Compare commits

...

91 Commits

Author SHA1 Message Date
Ryan Dick
70def37280 Move quantization scripts to a scripts/ subdir. 2024-08-23 18:08:37 +00:00
Ryan Dick
8af3c72de7 Update docs for T5 quantization script. 2024-08-23 18:07:14 +00:00
Ryan Dick
6405214940 Remove all references to optimum-quanto and downgrade diffusers. 2024-08-23 18:04:17 +00:00
Ryan Dick
544ab296e7 Update the T5 8-bit quantized starter model to use the BnB LLM.int8() variant. 2024-08-23 18:04:15 +00:00
Ryan Dick
86e49c423c Fixes to the T5XXL quantization script. 2024-08-23 18:03:23 +00:00
Ryan Dick
6d838fa997 Add script for quantizing a T5 model. 2024-08-23 18:03:23 +00:00
Brandon Rising
29595ce059 Switch flux to using its own conditioning field 2024-08-23 13:50:01 -04:00
Brandon Rising
9ae190fc3e Only import bnb quantize file if bitsandbytes is installed 2024-08-23 13:36:14 -04:00
Brandon Rising
5f5f535dc0 Load and unload clip/t5 encoders and run inference separately in text encoding 2024-08-23 13:28:05 -04:00
Brandon Rising
d09269ce75 Update macos test vm to macOS-14 2024-08-22 16:28:09 -04:00
Ryan Dick
708a4f68da Run FLUX VAE decoding in the user's preferred dtype rather than float32. Tested, and seems to work well at float16. 2024-08-22 18:16:43 +00:00
Ryan Dick
08633c3f04 Move prepare_latent_image_patches(...) to sampling.py with all of the related FLUX inference code. 2024-08-22 17:18:43 +00:00
Ryan Dick
4eca99574b Rename field positive_prompt -> prompt. 2024-08-22 16:18:33 +00:00
Ryan Dick
a27250a95e Add comment about incorrect T5 Tokenizer size calculation. 2024-08-22 16:09:46 +00:00
Ryan Dick
35d8e6a05b Tidy is_schnell detection logic. 2024-08-22 16:03:54 +00:00
Ryan Dick
afd4913a1b Make FLUX get_noise(...) consistent across devices/dtypes. 2024-08-22 15:56:30 +00:00
Ryan Dick
6afb1be872 Mark FLUX nodes as prototypes. 2024-08-22 15:29:59 +00:00
Brandon Rising
001d1b6e35 Attribute black-forest-labs/flux for much of the flux code 2024-08-21 15:54:07 -04:00
Brandon Rising
9b0cb37b7c Don't install bitsandbytes on macOS 2024-08-21 15:54:07 -04:00
maryhipp
377fcaf49c added FLUX dev to starter models 2024-08-21 15:47:19 -04:00
Brandon Rising
7861c1d779 Undo changes to the v2 dir of frontend types 2024-08-21 15:44:38 -04:00
Brandon Rising
3d251b4b93 Run ruff 2024-08-21 15:37:27 -04:00
Brandon Rising
fc760d3719 Remove automatic install of models during flux model loader, remove no longer used import function on context 2024-08-21 15:34:47 -04:00
Ryan Dick
0ce9faae7d Fix max_seq_len field description. 2024-08-21 19:17:39 +00:00
Ryan Dick
42bbab74b3 Add docs to the quantization scripts. 2024-08-21 19:08:28 +00:00
Ryan Dick
203542c7a8 Update load_flux_model_bnb_llm_int8.py to work with a single-file FLUX transformer checkpoint. 2024-08-21 19:08:16 +00:00
Ryan Dick
7f62033f1f Fix bug in InvokeInt8Params that was causing it to use double the necessary VRAM. 2024-08-21 19:08:00 +00:00
maryhipp
d2cb6889c5 add better workflow name 2024-08-21 14:52:23 -04:00
maryhipp
71088623a7 add better workflow description 2024-08-21 14:49:05 -04:00
maryhipp
25482c031b fix(worker) fix T5 type 2024-08-21 14:45:46 -04:00
maryhipp
