mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 08:28:14 -05:00
Compare commits
13 Commits
maryhipp/w
...
ryan/sd35
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5edee6997e | ||
|
|
9aaecf5b5c | ||
|
|
b4a2244943 | ||
|
|
155bf13d2b | ||
|
|
9f7b5f7a85 | ||
|
|
b3d16b4979 | ||
|
|
10b2567fcb | ||
|
|
04feb74f81 | ||
|
|
a7d8db8c15 | ||
|
|
b3b930a6f5 | ||
|
|
43f108fe9f | ||
|
|
f1f2525ed0 | ||
|
|
afd7b50343 |
@@ -133,6 +133,7 @@ class FieldDescriptions:
|
||||
clip_embed_model = "CLIP Embed loader"
|
||||
unet = "UNet (scheduler, LoRAs)"
|
||||
transformer = "Transformer"
|
||||
mmditx = "MMDiTX"
|
||||
vae = "VAE"
|
||||
cond = "Conditioning tensor"
|
||||
controlnet_model = "ControlNet model to load"
|
||||
@@ -140,6 +141,7 @@ class FieldDescriptions:
|
||||
lora_model = "LoRA model to load"
|
||||
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||
flux_model = "Flux model (Transformer) to load"
|
||||
sd3_model = "SD3 model (MMDiTX) to load"
|
||||
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
||||
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
||||
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
||||
|
||||
86
invokeai/app/invocations/flux_model_loader.py
Normal file
86
invokeai/app/invocations/flux_model_loader.py
Normal file
@@ -0,0 +1,86 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.util import max_seq_lengths
|
||||
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
|
||||
|
||||
|
||||
@invocation_output("flux_model_loader_output")
|
||||
class FluxModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Flux base model loader output"""
|
||||
|
||||
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
|
||||
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
|
||||
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
max_seq_len: Literal[256, 512] = OutputField(
|
||||
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
|
||||
title="Max Seq Length",
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_model_loader",
|
||||
title="Flux Main Model",
|
||||
tags=["model", "flux"],
|
||||
category="model",
|
||||
version="1.0.4",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a flux base model, outputting its submodels."""
|
||||
|
||||
model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
ui_type=UIType.FluxMainModel,
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
t5_encoder_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
|
||||
)
|
||||
|
||||
clip_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP Embed",
|
||||
)
|
||||
|
||||
vae_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
|
||||
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
|
||||
if not context.models.exists(key):
|
||||
raise ValueError(f"Unknown model: {key}")
|
||||
|
||||
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
|
||||
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
|
||||
transformer_config = context.models.get_config(transformer)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
)
|
||||
@@ -1,5 +1,5 @@
|
||||
import copy
|
||||
from typing import List, Literal, Optional
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -13,11 +13,9 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.flux.util import max_seq_lengths
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
CheckpointConfigBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
@@ -139,78 +137,6 @@ class ModelIdentifierInvocation(BaseInvocation):
|
||||
return ModelIdentifierOutput(model=self.model)
|
||||
|
||||
|
||||
@invocation_output("flux_model_loader_output")
|
||||
class FluxModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Flux base model loader output"""
|
||||
|
||||
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
|
||||
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
|
||||
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
max_seq_len: Literal[256, 512] = OutputField(
|
||||
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
|
||||
title="Max Seq Length",
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_model_loader",
|
||||
title="Flux Main Model",
|
||||
tags=["model", "flux"],
|
||||
category="model",
|
||||
version="1.0.4",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a flux base model, outputting its submodels."""
|
||||
|
||||
model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
ui_type=UIType.FluxMainModel,
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
t5_encoder_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
|
||||
)
|
||||
|
||||
clip_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP Embed",
|
||||
)
|
||||
|
||||
vae_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
|
||||
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
|
||||
if not context.models.exists(key):
|
||||
raise ValueError(f"Unknown model: {key}")
|
||||
|
||||
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
|
||||
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
|
||||
transformer_config = context.models.get_config(transformer)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"main_model_loader",
|
||||
title="Main Model",
|
||||
|
||||
102
invokeai/app/invocations/sd3_model_loader.py
Normal file
102
invokeai/app/invocations/sd3_model_loader.py
Normal file
@@ -0,0 +1,102 @@
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, T5EncoderField, TransformerField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import CheckpointConfigBase, SubModelType
|
||||
|
||||
|
||||
@invocation_output("sd3_model_loader_output")
|
||||
class Sd3ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""SD3 base model loader output."""
|
||||
|
||||
mmditx: TransformerField = OutputField(description=FieldDescriptions.mmditx, title="MMDiTX")
|
||||
clip_l: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP L")
|
||||
clip_g: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP G")
|
||||
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
|
||||
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@invocation(
|
||||
"sd3_model_loader",
|
||||
title="SD3 Main Model",
|
||||
tags=["model", "sd3"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class Sd3ModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a SD3 base model, outputting its submodels."""
|
||||
|
||||
# TODO(ryand): Create a UIType.Sd3MainModelField to use here.
|
||||
model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.sd3_model,
|
||||
ui_type=UIType.MainModel,
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
# TODO(ryand): Make the text encoders optional.
|
||||
# Note: The text encoders are optional for SD3. The model was trained with dropout, so any can be left out at
|
||||
# inference time. Typically, only the T5 encoder is omitted, since it is the largest by far.
|
||||
t5_encoder_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
|
||||
)
|
||||
|
||||
clip_l_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP L Embed",
|
||||
)
|
||||
|
||||
clip_g_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP G Embed",
|
||||
)
|
||||
|
||||
# TODO(ryand): Create a UIType.Sd3VaModelField to use here.
|
||||
vae_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.vae_model, ui_type=UIType.VAEModel, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> Sd3ModelLoaderOutput:
|
||||
for key in [
|
||||
self.model.key,
|
||||
self.t5_encoder_model.key,
|
||||
self.clip_l_embed_model.key,
|
||||
self.clip_g_embed_model.key,
|
||||
self.vae_model.key,
|
||||
]:
|
||||
if not context.models.exists(key):
|
||||
raise ValueError(f"Unknown model: {key}")
|
||||
|
||||
# TODO(ryand): Figure out the sub-model types for SD3.
|
||||
mmditx = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
|
||||
tokenizer_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder_l = self.clip_l_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder_g = self.clip_g_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer_t5 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
|
||||
transformer_config = context.models.get_config(mmditx)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return Sd3ModelLoaderOutput(
|
||||
mmditx=TransformerField(transformer=mmditx, loras=[]),
|
||||
clip_l=CLIPField(tokenizer=tokenizer_l, text_encoder=clip_encoder_l, loras=[], skipped_layers=0),
|
||||
clip_g=CLIPField(tokenizer=tokenizer_g, text_encoder=clip_encoder_g, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer_t5, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
)
|
||||
0
invokeai/app/invocations/sd3_text_encoder.py
Normal file
0
invokeai/app/invocations/sd3_text_encoder.py
Normal file
@@ -53,6 +53,8 @@ class BaseModelType(str, Enum):
|
||||
Any = "any"
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
# TODO(ryand): Should this just be StableDiffusion3?
|
||||
StableDiffusion35 = "sd-3.5"
|
||||
StableDiffusionXL = "sdxl"
|
||||
StableDiffusionXLRefiner = "sdxl-refiner"
|
||||
Flux = "flux"
|
||||
|
||||
55
invokeai/backend/model_manager/load/model_loaders/sd3.py
Normal file
55
invokeai/backend/model_manager/load/model_loaders/sd3.py
Normal file
@@ -0,0 +1,55 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
CheckpointConfigBase,
|
||||
MainCheckpointConfig,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion35, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
class FluxCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, CheckpointConfigBase):
|
||||
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Transformer:
|
||||
return self._load_from_singlefile(config)
|
||||
|
||||
raise ValueError(
|
||||
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
def _load_from_singlefile(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
) -> AnyModel:
|
||||
assert isinstance(config, MainCheckpointConfig)
|
||||
model_path = Path(config.path)
|
||||
|
||||
# model = Flux(params[config.config_path])
|
||||
# sd = load_file(model_path)
|
||||
# if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
# sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
# new_sd_size = sum([ten.nelement() * torch.bfloat16.itemsize for ten in sd.values()])
|
||||
# self._ram_cache.make_room(new_sd_size)
|
||||
# for k in sd.keys():
|
||||
# # We need to cast to bfloat16 due to it being the only currently supported dtype for inference
|
||||
# sd[k] = sd[k].to(torch.bfloat16)
|
||||
# model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
@@ -37,6 +37,7 @@ from invokeai.backend.model_manager.config import (
|
||||
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
|
||||
from invokeai.backend.quantization.gguf.ggml_tensor import GGMLTensor
|
||||
from invokeai.backend.quantization.gguf.loaders import gguf_sd_loader
|
||||
from invokeai.backend.sd3.sd3_state_dict_utils import is_sd3_checkpoint
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
@@ -120,6 +121,7 @@ class ModelProbe(object):
|
||||
"T2IAdapter": ModelType.T2IAdapter,
|
||||
"CLIPModel": ModelType.CLIPEmbed,
|
||||
"CLIPTextModel": ModelType.CLIPEmbed,
|
||||
"CLIPTextModelWithProjection": ModelType.CLIPEmbed,
|
||||
"T5EncoderModel": ModelType.T5Encoder,
|
||||
"FluxControlNetModel": ModelType.ControlNet,
|
||||
}
|
||||
@@ -241,6 +243,11 @@ class ModelProbe(object):
|
||||
for key in [str(k) for k in ckpt.keys()]:
|
||||
if key.startswith(
|
||||
(
|
||||
# The following prefixes appear when multiple models have been bundled together in a single file (I
|
||||
# believe the format originated in ComfyUI).
|
||||
# first_stage_model = VAE
|
||||
# cond_stage_model = Text Encoder
|
||||
# model.diffusion_model = UNet / Transformer
|
||||
"cond_stage_model.",
|
||||
"first_stage_model.",
|
||||
"model.diffusion_model.",
|
||||
@@ -397,6 +404,9 @@ class ModelProbe(object):
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
config_file = "flux-schnell"
|
||||
elif base_type == BaseModelType.StableDiffusion35:
