Compare commits

..

2 Commits

Author SHA1 Message Date
psychedelicious
7905a46ca4 chore: bump version to 4.2.6post1 2024-07-16 09:09:04 +10:00
psychedelicious
38343917f8 fix(backend): revert non-blocking device transfer
In #6490 we enabled non-blocking torch device transfers throughout the model manager's memory management code. When using this torch feature, torch attempts to wait until the tensor transfer has completed before allowing any access to the tensor. Theoretically, that should make this a safe feature to use.

This provides a small performance improvement but causes race conditions in some situations. Specific platforms/systems are affected, and complicated data dependencies can make this unsafe.

- Intermittent black images on MPS devices - reported on discord and #6545, fixed with special handling in #6549.
- Intermittent OOMs and black images on a P4000 GPU on Windows - reported in #6613, fixed in this commit.

On my system, I haven't experience any issues with generation, but targeted testing of non-blocking ops did expose a race condition when moving tensors from CUDA to CPU.

One workaround is to use torch streams with manual sync points. Our application logic is complicated enough that this would be a lot of work and feels ripe for edge cases and missed spots.

Much safer is to fully revert non-locking - which is what this change does.
2024-07-16 08:59:42 +10:00
24 changed files with 381 additions and 515 deletions

View File

@@ -5,7 +5,7 @@ from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges, UncategorizedImageCounts
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@@ -146,14 +146,3 @@ async def list_all_board_image_names(
board_id,
)
return image_names
@boards_router.get(
"/uncategorized/counts",
operation_id="get_uncategorized_image_counts",
response_model=UncategorizedImageCounts,
)
async def get_uncategorized_image_counts() -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)"""
return ApiDependencies.invoker.services.board_records.get_uncategorized_image_counts()

View File

@@ -1,6 +1,6 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord, UncategorizedImageCounts
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@@ -48,8 +48,3 @@ class BoardRecordStorageBase(ABC):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
"""Gets all board records."""
pass
@abstractmethod
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)."""
pass

View File

@@ -1,5 +1,5 @@
from datetime import datetime
from typing import Any, Optional, Union
from typing import Optional, Union
from pydantic import BaseModel, Field
@@ -26,25 +26,21 @@ class BoardRecord(BaseModelExcludeNull):
"""Whether or not the board is archived."""
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
"""Whether the board is private."""
image_count: int = Field(description="The number of images in the board.")
asset_count: int = Field(description="The number of assets in the board.")
def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
board_id = board_dict.get("board_id", "unknown")
board_name = board_dict.get("board_name", "unknown")
cover_image_name = board_dict.get("cover_image_name", None)
cover_image_name = board_dict.get("cover_image_name", "unknown")
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
archived = board_dict.get("archived", False)
is_private = board_dict.get("is_private", False)
image_count = board_dict.get("image_count", 0)
asset_count = board_dict.get("asset_count", 0)
return BoardRecord(
board_id=board_id,
@@ -55,8 +51,6 @@ def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
deleted_at=deleted_at,
archived=archived,
is_private=is_private,
image_count=image_count,
asset_count=asset_count,
)
@@ -69,24 +63,19 @@ class BoardChanges(BaseModel, extra="forbid"):
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message: str = "Board record not found"):
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message: str = "Board record not saved"):
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message: str = "Board record not deleted"):
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class UncategorizedImageCounts(BaseModel):
image_count: int = Field(description="The number of uncategorized images.")
asset_count: int = Field(description="The number of uncategorized assets.")

