Compare commits

..

5 Commits

183 changed files with 3267 additions and 7420 deletions

View File

@@ -9,9 +9,9 @@ runs:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v4
uses: pnpm/action-setup@v2
with:
version: 8.15.6
version: 8
run_install: false
- name: get pnpm store directory

View File

@@ -8,7 +8,7 @@
## QA Instructions
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
## Merge Plan

View File

@@ -49,33 +49,6 @@ Invoke is available in two editions:
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Docker Container
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
> [!IMPORTANT]
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
### Generate!
Run the container, modifying the command as necessary:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
### Persist your data
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
### DIY
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
@@ -153,5 +126,3 @@ Original portions of the software are Copyright © 2024 by respective contributo
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html

View File

@@ -19,9 +19,8 @@
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
# INVOKEAI_PORT=9090
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=cuda #| rocm
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=nvidia #| rocm
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
# CONTAINER_UID=1000

View File

@@ -1,75 +1,41 @@
# Invoke in Docker
# InvokeAI Containerized
- Ensure that Docker can use the GPU on your system
- This documentation assumes Linux, but should work similarly under Windows with WSL2
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
All commands should be run within the `docker` directory: `cd docker`
## Quickstart :lightning:
## Quickstart :rocket:
No `docker compose`, no persistence, just a simple one-liner using the official images:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
**CUDA:**
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm:**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
```
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
> [!TIP]
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
## Customize the container
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
cp .env.sample .env
# edit .env to your liking if you need to; it is well commented.
./run.sh
```
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
## Docker setup in detail
## Detailed setup
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU.
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
#### macOS
> [!TIP]
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
If you are still reading:
1. Ensure Docker has at least 16GB RAM
2. Enable VirtioFS for file sharing
3. Enable `docker compose` V2 support
This is done via Docker Desktop preferences.
This is done via Docker Desktop preferences
### Configure the Invoke Environment
### Configure Invoke environment
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`
The image will be built automatically if needed.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
### Use a GPU
@@ -77,9 +43,9 @@ The runtime directory (holding models and outputs) will be created in the locati
- WSL2 is *required* for Windows.
- only `x86_64` architecture is supported.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize
@@ -93,10 +59,10 @@ Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The defa
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=cuda
GPU_DRIVER=nvidia
```
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even More Customizing!

View File

@@ -1,5 +1,7 @@
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
version: '3.8'
x-invokeai: &invokeai
image: "local/invokeai:latest"
build:
@@ -30,7 +32,7 @@ x-invokeai: &invokeai
services:
invokeai-cuda:
invokeai-nvidia:
<<: *invokeai
deploy:
resources:

View File

@@ -23,18 +23,18 @@ usermod -u ${USER_ID} ${USER} 1>/dev/null
# but it is useful to have the full SSH server e.g. on Runpod.
# (use SCP to copy files to/from the image, etc)
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd "$HOME"
mkdir -p .ssh
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
apt-get update
apt-get install -y openssh-server
pushd "$HOME"
mkdir -p .ssh
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
chown --recursive ${USER} "${INVOKEAI_ROOT}"
cd "${INVOKEAI_ROOT}"
# Run the CMD as the Container User (not root).

View File

@@ -8,15 +8,11 @@ run() {
local build_args=""
local profile=""
# create .env file if it doesn't exist, otherwise docker compose will fail
touch .env
# parse .env file for build args
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
# default to 'cuda' profile
[[ -z "$profile" ]] && profile="cuda"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile"

View File

@@ -73,15 +73,6 @@ model's lifetime it may be transformed in various ways, such as
changing its precision or converting it from a .safetensors to a
diffusers model.
`ModelType`, `ModelFormat` and `BaseModelType` are string enums that
are defined in `invokeai.backend.model_manager.config`. They are also
imported by, and can be reexported from,
`invokeai.app.services.model_manager.model_records`:
```
from invokeai.app.services.model_records import ModelType, ModelFormat, BaseModelType
```
The `path` field can be absolute or relative. If relative, it is taken
to be relative to the `models_dir` setting in the user's
`invokeai.yaml` file.
@@ -408,7 +399,7 @@ config = get_config()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config.db_path, logger)
record_store = ModelRecordServiceSQL(db, logger)
record_store = ModelRecordServiceSQL(db)
queue = DownloadQueueService()
queue.start()

View File

@@ -4,37 +4,50 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker
!!! warning "macOS users"
!!! warning "macOS and AMD GPU Users"
Docker can not access the GPU on macOS, so your generation speeds will be slow. [Install InvokeAI](INSTALLATION.md) instead.
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
because Docker containers can not access the GPU on macOS.
!!! warning "AMD GPU Users"
Container support for AMD GPUs has been reported to work by the community, but has not received
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
use the `build.sh` script to build the image for this to take effect at build time.
!!! tip "Linux and Windows Users"
Configure Docker to access your machine's GPU.
For optimal performance, configure your Docker daemon to access your machine's GPU.
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
Linux users should follow the [NVIDIA](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) or [AMD](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) documentation.
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
## Why containers?
They provide a flexible, reliable way to build and deploy InvokeAI.
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
methodology for details on why running applications in such a stateless fashion is important.
The container is configured for CUDA by default, but can be built to support AMD GPUs
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
Developers on Apple silicon (M1/M2/M3): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud.
## TL;DR
Ensure your Docker setup is able to use your GPU. Then:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Once the container starts up, open http://localhost:9090 in your browser, install some models, and start generating.
## Build-It-Yourself
All the docker materials are located inside the [docker](https://github.com/invoke-ai/InvokeAI/tree/main/docker) directory in the Git repo.
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
```bash
# docker compose commands should be run from the `docker` directory
cd docker
cp .env.sample .env
docker compose up
```
We also ship the `run.sh` convenience script. See the `docker/README.md` file for detailed instructions on how to customize the docker setup to your needs.
## Installation in a Linux container (desktop)
### Prerequisites
@@ -45,9 +58,18 @@ Preferences, Resources, Advanced. Increase the CPUs and Memory to avoid this
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
increase Swap and Disk image size too.
#### Get a Huggingface-Token
Besides the Docker Agent you will need an Account on
[huggingface.co](https://huggingface.co/join).
After you succesfully registered your account, go to
[huggingface.co/settings/tokens](https://huggingface.co/settings/tokens), create
a token and copy it, since you will need in for the next step.
### Setup
Set up your environment variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
@@ -81,9 +103,10 @@ Once the container starts up (and configures the InvokeAI root directory if this
## Troubleshooting / FAQ
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
- A: Your `docker-entrypoint.sh` might have has Windows (CRLF) line endings, depending how you cloned the repository.
To solve this, change the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
and you may have cloned this repository before the issue was fixed. To solve this, please change
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
to reset the file to its most recent version.
For more information on this issue, see [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)

View File

@@ -13,7 +13,7 @@ echo 2. Open the developer console
echo 3. Command-line help
echo Q - Quit
echo.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
echo.
set /P choice="Please enter 1-4, Q: [1] "
if not defined choice set choice=1

View File

@@ -4,39 +4,37 @@ from logging import Logger
import torch
from invokeai.app.services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images.board_images_default import BoardImagesService
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from invokeai.app.services.boards.boards_default import BoardService
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_default import DownloadQueueService
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
from invokeai.app.services.image_records.image_records_sqlite import SqliteImageRecordStorage
from invokeai.app.services.images.images_default import ImageService
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
from invokeai.app.services.names.names_default import SimpleNameService
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
from invokeai.app.services.session_processor.session_processor_default import (
DefaultSessionProcessor,
DefaultSessionRunner,
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.bulk_download.bulk_download_default import BulkDownloadService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.events.events_fastapievents import FastAPIEventService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
# TODO: is there a better way to achieve this?
def check_internet() -> bool:
@@ -99,7 +97,7 @@ class ApiDependencies:
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db, logger=logger),
model_record_service=ModelRecordServiceSQL(db=db),
download_queue=download_queue_service,
events=events,
)

View File

@@ -10,13 +10,14 @@ from fastapi import Body
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
from ..dependencies import ApiDependencies
class LogLevel(int, Enum):
NotSet = logging.NOTSET

View File

@@ -2,7 +2,7 @@ from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])

View File

@@ -4,11 +4,12 @@ from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges, UncategorizedImageCounts
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@@ -31,7 +32,6 @@ class DeleteBoardResult(BaseModel):
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
is_private: bool = Query(default=False, description="Whether the board is private"),
) -> BoardDTO:
"""Creates a board"""
try:
@@ -146,25 +146,3 @@ async def list_all_board_image_names(
board_id,
)
return image_names
@boards_router.get(
"/uncategorized/counts",
operation_id="get_uncategorized_image_counts",
response_model=UncategorizedImageCounts,
)
async def get_uncategorized_image_counts() -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)"""
return ApiDependencies.invoker.services.board_records.get_uncategorized_image_counts()
@boards_router.get(
"/uncategorized/names",
operation_id="get_uncategorized_image_names",
response_model=list[str],
)
async def get_uncategorized_image_names() -> list[str]:
"""Gets count of images and assets for uncategorized images (images with no board assocation)"""
return ApiDependencies.invoker.services.board_records.get_uncategorized_image_names()

View File

@@ -8,12 +8,13 @@ from fastapi.routing import APIRouter
from pydantic.networks import AnyHttpUrl
from starlette.exceptions import HTTPException
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.download import (
DownloadJob,
UnknownJobIDException,
)
from ..dependencies import ApiDependencies
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])

View File

@@ -1,61 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import sqlite3\n",
"from uuid import uuid4\n",
"\n",
"# duplicate _all_ images in gallery\n",
"\n",
"def duplicate_images(database_path: Path, num_copies: int):\n",
" conn = sqlite3.connect(database_path)\n",
" cursor = conn.cursor()\n",
"\n",
" cursor.execute(\"SELECT * FROM images\")\n",
" rows = cursor.fetchall()\n",
"\n",
" for _ in range(num_copies):\n",
" for row in rows:\n",
" new_row = list(row)\n",
" new_row[0] = str(uuid4()) # image_name is the first column\n",
" placeholders = \", \".join(\"?\" for _ in new_row)\n",
" cursor.execute(f\"INSERT INTO images VALUES ({placeholders})\", new_row)\n",
"\n",
" conn.commit()\n",
" conn.close()\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" database_path = Path(\"/home/bat/invokeai-4.0.0/databases/invokeai.db\")\n",
" num_copies = 50\n",
" duplicate_images(database_path, num_copies)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,6 +1,6 @@
import io
import traceback
from typing import Literal, Optional
from typing import Optional
from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
@@ -8,18 +8,18 @@ from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, JsonValue
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO, image_record_to_dto
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@@ -234,14 +234,21 @@ async def get_image_workflow(
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
) -> FileResponse:
"""Gets a full-resolution image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name)
with open(path, "rb") as f:
content = f.read()
response = Response(content, media_type="image/png")
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
response = FileResponse(
path,
media_type="image/png",
filename=image_name,
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
@@ -262,14 +269,15 @@ async def get_image_full(
)
async def get_image_thumbnail(
image_name: str = Path(description="The name of thumbnail image file to get"),
) -> Response:
) -> FileResponse:
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
with open(path, "rb") as f:
content = f.read()
response = Response(content, media_type="image/webp")
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
@@ -451,76 +459,3 @@ async def get_bulk_download_item(
return response
except Exception:
raise HTTPException(status_code=404)
@images_router.get(
"/image_names",
operation_id="list_image_names",
response_model=list[str],
)
async def list_image_names(
board_id: str | None = Query(default=None),
category: Literal["images", "assets"] = Query(default="images"),
starred_first: bool = Query(default=True),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending),
search_term: Optional[str] = Query(default=None),
) -> list[str]:
"""Gets a list of image names"""
return ApiDependencies.invoker.services.image_records.get_image_names(
board_id,
category,
starred_first,
order_dir,
search_term,
)
@images_router.get(
"/images",
operation_id="list_images",
response_model=list[ImageRecord],
)
async def images(
board_id: str | None = Query(default=None),
category: Literal["images", "assets"] = Query(default="images"),
starred_first: bool = Query(default=True),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending),
