Compare commits

..

20 Commits

Author SHA1 Message Date
psychedelicious
704cfd8ff5 wip attempt to rewrite to use no adapter 2023-07-13 15:32:02 +10:00
psychedelicious
2990fa23fe wip 2023-07-13 15:31:44 +10:00
psychedelicious
58cb5fefd0 feat(ui): wip again sry lol 2023-07-13 15:31:15 +10:00
psychedelicious
2ef5919475 feat(ui): wip again sry 2023-07-13 15:31:15 +10:00
psychedelicious
7f07528b08 feat(ui): wip sry 2023-07-13 15:31:15 +10:00
psychedelicious
a2f944a657 feat(db,api): changes to db and api to support batch operations
will squash and describe all changes later sry
2023-07-13 15:30:54 +10:00
psychedelicious
0317cc158a feat(ui): organise gallery slice 2023-07-13 15:30:54 +10:00
psychedelicious
8648332b4f chore(ui): regen types 2023-07-13 15:30:54 +10:00
psychedelicious
c2aee42fa3 fix(ui): fix board changes invalidating image tags
Caused a bazillion extraneous network requests
2023-07-13 15:30:54 +10:00
psychedelicious
a77f6b0c18 feat(ui): hide noisy rtk query redux actions 2023-07-13 15:30:54 +10:00
psychedelicious
8771e32ed2 fix(ui): fixes deleting image in use @ nodes resets node templates 2023-07-13 15:30:54 +10:00
psychedelicious
5e1ed63076 fix(ui): fix IAIDraggable/IAIDroppable absolute positioning 2023-07-13 15:30:54 +10:00
psychedelicious
cad358dc9a feat(db,api): list images board_id="none" gets images without a board 2023-07-13 15:30:54 +10:00
psychedelicious
8501ca0843 feat(ui): improve IAIDndImage performance
`dnd-kit` has a problem where, when drag events start and stop, every item that uses the library rerenders. This occurs due to its use of context.

The dnd library needs to listen for pointer events to handle dragging. Because our images are both clickable (selectable) and draggable, every time you click an image, the dnd necessarily sees this event, its context updates and all other dnd-enabled components rerender.

With a lot of images in gallery and/or batch manager, this leads to some jank.

There is an open PR to address this: https://github.com/clauderic/dnd-kit/pull/1096

But unfortunately, the maintainer hasn't accepted any changes for a few months, and its not clear if this will be merged any time soon :/

This change simply extracts the draggable and droppable logic out of IAIDndImage into their own minimal components. Now only these need to rerender when the dnd context is changed. The rerenders are far less impactful now.

Hopefully the linked PR is accepted and we get even more efficient dnd functionality in the future.

Also changed dnd activation constraint to distance (currently 10px) instead of delay and updated the stacking context of IAIDndImage subcomponents so that the reset and upload buttons still work.
2023-07-13 15:30:54 +10:00
psychedelicious
560a59123a feat(ui): improve IAIDndImage performance
`dnd-kit` has a problem where, when drag events start and stop, every item that uses the library rerenders. This occurs due to its use of context.

The dnd library needs to listen for pointer events to handle dragging. Because our images are both clickable (selectable) and draggable, every time you click an image, the dnd necessarily sees this event, its context updates and all other dnd-enabled components rerender.

With a lot of images in gallery and/or batch manager, this leads to some jank.

There is an open PR to address this: https://github.com/clauderic/dnd-kit/pull/1096

But unfortunately, the maintainer hasn't accepted any changes for a few months, and its not clear if this will be merged any time soon :/

This change simply extracts the draggable and droppable logic out of IAIDndImage into their own minimal components. Now only these need to rerender when the dnd context is changed. The rerenders are far less impactful now.

Hopefully the linked PR is accepted and we get even more efficient dnd functionality in the future.
2023-07-13 15:30:54 +10:00
psychedelicious
62b700b908 feat(ui): fix listeners for adding selection to board via dnd 2023-07-13 15:30:54 +10:00
psychedelicious
9aedf84ac2 fix: fix rebase conflicts 2023-07-13 15:30:54 +10:00
psychedelicious
a08179bf34 feat(api,ui): wip batch image actions 2023-07-13 15:30:54 +10:00
psychedelicious
0b9aaf1b0b feat(ui): wip multi image ops 2023-07-13 15:30:54 +10:00
psychedelicious
da98f281ee feat(api): implement delete many images & add many images to board
Add new routes & high-level service methods for each operation.
2023-07-13 15:30:54 +10:00
3276 changed files with 321536 additions and 316655 deletions

View File

@@ -20,13 +20,13 @@ def calc_images_mean_L1(image1_path, image2_path):
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("image1_path")
parser.add_argument("image2_path")
parser.add_argument('image1_path')
parser.add_argument('image2_path')
args = parser.parse_args()
return args
if __name__ == "__main__":
if __name__ == '__main__':
args = parse_args()
mean_L1 = calc_images_mean_L1(args.image1_path, args.image2_path)
print(mean_L1)

View File

@@ -1,11 +1,9 @@
*
!invokeai
!pyproject.toml
!uv.lock
!docker/docker-entrypoint.sh
!LICENSE
**/dist
**/node_modules
**/__pycache__
**/*.egg-info
**/*.egg-info

View File

@@ -1,5 +1 @@
b3dccfaeb636599c02effc377cdd8a87d658256c
218b6d0546b990fc449c876fb99f44b50c4daa35
182580ff6970caed400be178c5b888514b75d7f2
8e9d5c1187b0d36da80571ce4c8ba9b3a37b6c46
99aac5870e1092b182e6c5f21abcaab6936a4ad1

2
.gitattributes vendored
View File

@@ -2,5 +2,3 @@
# Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto
docker/** text eol=lf
tests/test_model_probe/stripped_models/** filter=lfs diff=lfs merge=lfs -text

39
.github/CODEOWNERS vendored
View File

@@ -1,31 +1,34 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr @jazzhaiku @psychedelicious
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @psychedelicious
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @psychedelicious
/docs/ @lstein @blessedcoolant @hipsterusername
/mkdocs.yml @lstein @blessedcoolant
# nodes
/invokeai/app/ @blessedcoolant @psychedelicious @hipsterusername @jazzhaiku
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @psychedelicious @hipsterusername
/docker/ @lstein @blessedcoolant @psychedelicious @hipsterusername @ebr
/scripts/ @ebr @lstein @psychedelicious @hipsterusername
/installer/ @lstein @ebr @psychedelicious @hipsterusername
/invokeai/assets @lstein @ebr @psychedelicious @hipsterusername
/invokeai/configs @lstein @psychedelicious @hipsterusername
/invokeai/version @lstein @blessedcoolant @psychedelicious @hipsterusername
/pyproject.toml @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
/invokeai/configs @lstein
/invokeai/version @lstein @blessedcoolant
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp
# generation, model management, postprocessing
/invokeai/backend @lstein @blessedcoolant @hipsterusername @jazzhaiku @psychedelicious @maryhipp
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2 @StAlKeR7779
# front ends
/invokeai/frontend/CLI @lstein @psychedelicious @hipsterusername
/invokeai/frontend/install @lstein @ebr @psychedelicious @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @psychedelicious @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @psychedelicious @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr
/invokeai/frontend/merge @lstein @blessedcoolant
/invokeai/frontend/training @lstein @blessedcoolant
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp

View File

@@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
@@ -14,27 +18,14 @@ body:
- type: checkboxes
attributes:
label: Is there an existing issue for this problem?
label: Is there an existing issue for this?
description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
- type: dropdown
id: install_method
attributes:
label: Install method
description: How did you install Invoke?
multiple: false
options:
- "Invoke's Launcher"
- 'Stability Matrix'
- 'Pinokio'
- 'Manual'
validations:
required: true
- type: markdown
attributes:
value: __Describe your environment__
@@ -42,119 +33,80 @@ body:
- type: dropdown
id: os_dropdown
attributes:
label: Operating system
description: Your computer's operating system.
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
- 'other'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU vendor
description: Your GPU's vendor.
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'Nvidia (CUDA)'
- 'AMD (ROCm)'
- 'Apple Silicon (MPS)'
- 'None (CPU)'
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input
id: vram
attributes:
label: GPU VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: Version number
label: What version did you experience this issue on?
description: |
The version of Invoke you have installed. If it is not the [latest version](https://github.com/invoke-ai/InvokeAI/releases/latest), please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. v6.0.2
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version, if you do not use the Launcher's provided GUI.
placeholder: ex. Firefox 123.0b3
validations:
required: false
- type: textarea
id: python-deps
attributes:
label: System Information
description: |
Click the gear icon at the bottom left corner, then click "About". Click the copy button and then paste here.
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened
label: What happened?
description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
placeholder: I clicked button X and then Y happened.
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
id: what-you-expected
attributes:
label: What you expected to happen
description: Describe what you expected to happen.
placeholder: I expected Z to happen.
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Any other context that might help us to understand the problem.
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: discord-username
id: contact
attributes:
label: Discord username
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
placeholder: supercoolusername123
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

View File

@@ -1,5 +1,5 @@
name: Feature Request
description: Contribute a idea or request a new feature
description: Commit a idea or Request a new feature
title: '[enhancement]: '
labels: ['enhancement']
# assignees:
@@ -9,14 +9,14 @@ body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
Thanks for taking the time to fill out this Feature request!
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: |
Please make use of the [search function](https://github.com/invoke-ai/InvokeAI/labels/enhancement)
to see if a similar issue already exists for the feature you want to request
to see if a simmilar issue already exists for the feature you want to request
options:
- label: I have searched the existing issues
required: true
@@ -34,9 +34,12 @@ body:
id: whatisexpected
attributes:
label: What should this feature add?
description: Explain the functionality this feature should add. Feature requests should be for single features. Please create multiple requests if you want to request multiple features.
description: Please try to explain the functionality this feature should add
placeholder: |
I'd like a button that creates an image of banana sushi every time I press it. Each image should be different. There should be a toggle next to the button that enables strawberry mode, in which the images are of strawberry sushi instead.
Instead of one huge textfield, it would be nice to have forms for bug-reports, feature-requests, ...
Great benefits with automatic labeling, assigning and other functionalitys not available in that form
via old-fashioned markdown-templates. I would also love to see the use of a moderator bot 🤖 like
https://github.com/marketplace/actions/issue-moderator-with-commands to auto close old issues and other things
validations:
required: true
@@ -48,6 +51,6 @@ body:
- type: textarea
attributes:
label: Additional Content
label: Aditional Content
description: Add any other context or screenshots about the feature request here.
placeholder: This is a mockup of the design how I imagine it <screenshot>
placeholder: This is a Mockup of the design how I imagine it <screenshot>

View File

@@ -1,33 +0,0 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 20
uses: actions/setup-node@v4
with:
node-version: '20'
- name: setup pnpm
uses: pnpm/action-setup@v4
with:
version: 10
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

59
.github/pr_labels.yml vendored
View File

@@ -1,59 +0,0 @@
root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@@ -1,23 +0,0 @@
## Summary
<!--A description of the changes in this PR. Include the kind of change (fix, feature, docs, etc), the "why" and the "how". Screenshots or videos are useful for frontend changes.-->
## Related Issues / Discussions
<!--WHEN APPLICABLE: List any related issues or discussions on github or discord. If this PR closes an issue, please use the "Closes #1234" format, so that the issue will be automatically closed when the PR merges.-->
## QA Instructions
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
## Merge Plan
<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like DB schemas, may need some care when merging. For example, a careful rebase by the change author, timing to not interfere with a pending release, or a message to contributors on discord after merging.-->
## Checklist
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _❗Changes to a redux slice have a corresponding migration_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_

View File

@@ -11,14 +11,8 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*.*.*'
- 'v*'
workflow_dispatch:
inputs:
push-to-registry:
description: Push the built image to the container registry
required: false
type: boolean
default: false
permissions:
contents: write
@@ -45,34 +39,23 @@ jobs:
steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
# the /mnt dir has 70GBs of free space
# /dev/sda1 74G 28K 70G 1% /mnt
# According to some online posts the /mnt is not always there, so checking before setting docker to use it
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
if [ -d /mnt ]; then
sudo chmod -R 777 /mnt
echo '{"data-root": "/mnt/docker-root"}' | sudo tee /etc/docker/daemon.json
sudo systemctl restart docker
fi
echo "----- Free space after cleanup"
df -h
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
uses: docker/metadata-action@v4
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
images: |
ghcr.io/${{ github.repository }}
${{ env.DOCKERHUB_REPOSITORY }}
tags: |
type=ref,event=branch
type=ref,event=tag
@@ -84,33 +67,49 @@ jobs:
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
with:
platforms: ${{ env.PLATFORMS }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# - name: Login to Docker Hub
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
# uses: docker/login-action@v2
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v6
uses: docker/build-push-action@v4
with:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
build-args: |
GPU_DRIVER=${{ matrix.gpu-driver }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
# cache-from: |
# type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# type=gha,scope=main-${{ matrix.gpu-driver }}
# cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# - name: Docker Hub Description
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
# uses: peter-evans/dockerhub-description@v3
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
# short-description: ${{ github.event.repository.description }}

View File

@@ -1,38 +0,0 @@
# Builds and uploads python build artifacts.
name: build wheel
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.12'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: build wheel
id: build_wheel
run: ./scripts/build_wheel.sh
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.build_wheel.outputs.DIST_PATH }}

View File

@@ -1,11 +1,11 @@
name: Close inactive issues
on:
schedule:
- cron: "00 4 * * *"
- cron: "00 6 * * *"
env:
DAYS_BEFORE_ISSUE_STALE: 30
DAYS_BEFORE_ISSUE_CLOSE: 14
DAYS_BEFORE_ISSUE_STALE: 14
DAYS_BEFORE_ISSUE_CLOSE: 28
jobs:
close-issues:
@@ -14,7 +14,7 @@ jobs:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v8
- uses: actions/stale@v5
with:
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
@@ -23,6 +23,5 @@ jobs:
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
days-before-pr-stale: -1
days-before-pr-close: -1
exempt-issue-labels: "Active Issue"
repo-token: ${{ secrets.GITHUB_TOKEN }}
operations-per-run: 500

View File

@@ -1,85 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# If always_run is true, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:knip'
shell: bash

View File

@@ -1,65 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# If always_run is true, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm test:no-watch'
shell: bash

View File

@@ -1,18 +0,0 @@
name: 'label PRs'
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

View File

@@ -1,30 +0,0 @@
# Checks that large files and LFS-tracked files are properly checked in with pointer format.
# Uses https://github.com/ppremk/lfs-warning to detect LFS issues.
name: 'lfs checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
jobs:
lfs-check:
runs-on: ubuntu-latest
timeout-minutes: 5
permissions:
# Required to label and comment on the PRs
pull-requests: write
steps:
- name: checkout
uses: actions/checkout@v4
- name: check lfs files
uses: ppremk/lfs-warning@v3.3

37
.github/workflows/lint-frontend.yml vendored Normal file
View File

@@ -0,0 +1,37 @@
name: Lint frontend
on:
pull_request:
paths:
- 'invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
paths:
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v3
with:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@@ -1,49 +1,51 @@
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
name: mkdocs-material
on:
push:
branches:
- main
workflow_dispatch:
- 'refs/heads/v2.3'
permissions:
contents: write
contents: write
jobs:
deploy:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