68a917aed5 update default workflow 2024-08-21 14:45:46 -04:00
Mary Hipp
04e861ba5a fix schema 2024-08-21 14:41:58 -04:00
Mary Hipp
e063008246 tsc and lint fix 2024-08-21 14:36:44 -04:00
Mary Hipp
fe636bb6ca feat(ui): create new field for t5 encoder models in nodes 2024-08-21 14:36:44 -04:00
Mary Hipp
ec6981a860 fix(ui): pass base/type when installing models, add flux formats to MM badges 2024-08-21 14:36:44 -04:00
Mary Hipp
d5a55789f9 fix(ui): only exclude flux main models from linear UI dropdown, not model manager list 2024-08-21 14:36:44 -04:00
maryhipp
09d1f75fe9 add FLUX schnell starter models and submodels as dependenices or adhoc download options 2024-08-21 14:27:35 -04:00
maryhipp
c095af65fb add case for clip embed models in probe 2024-08-21 14:27:35 -04:00
maryhipp
2c72295b1c update flux_model_loader node to take a T5 encoder from node field instead of hardcoded list, assume all models have been downloaded 2024-08-21 14:27:34 -04:00
Ryan Dick
e41025ddc7 Move requantize.py to the quatnization/ dir. 2024-08-21 18:21:44 +00:00
Ryan Dick
38c2e7801f Add docs to the requantize(...) function explaining why it was copied from optimum-quanto. 2024-08-21 18:19:47 +00:00
Ryan Dick
d11dc6ddd0 Remove duplicate log_time(...) function. 2024-08-21 18:10:24 +00:00
Brandon Rising
8b0b496c2d More flux loader cleanup 2024-08-21 12:37:25 -04:00
Brandon Rising
ada483f65e Various styling and exception type updates 2024-08-21 11:59:04 -04:00
Brandon Rising
0913d062d8 Switch inheritance class of flux model loaders 2024-08-21 11:30:16 -04:00
Brandon Rising
d4872253a1 Update doc string for import_local_model and remove access_token since it's only usable for local file paths 2024-08-21 11:18:07 -04:00
Ryan Dick
e680cf76f6 Address minor review comments. 2024-08-21 13:45:22 +00:00
Ryan Dick
253b2b1dc6 Rename t5Encoder -> t5_encoder. 2024-08-21 13:27:54 +00:00
Mary Hipp
5edec7f105 add default workflow for flux t2i 2024-08-21 09:11:17 -04:00
Mary Hipp
ae9a1549ae exclude flux models from main model dropdown 2024-08-21 09:11:17 -04:00
Brandon Rising
c819da8859 Some cleanup of the tags and description of flux nodes 2024-08-21 09:11:15 -04:00
Brandon Rising
e19f079cb2 Add t5 encoders and clip embeds to the model manager 2024-08-21 09:10:53 -04:00
Brandon Rising
dd24f83d43 Fix styling/lint 2024-08-21 09:10:22 -04:00
Brandon Rising
da766f5a7e Fix support for 8b quantized t5 encoders, update exception messages in flux loaders 2024-08-21 09:10:22 -04:00
Ryan Dick
120e1cf1e9 Add tqdm progress bar to FLUX denoising. 2024-08-21 09:10:22 -04:00
Ryan Dick
5e2351f3bf Fix FLUX output image clamping. And a few other minor fixes to make inference work with the full bfloat16 FLUX transformer model. 2024-08-21 09:10:22 -04:00
Brandon Rising
d705c3cf0e Select dev/schnell based on state dict, use correct max seq len based on dev/schnell, and shift in inference, separate vae flux params into separate config 2024-08-21 09:10:20 -04:00
Brandon Rising
115f350f6f Install sub directories with folders correctly, ensure consistent dtype of tensors in flux pipeline and vae 2024-08-21 09:09:39 -04:00
Brandon Rising
be6cb2c07c Working inference node with quantized bnb nf4 checkpoint 2024-08-21 09:09:39 -04:00