search_term: str | None = Query(default=None),
from_image_name: str | None = Query(default=None),
count: int = Query(default=10),
) -> list[ImageRecord]:
"""Gets a list of image names"""
return ApiDependencies.invoker.services.image_records.get_images(
board_id,
category,
starred_first,
order_dir,
search_term,
from_image_name,
count,
)
@images_router.post(
"/images/by_name",
operation_id="get_images_by_name",
response_model=list[ImageDTO],
)
async def get_images_by_name(image_names: list[str] = Body(embed=True)) -> list[ImageDTO]:
"""Gets a list of image names"""
image_records = ApiDependencies.invoker.services.image_records.get_images_by_name(image_names)
image_dtos = [
image_record_to_dto(
image_record=r,
image_url=ApiDependencies.invoker.services.urls.get_image_url(r.image_name),
thumbnail_url=ApiDependencies.invoker.services.urls.get_image_url(r.image_name, True),
board_id=ApiDependencies.invoker.services.board_image_records.get_board_for_image(r.image_name),
)
for r in image_records
]
return image_dtos

View File

@@ -16,7 +16,6 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -36,6 +35,8 @@ from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataW
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
# images are immutable; set a high max-age

View File

@@ -4,7 +4,6 @@ from fastapi import Body, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@@ -20,6 +19,8 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from ..dependencies import ApiDependencies
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])

View File

@@ -20,9 +20,14 @@ from torch.backends.mps import is_available as is_mps_available
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.api.routers import (
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.custom_openapi import get_openapi_func
from invokeai.backend.util.devices import TorchDevice
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
from .api.routers import (
app_info,
board_images,
boards,
@@ -33,11 +38,7 @@ from invokeai.app.api.routers import (
utilities,
workflows,
)
from invokeai.app.api.sockets import SocketIO
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.custom_openapi import get_openapi_func
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .api.sockets import SocketIO
app_config = get_config()
@@ -161,7 +162,6 @@ def invoke_api() -> None:
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(1)
if s.connect_ex(("localhost", port)) == 0:
return find_port(port=port + 1)
else:

View File

@@ -40,7 +40,7 @@ from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.logging import InvokeAILogger
if TYPE_CHECKING:
from invokeai.app.services.invocation_services import InvocationServices
from ..services.invocation_services import InvocationServices
logger = InvokeAILogger.get_logger()

View File

@@ -4,12 +4,13 @@
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"

View File

@@ -5,7 +5,6 @@ from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
@@ -15,7 +14,6 @@ from invokeai.app.invocations.fields import (
TensorField,
UIComponent,
)
from invokeai.app.invocations.model import CLIPField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
@@ -28,6 +26,9 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
)
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
# unconditioned: Optional[torch.Tensor]

View File

@@ -22,13 +22,6 @@ from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -52,6 +45,8 @@ from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")

View File

@@ -19,8 +19,8 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor

View File

@@ -5,11 +5,13 @@ import cv2 as cv
import numpy
from PIL import Image, ImageOps
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.3.1")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):

View File

@@ -53,8 +53,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_MAP, SCHEDULER_NAME_VALUES
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
from invokeai.backend.util.mask import to_standard_float_mask

View File

@@ -160,7 +160,8 @@ class FieldDescriptions:
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the "
"model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"

View File

@@ -6,7 +6,6 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
ColorField,
@@ -22,6 +21,8 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import BaseInvocation, Classification, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
class ShowImageInvocation(BaseInvocation):

View File

@@ -23,7 +23,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params

View File

@@ -3,9 +3,7 @@ from typing import Literal, get_args
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
@@ -16,6 +14,10 @@ from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, in
from invokeai.backend.image_util.infill_methods.tile import infill_tile
from invokeai.backend.util.logging import InvokeAILogger
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
logger = InvokeAILogger.get_logger()

View File

@@ -5,11 +5,12 @@ from typing import Literal
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, InputField
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.1")
class AddInvocation(BaseInvocation):

View File

@@ -14,7 +14,8 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.version.invokeai_version import __version__
from ...version import __version__
class MetadataItemField(BaseModel):

View File

@@ -3,17 +3,18 @@ from typing import List, Optional
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
class ModelIdentifierField(BaseModel):

View File

@@ -4,12 +4,18 @@
import torch
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.util.devices import TorchDevice
from ...backend.util.devices import TorchDevice
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
"""
Utilities

View File

@@ -39,11 +39,12 @@ from easing_functions import (
)
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.primitives import FloatCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
"float_range",

View File

@@ -4,7 +4,6 @@ from typing import Optional
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
ColorField,
@@ -22,6 +21,13 @@ from invokeai.app.invocations.fields import (
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
"""
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
- primitive nodes

View File

@@ -5,11 +5,12 @@ import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, UIComponent
from invokeai.app.invocations.primitives import StringCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, UIComponent
@invocation(
"dynamic_prompt",

View File

@@ -1,9 +1,15 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
@invocation_output("sdxl_model_loader_output")
class SDXLModelLoaderOutput(BaseInvocationOutput):

View File

@@ -2,11 +2,17 @@
import re
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import InputField, OutputField, UIComponent
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .fields import InputField, OutputField, UIComponent
from .primitives import StringOutput
@invocation_output("string_pos_neg_output")
class StringPosNegOutput(BaseInvocationOutput):

View File

@@ -6,13 +6,15 @@ import numpy as np
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
# TODO: Populate this from disk?
# TODO: Use model manager to load?
ESRGAN_MODELS = Literal[

View File

@@ -2,11 +2,12 @@ import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .board_image_records_base import BoardImageRecordStorageBase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection

View File

@@ -1,8 +1,9 @@
from typing import Optional
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.invoker import Invoker
from .board_images_base import BoardImagesServiceABC
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker

View File

@@ -1,8 +1,9 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord, UncategorizedImageCounts
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .board_records_common import BoardChanges, BoardRecord
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@@ -48,13 +49,3 @@ class BoardRecordStorageBase(ABC):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
"""Gets all board records."""
pass
@abstractmethod
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)."""
pass
@abstractmethod
def get_uncategorized_image_names(self) -> list[str]:
"""Gets names of uncategorized images."""
pass

View File

@@ -1,5 +1,5 @@
from datetime import datetime
from typing import Any, Optional, Union
from typing import Optional, Union
from pydantic import BaseModel, Field
@@ -24,27 +24,20 @@ class BoardRecord(BaseModelExcludeNull):
"""The name of the cover image of the board."""
archived: bool = Field(description="Whether or not the board is archived.")
"""Whether or not the board is archived."""
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
"""Whether the board is private."""
image_count: int = Field(description="The number of images in the board.")
asset_count: int = Field(description="The number of assets in the board.")
def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
board_id = board_dict.get("board_id", "unknown")
board_name = board_dict.get("board_name", "unknown")
cover_image_name = board_dict.get("cover_image_name", None)
cover_image_name = board_dict.get("cover_image_name", "unknown")
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
archived = board_dict.get("archived", False)
is_private = board_dict.get("is_private", False)
image_count = board_dict.get("image_count", 0)
asset_count = board_dict.get("asset_count", 0)
return BoardRecord(
board_id=board_id,
@@ -54,9 +47,6 @@ def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
updated_at=updated_at,
deleted_at=deleted_at,
archived=archived,
is_private=is_private,
image_count=image_count,
asset_count=asset_count,
)
@@ -69,24 +59,19 @@ class BoardChanges(BaseModel, extra="forbid"):
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message: str = "Board record not found"):
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message: str = "Board record not saved"):
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message: str = "Board record not deleted"):
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class UncategorizedImageCounts(BaseModel):
image_count: int = Field(description="The number of uncategorized images.")
asset_count: int = Field(description="The number of uncategorized assets.")

View File

@@ -1,116 +1,20 @@
import sqlite3
import threading
from dataclasses import dataclass
from typing import Union, cast
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.board_records.board_records_common import (
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
from .board_records_base import BoardRecordStorageBase
from .board_records_common import (
BoardChanges,
BoardRecord,
BoardRecordDeleteException,
BoardRecordNotFoundException,
BoardRecordSaveException,
UncategorizedImageCounts,
deserialize_board_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
# This query is missing a GROUP BY clause, which is required for the query to be valid.
BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY = """
SELECT b.board_id,
b.board_name,
b.created_at,
b.updated_at,
b.archived,
-- Count the number of images in the board, alias image_count
COUNT(
CASE
WHEN i.image_category in ('general') -- Images (UI category) are in the 'general' category
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS image_count,
-- Count the number of assets in the board, alias asset_count
COUNT(
CASE
WHEN i.image_category in ('control', 'mask', 'user', 'other') -- Assets (UI category) are in one of these categories
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS asset_count,
-- Get the name of the the most recent image in the board, alias cover_image_name
(
SELECT bi.image_name
FROM board_images bi
JOIN images i ON bi.image_name = i.image_name
WHERE bi.board_id = b.board_id
AND i.is_intermediate = 0 -- Intermediates cannot be cover images
ORDER BY i.created_at DESC -- Sort by created_at to get the most recent image
LIMIT 1
) AS cover_image_name
FROM boards b
LEFT JOIN board_images bi ON b.board_id = bi.board_id
LEFT JOIN images i ON bi.image_name = i.image_name
-- This query is missing a GROUP BY clause! The utility functions using this query must add it
"""
@dataclass
class PaginatedBoardRecordsQueries:
main_query: str
total_count_query: str
def get_paginated_list_board_records_queries(include_archived: bool) -> PaginatedBoardRecordsQueries:
"""Gets a query to retrieve a paginated list of board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
main_query = f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC
LIMIT ? OFFSET ?;
"""
total_count_query = f"""
SELECT COUNT(*)
FROM boards b
{archived_condition};
"""
return PaginatedBoardRecordsQueries(main_query=main_query, total_count_query=total_count_query)
def get_list_all_board_records_query(include_archived: bool) -> str:
"""Gets a query to retrieve all board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
return f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC;
"""
def get_board_record_query() -> str:
"""Gets a query to retrieve a board record."""
return f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
WHERE b.board_id = ?;
"""
class SqliteBoardRecordStorage(BoardRecordStorageBase):
@@ -173,7 +77,11 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
self._cursor.execute(
get_board_record_query(),
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
@@ -185,7 +93,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return deserialize_board_record(dict(result))
return BoardRecord(**dict(result))
def update(
self,
@@ -242,17 +150,45 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
queries = get_paginated_list_board_records_queries(include_archived=include_archived)
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
"""
self._cursor.execute(
queries.main_query,
(limit, offset),
)
# Determine archived filter condition
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
self._cursor.execute(queries.total_count_query)
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
self._cursor.execute(count_query)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
@@ -266,9 +202,26 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
try:
self._lock.acquire()
self._cursor.execute(get_list_all_board_records_query(include_archived=include_archived))
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
"""
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
self._cursor.execute(final_query)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards
except sqlite3.Error as e:
@@ -276,46 +229,3 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
raise e
finally:
self._lock.release()
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
try:
self._lock.acquire()
query = """
SELECT
CASE
WHEN i.image_category = 'general' THEN 'images' -- Images (UI category) includes images in the 'general' DB category
ELSE 'assets' -- Assets (UI category) includes all other DB categories: 'control', 'mask', 'user', 'other'
END AS category_type,
COUNT(*) AS unassigned_count
FROM images i
LEFT JOIN board_images bi ON i.image_name = bi.image_name
WHERE bi.board_id IS NULL -- Uncategorized images have no board
AND i.is_intermediate = 0 -- Omit intermediates from the counts
GROUP BY category_type; -- Group by category_type alias, as derived from the image_category column earlier
"""
self._cursor.execute(query)
results = self._cursor.fetchall()
image_count = dict(results)['images']
asset_count = dict(results)['assets']
return UncategorizedImageCounts(image_count=image_count, asset_count=asset_count)
finally:
self._lock.release()
def get_uncategorized_image_names(self) -> list[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT image_name
FROM images
WHERE image_name NOT IN (
SELECT image_name
FROM board_images
);
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
finally:
self._lock.release()

View File

@@ -1,9 +1,10 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_common import BoardDTO
class BoardServiceABC(ABC):
"""High-level service for board management."""