|
||||
# TODO(ryand): Think about what to do here.
|
||||
config_file = "sd3.5-large"
|
||||
else:
|
||||
config_file = LEGACY_CONFIGS[base_type][variant_type]
|
||||
if isinstance(config_file, dict): # need another tier for sd-2.x models
|
||||
@@ -516,7 +526,7 @@ class CheckpointProbeBase(ProbeBase):
|
||||
def get_variant_type(self) -> ModelVariantType:
|
||||
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
|
||||
base_type = self.get_base_type()
|
||||
if model_type != ModelType.Main or base_type == BaseModelType.Flux:
|
||||
if model_type != ModelType.Main or base_type in (BaseModelType.Flux, BaseModelType.StableDiffusion35):
|
||||
return ModelVariantType.Normal
|
||||
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
|
||||
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||
@@ -541,6 +551,10 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
|
||||
if is_sd3_checkpoint(state_dict):
|
||||
return BaseModelType.StableDiffusion35
|
||||
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
0
invokeai/backend/sd3/__init__.py
Normal file
0
invokeai/backend/sd3/__init__.py
Normal file
891
invokeai/backend/sd3/mmditx.py
Normal file
891
invokeai/backend/sd3/mmditx.py
Normal file
@@ -0,0 +1,891 @@
|
||||
# This file was originally copied from:
|
||||
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/mmditx.py
|
||||
|
||||
|
||||
### This file contains impls for MM-DiT, the core model component of SD3
|
||||
|
||||
import math
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from invokeai.backend.sd3.other_impls import Mlp, attention
|
||||
|
||||
|
||||
class PatchEmbed(torch.nn.Module):
|
||||
"""2D Image to Patch Embedding"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_size: Optional[int] = 224,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
flatten: bool = True,
|
||||
bias: bool = True,
|
||||
strict_img_size: bool = True,
|
||||
dynamic_img_pad: bool = False,
|
||||
dtype: torch.dtype | None = None,
|
||||
device: torch.device | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = (patch_size, patch_size)
|
||||
if img_size is not None:
|
||||
self.img_size = (img_size, img_size)
|
||||
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size, strict=False)])
|
||||
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
||||
else:
|
||||
self.img_size = None
|
||||
self.grid_size = None
|
||||
self.num_patches = None
|
||||
|
||||
# flatten spatial dim and transpose to channels last, kept for bwd compat
|
||||
self.flatten = flatten
|
||||
self.strict_img_size = strict_img_size
|
||||
self.dynamic_img_pad = dynamic_img_pad
|
||||
|
||||
self.proj = torch.nn.Conv2d(
|
||||
in_chans,
|
||||
embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
if self.flatten:
|
||||
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
|
||||
return x
|
||||
|
||||
|
||||
def modulate(x: torch.Tensor, shift: torch.Tensor | None, scale: torch.Tensor) -> torch.Tensor:
|
||||
if shift is None:
|
||||
shift = torch.zeros_like(scale)
|
||||
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Sine/Cosine Positional Embedding Functions #
|
||||
#################################################################################
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed(
|
||||
embed_dim: int,
|
||||
grid_size: int,
|
||||
cls_token: bool = False,
|
||||
extra_tokens: int = 0,
|
||||
scaling_factor: Optional[float] = None,
|
||||
offset: Optional[float] = None,
|
||||
):
|
||||
"""
|
||||
grid_size: int of the grid height and width
|
||||
return:
|
||||
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
||||
"""
|
||||
grid_h = np.arange(grid_size, dtype=np.float32)
|
||||
grid_w = np.arange(grid_size, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0)
|
||||
if scaling_factor is not None:
|
||||
grid = grid / scaling_factor
|
||||
if offset is not None:
|
||||
grid = grid - offset
|
||||
grid = grid.reshape([2, 1, grid_size, grid_size])
|
||||
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
||||
if cls_token and extra_tokens > 0:
|
||||
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_sincos_pos_embed_from_grid(embed_dim: int, grid):
|
||||
assert embed_dim % 2 == 0
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
||||
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
||||
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos):
|
||||
"""
|
||||
embed_dim: output dimension for each position
|
||||
pos: a list of positions to be encoded: size (M,)
|
||||
out: (M, D)
|
||||
"""
|
||||
assert embed_dim % 2 == 0
|
||||
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
||||
omega /= embed_dim / 2.0
|
||||
omega = 1.0 / 10000**omega # (D/2,)
|
||||
pos = pos.reshape(-1) # (M,)
|
||||
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
||||
emb_sin = np.sin(out) # (M, D/2)
|
||||
emb_cos = np.cos(out) # (M, D/2)
|
||||
return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Embedding Layers for Timesteps and Class Labels #
|
||||
#################################################################################
|
||||
|
||||
|
||||
class TimestepEmbedder(torch.nn.Module):
|
||||
"""Embeds scalar timesteps into vector representations."""
|
||||
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.mlp = torch.nn.Sequential(
|
||||
torch.nn.Linear(
|
||||
frequency_embedding_size,
|
||||
hidden_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.nn.SiLU(),
|
||||
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
||||
device=t.device
|
||||
)
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(dtype=t.dtype)
|
||||
return embedding
|
||||
|
||||
def forward(self, t, dtype, **kwargs):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class VectorEmbedder(torch.nn.Module):
|
||||
"""Embeds a flat vector of dimension input_dim"""
|
||||
|
||||
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.mlp = torch.nn.Sequential(
|
||||
torch.nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
torch.nn.SiLU(),
|
||||
torch.nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.mlp(x)
|
||||
|
||||
|
||||
#################################################################################
|
||||
# Core DiT Model #
|
||||
#################################################################################
|
||||
|
||||
|
||||
def split_qkv(qkv, head_dim):
|
||||
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
|
||||
return qkv[0], qkv[1], qkv[2]
|
||||
|
||||
|
||||
def optimized_attention(qkv, num_heads):
|
||||
return attention(qkv[0], qkv[1], qkv[2], num_heads)
|
||||
|
||||
|
||||
class SelfAttention(torch.nn.Module):
|
||||
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = False,
|
||||
qk_scale: Optional[float] = None,
|
||||
attn_mode: str = "xformers",
|
||||
pre_only: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
rmsnorm: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
|
||||
self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
if not pre_only:
|
||||
self.proj = torch.nn.Linear(dim, dim, dtype=dtype, device=device)
|
||||
assert attn_mode in self.ATTENTION_MODES
|
||||
self.attn_mode = attn_mode
|
||||
self.pre_only = pre_only
|
||||
|
||||
if qk_norm == "rms":
|
||||
self.ln_q = RMSNorm(
|
||||
self.head_dim,
|
||||
elementwise_affine=True,
|
||||
eps=1.0e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.ln_k = RMSNorm(
|
||||
self.head_dim,
|
||||
elementwise_affine=True,
|
||||
eps=1.0e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
elif qk_norm == "ln":
|
||||
self.ln_q = torch.nn.LayerNorm(
|
||||
self.head_dim,
|
||||
elementwise_affine=True,
|
||||
eps=1.0e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.ln_k = torch.nn.LayerNorm(
|
||||
self.head_dim,
|
||||
elementwise_affine=True,
|
||||
eps=1.0e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
elif qk_norm is None:
|
||||
self.ln_q = torch.nn.Identity()
|
||||
self.ln_k = torch.nn.Identity()
|
||||
else:
|
||||
raise ValueError(qk_norm)
|
||||
|
||||
def pre_attention(self, x: torch.Tensor):
|
||||
B, L, C = x.shape
|
||||
qkv = self.qkv(x)
|
||||
q, k, v = split_qkv(qkv, self.head_dim)
|
||||
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
|
||||
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
|
||||
return (q, k, v)
|
||||
|
||||
def post_attention(self, x: torch.Tensor) -> torch.Tensor:
|
||||
assert not self.pre_only
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
(q, k, v) = self.pre_attention(x)
|
||||
x = attention(q, k, v, self.num_heads)
|
||||
x = self.post_attention(x)
|
||||
return x
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
elementwise_affine: bool = False,
|
||||
eps: float = 1e-6,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
"""
|
||||
Initialize the RMSNorm normalization layer.
|
||||
Args:
|
||||
dim (int): The dimension of the input tensor.
|
||||
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
||||
Attributes:
|
||||
eps (float): A small value added to the denominator for numerical stability.
|
||||
weight (torch.nn.Parameter): Learnable scaling parameter.
|
||||
"""
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.learnable_scale = elementwise_affine
|
||||
if self.learnable_scale:
|
||||
self.weight = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
|
||||
def _norm(self, x):
|
||||
"""
|
||||
Apply the RMSNorm normalization to the input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The normalized tensor.
|
||||
"""
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the RMSNorm layer.
|
||||
Args:
|
||||
x (torch.Tensor): The input tensor.
|
||||
Returns:
|
||||
torch.Tensor: The output tensor after applying RMSNorm.
|
||||
"""
|
||||
x = self._norm(x)
|
||||
if self.learnable_scale:
|
||||
return x * self.weight.to(device=x.device, dtype=x.dtype)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class SwiGLUFeedForward(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the FeedForward module.
|
||||
|
||||
Args:
|
||||
dim (int): Input dimension.
|
||||
hidden_dim (int): Hidden dimension of the feedforward layer.
|
||||
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
||||
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
||||
|
||||
Attributes:
|
||||
w1 (ColumnParallelLinear): Linear transformation for the first layer.
|
||||
w2 (RowParallelLinear): Linear transformation for the second layer.
|
||||
w3 (ColumnParallelLinear): Linear transformation for the third layer.
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
hidden_dim = int(2 * hidden_dim / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
||||
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||||
|
||||
self.w1 = torch.nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.w2 = torch.nn.Linear(hidden_dim, dim, bias=False)
|
||||
self.w3 = torch.nn.Linear(dim, hidden_dim, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
class DismantledBlock(torch.nn.Module):
|
||||
"""A DiT block with gated adaptive layer norm (adaLN) conditioning."""
|
||||
|
||||
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
attn_mode: str = "xformers",
|
||||
qkv_bias: bool = False,
|
||||
pre_only: bool = False,
|
||||
rmsnorm: bool = False,
|
||||
scale_mod_only: bool = False,
|
||||
swiglu: bool = False,
|
||||
qk_norm: Optional[str] = None,
|
||||
x_block_self_attn: bool = False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
**block_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
assert attn_mode in self.ATTENTION_MODES
|
||||
if not rmsnorm:
|
||||
self.norm1 = torch.nn.LayerNorm(
|
||||
hidden_size,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.attn = SelfAttention(
|
||||
dim=hidden_size,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=pre_only,
|
||||
qk_norm=qk_norm,
|
||||
rmsnorm=rmsnorm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
self.x_block_self_attn = True
|
||||
self.attn2 = SelfAttention(
|
||||
dim=hidden_size,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
rmsnorm=rmsnorm,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
self.x_block_self_attn = False
|
||||
if not pre_only:
|
||||
if not rmsnorm:
|
||||
self.norm2 = torch.nn.LayerNorm(
|
||||
hidden_size,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
if not pre_only:
|
||||
if not swiglu:
|
||||
self.mlp = Mlp(
|
||||
in_features=hidden_size,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=torch.nn.GELU(approximate="tanh"),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256)
|
||||
self.scale_mod_only = scale_mod_only
|
||||
if x_block_self_attn:
|
||||
assert not pre_only
|
||||
assert not scale_mod_only
|
||||
n_mods = 9
|
||||
elif not scale_mod_only:
|
||||