Brandon Rising
4fb5529493 Remove unused param on _run_vae_decoding in flux text to image 2024-08-21 09:09:39 -04:00
Brandon Rising
b43ee0b837 Add nf4 bnb quantized format 2024-08-21 09:09:39 -04:00
Brandon Rising
3312fe8fc4 Run ruff, setup initial text to image node 2024-08-21 09:09:39 -04:00
Brandon Rising
01a2449dae Add backend functions and classes for Flux implementation, Update the way flux encoders/tokenizers are loaded for prompt encoding, Update way flux vae is loaded 2024-08-21 09:09:37 -04:00
Brandon Rising
cfe9d0ce0a Some UI cleanup, regenerate schema 2024-08-21 09:08:22 -04:00
Brandon Rising
46b6314482 Run Ruff 2024-08-21 09:06:38 -04:00
Brandon Rising
46d5107ff1 Run Ruff 2024-08-21 09:06:38 -04:00
Brandon Rising
6ea1278d22 Manage quantization of models within the loader 2024-08-21 09:06:34 -04:00
Brandon Rising
4556b57382 Remove changes to v1 workflow 2024-08-21 09:04:40 -04:00
Brandon Rising
f425d3aa3c Setup flux model loading in the UI 2024-08-21 09:04:37 -04:00
Ryan Dick
d7a39a4d67 WIP on moving from diffusers to FLUX 2024-08-21 08:59:19 -04:00
Ryan Dick
3e8a550fab More improvements for LLM.int8() - not fully tested. 2024-08-21 08:59:19 -04:00
Ryan Dick
0e96794c6e LLM.int8() quantization is working, but still some rough edges to solve. 2024-08-21 08:59:19 -04:00
Ryan Dick
23a7328a66 Clean up NF4 implementation. 2024-08-21 08:59:19 -04:00
Ryan Dick
c3cf8c3b6b NF4 inference working 2024-08-21 08:59:19 -04:00
Ryan Dick
110d58d107 NF4 loading working... I think. 2024-08-21 08:59:19 -04:00
Ryan Dick
3480e06688 wip 2024-08-21 08:59:19 -04:00
Ryan Dick
3ba60e1656 Split a FluxTextEncoderInvocation out from the FluxTextToImageInvocation. This has the advantage that we benfit from automatic caching when the prompt isn't changed. 2024-08-21 08:59:19 -04:00
Ryan Dick
cdd47b657b Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-21 08:59:19 -04:00
Ryan Dick
68c712d254 Make quantized loading fast. 2024-08-21 08:59:19 -04:00
Ryan Dick
44d7a74b88 WIP - experimentation 2024-08-21 08:59:19 -04:00
Ryan Dick
e8fb8f4d12 Make float16 inference work with FLUX on 24GB GPU. 2024-08-21 08:59:19 -04:00
Ryan Dick
9381211508 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-21 08:59:19 -04:00
Ryan Dick
8cce4a40d4 Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-21 08:59:19 -04:00
Ryan Dick
4833746698 Minor improvements to FLUX workflow. 2024-08-21 08:59:19 -04:00
Ryan Dick
8b9bf55bba Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-21 08:59:19 -04:00
Ryan Dick
7b199fed4f Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-21 08:59:18 -04:00
Ryan Dick
4c7bb06f13 Add sentencepiece dependency for the T5 tokenizer. 2024-08-21 08:59:18 -04:00
Ryan Dick
13513465c8 First draft of FluxTextToImageInvocation. 2024-08-21 08:59:18 -04:00
Ryan Dick
d5a949e6c3 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-21 08:59:18 -04:00
Ryan Dick
eb38295263 Update imports for compatibility with bumped diffusers version. 2024-08-21 08:59:18 -04:00
Ryan Dick
73ae85cdea Bump diffusers version to include FLUX support. 2024-08-21 08:59:18 -04:00
57 changed files with 3656 additions and 71 deletions