View File

@@ -1,8 +1,23 @@
from invokeai.app.services.board_records.board_records_common import BoardRecord
from typing import Optional
from pydantic import Field
from ..board_records.board_records_common import BoardRecord
# TODO(psyche): BoardDTO is now identical to BoardRecord. We should consider removing it.
class BoardDTO(BoardRecord):
"""Deserialized board record."""
"""Deserialized board record with cover image URL and image count."""
pass
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@@ -1,9 +1,11 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_base import BoardServiceABC
from .boards_common import board_record_to_dto
class BoardService(BoardServiceABC):
__invoker: Invoker
@@ -16,11 +18,17 @@ class BoardService(BoardServiceABC):
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return BoardDTO.model_validate(board_record.model_dump())
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
@@ -28,7 +36,14 @@ class BoardService(BoardServiceABC):
changes: BoardChanges,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.update(board_id, changes)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
@@ -37,10 +52,30 @@ class BoardService(BoardServiceABC):
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records.items]
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records]
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@@ -4,7 +4,6 @@ from typing import Optional, Union
from zipfile import ZipFile
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
from invokeai.app.services.bulk_download.bulk_download_common import (
DEFAULT_BULK_DOWNLOAD_ID,
BulkDownloadException,
@@ -16,6 +15,8 @@ from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from .bulk_download_base import BulkDownloadBase
class BulkDownloadService(BulkDownloadBase):
def start(self, invoker: Invoker) -> None:

View File

@@ -1,6 +1,7 @@
"""Init file for InvokeAI configure package."""
from invokeai.app.services.config.config_common import PagingArgumentParser
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
from .config_default import InvokeAIAppConfig, get_config
__all__ = ["InvokeAIAppConfig", "get_config", "PagingArgumentParser"]

View File

@@ -1,13 +1,13 @@
"""Init file for download queue."""
from invokeai.app.services.download.download_base import (
from .download_base import (
DownloadJob,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
UnknownJobIDException,
)
from invokeai.app.services.download.download_default import DownloadQueueService, TqdmProgress
from .download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",

View File

@@ -16,7 +16,12 @@ from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.config import InvokeAIAppConfig, get_config
from invokeai.app.services.download.download_base import (
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
DownloadEventHandler,
DownloadExceptionHandler,
DownloadJob,
@@ -28,10 +33,6 @@ from invokeai.app.services.download.download_base import (
ServiceInactiveException,
UnknownJobIDException,
)
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
@@ -184,7 +185,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
job = DownloadJob(
source=url,
dest=path,
access_token=access_token or self._lookup_access_token(url),
access_token=access_token,
)
mfdj.download_parts.add(job)
self._download_part2parent[job.source] = mfdj

View File

@@ -6,11 +6,12 @@ from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import (
EventBase,
)
from .events_base import EventServiceBase
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int) -> None:

View File

@@ -7,15 +7,12 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
)
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from .image_files_base import ImageFileStorageBase
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""

View File

@@ -1,17 +1,13 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Literal, Optional
from typing import Optional
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
@@ -97,32 +93,3 @@ class ImageRecordStorageBase(ABC):
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
@abstractmethod
def get_image_names(
self,
board_id: str | None,
category: Literal["images", "assets"],
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
search_term: Optional[str] = None,
) -> list[str]:
"""Gets image names."""
pass
@abstractmethod
def get_images_by_name(self, image_names: list[str]) -> list[ImageRecord]:
pass
@abstractmethod
def get_images(
self,
board_id: str | None = None,
category: Literal["images", "assets"] = "images",
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
search_term: str | None = None,
from_image_name: str | None = None, # omit for first page
count: int = 10,
) -> list[ImageRecord]:
pass

View File

@@ -1,11 +1,15 @@
import sqlite3
import threading
from datetime import datetime
from typing import Literal, Optional, Union, cast
from typing import Optional, Union, cast
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import (
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .image_records_base import ImageRecordStorageBase
from .image_records_common import (
IMAGE_DTO_COLS,
ImageCategory,
ImageRecord,
@@ -16,9 +20,6 @@ from invokeai.app.services.image_records.image_records_common import (
ResourceOrigin,
deserialize_image_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteImageRecordStorage(ImageRecordStorageBase):
@@ -140,264 +141,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
finally:
self._lock.release()
# def get_image_names(
# self,
# board_id: str | None = None,
# category: Literal["images", "assets"] = "images",
# starred_first: bool = True,
# order_dir: SQLiteDirection = SQLiteDirection.Descending,
# search_term: Optional[str] = None,
# ) -> list[str]:
# try:
# self._lock.acquire()
# query = """
# SELECT images.image_name
# FROM images
# LEFT JOIN board_images ON board_images.image_name = images.image_name
# WHERE images.is_intermediate = FALSE
# """
# params: list[int | str | bool] = []
# if board_id:
# query += """
# AND board_images.board_id = ?
# """
# params.append(board_id)
# else:
# query += """
# AND board_images.board_id IS NULL
# """
# if category == "images":
# query += """
# AND images.image_category = 'general'
# """
# elif category == "assets":
# query += """
# AND images.image_category IN ('control', 'mask', 'user', 'other')
# """
# else:
# raise ValueError(f"Invalid category: {category}")
# if search_term:
# query += """
# AND images.metadata LIKE ?
# """
# params.append(f"%{search_term.lower()}%")
# if starred_first:
# query += f"""
# ORDER BY images.starred DESC, images.created_at {order_dir.value} -- cannot use parameter substitution here
# """
# else:
# query += f"""
# ORDER BY images.created_at {order_dir.value} -- cannot use parameter substitution here
# """
# query += ";"
# params_tuple = tuple(params)
# self._cursor.execute(query, params_tuple)
# result = cast(list[sqlite3.Row], self._cursor.fetchall())
# image_names = [str(r[0]) for r in result]
# except Exception:
# raise
# finally:
# self._lock.release()
# return image_names
def get_image_names(
self,
board_id: str | None = None,
category: Literal["images", "assets"] = "images",
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
search_term: str | None = None,
) -> list[str]:
try:
self._lock.acquire()
base_query = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
"""
params: list[int | str | bool] = []
if board_id:
base_query += """
AND board_images.board_id = ?
"""
params.append(board_id)
else:
base_query += """
AND board_images.board_id IS NULL
"""
if category == "images":
base_query += """
AND images.image_category = 'general'
"""
elif category == "assets":
base_query += """
AND images.image_category IN ('control', 'mask', 'user', 'other')
"""
else:
raise ValueError(f"Invalid category: {category}")
if search_term:
base_query += """
AND images.metadata LIKE ?
"""
params.append(f"%{search_term.lower()}%")
if starred_first:
base_query += f"""
ORDER BY images.starred DESC, images.created_at {order_dir.value}, images.image_name {order_dir.value}
"""
else:
base_query += f"""
ORDER BY images.created_at {order_dir.value}, images.image_name {order_dir.value}
"""
final_query = f"{base_query};"
self._cursor.execute(final_query, tuple(params))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [str(r[0]) for r in result]
except Exception:
raise
finally:
self._lock.release()
return images
def get_images_by_name(self, image_names: list[str]) -> list[ImageRecord]:
try:
self._lock.acquire()
query = f"""
SELECT {IMAGE_DTO_COLS}
FROM images
WHERE images.image_name in ({",".join("?" for _ in image_names)});
"""
params = tuple(image_names)
self._cursor.execute(query, tuple(params))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
except Exception:
raise
finally:
self._lock.release()
return images
def get_images(
self,
board_id: str | None = None,
category: Literal["images", "assets"] = "images",
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
search_term: str | None = None,
from_image_name: str | None = None, # omit for first page
count: int = 10,
) -> list[ImageRecord]:
try:
self._lock.acquire()
base_query = f"""
SELECT {IMAGE_DTO_COLS}
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
"""
params: list[int | str | bool] = []
if board_id:
base_query += """
AND board_images.board_id = ?
"""
params.append(board_id)
else:
base_query += """
AND board_images.board_id IS NULL
"""
if category == "images":
base_query += """
AND images.image_category = 'general'
"""
elif category == "assets":
base_query += """
AND images.image_category IN ('control', 'mask', 'user', 'other')
"""
else:
raise ValueError(f"Invalid category: {category}")
if search_term:
base_query += """
AND images.metadata LIKE ?
"""
params.append(f"%{search_term.lower()}%")
if from_image_name:
# Use keyset pagination to get the next page of results
keyset_query = f"""
WITH image_keyset AS (
SELECT created_at,
image_name
FROM images
WHERE image_name = ?
)
{base_query}
AND (images.created_at, images.image_name) < (
(
SELECT created_at
FROM image_keyset
),
(
SELECT image_name
FROM image_keyset
)
)
"""
base_query = keyset_query
params.append(from_image_name)
if starred_first:
order_by_clause = f"""
ORDER BY images.starred DESC, images.created_at {order_dir.value}, images.image_name {order_dir.value}
"""
else:
order_by_clause = f"""
ORDER BY images.created_at {order_dir.value}, images.image_name {order_dir.value}
"""
final_query = f"""
{base_query}
{order_by_clause}
LIMIT ?;
"""
params.append(count)
self._cursor.execute(final_query, tuple(params))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
except Exception:
raise
finally:
self._lock.release()
return images
def get_many(
self,
offset: int = 0,

View File

@@ -1,59 +0,0 @@
these ideas are trying to figure out the macOS photos UX where you use scroll position instead of page number to go to a specific range of images.
### Brute Force
Two new methods/endpoints:
- `get_image_names`: gets a list of ordered image names for the query params (e.g. board, starred_first)
- `get_images_by_name`: gets the dtos for a list of image names
Broad strokes of client handling:
- Fetch a list of all image names for a board.
- Render a big scroll area, large enough to hold all images. The list of image names is passed to `react-virtuoso` (virtualized list lib).
- As you scroll, we use the rangeChanged callback from `react-virtuoso`, which provides the indices of the currently-visible images in the list of all images. These indices map back to the list of image names from which we can derive the list of image names we need to fetch
- Debounce the rnageChanged callback
- Call the `get_images_by_name` endpoint with hte image names to fetch, use the result to update the `getImageDTO` query cache. De-duplicate the image_names against existing cache before fetching so we aren't requesting the smae data over and over
- Each item/image in the virtualized list fetches its image DTO from the cache _without initiating a network request_. it just kinda waits until the image is in the cache and then displays it
this is roughed out in this branch
#### FATAL FLAW
Once you generate an image, you want to do an optimistic update and insert its name into the big ol' image_names list right? well, where do you insert it? depends on the query parms that can affect the sort order and which images are shown... we only have the image names at this point so we can't easily figure out where to insert
workarounds (?):
- along with the image names, we retrieve `starred_first` and `created_at`. then from the query params we can easily figure out where to insert the new image into the list to match the sort that he backend will be doing. eh
- fetch `starred_first` images separately? so we don't have to worry about inserting the image into the right spot?
ahh but also metadata search... we won't know when to insert the image into the list if the user has a search term...