View File

@@ -1,6 +1,5 @@
import sqlite3
import threading
from dataclasses import dataclass
from typing import Union, cast
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
@@ -10,108 +9,12 @@ from invokeai.app.services.board_records.board_records_common import (
BoardRecordDeleteException,
BoardRecordNotFoundException,
BoardRecordSaveException,
UncategorizedImageCounts,
deserialize_board_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
BASE_BOARD_RECORD_QUERY = """
-- This query retrieves board records, joining with the board_images and images tables to get image counts and cover image names.
-- It is not a complete query, as it is missing a GROUP BY or WHERE clause (and is unterminated).
SELECT b.board_id,
b.board_name,
b.created_at,
b.updated_at,
b.archived,
-- Count the number of images in the board, alias image_count
COUNT(
CASE
WHEN i.image_category in ('general') -- "Images" are images in the 'general' category
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS image_count,
-- Count the number of assets in the board, alias asset_count
COUNT(
CASE
WHEN i.image_category in ('control', 'mask', 'user', 'other') -- "Assets" are images in any of the other categories ('control', 'mask', 'user', 'other')
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS asset_count,
-- Get the name of the the most recent image in the board, alias cover_image_name
(
SELECT bi.image_name
FROM board_images bi
JOIN images i ON bi.image_name = i.image_name
WHERE bi.board_id = b.board_id
AND i.is_intermediate = 0 -- Intermediates cannot be cover images
ORDER BY i.created_at DESC -- Sort by created_at to get the most recent image
LIMIT 1
) AS cover_image_name
FROM boards b
LEFT JOIN board_images bi ON b.board_id = bi.board_id
LEFT JOIN images i ON bi.image_name = i.image_name
"""
@dataclass
class PaginatedBoardRecordsQueries:
main_query: str
total_count_query: str
def get_paginated_list_board_records_queries(include_archived: bool) -> PaginatedBoardRecordsQueries:
"""Gets a query to retrieve a paginated list of board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
main_query = f"""
{BASE_BOARD_RECORD_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC
LIMIT ? OFFSET ?;
"""
total_count_query = f"""
SELECT COUNT(*)
FROM boards b
{archived_condition};
"""
return PaginatedBoardRecordsQueries(main_query=main_query, total_count_query=total_count_query)
def get_list_all_board_records_query(include_archived: bool) -> str:
"""Gets a query to retrieve all board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
return f"""
{BASE_BOARD_RECORD_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC;
"""
def get_board_record_query() -> str:
"""Gets a query to retrieve a board record."""
return f"""
{BASE_BOARD_RECORD_QUERY}
WHERE b.board_id = ?;
"""
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_conn: sqlite3.Connection
@@ -173,7 +76,11 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
self._cursor.execute(
get_board_record_query(),
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
@@ -185,7 +92,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return deserialize_board_record(dict(result))
return BoardRecord(**dict(result))
def update(
self,
@@ -242,17 +149,45 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
queries = get_paginated_list_board_records_queries(include_archived=include_archived)
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
"""
self._cursor.execute(
queries.main_query,
(limit, offset),
)
# Determine archived filter condition
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
self._cursor.execute(queries.total_count_query)
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
self._cursor.execute(count_query)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
@@ -266,9 +201,26 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
try:
self._lock.acquire()
self._cursor.execute(get_list_all_board_records_query(include_archived=include_archived))
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
"""
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
self._cursor.execute(final_query)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards
except sqlite3.Error as e:
@@ -276,28 +228,3 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
raise e
finally:
self._lock.release()
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
try:
self._lock.acquire()
query = """
-- Get the count of uncategorized images and assets.
SELECT
CASE
WHEN i.image_category = 'general' THEN 'image_count' -- "Images" are images in the 'general' category
ELSE 'asset_count' -- "Assets" are images in any of the other categories ('control', 'mask', 'user', 'other')
END AS category_type,
COUNT(*) AS unassigned_count
FROM images i
LEFT JOIN board_images bi ON i.image_name = bi.image_name
WHERE bi.board_id IS NULL -- Uncategorized images have no board association
AND i.is_intermediate = 0 -- Omit intermediates from the counts
GROUP BY category_type; -- Group by category_type alias, as derived from the image_category column earlier
"""
self._cursor.execute(query)
results = self._cursor.fetchall()
image_count = dict(results)["image_count"]
asset_count = dict(results)["asset_count"]
return UncategorizedImageCounts(image_count=image_count, asset_count=asset_count)
finally:
self._lock.release()

View File

@@ -1,8 +1,23 @@
from typing import Optional
from pydantic import Field
from invokeai.app.services.board_records.board_records_common import BoardRecord
# TODO(psyche): BoardDTO is now identical to BoardRecord. We should consider removing it.
class BoardDTO(BoardRecord):
"""Deserialized board record."""
"""Deserialized board record with cover image URL and image count."""
pass
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@@ -1,6 +1,6 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@@ -16,11 +16,17 @@ class BoardService(BoardServiceABC):
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return BoardDTO.model_validate(board_record.model_dump())
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
@@ -28,7 +34,14 @@ class BoardService(BoardServiceABC):
changes: BoardChanges,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.update(board_id, changes)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
@@ -37,10 +50,30 @@ class BoardService(BoardServiceABC):
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records.items]
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records]
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@@ -124,16 +124,14 @@ class IPAdapter(RawModel):
self.device, dtype=self.dtype
)
def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
def calc_size(self) -> int:
# HACK(ryand): Fix this issue with circular imports.