View File

@@ -60,7 +60,7 @@ jobs:
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
os: macOS-14
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022

View File

@@ -40,6 +40,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
@@ -48,6 +49,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
@@ -125,13 +127,16 @@ class FieldDescriptions:
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
@@ -231,6 +236,12 @@ class ColorField(BaseModel):
return (self.r, self.g, self.b, self.a)
class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""

View File

@@ -0,0 +1,86 @@
from typing import Literal
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@invocation(
"flux_text_encoder",
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a flux image."""
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
t5_embeddings, clip_embeddings = self._encode_prompt(context)
conditioning_data = ConditioningFieldData(
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
def _encode_prompt(self, context: InvocationContext) -> tuple[torch.Tensor, torch.Tensor]:
# Load CLIP.
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
# Load T5.
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
prompt_embeds = t5_encoder(prompt)
with (
clip_text_encoder_info as clip_text_encoder,
clip_tokenizer_info as clip_tokenizer,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds

View File

@@ -0,0 +1,141 @@
import torch
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, prepare_latent_img_patches, unpack
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image", "flux"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommend values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
latents = self._run_diffusion(context, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds)
image = self._run_vae_decoding(context, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _run_diffusion(
self,
context: InvocationContext,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
transformer_info = context.models.load(self.transformer.transformer)
inference_dtype = torch.bfloat16
# Prepare input noise.
x = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
img, img_ids = prepare_latent_img_patches(x)
is_schnell = "schnell" in transformer_info.config.config_path
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=img.shape[1],
shift=not is_schnell,
)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
with transformer_info as transformer:
assert isinstance(transformer, Flux)
x = denoise(
model=transformer,
img=img,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
guidance=self.guidance,
)
x = unpack(x.float(), self.height, self.width)
return x
def _run_vae_decoding(
self,
context: InvocationContext,
latents: torch.Tensor,
) -> Image.Image:
vae_info = context.models.load(self.vae.vae)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
latents = latents.to(dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c")
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil

View File

@@ -1,6 +1,7 @@
import copy
from typing import List, Optional
from typing import List, Literal, Optional
import yaml
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
@@ -13,7 +14,13 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
ModelType,
SubModelType,
)
class ModelIdentifierField(BaseModel):
@@ -60,6 +67,15 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@@ -122,6 +138,116 @@ class ModelIdentifierInvocation(BaseInvocation):
return ModelIdentifierOutput(model=self.model)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.3",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder,
ui_type=UIType.T5EncoderModel,
input=Input.Direct,
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
model_key = self.model.key
if not context.models.exists(model_key):
raise ValueError(f"Unknown model: {model_key}")
transformer = self._get_model(context, SubModelType.Transformer)
tokenizer = self._get_model(context, SubModelType.Tokenizer)
tokenizer2 = self._get_model(context, SubModelType.Tokenizer2)
clip_encoder = self._get_model(context, SubModelType.TextEncoder)
t5_encoder = self._get_model(context, SubModelType.TextEncoder2)
vae = self._get_model(context, SubModelType.VAE)
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
legacy_config_path = context.config.get().legacy_conf_path / transformer_config.config_path
config_path = legacy_config_path.as_posix()
with open(config_path, "r") as stream:
flux_conf = yaml.safe_load(stream)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=flux_conf["max_seq_len"],
)
def _get_model(self, context: InvocationContext, submodel: SubModelType) -> ModelIdentifierField:
match submodel:
case SubModelType.Transformer:
return self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
case SubModelType.VAE:
return self._pull_model_from_mm(
context,
SubModelType.VAE,
"FLUX.1-schnell_ae",
ModelType.VAE,
BaseModelType.Flux,
)
case submodel if submodel in [SubModelType.Tokenizer, SubModelType.TextEncoder]:
return self._pull_model_from_mm(
context,
submodel,
"clip-vit-large-patch14",
ModelType.CLIPEmbed,
BaseModelType.Any,
)
case submodel if submodel in [SubModelType.Tokenizer2, SubModelType.TextEncoder2]:
return self._pull_model_from_mm(
context,
submodel,
self.t5_encoder.name,
ModelType.T5Encoder,
BaseModelType.Any,
)
case _:
raise Exception(f"{submodel.value} is not a supported submodule for a flux model")
def _pull_model_from_mm(
self,
context: InvocationContext,
submodel: SubModelType,
name: str,
type: ModelType,
base: BaseModelType,
):
if models := context.models.search_by_attrs(name=name, base=base, type=type):
if len(models) != 1:
raise Exception(f"Multiple models detected for selected model with name {name}")
return ModelIdentifierField.from_config(models[0]).model_copy(update={"submodel_type": submodel})
else:
raise ValueError(f"Please install the {base}:{type} model named {name} via starter models")
@invocation(
"main_model_loader",
title="Main Model",

View File

@@ -12,6 +12,7 @@ from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
ImageField,
Input,
InputField,
@@ -414,6 +415,17 @@ class MaskOutput(BaseInvocationOutput):
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("flux_conditioning_output")
class FluxConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
conditioning: FluxConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "FluxConditioningOutput":
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""