#### Sub-idea
Ok let's still use pagination but use virtuoso to tell us which page we are on.
virtuoso has an alternate mode where you just tell it how many items you have and it renders each item, passing only an index to it. Maybe we can derive the limit and offset from this information. here's an untested idea:
- pass virtuoso the board count
- Instead of rendering individual images in the list, we render pages (ranges) of images. The list librarys rangeChanged indices now refer to pages or ranges. To the user, it still looks like a bunch of individual images, but internally we group it into pages/ranges of whatever size.
- The page/range size is calculated via DOM, or we can rely on virtuoso to tell us how many items are to be rendered. only thing is it the number can different depending on scroll position, so we'd probably want to like take `endIndex - startIndex` as the limit, add 20% buffer to each end of the limit and round it to the nearest multiple of 5 or 10. that would give us a consistent limit
- then we can derive offset from that value
still has the issue where we aren't sure if we should trigger a image list cache invalidation...
### More Efficient Pagination
sql OFFSET requires a scan thru the whole table upt othe offset. that means the higher the offset, the slower the query. unsure of the practical impact of this, probably negligible for us right now.
I did some quick experiments with cursor/keyset pagination, using an image name as the cursor. this doesn't have the perf issue w/ offset.
Also! This kind of pagination is unaffected by insertions and deletions, which is a problem for limit/offset pagination. When you insert or delete an image, it doesn't shift images at higher pages down. I think this pagination strategy suits our gallery better than limit/offset, given how volatile it is with adding and removing images regularly.
see the `test_keyset` notebook for implementation (also some scattered methods in services as I was fiddling withh it)
may be some way to use this pagination strat in combination with the above ideas to more elegantly handle inserting and deleting images...
### Alternative approach to the whole "how do we know when to insert new images in the list (or invalidate the list cache)" issue
What if we _always_ invalidate the cache when youa re at the top of the list ,but never invalidate it when you have scrolled down?

View File

@@ -1,210 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"first query\n",
"36e62fec-5c3a-4b28-867b-9029fb6d2319.png False\n",
"c7f4f4b8-7ce6-4594-abf6-3f5e13fb7fe9.png False\n",
"d8f57fda-5084-4d87-8668-06fb300282e4.png False\n",
"a2fd7b8b-bbe5-4629-9d46-000f99b64931.png False\n",
"c0880bc1-5f7a-452b-acea-53a261f4c0c4.png False\n",
"0ad957df-c341-48e3-b384-f656985c2722.png False\n",
"8c788d82-c81c-4ffe-bf6b-bdad601c5add.png False\n",
"9b1179a0-09a0-4430-918d-60b618ff040c.png False\n",
"c8ad6a32-75db-4d8b-a865-066365fa1563.png False\n",
"e5eb1c19-8c69-4d29-a447-fbc2d649334a.png False\n",
"\n",
"next query, starting from the second image\n",
"36e62fec-5c3a-4b28-867b-9029fb6d2319.png False\n",
"c7f4f4b8-7ce6-4594-abf6-3f5e13fb7fe9.png False\n",
"d8f57fda-5084-4d87-8668-06fb300282e4.png False\n",
"a2fd7b8b-bbe5-4629-9d46-000f99b64931.png False\n",
"c0880bc1-5f7a-452b-acea-53a261f4c0c4.png False\n",
"0ad957df-c341-48e3-b384-f656985c2722.png False\n",
"8c788d82-c81c-4ffe-bf6b-bdad601c5add.png False\n",
"9b1179a0-09a0-4430-918d-60b618ff040c.png False\n",
"c8ad6a32-75db-4d8b-a865-066365fa1563.png False\n",
"e5eb1c19-8c69-4d29-a447-fbc2d649334a.png False\n"
]
}
],
"source": [
"import sqlite3\n",
"from typing import Literal, cast\n",
"from invokeai.app.services.image_records.image_records_common import (\n",
" IMAGE_DTO_COLS,\n",
" ImageRecord,\n",
" deserialize_image_record,\n",
")\n",
"from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection\n",
"\n",
"\n",
"def get_images(\n",
" from_image_name: str | None = None, # omit for first page\n",
" count: int = 10,\n",
" board_id: str | None = None,\n",
" category: Literal[\"images\", \"assets\"] = \"images\",\n",
" starred_first: bool = False,\n",
" order_dir: SQLiteDirection = SQLiteDirection.Descending,\n",
" search_term: str | None = None,\n",
") -> list[ImageRecord]:\n",
" conn = sqlite3.connect(\"/home/bat/invokeai-4.0.0/databases/invokeai.db\")\n",
" conn.row_factory = sqlite3.Row\n",
" cursor = conn.cursor()\n",
"\n",
" base_query = f\"\"\"\n",
" SELECT {IMAGE_DTO_COLS}\n",
" FROM images\n",
" LEFT JOIN board_images ON board_images.image_name = images.image_name\n",
" WHERE images.is_intermediate = FALSE\n",
" \"\"\"\n",
" params: list[int | str | bool] = []\n",
"\n",
" if board_id:\n",
" base_query += \"\"\"\n",
" AND board_images.board_id = ?\n",
" \"\"\"\n",
" params.append(board_id)\n",
" else:\n",
" base_query += \"\"\"\n",
" AND board_images.board_id IS NULL\n",
" \"\"\"\n",
"\n",
" if category == \"images\":\n",
" base_query += \"\"\"\n",
" AND images.image_category = 'general'\n",
" \"\"\"\n",
" elif category == \"assets\":\n",
" base_query += \"\"\"\n",
" AND images.image_category IN ('control', 'mask', 'user', 'other')\n",
" \"\"\"\n",
" else:\n",
" raise ValueError(f\"Invalid category: {category}\")\n",
"\n",
" if search_term:\n",
" base_query += \"\"\"\n",
" AND images.metadata LIKE ?\n",
" \"\"\"\n",
" params.append(f\"%{search_term.lower()}%\")\n",
"\n",
" if from_image_name:\n",
" # Use keyset pagination to get the next page of results\n",
"\n",
" # This uses `<` so that the cursor image is NOT included in the results - only images after it\n",
" if starred_first:\n",
" keyset_query = f\"\"\"\n",
" WITH image_keyset AS (\n",
" SELECT created_at,\n",
" image_name,\n",
" starred\n",
" FROM images\n",
" WHERE image_name = ?\n",
" )\n",
" {base_query}\n",
" AND (images.starred, images.created_at, images.image_name) < ((SELECT starred FROM image_keyset), (SELECT created_at FROM image_keyset), (SELECT image_name FROM image_keyset))\n",
" \"\"\"\n",
" else:\n",
" keyset_query = f\"\"\"\n",
" WITH image_keyset AS (\n",
" SELECT created_at,\n",
" image_name\n",
" FROM images\n",
" WHERE image_name = ?\n",
" )\n",
" {base_query}\n",
" AND (images.created_at, images.image_name) < ((SELECT created_at FROM image_keyset), (SELECT image_name FROM image_keyset))\n",
" \"\"\"\n",
"\n",
" # This uses `<=` so that the cursor image IS included in the results\n",
" # if starred_first:\n",
" # keyset_query = f\"\"\"\n",
" # WITH image_keyset AS (\n",
" # SELECT created_at,\n",
" # image_name,\n",
" # starred\n",
" # FROM images\n",
" # WHERE image_name = ?\n",
" # )\n",
" # {base_query}\n",
" # AND (images.starred, images.created_at, images.image_name) <= ((SELECT starred FROM image_keyset), (SELECT created_at FROM image_keyset), (SELECT image_name FROM image_keyset))\n",
" # \"\"\"\n",
" # else:\n",
" # keyset_query = f\"\"\"\n",
" # WITH image_keyset AS (\n",
" # SELECT created_at,\n",
" # image_name\n",
" # FROM images\n",
" # WHERE image_name = ?\n",
" # )\n",
" # {base_query}\n",
" # AND (images.created_at, images.image_name) <= ((SELECT created_at FROM image_keyset), (SELECT image_name FROM image_keyset))\n",
" # \"\"\"\n",
" base_query = keyset_query\n",
" params.append(from_image_name)\n",
"\n",
" if starred_first:\n",
" order_by_clause = f\"\"\"\n",
" ORDER BY images.starred DESC, images.created_at {order_dir.value}, images.image_name {order_dir.value}\n",
" \"\"\"\n",
" else:\n",
" order_by_clause = f\"\"\"\n",
" ORDER BY images.created_at {order_dir.value}, images.image_name {order_dir.value}\n",
" \"\"\"\n",
"\n",
" final_query = f\"\"\"\n",
" {base_query}\n",
" {order_by_clause}\n",
" LIMIT ?;\n",
" \"\"\"\n",
" params.append(count)\n",
"\n",
" cursor.execute(final_query, tuple(params))\n",
" result = cast(list[sqlite3.Row], cursor.fetchall())\n",
" images = [deserialize_image_record(dict(r)) for r in result]\n",
"\n",
" return images\n",
"\n",
"\n",
"kwargs = {\"starred_first\": False}\n",
"\n",
"images = get_images(**kwargs)\n",
"print(\"first query\")\n",
"for image in images:\n",
" print(image.image_name, image.starred)\n",
"\n",
"print(\"\\nnext query, starting from the second image\")\n",
"images_2 = get_images(from_image_name=images[0].image_name, **kwargs)\n",
"for image in images_2:\n",
" print(image.image_name, image.starred)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -3,12 +3,16 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_files.image_files_common import (
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from ..image_files.image_files_common import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
)
from invokeai.app.services.image_records.image_records_common import (
from ..image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
@@ -19,11 +23,8 @@ from invokeai.app.services.image_records.image_records_common import (
InvalidOriginException,
ResourceOrigin,
)
from invokeai.app.services.images.images_base import ImageServiceABC
from invokeai.app.services.images.images_common import ImageDTO, image_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from .images_base import ImageServiceABC
from .images_common import ImageDTO, image_record_to_dto
class ImageService(ImageServiceABC):

View File

@@ -10,28 +10,29 @@ if TYPE_CHECKING:
import torch
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
from invokeai.app.services.images.images_base import ImageServiceABC
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.names.names_base import NameServiceBase
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.urls.urls_base import UrlServiceBase
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
from .board_images.board_images_base import BoardImagesServiceABC
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .bulk_download.bulk_download_base import BulkDownloadBase
from .config import InvokeAIAppConfig
from .download import DownloadQueueServiceBase
from .events.events_base import EventServiceBase
from .image_files.image_files_base import ImageFileStorageBase
from .image_records.image_records_base import ImageRecordStorageBase
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .model_images.model_images_base import ModelImageFileStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .urls.urls_base import UrlServiceBase
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
class InvocationServices:
"""Services that can be used by invocations"""

View File

@@ -9,8 +9,11 @@ import torch
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.invocation_stats.invocation_stats_common import (
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
from .invocation_stats_base import InvocationStatsServiceBase
from .invocation_stats_common import (
GESStatsNotFoundError,
GraphExecutionStats,
GraphExecutionStatsSummary,
@@ -19,8 +22,6 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
NodeExecutionStats,
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@@ -1,7 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.app.services.invocation_services import InvocationServices
from .invocation_services import InvocationServices
class Invoker:

View File

@@ -5,14 +5,15 @@ from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
from invokeai.app.services.model_images.model_images_common import (
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
from .model_images_base import ModelImageFileStorageBase
from .model_images_common import (
ModelImageFileDeleteException,
ModelImageFileNotFoundException,
ModelImageFileSaveException,
)
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class ModelImageFileStorageDisk(ModelImageFileStorageBase):

View File

@@ -1,7 +1,9 @@
"""Initialization file for model install service package."""