20
.github/workflows/pyflakes.yml vendored Normal file
View File

@@ -0,0 +1,20 @@
on:
pull_request:
push:
branches:
- main
- development
- 'release-candidate-*'
jobs:
pyflakes:
name: runner / pyflakes
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: pyflakes
uses: reviewdog/action-pyflakes@v1
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
reporter: github-pr-review

41
.github/workflows/pypi-release.yml vendored Normal file
View File

@@ -0,0 +1,41 @@
name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
jobs:
release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: checkout sources
uses: actions/checkout@v3
- name: install deps
run: pip install --upgrade build twine
- name: build package
run: python3 -m build
- name: check distribution
run: twine check dist/*
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

View File

@@ -1,82 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# If always_run is true, always runs the checks.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
python-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
- name: check pypi classifiers
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv run --no-project scripts/check_classifiers.py ./pyproject.toml
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv tool run ruff@0.11.2 check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: uv tool run ruff@0.11.2 format --check .
shell: bash

View File

@@ -1,110 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# If always_run is true, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.11'
- '3.12'
platform:
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cpu
os: ubuntu-24.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-14
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
UV_SYSTEM_PYTHON: 1
steps:
- name: checkout
# https://github.com/nschloe/action-cached-lfs-checkout
uses: nschloe/action-cached-lfs-checkout@f46300cd8952454b9f0a21a3d133d4bd5684cfc2
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: ${{ matrix.python-version }}
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable ".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pytest

View File

@@ -1,108 +0,0 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
with:
always_run: true
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
with:
always_run: true
python-checks:
uses: ./.github/workflows/python-checks.yml
with:
always_run: true
python-tests:
uses: ./.github/workflows/python-tests.yml
with:
always_run: true
build:
uses: ./.github/workflows/build-wheel.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

View File

@@ -0,0 +1,50 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
- pytorch: linux-cpu
os: ubuntu-22.04
- pytorch: macos-default
os: macOS-12
- pytorch: windows-cpu
os: windows-2022
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- name: skip
run: echo "no build required"

123
.github/workflows/test-invoke-pip.yml vendored Normal file
View File

@@ -0,0 +1,123 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
paths:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
pull_request:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: set test prompt to main branch validation
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

View File

@@ -1,110 +0,0 @@
# Runs typegen schema quality checks.
# Frontend types should match the server.
#
# Checks for changes to files before running the checks.
# If always_run is true, always runs the checks.
name: 'typegen checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
typegen-checks:
runs-on: ubuntu-22.04
timeout-minutes: 15 # expected run time: <5 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: check for changed files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
src:
- 'pyproject.toml'
- 'invokeai/**'
- name: setup uv
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
python-version: '3.11'
- name: setup python
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: install dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
env:
UV_INDEX: ${{ matrix.extra-index-url }}
run: uv pip install --editable .
- name: install frontend dependencies
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: copy schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cp invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts
shell: bash
- name: generate schema
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: cd invokeai/frontend/web && uv run ../../../scripts/generate_openapi_schema.py | pnpm typegen
shell: bash
- name: compare files
if: ${{ steps.changed-files.outputs.src_any_changed == 'true' || inputs.always_run == true }}
run: |
if ! diff invokeai/frontend/web/src/services/api/schema.ts invokeai/frontend/web/src/services/api/schema_orig.ts; then
echo "Files are different!";
exit 1;
fi
shell: bash

View File

@@ -1,68 +0,0 @@
# Check the `uv` lockfile for consistency with `pyproject.toml`.
#
# If this check fails, you should run `uv lock` to update the lockfile.
name: 'uv lock checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
uv-lock-checks:
env:
# uv requires a venv by default - but for this, we can simply use the system python
UV_SYSTEM_PYTHON: 1
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
# Pinned to the _hash_ for v45.0.9 to prevent supply-chain attacks.
# See:
# - CVE-2025-30066
# - https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised
# - https://github.com/tj-actions/changed-files/issues/2463
uses: tj-actions/changed-files@a284dc1814e3fd07f2e34267fc8f81227ed29fb8
with:
files_yaml: |
uvlock-pyprojecttoml:
- 'pyproject.toml'
- 'uv.lock'
- name: setup uv
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
uses: astral-sh/setup-uv@v5
with:
version: '0.6.10'
enable-cache: true
- name: check lockfile
if: ${{ steps.changed-files.outputs.uvlock-pyprojecttoml_any_changed == 'true' || inputs.always_run == true }}
run: uv lock --locked # this will exit with 1 if the lockfile is not consistent with pyproject.toml
shell: bash

57
.gitignore vendored
View File

@@ -1,4 +1,22 @@
# ignore default image save location and model symbolic link
.idea/
embeddings/
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
**/restoration/codeformer/weights
# ignore user models config
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
# ignore a directory which serves as a place for initial images
inputs/
# Byte-compiled / optimized / DLL files
__pycache__/
@@ -16,10 +34,11 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
@@ -133,10 +152,12 @@ celerybeat.pid
# Environments
.env
.venv*
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
@@ -169,18 +190,44 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
src
**/__pycache__/
outputs
# Logs and associated folders
# created from generated embeddings.
logs
testtube
checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/yarn.lock
invokeai/frontend/node_modules
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*
# Scratch folder
.scratch/
.vscode/
.zed/
gfpgan/
models/ldm/stable-diffusion-v1/*.sha256
# GFPGAN model files
gfpgan/
# config file (will be created by installer)
configs/models.yaml
# ignore initfile
.invokeai
# ignore environment.yml and requirements.txt
# these are links to the real files in environments-and-requirements
environment.yml
requirements.txt
# source installer files
installer/*zip
@@ -188,7 +235,3 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*
.claude/

1
.nvmrc
View File

@@ -1 +0,0 @@
v22.14.0

View File

@@ -1,32 +0,0 @@
# See https://pre-commit.com/ for usage and config
repos:
- repo: local
hooks:
- id: black
name: black
stages: [pre-commit]
language: system
entry: black
types: [python]
- id: flake8
name: flake8
stages: [pre-commit]
language: system
entry: flake8
types: [python]
- id: isort
name: isort
stages: [pre-commit]
language: system
entry: isort
types: [python]
- id: uvlock
name: uv lock
stages: [pre-commit]
language: system
entry: uv lock
files: ^pyproject\.toml$
pass_filenames: false

View File

@@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: preserve
proseWrap: always
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@@ -1,290 +0,0 @@
Copyright (c) 2023 Stability AI
CreativeML Open RAIL++-M License dated July 26, 2023
Section I: PREAMBLE
Multimodal generative models are being widely adopted and used, and
have the potential to transform the way artists, among other
individuals, conceive and benefit from AI or ML technologies as a tool
for content creation.
Notwithstanding the current and potential benefits that these
artifacts can bring to society at large, there are also concerns about
potential misuses of them, either due to their technical limitations
or ethical considerations.
In short, this license strives for both the open and responsible
downstream use of the accompanying model. When it comes to the open
character, we took inspiration from open source permissive licenses
regarding the grant of IP rights. Referring to the downstream
responsible use, we added use-based restrictions not permitting the
use of the model in very specific scenarios, in order for the licensor
to be able to enforce the license in case potential misuses of the
Model may occur. At the same time, we strive to promote open and
responsible research on generative models for art and content
generation.
Even though downstream derivative versions of the model could be
released under different licensing terms, the latter will always have
to include - at minimum - the same use-based restrictions as the ones
in the original license (this license). We believe in the intersection
between open and responsible AI development; thus, this agreement aims
to strike a balance between both in order to enable responsible
open-science in the field of AI.
This CreativeML Open RAIL++-M License governs the use of the model
(and its derivatives) and is informed by the model card associated
with the model.
NOW THEREFORE, You and Licensor agree as follows:
Definitions
"License" means the terms and conditions for use, reproduction, and
Distribution as defined in this document.
"Data" means a collection of information and/or content extracted from
the dataset used with the Model, including to train, pretrain, or
otherwise evaluate the Model. The Data is not licensed under this
License.
"Output" means the results of operating a Model as embodied in
informational content resulting therefrom.
"Model" means any accompanying machine-learning based assemblies
(including checkpoints), consisting of learnt weights, parameters
(including optimizer states), corresponding to the model architecture
as embodied in the Complementary Material, that have been trained or
tuned, in whole or in part on the Data, using the Complementary
Material.
"Derivatives of the Model" means all modifications to the Model, works
based on the Model, or any other model which is created or initialized
by transfer of patterns of the weights, parameters, activations or
output of the Model, to the other model, in order to cause the other
model to perform similarly to the Model, including - but not limited
to - distillation methods entailing the use of intermediate data
representations or methods based on the generation of synthetic data
by the Model for training the other model.
"Complementary Material" means the accompanying source code and
scripts used to define, run, load, benchmark or evaluate the Model,
and used to prepare data for training or evaluation, if any. This
includes any accompanying documentation, tutorials, examples, etc, if
any.
"Distribution" means any transmission, reproduction, publication or
other sharing of the Model or Derivatives of the Model to a third
party, including providing the Model as a hosted service made
available by electronic or other remote means - e.g. API-based or web
access.
"Licensor" means the copyright owner or entity authorized by the
copyright owner that is granting the License, including the persons or
entities that may have rights in the Model and/or distributing the
Model.
"You" (or "Your") means an individual or Legal Entity exercising
permissions granted by this License and/or making use of the Model for
whichever purpose and in any field of use, including usage of the
Model in an end-use application - e.g. chatbot, translator, image
generator.
"Third Parties" means individuals or legal entities that are not under
common control with Licensor or You.
"Contribution" means any work of authorship, including the original
version of the Model and any modifications or additions to that Model
or Derivatives of the Model thereof, that is intentionally submitted
to Licensor for inclusion in the Model by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the
copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the
Model, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a
Contribution."
"Contributor" means Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Model.
Section II: INTELLECTUAL PROPERTY RIGHTS
Both copyright and patent grants apply to the Model, Derivatives of
the Model and Complementary Material. The Model and Derivatives of the
Model are subject to additional terms as described in
Section III.
Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare, publicly display, publicly
perform, sublicense, and distribute the Complementary Material, the
Model, and Derivatives of the Model.
Grant of Patent License. Subject to the terms and conditions of this
License and where and as applicable, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this paragraph) patent license to
make, have made, use, offer to sell, sell, import, and otherwise
transfer the Model and the Complementary Material, where such license
applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Model to which such
Contribution(s) was submitted. If You institute patent litigation
against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Model and/or Complementary Material or a
Contribution incorporated within the Model and/or Complementary
Material constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for the Model
and/or Work shall terminate as of the date such litigation is asserted
or filed.
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
Distribution and Redistribution. You may host for Third Party remote
access purposes (e.g. software-as-a-service), reproduce and distribute
copies of the Model or Derivatives of the Model thereof in any medium,
with or without modifications, provided that You meet the following
conditions: Use-based restrictions as referenced in paragraph 5 MUST
be included as an enforceable provision by You in any type of legal
agreement (e.g. a license) governing the use and/or distribution of
the Model or Derivatives of the Model, and You shall give notice to
subsequent users You Distribute to, that the Model or Derivatives of
the Model are subject to paragraph 5. This provision does not apply to
the use of Complementary Material. You must give any Third Party
recipients of the Model or Derivatives of the Model a copy of this
License; You must cause any modified files to carry prominent notices
stating that You changed the files; You must retain all copyright,
patent, trademark, and attribution notices excluding those notices
that do not pertain to any part of the Model, Derivatives of the
Model. You may add Your own copyright statement to Your modifications
and may provide additional or different license terms and conditions -
respecting paragraph 4.a. - for use, reproduction, or Distribution of
Your modifications, or for any such Derivatives of the Model as a
whole, provided Your use, reproduction, and Distribution of the Model
otherwise complies with the conditions stated in this License.
Use-based restrictions. The restrictions set forth in Attachment A are
considered Use-based restrictions. Therefore You cannot use the Model
and the Derivatives of the Model for the specified restricted
uses. You may use the Model subject to this License, including only
for lawful purposes and in accordance with the License. Use may
include creating any content with, finetuning, updating, running,
training, evaluating and/or reparametrizing the Model. You shall
require all of Your users who use the Model or a Derivative of the
Model to comply with the terms of this paragraph (paragraph 5).
The Output You Generate. Except as set forth herein, Licensor claims
no rights in the Output You generate using the Model. You are
accountable for the Output you generate and its subsequent uses. No
use of the output can contravene any provision as stated in the
License.
Section IV: OTHER PROVISIONS
Updates and Runtime Restrictions. To the maximum extent permitted by
law, Licensor reserves the right to restrict (remotely or otherwise)
usage of the Model in violation of this License.
Trademarks and related. Nothing in this License permits You to make
use of Licensors trademarks, trade names, logos or to otherwise
suggest endorsement or misrepresent the relationship between the
parties; and any rights not expressly granted herein are reserved by
the Licensors.
Disclaimer of Warranty. Unless required by applicable law or agreed to
in writing, Licensor provides the Model and the Complementary Material
(and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Model, Derivatives of
the Model, and the Complementary Material and assume any risks
associated with Your exercise of permissions under this License.
Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this
License or out of the use or inability to use the Model and the
Complementary Material (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
Accepting Warranty or Additional Liability. While redistributing the
Model, Derivatives of the Model and the Complementary Material
thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or
additional liability.
If any provision of this License is held to be invalid, illegal or
unenforceable, the remaining provisions shall be unaffected thereby
and remain valid as if such provision had not been set forth herein.
END OF TERMS AND CONDITIONS
Attachment A
Use Restrictions
You agree not to use the Model or Derivatives of the Model:
* In any way that violates any applicable national, federal, state,
local or international law or regulation;
* For the purpose of exploiting, harming or attempting to exploit or
harm minors in any way;
* To generate or disseminate verifiably false information and/or
content with the purpose of harming others;
* To generate or disseminate personal identifiable information that
can be used to harm an individual;
* To defame, disparage or otherwise harass others;
* For fully automated decision making that adversely impacts an
individuals legal rights or otherwise creates or modifies a
binding, enforceable obligation;
* For any use intended to or which has the effect of discriminating
against or harming individuals or groups based on online or offline
social behavior or known or predicted personal or personality
characteristics;
* To exploit any of the vulnerabilities of a specific group of persons
based on their age, social, physical or mental characteristics, in
order to materially distort the behavior of a person pertaining to
that group in a manner that causes or is likely to cause that person
or another person physical or psychological harm;
* For any use intended to or which has the effect of discriminating
against individuals or groups based on legally protected
characteristics or categories;
* To provide medical advice and medical results interpretation;
* To generate or disseminate information for the purpose to be used
for administration of justice, law enforcement, immigration or
asylum processes, such as predicting an individual will commit
fraud/crime commitment (e.g. by text profiling, drawing causal
relationships between assertions made in documents, indiscriminate
and arbitrarily-targeted use).