View File

@@ -11,7 +11,6 @@ from typing_extensions import Self
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
from invokeai.backend.util.devices import TorchDevice
class LoRALayerBase:
@@ -57,14 +56,9 @@ class LoRALayerBase:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
@@ -106,19 +100,14 @@ class LoRALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
@@ -167,23 +156,18 @@ class LoHALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
@@ -264,12 +248,7 @@ class LoKRLayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
@@ -277,19 +256,19 @@ class LoKRLayer(LoRALayerBase):
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
@@ -319,15 +298,10 @@ class FullLayer(LoRALayerBase):
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
@@ -359,16 +333,11 @@ class IA3Layer(LoRALayerBase):
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
@@ -390,15 +359,10 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
def name(self) -> str:
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
@@ -521,7 +485,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model

View File

@@ -289,11 +289,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(
target_device, copy=True, non_blocking=TorchDevice.get_non_blocking(target_device)
)
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=TorchDevice.get_non_blocking(target_device))
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)

View File

@@ -139,15 +139,12 @@ class ModelPatcher:
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(
device=TorchDevice.CPU_DEVICE,
non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE),
)
layer.to(device=TorchDevice.CPU_DEVICE)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
@@ -156,7 +153,7 @@ class ModelPatcher:
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
module.weight += layer_weight.to(dtype=dtype)
yield # wait for context manager exit
@@ -164,9 +161,7 @@ class ModelPatcher:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
)
model.get_submodule(module_key).weight.copy_(weight)
@classmethod
@contextmanager

View File

@@ -190,12 +190,7 @@ class IAIOnnxRuntimeModel(RawModel):
return self.session.run(None, inputs)
# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass
# compatability with diffusers load code

View File

@@ -20,10 +20,5 @@ class RawModel(ABC):
"""Abstract base class for 'Raw' model wrappers."""
@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass

View File

@@ -65,17 +65,12 @@ class TextualInversionModelRaw(RawModel):
return result
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
emb.to(device=device, dtype=dtype)
def calc_size(self) -> int:
"""Get the size of this model in bytes."""

View File

@@ -112,15 +112,3 @@ class TorchDevice:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@staticmethod
def get_non_blocking(to_device: torch.device) -> bool:
"""Return the non_blocking flag to be used when moving a tensor to a given device.
MPS may have unexpected errors with non-blocking operations - we should not use non-blocking when moving _to_ MPS.
When moving _from_ MPS, we can use non-blocking operations.
See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28
"""
return False if to_device.type == "mps" else True

View File

@@ -13,6 +13,7 @@ import {
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
import { getCategories, getListImagesUrl } from 'services/api/util';
import { socketInvocationComplete } from 'services/events/actions';
@@ -51,6 +52,14 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
}
if (!imageDTO.is_intermediate) {
// update the total images for the board
dispatch(
boardsApi.util.updateQueryData('getBoardImagesTotal', imageDTO.board_id ?? 'none', (draft) => {
// eslint-disable-next-line @typescript-eslint/no-unused-vars
draft.total += 1;
})
);
dispatch(
imagesApi.util.invalidateTags([
{ type: 'Board', id: imageDTO.board_id ?? 'none' },

View File

@@ -1,12 +1,22 @@
import { useTranslation } from 'react-i18next';
import { useGetBoardAssetsTotalQuery, useGetBoardImagesTotalQuery } from 'services/api/endpoints/boards';
type Props = {
imageCount: number;
assetCount: number;
board_id: string;
isArchived: boolean;
};
export const BoardTotalsTooltip = ({ imageCount, assetCount, isArchived }: Props) => {
export const BoardTotalsTooltip = ({ board_id, isArchived }: Props) => {
const { t } = useTranslation();
return `${t('boards.imagesWithCount', { count: imageCount })}, ${t('boards.assetsWithCount', { count: assetCount })}${isArchived ? ` (${t('boards.archived')})` : ''}`;
const { imagesTotal } = useGetBoardImagesTotalQuery(board_id, {
selectFromResult: ({ data }) => {
return { imagesTotal: data?.total ?? 0 };
},
});
const { assetsTotal } = useGetBoardAssetsTotalQuery(board_id, {
selectFromResult: ({ data }) => {
return { assetsTotal: data?.total ?? 0 };
},
});
return `${t('boards.imagesWithCount', { count: imagesTotal })}, ${t('boards.assetsWithCount', { count: assetsTotal })}${isArchived ? ` (${t('boards.archived')})` : ''}`;
};

View File

@@ -116,13 +116,7 @@ const GalleryBoard = ({ board, isSelected, setBoardToDelete }: GalleryBoardProps
<BoardContextMenu board={board} setBoardToDelete={setBoardToDelete}>
{(ref) => (
<Tooltip
label={
<BoardTotalsTooltip
imageCount={board.image_count}
assetCount={board.asset_count}
isArchived={Boolean(board.archived)}
/>
}
label={<BoardTotalsTooltip board_id={board.board_id} isArchived={Boolean(board.archived)} />}
openDelay={1000}
placement="left"
closeOnScroll
@@ -172,7 +166,7 @@ const GalleryBoard = ({ board, isSelected, setBoardToDelete }: GalleryBoardProps
</Editable>
{autoAddBoardId === board.board_id && !editingDisclosure.isOpen && <AutoAddBadge />}
{board.archived && !editingDisclosure.isOpen && <Icon as={PiArchiveBold} fill="base.300" />}
{!editingDisclosure.isOpen && <Text variant="subtext">{board.image_count + board.asset_count}</Text>}
{!editingDisclosure.isOpen && <Text variant="subtext">{board.image_count}</Text>}
<IAIDroppable data={droppableData} dropLabel={<Text fontSize="md">{t('unifiedCanvas.move')}</Text>} />
</Flex>