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
from .model_install_base import (
ModelInstallServiceBase,
)
from .model_install_common import (
HFModelSource,
InstallStatus,
LocalModelSource,
@@ -10,7 +12,7 @@ from invokeai.app.services.model_install.model_install_common import (
UnknownInstallJobException,
URLModelSource,
)
from invokeai.app.services.model_install.model_install_default import ModelInstallService
from .model_install_default import ModelInstallService
__all__ = [
"ModelInstallServiceBase",

View File

@@ -23,16 +23,6 @@ from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDo
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelSource,
StringLikeSource,
URLModelSource,
)
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.model_manager.config import (
@@ -57,6 +47,17 @@ from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
from .model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelSource,
StringLikeSource,
URLModelSource,
)
TMPDIR_PREFIX = "tmpinstall_"
@@ -847,7 +848,7 @@ class ModelInstallService(ModelInstallServiceBase):
with self._lock:
if install_job := self._download_cache.pop(download_job.id, None):
assert excp is not None
self._set_error(install_job, excp)
install_job.set_error(excp)
self._download_queue.cancel_job(download_job)
# Let other threads know that the number of downloads has changed

View File

@@ -1,6 +1,6 @@
"""Initialization file for model load service module."""
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from .model_load_base import ModelLoadServiceBase
from .model_load_default import ModelLoadService
__all__ = ["ModelLoadServiceBase", "ModelLoadService"]

View File

@@ -6,7 +6,7 @@ from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase

View File

@@ -2,7 +2,7 @@
"""Implementation of model loader service."""
from pathlib import Path
from typing import Callable, Optional, Type
from typing import Callable, Optional
from picklescan.scanner import scan_file_path
from safetensors.torch import load_file as safetensors_load_file
@@ -10,19 +10,16 @@ from torch import load as torch_load
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
LoadedModelWithoutConfig,
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .model_load_base import ModelLoadServiceBase
class ModelLoadService(ModelLoadServiceBase):
"""Wrapper around ModelLoaderRegistry."""
@@ -31,7 +28,7 @@ class ModelLoadService(ModelLoadServiceBase):
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCacheBase[AnyModel],
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
registry: ModelLoaderRegistry,
):
"""Initialize the model load service."""
logger = InvokeAILogger.get_logger(self.__class__.__name__)

View File

@@ -1,16 +0,0 @@
"""Initialization file for model manager service."""
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
__all__ = [
"ModelManagerServiceBase",
"ModelManagerService",
"AnyModel",
"AnyModelConfig",
"BaseModelType",
"ModelType",
"SubModelType",
"LoadedModel",
]

View File

@@ -5,13 +5,14 @@ from abc import ABC, abstractmethod
import torch
from typing_extensions import Self
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallServiceBase
from ..model_load import ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase
class ModelManagerServiceBase(ABC):

View File

@@ -6,20 +6,20 @@ from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_default import ModelInstallService
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallService, ModelInstallServiceBase
from ..model_load import ModelLoadService, ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase
from .model_manager_base import ModelManagerServiceBase
class ModelManagerService(ModelManagerServiceBase):
"""

View File

@@ -40,24 +40,12 @@ Typical usage:
"""
import json
import logging
import sqlite3
from math import ceil
from pathlib import Path
from typing import List, Optional, Union
import pydantic
from invokeai.app.services.model_records.model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -66,11 +54,21 @@ from invokeai.backend.model_manager.config import (
ModelType,
)
from ..shared.sqlite.sqlite_database import SqliteDatabase
from .model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
UnknownModelException,
)
class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Implementation of the ModelConfigStore ABC using a SQL database."""
def __init__(self, db: SqliteDatabase, logger: logging.Logger):
def __init__(self, db: SqliteDatabase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
@@ -79,7 +77,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
super().__init__()
self._db = db
self._cursor = db.conn.cursor()
self._logger = logger
@property
def db(self) -> SqliteDatabase:
@@ -295,20 +292,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
tuple(bindings),
)
result = self._cursor.fetchall()
# Parse the model configs.
results: list[AnyModelConfig] = []
for row in result:
try:
model_config = ModelConfigFactory.make_config(json.loads(row[0]), timestamp=row[1])
except pydantic.ValidationError:
# We catch this error so that the app can still run if there are invalid model configs in the database.
# One reason that an invalid model config might be in the database is if someone had to rollback from a
# newer version of the app that added a new model type.
self._logger.warning(f"Found an invalid model config in the database. Ignoring this model. ({row[0]})")
else:
results.append(model_config)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in result]
return results
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:

View File

@@ -1,6 +1,7 @@
from invokeai.app.services.names.names_base import NameServiceBase
from invokeai.app.util.misc import uuid_string
from .names_base import NameServiceBase
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""

View File

@@ -13,24 +13,24 @@ from invokeai.app.services.events.events_common import (
register_events,
)
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.session_processor.session_processor_base import (
InvocationServices,
OnAfterRunNode,
OnAfterRunSession,
OnBeforeRunNode,
OnBeforeRunSession,
OnNodeError,
OnNonFatalProcessorError,
SessionProcessorBase,
SessionRunnerBase,
)
from invokeai.app.services.session_processor.session_processor_common import CanceledException, SessionProcessorStatus
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem, SessionQueueItemNotFoundError
from invokeai.app.services.shared.graph import NodeInputError
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
from .session_processor_common import SessionProcessorStatus
class DefaultSessionRunner(SessionRunnerBase):
"""Processes a single session's invocations."""

View File

@@ -1,6 +1,6 @@
import os
from invokeai.app.services.urls.urls_base import UrlServiceBase
from .urls_base import UrlServiceBase
class LocalUrlService(UrlServiceBase):

View File

@@ -2,7 +2,7 @@
"name": "ESRGAN Upscaling with Canny ControlNet",
"author": "InvokeAI",
"description": "Sample workflow for using Upscaling with ControlNet with SD1.5",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "upscale, controlnet, default",
"notes": "",
@@ -36,13 +36,14 @@
"version": "3.0.0",
"category": "default"
},
"id": "0e71a27e-a22b-4a9b-b20a-6d789abff2bc",
"nodes": [
{
"id": "63b6ab7e-5b05-4d1b-a3b1-42d8e53ce16b",
"id": "e8bf67fe-67de-4227-87eb-79e86afdfc74",
"type": "invocation",
"data": {
"id": "63b6ab7e-5b05-4d1b-a3b1-42d8e53ce16b",
"version": "1.2.0",
"id": "e8bf67fe-67de-4227-87eb-79e86afdfc74",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
@@ -56,10 +57,6 @@
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
@@ -68,63 +65,79 @@
},
"position": {
"x": 1250,
"y": 1200
"y": 1500
}
},
{
"id": "5ca498a4-c8c8-4580-a396-0c984317205d",
"id": "d8ace142-c05f-4f1d-8982-88dc7473958d",
"type": "invocation",
"data": {
"id": "5ca498a4-c8c8-4580-a396-0c984317205d",
"version": "1.1.0",
"id": "d8ace142-c05f-4f1d-8982-88dc7473958d",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "i2l",
"type": "main_model_loader",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"model": {
"name": "model",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
"value": {
"key": "5cd43ca0-dd0a-418d-9f7e-35b2b9d5e106",
"hash": "blake3:6987f323017f597213cc3264250edf57056d21a40a0a85d83a1a33a7d44dc41a",
"name": "Deliberate_v5",
"base": "sd-1",
"type": "main"
}
}
},
"isOpen": false,
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1650,
"y": 1675
"x": 700,
"y": 1375
}
},
{
"id": "3ed9b2ef-f4ec-40a7-94db-92e63b583ec0",
"id": "771bdf6a-0813-4099-a5d8-921a138754d4",
"type": "invocation",
"data": {
"id": "3ed9b2ef-f4ec-40a7-94db-92e63b583ec0",
"version": "1.3.0",
"id": "771bdf6a-0813-4099-a5d8-921a138754d4",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"type": "image",
"inputs": {
"image": {
"name": "image",
"label": "Image To Upscale",
"value": {
"image_name": "d2e42ba6-d420-496b-82db-91c9b75956c1.png"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 344.5593065887157,
"y": 1698.161491368619
}
},
{
"id": "f7564dd2-9539-47f2-ac13-190804461f4e",
"type": "invocation",
"data": {
"id": "f7564dd2-9539-47f2-ac13-190804461f4e",
"version": "1.3.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "esrgan",
"inputs": {
"board": {
"name": "board",
@@ -134,37 +147,81 @@
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
"model_name": {
"name": "model_name",
"label": "Upscaler Model",
"value": "RealESRGAN_x2plus.pth"
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
"value": 400
}
},
"isOpen": true,
"isIntermediate": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2559.4751127537957,
"y": 1246.6000376741406
"x": 717.3863693661265,
"y": 1721.9215053134815
}
},
{
"id": "1d887701-df21-4966-ae6e-a7d82307d7bd",
"type": "invocation",
"data": {
"id": "1d887701-df21-4966-ae6e-a7d82307d7bd",
"version": "1.3.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1200,
"y": 1900
}
},
{
@@ -172,7 +229,7 @@
"type": "invocation",
"data": {
"id": "ca1d020c-89a8-4958-880a-016d28775cfa",
"version": "1.1.2",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
@@ -228,193 +285,6 @@
"y": 1902.9649340196056
}
},
{
"id": "1d887701-df21-4966-ae6e-a7d82307d7bd",
"type": "invocation",
"data": {
"id": "1d887701-df21-4966-ae6e-a7d82307d7bd",
"version": "1.3.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1200,
"y": 1900
}
},
{
"id": "d8ace142-c05f-4f1d-8982-88dc7473958d",
"type": "invocation",
"data": {
"id": "d8ace142-c05f-4f1d-8982-88dc7473958d",
"version": "1.0.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "5cd43ca0-dd0a-418d-9f7e-35b2b9d5e106",
"hash": "blake3:6987f323017f597213cc3264250edf57056d21a40a0a85d83a1a33a7d44dc41a",
"name": "Deliberate_v5",
"base": "sd-1",
"type": "main"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 700,
"y": 1375
}
},
{
"id": "e8bf67fe-67de-4227-87eb-79e86afdfc74",
"type": "invocation",
"data": {
"id": "e8bf67fe-67de-4227-87eb-79e86afdfc74",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1250,
"y": 1500
}
},
{
"id": "771bdf6a-0813-4099-a5d8-921a138754d4",
"type": "invocation",
"data": {
"id": "771bdf6a-0813-4099-a5d8-921a138754d4",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "image",
"inputs": {
"image": {
"name": "image",
"label": "Image To Upscale"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 344.5593065887157,
"y": 1698.161491368619
}
},
{
"id": "f7564dd2-9539-47f2-ac13-190804461f4e",
"type": "invocation",
"data": {
"id": "f7564dd2-9539-47f2-ac13-190804461f4e",
"version": "1.3.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "esrgan",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"model_name": {
"name": "model_name",
"label": "Upscaler Model",
"value": "RealESRGAN_x2plus.pth"
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 400
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 717.3863693661265,
"y": 1721.9215053134815
}
},
{
"id": "f50624ce-82bf-41d0-bdf7-8aab11a80d48",
"type": "invocation",
@@ -543,6 +413,122 @@
"y": 1232.6219060454753
}
},
{
"id": "3ed9b2ef-f4ec-40a7-94db-92e63b583ec0",
"type": "invocation",
"data": {
"id": "3ed9b2ef-f4ec-40a7-94db-92e63b583ec0",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 2559.4751127537957,
"y": 1246.6000376741406
}
},
{
"id": "5ca498a4-c8c8-4580-a396-0c984317205d",
"type": "invocation",
"data": {
"id": "5ca498a4-c8c8-4580-a396-0c984317205d",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "i2l",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1650,
"y": 1675
}
},
{
"id": "63b6ab7e-5b05-4d1b-a3b1-42d8e53ce16b",
"type": "invocation",
"data": {
"id": "63b6ab7e-5b05-4d1b-a3b1-42d8e53ce16b",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1250,
"y": 1200
}
},
{
"id": "eb8f6f8a-c7b1-4914-806e-045ee2717a35",
"type": "invocation",

View File

@@ -2,7 +2,7 @@
"name": "Face Detailer with IP-Adapter & Canny (See Note in Details)",
"author": "kosmoskatten",
"description": "A workflow to add detail to and improve faces. This workflow is most effective when used with a model that creates realistic outputs. ",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "face detailer, IP-Adapter, Canny",