View File

@@ -1,82 +0,0 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "update-config-docstring Update the app's config docstring so mkdocs can autogenerate it correctly."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "wheel Build the wheel for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
@echo "docs Serve the mkdocs site with live reload"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
ruff format .
# Runs ruff, fixing all errors it can fix and formatting
ruff-unsafe:
ruff check . --fix --unsafe-fixes
ruff format .
# Runs mypy, using the config in pyproject.toml
mypy:
mypy scripts/invokeai-web.py
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Run the unit tests
test:
pytest ./tests
# Update config docstring
update-config-docstring:
python scripts/update_config_docstring.py
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
cd invokeai/frontend/web && pnpm install
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Tag the release
wheel:
cd scripts && ./build_wheel.sh
# Tag the release
tag-release:
cd scripts && ./tag_release.sh
# Generate the OpenAPI Schema for the app
openapi:
python scripts/generate_openapi_schema.py
# Serve the mkdocs site w/ live reload
.PHONY: docs
docs:
mkdocs serve

460
README.md
View File

@@ -1,103 +1,22 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
</div>
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
Invoke is available in two editions:
| **Community Edition** | **Professional Edition** |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| **For users looking for a locally installed, self-hosted and self-managed service** | **For users or teams looking for a cloud-hosted, fully managed service** |
| - Free to use under a commercially-friendly license | - Monthly subscription fee with three different plan levels |
| - Download and install on compatible hardware | - Offers additional benefits, including multi-user support, improved model training, and more |
| - Includes all core studio features: generate, refine, iterate on images, and build workflows | - Hosted in the cloud for easy, secure model access and scalability |
| Quick Start -> [Installation and Updates][installation docs] | More Information -> [www.invoke.com/pricing](https://www.invoke.com/pricing) |
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
[![discord badge]][discord link]
# Documentation
| **Quick Links** |
|----------------------------------------------------------------------------------------------------------------------------|
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
# Installation
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
To get started with Invoke, [Download the Installer](https://www.invoke.com/downloads).
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
For detailed step by step instructions, or for instructions on manual/docker installations, visit our documentation on [Installation and Updates][installation docs]
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
For more help, please join our [Discord][discord link].
## Features
Full details on features can be found in [our documentation][features docs].
### Web Server & UI
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
### Unified Canvas
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### Workflows & Nodes
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### Board & Gallery Management
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- Support for both ckpt and diffusers models
- SD1.5, SD2.0, SDXL, and FLUX support
- Upscaling Tools
- Embedding Manager & Support
- Model Manager & Support
- Workflow creation & management
- Node-Based Architecture
## Contributing
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
## Thanks
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
Original portions of the software are Copyright © 2024 by respective contributors.
[features docs]: https://invoke-ai.github.io/InvokeAI/features/database/
[faq]: https://invoke-ai.github.io/InvokeAI/faq/
[contributors]: https://invoke-ai.github.io/InvokeAI/contributing/contributors/
[invoke.com]: https://www.invoke.com/about
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
[docs home]: https://invoke-ai.github.io/InvokeAI
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
[discord link]: https://discord.gg/ZmtBAhwWhy
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
@@ -111,8 +30,363 @@ Original portions of the software are Copyright © 2024 by respective contributo
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
</div>
_**Note: This is an alpha release. Bugs are expected and not all
features are fully implemented. Please use the GitHub [Issues
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
to report unexpected problems. Also note that InvokeAI root directory
which contains models, outputs and configuration files, has changed
between the 2.x and 3.x release. If you wish to use your v2.3 root
directory with v3.0, please follow the directions in [Migrating a 2.3
root directory to 3.0](#migrating-to-3).**_
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/">Code and
Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
<div align="center">
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
</div>
## Table of Contents
Table of Contents 📝
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
2. Download the .zip file for your OS (Windows/macOS/Linux).
3. Unzip the file.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
location with at least 15 GB of free memory. More if you plan on
installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
folder (if you didn't change it in step 5) is `~/invokeai` on
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
8. On Windows systems, double-click on the `invoke.bat` file. On
macOS, open a Terminal window, drag `invoke.sh` from the folder into
the Terminal, and press return. On Linux, run `invoke.sh`
9. Press 2 to open the "browser-based UI", press enter/return, wait a
minute or two for Stable Diffusion to start up, then open your browser
and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.9 or 3.10 installed on your machine. Earlier or later versions are
not supported.
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
```terminal
mkdir invokeai
````
3. Create a virtual environment named `.venv` inside this directory and activate it:
```terminal
cd invokeai
python -m venv .venv --prompt InvokeAI
```
4. Activate the virtual environment (do it every time you run InvokeAI)
_For Linux/Mac users:_
```sh
source .venv/bin/activate
```
_For Windows users:_
```ps
.venv\Scripts\activate
```
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh
pip install InvokeAI --use-pep517
```
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure
```
7. Launch the web server (do it every time you run InvokeAI):
```terminal
invokeai --web
```
8. Point your browser to http://localhost:9090 to bring up the web interface.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. The recipe is as follows>
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3a. During the alpha release phase, select option [3] and manually
enter the tag name `v3.0.0+a2`.
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
#### Migration Caveats
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. The released
version of 3.0 is expected to have an interface for importing an
entire directory of image files as a batch.
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver).
### System
You will need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- An Apple computer with an M1 chip.
- An AMD-based graphics card with 4GB or more VRAM memory. (Linux only)
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
**Memory** - At least 12 GB Main Memory RAM.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
### *Web Server & UI*
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
### *Unified Canvas*
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Node Architecture & Editor (Beta)*
Invoke AI's backend is built on a graph-based execution architecture. This allows for customizable generation pipelines to be developed by professional users looking to create specific workflows to support their production use-cases, and will be extended in the future with additional capabilities.
### *Board & Gallery Management*
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1 support*
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
- *SDXL Support* (Coming soon)
### Latest Changes
For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
### Troubleshooting
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
## Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
If you'd like to help with translation, please see our [translation guide](docs/other/TRANSLATION.md).
If you are unfamiliar with how
to contribute to GitHub projects, here is a
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github). A full set of contribution guidelines, along with templates, are in progress. You can **make your pull request against the "main" branch**.
We hope you enjoy using our software as much as we enjoy creating it,
and we hope that some of those of you who are reading this will elect
to become part of our community.
Welcome to InvokeAI!
### Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the Discord.
Original portions of the software are Copyright (c) 2023 by respective contributors.

View File

@@ -1,14 +0,0 @@
# Security Policy
## Supported Versions
Only the latest version of Invoke will receive security updates.
We do not currently maintain multiple versions of the application with updates.
## Reporting a Vulnerability
To report a vulnerability, contact the Invoke team directly at security@invoke.ai
At this time, we do not maintain a formal bug bounty program.
You can also share identified security issues with our team on huntr.com

View File

@@ -1,31 +1,13 @@
## Make a copy of this file named `.env` and fill in the values below.
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
## Any environment variables supported by InvokeAI can be specified here.
## INVOKEAI_ROOT is the path *on the host system* where Invoke will store its data.
## It is mounted into the container and allows both containerized and non-containerized usage of Invoke.
# Usually this is the only variable you need to set. It can be relative or absolute.
# INVOKEAI_ROOT=~/invokeai
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# This **must** be an absolute path.
INVOKEAI_ROOT=
## HOST_INVOKEAI_ROOT and CONTAINER_INVOKEAI_ROOT can be used to control the on-host
## and in-container paths separately, if needed.
## HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where Invoke will store data.
## If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
## CONTAINER_INVOKEAI_ROOT is the path within the container where Invoke will expect to find the runtime directory.
## It MUST be absolute. There is usually no need to change this.
# HOST_INVOKEAI_ROOT=../../invokeai-data
# CONTAINER_INVOKEAI_ROOT=/invokeai
HUGGINGFACE_TOKEN=
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
# INVOKEAI_PORT=9090
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=cuda #| rocm
## If you are using ROCM, you will need to ensure that the render group within the container and the host system use the same group ID.
## To obtain the group ID of the render group on the host system, run `getent group render` and grab the number.
# RENDER_GROUP_ID=
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
# CONTAINER_UID=1000
## optional variables specific to the docker setup
# GPU_DRIVER=cuda
# CONTAINER_UID=1000

View File

@@ -1,107 +1,129 @@
# syntax=docker/dockerfile:1.4
#### Web UI ------------------------------------
## Builder stage
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@10.x && corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
FROM library/ubuntu:24.04
FROM library/ubuntu:22.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \
git \
python3.10-venv \
python3-pip \
build-essential
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG GPU_DRIVER=cuda
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
ARG TARGETPLATFORM="linux/amd64"
# unused but available
ARG BUILDPLATFORM
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# Install pytorch before all other pip packages
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
# x86_64/CUDA is default
RUN --mount=type=cache,target=/root/.cache/pip \
python3 -m venv ${VIRTUAL_ENV} &&\
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
torchvision==$TORCHVISION_VERSION
# Install the local package.
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
RUN --mount=type=cache,target=/root/.cache/pip \
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \
else \
pip install -e "."; \
fi
# #### Build the Web UI ------------------------------------
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
#### Runtime stage ---------------------------------------
FROM library/ubuntu:22.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV PYTHONDONTWRITEBYTECODE=1
RUN apt update && apt install -y --no-install-recommends \
git \
curl \
vim \
tmux \
ncdu \
iotop \
bzip2 \
gosu \
libglib2.0-0 \
libgl1-mesa-glx \
python3-venv \
python3-pip \
build-essential \
libopencv-dev \
libstdc++-10-dev &&\
apt-get clean && apt-get autoclean
# globally add magic-wormhole
# for ease of transferring data to and from the container
# when running in sandboxed cloud environments; e.g. Runpod etc.
RUN pip install magic-wormhole
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# Link amdgpu.ids for ROCm builds
# contributed by https://github.com/Rubonnek
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids" && groupadd render
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
WORKDIR ${INVOKEAI_SRC}
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
# Create unprivileged user and make the local dir
RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]
CMD ["invokeai-web", "--host", "0.0.0.0"]

View File

@@ -1,136 +0,0 @@
# syntax=docker/dockerfile:1.4
#### Web UI ------------------------------------
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
## Backend ---------------------------------------
FROM library/ubuntu:24.04
ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
apt update && apt install -y --no-install-recommends \
ca-certificates \
git \
gosu \
libglib2.0-0 \
libgl1 \
libglx-mesa0 \
build-essential \
libopencv-dev \
libstdc++-10-dev \
wget
ENV \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
VIRTUAL_ENV=/opt/venv \
INVOKEAI_SRC=/opt/invokeai \
PYTHON_VERSION=3.12 \
UV_PYTHON=3.12 \
UV_COMPILE_BYTECODE=1 \
UV_MANAGED_PYTHON=1 \
UV_LINK_MODE=copy \
UV_PROJECT_ENVIRONMENT=/opt/venv \
INVOKEAI_ROOT=/invokeai \
INVOKEAI_HOST=0.0.0.0 \
INVOKEAI_PORT=9090 \
PATH="/opt/venv/bin:$PATH" \
CONTAINER_UID=${CONTAINER_UID:-1000} \
CONTAINER_GID=${CONTAINER_GID:-1000}
ARG GPU_DRIVER=cuda
# Install `uv` for package management
COPY --from=ghcr.io/astral-sh/uv:0.6.9 /uv /uvx /bin/
# Install python & allow non-root user to use it by traversing the /root dir without read permissions
RUN --mount=type=cache,target=/root/.cache/uv \
uv python install ${PYTHON_VERSION} && \
# chmod --recursive a+rX /root/.local/share/uv/python
chmod 711 /root
WORKDIR ${INVOKEAI_SRC}
# Install project's dependencies as a separate layer so they aren't rebuilt every commit.
# bind-mount instead of copy to defer adding sources to the image until next layer.
#
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is the default
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
# this is just to get the package manager to recognize that the project exists, without making changes to the docker layer
--mount=type=bind,source=invokeai/version,target=invokeai/version \
ulimit -n 30000 && \
uv sync --extra $GPU_DRIVER --frozen
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt \
if [ "$GPU_DRIVER" = "rocm" ]; then \
wget -O /tmp/amdgpu-install.deb \
https://repo.radeon.com/amdgpu-install/6.3.4/ubuntu/noble/amdgpu-install_6.3.60304-1_all.deb && \
apt install -y /tmp/amdgpu-install.deb && \
apt update && \
amdgpu-install --usecase=rocm -y && \
apt-get autoclean && \
apt clean && \
rm -rf /tmp/* /var/tmp/* && \
usermod -a -G render ubuntu && \
usermod -a -G video ubuntu && \
echo "\\n/opt/rocm/lib\\n/opt/rocm/lib64" >> /etc/ld.so.conf.d/rocm.conf && \
ldconfig && \
update-alternatives --auto rocm; \
fi
## Heathen711: Leaving this for review input, will remove before merge
# RUN --mount=type=cache,target=/var/cache/apt \
# --mount=type=cache,target=/var/lib/apt \
# if [ "$GPU_DRIVER" = "rocm" ]; then \
# groupadd render && \
# usermod -a -G render ubuntu && \
# usermod -a -G video ubuntu; \
# fi
## Link amdgpu.ids for ROCm builds
## contributed by https://github.com/Rubonnek
# RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
# ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
# build patchmatch
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
# --link requires buldkit w/ dockerfile syntax 1.4, does not work with podman
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
# add sources last to minimize image changes on code changes
COPY invokeai ${INVOKEAI_SRC}/invokeai
# this should not increase image size because we've already installed dependencies
# in a previous layer
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=uv.lock,target=uv.lock \
ulimit -n 30000 && \
uv pip install -e .[$GPU_DRIVER]