View File

@@ -783,8 +783,9 @@ class ModelInstallService(ModelInstallServiceBase):
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
path_to_remove = top / subfolder # sdxl-turbo/vae/
subfolder_rename = subfolder.name.replace("/", "_").replace("\\", "_")
path_to_add = Path(f"{top}_{subfolder_rename}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")

View File

@@ -77,6 +77,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
type: Optional[ModelType] = Field(description="Type of model", default=None)
key: Optional[str] = Field(description="Database ID for this model", default=None)
hash: Optional[str] = Field(description="hash of model file", default=None)
format: Optional[str] = Field(description="format of model file", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None

View File

@@ -0,0 +1,262 @@
{
"name": "FLUX Text to Image",
"author": "InvokeAI",
"description": "A simple text-to-image workflow using FLUX dev or schnell models. Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. These can be found in the starter models tab within your Model Manager.",
"version": "1.0.0",
"contact": "",
"tags": "text2image, flux",
"notes": "",
"exposedFields": [
{
"nodeId": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"fieldName": "model"
},
{
"nodeId": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"fieldName": "t5_encoder"
},
{
"nodeId": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"fieldName": "positive_prompt"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"nodes": [
{
"id": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"type": "invocation",
"data": {
"id": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"type": "flux_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"clip": {
"name": "clip",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"t5_max_seq_len": {
"name": "t5_max_seq_len",
"label": "",
"value": 256
},
"positive_prompt": {
"name": "positive_prompt",
"label": "",
"value": ""
}
}
},
"position": {
"x": 817.9049777916891,
"y": 137.19130248771572
}
},
{
"id": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"type": "invocation",
"data": {
"id": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"type": "flux_model_loader",
"version": "1.0.3",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"model": {
"name": "model",
"label": "",
"value": {
"key": "a1deb125-2781-482c-8a71-9a22e76fd956",
"hash": "random:40bd0a5b8b2c6edf8f5611e049000329b952efc6a1a24b4f77ca4ae3dbecaf6a",
"name": "flux1-schnell-bnb_nf4",
"base": "flux",
"type": "main"
}
},
"t5_encoder": {
"name": "t5_encoder",
"label": "T5 Encoder (Model Manager -> Starter Models)",
"value": {
"key": "798baafd-63bd-4799-8600-5db43662f3aa",
"hash": "random:4495f3ac1650e9d5969c365e951a9cffee526573a15f9f4c997e1c63550444fd",
"name": "t5_8b_quantized_encoder",
"base": "any",
"type": "t5_encoder"
}
}
}
},
"position": {
"x": 343.41871407356723,
"y": -1.0211223664301414
}
},
{
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "invocation",
"data": {
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 822.9899179655476,
"y": 360.9657214885052
}
},
{
"id": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"type": "invocation",
"data": {
"id": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"type": "flux_text_to_image",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": false,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"transformer": {
"name": "transformer",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
},
"positive_text_conditioning": {
"name": "positive_text_conditioning",
"label": ""
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"num_steps": {
"name": "num_steps",
"label": "",
"value": 4
},
"guidance": {
"name": "guidance",
"label": "",
"value": 4
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 1216.3900791301849,
"y": 5.500841807102248
}
}
],
"edges": [
{
"id": "reactflow__edge-0fa90f47-79cd-4d84-9445-f0b1065e0c3cconditioning-159bdf1b-79e7-4174-b86e-d40e646964c8positive_text_conditioning",
"type": "default",
"source": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"sourceHandle": "conditioning",
"targetHandle": "positive_text_conditioning"
},
{
"id": "reactflow__edge-fd1274a3-c56d-4a96-aa21-83d14c920f08max_seq_len-0fa90f47-79cd-4d84-9445-f0b1065e0c3ct5_max_seq_len",
"type": "default",
"source": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"target": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"sourceHandle": "max_seq_len",
"targetHandle": "t5_max_seq_len"
},
{
"id": "reactflow__edge-fd1274a3-c56d-4a96-aa21-83d14c920f08t5_encoder-0fa90f47-79cd-4d84-9445-f0b1065e0c3ct5_encoder",
"type": "default",
"source": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"target": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-fd1274a3-c56d-4a96-aa21-83d14c920f08clip-0fa90f47-79cd-4d84-9445-f0b1065e0c3cclip",
"type": "default",
"source": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"target": "0fa90f47-79cd-4d84-9445-f0b1065e0c3c",
"sourceHandle": "clip",
"targetHandle": "clip"
},
{
"id": "reactflow__edge-fd1274a3-c56d-4a96-aa21-83d14c920f08vae-159bdf1b-79e7-4174-b86e-d40e646964c8vae",
"type": "default",
"source": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-fd1274a3-c56d-4a96-aa21-83d14c920f08transformer-159bdf1b-79e7-4174-b86e-d40e646964c8transformer",
"type": "default",
"source": "fd1274a3-c56d-4a96-aa21-83d14c920f08",
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-159bdf1b-79e7-4174-b86e-d40e646964c8seed",
"type": "default",
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
"target": "159bdf1b-79e7-4174-b86e-d40e646964c8",
"sourceHandle": "value",
"targetHandle": "seed"
}
]
}