n_mods = 6 if not pre_only else 2
|
||||
else:
|
||||
n_mods = 4 if not pre_only else 1
|
||||
self.adaLN_modulation = torch.nn.Sequential(
|
||||
torch.nn.SiLU(),
|
||||
torch.nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
self.pre_only = pre_only
|
||||
|
||||
def pre_attention(self, x: torch.Tensor, c: torch.Tensor):
|
||||
assert x is not None, "pre_attention called with None input"
|
||||
if not self.pre_only:
|
||||
if not self.scale_mod_only:
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(
|
||||
6, dim=1
|
||||
)
|
||||
else:
|
||||
shift_msa = None
|
||||
shift_mlp = None
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1)
|
||||
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
|
||||
return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp)
|
||||
else:
|
||||
if not self.scale_mod_only:
|
||||
shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
else:
|
||||
shift_msa = None
|
||||
scale_msa = self.adaLN_modulation(c)
|
||||
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
|
||||
return qkv, None
|
||||
|
||||
def post_attention(
|
||||
self,
|
||||
attn: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
gate_msa: torch.Tensor,
|
||||
shift_mlp: torch.Tensor,
|
||||
scale_mlp: torch.Tensor,
|
||||
gate_mlp: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
assert not self.pre_only
|
||||
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
|
||||
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
||||
return x
|
||||
|
||||
def pre_attention_x(
|
||||
self, x: torch.Tensor, c: torch.Tensor
|
||||
) -> tuple[
|
||||
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
]:
|
||||
assert self.x_block_self_attn
|
||||
(
|
||||
shift_msa,
|
||||
scale_msa,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
shift_msa2,
|
||||
scale_msa2,
|
||||
gate_msa2,
|
||||
) = self.adaLN_modulation(c).chunk(9, dim=1)
|
||||
x_norm = self.norm1(x)
|
||||
qkv = self.attn.pre_attention(modulate(x_norm, shift_msa, scale_msa))
|
||||
qkv2 = self.attn2.pre_attention(modulate(x_norm, shift_msa2, scale_msa2))
|
||||
return (
|
||||
qkv,
|
||||
qkv2,
|
||||
(
|
||||
x,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
gate_msa2,
|
||||
),
|
||||
)
|
||||
|
||||
def post_attention_x(
|
||||
self,
|
||||
attn: torch.Tensor,
|
||||
attn2: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
gate_msa: torch.Tensor,
|
||||
shift_mlp: torch.Tensor,
|
||||
scale_mlp: torch.Tensor,
|
||||
gate_mlp: torch.Tensor,
|
||||
gate_msa2: torch.Tensor,
|
||||
attn1_dropout: float = 0.0,
|
||||
):
|
||||
assert not self.pre_only
|
||||
if attn1_dropout > 0.0:
|
||||
# Use torch.bernoulli to implement dropout, only dropout the batch dimension
|
||||
attn1_dropout = torch.bernoulli(torch.full((attn.size(0), 1, 1), 1 - attn1_dropout, device=attn.device))
|
||||
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn) * attn1_dropout
|
||||
else:
|
||||
attn_ = gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
|
||||
x = x + attn_
|
||||
attn2_ = gate_msa2.unsqueeze(1) * self.attn2.post_attention(attn2)
|
||||
x = x + attn2_
|
||||
mlp_ = gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
||||
x = x + mlp_
|
||||
return x, (gate_msa, gate_msa2, gate_mlp, attn_, attn2_)
|
||||
|
||||
def forward(self, x: torch.Tensor, c: torch.Tensor):
|
||||
assert not self.pre_only
|
||||
if self.x_block_self_attn:
|
||||
(q, k, v), (q2, k2, v2), intermediates = self.pre_attention_x(x, c)
|
||||
attn = attention(q, k, v, self.attn.num_heads)
|
||||
attn2 = attention(q2, k2, v2, self.attn2.num_heads)
|
||||
return self.post_attention_x(attn, attn2, *intermediates)
|
||||
else:
|
||||
(q, k, v), intermediates = self.pre_attention(x, c)
|
||||
attn = attention(q, k, v, self.attn.num_heads)
|
||||
return self.post_attention(attn, *intermediates)
|
||||
|
||||
|
||||
def block_mixing(
|
||||
context: torch.Tensor, x: torch.Tensor, context_block: DismantledBlock, x_block: DismantledBlock, c: torch.Tensor
|
||||
):
|
||||
assert context is not None, "block_mixing called with None context"
|
||||
context_qkv, context_intermediates = context_block.pre_attention(context, c)
|
||||
|
||||
if x_block.x_block_self_attn:
|
||||
x_qkv, x_qkv2, x_intermediates = x_block.pre_attention_x(x, c)
|
||||
else:
|
||||
x_qkv, x_intermediates = x_block.pre_attention(x, c)
|
||||
|
||||
o: list[torch.Tensor] = []
|
||||
for t in range(3):
|
||||
o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1))
|
||||
q, k, v = tuple(o)
|
||||
|
||||
attn = attention(q, k, v, x_block.attn.num_heads)
|
||||
context_attn, x_attn = (
|
||||
attn[:, : context_qkv[0].shape[1]],
|
||||
attn[:, context_qkv[0].shape[1] :],
|
||||
)
|
||||
|
||||
if not context_block.pre_only:
|
||||
context = context_block.post_attention(context_attn, *context_intermediates)
|
||||
else:
|
||||
context = None
|
||||
|
||||
if x_block.x_block_self_attn:
|
||||
x_q2, x_k2, x_v2 = x_qkv2
|
||||
attn2 = attention(x_q2, x_k2, x_v2, x_block.attn2.num_heads)
|
||||
else:
|
||||
x = x_block.post_attention(x_attn, *x_intermediates)
|
||||
|
||||
return context, x
|
||||
|
||||
|
||||
class JointBlock(torch.nn.Module):
|
||||
"""just a small wrapper to serve as a fsdp unit"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
pre_only = kwargs.pop("pre_only")
|
||||
qk_norm = kwargs.pop("qk_norm", None)
|
||||
x_block_self_attn = kwargs.pop("x_block_self_attn", False)
|
||||
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
|
||||
self.x_block = DismantledBlock(
|
||||
*args,
|
||||
pre_only=False,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=x_block_self_attn,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs)
|
||||
|
||||
|
||||
class FinalLayer(torch.nn.Module):
|
||||
"""
|
||||
The final layer of DiT.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
patch_size: int,
|
||||
out_channels: int,
|
||||
total_out_channels: Optional[int] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm_final = torch.nn.LayerNorm(
|
||||
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
|
||||
)
|
||||
self.linear = (
|
||||
torch.nn.Linear(
|
||||
hidden_size,
|
||||
patch_size * patch_size * out_channels,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
if (total_out_channels is None)
|
||||
else torch.nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device)
|
||||
)
|
||||
self.adaLN_modulation = torch.nn.Sequential(
|
||||
torch.nn.SiLU(),
|
||||
torch.nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
||||
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||
x = modulate(self.norm_final(x), shift, scale)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
|
||||
class MMDiTX(torch.nn.Module):
|
||||
"""Diffusion model with a Transformer backbone."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int | None = 32,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 4,
|
||||
depth: int = 28,
|
||||
mlp_ratio: float = 4.0,
|
||||
learn_sigma: bool = False,
|
||||
adm_in_channels: Optional[int] = None,
|
||||
context_embedder_config: Optional[Dict] = None,
|
||||
register_length: int = 0,
|
||||
attn_mode: str = "torch",
|
||||
rmsnorm: bool = False,
|
||||
scale_mod_only: bool = False,
|
||||
swiglu: bool = False,
|
||||
out_channels: Optional[int] = None,
|
||||
pos_embed_scaling_factor: Optional[float] = None,
|
||||
pos_embed_offset: Optional[float] = None,
|
||||
pos_embed_max_size: Optional[int] = None,
|
||||
num_patches: Optional[int] = None,
|
||||
qk_norm: Optional[str] = None,
|
||||
x_block_self_attn_layers: Optional[List[int]] = None,
|
||||
qkv_bias: bool = True,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
verbose: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
if verbose:
|
||||
print(
|
||||
f"mmdit initializing with: {input_size=}, {patch_size=}, {in_channels=}, {depth=}, {mlp_ratio=}, {learn_sigma=}, {adm_in_channels=}, {context_embedder_config=}, {register_length=}, {attn_mode=}, {rmsnorm=}, {scale_mod_only=}, {swiglu=}, {out_channels=}, {pos_embed_scaling_factor=}, {pos_embed_offset=}, {pos_embed_max_size=}, {num_patches=}, {qk_norm=}, {qkv_bias=}, {dtype=}, {device=}"
|
||||
)
|
||||
self.dtype = dtype
|
||||
self.learn_sigma = learn_sigma
|
||||
self.in_channels = in_channels
|
||||
default_out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
||||
self.patch_size = patch_size
|
||||
self.pos_embed_scaling_factor = pos_embed_scaling_factor
|
||||
self.pos_embed_offset = pos_embed_offset
|
||||
self.pos_embed_max_size = pos_embed_max_size
|
||||
self.x_block_self_attn_layers = x_block_self_attn_layers or []
|
||||
|
||||
# apply magic --> this defines a head_size of 64
|
||||
hidden_size = 64 * depth
|
||||
num_heads = depth
|
||||
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.x_embedder = PatchEmbed(
|
||||
input_size,
|
||||
patch_size,
|
||||
in_channels,
|
||||
hidden_size,
|
||||
bias=True,
|
||||
strict_img_size=self.pos_embed_max_size is None,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device)
|
||||
|
||||
if adm_in_channels is not None:
|
||||
assert isinstance(adm_in_channels, int)
|
||||
self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.context_embedder = torch.nn.Identity()
|
||||
if context_embedder_config is not None:
|
||||
if context_embedder_config["target"] == "torch.nn.Linear":
|
||||
self.context_embedder = torch.nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device)
|
||||
|
||||
self.register_length = register_length
|
||||
if self.register_length > 0:
|
||||
self.register = torch.nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device))
|
||||
|
||||
# num_patches = self.x_embedder.num_patches
|
||||
# Will use fixed sin-cos embedding:
|
||||
# just use a buffer already
|
||||
if num_patches is not None:
|
||||
self.register_buffer(
|
||||
"pos_embed",
|
||||
torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device),
|
||||
)
|
||||
else:
|
||||
self.pos_embed = None
|
||||
|
||||
self.joint_blocks = torch.nn.ModuleList(
|
||||
[
|
||||
JointBlock(
|
||||
hidden_size,
|
||||
num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_mode=attn_mode,
|
||||
pre_only=i == depth - 1,
|
||||
rmsnorm=rmsnorm,
|
||||
scale_mod_only=scale_mod_only,
|
||||
swiglu=swiglu,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn=(i in self.x_block_self_attn_layers),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device)
|
||||
|
||||
def cropped_pos_embed(self, hw: torch.Size) -> torch.Tensor:
|
||||
assert self.pos_embed_max_size is not None
|
||||
p = self.x_embedder.patch_size[0]
|
||||
h, w = hw
|
||||
# patched size
|
||||
h = h // p
|
||||
w = w // p
|
||||
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
|
||||
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
|
||||
top = (self.pos_embed_max_size - h) // 2
|
||||
left = (self.pos_embed_max_size - w) // 2
|
||||
spatial_pos_embed: torch.Tensor = rearrange(
|
||||
self.pos_embed,
|
||||
"1 (h w) c -> 1 h w c",
|
||||
h=self.pos_embed_max_size,
|
||||
w=self.pos_embed_max_size,
|
||||
) # type: ignore Type checking does not correctly infer the type of the self.pos_embed buffer.
|
||||
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
|
||||
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
|
||||
return spatial_pos_embed
|
||||
|
||||
def unpatchify(self, x: torch.Tensor, hw: Optional[torch.Size] = None) -> torch.Tensor:
|
||||
"""
|
||||
x: (N, T, patch_size**2 * C)
|
||||
imgs: (N, H, W, C)
|
||||
"""
|
||||
c = self.out_channels
|
||||
p = self.x_embedder.patch_size[0]
|
||||
if hw is None:
|
||||
h = w = int(x.shape[1] ** 0.5)
|
||||
else:
|
||||
h, w = hw
|
||||
h = h // p
|
||||
w = w // p
|
||||
assert h * w == x.shape[1]
|
||||
|
||||
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
||||
x = torch.einsum("nhwpqc->nchpwq", x)
|
||||
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
||||
return imgs
|
||||
|
||||
def forward_core_with_concat(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
c_mod: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if self.register_length > 0:
|
||||
context = torch.cat(
|
||||
(
|
||||
repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
|
||||
context if context is not None else torch.Tensor([]).type_as(x),
|
||||
),
|
||||
1,
|
||||
)
|
||||
|
||||
# context is B, L', D
|
||||
# x is B, L, D
|
||||
for block in self.joint_blocks:
|
||||
context, x = block(context, x, c=c_mod)
|
||||
|
||||
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
|
||||
return x
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
t: torch.Tensor,
|
||||
y: Optional[torch.Tensor] = None,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of DiT.