View File

@@ -1,88 +1,34 @@
# Invoke in Docker
# InvokeAI Containerized
First things first:
- Ensure that Docker can use your [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] GPU.
- This document assumes a Linux system, but should work similarly under Windows with WSL2.
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
## Quickstart
No `docker compose`, no persistence, single command, using the official images:
**CUDA (NVIDIA GPU):**
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm (AMD GPU):**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
```
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
### Data persistence
To persist your generated images and downloaded models outside of the container, add a `--volume/-v` flag to the above command, e.g.:
```bash
docker run --volume /some/local/path:/invokeai {...etc...}
```
`/some/local/path/invokeai` will contain all your data.
It can *usually* be reused between different installs of Invoke. Tread with caution and read the release notes!
## Customize the container
The included `run.sh` script is a convenience wrapper around `docker compose`. It can be helpful for passing additional build arguments to `docker compose`. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
cp .env.sample .env
# edit .env to your liking if you need to; it is well commented.
./run.sh
```
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
>[!TIP]
>When using the `run.sh` script, the container will continue running after Ctrl+C. To shut it down, use the `docker compose down` command.
## Docker setup in detail
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
1. Ensure buildkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU.
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
#### macOS
> [!TIP]
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
If you are still reading:
1. Ensure Docker has at least 16GB RAM
2. Enable VirtioFS for file sharing
3. Enable `docker compose` V2 support
This is done via Docker Desktop preferences.
This is done via Docker Desktop preferences
### Configure the Invoke Environment
## Quickstart
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
1. Execute `run.sh`
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. `docker compose up`
The image will be built automatically if needed.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
### Use a GPU
@@ -90,28 +36,42 @@ The runtime directory (holding models and outputs) will be created in the locati
- WSL2 is *required* for Windows.
- only `x86_64` architecture is supported.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
Example (most values are optional):
```bash
```
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even Moar Customizing!
---
See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```
command:
- invokeai-configure
- --yes
```
Or install models:
```
command:
- invokeai-model-install
```

11
docker/build.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker-compose build args:"
echo $build_args
docker-compose build $build_args

View File

@@ -1,37 +1,13 @@
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
x-invokeai: &invokeai
image: "ghcr.io/invoke-ai/invokeai:latest"
build:
context: ..
dockerfile: docker/Dockerfile
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
# variables without a default will automatically inherit from the host environment
environment:
# if set, CONTAINER_INVOKEAI_ROOT will override the Invoke runtime directory location *inside* the container
- INVOKEAI_ROOT=${CONTAINER_INVOKEAI_ROOT:-/invokeai}
- HF_HOME
ports:
- "${INVOKEAI_PORT:-9090}:${INVOKEAI_PORT:-9090}"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${CONTAINER_INVOKEAI_ROOT:-/invokeai}
bind:
create_host_path: true
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
tty: true
stdin_open: true
version: '3.8'
services:
invokeai-cuda:
<<: *invokeai
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
@@ -39,17 +15,34 @@ services:
- driver: nvidia
count: 1
capabilities: [gpu]
build:
context: ..
dockerfile: docker/Dockerfile
invokeai-cpu:
<<: *invokeai
profiles:
- cpu
invokeai-rocm:
<<: *invokeai
# variables without a default will automatically inherit from the host environment
environment:
- AMD_VISIBLE_DEVICES=all
- RENDER_GROUP_ID=${RENDER_GROUP_ID}
runtime: amd
profiles:
- rocm
- INVOKEAI_ROOT
- HF_HOME
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
tty: true
stdin_open: true
# # Example of running alternative commands/scripts in the container
# command:
# - bash
# - -c
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0

View File

@@ -9,49 +9,57 @@ set -e -o pipefail
### Set INVOKEAI_ROOT pointing to a valid runtime directory
# Otherwise configure the runtime dir first.
### Configure the InvokeAI runtime directory (done by default)):
# docker run --rm -it <this image> --configure
# or skip with --no-configure
### Set the CONTAINER_UID envvar to match your user.
# Ensures files created in the container are owned by you:
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
USER_ID=${CONTAINER_UID:-1000}
USER=ubuntu
# if the user does not exist, create it. It is expected to be present on ubuntu >=24.x
_=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
# ensure the UID is correct
USER=invoke
usermod -u ${USER_ID} ${USER} 1>/dev/null
## ROCM specific configuration
# render group within the container must match the host render group
# otherwise the container will not be able to access the host GPU.
if [[ -v "RENDER_GROUP_ID" ]] && [[ ! -z "${RENDER_GROUP_ID}" ]]; then
# ensure the render group exists
groupmod -g ${RENDER_GROUP_ID} render
usermod -a -G render ${USER}
usermod -a -G video ${USER}
fi
configure() {
# Configure the runtime directory
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
echo "To reconfigure InvokeAI, delete the above file."
echo "======================================================================"
else
mkdir -p ${INVOKEAI_ROOT}
chown --recursive ${USER} ${INVOKEAI_ROOT}
gosu ${USER} invokeai-configure --yes --default_only
fi
}
## Skip attempting to configure.
## Must be passed first, before any other args.
if [[ $1 != "--no-configure" ]]; then
configure
else
shift
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.
# (use SCP to copy files to/from the image, etc)
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd "$HOME"
mkdir -p .ssh
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
apt-get update
apt-get install -y openssh-server
pushd $HOME
mkdir -p .ssh
echo ${PUBLIC_KEY} > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
cd "${INVOKEAI_ROOT}"
export HF_HOME=${HF_HOME:-$INVOKEAI_ROOT/.cache/huggingface}
export MPLCONFIGDIR=${MPLCONFIGDIR:-$INVOKEAI_ROOT/.matplotlib}
cd ${INVOKEAI_ROOT}
# Run the CMD as the Container User (not root).
exec gosu ${USER} "$@"

View File

@@ -1,36 +1,8 @@
#!/usr/bin/env bash
set -e -o pipefail
set -e
run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
cd "$scriptdir" || exit 1
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
local build_args=""
local profile=""
# create .env file if it doesn't exist, otherwise docker compose will fail
touch .env
# parse .env file for build args
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER=/ {print $2}' .env)"
# default to 'cuda' profile
[[ -z "$profile" ]] && profile="cuda"
local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then
printf "%s\n" "docker compose build args:"
printf "%s\n" "$build_args"
fi
docker compose build $build_args $service_name
unset build_args
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose --profile "$profile" logs -f
}
run
docker-compose up --build -d
docker-compose logs -f

817
docs/CHANGELOG.md Normal file
View File

@@ -0,0 +1,817 @@
---
title: Changelog
---
# :octicons-log-16: **Changelog**
## v2.3.5 <small>(22 May 2023)</small>
This release (along with the post1 and post2 follow-on releases) expands support for additional LoRA and LyCORIS models, upgrades diffusers versions, and fixes a few bugs.
### LoRA and LyCORIS Support Improvement
A number of LoRA/LyCORIS fine-tune files (those which alter the text encoder as well as the unet model) were not having the desired effect in InvokeAI. This bug has now been fixed. Full documentation of LoRA support is available at InvokeAI LoRA Support.
Previously, InvokeAI did not distinguish between LoRA/LyCORIS models based on Stable Diffusion v1.5 vs those based on v2.0 and 2.1, leading to a crash when an incompatible model was loaded. This has now been fixed. In addition, the web pulldown menus for LoRA and Textual Inversion selection have been enhanced to show only those files that are compatible with the currently-selected Stable Diffusion model.
Support for the newer LoKR LyCORIS files has been added.
### Library Updates and Speed/Reproducibility Advancements
The major enhancement in this version is that NVIDIA users no longer need to decide between speed and reproducibility. Previously, if you activated the Xformers library, you would see improvements in speed and memory usage, but multiple images generated with the same seed and other parameters would be slightly different from each other. This is no longer the case. Relative to 2.3.5 you will see improved performance when running without Xformers, and even better performance when Xformers is activated. In both cases, images generated with the same settings will be identical.
Here are the new library versions:
Library Version
Torch 2.0.0
Diffusers 0.16.1
Xformers 0.0.19
Compel 1.1.5
Other Improvements
### Performance Improvements
When a model is loaded for the first time, InvokeAI calculates its checksum for incorporation into the PNG metadata. This process could take up to a minute on network-mounted disks and WSL mounts. This release noticeably speeds up the process.
### Bug Fixes
The "import models from directory" and "import from URL" functionality in the console-based model installer has now been fixed.
When running the WebUI, we have reduced the number of times that InvokeAI reaches out to HuggingFace to fetch the list of embeddable Textual Inversion models. We have also caught and fixed a problem with the updater not correctly detecting when another instance of the updater is running
## v2.3.4 <small>(7 April 2023)</small>
What's New in 2.3.4
This features release adds support for LoRA (Low-Rank Adaptation) and LyCORIS (Lora beYond Conventional) models, as well as some minor bug fixes.
### LoRA and LyCORIS Support
LoRA files contain fine-tuning weights that enable particular styles, subjects or concepts to be applied to generated images. LyCORIS files are an extended variant of LoRA. InvokeAI supports the most common LoRA/LyCORIS format, which ends in the suffix .safetensors. You will find numerous LoRA and LyCORIS models for download at Civitai, and a small but growing number at Hugging Face. Full documentation of LoRA support is available at InvokeAI LoRA Support.( Pre-release note: this page will only be available after release)
To use LoRA/LyCORIS models in InvokeAI:
Download the .safetensors files of your choice and place in /path/to/invokeai/loras. This directory was not present in earlier version of InvokeAI but will be created for you the first time you run the command-line or web client. You can also create the directory manually.
Add withLora(lora-file,weight) to your prompts. The weight is optional and will default to 1.0. A few examples, assuming that a LoRA file named loras/sushi.safetensors is present:
family sitting at dinner table eating sushi withLora(sushi,0.9)
family sitting at dinner table eating sushi withLora(sushi, 0.75)
family sitting at dinner table eating sushi withLora(sushi)
Multiple withLora() prompt fragments are allowed. The weight can be arbitrarily large, but the useful range is roughly 0.5 to 1.0. Higher weights make the LoRA's influence stronger. Negative weights are also allowed, which can lead to some interesting effects.
Generate as you usually would! If you find that the image is too "crisp" try reducing the overall CFG value or reducing individual LoRA weights. As is the case with all fine-tunes, you'll get the best results when running the LoRA on top of the model similar to, or identical with, the one that was used during the LoRA's training. Don't try to load a SD 1.x-trained LoRA into a SD 2.x model, and vice versa. This will trigger a non-fatal error message and generation will not proceed.
You can change the location of the loras directory by passing the --lora_directory option to `invokeai.
### New WebUI LoRA and Textual Inversion Buttons
This version adds two new web interface buttons for inserting LoRA and Textual Inversion triggers into the prompt as shown in the screenshot below.
Clicking on one or the other of the buttons will bring up a menu of available LoRA/LyCORIS or Textual Inversion trigger terms. Select a menu item to insert the properly-formatted withLora() or <textual-inversion> prompt fragment into the positive prompt. The number in parentheses indicates the number of trigger terms currently in the prompt. You may click the button again and deselect the LoRA or trigger to remove it from the prompt, or simply edit the prompt directly.
Currently terms are inserted into the positive prompt textbox only. However, some textual inversion embeddings are designed to be used with negative prompts. To move a textual inversion trigger into the negative prompt, simply cut and paste it.
By default the Textual Inversion menu only shows locally installed models found at startup time in /path/to/invokeai/embeddings. However, InvokeAI has the ability to dynamically download and install additional Textual Inversion embeddings from the HuggingFace Concepts Library. You may choose to display the most popular of these (with five or more likes) in the Textual Inversion menu by going to Settings and turning on "Show Textual Inversions from HF Concepts Library." When this option is activated, the locally-installed TI embeddings will be shown first, followed by uninstalled terms from Hugging Face. See The Hugging Face Concepts Library and Importing Textual Inversion files for more information.
### Minor features and fixes
This release changes model switching behavior so that the command-line and Web UIs save the last model used and restore it the next time they are launched. It also improves the behavior of the installer so that the pip utility is kept up to date.
### Known Bugs in 2.3.4
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.3 <small>(28 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.2 the following bugs have been fixed:
Bugs
When using legacy checkpoints with an external VAE, the VAE file is now scanned for malware prior to loading. Previously only the main model weights file was scanned.
Textual inversion will select an appropriate batchsize based on whether xformers is active, and will default to xformers enabled if the library is detected.
The batch script log file names have been fixed to be compatible with Windows.
Occasional corruption of the .next_prefix file (which stores the next output file name in sequence) on Windows systems is now detected and corrected.
Support loading of legacy config files that have no personalization (textual inversion) section.
An infinite loop when opening the developer's console from within the invoke.sh script has been corrected.
Documentation fixes, including a recipe for detecting and fixing problems with the AMD GPU ROCm driver.
Enhancements
It is now possible to load and run several community-contributed SD-2.0 based models, including the often-requested "Illuminati" model.
The "NegativePrompts" embedding file, and others like it, can now be loaded by placing it in the InvokeAI embeddings directory.
If no --model is specified at launch time, InvokeAI will remember the last model used and restore it the next time it is launched.
On Linux systems, the invoke.sh launcher now uses a prettier console-based interface. To take advantage of it, install the dialog package using your package manager (e.g. sudo apt install dialog).
When loading legacy models (safetensors/ckpt) you can specify a custom config file and/or a VAE by placing like-named files in the same directory as the model following this example:
my-favorite-model.ckpt
my-favorite-model.yaml
my-favorite-model.vae.pt # or my-favorite-model.vae.safetensors
### Known Bugs in 2.3.3
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.2 <small>(11 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.1 the following bugs have been fixed:
Black images appearing for potential NSFW images when generating with legacy checkpoint models and both --no-nsfw_checker and --ckpt_convert turned on.
Black images appearing when generating from models fine-tuned on Stable-Diffusion-2-1-base. When importing V2-derived models, you may be asked to select whether the model was derived from a "base" model (512 pixels) or the 768-pixel SD-2.1 model.
The "Use All" button was not restoring the Hi-Res Fix setting on the WebUI
When using the model installer console app, models failed to import correctly when importing from directories with spaces in their names. A similar issue with the output directory was also fixed.
Crashes that occurred during model merging.
Restore previous naming of Stable Diffusion base and 768 models.
Upgraded to latest versions of diffusers, transformers, safetensors and accelerate libraries upstream. We hope that this will fix the assertion NDArray > 2**32 issue that MacOS users have had when generating images larger than 768x768 pixels. Please report back.
As part of the upgrade to diffusers, the location of the diffusers-based models has changed from models/diffusers to models/hub. When you launch InvokeAI for the first time, it will prompt you to OK a one-time move. This should be quick and harmless, but if you have modified your models/diffusers directory in some way, for example using symlinks, you may wish to cancel the migration and make appropriate adjustments.
New "Invokeai-batch" script
### Invoke AI Batch
2.3.2 introduces a new command-line only script called invokeai-batch that can be used to generate hundreds of images from prompts and settings that vary systematically. This can be used to try the same prompt across multiple combinations of models, steps, CFG settings and so forth. It also allows you to template prompts and generate a combinatorial list like:
a shack in the mountains, photograph
a shack in the mountains, watercolor
a shack in the mountains, oil painting
a chalet in the mountains, photograph
a chalet in the mountains, watercolor
a chalet in the mountains, oil painting
a shack in the desert, photograph
...
If you have a system with multiple GPUs, or a single GPU with lots of VRAM, you can parallelize generation across the combinatorial set, reducing wait times and using your system's resources efficiently (make sure you have good GPU cooling).
To try invokeai-batch out. Launch the "developer's console" using the invoke launcher script, or activate the invokeai virtual environment manually. From the console, give the command invokeai-batch --help in order to learn how the script works and create your first template file for dynamic prompt generation.
### Known Bugs in 2.3.2
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise a Trojan alert for the codeformer.pth face restoration model. As far as we have been able to determine, this is a false positive and can be safely whitelisted.