"notes": "Set this image as the blur mask: https://i.imgur.com/Gxi61zP.png",
@@ -37,349 +37,16 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "c6359181-6479-40ec-bf3a-b7e8451683b8",
"type": "invocation",
"data": {
"id": "c6359181-6479-40ec-bf3a-b7e8451683b8",
"version": "1.0.3",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2031.5518710051792,
"y": -492.1742944307074
}
},
{
"id": "8fe598c6-d447-44fa-a165-4975af77d080",
"type": "invocation",
"data": {
"id": "8fe598c6-d447-44fa-a165-4975af77d080",
"version": "1.3.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3519.4131037388597,
"y": 576.7946795840575
}
},
{
"id": "f60b6161-8f26-42f6-89ff-545e6011e501",
"type": "invocation",
"data": {
"id": "f60b6161-8f26-42f6-89ff-545e6011e501",
"version": "1.1.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "controlnet",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select canny)",
"value": {
"key": "5bdaacf7-a7a3-4fb8-b394-cc0ffbb8941d",
"hash": "blake3:260c7f8e10aefea9868cfc68d89970e91033bd37132b14b903e70ee05ebf530e",
"name": "sd-controlnet-canny",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 0.5
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 0.5
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "balanced"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3950,
"y": 150
}
},
{
"id": "22b750db-b85e-486b-b278-ac983e329813",
"type": "invocation",
"data": {
"id": "22b750db-b85e-486b-b278-ac983e329813",
"version": "1.4.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "ip_adapter",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"ip_adapter_model": {
"name": "ip_adapter_model",
"label": "IP-Adapter Model (select IP Adapter Face)",
"value": {
"key": "1cc210bb-4d0a-4312-b36c-b5d46c43768e",
"hash": "blake3:3d669dffa7471b357b4df088b99ffb6bf4d4383d5e0ef1de5ec1c89728a3d5a5",
"name": "ip_adapter_sd15",
"base": "sd-1",
"type": "ip_adapter"
}
},
"clip_vision_model": {
"name": "clip_vision_model",
"label": "",
"value": "ViT-H"
},
"weight": {
"name": "weight",
"label": "",
"value": 0.5
},
"method": {
"name": "method",
"label": "",
"value": "full"
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 0.8
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3575,
"y": -200
}
},
{
"id": "f4d15b64-c4a6-42a5-90fc-e4ed07a0ca65",
"type": "invocation",
"data": {
"id": "f4d15b64-c4a6-42a5-90fc-e4ed07a0ca65",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2550,
"y": -525
}
},
{
"id": "2224ed72-2453-4252-bd89-3085240e0b6f",
"type": "invocation",
"data": {
"id": "2224ed72-2453-4252-bd89-3085240e0b6f",
"version": "1.3.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 4980.1395106966565,
"y": -255.9158921745602
}
},
{
"id": "de8b1a48-a2e4-42ca-90bb-66058bffd534",
"type": "invocation",
"data": {
"id": "de8b1a48-a2e4-42ca-90bb-66058bffd534",
"version": "1.1.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "i2l",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3100,
"y": -275
}
},
{
"id": "44f2c190-eb03-460d-8d11-a94d13b33f19",
"type": "invocation",
"data": {
"id": "44f2c190-eb03-460d-8d11-a94d13b33f19",
"version": "1.2.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
@@ -393,10 +60,6 @@
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
@@ -588,6 +251,45 @@
"y": 0
}
},
{
"id": "de8b1a48-a2e4-42ca-90bb-66058bffd534",
"type": "invocation",
"data": {
"id": "de8b1a48-a2e4-42ca-90bb-66058bffd534",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "i2l",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3100,
"y": -275
}
},
{
"id": "bd06261d-a74a-4d1f-8374-745ed6194bc2",
"type": "invocation",
@@ -716,6 +418,53 @@
"y": -175
}
},
{
"id": "2224ed72-2453-4252-bd89-3085240e0b6f",
"type": "invocation",
"data": {
"id": "2224ed72-2453-4252-bd89-3085240e0b6f",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 4980.1395106966565,
"y": -255.9158921745602
}
},
{
"id": "2974e5b3-3d41-4b6f-9953-cd21e8f3a323",
"type": "invocation",
@@ -943,6 +692,201 @@
"y": -275
}
},
{
"id": "f4d15b64-c4a6-42a5-90fc-e4ed07a0ca65",
"type": "invocation",
"data": {
"id": "f4d15b64-c4a6-42a5-90fc-e4ed07a0ca65",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2550,
"y": -525
}
},
{
"id": "22b750db-b85e-486b-b278-ac983e329813",
"type": "invocation",
"data": {
"id": "22b750db-b85e-486b-b278-ac983e329813",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "ip_adapter",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"ip_adapter_model": {
"name": "ip_adapter_model",
"label": "IP-Adapter Model (select IP Adapter Face)",
"value": {
"key": "1cc210bb-4d0a-4312-b36c-b5d46c43768e",
"hash": "blake3:3d669dffa7471b357b4df088b99ffb6bf4d4383d5e0ef1de5ec1c89728a3d5a5",
"name": "ip_adapter_sd15",
"base": "sd-1",
"type": "ip_adapter"
}
},
"weight": {
"name": "weight",
"label": "",
"value": 0.5
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 0.8
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3575,
"y": -200
}
},
{
"id": "f60b6161-8f26-42f6-89ff-545e6011e501",
"type": "invocation",
"data": {
"id": "f60b6161-8f26-42f6-89ff-545e6011e501",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "controlnet",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select canny)",
"value": {
"key": "5bdaacf7-a7a3-4fb8-b394-cc0ffbb8941d",
"hash": "blake3:260c7f8e10aefea9868cfc68d89970e91033bd37132b14b903e70ee05ebf530e",
"name": "sd-controlnet-canny",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 0.5
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 0.5
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "balanced"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3950,
"y": 150
}
},
{
"id": "8fe598c6-d447-44fa-a165-4975af77d080",
"type": "invocation",
"data": {
"id": "8fe598c6-d447-44fa-a165-4975af77d080",
"version": "1.3.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3519.4131037388597,
"y": 576.7946795840575
}
},
{
"id": "4bd4ae80-567f-4366-b8c6-3bb06f4fb46a",
"type": "invocation",
@@ -1091,6 +1035,30 @@
"x": 2578.2364832140506,
"y": 78.7948456497351
}
},
{
"id": "c6359181-6479-40ec-bf3a-b7e8451683b8",
"type": "invocation",
"data": {
"id": "c6359181-6479-40ec-bf3a-b7e8451683b8",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2031.5518710051792,
"y": -492.1742944307074
}
}
],
"edges": [

View File

@@ -2,7 +2,7 @@
"name": "Multi ControlNet (Canny & Depth)",
"author": "InvokeAI",
"description": "A sample workflow using canny & depth ControlNets to guide the generation process. ",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "ControlNet, canny, depth",
"notes": "",
@@ -37,218 +37,24 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"type": "invocation",
"data": {
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"version": "1.3.0",
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 5675,
"y": -825
}
},
{
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"type": "invocation",
"data": {
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"version": "1.3.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4095.757337055795,
"y": -455.63440891935863
}
},
{
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"type": "invocation",
"data": {
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"version": "1.2.4",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "midas_depth_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"a_mult": {
"name": "a_mult",
"label": "",
"value": 2
},
"bg_th": {
"name": "bg_th",
"label": "",
"value": 0.1
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4082.783145980783,
"y": 0.01629251229994111
}
},
{
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"type": "invocation",
"data": {
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"version": "1.1.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "controlnet",
"type": "image",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select canny)",
"value": {
"key": "5bdaacf7-a7a3-4fb8-b394-cc0ffbb8941d",
"hash": "blake3:260c7f8e10aefea9868cfc68d89970e91033bd37132b14b903e70ee05ebf530e",
"name": "sd-controlnet-canny",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 1
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 1
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "balanced"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
"label": "Depth Input Image"
}
},
"isOpen": true,
@@ -256,101 +62,8 @@
"useCache": true
},
"position": {
"x": 4479.68542130465,
"y": -618.4221638099414
}
},
{
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"type": "invocation",
"data": {
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4075,
"y": -1125
}
},
{
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"type": "invocation",
"data": {
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"version": "1.0.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3600,
"y": -1000
}
},
{
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"type": "invocation",
"data": {
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4075,
"y": -825
"x": 3666.135718057363,
"y": 186.66887319822808
}
},
{
@@ -358,7 +71,7 @@
"type": "invocation",
"data": {
"id": "a33199c2-8340-401e-b8a2-42ffa875fc1c",
"version": "1.1.2",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
@@ -415,19 +128,24 @@
}
},
{
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"type": "invocation",
"data": {
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"version": "1.0.2",
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "image",
"type": "compel",
"inputs": {
"image": {
"name": "image",
"label": "Depth Input Image"
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
@@ -435,8 +153,124 @@
"useCache": true
},
"position": {
"x": 3666.135718057363,
"y": 186.66887319822808
"x": 4075,
"y": -825
}
},
{
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"type": "invocation",
"data": {
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 3600,
"y": -1000
}
},
{
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"type": "invocation",
"data": {
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4075,
"y": -1125
}
},
{
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"type": "invocation",
"data": {
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "controlnet",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select canny)",
"value": {
"key": "5bdaacf7-a7a3-4fb8-b394-cc0ffbb8941d",
"hash": "blake3:260c7f8e10aefea9868cfc68d89970e91033bd37132b14b903e70ee05ebf530e",
"name": "sd-controlnet-canny",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 1
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 1
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "balanced"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4479.68542130465,
"y": -618.4221638099414
}
},
{
@@ -488,6 +322,159 @@
"y": -575
}
},
{
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"type": "invocation",
"data": {
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"version": "1.2.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "midas_depth_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"a_mult": {
"name": "a_mult",
"label": "",
"value": 2
},
"bg_th": {
"name": "bg_th",
"label": "",
"value": 0.1
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4082.783145980783,
"y": 0.01629251229994111
}
},
{
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"type": "invocation",
"data": {
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"version": "1.3.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "canny_image_processor",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"image": {
"name": "image",
"label": ""
},
"detect_resolution": {
"name": "detect_resolution",
"label": "",
"value": 512
},
"image_resolution": {
"name": "image_resolution",
"label": "",
"value": 512
},
"low_threshold": {
"name": "low_threshold",
"label": "",
"value": 100
},
"high_threshold": {
"name": "high_threshold",
"label": "",
"value": 200
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 4095.757337055795,
"y": -455.63440891935863
}
},
{
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"type": "invocation",
"data": {
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 5675,
"y": -825
}
},
{
"id": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"type": "invocation",

View File

@@ -2,7 +2,7 @@
"name": "Prompt from File",
"author": "InvokeAI",
"description": "Sample workflow using Prompt from File node",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, prompt from file, default",
"notes": "",
@@ -37,127 +37,16 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "invocation",
"data": {
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"version": "1.3.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2037.861329274915,
"y": -329.8393457509562
}
},
{
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "invocation",
"data": {
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": -275
}
},
{
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "invocation",
"data": {
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"version": "1.0.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 0,
"y": -375
}
},
{
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"type": "invocation",
"data": {