View File

@@ -9,7 +9,7 @@ import NoBoardBoardContextMenu from 'features/gallery/components/Boards/NoBoardB
import { autoAddBoardIdChanged, boardIdSelected } from 'features/gallery/store/gallerySlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useGetUncategorizedImageCountsQuery } from 'services/api/endpoints/boards';
import { useGetBoardImagesTotalQuery } from 'services/api/endpoints/boards';
import { useBoardName } from 'services/api/hooks/useBoardName';
interface Props {
@@ -22,7 +22,11 @@ const _hover: SystemStyleObject = {
const NoBoardBoard = memo(({ isSelected }: Props) => {
const dispatch = useAppDispatch();
const { data } = useGetUncategorizedImageCountsQuery();
const { imagesTotal } = useGetBoardImagesTotalQuery('none', {
selectFromResult: ({ data }) => {
return { imagesTotal: data?.total ?? 0 };
},
});
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
const autoAssignBoardOnClick = useAppSelector((s) => s.gallery.autoAssignBoardOnClick);
const boardSearchText = useAppSelector((s) => s.gallery.boardSearchText);
@@ -56,13 +60,7 @@ const NoBoardBoard = memo(({ isSelected }: Props) => {
<NoBoardBoardContextMenu>
{(ref) => (
<Tooltip
label={
<BoardTotalsTooltip
imageCount={data?.image_count ?? 0}
assetCount={data?.asset_count ?? 0}
isArchived={false}
/>
}
label={<BoardTotalsTooltip board_id="none" isArchived={false} />}
openDelay={1000}
placement="left"
closeOnScroll
@@ -101,7 +99,7 @@ const NoBoardBoard = memo(({ isSelected }: Props) => {
{boardName}
</Text>
{autoAddBoardId === 'none' && <AutoAddBadge />}
<Text variant="subtext">{(data?.image_count ?? 0) + (data?.asset_count ?? 0)}</Text>
<Text variant="subtext">{imagesTotal}</Text>
<IAIDroppable data={droppableData} dropLabel={<Text fontSize="md">{t('unifiedCanvas.move')}</Text>} />
</Flex>
</Tooltip>

View File

@@ -1,4 +1,12 @@
import type { BoardDTO, CreateBoardArg, ListBoardsArgs, S, UpdateBoardArg } from 'services/api/types';
import { ASSETS_CATEGORIES, IMAGE_CATEGORIES } from 'features/gallery/store/types';
import type {
BoardDTO,
CreateBoardArg,
ListBoardsArgs,
OffsetPaginatedResults_ImageDTO_,
UpdateBoardArg,
} from 'services/api/types';
import { getListImagesUrl } from 'services/api/util';
import type { ApiTagDescription } from '..';
import { api, buildV1Url, LIST_TAG } from '..';
@@ -47,11 +55,38 @@ export const boardsApi = api.injectEndpoints({
keepUnusedDataFor: 0,
}),
getUncategorizedImageCounts: build.query<S['UncategorizedImageCounts'], void>({
query: () => ({
url: buildBoardsUrl('uncategorized/counts'),
getBoardImagesTotal: build.query<{ total: number }, string | undefined>({
query: (board_id) => ({
url: getListImagesUrl({
board_id: board_id ?? 'none',
categories: IMAGE_CATEGORIES,
is_intermediate: false,
limit: 0,
offset: 0,
}),
method: 'GET',
}),
providesTags: ['UncategorizedImageCounts', { type: 'Board', id: LIST_TAG }, { type: 'Board', id: 'none' }],
providesTags: (result, error, arg) => [{ type: 'BoardImagesTotal', id: arg ?? 'none' }, 'FetchOnReconnect'],
transformResponse: (response: OffsetPaginatedResults_ImageDTO_) => {
return { total: response.total };
},
}),
getBoardAssetsTotal: build.query<{ total: number }, string | undefined>({
query: (board_id) => ({
url: getListImagesUrl({
board_id: board_id ?? 'none',
categories: ASSETS_CATEGORIES,
is_intermediate: false,
limit: 0,
offset: 0,
}),
method: 'GET',
}),
providesTags: (result, error, arg) => [{ type: 'BoardAssetsTotal', id: arg ?? 'none' }, 'FetchOnReconnect'],
transformResponse: (response: OffsetPaginatedResults_ImageDTO_) => {
return { total: response.total };
},
}),
/**
@@ -89,8 +124,9 @@ export const boardsApi = api.injectEndpoints({
export const {
useListAllBoardsQuery,
useGetBoardImagesTotalQuery,
useGetBoardAssetsTotalQuery,
useCreateBoardMutation,
useUpdateBoardMutation,
useListAllImageNamesForBoardQuery,
useGetUncategorizedImageCountsQuery,
} = boardsApi;