View File

@@ -0,0 +1,32 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import torch
from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -0,0 +1,117 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img

View File

@@ -0,0 +1,314 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: list[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
def swish(x: Tensor) -> Tensor:
return x * torch.sigmoid(x)
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __init__(self, sample: bool = True, chunk_dim: int = 1):
super().__init__()
self.sample = sample
self.chunk_dim = chunk_dim
def forward(self, z: Tensor) -> Tensor:
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if self.sample:
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian()
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
def encode(self, x: Tensor) -> Tensor:
z = self.reg(self.encoder(x))
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: Tensor) -> Tensor:
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def forward(self, x: Tensor) -> Tensor:
return self.decode(self.encode(x))

View File

@@ -0,0 +1,33 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
super().__init__()
self.max_length = max_length
self.is_clip = is_clip
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
self.tokenizer = tokenizer
self.hf_module = encoder
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key]

View File

@@ -0,0 +1,253 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from invokeai.backend.flux.math import attention, rope
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

View File

@@ -0,0 +1,174 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from typing import Callable
import torch
from einops import rearrange, repeat
from torch import Tensor
from tqdm import tqdm
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.conditioner import HFEncoder
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def prepare(t5: HFEncoder, clip: HFEncoder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
guidance: float = 4.0,
):
dtype = model.txt_in.bias.dtype
# TODO(ryand): This shouldn't be necessary if we manage the dtypes properly in the caller.
img = img.to(dtype=dtype)
img_ids = img_ids.to(dtype=dtype)
txt = txt.to(dtype=dtype)
txt_ids = txt_ids.to(dtype=dtype)
vec = vec.to(dtype=dtype)
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
img = img + (t_prev - t_curr) * pred
return img
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
def prepare_latent_img_patches(latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert an input image in latent space to patches for diffusion.
This implementation was extracted from:
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
Returns:
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
"""
bs, c, h, w = latent_img.shape
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
# Generate patch position ids.
img_ids = torch.zeros(h // 2, w // 2, 3, device=img.device)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=img.device)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=img.device)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return img, img_ids