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"version": "1.2.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
@@ -171,10 +60,6 @@
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": false,
@@ -256,6 +141,61 @@
"y": -400
}
},
{
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "invocation",
"data": {
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 0,
"y": -375
}
},
{
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "invocation",
"data": {
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 925,
"y": -275
}
},
{
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"type": "invocation",
@@ -328,6 +268,53 @@
"y": -50
}
},
{
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "invocation",
"data": {
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2037.861329274915,
"y": -329.8393457509562
}
},
{
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"type": "invocation",

View File

@@ -2,7 +2,7 @@
"name": "Text to Image - SD1.5",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD1.5, SD2, default",
"notes": "",
@@ -33,127 +33,16 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "invocation",
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"version": "1.3.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 1800,
"y": 25
}
},
{
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "invocation",
"data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "Positive Compel Prompt",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": "Super cute tiger cub, national geographic award-winning photograph"
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1000,
"y": 25
}
},
{
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "invocation",
"data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"version": "1.0.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 600,
"y": 25
}
},
{
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "invocation",
"data": {
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"version": "1.2.0",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "Negative Compel Prompt",
"notes": "",
@@ -167,10 +56,6 @@
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
@@ -223,6 +108,61 @@
"y": 325
}
},
{
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "invocation",
"data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 600,
"y": 25
}
},
{
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "invocation",
"data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "Positive Compel Prompt",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": "Super cute tiger cub, national geographic award-winning photograph"
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 1000,
"y": 25
}
},
{
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "invocation",
@@ -340,6 +280,53 @@
"x": 1400,
"y": 25
}
},
{
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "invocation",
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": true
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 1800,
"y": 25
}
}
],
"edges": [

View File

@@ -2,7 +2,7 @@
"name": "Text to Image - SDXL",
"author": "InvokeAI",
"description": "Sample text to image workflow for SDXL",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text2image, SDXL, default",
"notes": "",
@@ -29,271 +29,10 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"type": "invocation",
"data": {
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"version": "1.0.3",
"label": "",
"notes": "",
"type": "vae_loader",
"inputs": {
"vae_model": {
"name": "vae_model",
"label": "VAE (use the FP16 model)",
"value": {
"key": "f20f9e5c-1bce-4c46-a84d-34ebfa7df069",
"hash": "blake3:9705ab1c31fa96b308734214fb7571a958621c7a9247eed82b7d277145f8d9fa",
"name": "sdxl-vae-fp16-fix",
"base": "sdxl",
"type": "vae"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -225
}
},
{
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"type": "invocation",
"data": {
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"version": "1.3.0",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": false
},
"position": {
"x": 1475,
"y": -500
}
},
{
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"type": "invocation",
"data": {
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "SDXL Positive Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Positive Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -175
}
},
{
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"type": "invocation",
"data": {
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"version": "1.0.3",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "sdxl_model_loader",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "4a63b226-e8ff-4da4-854e-0b9f04b562ba",
"hash": "blake3:d279309ea6e5ee6e8fd52504275865cc280dac71cbf528c5b07c98b888bddaba",
"name": "dreamshaper-xl-v2-turbo",
"base": "sdxl",
"type": "main"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -500
}
},
{
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"type": "invocation",
"data": {
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"version": "1.2.0",
"nodePack": "invokeai",
"label": "SDXL Negative Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Negative Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": 200
}
},
{
"id": "3774ec24-a69e-4254-864c-097d07a6256f",
"type": "invocation",
@@ -349,6 +88,75 @@
"y": -125
}
},
{
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"type": "invocation",
"data": {
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "SDXL Negative Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Negative Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": 200
}
},
{
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "invocation",
@@ -421,6 +229,154 @@
"y": -50
}
},
{
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"type": "invocation",
"data": {
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"version": "1.0.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "sdxl_model_loader",
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "4a63b226-e8ff-4da4-854e-0b9f04b562ba",
"hash": "blake3:d279309ea6e5ee6e8fd52504275865cc280dac71cbf528c5b07c98b888bddaba",
"name": "dreamshaper-xl-v2-turbo",
"base": "sdxl",
"type": "main"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -500
}
},
{
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"type": "invocation",
"data": {
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"version": "1.1.1",
"nodePack": "invokeai",
"label": "SDXL Positive Compel Prompt",
"notes": "",
"type": "sdxl_compel_prompt",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"style": {
"name": "style",
"label": "Positive Style",
"value": ""
},
"original_width": {
"name": "original_width",
"label": "",
"value": 1024
},
"original_height": {
"name": "original_height",
"label": "",
"value": 1024
},
"crop_top": {
"name": "crop_top",
"label": "",
"value": 0
},
"crop_left": {
"name": "crop_left",
"label": "",
"value": 0
},
"target_width": {
"name": "target_width",
"label": "",
"value": 1024
},
"target_height": {
"name": "target_height",
"label": "",
"value": 1024
},
"clip": {
"name": "clip",
"label": ""
},
"clip2": {
"name": "clip2",
"label": ""
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 750,
"y": -175
}
},
{
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"type": "invocation",
"data": {
"id": "63e91020-83b2-4f35-b174-ad9692aabb48",
"version": "1.2.2",
"nodePack": "invokeai",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": false
},
"position": {
"x": 1475,
"y": -500
}
},
{
"id": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"type": "invocation",
@@ -508,6 +464,37 @@
"y": -500
}
},
{
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"type": "invocation",
"data": {
"id": "0093692f-9cf4-454d-a5b8-62f0e3eb3bb8",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "vae_loader",
"inputs": {
"vae_model": {
"name": "vae_model",
"label": "VAE (use the FP16 model)",
"value": {
"key": "f20f9e5c-1bce-4c46-a84d-34ebfa7df069",
"hash": "blake3:9705ab1c31fa96b308734214fb7571a958621c7a9247eed82b7d277145f8d9fa",
"name": "sdxl-vae-fp16-fix",
"base": "sdxl",
"type": "vae"
}
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 375,
"y": -225
}
},
{
"id": "ade2c0d3-0384-4157-b39b-29ce429cfa15",
"type": "invocation",

View File

@@ -2,7 +2,7 @@
"name": "Text to Image with LoRA",
"author": "InvokeAI",
"description": "Simple text to image workflow with a LoRA",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "text to image, lora, default",
"notes": "",
@@ -37,83 +37,28 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
"type": "invocation",
"data": {
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"version": "1.3.0",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 4450,
"y": -550
}
},
{
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"type": "invocation",
"data": {
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"version": "1.2.0",
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
"version": "1.1.1",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": "super cute tiger cub"
"label": "Negative Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
@@ -122,7 +67,31 @@
},
"position": {
"x": 3425,
"y": -575
"y": -300
}
},
{
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"type": "invocation",
"data": {
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2500,
"y": -600
}
},
{
@@ -130,7 +99,7 @@
"type": "invocation",
"data": {
"id": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
"version": "1.0.3",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "lora_loader",
@@ -163,51 +132,23 @@
}
},
{
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"type": "invocation",
"data": {
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
"version": "1.0.3",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": 2500,
"y": -600
}
},
{
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
"type": "invocation",
"data": {
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
"version": "1.2.0",
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
"version": "1.1.1",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Negative Prompt",
"value": ""
"label": "Positive Prompt",
"value": "super cute tiger cub"
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
@@ -216,7 +157,7 @@
},
"position": {
"x": 3425,
"y": -300
"y": -575
}
},
{
@@ -374,6 +315,52 @@
"x": 3425,
"y": 0
}
},
{
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"type": "invocation",
"data": {
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
"version": "1.2.2",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": false,
"useCache": true
},
"position": {
"x": 4450,
"y": -550
}
}
],
"edges": [

View File

@@ -2,7 +2,7 @@
"name": "Tiled Upscaling (Beta)",
"author": "Invoke",
"description": "A workflow to upscale an input image with tiled upscaling. ",
"version": "2.1.0",
"version": "2.0.0",
"contact": "invoke@invoke.ai",
"tags": "tiled, upscaling, sd1.5",
"notes": "",
@@ -41,318 +41,10 @@
}
],
"meta": {
"version": "3.0.0",
"category": "default"
"category": "default",
"version": "3.0.0"
},
"nodes": [
{
"id": "2ff466b8-5e2a-4d8f-923a-a3884c7ecbc5",
"type": "invocation",
"data": {
"id": "2ff466b8-5e2a-4d8f-923a-a3884c7ecbc5",
"version": "1.0.3",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4514.466823162653,
"y": -1235.7908800002283
}
},
{
"id": "287f134f-da8d-41d1-884e-5940e8f7b816",
"type": "invocation",
"data": {
"id": "287f134f-da8d-41d1-884e-5940e8f7b816",
"version": "1.4.1",
"label": "",
"notes": "",
"type": "ip_adapter",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"ip_adapter_model": {
"name": "ip_adapter_model",
"label": "IP-Adapter Model (select ip_adapter_sd15)",
"value": {
"key": "1cc210bb-4d0a-4312-b36c-b5d46c43768e",
"hash": "blake3:3d669dffa7471b357b4df088b99ffb6bf4d4383d5e0ef1de5ec1c89728a3d5a5",
"name": "ip_adapter_sd15",
"base": "sd-1",
"type": "ip_adapter"
}
},
"clip_vision_model": {
"name": "clip_vision_model",
"label": "",
"value": "ViT-H"
},
"weight": {
"name": "weight",
"label": "",
"value": 0.2
},
"method": {
"name": "method",
"label": "",
"value": "full"
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 1
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2855.8555540799207,
"y": -183.58854843775742
}
},
{
"id": "b76fe66f-7884-43ad-b72c-fadc81d7a73c",
"type": "invocation",
"data": {
"id": "b76fe66f-7884-43ad-b72c-fadc81d7a73c",
"version": "1.3.0",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -1999.770193862987,
"y": -1075
}
},
{
"id": "d334f2da-016a-4524-9911-bdab85546888",
"type": "invocation",
"data": {
"id": "d334f2da-016a-4524-9911-bdab85546888",
"version": "1.1.2",
"label": "",
"notes": "",
"type": "controlnet",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select contro_v11f1e_sd15_tile)",
"value": {
"key": "773843c8-db1f-4502-8f65-59782efa7960",
"hash": "blake3:f0812e13758f91baf4e54b7dbb707b70642937d3b2098cd2b94cc36d3eba308e",
"name": "control_v11f1e_sd15_tile",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 1
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "Structural Control",
"value": 1