View File

@@ -44,7 +44,6 @@ const tagTypes = [
// This is invalidated on reconnect. It should be used for queries that have changing data,
// especially related to the queue and generation.
'FetchOnReconnect',
'UncategorizedImageCounts',
] as const;
export type ApiTagDescription = TagDescription<(typeof tagTypes)[number]>;
export const LIST_TAG = 'LIST';

View File

@@ -333,13 +333,6 @@ export type paths = {
*/
get: operations["list_all_board_image_names"];
};
"/api/v1/boards/uncategorized/counts": {
/**
* Get Uncategorized Image Counts
* @description Gets count of images and assets for uncategorized images (images with no board assocation)
*/
get: operations["get_uncategorized_image_counts"];
};
"/api/v1/board_images/": {
/**
* Add Image To Board
@@ -1027,7 +1020,7 @@ export type components = {
};
/**
* BoardDTO
* @description Deserialized board record.
* @description Deserialized board record with cover image URL and image count.
*/
BoardDTO: {
/**
@@ -1057,9 +1050,9 @@ export type components = {
deleted_at?: string | null;
/**
* Cover Image Name
* @description The name of the cover image of the board.
* @description The name of the board's cover image.
*/
cover_image_name?: string | null;
cover_image_name: string | null;
/**
* Archived
* @description Whether or not the board is archived.
@@ -1075,11 +1068,6 @@ export type components = {
* @description The number of images in the board.
*/
image_count: number;
/**
* Asset Count
* @description The number of assets in the board.
*/
asset_count: number;
};
/**
* BoardField
@@ -7316,145 +7304,145 @@ export type components = {
project_id: string | null;
};
InvocationOutputMap: {
img_channel_offset: components["schemas"]["ImageOutput"];
metadata: components["schemas"]["MetadataOutput"];
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
canvas_paste_back: components["schemas"]["ImageOutput"];
seamless: components["schemas"]["SeamlessModeOutput"];
blank_image: components["schemas"]["ImageOutput"];
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
step_param_easing: components["schemas"]["FloatCollectionOutput"];
latents_collection: components["schemas"]["LatentsCollectionOutput"];
normalbae_image_processor: components["schemas"]["ImageOutput"];
rand_float: components["schemas"]["FloatOutput"];
lora_loader: components["schemas"]["LoRALoaderOutput"];
collect: components["schemas"]["CollectInvocationOutput"];
infill_rgba: components["schemas"]["ImageOutput"];
img_lerp: components["schemas"]["ImageOutput"];
integer_math: components["schemas"]["IntegerOutput"];
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
mask_from_id: components["schemas"]["ImageOutput"];
mlsd_image_processor: components["schemas"]["ImageOutput"];
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
ideal_size: components["schemas"]["IdealSizeOutput"];
conditioning: components["schemas"]["ConditioningOutput"];
img_resize: components["schemas"]["ImageOutput"];
integer_collection: components["schemas"]["IntegerCollectionOutput"];
float_range: components["schemas"]["FloatCollectionOutput"];
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
img_watermark: components["schemas"]["ImageOutput"];
merge_tiles_to_image: components["schemas"]["ImageOutput"];
merge_metadata: components["schemas"]["MetadataOutput"];
round_float: components["schemas"]["FloatOutput"];
denoise_latents: components["schemas"]["LatentsOutput"];
string_join_three: components["schemas"]["StringOutput"];
img_blur: components["schemas"]["ImageOutput"];
color_map_image_processor: components["schemas"]["ImageOutput"];
img_scale: components["schemas"]["ImageOutput"];
infill_tile: components["schemas"]["ImageOutput"];
add: components["schemas"]["IntegerOutput"];
img_paste: components["schemas"]["ImageOutput"];
img_crop: components["schemas"]["ImageOutput"];
cv_inpaint: components["schemas"]["ImageOutput"];
image_collection: components["schemas"]["ImageCollectionOutput"];
img_pad_crop: components["schemas"]["ImageOutput"];
canny_image_processor: components["schemas"]["ImageOutput"];
model_identifier: components["schemas"]["ModelIdentifierOutput"];
i2l: components["schemas"]["LatentsOutput"];
face_mask_detection: components["schemas"]["FaceMaskOutput"];
img_channel_multiply: components["schemas"]["ImageOutput"];
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
img_mul: components["schemas"]["ImageOutput"];
tomask: components["schemas"]["ImageOutput"];
image_mask_to_tensor: components["schemas"]["MaskOutput"];
face_identifier: components["schemas"]["ImageOutput"];
noise: components["schemas"]["NoiseOutput"];
l2i: components["schemas"]["ImageOutput"];
mul: components["schemas"]["IntegerOutput"];
sub: components["schemas"]["IntegerOutput"];
main_model_loader: components["schemas"]["ModelLoaderOutput"];
controlnet: components["schemas"]["ControlOutput"];
ip_adapter: components["schemas"]["IPAdapterOutput"];
lscale: components["schemas"]["LatentsOutput"];
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
latents: components["schemas"]["LatentsOutput"];
string_split: components["schemas"]["String2Output"];
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
esrgan: components["schemas"]["ImageOutput"];
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
compel: components["schemas"]["ConditioningOutput"];
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
tile_image_processor: components["schemas"]["ImageOutput"];
mediapipe_face_processor: components["schemas"]["ImageOutput"];
metadata_item: components["schemas"]["MetadataItemOutput"];
float_math: components["schemas"]["FloatOutput"];
prompt_from_file: components["schemas"]["StringCollectionOutput"];