View File

@@ -52,6 +52,7 @@ class BaseModelType(str, Enum):
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
# Kandinsky2_1 = "kandinsky-2.1"
@@ -66,7 +67,9 @@ class ModelType(str, Enum):
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
CLIPEmbed = "clip_embed"
T2IAdapter = "t2i_adapter"
T5Encoder = "t5_encoder"
SpandrelImageToImage = "spandrel_image_to_image"
@@ -74,6 +77,7 @@ class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
@@ -104,6 +108,10 @@ class ModelFormat(str, Enum):
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
T5Encoder = "t5_encoder"
T5Encoder8b = "t5_encoder_8b"
T5Encoder4b = "t5_encoder_4b"
BnbQuantizednf4b = "bnb_quantized_nf4b"
class SchedulerPredictionType(str, Enum):
@@ -186,7 +194,9 @@ class ModelConfigBase(BaseModel):
class CheckpointConfigBase(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
format: Literal[ModelFormat.Checkpoint, ModelFormat.BnbQuantizednf4b] = Field(
description="Format of the provided checkpoint model", default=ModelFormat.Checkpoint
)
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
@@ -205,6 +215,26 @@ class LoRAConfigBase(ModelConfigBase):
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class T5EncoderConfigBase(ModelConfigBase):
type: Literal[ModelType.T5Encoder] = ModelType.T5Encoder
class T5EncoderConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.T5Encoder] = ModelFormat.T5Encoder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.T5Encoder.value}")
class T5Encoder8bConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.T5Encoder8b] = ModelFormat.T5Encoder8b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.T5Encoder8b.value}")
class LoRALyCORISConfig(LoRAConfigBase):
"""Model config for LoRA/Lycoris models."""
@@ -229,7 +259,6 @@ class VAECheckpointConfig(CheckpointConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
@@ -268,7 +297,6 @@ class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase)
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
@@ -317,6 +345,21 @@ class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
class MainBnbQuantized4bCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.format = ModelFormat.BnbQuantizednf4b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.BnbQuantizednf4b.value}")
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
"""Model config for main diffusers models."""
@@ -350,6 +393,17 @@ class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
"""Model config for Clip Embeddings."""
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@@ -408,12 +462,15 @@ AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[MainBnbQuantized4bCheckpointConfig, MainBnbQuantized4bCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
Annotated[T5Encoder8bConfig, T5Encoder8bConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
@@ -421,6 +478,7 @@ AnyModelConfig = Annotated[
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -0,0 +1,259 @@
# Copyright (c) 2024, Brandon W. Rising and the InvokeAI Development Team
"""Class for Flux model loading in InvokeAI."""
from dataclasses import fields
from pathlib import Path
from typing import Any, Optional
import accelerate
import torch
import yaml
from safetensors.torch import load_file
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.flux.model import Flux, FluxParams
from invokeai.backend.flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
CLIPEmbedDiffusersConfig,
MainBnbQuantized4bCheckpointConfig,
MainCheckpointConfig,
T5Encoder8bConfig,
T5EncoderConfig,
VAECheckpointConfig,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
from invokeai.backend.util.silence_warnings import SilenceWarnings
try:
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
bnb_nf4_available = True
except ImportError:
bnb_nf4_available = False
app_config = get_config()
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class FluxVAELoader(ModelLoader):
"""Class to load VAE models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, VAECheckpointConfig):
raise ValueError("Only VAECheckpointConfig models are currently supported here.")
model_path = Path(config.path)
legacy_config_path = app_config.legacy_conf_path / config.config_path
config_path = legacy_config_path.as_posix()
with open(config_path, "r") as stream:
flux_conf = yaml.safe_load(stream)
dataclass_fields = {f.name for f in fields(AutoEncoderParams)}
filtered_data = {k: v for k, v in flux_conf["params"].items() if k in dataclass_fields}
params = AutoEncoderParams(**filtered_data)
with SilenceWarnings():
model = AutoEncoder(params)
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
model.to(dtype=self._torch_dtype)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.CLIPEmbed, format=ModelFormat.Diffusers)
class ClipCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CLIPEmbedDiffusersConfig):
raise ValueError("Only CLIPEmbedDiffusersConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer:
return CLIPTokenizer.from_pretrained(config.path)
case SubModelType.TextEncoder:
return CLIPTextModel.from_pretrained(config.path)
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.T5Encoder8b)
class T5Encoder8bCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, T5Encoder8bConfig):
raise ValueError("Only T5Encoder8bConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2:
te2_model_path = Path(config.path) / "text_encoder_2"
model_config = AutoConfig.from_pretrained(te2_model_path)
with accelerate.init_empty_weights():
model = AutoModelForTextEncoding.from_config(model_config)
model = quantize_model_llm_int8(model, modules_to_not_convert=set())
state_dict_path = te2_model_path / "bnb_llm_int8_model.safetensors"
state_dict = load_file(state_dict_path)
self._load_state_dict_into_t5(model, state_dict)
return model
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@classmethod
def _load_state_dict_into_t5(cls, model: T5EncoderModel, state_dict: dict[str, torch.Tensor]):
# There is a shared reference to a single weight tensor in the model.
# Both "encoder.embed_tokens.weight" and "shared.weight" refer to the same tensor, so only the latter should
# be present in the state_dict.
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False, assign=True)
assert len(unexpected_keys) == 0
assert set(missing_keys) == {"encoder.embed_tokens.weight"}
# Assert that the layers we expect to be shared are actually shared.
assert model.encoder.embed_tokens.weight is model.shared.weight
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.T5Encoder)
class T5EncoderCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, T5EncoderConfig):
raise ValueError("Only T5EncoderConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2:
return T5EncoderModel.from_pretrained(
Path(config.path) / "text_encoder_2"
) # TODO: Fix hf subfolder install
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.Checkpoint)
class FluxCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
legacy_config_path = app_config.legacy_conf_path / config.config_path
config_path = legacy_config_path.as_posix()
with open(config_path, "r") as stream:
flux_conf = yaml.safe_load(stream)
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config, flux_conf)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
flux_conf: Any,
) -> AnyModel:
assert isinstance(config, MainCheckpointConfig)
model_path = Path(config.path)
dataclass_fields = {f.name for f in fields(FluxParams)}
filtered_data = {k: v for k, v in flux_conf["params"].items() if k in dataclass_fields}
params = FluxParams(**filtered_data)
with SilenceWarnings():
model = Flux(params)
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.BnbQuantizednf4b)
class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
legacy_config_path = app_config.legacy_conf_path / config.config_path
config_path = legacy_config_path.as_posix()
with open(config_path, "r") as stream:
flux_conf = yaml.safe_load(stream)
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config, flux_conf)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
flux_conf: Any,
) -> AnyModel:
assert isinstance(config, MainBnbQuantized4bCheckpointConfig)
if not bnb_nf4_available:
raise ImportError(
"The bnb_nf4 module is not available. Please install bitsandbytes if available on your platform."
)
model_path = Path(config.path)
dataclass_fields = {f.name for f in fields(FluxParams)}
filtered_data = {k: v for k, v in flux_conf["params"].items() if k in dataclass_fields}
params = FluxParams(**filtered_data)
with SilenceWarnings():
with accelerate.init_empty_weights():
model = Flux(params)
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
return model