|
||||
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
||||
t: (N,) tensor of diffusion timesteps
|
||||
y: (N,) tensor of class labels
|
||||
"""
|
||||
hw = x.shape[-2:]
|
||||
x = self.x_embedder(x) + self.cropped_pos_embed(hw)
|
||||
c = self.t_embedder(t, dtype=x.dtype) # (N, D)
|
||||
if y is not None:
|
||||
y = self.y_embedder(y) # (N, D)
|
||||
c = c + y # (N, D)
|
||||
|
||||
context = self.context_embedder(context)
|
||||
|
||||
x = self.forward_core_with_concat(x, c, context)
|
||||
|
||||
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
|
||||
return x
|
||||
795
invokeai/backend/sd3/other_impls.py
Normal file
795
invokeai/backend/sd3/other_impls.py
Normal file
@@ -0,0 +1,795 @@
|
||||
# This file was originally copied from:
|
||||
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/other_impls.py
|
||||
|
||||
### This file contains impls for underlying related models (CLIP, T5, etc)
|
||||
|
||||
import math
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from transformers import CLIPTokenizer, T5TokenizerFast
|
||||
|
||||
#################################################################################################
|
||||
### Core/Utility
|
||||
#################################################################################################
|
||||
|
||||
|
||||
def attention(
|
||||
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
"""Convenience wrapper around a basic attention operation"""
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), (q, k, v))
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
|
||||
|
||||
class Mlp(torch.nn.Module):
|
||||
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
hidden_features: Optional[int] = None,
|
||||
out_features: Optional[int] = None,
|
||||
act_layer: Callable[[torch.Tensor], torch.Tensor] | None = None,
|
||||
bias: bool = True,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
if act_layer is None:
|
||||
act_layer = torch.nn.functional.gelu
|
||||
|
||||
self.fc1 = torch.nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
|
||||
self.act = act_layer
|
||||
self.fc2 = torch.nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
#################################################################################################
|
||||
### CLIP
|
||||
#################################################################################################
|
||||
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
self.q_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.k_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.v_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
q = self.q_proj(x)
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
out = attention(q, k, v, self.heads, mask)
|
||||
return self.out_proj(out)
|
||||
|
||||
|
||||
ACTIVATIONS = {
|
||||
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
||||
"gelu": torch.nn.functional.gelu,
|
||||
}
|
||||
|
||||
|
||||
class CLIPLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
heads,
|
||||
intermediate_size,
|
||||
intermediate_activation,
|
||||
dtype,
|
||||
device,
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_norm1 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
|
||||
self.layer_norm2 = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
# self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
|
||||
self.mlp = Mlp(
|
||||
embed_dim,
|
||||
intermediate_size,
|
||||
embed_dim,
|
||||
act_layer=ACTIVATIONS[intermediate_activation],
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
x += self.self_attn(self.layer_norm1(x), mask)
|
||||
x += self.mlp(self.layer_norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class CLIPEncoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_layers,
|
||||
embed_dim,
|
||||
heads,
|
||||
intermediate_size,
|
||||
intermediate_activation,
|
||||
dtype,
|
||||
device,
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList(
|
||||
[
|
||||
CLIPLayer(
|
||||
embed_dim,
|
||||
heads,
|
||||
intermediate_size,
|
||||
intermediate_activation,
|
||||
dtype,
|
||||
device,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layers):
|
||||
x = l(x, mask)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens):
|
||||
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
||||
|
||||
|
||||
class CLIPTextModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device):
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
super().__init__()
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
||||
self.encoder = CLIPEncoder(
|
||||
num_layers,
|
||||
embed_dim,
|
||||
heads,
|
||||
intermediate_size,
|
||||
intermediate_activation,
|
||||
dtype,
|
||||
device,
|
||||
)
|
||||
self.final_layer_norm = torch.nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
x = self.embeddings(input_tokens)
|
||||
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
||||
x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
|
||||
x = self.final_layer_norm(x)
|
||||
if i is not None and final_layer_norm_intermediate:
|
||||
i = self.final_layer_norm(i)
|
||||
pooled_output = x[
|
||||
torch.arange(x.shape[0], device=x.device),
|
||||
input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),
|
||||
]
|
||||
return x, i, pooled_output
|
||||
|
||||
|
||||
class CLIPTextModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device):
|
||||
super().__init__()
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device)
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
self.text_projection = torch.nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
||||
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.text_model.embeddings.token_embedding
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.text_model.embeddings.token_embedding = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
x = self.text_model(*args, **kwargs)
|
||||
out = self.text_projection(x[2])
|
||||
return (x[0], x[1], out, x[2])
|
||||
|
||||
|
||||
def parse_parentheses(string):
|
||||
result = []
|
||||
current_item = ""
|
||||
nesting_level = 0
|
||||
for char in string:
|
||||
if char == "(":
|
||||
if nesting_level == 0:
|
||||
if current_item:
|
||||
result.append(current_item)
|
||||
current_item = "("
|
||||
else:
|
||||
current_item = "("
|
||||
else:
|
||||
current_item += char
|
||||
nesting_level += 1
|
||||
elif char == ")":
|
||||
nesting_level -= 1
|
||||
if nesting_level == 0:
|
||||
result.append(current_item + ")")
|
||||
current_item = ""
|
||||
else:
|
||||
current_item += char
|
||||
else:
|
||||
current_item += char
|
||||
if current_item:
|
||||
result.append(current_item)
|
||||
return result
|
||||
|
||||
|
||||
def token_weights(string, current_weight):
|
||||
a = parse_parentheses(string)
|
||||
out = []
|
||||
for x in a:
|
||||
weight = current_weight
|
||||
if len(x) >= 2 and x[-1] == ")" and x[0] == "(":
|
||||
x = x[1:-1]
|
||||
xx = x.rfind(":")
|
||||
weight *= 1.1
|
||||
if xx > 0:
|
||||
try:
|
||||
weight = float(x[xx + 1 :])
|
||||
x = x[:xx]
|
||||
except:
|
||||
pass
|
||||
out += token_weights(x, weight)
|
||||
else:
|
||||
out += [(x, current_weight)]
|
||||
return out
|
||||
|
||||
|
||||
def escape_important(text):
|
||||
text = text.replace("\\)", "\0\1")
|
||||
text = text.replace("\\(", "\0\2")
|
||||
return text
|
||||
|
||||
|
||||
def unescape_important(text):
|
||||
text = text.replace("\0\1", ")")
|
||||
text = text.replace("\0\2", "(")
|
||||
return text
|
||||
|
||||
|
||||
class SDTokenizer:
|
||||
def __init__(
|
||||
self,
|
||||
max_length=77,
|
||||
pad_with_end=True,
|
||||
tokenizer=None,
|
||||
has_start_token=True,
|
||||
pad_to_max_length=True,
|
||||
min_length=None,
|
||||
extra_padding_token=None,
|
||||
):
|
||||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
self.min_length = min_length
|
||||
|
||||
empty = self.tokenizer("")["input_ids"]
|
||||
if has_start_token:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
self.end_token = empty[1]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
self.start_token = None
|
||||
self.end_token = empty[0]
|
||||
self.pad_with_end = pad_with_end
|
||||
self.pad_to_max_length = pad_to_max_length
|
||||
self.extra_padding_token = extra_padding_token
|
||||
|
||||
vocab = self.tokenizer.get_vocab()
|
||||
self.inv_vocab = {v: k for k, v in vocab.items()}
|
||||
self.max_word_length = 8
|
||||
|
||||
def tokenize_with_weights(self, text: str, return_word_ids=False):
|
||||
"""
|
||||
Tokenize the text, with weight values - presume 1.0 for all and ignore other features here.
|
||||
The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3.
|
||||
"""
|
||||
if self.pad_with_end:
|
||||
pad_token = self.end_token
|
||||
else:
|
||||
pad_token = 0
|
||||
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
|
||||
# tokenize words
|
||||
tokens = []
|
||||
for weighted_segment, weight in parsed_weights:
|
||||
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(" ")
|
||||
to_tokenize = [x for x in to_tokenize if x != ""]
|
||||
for word in to_tokenize:
|
||||
# parse word
|
||||
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start : -1]])
|
||||
|
||||
# reshape token array to CLIP input size
|
||||
batched_tokens = []
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
for i, t_group in enumerate(tokens):
|
||||
# determine if we're going to try and keep the tokens in a single batch
|
||||
is_large = len(t_group) >= self.max_word_length
|
||||
|
||||
while len(t_group) > 0:
|
||||
if len(t_group) + len(batch) > self.max_length - 1:
|
||||
remaining_length = self.max_length - len(batch) - 1
|
||||
# break word in two and add end token
|
||||
if is_large:
|
||||
batch.extend([(t, w, i + 1) for t, w in t_group[:remaining_length]])
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
t_group = t_group[remaining_length:]
|
||||
# add end token and pad
|
||||
else:
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
|
||||
# start new batch
|
||||
batch = []
|
||||
if self.start_token is not None:
|
||||
batch.append((self.start_token, 1.0, 0))
|
||||
batched_tokens.append(batch)
|
||||
else:
|
||||
batch.extend([(t, w, i + 1) for t, w in t_group])
|
||||
t_group = []
|
||||
|
||||
# pad extra padding token first befor getting to the end token
|
||||
if self.extra_padding_token is not None:
|
||||
batch.extend([(self.extra_padding_token, 1.0, 0)] * (self.min_length - len(batch) - 1))
|
||||
# fill last batch
|
||||
batch.append((self.end_token, 1.0, 0))
|
||||
if self.pad_to_max_length:
|
||||
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))
|
||||
if self.min_length is not None and len(batch) < self.min_length:
|
||||
batch.extend([(pad_token, 1.0, 0)] * (self.min_length - len(batch)))
|
||||
|
||||
if not return_word_ids:
|
||||
batched_tokens = [[(t, w) for t, w, _ in x] for x in batched_tokens]
|
||||
|
||||
return batched_tokens
|
||||
|
||||
def untokenize(self, token_weight_pair):
|
||||
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))
|
||||
|
||||
|
||||
class SDXLClipGTokenizer(SDTokenizer):
|
||||
def __init__(self, tokenizer):
|
||||
super().__init__(pad_with_end=False, tokenizer=tokenizer)
|
||||
|
||||
|
||||
class SD3Tokenizer:
|
||||
def __init__(self):
|
||||
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
||||
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
|
||||
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
|
||||
self.t5xxl = T5XXLTokenizer()
|
||||
|
||||
def tokenize_with_weights(self, text: str):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text)
|
||||
out["g"] = self.clip_g.tokenize_with_weights(text)
|
||||
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text[:226])
|
||||
return out
|
||||
|
||||
|
||||
class ClipTokenWeightEncoder:
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
tokens = list(map(lambda a: a[0], token_weight_pairs[0]))
|
||||
out, pooled = self([tokens])
|
||||
if pooled is not None:
|
||||
first_pooled = pooled[0:1].cpu()
|
||||
else:
|
||||
first_pooled = pooled
|
||||
output = [out[0:1]]
|
||||
return torch.cat(output, dim=-2).cpu(), first_pooled
|
||||
|
||||
|
||||
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
|
||||
LAYERS = ["last", "pooled", "hidden"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device="cpu",
|
||||
max_length=77,
|
||||
layer="last",
|
||||
layer_idx=None,
|
||||
textmodel_json_config=None,
|
||||
dtype=None,
|
||||
model_class=CLIPTextModel,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 49407},
|
||||
layer_norm_hidden_state=True,
|
||||
return_projected_pooled=True,
|
||||
):
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
self.transformer = model_class(textmodel_json_config, dtype, device)
|
||||
self.num_layers = self.transformer.num_layers
|
||||
self.max_length = max_length
|
||||
self.transformer = self.transformer.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