pidi_image_processor: components["schemas"]["ImageOutput"];
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
integer: components["schemas"]["IntegerOutput"];
unsharp_mask: components["schemas"]["ImageOutput"];
range: components["schemas"]["IntegerCollectionOutput"];
string: components["schemas"]["StringOutput"];
show_image: components["schemas"]["ImageOutput"];
image: components["schemas"]["ImageOutput"];
heuristic_resize: components["schemas"]["ImageOutput"];
div: components["schemas"]["IntegerOutput"];
rand_int: components["schemas"]["IntegerOutput"];
float: components["schemas"]["FloatOutput"];
img_conv: components["schemas"]["ImageOutput"];
mask_combine: components["schemas"]["ImageOutput"];
random_range: components["schemas"]["IntegerCollectionOutput"];
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
pair_tile_image: components["schemas"]["PairTileImageOutput"];
save_image: components["schemas"]["ImageOutput"];
lora_selector: components["schemas"]["LoRASelectorOutput"];
boolean: components["schemas"]["BooleanOutput"];
tiled_multi_diffusion_denoise_latents: components["schemas"]["LatentsOutput"];
rectangle_mask: components["schemas"]["MaskOutput"];
lineart_image_processor: components["schemas"]["ImageOutput"];
midas_depth_image_processor: components["schemas"]["ImageOutput"];
img_nsfw: components["schemas"]["ImageOutput"];
infill_patchmatch: components["schemas"]["ImageOutput"];
infill_lama: components["schemas"]["ImageOutput"];
infill_cv2: components["schemas"]["ImageOutput"];
float_to_int: components["schemas"]["IntegerOutput"];
color: components["schemas"]["ColorOutput"];
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
vae_loader: components["schemas"]["VAEOutput"];
string_split_neg: components["schemas"]["StringPosNegOutput"];
lresize: components["schemas"]["LatentsOutput"];
string_collection: components["schemas"]["StringCollectionOutput"];
invert_tensor_mask: components["schemas"]["MaskOutput"];
depth_anything_image_processor: components["schemas"]["ImageOutput"];
hed_image_processor: components["schemas"]["ImageOutput"];
leres_image_processor: components["schemas"]["ImageOutput"];
img_ilerp: components["schemas"]["ImageOutput"];
freeu: components["schemas"]["UNetOutput"];
mask_edge: components["schemas"]["ImageOutput"];
string_join: components["schemas"]["StringOutput"];
img_hue_adjust: components["schemas"]["ImageOutput"];
color_correct: components["schemas"]["ImageOutput"];
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
img_chan: components["schemas"]["ImageOutput"];
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
lblend: components["schemas"]["LatentsOutput"];
crop_latents: components["schemas"]["LatentsOutput"];
string_replace: components["schemas"]["StringOutput"];
range_of_size: components["schemas"]["IntegerCollectionOutput"];
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
iterate: components["schemas"]["IterateInvocationOutput"];
compel: components["schemas"]["ConditioningOutput"];
img_resize: components["schemas"]["ImageOutput"];
ideal_size: components["schemas"]["IdealSizeOutput"];
rand_int: components["schemas"]["IntegerOutput"];
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
string_collection: components["schemas"]["StringCollectionOutput"];
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
face_off: components["schemas"]["FaceOffOutput"];
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
round_float: components["schemas"]["FloatOutput"];
scheduler: components["schemas"]["SchedulerOutput"];
float_collection: components["schemas"]["FloatCollectionOutput"];
main_model_loader: components["schemas"]["ModelLoaderOutput"];
string_split: components["schemas"]["String2Output"];
mask_from_id: components["schemas"]["ImageOutput"];
collect: components["schemas"]["CollectInvocationOutput"];
heuristic_resize: components["schemas"]["ImageOutput"];
tomask: components["schemas"]["ImageOutput"];
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
core_metadata: components["schemas"]["MetadataOutput"];
canny_image_processor: components["schemas"]["ImageOutput"];
string_replace: components["schemas"]["StringOutput"];
face_mask_detection: components["schemas"]["FaceMaskOutput"];
integer: components["schemas"]["IntegerOutput"];
img_watermark: components["schemas"]["ImageOutput"];
img_crop: components["schemas"]["ImageOutput"];
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
rand_float: components["schemas"]["FloatOutput"];
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
face_off: components["schemas"]["FaceOffOutput"];
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
color_map_image_processor: components["schemas"]["ImageOutput"];
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
face_identifier: components["schemas"]["ImageOutput"];
float_math: components["schemas"]["FloatOutput"];
mediapipe_face_processor: components["schemas"]["ImageOutput"];
img_channel_multiply: components["schemas"]["ImageOutput"];
metadata_item: components["schemas"]["MetadataItemOutput"];
img_ilerp: components["schemas"]["ImageOutput"];
conditioning: components["schemas"]["ConditioningOutput"];
pidi_image_processor: components["schemas"]["ImageOutput"];
seamless: components["schemas"]["SeamlessModeOutput"];
latents: components["schemas"]["LatentsOutput"];
img_chan: components["schemas"]["ImageOutput"];
model_identifier: components["schemas"]["ModelIdentifierOutput"];
noise: components["schemas"]["NoiseOutput"];
string_join: components["schemas"]["StringOutput"];
blank_image: components["schemas"]["ImageOutput"];
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
invert_tensor_mask: components["schemas"]["MaskOutput"];