## v2.3.1 <small>(22 February 2023)</small>
This is primarily a bugfix release, but it does provide several new features that will improve the user experience.
### Enhanced support for model management
InvokeAI now makes it convenient to add, remove and modify models. You can individually import models that are stored on your local system, scan an entire folder and its subfolders for models and import them automatically, and even directly import models from the internet by providing their download URLs. You also have the option of designating a local folder to scan for new models each time InvokeAI is restarted.
There are three ways of accessing the model management features:
From the WebUI, click on the cube to the right of the model selection menu. This will bring up a form that allows you to import models individually from your local disk or scan a directory for models to import.
Using the Model Installer App
Choose option (5) download and install models from the invoke launcher script to start a new console-based application for model management. You can use this to select from a curated set of starter models, or import checkpoint, safetensors, and diffusers models from a local disk or the internet. The example below shows importing two checkpoint URLs from popular SD sites and a HuggingFace diffusers model using its Repository ID. It also shows how to designate a folder to be scanned at startup time for new models to import.
Command-line users can start this app using the command invokeai-model-install.
Using the Command Line Client (CLI)
The !install_model and !convert_model commands have been enhanced to allow entering of URLs and local directories to scan and import. The first command installs .ckpt and .safetensors files as-is. The second one converts them into the faster diffusers format before installation.
Internally InvokeAI is able to probe the contents of a .ckpt or .safetensors file to distinguish among v1.x, v2.x and inpainting models. This means that you do not need to include "inpaint" in your model names to use an inpainting model. Note that Stable Diffusion v2.x models will be autoconverted into a diffusers model the first time you use it.
Please see INSTALLING MODELS for more information on model management.
### An Improved Installer Experience
The installer now launches a console-based UI for setting and changing commonly-used startup options:
After selecting the desired options, the installer installs several support models needed by InvokeAI's face reconstruction and upscaling features and then launches the interface for selecting and installing models shown earlier. At any time, you can edit the startup options by launching invoke.sh/invoke.bat and entering option (6) change InvokeAI startup options
Command-line users can launch the new configure app using invokeai-configure.
This release also comes with a renewed updater. To do an update without going through a whole reinstallation, launch invoke.sh or invoke.bat and choose option (9) update InvokeAI . This will bring you to a screen that prompts you to update to the latest released version, to the most current development version, or any released or unreleased version you choose by selecting the tag or branch of the desired version.
Command-line users can run this interface by typing invokeai-configure
### Image Symmetry Options
There are now features to generate horizontal and vertical symmetry during generation. The way these work is to wait until a selected step in the generation process and then to turn on a mirror image effect. In addition to generating some cool images, you can also use this to make side-by-side comparisons of how an image will look with more or fewer steps. Access this option from the WebUI by selecting Symmetry from the image generation settings, or within the CLI by using the options --h_symmetry_time_pct and --v_symmetry_time_pct (these can be abbreviated to --h_sym and --v_sym like all other options).
### A New Unified Canvas Look
This release introduces a beta version of the WebUI Unified Canvas. To try it out, open up the settings dialogue in the WebUI (gear icon) and select Use Canvas Beta Layout:
Refresh the screen and go to to Unified Canvas (left side of screen, third icon from the top). The new layout is designed to provide more space to work in and to keep the image controls close to the image itself:
Model conversion and merging within the WebUI
The WebUI now has an intuitive interface for model merging, as well as for permanent conversion of models from legacy .ckpt/.safetensors formats into diffusers format. These options are also available directly from the invoke.sh/invoke.bat scripts.
An easier way to contribute translations to the WebUI
We have migrated our translation efforts to Weblate, a FOSS translation product. Maintaining the growing project's translations is now far simpler for the maintainers and community. Please review our brief translation guide for more information on how to contribute.
Numerous internal bugfixes and performance issues
### Bug Fixes
This releases quashes multiple bugs that were reported in 2.3.0. Major internal changes include upgrading to diffusers 0.13.0, and using the compel library for prompt parsing. See Detailed Change Log for a detailed list of bugs caught and squished.
Summary of InvokeAI command line scripts (all accessible via the launcher menu)
Command Description
invokeai Command line interface
invokeai --web Web interface
invokeai-model-install Model installer with console forms-based front end
invokeai-ti --gui Textual inversion, with a console forms-based front end
invokeai-merge --gui Model merging, with a console forms-based front end
invokeai-configure Startup configuration; can also be used to reinstall support models
invokeai-update InvokeAI software updater
### Known Bugs in 2.3.1
These are known bugs in the release.
MacOS users generating 768x768 pixel images or greater using diffusers models may experience a hard crash with assertion NDArray > 2**32 This appears to be an issu...
## v2.3.0 <small>(15 January 2023)</small>
**Transition to diffusers
Version 2.3 provides support for both the traditional `.ckpt` weight
checkpoint files as well as the HuggingFace `diffusers` format. This
introduces several changes you should know about.
1. The models.yaml format has been updated. There are now two
different type of configuration stanza. The traditional ckpt
one will look like this, with a `format` of `ckpt` and a
`weights` field that points to the absolute or ROOTDIR-relative
location of the ckpt file.
```
inpainting-1.5:
description: RunwayML SD 1.5 model optimized for inpainting (4.27 GB)
repo_id: runwayml/stable-diffusion-inpainting
format: ckpt
width: 512
height: 512
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
```
A configuration stanza for a diffusers model hosted at HuggingFace will look like this,
with a `format` of `diffusers` and a `repo_id` that points to the
repository ID of the model on HuggingFace:
```
stable-diffusion-2.1:
description: Stable Diffusion version 2.1 diffusers model (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
```
A configuration stanza for a diffuers model stored locally should
look like this, with a `format` of `diffusers`, but a `path` field
that points at the directory that contains `model_index.json`:
```
waifu-diffusion:
description: Latest waifu diffusion 1.4
format: diffusers
path: models/diffusers/hakurei-haifu-diffusion-1.4
```
2. In order of precedence, InvokeAI will now use HF_HOME, then
XDG_CACHE_HOME, then finally default to `ROOTDIR/models` to
store HuggingFace diffusers models.
Consequently, the format of the models directory has changed to
mimic the HuggingFace cache directory. When HF_HOME and XDG_HOME
are not set, diffusers models are now automatically downloaded
and retrieved from the directory `ROOTDIR/models/diffusers`,
while other models are stored in the directory
`ROOTDIR/models/hub`. This organization is the same as that used
by HuggingFace for its cache management.
This allows you to share diffusers and ckpt model files easily with
other machine learning applications that use the HuggingFace
libraries. To do this, set the environment variable HF_HOME
before starting up InvokeAI to tell it what directory to
cache models in. To tell InvokeAI to use the standard HuggingFace
cache directory, you would set HF_HOME like this (Linux/Mac):
`export HF_HOME=~/.cache/huggingface`
Both HuggingFace and InvokeAI will fall back to the XDG_CACHE_HOME
environment variable if HF_HOME is not set; this path
takes precedence over `ROOTDIR/models` to allow for the same sharing
with other machine learning applications that use HuggingFace
libraries.
3. If you upgrade to InvokeAI 2.3.* from an earlier version, there
will be a one-time migration from the old models directory format
to the new one. You will see a message about this the first time
you start `invoke.py`.
4. Both the front end back ends of the model manager have been
rewritten to accommodate diffusers. You can import models using
their local file path, using their URLs, or their HuggingFace
repo_ids. On the command line, all these syntaxes work:
```
!import_model stabilityai/stable-diffusion-2-1-base
!import_model /opt/sd-models/sd-1.4.ckpt
!import_model https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model/blob/main/PaperCut_v1.ckpt
```
**KNOWN BUGS (15 January 2023)
1. On CUDA systems, the 768 pixel stable-diffusion-2.0 and
stable-diffusion-2.1 models can only be run as `diffusers` models
when the `xformer` library is installed and configured. Without
`xformers`, InvokeAI returns black images.
2. Inpainting and outpainting have regressed in quality.
Both these issues are being actively worked on.
## v2.2.4 <small>(11 December 2022)</small>
**the `invokeai` directory**
Previously there were two directories to worry about, the directory that
contained the InvokeAI source code and the launcher scripts, and the `invokeai`
directory that contained the models files, embeddings, configuration and
outputs. With the 2.2.4 release, this dual system is done away with, and
everything, including the `invoke.bat` and `invoke.sh` launcher scripts, now
live in a directory named `invokeai`. By default this directory is located in
your home directory (e.g. `\Users\yourname` on Windows), but you can select
where it goes at install time.
After installation, you can delete the install directory (the one that the zip
file creates when it unpacks). Do **not** delete or move the `invokeai`
directory!
**Initialization file `invokeai/invokeai.init`**
You can place frequently-used startup options in this file, such as the default
number of steps or your preferred sampler. To keep everything in one place, this
file has now been moved into the `invokeai` directory and is named
`invokeai.init`.
**To update from Version 2.2.3**
The easiest route is to download and unpack one of the 2.2.4 installer files.
When it asks you for the location of the `invokeai` runtime directory, respond
with the path to the directory that contains your 2.2.3 `invokeai`. That is, if
`invokeai` lives at `C:\Users\fred\invokeai`, then answer with `C:\Users\fred`
and answer "Y" when asked if you want to reuse the directory.
The `update.sh` (`update.bat`) script that came with the 2.2.3 source installer
does not know about the new directory layout and won't be fully functional.
**To update to 2.2.5 (and beyond) there's now an update path**
As they become available, you can update to more recent versions of InvokeAI
using an `update.sh` (`update.bat`) script located in the `invokeai` directory.
Running it without any arguments will install the most recent version of
InvokeAI. Alternatively, you can get set releases by running the `update.sh`
script with an argument in the command shell. This syntax accepts the path to
the desired release's zip file, which you can find by clicking on the green
"Code" button on this repository's home page.
**Other 2.2.4 Improvements**
- Fix InvokeAI GUI initialization by @addianto in #1687
- fix link in documentation by @lstein in #1728
- Fix broken link by @ShawnZhong in #1736
- Remove reference to binary installer by @lstein in #1731
- documentation fixes for 2.2.3 by @lstein in #1740
- Modify installer links to point closer to the source installer by @ebr in
#1745
- add documentation warning about 1650/60 cards by @lstein in #1753
- Fix Linux source URL in installation docs by @andybearman in #1756
- Make install instructions discoverable in readme by @damian0815 in #1752
- typo fix by @ofirkris in #1755
- Non-interactive model download (support HUGGINGFACE_TOKEN) by @ebr in #1578
- fix(srcinstall): shell installer - cp scripts instead of linking by @tildebyte
in #1765
- stability and usage improvements to binary & source installers by @lstein in
#1760
- fix off-by-one bug in cross-attention-control by @damian0815 in #1774
- Eventually update APP_VERSION to 2.2.3 by @spezialspezial in #1768
- invoke script cds to its location before running by @lstein in #1805
- Make PaperCut and VoxelArt models load again by @lstein in #1730
- Fix --embedding_directory / --embedding_path not working by @blessedcoolant in
#1817
- Clean up readme by @hipsterusername in #1820
- Optimized Docker build with support for external working directory by @ebr in
#1544
- disable pushing the cloud container by @mauwii in #1831
- Fix docker push github action and expand with additional metadata by @ebr in
#1837
- Fix Broken Link To Notebook by @VedantMadane in #1821
- Account for flat models by @spezialspezial in #1766
- Update invoke.bat.in isolate environment variables by @lynnewu in #1833
- Arch Linux Specific PatchMatch Instructions & fixing conda install on linux by
@SammCheese in #1848
- Make force free GPU memory work in img2img by @addianto in #1844
- New installer by @lstein
## v2.2.3 <small>(2 December 2022)</small>
!!! Note
This point release removes references to the binary installer from the
installation guide. The binary installer is not stable at the current
time. First time users are encouraged to use the "source" installer as
described in [Installing InvokeAI with the Source Installer](installation/deprecated_documentation/INSTALL_SOURCE.md)
With InvokeAI 2.2, this project now provides enthusiasts and professionals a
robust workflow solution for creating AI-generated and human facilitated
compositions. Additional enhancements have been made as well, improving safety,
ease of use, and installation.
Optimized for efficiency, InvokeAI needs only ~3.5GB of VRAM to generate a
512x768 image (and less for smaller images), and is compatible with
Windows/Linux/Mac (M1 & M2).
You can see the [release video](https://youtu.be/hIYBfDtKaus) here, which
introduces the main WebUI enhancement for version 2.2 -
[The Unified Canvas](features/UNIFIED_CANVAS.md). This new workflow is the
biggest enhancement added to the WebUI to date, and unlocks a stunning amount of
potential for users to create and iterate on their creations. The following
sections describe what's new for InvokeAI.
## v2.2.2 <small>(30 November 2022)</small>
!!! note
The binary installer is not ready for prime time. First time users are recommended to install via the "source" installer accessible through the links at the bottom of this page.****
With InvokeAI 2.2, this project now provides enthusiasts and professionals a
robust workflow solution for creating AI-generated and human facilitated
compositions. Additional enhancements have been made as well, improving safety,
ease of use, and installation.
Optimized for efficiency, InvokeAI needs only ~3.5GB of VRAM to generate a
512x768 image (and less for smaller images), and is compatible with
Windows/Linux/Mac (M1 & M2).
You can see the [release video](https://youtu.be/hIYBfDtKaus) here, which
introduces the main WebUI enhancement for version 2.2 -
[The Unified Canvas](https://invoke-ai.github.io/InvokeAI/features/UNIFIED_CANVAS/).
This new workflow is the biggest enhancement added to the WebUI to date, and
unlocks a stunning amount of potential for users to create and iterate on their
creations. The following sections describe what's new for InvokeAI.
## v2.2.0 <small>(2 December 2022)</small>
With InvokeAI 2.2, this project now provides enthusiasts and professionals a
robust workflow solution for creating AI-generated and human facilitated
compositions. Additional enhancements have been made as well, improving safety,
ease of use, and installation.
Optimized for efficiency, InvokeAI needs only ~3.5GB of VRAM to generate a
512x768 image (and less for smaller images), and is compatible with
Windows/Linux/Mac (M1 & M2).
You can see the [release video](https://youtu.be/hIYBfDtKaus) here, which
introduces the main WebUI enhancement for version 2.2 -
[The Unified Canvas](features/UNIFIED_CANVAS.md). This new workflow is the
biggest enhancement added to the WebUI to date, and unlocks a stunning amount of
potential for users to create and iterate on their creations. The following
sections describe what's new for InvokeAI.
## v2.1.3 <small>(13 November 2022)</small>
- A choice of installer scripts that automate installation and configuration.
See
[Installation](installation/index.md).
- A streamlined manual installation process that works for both Conda and
PIP-only installs. See
[Manual Installation](installation/020_INSTALL_MANUAL.md).
- The ability to save frequently-used startup options (model to load, steps,
sampler, etc) in a `.invokeai` file. See
[Client](deprecated/CLI.md)
- Support for AMD GPU cards (non-CUDA) on Linux machines.
- Multiple bugs and edge cases squashed.
## v2.1.0 <small>(2 November 2022)</small>
- update mac instructions to use invokeai for env name by @willwillems in #1030
- Update .gitignore by @blessedcoolant in #1040
- reintroduce fix for m1 from #579 missing after merge by @skurovec in #1056
- Update Stable_Diffusion_AI_Notebook.ipynb (Take 2) by @ChloeL19 in #1060
- Print out the device type which is used by @manzke in #1073
- Hires Addition by @hipsterusername in #1063
- fix for "1 leaked semaphore objects to clean up at shutdown" on M1 by
@skurovec in #1081
- Forward dream.py to invoke.py using the same interpreter, add deprecation
warning by @db3000 in #1077
- fix noisy images at high step counts by @lstein in #1086
- Generalize facetool strength argument by @db3000 in #1078
- Enable fast switching among models at the invoke> command line by @lstein in
#1066
- Fix Typo, committed changing ldm environment to invokeai by @jdries3 in #1095
- Update generate.py by @unreleased in #1109
- Update 'ldm' env to 'invokeai' in troubleshooting steps by @19wolf in #1125
- Fixed documentation typos and resolved merge conflicts by @rupeshs in #1123
- Fix broken doc links, fix malaprop in the project subtitle by @majick in #1131
- Only output facetool parameters if enhancing faces by @db3000 in #1119
- Update gitignore to ignore codeformer weights at new location by
@spezialspezial in #1136
- fix links to point to invoke-ai.github.io #1117 by @mauwii in #1143
- Rework-mkdocs by @mauwii in #1144
- add option to CLI and pngwriter that allows user to set PNG compression level
by @lstein in #1127
- Fix img2img DDIM index out of bound by @wfng92 in #1137