self.layer = layer
|
||||
self.layer_idx = None
|
||||
self.special_tokens = special_tokens
|
||||
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
||||
self.layer_norm_hidden_state = layer_norm_hidden_state
|
||||
self.return_projected_pooled = return_projected_pooled
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert abs(layer_idx) < self.num_layers
|
||||
self.set_clip_options({"layer": layer_idx})
|
||||
self.options_default = (
|
||||
self.layer,
|
||||
self.layer_idx,
|
||||
self.return_projected_pooled,
|
||||
)
|
||||
|
||||
def set_clip_options(self, options):
|
||||
layer_idx = options.get("layer", self.layer_idx)
|
||||
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
||||
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
||||
self.layer = "last"
|
||||
else:
|
||||
self.layer = "hidden"
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
def forward(self, tokens):
|
||||
backup_embeds = self.transformer.get_input_embeddings()
|
||||
device = backup_embeds.weight.device
|
||||
tokens = torch.LongTensor(tokens).to(device)
|
||||
outputs = self.transformer(
|
||||
tokens,
|
||||
intermediate_output=self.layer_idx,
|
||||
final_layer_norm_intermediate=self.layer_norm_hidden_state,
|
||||
)
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
if self.layer == "last":
|
||||
z = outputs[0]
|
||||
else:
|
||||
z = outputs[1]
|
||||
pooled_output = None
|
||||
if len(outputs) >= 3:
|
||||
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
|
||||
pooled_output = outputs[3].float()
|
||||
elif outputs[2] is not None:
|
||||
pooled_output = outputs[2].float()
|
||||
return z.float(), pooled_output
|
||||
|
||||
|
||||
class SDXLClipG(SDClipModel):
|
||||
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
|
||||
|
||||
def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
|
||||
if layer == "penultimate":
|
||||
layer = "hidden"
|
||||
layer_idx = -2
|
||||
super().__init__(
|
||||
device=device,
|
||||
layer=layer,
|
||||
layer_idx=layer_idx,
|
||||
textmodel_json_config=config,
|
||||
dtype=dtype,
|
||||
special_tokens={"start": 49406, "end": 49407, "pad": 0},
|
||||
layer_norm_hidden_state=False,
|
||||
)
|
||||
|
||||
|
||||
class T5XXLModel(SDClipModel):
|
||||
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
|
||||
|
||||
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
|
||||
super().__init__(
|
||||
device=device,
|
||||
layer=layer,
|
||||
layer_idx=layer_idx,
|
||||
textmodel_json_config=config,
|
||||
dtype=dtype,
|
||||
special_tokens={"end": 1, "pad": 0},
|
||||
model_class=T5,
|
||||
)
|
||||
|
||||
|
||||
#################################################################################################
|
||||
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
|
||||
#################################################################################################
|
||||
|
||||
|
||||
class T5XXLTokenizer(SDTokenizer):
|
||||
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
pad_with_end=False,
|
||||
tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"),
|
||||
has_start_token=False,
|
||||
pad_to_max_length=False,
|
||||
max_length=99999999,
|
||||
min_length=77,
|
||||
)
|
||||
|
||||
|
||||
class T5LayerNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, x):
|
||||
variance = x.pow(2).mean(-1, keepdim=True)
|
||||
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight.to(device=x.device, dtype=x.dtype) * x
|
||||
|
||||
|
||||
class T5DenseGatedActDense(torch.nn.Module):
|
||||
def __init__(self, model_dim, ff_dim, dtype, device):
|
||||
super().__init__()
|
||||
self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
||||
self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
||||
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
|
||||
hidden_linear = self.wi_1(x)
|
||||
x = hidden_gelu * hidden_linear
|
||||
x = self.wo(x)
|
||||
return x
|
||||
|
||||
|
||||
class T5LayerFF(torch.nn.Module):
|
||||
def __init__(self, model_dim, ff_dim, dtype, device):
|
||||
super().__init__()
|
||||
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
|
||||
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
forwarded_states = self.layer_norm(x)
|
||||
forwarded_states = self.DenseReluDense(forwarded_states)
|
||||
x += forwarded_states
|
||||
return x
|
||||
|
||||
|
||||
class T5Attention(torch.nn.Module):
|
||||
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
|
||||
super().__init__()
|
||||
# Mesh TensorFlow initialization to avoid scaling before softmax
|
||||
self.q = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.k = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.v = torch.nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
||||
self.o = torch.nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
|
||||
self.num_heads = num_heads
|
||||
self.relative_attention_bias = None
|
||||
if relative_attention_bias:
|
||||
self.relative_attention_num_buckets = 32
|
||||
self.relative_attention_max_distance = 128
|
||||
self.relative_attention_bias = torch.nn.Embedding(
|
||||
self.relative_attention_num_buckets, self.num_heads, device=device
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
||||
"""
|
||||
Adapted from Mesh Tensorflow:
|
||||
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
||||
|
||||
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
||||
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
||||
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
||||
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
||||
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
||||
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
||||
|
||||
Args:
|
||||
relative_position: an int32 Tensor
|
||||
bidirectional: a boolean - whether the attention is bidirectional
|
||||
num_buckets: an integer
|
||||
max_distance: an integer
|
||||
|
||||
Returns:
|
||||
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
||||
"""
|
||||
relative_buckets = 0
|
||||
if bidirectional:
|
||||
num_buckets //= 2
|
||||
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
||||
relative_position = torch.abs(relative_position)
|
||||
else:
|
||||
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
||||
# now relative_position is in the range [0, inf)
|
||||
# half of the buckets are for exact increments in positions
|
||||
max_exact = num_buckets // 2
|
||||
is_small = relative_position < max_exact
|
||||
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
||||
relative_position_if_large = max_exact + (
|
||||
torch.log(relative_position.float() / max_exact)
|
||||
/ math.log(max_distance / max_exact)
|
||||
* (num_buckets - max_exact)
|
||||
).to(torch.long)
|
||||
relative_position_if_large = torch.min(
|
||||
relative_position_if_large,
|
||||
torch.full_like(relative_position_if_large, num_buckets - 1),
|
||||
)
|
||||
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
||||
return relative_buckets
|
||||
|
||||
def compute_bias(self, query_length, key_length, device):
|
||||
"""Compute binned relative position bias"""
|
||||
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
||||
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
||||
relative_position = memory_position - context_position # shape (query_length, key_length)
|
||||
relative_position_bucket = self._relative_position_bucket(
|
||||
relative_position, # shape (query_length, key_length)
|
||||
bidirectional=True,
|
||||
num_buckets=self.relative_attention_num_buckets,
|
||||
max_distance=self.relative_attention_max_distance,
|
||||
)
|
||||
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
||||
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
||||
return values
|
||||
|
||||
def forward(self, x, past_bias=None):
|
||||
q = self.q(x)
|
||||
k = self.k(x)
|
||||
v = self.v(x)
|
||||
if self.relative_attention_bias is not None:
|
||||
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
|
||||
if past_bias is not None:
|
||||
mask = past_bias
|
||||
out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
|
||||
return self.o(out), past_bias
|
||||
|
||||
|
||||
class T5LayerSelfAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dim,
|
||||
inner_dim,
|
||||
ff_dim,
|
||||
num_heads,
|
||||
relative_attention_bias,
|
||||
dtype,
|
||||
device,
|
||||
):
|
||||
super().__init__()
|
||||
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
|
||||
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, past_bias=None):
|
||||
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
|
||||
x += output
|
||||
return x, past_bias
|
||||
|
||||
|
||||
class T5Block(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_dim,
|
||||
inner_dim,
|
||||
ff_dim,
|
||||
num_heads,
|
||||
relative_attention_bias,
|
||||
dtype,
|
||||
device,
|
||||
):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList()
|
||||
self.layer.append(
|
||||
T5LayerSelfAttention(
|
||||
model_dim,
|
||||
inner_dim,
|
||||
ff_dim,
|
||||
num_heads,
|
||||
relative_attention_bias,
|
||||
dtype,
|
||||
device,
|
||||
)
|
||||
)
|
||||
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
|
||||
|
||||
def forward(self, x, past_bias=None):
|
||||
x, past_bias = self.layer[0](x, past_bias)
|
||||
x = self.layer[-1](x)
|
||||
return x, past_bias
|
||||
|
||||
|
||||
class T5Stack(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_layers,
|
||||
model_dim,
|
||||
inner_dim,
|
||||
ff_dim,
|
||||
num_heads,
|
||||
vocab_size,
|
||||
dtype,
|
||||
device,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
|
||||
self.block = torch.nn.ModuleList(
|
||||
[
|
||||
T5Block(
|
||||
model_dim,
|
||||
inner_dim,
|
||||
ff_dim,
|
||||
num_heads,
|
||||
relative_attention_bias=(i == 0),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
)
|
||||
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
intermediate = None
|
||||
x = self.embed_tokens(input_ids)
|
||||
past_bias = None
|
||||
for i, l in enumerate(self.block):
|
||||
x, past_bias = l(x, past_bias)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
x = self.final_layer_norm(x)
|
||||
if intermediate is not None and final_layer_norm_intermediate:
|
||||
intermediate = self.final_layer_norm(intermediate)
|
||||
return x, intermediate
|
||||
|
||||
|
||||
class T5(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device):
|
||||
super().__init__()
|
||||
self.num_layers = config_dict["num_layers"]
|
||||
self.encoder = T5Stack(
|
||||
self.num_layers,
|
||||
config_dict["d_model"],
|
||||
config_dict["d_model"],
|
||||
config_dict["d_ff"],
|
||||
config_dict["num_heads"],
|
||||
config_dict["vocab_size"],
|
||||
dtype,
|
||||
device,
|
||||
)
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.encoder.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.encoder.embed_tokens = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.encoder(*args, **kwargs)
|
||||
609
invokeai/backend/sd3/sd3_impls.py
Normal file
609
invokeai/backend/sd3/sd3_impls.py
Normal file
@@ -0,0 +1,609 @@
|
||||
# This file was originally copied from:
|
||||
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py
|
||||
|
||||
|
||||
### Impls of the SD3 core diffusion model and VAE
|
||||
|
||||
import math
|
||||
import re
|
||||
|
||||
import einops
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.sd3.mmditx import MMDiTX
|
||||
|
||||
#################################################################################################
|
||||
### MMDiT Model Wrapping
|
||||
#################################################################################################
|
||||
|
||||
|
||||
class ModelSamplingDiscreteFlow(torch.nn.Module):
|
||||
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
|
||||
|
||||
def __init__(self, shift: float = 1.0):
|
||||
super().__init__()
|
||||
self.shift = shift
|
||||
timesteps = 1000
|
||||
ts = self.sigma(torch.arange(1, timesteps + 1, 1))
|
||||
self.register_buffer("sigmas", ts)
|
||||
|
||||
@property
|
||||
def sigma_min(self):
|
||||
return self.sigmas[0]
|
||||
|
||||
@property
|
||||
def sigma_max(self):
|
||||
return self.sigmas[-1]
|
||||
|
||||
def timestep(self, sigma: torch.Tensor) -> torch.Tensor:
|
||||
return sigma * 1000
|
||||
|
||||
def sigma(self, timestep: torch.Tensor):
|
||||
timestep = timestep / 1000.0
|
||||
if self.shift == 1.0:
|
||||
return timestep
|
||||
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
|
||||
|
||||
def calculate_denoised(
|
||||
self, sigma: torch.Tensor, model_output: torch.Tensor, model_input: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
||||
return model_input - model_output * sigma
|
||||
|
||||
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
||||
return sigma * noise + (1.0 - sigma) * latent_image
|
||||
|
||||
|
||||
class BaseModel(torch.nn.Module):
|
||||