save_image: components["schemas"]["ImageOutput"];
unsharp_mask: components["schemas"]["ImageOutput"];
image_mask_to_tensor: components["schemas"]["MaskOutput"];
step_param_easing: components["schemas"]["FloatCollectionOutput"];
merge_tiles_to_image: components["schemas"]["ImageOutput"];
integer_collection: components["schemas"]["IntegerCollectionOutput"];
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
integer_math: components["schemas"]["IntegerOutput"];
range: components["schemas"]["IntegerCollectionOutput"];
prompt_from_file: components["schemas"]["StringCollectionOutput"];
segment_anything_processor: components["schemas"]["ImageOutput"];
freeu: components["schemas"]["UNetOutput"];
sub: components["schemas"]["IntegerOutput"];
lresize: components["schemas"]["LatentsOutput"];
float: components["schemas"]["FloatOutput"];
float_collection: components["schemas"]["FloatCollectionOutput"];
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
infill_lama: components["schemas"]["ImageOutput"];
l2i: components["schemas"]["ImageOutput"];
img_lerp: components["schemas"]["ImageOutput"];
ip_adapter: components["schemas"]["IPAdapterOutput"];
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
color: components["schemas"]["ColorOutput"];
tiled_multi_diffusion_denoise_latents: components["schemas"]["LatentsOutput"];
cv_inpaint: components["schemas"]["ImageOutput"];
lscale: components["schemas"]["LatentsOutput"];
string: components["schemas"]["StringOutput"];
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
string_join_three: components["schemas"]["StringOutput"];
midas_depth_image_processor: components["schemas"]["ImageOutput"];
esrgan: components["schemas"]["ImageOutput"];
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
mul: components["schemas"]["IntegerOutput"];
normalbae_image_processor: components["schemas"]["ImageOutput"];
infill_rgba: components["schemas"]["ImageOutput"];
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
vae_loader: components["schemas"]["VAEOutput"];
float_to_int: components["schemas"]["IntegerOutput"];
lora_selector: components["schemas"]["LoRASelectorOutput"];
crop_latents: components["schemas"]["LatentsOutput"];
img_mul: components["schemas"]["ImageOutput"];
float_range: components["schemas"]["FloatCollectionOutput"];
merge_metadata: components["schemas"]["MetadataOutput"];
img_blur: components["schemas"]["ImageOutput"];
boolean: components["schemas"]["BooleanOutput"];
tile_image_processor: components["schemas"]["ImageOutput"];
mlsd_image_processor: components["schemas"]["ImageOutput"];
infill_patchmatch: components["schemas"]["ImageOutput"];
img_pad_crop: components["schemas"]["ImageOutput"];
leres_image_processor: components["schemas"]["ImageOutput"];
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
img_scale: components["schemas"]["ImageOutput"];
pair_tile_image: components["schemas"]["PairTileImageOutput"];
lblend: components["schemas"]["LatentsOutput"];
range_of_size: components["schemas"]["IntegerCollectionOutput"];
image_collection: components["schemas"]["ImageCollectionOutput"];
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
img_channel_offset: components["schemas"]["ImageOutput"];
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
infill_cv2: components["schemas"]["ImageOutput"];
mask_combine: components["schemas"]["ImageOutput"];
string_split_neg: components["schemas"]["StringPosNegOutput"];
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
lineart_image_processor: components["schemas"]["ImageOutput"];
img_nsfw: components["schemas"]["ImageOutput"];
image: components["schemas"]["ImageOutput"];
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
canvas_paste_back: components["schemas"]["ImageOutput"];
iterate: components["schemas"]["IterateInvocationOutput"];
div: components["schemas"]["IntegerOutput"];
latents_collection: components["schemas"]["LatentsCollectionOutput"];
img_conv: components["schemas"]["ImageOutput"];
mask_edge: components["schemas"]["ImageOutput"];
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
img_hue_adjust: components["schemas"]["ImageOutput"];
depth_anything_image_processor: components["schemas"]["ImageOutput"];
lora_loader: components["schemas"]["LoRALoaderOutput"];
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
add: components["schemas"]["IntegerOutput"];
controlnet: components["schemas"]["ControlOutput"];
color_correct: components["schemas"]["ImageOutput"];
random_range: components["schemas"]["IntegerCollectionOutput"];
denoise_latents: components["schemas"]["LatentsOutput"];
metadata: components["schemas"]["MetadataOutput"];
i2l: components["schemas"]["LatentsOutput"];
show_image: components["schemas"]["ImageOutput"];
img_paste: components["schemas"]["ImageOutput"];
infill_tile: components["schemas"]["ImageOutput"];
};
/**
* InvocationStartedEvent
@@ -13218,19 +13206,6 @@ export type components = {
*/
type?: "url";
};
/** UncategorizedImageCounts */
UncategorizedImageCounts: {
/**
* Image Count
* @description The number of uncategorized images.
*/
image_count: number;
/**
* Asset Count
* @description The number of uncategorized assets.
*/
asset_count: number;
};
/**
* Unsharp Mask
* @description Applies an unsharp mask filter to an image
@@ -15188,20 +15163,6 @@ export type operations = {
};
};
};
/**
* Get Uncategorized Image Counts
* @description Gets count of images and assets for uncategorized images (images with no board assocation)
*/
get_uncategorized_image_counts: {
responses: {
/** @description Successful Response */
200: {
content: {
"application/json": components["schemas"]["UncategorizedImageCounts"];
};
};
};
};
/**
* Add Image To Board
* @description Creates a board_image