- Fix gh actions by @mauwii in #1128
- update mac instructions to use invokeai for env name by @willwillems in #1030
- Update .gitignore by @blessedcoolant in #1040
- reintroduce fix for m1 from #579 missing after merge by @skurovec in #1056
- Update Stable_Diffusion_AI_Notebook.ipynb (Take 2) by @ChloeL19 in #1060
- Print out the device type which is used by @manzke in #1073
- Hires Addition by @hipsterusername in #1063
- fix for "1 leaked semaphore objects to clean up at shutdown" on M1 by
@skurovec in #1081
- Forward dream.py to invoke.py using the same interpreter, add deprecation
warning by @db3000 in #1077
- fix noisy images at high step counts by @lstein in #1086
- Generalize facetool strength argument by @db3000 in #1078
- Enable fast switching among models at the invoke> command line by @lstein in
#1066
- Fix Typo, committed changing ldm environment to invokeai by @jdries3 in #1095
- Fixed documentation typos and resolved merge conflicts by @rupeshs in #1123
- Only output facetool parameters if enhancing faces by @db3000 in #1119
- add option to CLI and pngwriter that allows user to set PNG compression level
by @lstein in #1127
- Fix img2img DDIM index out of bound by @wfng92 in #1137
- Add text prompt to inpaint mask support by @lstein in #1133
- Respect http[s] protocol when making socket.io middleware by @damian0815 in
#976
- WebUI: Adds Codeformer support by @psychedelicious in #1151
- Skips normalizing prompts for web UI metadata by @psychedelicious in #1165
- Add Asymmetric Tiling by @carson-katri in #1132
- Web UI: Increases max CFG Scale to 200 by @psychedelicious in #1172
- Corrects color channels in face restoration; Fixes #1167 by @psychedelicious
in #1175
- Flips channels using array slicing instead of using OpenCV by @psychedelicious
in #1178
- Fix typo in docs: s/Formally/Formerly by @noodlebox in #1176
- fix clipseg loading problems by @lstein in #1177
- Correct color channels in upscale using array slicing by @wfng92 in #1181
- Web UI: Filters existing images when adding new images; Fixes #1085 by
@psychedelicious in #1171
- fix a number of bugs in textual inversion by @lstein in #1190
- Improve !fetch, add !replay command by @ArDiouscuros in #882
- Fix generation of image with s>1000 by @holstvoogd in #951
- Web UI: Gallery improvements by @psychedelicious in #1198
- Update CLI.md by @krummrey in #1211
- outcropping improvements by @lstein in #1207
- add support for loading VAE autoencoders by @lstein in #1216
- remove duplicate fix_func for MPS by @wfng92 in #1210
- Metadata storage and retrieval fixes by @lstein in #1204
- nix: add shell.nix file by @Cloudef in #1170
- Web UI: Changes vite dist asset paths to relative by @psychedelicious in #1185
- Web UI: Removes isDisabled from PromptInput by @psychedelicious in #1187
- Allow user to generate images with initial noise as on M1 / mps system by
@ArDiouscuros in #981
- feat: adding filename format template by @plucked in #968
- Web UI: Fixes broken bundle by @psychedelicious in #1242
- Support runwayML custom inpainting model by @lstein in #1243
- Update IMG2IMG.md by @talitore in #1262
- New dockerfile - including a build- and a run- script as well as a GH-Action
by @mauwii in #1233
- cut over from karras to model noise schedule for higher steps by @lstein in
#1222
- Prompt tweaks by @lstein in #1268
- Outpainting implementation by @Kyle0654 in #1251
- fixing aspect ratio on hires by @tjennings in #1249
- Fix-build-container-action by @mauwii in #1274
- handle all unicode characters by @damian0815 in #1276
- adds models.user.yml to .gitignore by @JakeHL in #1281
- remove debug branch, set fail-fast to false by @mauwii in #1284
- Protect-secrets-on-pr by @mauwii in #1285
- Web UI: Adds initial inpainting implementation by @psychedelicious in #1225
- fix environment-mac.yml - tested on x64 and arm64 by @mauwii in #1289
- Use proper authentication to download model by @mauwii in #1287
- Prevent indexing error for mode RGB by @spezialspezial in #1294
- Integrate sd-v1-5 model into test matrix (easily expandable), remove
unecesarry caches by @mauwii in #1293
- add --no-interactive to configure_invokeai step by @mauwii in #1302
- 1-click installer and updater. Uses micromamba to install git and conda into a
contained environment (if necessary) before running the normal installation
script by @cmdr2 in #1253
- configure_invokeai.py script downloads the weight files by @lstein in #1290
## v2.0.1 <small>(13 October 2022)</small>
- fix noisy images at high step count when using k\* samplers
- dream.py script now calls invoke.py module directly rather than via a new
python process (which could break the environment)
## v2.0.0 <small>(9 October 2022)</small>
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](deprecated/INPAINTING.md) and
[outpainting](features/OUTPAINTING.md)
- img2img runs on all k\* samplers
- Support for
[negative prompts](features/PROMPTS.md#negative-and-unconditioned-prompts)
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for
[post-processing of previously-generated images](features/POSTPROCESS.md)
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E
infinite canvas), and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows
[larger images to be created without duplicating elements](deprecated/CLI.md#this-is-an-example-of-txt2img),
at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control
variation during image generation (see
[Thresholding and Perlin Noise Initialization](features/OTHER.md#thresholding-and-perlin-noise-initialization-options))
- Extensive metadata now written into PNG files, allowing reliable regeneration
of images and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac
platforms.
- Improved [command-line completion behavior](deprecated/CLI.md) New commands
added:
- List command-line history with `!history`
- Search command-line history with `!search`
- Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
configure. To switch away from auto use the new flag like
`--precision=float32`.
## v1.14 <small>(11 September 2022)</small>
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
- Full support for Apple hardware with M1 or M2 chips.
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
([prixt](https://github.com/prixt)).
- Inpainting support.
- Improved web server GUI.
- Lots of code and documentation cleanups.
## v1.13 <small>(3 September 2022)</small>
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
([Kevin Gibbons](https://github.com/bakkot) and many contributors and
reviewers)
- Supports a Google Colab notebook for a standalone server running on Google
hardware [Arturo Mendivil](https://github.com/artmen1516)
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
[Kevin Gibbons](https://github.com/bakkot)
- WebUI supports incremental display of in-progress images during generation
[Kevin Gibbons](https://github.com/bakkot)
- A new configuration file scheme that allows new models (including upcoming
stable-diffusion-v1.5) to be added without altering the code.
([David Wager](https://github.com/maddavid12))
- Can specify --grid on invoke.py command line as the default.
- Miscellaneous internal bug and stability fixes.
- Works on M1 Apple hardware.
- Multiple bug fixes.
---
## v1.12 <small>(28 August 2022)</small>
- Improved file handling, including ability to read prompts from standard input.
(kudos to [Yunsaki](https://github.com/yunsaki)
- The web server is now integrated with the invoke.py script. Invoke by adding
--web to the invoke.py command arguments.
- Face restoration and upscaling via GFPGAN and Real-ESGAN are now automatically
enabled if the GFPGAN directory is located as a sibling to Stable Diffusion.
VRAM requirements are modestly reduced. Thanks to both
[Blessedcoolant](https://github.com/blessedcoolant) and
[Oceanswave](https://github.com/oceanswave) for their work on this.
- You can now swap samplers on the invoke> command line.
[Blessedcoolant](https://github.com/blessedcoolant)
---
## v1.11 <small>(26 August 2022)</small>
- NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module.
(kudos to [Oceanswave](https://github.com/Oceanswave)
- You now can specify a seed of -1 to use the previous image's seed, -2 to use
the seed for the image generated before that, etc. Seed memory only extends
back to the previous command, but will work on all images generated with the
-n# switch.
- Variant generation support temporarily disabled pending more general solution.
- Created a feature branch named **yunsaki-morphing-invoke** which adds
experimental support for iteratively modifying the prompt and its parameters.
Please
see[Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86) for
a synopsis of how this works. Note that when this feature is eventually added
to the main branch, it will may be modified significantly.
---
## v1.10 <small>(25 August 2022)</small>
- A barebones but fully functional interactive web server for online generation
of txt2img and img2img.
---
## v1.09 <small>(24 August 2022)</small>
- A new -v option allows you to generate multiple variants of an initial image
in img2img mode. (kudos to [Oceanswave](https://github.com/Oceanswave).
[ See this discussion in the PR for examples and details on use](https://github.com/lstein/stable-diffusion/pull/71#issuecomment-1226700810))
- Added ability to personalize text to image generation (kudos to
[Oceanswave](https://github.com/Oceanswave) and
[nicolai256](https://github.com/nicolai256))
- Enabled all of the samplers from k_diffusion
---
## v1.08 <small>(24 August 2022)</small>
- Escape single quotes on the invoke> command before trying to parse. This
avoids parse errors.
- Removed instruction to get Python3.8 as first step in Windows install.
Anaconda3 does it for you.
- Added bounds checks for numeric arguments that could cause crashes.
- Cleaned up the copyright and license agreement files.
---
## v1.07 <small>(23 August 2022)</small>
- Image filenames will now never fill gaps in the sequence, but will be assigned
the next higher name in the chosen directory. This ensures that the alphabetic
and chronological sort orders are the same.
---
## v1.06 <small>(23 August 2022)</small>
- Added weighted prompt support contributed by
[xraxra](https://github.com/xraxra)
- Example of using weighted prompts to tweak a demonic figure contributed by
[bmaltais](https://github.com/bmaltais)
---
## v1.05 <small>(22 August 2022 - after the drop)</small>
- Filenames now use the following formats: 000010.95183149.png -- Two files
produced by the same command (e.g. -n2), 000010.26742632.png -- distinguished
by a different seed.
000011.455191342.01.png -- Two files produced by the same command using
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid
can be regenerated with the indicated key
- It should no longer be possible for one image to overwrite another
- You can use the "cd" and "pwd" commands at the invoke> prompt to set and
retrieve the path of the output directory.
---
## v1.04 <small>(22 August 2022 - after the drop)</small>
- Updated README to reflect installation of the released weights.
- Suppressed very noisy and inconsequential warning when loading the frozen CLIP
tokenizer.
---
## v1.03 <small>(22 August 2022)</small>
- The original txt2img and img2img scripts from the CompViz repository have been
moved into a subfolder named "orig_scripts", to reduce confusion.
---
## v1.02 <small>(21 August 2022)</small>
- A copy of the prompt and all of its switches and options is now stored in the
corresponding image in a tEXt metadata field named "Dream". You can read the
prompt using scripts/images2prompt.py, or an image editor that allows you to
explore the full metadata. **Please run "conda env update" to load the k_lms
dependencies!!**
---
## v1.01 <small>(21 August 2022)</small>
- added k_lms sampling. **Please run "conda env update" to load the k_lms
dependencies!!**
- use half precision arithmetic by default, resulting in faster execution and
lower memory requirements Pass argument --full_precision to invoke.py to get
slower but more accurate image generation
---
## Links
- **[Read Me](index.md)**

View File

@@ -1,152 +0,0 @@
# Release Process
The Invoke application is published as a python package on [PyPI]. This includes both a source distribution and built distribution (a wheel).
Most users install it with the [Launcher](https://github.com/invoke-ai/launcher/), others with `pip`.
The launcher uses GitHub as the source of truth for available releases.
## Broad Strokes
- Merge all changes and bump the version in the codebase.
- Tag the release commit.
- Wait for the release workflow to complete.
- Approve the PyPI publish jobs.
- Write GH release notes.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out. Bump the version by editing `invokeai/version/invokeai_version.py`.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`.
### Triggering the Workflow
Ensure all commits that should be in the release are merged, and you have pulled them locally.
Double-check that you have checked out the commit that will represent the release (typically the latest commit on `main`).
Run `make tag-release` to tag the current commit and kick off the workflow. You will be prompted to provide a message - use the version specifier.
If this version's tag already exists for some reason (maybe you had to make a last minute change), the script will overwrite it.
> In case you cannot use the Make target, the release may also be dispatched [manually] via GH.
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run checks and tests, then two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job ensures that the `invokeai` python package version specifier matches the tag for the release. The version specifier is pulled from the `__version__` variable in `invokeai/version/invokeai_version.py`.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
Next, these jobs run and must pass. They are the same jobs that are run for every PR.
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
- **`typegen-checks`**: ensures the frontend and backend types are synced
#### `build-wheel` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `./scripts/build_wheel.sh` and uploads `dist.zip`, which contains the wheel and unarchived build.
You don't need to download or test these artifacts.
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
It's possible to test the python package before it gets published to PyPI. We've never had problems with it, so it's not necessary to do this.
But, if you want to be extra-super careful, here's how to test it:
- Download the `dist.zip` build artifact from the `build-wheel` job
- Unzip it and find the wheel file
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/) - but instead of installing from PyPI, install from the wheel
- Test the app
##### Something isn't right
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?) and start over.
#### PyPI Publish Jobs
The publish jobs will not run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a @hipsterusername or @psychedelicious to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi` - typically you select both)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
##### Failing PyPI Publish
Check the [python infrastructure status page] for incidents.
If there are no incidents, contact @hipsterusername or @lstein, who have owner access to GH and PyPI, to see if access has expired or something like that.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release for some reason:
- Approve this publish job without approving the prod publish
- Let it finish
- Create a fresh Invoke install by following the [manual install guide](https://invoke-ai.github.io/InvokeAI/installation/manual/), making sure to use the Test PyPI index URL: `https://test.pypi.org/simple/`
- Test the app
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
It's a good idea to wait to approve and run this job until you have the release notes ready!
## Prep and publish the GitHub Release
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. The **Generate release notes** button automatically inserts the changelog and new contributors. Make sure to select the correct tags for this release and the last stable release. GH often selects the wrong tags - do this manually.
3. Write the release notes, describing important changes. Contributions from community members should be shouted out. Use the GH-generated changelog to see all contributors. If there are Weblate translation updates, open that PR and shout out every person who contributed a translation.
4. Check **Set as a pre-release** if it's a pre-release.
5. Approve and wait for the `publish-pypi` job to finish if you haven't already.
6. Publish the GH release.
7. Post the release in Discord in the [releases](https://discord.com/channels/1020123559063990373/1149260708098359327) channel with abbreviated notes. For example:
> Invoke v5.7.0 (stable): <https://github.com/invoke-ai/InvokeAI/releases/tag/v5.7.0>
>
> It's a pretty big one - Form Builder, Metadata Nodes (thanks @SkunkWorxDark!), and much more.
8. Right click the message in releases and copy the link to it. Then, post that link in the [new-release-discussion](https://discord.com/channels/1020123559063990373/1149506274971631688) channel. For example:
> Invoke v5.7.0 (stable): <https://discord.com/channels/1020123559063990373/1149260708098359327/1344521744916021248>
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release
[python infrastructure status page]: https://status.python.org/

Binary file not shown.

Before

Width:  |  Height:  |  Size: 415 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 221 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 786 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 983 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 729 KiB

After

Width:  |  Height:  |  Size: 637 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 530 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 409 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 228 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 439 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 563 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 353 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 421 KiB

After

Width:  |  Height:  |  Size: 501 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 585 KiB

After

Width:  |  Height:  |  Size: 473 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 598 KiB

After

Width:  |  Height:  |  Size: 557 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 438 KiB

After

Width:  |  Height:  |  Size: 340 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 637 KiB

View File

@@ -1,192 +0,0 @@
---
title: Configuration
---
# :material-tune-variant: InvokeAI Configuration
## Intro
Runtime settings, including the location of files and
directories, memory usage, and performance, are managed via the
`invokeai.yaml` config file or environment variables. A subset
of settings may be set via commandline arguments.
Settings sources are used in this order:
- CLI args
- Environment variables
- `invokeai.yaml` settings
- Fallback: defaults
### InvokeAI Root Directory
On startup, InvokeAI searches for its "root" directory. This is the directory
that contains models, images, the database, and so on. It also contains
a configuration file called `invokeai.yaml`.