"""Wrapper around the core MM-DiT model"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shift=1.0,
|
||||
device=None,
|
||||
dtype=torch.float32,
|
||||
file=None,
|
||||
prefix="",
|
||||
verbose=False,
|
||||
):
|
||||
super().__init__()
|
||||
# Important configuration values can be quickly determined by checking shapes in the source file
|
||||
# Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
|
||||
patch_size = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[2]
|
||||
depth = file.get_tensor(f"{prefix}x_embedder.proj.weight").shape[0] // 64
|
||||
num_patches = file.get_tensor(f"{prefix}pos_embed").shape[1]
|
||||
pos_embed_max_size = round(math.sqrt(num_patches))
|
||||
adm_in_channels = file.get_tensor(f"{prefix}y_embedder.mlp.0.weight").shape[1]
|
||||
context_shape = file.get_tensor(f"{prefix}context_embedder.weight").shape
|
||||
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in file.keys() else None
|
||||
x_block_self_attn_layers = sorted(
|
||||
[
|
||||
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
|
||||
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, file.keys()))
|
||||
]
|
||||
)
|
||||
|
||||
context_embedder_config = {
|
||||
"target": "torch.nn.Linear",
|
||||
"params": {
|
||||
"in_features": context_shape[1],
|
||||
"out_features": context_shape[0],
|
||||
},
|
||||
}
|
||||
self.diffusion_model = MMDiTX(
|
||||
input_size=None,
|
||||
pos_embed_scaling_factor=None,
|
||||
pos_embed_offset=None,
|
||||
pos_embed_max_size=pos_embed_max_size,
|
||||
patch_size=patch_size,
|
||||
in_channels=16,
|
||||
depth=depth,
|
||||
num_patches=num_patches,
|
||||
adm_in_channels=adm_in_channels,
|
||||
context_embedder_config=context_embedder_config,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn_layers=x_block_self_attn_layers,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
|
||||
|
||||
def apply_model(
|
||||
self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor | None = None, y: torch.Tensor | None = None
|
||||
):
|
||||
dtype = self.get_dtype()
|
||||
timestep = self.model_sampling.timestep(sigma).float()
|
||||
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.apply_model(*args, **kwargs)
|
||||
|
||||
def get_dtype(self):
|
||||
return self.diffusion_model.dtype
|
||||
|
||||
|
||||
class CFGDenoiser(torch.nn.Module):
|
||||
"""Helper for applying CFG Scaling to diffusion outputs"""
|
||||
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(self, x, timestep, cond, uncond, cond_scale):
|
||||
# Run cond and uncond in a batch together
|
||||
batched = self.model.apply_model(
|
||||
torch.cat([x, x]),
|
||||
torch.cat([timestep, timestep]),
|
||||
c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]),
|
||||
y=torch.cat([cond["y"], uncond["y"]]),
|
||||
)
|
||||
# Then split and apply CFG Scaling
|
||||
pos_out, neg_out = batched.chunk(2)
|
||||
scaled = neg_out + (pos_out - neg_out) * cond_scale
|
||||
return scaled
|
||||
|
||||
|
||||
class SD3LatentFormat:
|
||||
"""Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
|
||||
|
||||
def __init__(self):
|
||||
self.scale_factor = 1.5305
|
||||
self.shift_factor = 0.0609
|
||||
|
||||
def process_in(self, latent):
|
||||
return (latent - self.shift_factor) * self.scale_factor
|
||||
|
||||
def process_out(self, latent):
|
||||
return (latent / self.scale_factor) + self.shift_factor
|
||||
|
||||
def decode_latent_to_preview(self, x0):
|
||||
"""Quick RGB approximate preview of sd3 latents"""
|
||||
factors = torch.tensor(
|
||||
[
|
||||
[-0.0645, 0.0177, 0.1052],
|
||||
[0.0028, 0.0312, 0.0650],
|
||||
[0.1848, 0.0762, 0.0360],
|
||||
[0.0944, 0.0360, 0.0889],
|
||||
[0.0897, 0.0506, -0.0364],
|
||||
[-0.0020, 0.1203, 0.0284],
|
||||
[0.0855, 0.0118, 0.0283],
|
||||
[-0.0539, 0.0658, 0.1047],
|
||||
[-0.0057, 0.0116, 0.0700],
|
||||
[-0.0412, 0.0281, -0.0039],
|
||||
[0.1106, 0.1171, 0.1220],
|
||||
[-0.0248, 0.0682, -0.0481],
|
||||
[0.0815, 0.0846, 0.1207],
|
||||
[-0.0120, -0.0055, -0.0867],
|
||||
[-0.0749, -0.0634, -0.0456],
|
||||
[-0.1418, -0.1457, -0.1259],
|
||||
],
|
||||
device="cpu",
|
||||
)
|
||||
latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
|
||||
|
||||
latents_ubyte = (
|
||||
((latent_image + 1) / 2)
|
||||
.clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
.mul(0xFF) # to 0..255
|
||||
.byte()
|
||||
).cpu()
|
||||
|
||||
return Image.fromarray(latents_ubyte.numpy())
|
||||
|
||||
|
||||
#################################################################################################
|
||||
### Samplers
|
||||
#################################################################################################
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
def to_d(x, sigma, denoised):
|
||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||
return (x - denoised) / append_dims(sigma, x.ndim)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@torch.autocast("cuda", dtype=torch.float16)
|
||||
def sample_euler(model, x, sigmas, extra_args=None):
|
||||
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in tqdm(range(len(sigmas) - 1)):
|
||||
sigma_hat = sigmas[i]
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
return x
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@torch.autocast("cuda", dtype=torch.float16)
|
||||
def sample_dpmpp_2m(model, x, sigmas, extra_args=None):
|
||||
"""DPM-Solver++(2M)."""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
old_denoised = None
|
||||
for i in tqdm(range(len(sigmas) - 1)):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
||||
h = t_next - t
|
||||
if old_denoised is None or sigmas[i + 1] == 0:
|
||||
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
||||
else:
|
||||
h_last = t - t_fn(sigmas[i - 1])
|
||||
r = h_last / h
|
||||
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
||||
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
||||
|
||||
#################################################################################################
|
||||
### VAE
|
||||
#################################################################################################
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
|
||||
return torch.nn.GroupNorm(
|
||||
num_groups=num_groups,
|
||||
num_channels=in_channels,
|
||||
eps=1e-6,
|
||||
affine=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
|
||||
class ResnetBlock(torch.nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
|
||||
self.conv1 = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
|
||||
self.conv2 = torch.nn.Conv2d(
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
if self.in_channels != self.out_channels:
|
||||
self.nin_shortcut = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
self.nin_shortcut = None
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
hidden = x
|
||||
hidden = self.norm1(hidden)
|
||||
hidden = self.swish(hidden)
|
||||
hidden = self.conv1(hidden)
|
||||
hidden = self.norm2(hidden)
|
||||
hidden = self.swish(hidden)
|
||||
hidden = self.conv2(hidden)
|
||||
if self.in_channels != self.out_channels:
|
||||
x = self.nin_shortcut(x)
|
||||
return x + hidden
|
||||
|
||||
|
||||
class AttnBlock(torch.nn.Module):
|
||||
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
||||
super().__init__()
|
||||
self.norm = Normalize(in_channels, dtype=dtype, device=device)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
hidden = self.norm(x)
|
||||
q = self.q(hidden)
|
||||
k = self.k(hidden)
|
||||
v = self.v(hidden)
|
||||
b, c, h, w = q.shape
|
||||
q, k, v = map(
|
||||
lambda x: einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
|
||||
hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
||||
hidden = self.proj_out(hidden)
|
||||
return x + hidden
|
||||
|
||||
|
||||
class Downsample(torch.nn.Module):
|
||||
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=0,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(torch.nn.Module):
|
||||
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class VAEEncoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ch=128,
|
||||
ch_mult=(1, 2, 4, 4),
|
||||
num_res_blocks=2,
|
||||
in_channels=3,
|
||||
z_channels=16,
|
||||
dtype=torch.float32,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(
|
||||
in_channels,
|
||||
ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
self.down = torch.nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = torch.nn.ModuleList()
|
||||
attn = torch.nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
down = torch.nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, dtype=dtype, device=device)
|
||||
self.down.append(down)
|
||||
# middle
|
||||
self.mid = torch.nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
||||
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
||||
# end
|
||||
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in,
|
||||
2 * z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1])
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = self.swish(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class VAEDecoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ch=128,
|
||||
out_ch=3,
|
||||
ch_mult=(1, 2, 4, 4),
|
||||
num_res_blocks=2,
|
||||
resolution=256,
|
||||
z_channels=16,
|
||||
dtype=torch.float32,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(
|
||||
z_channels,
|
||||
block_in,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
# middle
|
||||
self.mid = torch.nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
||||
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
||||
# upsampling
|
||||
self.up = torch.nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = torch.nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
up = torch.nn.Module()
|
||||
up.block = block
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, dtype=dtype, device=device)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
# end
|
||||
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
|
||||
def forward(self, z):
|
||||
# z to block_in
|
||||
hidden = self.conv_in(z)
|
||||
# middle
|
||||
hidden = self.mid.block_1(hidden)
|
||||
hidden = self.mid.attn_1(hidden)
|
||||
hidden = self.mid.block_2(hidden)
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
hidden = self.up[i_level].block[i_block](hidden)
|
||||
if i_level != 0:
|
||||
hidden = self.up[i_level].upsample(hidden)
|
||||
# end
|
||||
hidden = self.norm_out(hidden)
|
||||
hidden = self.swish(hidden)
|
||||
hidden = self.conv_out(hidden)
|
||||
return hidden
|
||||
|
||||
|
||||
class SDVAE(torch.nn.Module):
|
||||
def __init__(self, dtype=torch.float32, device=None):
|
||||
super().__init__()
|
||||
self.encoder = VAEEncoder(dtype=dtype, device=device)
|
||||
self.decoder = VAEDecoder(dtype=dtype, device=device)
|
||||
|
||||
@torch.autocast("cuda", dtype=torch.float16)
|
||||
def decode(self, latent):
|
||||
return self.decoder(latent)
|
||||
|
||||
@torch.autocast("cuda", dtype=torch.float16)
|
||||
def encode(self, image):
|
||||
hidden = self.encoder(image)
|
||||
mean, logvar = torch.chunk(hidden, 2, dim=1)
|
||||
logvar = torch.clamp(logvar, -30.0, 20.0)
|
||||
std = torch.exp(0.5 * logvar)
|
||||
return mean + std * torch.randn_like(mean)
|
||||
426
invokeai/backend/sd3/sd3_infer.py
Normal file
426
invokeai/backend/sd3/sd3_infer.py
Normal file
@@ -0,0 +1,426 @@
|
||||
# This file was originally copied from:
|
||||
# https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_infer.py
|
||||
|
||||
# NOTE: Must have folder `models` with the following files:
|
||||
# - `clip_g.safetensors` (openclip bigG, same as SDXL)
|
||||
# - `clip_l.safetensors` (OpenAI CLIP-L, same as SDXL)
|
||||
# - `t5xxl.safetensors` (google T5-v1.1-XXL)
|
||||
# - `sd3_medium.safetensors` (or whichever main MMDiT model file)
|
||||
# Also can have
|
||||
# - `sd3_vae.safetensors` (holds the VAE separately if needed)
|
||||
|
||||
import datetime
|
||||
import math
|
||||
import os
|
||||
|
||||
import fire
|
||||
import numpy as np
|
||||
import sd3_impls
|
||||
import torch
|
||||
from other_impls import SD3Tokenizer, SDClipModel, SDXLClipG, T5XXLModel
|
||||
from PIL import Image
|
||||
from safetensors import safe_open
|
||||
from sd3_impls import SDVAE, BaseModel, CFGDenoiser, SD3LatentFormat
|
||||
from tqdm import tqdm
|
||||
|
||||
#################################################################################################
|
||||
### Wrappers for model parts
|
||||
#################################################################################################
|
||||
|
||||
|
||||
def load_into(f, model, prefix, device, dtype=None):
|
||||
"""Just a debugging-friendly hack to apply the weights in a safetensors file to the pytorch module."""
|
||||
for key in f.keys():
|
||||
if key.startswith(prefix) and not key.startswith("loss."):
|
||||
path = key[len(prefix) :].split(".")