View File

@@ -36,6 +36,7 @@ export type AppDependencyVersions = S['AppDependencyVersions'];
export type ImageDTO = S['ImageDTO'];
export type BoardDTO = S['BoardDTO'];
export type ImageCategory = S['ImageCategory'];
export type OffsetPaginatedResults_ImageDTO_ = S['OffsetPaginatedResults_ImageDTO_'];
// Models
export type ModelType = S['ModelType'];

View File

@@ -1 +1 @@
__version__ = "4.2.6"
__version__ = "4.2.6post1"

View File

@@ -127,16 +127,7 @@ def test_generate_id_with_board_id(monkeypatch: Any, mock_invoker: Invoker):
def mock_board_get(*args, **kwargs):
return BoardRecord(
board_id="12345",
board_name="test_board_name",
created_at="None",
updated_at="None",
archived=False,
asset_count=0,
image_count=0,
cover_image_name="asdf.png",
deleted_at=None,
is_private=False,
board_id="12345", board_name="test_board_name", created_at="None", updated_at="None", archived=False
)
monkeypatch.setattr(mock_invoker.services.board_records, "get", mock_board_get)
@@ -165,16 +156,7 @@ def test_handler_board_id(tmp_path: Path, monkeypatch: Any, mock_image_dto: Imag
def mock_board_get(*args, **kwargs):
return BoardRecord(
board_id="12345",
board_name="test_board_name",
created_at="None",
updated_at="None",
archived=False,
asset_count=0,
image_count=0,
cover_image_name="asdf.png",
deleted_at=None,
is_private=False,
board_id="12345", board_name="test_board_name", created_at="None", updated_at="None", archived=False
)
monkeypatch.setattr(mock_invoker.services.board_records, "get", mock_board_get)