InvokeAI searches for the root directory in this order:
1. The `--root <path>` CLI arg.
2. The environment variable INVOKEAI_ROOT.
3. The directory containing the currently active virtual environment.
4. Fallback: a directory in the current user's home directory named `invokeai`.
### InvokeAI Configuration File
Inside the root directory, we read settings from the `invokeai.yaml` file.
It has two sections - one for internal use and one for user settings:
```yaml
# Internal metadata - do not edit:
schema_version: 4.0.2
# Put user settings here - see https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/:
host: 0.0.0.0 # serve the app on your local network
models_dir: D:\invokeai\models # store models on an external drive
precision: float16 # always use fp16 precision
```
The settings in this file will override the defaults. You only need
to change this file if the default for a particular setting doesn't
work for you.
You'll find an example file next to `invokeai.yaml` that shows the default values.
Some settings, like [Model Marketplace API Keys], require the YAML
to be formatted correctly. Here is a [basic guide to YAML files].
#### Custom Config File Location
You can use any config file with the `--config` CLI arg. Pass in the path to the `invokeai.yaml` file you want to use.
Note that environment variables will trump any settings in the config file.
### Environment Variables
All settings may be set via environment variables by prefixing `INVOKEAI_`
to the variable name. For example, `INVOKEAI_HOST` would set the `host`
setting.
For non-primitive values, pass a JSON-encoded string:
```sh
export INVOKEAI_REMOTE_API_TOKENS='[{"url_regex":"modelmarketplace", "token": "12345"}]'
```
We suggest using `invokeai.yaml`, as it is more user-friendly.
### CLI Args
A subset of settings may be specified using CLI args:
- `--root`: specify the root directory
- `--config`: override the default `invokeai.yaml` file location
### Low-VRAM Mode
See the [Low-VRAM mode docs][low-vram] for details on enabling this feature.
### All Settings
Following the table are additional explanations for certain settings.
<!-- prettier-ignore-start -->
::: invokeai.app.services.config.config_default.InvokeAIAppConfig
options:
show_root_heading: false
members: false
show_docstring_description: false
show_category_heading: false
<!-- prettier-ignore-end -->
#### Model Marketplace API Keys
Some model marketplaces require an API key to download models. You can provide a URL pattern and appropriate token in your `invokeai.yaml` file to provide that API key.
The pattern can be any valid regex (you may need to surround the pattern with quotes):
```yaml
remote_api_tokens:
# Any URL containing `models.com` will automatically use `your_models_com_token`
- url_regex: models.com
token: your_models_com_token
# Any URL matching this contrived regex will use `some_other_token`
- url_regex: '^[a-z]{3}whatever.*\.com$'
token: some_other_token
```
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
!!! tip "HuggingFace Models"
If you get an error when installing a HF model using a URL instead of repo id, you may need to [set up a HF API token](https://huggingface.co/settings/tokens) and add an entry for it under `remote_api_tokens`. Use `huggingface.co` for `url_regex`.
#### Model Hashing
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
```yaml
hashing_algorithm: blake3_single # default value
```
You might want to change this setting, depending on your system:
- `blake3_single` (default): Single-threaded - best for spinning HDDs, still OK for SSDs
- `blake3_multi`: Parallelized, memory-mapped implementation - best for SSDs, terrible for spinning disks
- `random`: Skip hashing entirely - fastest but of course no hash
During the first startup after upgrading to v4, all of your models will be hashed. This can take a few minutes.
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than either of the BLAKE3 variants.
#### Path Settings
These options set the paths of various directories and files used by InvokeAI. Any user-defined paths should be absolute paths.
#### Logging
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
```yaml
log_handlers:
- console
- syslog=localhost
- file=/var/log/invokeai.log
```
- `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
- `syslog` is only available on Linux and Macintosh systems. It uses
the operating system's "syslog" facility to write log file entries
locally or to a remote logging machine. `syslog` offers a variety
of configuration options:
```yaml
syslog=/dev/log` - log to the /dev/log device
syslog=localhost` - log to the network logger running on the local machine
syslog=localhost:512` - same as above, but using a non-standard port
syslog=fredserver,facility=LOG_USER,socktype=SOCK_DRAM`
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
```
- `http` can be used to log to a remote web server. The server must be
properly configured to receive and act on log messages. The option
accepts the URL to the web server, and a `method` argument
indicating whether the message should be submitted using the GET or
POST method.
```yaml
http=http://my.server/path/to/logger,method=POST
```
The `log_format` option provides several alternative formats:
- `color` - default format providing time, date and a message, using text colors to distinguish different log severities
- `plain` - same as above, but monochrome text only
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys
[low-vram]: ./features/low-vram.md

View File

@@ -50,7 +50,7 @@ Applications are built on top of the invoke framework. They should construct `in
### Web UI
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/invokeai/frontend` and the backend code is found in `/invokeai/app/api_app.py` and `/invokeai/app/api/`. The code is further organized as such:
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/frontend` and the backend code is found in `/ldm/invoke/app/api_app.py` and `/ldm/invoke/app/api/`. The code is further organized as such:
| Component | Description |
| --- | --- |
@@ -62,7 +62,7 @@ The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.t
### CLI
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/invokeai/frontend/cli`.
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/ldm/invoke/app/cli_app.py`.
## Invoke
@@ -70,7 +70,7 @@ The Invoke framework provides the interface to the underlying AI systems and is
### Invoker
The invoker (`/invokeai/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
The invoker (`/ldm/invoke/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
- **invocation services**, which are used by invocations to interact with core functionality.
- **invoker services**, which are used by the invoker to manage sessions and manage the invocation queue.
@@ -82,12 +82,12 @@ The session graph does not support looping. This is left as an application probl
### Invocations
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/invokeai/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/ldm/invoke/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
### Services
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/invokeai/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/ldm/invoke/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
## AI Core
The AI Core is represented by the rest of the code base (i.e. the code outside of `/invokeai/app/`).
The AI Core is represented by the rest of the code base (i.e. the code outside of `/ldm/invoke/app/`).

View File

@@ -0,0 +1,54 @@
## Welcome to Invoke AI
We're thrilled to have you here and we're excited for you to contribute.
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
Here are some guidelines to help you get started:
### Technical Prerequisites
Front-end: You'll need a working knowledge of React and TypeScript.
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
### How to Submit Contributions
To start contributing, please follow these steps:
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
### Types of Contributions We're Looking For
We welcome all contributions that improve the project. Right now, we're especially looking for:
1. Quality of life (QOL) enhancements on the front-end.
2. New backend capabilities added through nodes.
3. Incorporating additional optimizations from the broader open-source software community.
### Communication and Decision-making Process
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
### Code of Conduct and Contribution Expectations
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:
1. The contribution was created in whole or in part by you and you have the right to submit it under the open-source license indicated in this projects GitHub repository; or
2. The contribution is based upon previous work that, to the best of your knowledge, is covered under an appropriate open-source license and you have the right under that license to submit that work with modifications, whether created in whole or in part by you, under the same open-source license (unless you are permitted to submit under a different license); or
3. The contribution was provided directly to you by some other person who certified (1) or (2) and you have not modified it; or
4. You understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information you submit with it, including your sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open-source license(s) involved.
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
---
Remember, your contributions help make this project great. We're excited to see what you'll bring to our community!

View File

@@ -1,334 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
Two job types are defined. `DownloadJob` and
`MultiFileDownloadJob`. The former is a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
The `MultiFileDownloadJob` is used for diffusers model downloads,
which contain multiple files and directories under a common root:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `download_parts` | Set[DownloadJob]| | Component download jobs |
| `dest` | Path | | Where to download to |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the root of the downloaded files |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
Note that the MultiFileDownloadJob does not support the `priority`,
`job_started`, `job_ended` or `content_type` attributes. You can get
these from the individual download jobs in `download_parts`.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
This is similar to download(), but instead of taking a single source,
it accepts a `parts` argument consisting of a list of
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
where the URL is the location of the remote file, and the Path is the
destination.
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
consists of a url/path pair. Note that the path *must* be relative.
The method returns a `MultiFileDownloadJob`.
```
from invokeai.backend.model_manager.metadata import RemoteModelFile
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
path='my_model/textencoder/pytorch_model.safetensors'
)
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
path='my_model/vae/diffusers_model.safetensors'
)
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
dest='/tmp/downloads',
on_progress=TqdmProgress().update)
queue.wait_for_job(job)
print(f"The files were downloaded to {job.download_path}")
```
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

View File

@@ -1,6 +1,6 @@
# Nodes
# Invocations
Features in InvokeAI are added in the form of modular nodes systems called
Features in InvokeAI are added in the form of modular node-like systems called
**Invocations**.
An Invocation is simply a single operation that takes in some inputs and gives
@@ -9,38 +9,13 @@ complex functionality.
## Invocations Directory
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These
can be used as examples to create your own nodes.
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
New nodes should be added to a subfolder in `nodes` direction found at the root
level of the InvokeAI installation location. Nodes added to this folder will be
able to be used upon application startup.
You can add your new functionality to one of the existing Invocations in this
directory or create a new file in this directory as per your needs.
Example `nodes` subfolder structure:
```py
__init__.py # Invoke-managed custom node loader
cool_node
__init__.py # see example below
cool_node.py
my_node_pack
__init__.py # see example below
tasty_node.py
bodacious_node.py
utils.py
extra_nodes
fancy_node.py
```
Each node folder must have an `__init__.py` file that imports its nodes. Only
nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import ResizeInvocation
```
**Note:** _All Invocations must be inside this directory for InvokeAI to
recognize them as valid Invocations._
## Creating A New Invocation
@@ -54,13 +29,12 @@ The first set of things we need to do when creating a new Invocation are -
- Create a new class that derives from a predefined parent class called
`BaseInvocation`.
- The name of every Invocation must end with the word `Invocation` in order for
it to be recognized as an Invocation.
- Every Invocation must have a `docstring` that describes what this Invocation
does.
- While not strictly required, we suggest every invocation class name ends in
"Invocation", eg "CropImageInvocation".
- Every Invocation must use the `@invocation` decorator to provide its unique
invocation type. You may also provide its title, tags and category using the
decorator.
- Every Invocation must have a unique `type` field defined which becomes its
indentifier.
- Invocations are strictly typed. We make use of the native
[typing](https://docs.python.org/3/library/typing.html) library and the
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
@@ -69,14 +43,12 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from invokeai.invocation_api import (
BaseInvocation,
invocation,
)
from typing import Literal
from .baseinvocation import BaseInvocation
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
```
That's great.
@@ -90,10 +62,8 @@ our Invocation takes.
### **Inputs**
Every Invocation input must be defined using the `InputField` function. This is
a wrapper around the pydantic `Field` function, which handles a few extra things
and provides type hints. Like everything else, this should be strictly typed and
defined.
Every Invocation input is a pydantic `Field` and like everything else should be
strictly typed and defined.
So let us create these inputs for our Invocation. First up, the `image` input we
need. Generally, we can use standard variable types in Python but InvokeAI
@@ -106,58 +76,55 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: ImageField = InputField(description="The input image")
image: Union[ImageField, None] = Field(description="The input image", default=None)
```
Let us break down our input code.
```python
image: ImageField = InputField(description="The input image")
image: Union[ImageField, None] = Field(description="The input image", default=None)
```
| Part | Value | Description |
| --------- | ------------------------------------------- | ------------------------------------------------------------------------------- |
| Name | `image` | The variable that will hold our image |
| Type Hint | `ImageField` | The types for our field. Indicates that the image must be an `ImageField` type. |
| Field | `InputField(description="The input image")` | The image variable is an `InputField` which needs a description. |
| Part | Value | Description |
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
| Name | `image` | The variable that will hold our image |
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
Great. Now let us create our other inputs for `width` and `height`
```python
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
invocation,
)
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
```
As you might have noticed, we added two new arguments to the `InputField`
definition for `width` and `height`, called `gt` and `le`. They stand for
_greater than or equal to_ and _less than or equal to_.
These impose constraints on those fields, and will raise an exception if the
values do not meet the constraints. Field constraints are provided by
**pydantic**, so anything you see in the **pydantic docs** will work.
As you might have noticed, we added two new parameters to the field type for
`width` and `height` called `gt` and `le`. These basically stand for _greater
than or equal to_ and _less than or equal to_. There are various other param
types for field that you can find on the **pydantic** documentation.
**Note:** _Any time it is possible to define constraints for our field, we
should do it so the frontend has more information on how to parse this field._
@@ -174,21 +141,20 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext):
pass
@@ -207,23 +173,21 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from typing import Literal, Union
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
from .image import ImageOutput
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
pass
@@ -231,44 +195,57 @@ class ResizeInvocation(BaseInvocation):
Perfect. Now that we have our Invocation setup, let us do what we want to do.
- We will first load the image using one of the services provided by InvokeAI to
load the image.
- We will first load the image. Generally we do this using the `PIL` library but
we can use one of the services provided by InvokeAI to load the image.
- We will resize the image using `PIL` to our input data.
- We will output this image in the format we set above.
So let's do that.
```python
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
from typing import Literal, Union
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):
"""Resizes an image"""
'''Resizes an image'''
type: Literal['resize'] = 'resize'
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the input image as a PIL image
image = context.images.get_pil(self.image.image_name)
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Resize the image
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Save the image
image_dto = context.images.save(image=resized_image)
# Preparing the image for output using InvokeAI's predefined Image Service.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Return an ImageOutput
return ImageOutput.build(image_dto)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
)
```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
@@ -276,24 +253,6 @@ certain way that the images need to be dispatched in order to be stored and read
correctly. In 99% of the cases when dealing with an image output, you can simply
copy-paste the template above.
### Customization
We can use the `@invocation` decorator to provide some additional info to the
UI, like a custom title, tags and category.
We also encourage providing a version. This must be a
[semver](https://semver.org/) version string ("$MAJOR.$MINOR.$PATCH"). The UI
will let users know if their workflow is using a mismatched version of the node.
```python
@invocation("resize", title="My Resizer", tags=["resize", "image"], category="My Invocations", version="1.0.0")
class ResizeInvocation(BaseInvocation):
"""Resizes an image"""
image: ImageField = InputField(description="The input image")
...