|
||||
obj = model
|
||||
for p in path:
|
||||
if obj is list:
|
||||
obj = obj[int(p)]
|
||||
else:
|
||||
obj = getattr(obj, p, None)
|
||||
if obj is None:
|
||||
print(f"Skipping key '{key}' in safetensors file as '{p}' does not exist in python model")
|
||||
break
|
||||
if obj is None:
|
||||
continue
|
||||
try:
|
||||
tensor = f.get_tensor(key).to(device=device)
|
||||
if dtype is not None:
|
||||
tensor = tensor.to(dtype=dtype)
|
||||
obj.requires_grad_(False)
|
||||
obj.set_(tensor)
|
||||
except Exception as e:
|
||||
print(f"Failed to load key '{key}' in safetensors file: {e}")
|
||||
raise e
|
||||
|
||||
|
||||
CLIPG_CONFIG = {
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"intermediate_size": 5120,
|
||||
"num_attention_heads": 20,
|
||||
"num_hidden_layers": 32,
|
||||
}
|
||||
|
||||
|
||||
class ClipG:
|
||||
def __init__(self):
|
||||
with safe_open("models/clip_g.safetensors", framework="pt", device="cpu") as f:
|
||||
self.model = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
|
||||
load_into(f, self.model.transformer, "", "cpu", torch.float32)
|
||||
|
||||
|
||||
CLIPL_CONFIG = {
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 768,
|
||||
"intermediate_size": 3072,
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
}
|
||||
|
||||
|
||||
class ClipL:
|
||||
def __init__(self):
|
||||
with safe_open("models/clip_l.safetensors", framework="pt", device="cpu") as f:
|
||||
self.model = SDClipModel(
|
||||
layer="hidden",
|
||||
layer_idx=-2,
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
layer_norm_hidden_state=False,
|
||||
return_projected_pooled=False,
|
||||
textmodel_json_config=CLIPL_CONFIG,
|
||||
)
|
||||
load_into(f, self.model.transformer, "", "cpu", torch.float32)
|
||||
|
||||
|
||||
T5_CONFIG = {
|
||||
"d_ff": 10240,
|
||||
"d_model": 4096,
|
||||
"num_heads": 64,
|
||||
"num_layers": 24,
|
||||
"vocab_size": 32128,
|
||||
}
|
||||
|
||||
|
||||
class T5XXL:
|
||||
def __init__(self):
|
||||
with safe_open("models/t5xxl.safetensors", framework="pt", device="cpu") as f:
|
||||
self.model = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
|
||||
load_into(f, self.model.transformer, "", "cpu", torch.float32)
|
||||
|
||||
|
||||
class SD3:
|
||||
def __init__(self, model, shift, verbose=False):
|
||||
with safe_open(model, framework="pt", device="cpu") as f:
|
||||
self.model = BaseModel(
|
||||
shift=shift,
|
||||
file=f,
|
||||
prefix="model.diffusion_model.",
|
||||
device="cpu",
|
||||
dtype=torch.float16,
|
||||
verbose=verbose,
|
||||
).eval()
|
||||
load_into(f, self.model, "model.", "cpu", torch.float16)
|
||||
|
||||
|
||||
class VAE:
|
||||
def __init__(self, model):
|
||||
with safe_open(model, framework="pt", device="cpu") as f:
|
||||
self.model = SDVAE(device="cpu", dtype=torch.float16).eval().cpu()
|
||||
prefix = ""
|
||||
if any(k.startswith("first_stage_model.") for k in f.keys()):
|
||||
prefix = "first_stage_model."
|
||||
load_into(f, self.model, prefix, "cpu", torch.float16)
|
||||
|
||||
|
||||
#################################################################################################
|
||||
### Main inference logic
|
||||
#################################################################################################
|
||||
|
||||
|
||||
# Note: Sigma shift value, publicly released models use 3.0
|
||||
SHIFT = 3.0
|
||||
# Naturally, adjust to the width/height of the model you have
|
||||
WIDTH = 1024
|
||||
HEIGHT = 1024
|
||||
# Pick your prompt
|
||||
PROMPT = "a photo of a cat"
|
||||
# Most models prefer the range of 4-5, but still work well around 7
|
||||
CFG_SCALE = 4.5
|
||||
# Different models want different step counts but most will be good at 50, albeit that's slow to run
|
||||
# sd3_medium is quite decent at 28 steps
|
||||
STEPS = 40
|
||||
# Seed
|
||||
SEED = 23
|
||||
# SEEDTYPE = "fixed"
|
||||
SEEDTYPE = "rand"
|
||||
# SEEDTYPE = "roll"
|
||||
# Actual model file path
|
||||
# MODEL = "models/sd3_medium.safetensors"
|
||||
# MODEL = "models/sd3.5_large_turbo.safetensors"
|
||||
MODEL = "models/sd3.5_large.safetensors"
|
||||
# VAE model file path, or set None to use the same model file
|
||||
VAEFile = None # "models/sd3_vae.safetensors"
|
||||
# Optional init image file path
|
||||
INIT_IMAGE = None
|
||||
# If init_image is given, this is the percentage of denoising steps to run (1.0 = full denoise, 0.0 = no denoise at all)
|
||||
DENOISE = 0.6
|
||||
# Output file path
|
||||
OUTDIR = "outputs"
|
||||
# SAMPLER
|
||||
# SAMPLER = "euler"
|
||||
SAMPLER = "dpmpp_2m"
|
||||
|
||||
|
||||
class SD3Inferencer:
|
||||
def print(self, txt):
|
||||
if self.verbose:
|
||||
print(txt)
|
||||
|
||||
def load(self, model=MODEL, vae=VAEFile, shift=SHIFT, verbose=False):
|
||||
self.verbose = verbose
|
||||
print("Loading tokenizers...")
|
||||
# NOTE: if you need a reference impl for a high performance CLIP tokenizer instead of just using the HF transformers one,
|
||||
# check https://github.com/Stability-AI/StableSwarmUI/blob/master/src/Utils/CliplikeTokenizer.cs
|
||||
# (T5 tokenizer is different though)
|
||||
self.tokenizer = SD3Tokenizer()
|
||||
print("Loading OpenAI CLIP L...")
|
||||
self.clip_l = ClipL()
|
||||
print("Loading OpenCLIP bigG...")
|
||||
self.clip_g = ClipG()
|
||||
print("Loading Google T5-v1-XXL...")
|
||||
self.t5xxl = T5XXL()
|
||||
print(f"Loading SD3 model {os.path.basename(model)}...")
|
||||
self.sd3 = SD3(model, shift, verbose)
|
||||
print("Loading VAE model...")
|
||||
self.vae = VAE(vae or model)
|
||||
print("Models loaded.")
|
||||
|
||||
def get_empty_latent(self, width, height):
|
||||
self.print("Prep an empty latent...")
|
||||
return torch.ones(1, 16, height // 8, width // 8, device="cpu") * 0.0609
|
||||
|
||||
def get_sigmas(self, sampling, steps):
|
||||
start = sampling.timestep(sampling.sigma_max)
|
||||
end = sampling.timestep(sampling.sigma_min)
|
||||
timesteps = torch.linspace(start, end, steps)
|
||||
sigs = []
|
||||
for x in range(len(timesteps)):
|
||||
ts = timesteps[x]
|
||||
sigs.append(sampling.sigma(ts))
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def get_noise(self, seed, latent):
|
||||
generator = torch.manual_seed(seed)
|
||||
self.print(f"dtype = {latent.dtype}, layout = {latent.layout}, device = {latent.device}")
|
||||
return torch.randn(
|
||||
latent.size(),
|
||||
dtype=torch.float32,
|
||||
layout=latent.layout,
|
||||
generator=generator,
|
||||
device="cpu",
|
||||
).to(latent.dtype)
|
||||
|
||||
def get_cond(self, prompt):
|
||||
self.print("Encode prompt...")
|
||||
tokens = self.tokenizer.tokenize_with_weights(prompt)
|
||||
l_out, l_pooled = self.clip_l.model.encode_token_weights(tokens["l"])
|
||||
g_out, g_pooled = self.clip_g.model.encode_token_weights(tokens["g"])
|
||||
t5_out, t5_pooled = self.t5xxl.model.encode_token_weights(tokens["t5xxl"])
|
||||
lg_out = torch.cat([l_out, g_out], dim=-1)
|
||||
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
||||
return torch.cat([lg_out, t5_out], dim=-2), torch.cat((l_pooled, g_pooled), dim=-1)
|
||||
|
||||
def max_denoise(self, sigmas):
|
||||
max_sigma = float(self.sd3.model.model_sampling.sigma_max)
|
||||
sigma = float(sigmas[0])
|
||||
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
|
||||
|
||||
def fix_cond(self, cond):
|
||||
cond, pooled = (cond[0].half().cuda(), cond[1].half().cuda())
|
||||
return {"c_crossattn": cond, "y": pooled}
|
||||
|
||||
def do_sampling(
|
||||
self,
|
||||
latent,
|
||||
seed,
|
||||
conditioning,
|
||||
neg_cond,
|
||||
steps,
|
||||
cfg_scale,
|
||||
sampler="dpmpp_2m",
|
||||
denoise=1.0,
|
||||
) -> torch.Tensor:
|
||||
self.print("Sampling...")
|
||||
latent = latent.half().cuda()
|
||||
self.sd3.model = self.sd3.model.cuda()
|
||||
noise = self.get_noise(seed, latent).cuda()
|
||||
sigmas = self.get_sigmas(self.sd3.model.model_sampling, steps).cuda()
|
||||
sigmas = sigmas[int(steps * (1 - denoise)) :]
|
||||
conditioning = self.fix_cond(conditioning)
|
||||
neg_cond = self.fix_cond(neg_cond)
|
||||
extra_args = {"cond": conditioning, "uncond": neg_cond, "cond_scale": cfg_scale}
|
||||
noise_scaled = self.sd3.model.model_sampling.noise_scaling(sigmas[0], noise, latent, self.max_denoise(sigmas))
|
||||
sample_fn = getattr(sd3_impls, f"sample_{sampler}")
|
||||
latent = sample_fn(CFGDenoiser(self.sd3.model), noise_scaled, sigmas, extra_args=extra_args)
|
||||
latent = SD3LatentFormat().process_out(latent)
|
||||
self.sd3.model = self.sd3.model.cpu()
|
||||
self.print("Sampling done")
|
||||
return latent
|
||||
|
||||
def vae_encode(self, image) -> torch.Tensor:
|
||||
self.print("Encoding image to latent...")
|
||||
image = image.convert("RGB")
|
||||
image_np = np.array(image).astype(np.float32) / 255.0
|
||||
image_np = np.moveaxis(image_np, 2, 0)
|
||||
batch_images = np.expand_dims(image_np, axis=0).repeat(1, axis=0)
|
||||
image_torch = torch.from_numpy(batch_images)
|
||||
image_torch = 2.0 * image_torch - 1.0
|
||||
image_torch = image_torch.cuda()
|
||||
self.vae.model = self.vae.model.cuda()
|
||||
latent = self.vae.model.encode(image_torch).cpu()
|
||||
self.vae.model = self.vae.model.cpu()
|
||||
self.print("Encoded")
|
||||
return latent
|
||||
|
||||
def vae_decode(self, latent) -> Image.Image:
|
||||
self.print("Decoding latent to image...")