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "more_control"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2481.9569385477016,
"y": -181.06590482739782
}
},
{
"id": "338b883c-3728-4f18-b3a6-6e7190c2f850",
"type": "invocation",
"data": {
"id": "338b883c-3728-4f18-b3a6-6e7190c2f850",
"version": "1.1.0",
"label": "",
"notes": "",
"type": "i2l",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"tile_size": {
"name": "tile_size",
"label": "",
"value": 0
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2908.4791167517287,
"y": -408.87504820159086
}
},
{
"id": "947c3f88-0305-4695-8355-df4abac64b1c",
"type": "invocation",
"data": {
"id": "947c3f88-0305-4695-8355-df4abac64b1c",
"version": "1.2.0",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4014.4136788915944,
"y": -968.5677253775948
}
},
{
"id": "9b2d8c58-ce8f-4162-a5a1-48de854040d6",
"type": "invocation",
"data": {
"id": "9b2d8c58-ce8f-4162-a5a1-48de854040d6",
"version": "1.2.0",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
},
"mask": {
"name": "mask",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4014.4136788915944,
"y": -1243.5677253775948
}
},
{
"id": "b875cae6-d8a3-4fdc-b969-4d53cbd03f9a",
"type": "invocation",
@@ -489,6 +181,64 @@
"y": 3.422855503409039
}
},
{
"id": "9b2d8c58-ce8f-4162-a5a1-48de854040d6",
"type": "invocation",
"data": {
"id": "9b2d8c58-ce8f-4162-a5a1-48de854040d6",
"version": "1.1.1",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4014.4136788915944,
"y": -1243.5677253775948
}
},
{
"id": "947c3f88-0305-4695-8355-df4abac64b1c",
"type": "invocation",
"data": {
"id": "947c3f88-0305-4695-8355-df4abac64b1c",
"version": "1.1.1",
"label": "",
"notes": "",
"type": "compel",
"inputs": {
"prompt": {
"name": "prompt",
"label": "",
"value": ""
},
"clip": {
"name": "clip",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4014.4136788915944,
"y": -968.5677253775948
}
},
{
"id": "b3513fed-ed42-408d-b382-128fdb0de523",
"type": "invocation",
@@ -629,6 +379,104 @@
"y": -29.08699277598673
}
},
{
"id": "338b883c-3728-4f18-b3a6-6e7190c2f850",
"type": "invocation",
"data": {
"id": "338b883c-3728-4f18-b3a6-6e7190c2f850",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "i2l",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": false,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2908.4791167517287,
"y": -408.87504820159086
}
},
{
"id": "d334f2da-016a-4524-9911-bdab85546888",
"type": "invocation",
"data": {
"id": "d334f2da-016a-4524-9911-bdab85546888",
"version": "1.1.1",
"label": "",
"notes": "",
"type": "controlnet",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"control_model": {
"name": "control_model",
"label": "Control Model (select contro_v11f1e_sd15_tile)",
"value": {
"key": "773843c8-db1f-4502-8f65-59782efa7960",
"hash": "blake3:f0812e13758f91baf4e54b7dbb707b70642937d3b2098cd2b94cc36d3eba308e",
"name": "control_v11f1e_sd15_tile",
"base": "sd-1",
"type": "controlnet"
}
},
"control_weight": {
"name": "control_weight",
"label": "",
"value": 1
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "Structural Control",
"value": 1
},
"control_mode": {
"name": "control_mode",
"label": "",
"value": "more_control"
},
"resize_mode": {
"name": "resize_mode",
"label": "",
"value": "just_resize"
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2481.9569385477016,
"y": -181.06590482739782
}
},
{
"id": "1011539e-85de-4e02-a003-0b22358491b8",
"type": "invocation",
@@ -715,6 +563,52 @@
"y": -1006.415909408244
}
},
{
"id": "b76fe66f-7884-43ad-b72c-fadc81d7a73c",
"type": "invocation",
"data": {
"id": "b76fe66f-7884-43ad-b72c-fadc81d7a73c",
"version": "1.2.2",
"label": "",
"notes": "",
"type": "l2i",
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"tiled": {
"name": "tiled",
"label": "",
"value": false
},
"fp32": {
"name": "fp32",
"label": "",
"value": false
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -1999.770193862987,
"y": -1075
}
},
{
"id": "ab6f5dda-4b60-4ddf-99f2-f61fb5937527",
"type": "invocation",
@@ -885,6 +779,56 @@
"y": -78.2819050861178
}
},
{
"id": "287f134f-da8d-41d1-884e-5940e8f7b816",
"type": "invocation",
"data": {
"id": "287f134f-da8d-41d1-884e-5940e8f7b816",
"version": "1.2.2",
"label": "",
"notes": "",
"type": "ip_adapter",
"inputs": {
"image": {
"name": "image",
"label": ""
},
"ip_adapter_model": {
"name": "ip_adapter_model",
"label": "IP-Adapter Model (select ip_adapter_sd15)",
"value": {
"key": "1cc210bb-4d0a-4312-b36c-b5d46c43768e",
"hash": "blake3:3d669dffa7471b357b4df088b99ffb6bf4d4383d5e0ef1de5ec1c89728a3d5a5",
"name": "ip_adapter_sd15",
"base": "sd-1",
"type": "ip_adapter"
}
},
"weight": {
"name": "weight",
"label": "",
"value": 0.2
},
"begin_step_percent": {
"name": "begin_step_percent",
"label": "",
"value": 0
},
"end_step_percent": {
"name": "end_step_percent",
"label": "",
"value": 1
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -2855.8555540799207,
"y": -183.58854843775742
}
},
{
"id": "1f86c8bf-06f9-4e28-abee-02f46f445ac4",
"type": "invocation",
@@ -955,6 +899,30 @@
"y": -41.810810454906914
}
},
{
"id": "2ff466b8-5e2a-4d8f-923a-a3884c7ecbc5",
"type": "invocation",
"data": {
"id": "2ff466b8-5e2a-4d8f-923a-a3884c7ecbc5",
"version": "1.0.2",
"label": "",
"notes": "",
"type": "main_model_loader",
"inputs": {
"model": {
"name": "model",
"label": ""
}
},
"isOpen": true,
"isIntermediate": true,
"useCache": true
},
"position": {
"x": -4514.466823162653,
"y": -1235.7908800002283
}
},
{
"id": "f5d9bf3b-2646-4b17-9894-20fd2b4218ea",
"type": "invocation",

View File

@@ -5,8 +5,9 @@ from PIL import Image
from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.util.util import image_to_dataURL
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util.util import image_to_dataURL
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase

View File

@@ -2,11 +2,6 @@
Initialization file for invokeai.backend.image_util methods.
"""
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch # noqa: F401
from invokeai.backend.image_util.pngwriter import ( # noqa: F401
PngWriter,
PromptFormatter,
retrieve_metadata,
write_metadata,
)
from invokeai.backend.image_util.util import InitImageResizer, make_grid # noqa: F401
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@@ -2,7 +2,7 @@ import torch
from torch import nn as nn
from torch.nn import functional as F
from invokeai.backend.image_util.basicsr.arch_util import default_init_weights, make_layer, pixel_unshuffle
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
class ResidualDenseBlock(nn.Module):

View File

@@ -4,7 +4,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
from .blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"

View File

@@ -8,10 +8,11 @@ import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.dw_openpose.onnxdet import inference_detector
from invokeai.backend.image_util.dw_openpose.onnxpose import inference_pose
from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector
from .onnxpose import inference_pose
config = get_config()

View File

@@ -98,7 +98,7 @@ class UnetSkipConnectionBlock(nn.Module):
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if isinstance(norm_layer, functools.partial):
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d

View File

@@ -11,8 +11,10 @@ from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
from invokeai.backend.ip_adapter.resampler import Resampler
from invokeai.backend.raw_model import RawModel
from invokeai.backend.model_manager.load.model_size_utils import calc_module_size
from ..raw_model import RawModel
from .resampler import Resampler
class IPAdapterStateDict(TypedDict):
@@ -135,10 +137,7 @@ class IPAdapter(RawModel):
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
def calc_size(self) -> int:
# HACK(ryand): Fix this issue with circular imports.
from invokeai.backend.model_manager.load.model_util import calc_module_size
def calc_size(self):
return calc_module_size(self._image_proj_model) + calc_module_size(self.attn_weights)
def _init_image_proj_model(

View File

@@ -10,9 +10,10 @@ from safetensors.torch import load_file
from typing_extensions import Self
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
from invokeai.backend.util.devices import TorchDevice
from .raw_model import RawModel
class LoRALayerBase:
# rank: Optional[int]

View File

@@ -1,6 +1,6 @@
"""Re-export frequently-used symbols from the Model Manager backend."""
from invokeai.backend.model_manager.config import (
from .config import (
AnyModel,
AnyModelConfig,
BaseModelType,
@@ -13,9 +13,8 @@ from invokeai.backend.model_manager.config import (
SchedulerPredictionType,
SubModelType,
)
from invokeai.backend.model_manager.load import LoadedModel
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from .probe import ModelProbe
from .search import ModelSearch
__all__ = [
"AnyModel",
@@ -23,7 +22,6 @@ __all__ = [
"BaseModelType",
"ModelRepoVariant",
"InvalidModelConfigException",
"LoadedModel",
"ModelConfigFactory",
"ModelFormat",
"ModelProbe",

View File

@@ -32,9 +32,10 @@ from typing_extensions import Annotated, Any, Dict
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.raw_model import RawModel
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor], diffusers.DiffusionPipeline]

View File

@@ -0,0 +1,75 @@
import ctypes
class Struct_mallinfo2(ctypes.Structure):
"""A ctypes Structure that matches the libc mallinfo2 struct.
Docs:
- https://man7.org/linux/man-pages/man3/mallinfo.3.html
- https://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
struct mallinfo2 {
size_t arena; /* Non-mmapped space allocated (bytes) */
size_t ordblks; /* Number of free chunks */
size_t smblks; /* Number of free fastbin blocks */
size_t hblks; /* Number of mmapped regions */
size_t hblkhd; /* Space allocated in mmapped regions (bytes) */
size_t usmblks; /* See below */
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
size_t uordblks; /* Total allocated space (bytes) */
size_t fordblks; /* Total free space (bytes) */
size_t keepcost; /* Top-most, releasable space (bytes) */
};
"""
_fields_ = [
("arena", ctypes.c_size_t),
("ordblks", ctypes.c_size_t),
("smblks", ctypes.c_size_t),
("hblks", ctypes.c_size_t),
("hblkhd", ctypes.c_size_t),
("usmblks", ctypes.c_size_t),
("fsmblks", ctypes.c_size_t),
("uordblks", ctypes.c_size_t),
("fordblks", ctypes.c_size_t),
("keepcost", ctypes.c_size_t),
]
def __str__(self):
s = ""
s += f"{'arena': <10}= {(self.arena/2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
s += f"{'ordblks': <10}= {(self.ordblks): >15} # Number of free chunks\n"
s += f"{'smblks': <10}= {(self.smblks): >15} # Number of free fastbin blocks \n"
s += f"{'hblks': <10}= {(self.hblks): >15} # Number of mmapped regions \n"
s += f"{'hblkhd': <10}= {(self.hblkhd/2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
s += f"{'usmblks': <10}= {(self.usmblks): >15} # Unused\n"
s += f"{'fsmblks': <10}= {(self.fsmblks/2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
s += (
f"{'uordblks': <10}= {(self.uordblks/2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
" (GB)\n"
)
s += f"{'fordblks': <10}= {(self.fordblks/2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
s += f"{'keepcost': <10}= {(self.keepcost/2**30):15.5f} # Top-most, releasable space (GB)\n"
return s
class LibcUtil:
"""A utility class for interacting with the C Standard Library (`libc`) via ctypes.
Note that this class will raise on __init__() if 'libc.so.6' can't be found. Take care to handle environments where
this shared library is not available.
TODO: Improve cross-OS compatibility of this class.
"""
def __init__(self):
self._libc = ctypes.cdll.LoadLibrary("libc.so.6")
def mallinfo2(self) -> Struct_mallinfo2:
"""Calls `libc` `mallinfo2`.
Docs: https://man7.org/linux/man-pages/man3/mallinfo.3.html
"""
mallinfo2 = self._libc.mallinfo2
mallinfo2.restype = Struct_mallinfo2
return mallinfo2()

View File

@@ -1,27 +1 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development Team
"""
Init file for the model loader.
"""
from importlib import import_module
from pathlib import Path
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache_default import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
# This registers the subclasses that implement loaders of specific model types
loaders = [x.stem for x in Path(Path(__file__).parent, "model_loaders").glob("*.py") if x.stem != "__init__"]
for module in loaders:
import_module(f"{__package__}.model_loaders.{module}")
__all__ = [
"LoadedModel",
"LoadedModelWithoutConfig",
"ModelCache",
"ModelLoaderBase",
"ModelLoader",
"ModelLoaderRegistryBase",
"ModelLoaderRegistry",
]

View File

@@ -0,0 +1,8 @@
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
def _build_model_loader_registry():
return ModelLoaderRegistry()
MODEL_LOADER_REGISTRY = _build_model_loader_registry()

View File

@@ -15,7 +15,7 @@ from invokeai.backend.model_manager import (
from invokeai.backend.model_manager.config import DiffusersConfigBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.model_size_utils import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice

Some files were not shown because too many files have changed in this diff Show More