```
That's it. You made your own **Resize Invocation**.
## Result
@@ -311,73 +270,27 @@ new Invocation ready to be used.
![resize node editor](../assets/contributing/resize_node_editor.png)
## Contributing Nodes
# Advanced
Once you've created a Node, the next step is to share it with the community! The
best way to do this is to submit a Pull Request to add the Node to the
[Community Nodes](../nodes/communityNodes.md) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](../nodes/contributingNodes.md).
## Advanced
### Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up.
Now that you are familiar with Invocations and Inputs, let us use that knowledge
to create an output that has an `image` field, a `color` field and a `string`
field.
- An invocation output is a class that derives from the parent class of
`BaseInvocationOutput`.
- All invocation outputs must use the `@invocation_output` decorator to provide
their unique output type.
- Output fields must use the provided `OutputField` function. This is very
similar to the `InputField` function described earlier - it's a wrapper around
`pydantic`'s `Field()`.
- It is not mandatory but we recommend using names ending with `Output` for
output types.
- It is not mandatory but we highly recommend adding a `docstring` to describe
what your output type is for.
Now that we know the basic rules for creating a new output type, let us go ahead
and make it.
```python
from .baseinvocation import BaseInvocationOutput, OutputField, invocation_output
from .primitives import ImageField, ColorField
@invocation_output('image_color_string_output')
class ImageColorStringOutput(BaseInvocationOutput):
'''Base class for nodes that output a single image'''
image: ImageField = OutputField(description="The image")
color: ColorField = OutputField(description="The color")
text: str = OutputField(description="The string")
```
That's all there is to it.
### Custom Input Fields
## Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
While creating your own Invocations, you might run into a scenario where the
existing fields in InvokeAI do not meet your requirements. In such cases, you
can create your own fields.
existing input types in InvokeAI do not meet your requirements. In such cases,
you can create your own input types.
Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some
general good practices to keep in mind.
### Best Practices
**Good Practices**
- There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your field.
`docstring` to describe your input field.
- Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant.
@@ -392,13 +305,10 @@ class ColorField(BaseModel):
pass
```
Perfect. Now let us create the properties for our field. This is similar to how
you created input fields for your Invocation. All the same rules apply. Let us
create four fields representing the _red(r)_, _blue(b)_, _green(g)_ and
_alpha(a)_ channel of the color.
> Technically, the properties are _also_ called fields - but in this case, it
> refers to a `pydantic` field.
Perfect. Now let us create our custom inputs for our field. This is exactly
similar how you created input fields for your Invocation. All the same rules
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_green(g)_ and _alpha(a)_ channel of the color.
```python
class ColorField(BaseModel):
@@ -413,11 +323,468 @@ That's it. We now have a new input field type that we can use in our Invocations
like this.
```python
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
### Using the custom field
**Extra Config**
When you start the UI, your custom field will be automatically recognized.
All input fields also take an additional `Config` class that you can use to do
various advanced things like setting required parameters and etc.
Custom fields only support connection inputs in the Workflow Editor.
Let us do that for our _ColorField_ and enforce all the values because we did
not define any defaults for our fields.
```python
class ColorField(BaseModel):
'''A field that holds the rgba values of a color'''
r: int = Field(ge=0, le=255, description="The red channel")
g: int = Field(ge=0, le=255, description="The green channel")
b: int = Field(ge=0, le=255, description="The blue channel")
a: int = Field(ge=0, le=255, description="The alpha channel")
class Config:
schema_extra = {"required": ["r", "g", "b", "a"]}
```
Now it becomes mandatory for the user to supply all the values required by our
input field.
We will discuss the `Config` class in extra detail later in this guide and how
you can use it to make your Invocations more robust.
## Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up.
Now that you are familiar with Invocations and Inputs, let us use that knowledge
to put together a custom output type for an Invocation that returns _width_,
_height_ and _background_color_ that we need to create a blank image.
- A custom output type is a class that derives from the parent class of
`BaseInvocationOutput`.
- It is not mandatory but we recommend using names ending with `Output` for
output types. So we'll call our class `BlankImageOutput`
- It is not mandatory but we highly recommend adding a `docstring` to describe
what your output type is for.
- Like Invocations, each output type should have a `type` variable that is
**unique**
Now that we know the basic rules for creating a new output type, let us go ahead
and make it.
```python
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocationOutput
class BlankImageOutput(BaseInvocationOutput):
'''Base output type for creating a blank image'''
type: Literal['blank_image_output'] = 'blank_image_output'
# Inputs
width: int = Field(description='Width of blank image')
height: int = Field(description='Height of blank image')
bg_color: ColorField = Field(description='Background color of blank image')
class Config:
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
```
All set. We now have an output type that requires what we need to create a
blank_image. And if you noticed it, we even used the `Config` class to ensure
the fields are required.
## Custom Configuration
As you might have noticed when making inputs and outputs, we used a class called
`Config` from _pydantic_ to further customize them. Because our inputs and
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
You can do the same for your Invocations too but InvokeAI makes our life a
little bit easier on that end.
InvokeAI provides a custom configuration class called `InvocationConfig`
particularly for configuring Invocations. This is exactly the same as the raw
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
parsing of the scheme in the frontend UI.
At the current moment, tihs `InvocationConfig` class is further improved with
the following features related the `ui`.
| Config Option | Field Type | Example |
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
So let us update your `ResizeInvocation` with some extra configuration and see
how that works.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
class Config(InvocationConfig):
schema_extra: {
ui: {
tags: ['resize', 'image'],
title: ['My Custom Resize']
}
}
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Preparing the image for output using InvokeAI's predefined Image Service.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
)
```
We now customized our code to let the frontend know that our Invocation falls
under `resize` and `image` categories. So when the user searches for these
particular words, our Invocation will show up too.
We also set a custom title for our Invocation. So instead of being called
`Resize`, it will be called `My Custom Resize`.
As simple as that.
As time goes by, InvokeAI will further improve and add more customizability for
Invocation configuration. We will have more documentation regarding this at a
later time.
# **[TODO]**
## Custom Components For Frontend
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
---
# OLD -- TO BE DELETED OR MOVED LATER
---
## Creating a new invocation
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this:
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Config
```py
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
```
This is an optional configuration for the invocation. It inherits from
pydantic's model `Config` class, and it used primarily to customize the
autogenerated OpenAPI schema.
The UI relies on the OpenAPI schema in two ways:
- An API client & Typescript types are generated from it. This happens at build
time.
- The node editor parses the schema into a template used by the UI to create the
node editor UI. This parsing happens at runtime.
In this example, a `ui` key has been added to the `schema_extra` dict to provide
some tags for the UI, to facilitate filtering nodes.
See the Schema Generation section below for more information.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
```
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
`image`, `width` and `height` properties marked as optional, even though we know
they will always have a value.
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
# Add schema customization
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
With the customization in place, the schema will now show these properties as
required, obviating the need for extensive null checks in client code.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

View File

@@ -1,10 +1,21 @@
# Local Development
If you want to contribute, you will need to set up a [local development environment](./dev-environment.md).
If you are looking to contribute you will need to have a local development
environment. See the
[Developer Install](../installation/020_INSTALL_MANUAL.md#developer-install) for
full details.
Broadly this involves cloning the repository, installing the pre-reqs, and
InvokeAI (in editable form). Assuming this is working, choose your area of
focus.
## Documentation
We use [mkdocs](https://www.mkdocs.org) for our documentation with the [material theme](https://squidfunk.github.io/mkdocs-material/). Documentation is written in markdown files under the `./docs` folder and then built into a static website for hosting with GitHub Pages at [invoke-ai.github.io/InvokeAI](https://invoke-ai.github.io/InvokeAI).
We use [mkdocs](https://www.mkdocs.org) for our documentation with the
[material theme](https://squidfunk.github.io/mkdocs-material/). Documentation is
written in markdown files under the `./docs` folder and then built into a static
website for hosting with GitHub Pages at
[invoke-ai.github.io/InvokeAI](https://invoke-ai.github.io/InvokeAI).
To contribute to the documentation you'll need to install the dependencies. Note
the use of `"`.
@@ -24,244 +35,49 @@ access.
## Backend
The backend is contained within the `./invokeai/backend` and `./invokeai/app` directories.
To get started please install the development dependencies.
The backend is contained within the `./invokeai/backend` folder structure. To
get started however please install the development dependencies.
From the root of the repository run the following command. Note the use of `"`.
```zsh
pip install ".[dev,test]"
pip install ".[test]"
```
These are optional groups of packages which are defined within the `pyproject.toml`
and will be required for testing the changes you make to the code.
This in an optional group of packages which is defined within the
`pyproject.toml` and will be required for testing the changes you make the the
code.
### Tests
### Running Tests
See the [tests documentation](./TESTS.md) for information about running and writing tests.
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
be found under the `./tests` folder and can be run with a single `pytest`
command. Optionally, to review test coverage you can append `--cov`.
### Reloading Changes
```zsh
pytest --cov
```
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
and re-load those multi-gigabyte models —
after every change.
Test outcomes and coverage will be reported in the terminal. In addition a more
detailed report is created in both XML and HTML format in the `./coverage`
folder. The HTML one in particular can help identify missing statements
requiring tests to ensure coverage. This can be run by opening
`./coverage/html/index.html`.
For a faster development workflow, add the `--dev_reload` flag when starting the server.
The server will watch for changes to all the Python files in the `invokeai` directory and apply those changes to the
running server on the fly.
For example.
This will allow you to avoid restarting the server (and reloading models) in most cases, but there are some caveats; see
the [jurigged documentation](https://github.com/breuleux/jurigged#caveats) for details.
```zsh
pytest --cov; open ./coverage/html/index.html
```
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)
## Front End
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->
--8<-- "invokeai/frontend/web/README.md"
## Developing InvokeAI in VSCode
VSCode offers some nice tools:
- python debugger
- automatic `venv` activation
- remote dev (e.g. run InvokeAI on a beefy linux desktop while you type in
comfort on your macbook)
### Setup
You'll need the
[Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python)
and
[Pylance](https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance)
extensions installed first.
It's also really handy to install the `Jupyter` extensions:
- [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter)
- [Jupyter Cell Tags](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-cell-tags)
- [Jupyter Notebook Renderers](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter-renderers)
- [Jupyter Slide Show](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-slideshow)
#### InvokeAI workspace
Creating a VSCode workspace for working on InvokeAI is highly recommended. It
can hold InvokeAI-specific settings and configs.
To make a workspace:
- Open the InvokeAI repo dir in VSCode
- `File` > `Save Workspace As` > save it _outside_ the repo
#### Default python interpreter (i.e. automatic virtual environment activation)
- Use command palette to run command
`Preferences: Open Workspace Settings (JSON)`
- Add `python.defaultInterpreterPath` to `settings`, pointing to your `venv`'s
python
Should look something like this:
```jsonc
{
// I like to have all InvokeAI-related folders in my workspace
"folders": [
{
// repo root
"path": "InvokeAI"
},
{
// InvokeAI root dir, where `invokeai.yaml` lives
"path": "/path/to/invokeai_root"
}
],
"settings": {
// Where your InvokeAI `venv`'s python executable lives
"python.defaultInterpreterPath": "/path/to/invokeai_root/.venv/bin/python"
}
}
```
Now when you open the VSCode integrated terminal, or do anything that needs to
run python, it will automatically be in your InvokeAI virtual environment.
Bonus: When you create a Jupyter notebook, when you run it, you'll be prompted
for the python interpreter to run in. This will default to your `venv` python,
and so you'll have access to the same python environment as the InvokeAI app.
This is _super_ handy.
#### Enabling Type-Checking with Pylance
We use python's typing system in InvokeAI. PR reviews will include checking that types are present and correct. We don't enforce types with `mypy` at this time, but that is on the horizon.
Using a code analysis tool to automatically type check your code (and types) is very important when writing with types. These tools provide immediate feedback in your editor when types are incorrect, and following their suggestions lead to fewer runtime bugs.
Pylance, installed at the beginning of this guide, is the de-facto python LSP (language server protocol). It provides type checking in the editor (among many other features). Once installed, you do need to enable type checking manually:
- Open a python file
- Look along the status bar in VSCode for `{ } Python`
- Click the `{ }`
- Turn type checking on - basic is fine
You'll now see red squiggly lines where type issues are detected. Hover your cursor over the indicated symbols to see what's wrong.
In 99% of cases when the type checker says there is a problem, there really is a problem, and you should take some time to understand and resolve what it is pointing out.
#### Debugging configs with `launch.json`
Debugging configs are managed in a `launch.json` file. Like most VSCode configs,
these can be scoped to a workspace or folder.
Follow the [official guide](https://code.visualstudio.com/docs/python/debugging)
to set up your `launch.json` and try it out.
Now we can create the InvokeAI debugging configs:
```jsonc
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
// Run the InvokeAI backend & serve the pre-built UI
"name": "InvokeAI Web",
"type": "python",
"request": "launch",
"program": "scripts/invokeai-web.py",
"args": [
// Your InvokeAI root dir (where `invokeai.yaml` lives)
"--root",
"/path/to/invokeai_root",
// Access the app from anywhere on your local network
"--host",
"0.0.0.0"
],
"justMyCode": true
},
{
// Run the nodes-based CLI
"name": "InvokeAI CLI",
"type": "python",
"request": "launch",
"program": "scripts/invokeai-cli.py",
"justMyCode": true
},
{
// Run tests
"name": "InvokeAI Test",
"type": "python",
"request": "launch",
"module": "pytest",
"args": ["--capture=no"],
"justMyCode": true
},
{
// Run a single test
"name": "InvokeAI Single Test",
"type": "python",
"request": "launch",
"module": "pytest",
"args": [
// Change this to point to the specific test you are working on
"tests/nodes/test_invoker.py"
],
"justMyCode": true
},
{
// This is the default, useful to just run a single file
"name": "Python: File",
"type": "python",
"request": "launch",
"program": "${file}",
"justMyCode": true
}
]
}
```
You'll see these configs in the debugging configs drop down. Running them will
start InvokeAI with attached debugger, in the correct environment, and work just
like the normal app.
Enjoy debugging InvokeAI with ease (not that we have any bugs of course).
#### Remote dev
This is very easy to set up and provides the same very smooth experience as
local development. Environments and debugging, as set up above, just work,
though you'd need to recreate the workspace and debugging configs on the remote.
Consult the
[official guide](https://code.visualstudio.com/docs/remote/remote-overview) to
get it set up.
Suggest using VSCode's included settings sync so that your remote dev host has
all the same app settings and extensions automatically.
##### One remote dev gotcha
I've found the automatic port forwarding to be very flakey. You can disable it
in `Preferences: Open Remote Settings (ssh: hostname)`. Search for
`remote.autoForwardPorts` and untick the box.
To forward ports very reliably, use SSH on the remote dev client (e.g. your
macbook). Here's how to forward both backend API port (`9090`) and the frontend
live dev server port (`5173`):
```bash
ssh \
-L 9090:localhost:9090 \
-L 5173:localhost:5173 \
user@remote-dev-host
```
The forwarding stops when you close the terminal window, so suggest to do this
_outside_ the VSCode integrated terminal in case you need to restart VSCode for
an extension update or something
Now, on your remote dev client, you can open `localhost:9090` and access the UI,
now served from the remote dev host, just the same as if it was running on the
client.

Some files were not shown because too many files have changed in this diff Show More