|
||||
latent = latent.cuda()
|
||||
self.vae.model = self.vae.model.cuda()
|
||||
image = self.vae.model.decode(latent)
|
||||
image = image.float()
|
||||
self.vae.model = self.vae.model.cpu()
|
||||
image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
||||
decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2)
|
||||
decoded_np = decoded_np.astype(np.uint8)
|
||||
out_image = Image.fromarray(decoded_np)
|
||||
self.print("Decoded")
|
||||
return out_image
|
||||
|
||||
def gen_image(
|
||||
self,
|
||||
prompts=[PROMPT],
|
||||
width=WIDTH,
|
||||
height=HEIGHT,
|
||||
steps=STEPS,
|
||||
cfg_scale=CFG_SCALE,
|
||||
sampler=SAMPLER,
|
||||
seed=SEED,
|
||||
seed_type=SEEDTYPE,
|
||||
out_dir=OUTDIR,
|
||||
init_image=INIT_IMAGE,
|
||||
denoise=DENOISE,
|
||||
):
|
||||
latent = self.get_empty_latent(width, height)
|
||||
if init_image:
|
||||
image_data = Image.open(init_image)
|
||||
image_data = image_data.resize((width, height), Image.LANCZOS)
|
||||
latent = self.vae_encode(image_data)
|
||||
latent = SD3LatentFormat().process_in(latent)
|
||||
neg_cond = self.get_cond("")
|
||||
seed_num = None
|
||||
pbar = tqdm(enumerate(prompts), total=len(prompts), position=0, leave=True)
|
||||
for i, prompt in pbar:
|
||||
if seed_type == "roll":
|
||||
seed_num = seed if seed_num is None else seed_num + 1
|
||||
elif seed_type == "rand":
|
||||
seed_num = torch.randint(0, 100000, (1,)).item()
|
||||
else: # fixed
|
||||
seed_num = seed
|
||||
conditioning = self.get_cond(prompt)
|
||||
sampled_latent = self.do_sampling(
|
||||
latent,
|
||||
seed_num,
|
||||
conditioning,
|
||||
neg_cond,
|
||||
steps,
|
||||
cfg_scale,
|
||||
sampler,
|
||||
denoise if init_image else 1.0,
|
||||
)
|
||||
image = self.vae_decode(sampled_latent)
|
||||
save_path = os.path.join(out_dir, f"{i:06d}.png")
|
||||
self.print(f"Will save to {save_path}")
|
||||
image.save(save_path)
|
||||
self.print("Done")
|
||||
|
||||
|
||||
CONFIGS = {
|
||||
"sd3_medium": {
|
||||
"shift": 1.0,
|
||||
"cfg": 5.0,
|
||||
"steps": 50,
|
||||
"sampler": "dpmpp_2m",
|
||||
},
|
||||
"sd3.5_large": {
|
||||
"shift": 3.0,
|
||||
"cfg": 4.5,
|
||||
"steps": 40,
|
||||
"sampler": "dpmpp_2m",
|
||||
},
|
||||
"sd3.5_large_turbo": {"shift": 3.0, "cfg": 1.0, "steps": 4, "sampler": "euler"},
|
||||
}
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main(
|
||||
prompt=PROMPT,
|
||||
model=MODEL,
|
||||
out_dir=OUTDIR,
|
||||
postfix=None,
|
||||
seed=SEED,
|
||||
seed_type=SEEDTYPE,
|
||||
sampler=None,
|
||||
steps=None,
|
||||
cfg=None,
|
||||
shift=None,
|
||||
width=WIDTH,
|
||||
height=HEIGHT,
|
||||
vae=VAEFile,
|
||||
init_image=INIT_IMAGE,
|
||||
denoise=DENOISE,
|
||||
verbose=False,
|
||||
):
|
||||
steps = steps or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["steps"]
|
||||
cfg = cfg or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["cfg"]
|
||||
shift = shift or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["shift"]
|
||||
sampler = sampler or CONFIGS[os.path.splitext(os.path.basename(model))[0]]["sampler"]
|
||||
|
||||
inferencer = SD3Inferencer()
|
||||
inferencer.load(model, vae, shift, verbose)
|
||||
|
||||
if isinstance(prompt, str):
|
||||
if os.path.splitext(prompt)[-1] == ".txt":
|
||||
with open(prompt, "r") as f:
|
||||
prompts = [l.strip() for l in f.readlines()]
|
||||
else:
|
||||
prompts = [prompt]
|
||||
|
||||
out_dir = os.path.join(
|
||||
out_dir,
|
||||
os.path.splitext(os.path.basename(model))[0],
|
||||
os.path.splitext(os.path.basename(prompt))[0][:50]
|
||||
+ (postfix or datetime.datetime.now().strftime("_%Y-%m-%dT%H-%M-%S")),
|
||||
)
|
||||
print(f"Saving images to {out_dir}")
|
||||
os.makedirs(out_dir, exist_ok=False)
|
||||
|
||||
inferencer.gen_image(
|
||||
prompts,
|
||||
width,
|
||||
height,
|
||||
steps,
|
||||
cfg,
|
||||
sampler,
|
||||
seed,
|
||||
seed_type,
|
||||
out_dir,
|
||||
init_image,
|
||||
denoise,
|
||||
)
|
||||
|
||||
|
||||
fire.Fire(main)
|
||||
72
invokeai/backend/sd3/sd3_mmditx.py
Normal file
72
invokeai/backend/sd3/sd3_mmditx.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal, TypedDict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.sd3.mmditx import MMDiTX
|
||||
from invokeai.backend.sd3.sd3_impls import ModelSamplingDiscreteFlow
|
||||
|
||||
|
||||
class ContextEmbedderConfig(TypedDict):
|
||||
target: Literal["torch.nn.Linear"]
|
||||
params: dict[str, int]
|
||||
|
||||
|
||||
@dataclass
|
||||
class Sd3MMDiTXParams:
|
||||
patch_size: int
|
||||
depth: int
|
||||
num_patches: int
|
||||
pos_embed_max_size: int
|
||||
adm_in_channels: int
|
||||
context_shape: tuple[int, int]
|
||||
qk_norm: Literal["rms", None]
|
||||
x_block_self_attn_layers: list[int]
|
||||
context_embedder_config: ContextEmbedderConfig
|
||||
|
||||
|
||||
class Sd3MMDiTX(torch.nn.Module):
|
||||
"""This class is based closely on
|
||||
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L53
|
||||
but has more standard model loading semantics.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params: Sd3MMDiTXParams,
|
||||
shift: float = 1.0,
|
||||
device: torch.device | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
verbose: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.diffusion_model = MMDiTX(
|
||||
input_size=None,
|
||||
pos_embed_scaling_factor=None,
|
||||
pos_embed_offset=None,
|
||||
pos_embed_max_size=params.pos_embed_max_size,
|
||||
patch_size=params.patch_size,
|
||||
in_channels=16,
|
||||
depth=params.depth,
|
||||
num_patches=params.num_patches,
|
||||
adm_in_channels=params.adm_in_channels,
|
||||
context_embedder_config=params.context_embedder_config,
|
||||
qk_norm=params.qk_norm,
|
||||
x_block_self_attn_layers=params.x_block_self_attn_layers,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
|
||||
|
||||
def apply_model(self, x: torch.Tensor, sigma: torch.Tensor, c_crossattn: torch.Tensor, y: torch.Tensor):
|
||||
dtype = self.get_dtype()
|
||||
timestep = self.model_sampling.timestep(sigma).float()
|
||||
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
|
||||
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
||||
|
||||
def forward(self, x: torch.Tensor, sigma: float, c_crossattn: torch.Tensor, y: torch.Tensor):
|
||||
return self.apply_model(x=x, sigma=sigma, c_crossattn=c_crossattn, y=y)
|
||||
|
||||
def get_dtype(self):
|
||||
return self.diffusion_model.dtype
|
||||
70
invokeai/backend/sd3/sd3_state_dict_utils.py
Normal file
70
invokeai/backend/sd3/sd3_state_dict_utils.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import math
|
||||
import re
|
||||
from typing import Any, Dict
|
||||
|
||||
from invokeai.backend.sd3.sd3_mmditx import ContextEmbedderConfig, Sd3MMDiTXParams
|
||||
|
||||
|
||||
def is_sd3_checkpoint(sd: Dict[str, Any]) -> bool:
|
||||
"""Is the state dict for an SD3 checkpoint like this one?:
|
||||
https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/sd3.5_large.safetensors
|
||||
|
||||
Note that this checkpoint format contains both the VAE and the MMDiTX model.
|
||||
|
||||
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
|
||||
"""
|
||||
# If all of the expected keys are present, then this is very likely a SD3 checkpoint.
|
||||
expected_keys = {
|
||||
# VAE decoder and encoder keys.
|
||||
"first_stage_model.decoder.conv_in.bias",
|
||||
"first_stage_model.decoder.conv_in.weight",
|
||||
"first_stage_model.encoder.conv_in.bias",
|
||||
"first_stage_model.encoder.conv_in.weight",
|
||||
# MMDiTX keys.
|
||||
"model.diffusion_model.final_layer.linear.bias",
|
||||
"model.diffusion_model.final_layer.linear.weight",
|
||||
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_k.weight",
|
||||
"model.diffusion_model.joint_blocks.0.context_block.attn.ln_q.weight",
|
||||
}
|
||||
|
||||
return expected_keys.issubset(sd.keys())
|
||||
|
||||
|
||||
def infer_sd3_mmditx_params(sd: Dict[str, Any], prefix: str = "model.diffusion_model.") -> Sd3MMDiTXParams:
|
||||
"""Infer the MMDiTX model parameters from the state dict.
|
||||
|
||||
This logic is based on:
|
||||
https://github.com/Stability-AI/sd3.5/blob/19bf11c4e1e37324c5aa5a61f010d4127848a09c/sd3_impls.py#L68-L88
|
||||
"""
|
||||
patch_size = sd[f"{prefix}x_embedder.proj.weight"].shape[2]
|
||||
depth = sd[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
|
||||
num_patches = sd[f"{prefix}pos_embed"].shape[1]
|
||||
pos_embed_max_size = round(math.sqrt(num_patches))
|
||||
adm_in_channels = sd[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
|
||||
context_shape = sd[f"{prefix}context_embedder.weight"].shape
|
||||
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in sd else None
|
||||
x_block_self_attn_layers = sorted(
|
||||
[
|
||||
int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])
|
||||
for key in list(filter(re.compile(".*.x_block.attn2.ln_k.weight").match, sd.keys()))
|
||||
]
|
||||
)
|
||||
|
||||
context_embedder_config: ContextEmbedderConfig = {
|
||||
"target": "torch.nn.Linear",
|
||||
"params": {
|
||||
"in_features": context_shape[1],
|
||||
"out_features": context_shape[0],
|
||||
},
|
||||
}
|
||||
return Sd3MMDiTXParams(
|
||||
patch_size=patch_size,
|
||||
depth=depth,
|
||||
num_patches=num_patches,
|
||||
pos_embed_max_size=pos_embed_max_size,
|
||||
adm_in_channels=adm_in_channels,
|
||||
context_shape=context_shape,
|
||||
qk_norm=qk_norm,
|
||||
x_block_self_attn_layers=x_block_self_attn_layers,
|
||||
context_embedder_config=context_embedder_config,
|
||||
)
|
||||
1171
tests/backend/sd3/sd3_5_mmditx_state_dict.py
Normal file
1171
tests/backend/sd3/sd3_5_mmditx_state_dict.py
Normal file
File diff suppressed because it is too large
Load Diff
43
tests/backend/sd3/test_sd3_state_dict_utils.py
Normal file
43
tests/backend/sd3/test_sd3_state_dict_utils.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.sd3.sd3_mmditx import Sd3MMDiTX
|
||||
from invokeai.backend.sd3.sd3_state_dict_utils import infer_sd3_mmditx_params, is_sd3_checkpoint
|
||||
from tests.backend.sd3.sd3_5_mmditx_state_dict import sd3_sd_shapes
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["sd_shapes", "expected"],
|
||||
[
|
||||
(sd3_sd_shapes, True),
|
||||
({}, False),
|
||||
({"foo": [1]}, False),
|
||||
],
|
||||
)
|
||||
def test_is_sd3_checkpoint(sd_shapes: dict[str, list[int]], expected: bool):
|
||||
# Build mock state dict from the provided shape dict.
|
||||
sd = {k: None for k in sd_shapes}
|
||||
assert is_sd3_checkpoint(sd) == expected
|
||||
|
||||
|
||||
def test_infer_sd3_mmditx_params():
|
||||
# Build mock state dict on the meta device.
|
||||
with torch.device("meta"):
|
||||
sd = {k: torch.zeros(shape) for k, shape in sd3_sd_shapes.items()}
|
||||
|
||||
# Filter the MMDiTX parameters from the state dict.
|
||||
sd = {k: v for k, v in sd.items() if k.startswith("model.diffusion_model.")}
|
||||
|
||||
params = infer_sd3_mmditx_params(sd)
|
||||
|
||||
# Construct model from params.
|
||||
with torch.device("meta"):
|
||||
model = Sd3MMDiTX(params=params)
|
||||
|
||||
model_sd = model.state_dict()
|
||||
|
||||
# Assert that the model state dict is compatible with the original state dict.
|
||||
sd_without_prefix = {k.split("model.diffusion_model.")[-1]: v for k, v in model_sd.items()}
|
||||
assert set(model_sd.keys()) == set(sd_without_prefix.keys())
|
||||
for k in model_sd:
|
||||
assert model_sd[k].shape == sd_without_prefix[k].shape
|
||||
Reference in New Issue
Block a user