
export type { ValidationError } from './models/ValidationError';
|
||||
export type { ZoeDepthImageProcessorInvocation } from './models/ZoeDepthImageProcessorInvocation';
|
||||
export const tagTypes = ['Board', 'Image', 'ImageMetadata', 'Model'];
|
||||
export type ApiFullTagDescription = FullTagDescription<
|
||||
(typeof tagTypes)[number]
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* Adds two numbers
|
||||
*/
|
||||
export type AddInvocation = {
|
||||
/**
|
||||
* The id of this node. Must be unique among all nodes.
|
||||
*/
|
||||
id: string;
|
||||
/**
|
||||
* Whether or not this node is an intermediate node.
|
||||
*/
|
||||
is_intermediate?: boolean;
|
||||
type?: 'add';
|
||||
/**
|
||||
* The first number
|
||||
*/
|
||||
'a'?: number;
|
||||
/**
|
||||
* The second number
|
||||
*/
|
||||
'b'?: number;
|
||||
};
|
||||
@@ -0,0 +1,14 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
export type BoardChanges = {
|
||||
/**
|
||||
* The board's new name.
|
||||
*/
|
||||
board_name?: string;
|
||||
/**
|
||||
* The name of the board's new cover image.
|
||||
*/
|
||||
cover_image_name?: string;
|
||||
};
|
||||
37
invokeai/frontend/web/src/services/api/models/BoardDTO.ts
Normal file
37
invokeai/frontend/web/src/services/api/models/BoardDTO.ts
Normal file
@@ -0,0 +1,37 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* Deserialized board record with cover image URL and image count.
|
||||
*/
|
||||
export type BoardDTO = {
|
||||
/**
|
||||
* The unique ID of the board.
|
||||
*/
|
||||
board_id: string;
|
||||
/**
|
||||
* The name of the board.
|
||||
*/
|
||||
board_name: string;
|
||||
/**
|
||||
* The created timestamp of the board.
|
||||
*/
|
||||
created_at: string;
|
||||
/**
|
||||
* The updated timestamp of the board.
|
||||
*/
|
||||
updated_at: string;
|
||||
/**
|
||||
* The deleted timestamp of the board.
|
||||
*/
|
||||
deleted_at?: string;
|
||||
/**
|
||||
* The name of the board's cover image.
|
||||
*/
|
||||
cover_image_name?: string;
|
||||
/**
|
||||
* The number of images in the board.
|
||||
*/
|
||||
image_count: number;
|
||||
};
|
||||
@@ -0,0 +1,14 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
export type Body_create_board_image = {
|
||||
/**
|
||||
* The id of the board to add to
|
||||
*/
|
||||
board_id: string;
|
||||
/**
|
||||
* The name of the image to add
|
||||
*/
|
||||
image_name: string;
|
||||
};
|
||||
@@ -0,0 +1,14 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
export type Body_remove_board_image = {
|
||||
/**
|
||||
* The id of the board
|
||||
*/
|
||||
board_id: string;
|
||||
/**
|
||||
* The name of the image to remove
|
||||
*/
|
||||
image_name: string;
|
||||
};
|
||||
@@ -0,0 +1,7 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
export type Body_upload_image = {
|
||||
file: Blob;
|
||||
};
|
||||
@@ -0,0 +1,32 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { ImageField } from './ImageField';
|
||||
|
||||
/**
|
||||
* Canny edge detection for ControlNet
|
||||
*/
|
||||
export type CannyImageProcessorInvocation = {
|
||||
/**
|
||||
* The id of this node. Must be unique among all nodes.
|
||||
*/
|
||||
id: string;
|
||||
/**
|
||||
* Whether or not this node is an intermediate node.
|
||||
*/
|
||||
is_intermediate?: boolean;
|
||||
type?: 'canny_image_processor';
|
||||
/**
|
||||
* The image to process
|
||||
*/
|
||||
image?: ImageField;
|
||||
/**
|
||||
* The low threshold of the Canny pixel gradient (0-255)
|
||||
*/
|
||||
low_threshold?: number;
|
||||
/**
|
||||
* The high threshold of the Canny pixel gradient (0-255)
|
||||
*/
|
||||
high_threshold?: number;
|
||||
};
|
||||
@@ -0,0 +1,39 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
export type CkptModelInfo = {
|
||||
/**
|
||||
* A description of the model
|
||||
*/
|
||||
description?: string;
|
||||
/**
|
||||
* The name of the model
|
||||
*/
|
||||
model_name: string;
|
||||
/**
|
||||
* The type of the model
|
||||
*/
|
||||
model_type: string;
|
||||
format?: 'ckpt';
|
||||
/**
|
||||
* The path to the model config
|
||||
*/
|
||||
config: string;
|
||||
/**
|
||||
* The path to the model weights
|
||||
*/
|
||||
weights: string;
|
||||
/**
|
||||
* The path to the model VAE
|
||||
*/
|
||||
vae: string;
|
||||
/**
|
||||
* The width of the model
|
||||
*/
|
||||
width?: number;
|
||||
/**
|
||||
* The height of the model
|
||||
*/
|
||||
height?: number;
|
||||
};
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user