View File

@@ -78,7 +78,12 @@ class GenericDiffusersLoader(ModelLoader):
# TO DO: Add exception handling
def _hf_definition_to_type(self, module: str, class_name: str) -> ModelMixin: # fix with correct type
if module in ["diffusers", "transformers"]:
if module in [
"diffusers",
"transformers",
"invokeai.backend.quantization.fast_quantized_transformers_model",
"invokeai.backend.quantization.fast_quantized_diffusion_model",
]:
res_type = sys.modules[module]
else:
res_type = sys.modules["diffusers"].pipelines

View File

@@ -36,8 +36,18 @@ VARIANT_TO_IN_CHANNEL_MAP = {
}
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Diffusers
)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Checkpoint
)
class StableDiffusionDiffusersModel(GenericDiffusersLoader):
"""Class to load main models."""

View File

@@ -9,7 +9,7 @@ from typing import Optional
import torch
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from transformers import CLIPTokenizer, T5Tokenizer, T5TokenizerFast
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
@@ -50,6 +50,17 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
),
):
return model.calc_size()
elif isinstance(
model,
(
T5TokenizerFast,
T5Tokenizer,
),
):
# HACK(ryand): len(model) just returns the vocabulary size, so this is blatantly wrong. It should be small
# relative to the text encoder that it's used with, so shouldn't matter too much, but we should fix this at some
# point.
return len(model)
else:
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the
# supported model types.

View File

@@ -95,6 +95,7 @@ class ModelProbe(object):
}
CLASS2TYPE = {
"FluxPipeline": ModelType.Main,
"StableDiffusionPipeline": ModelType.Main,
"StableDiffusionInpaintPipeline": ModelType.Main,
"StableDiffusionXLPipeline": ModelType.Main,
@@ -106,6 +107,7 @@ class ModelProbe(object):
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
"CLIPModel": ModelType.CLIPEmbed,
}
@classmethod
@@ -161,7 +163,7 @@ class ModelProbe(object):
fields["description"] = (
fields.get("description") or f"{fields['base'].value} {model_type.value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["format"] = ModelFormat(fields.get("format")) if "format" in fields else probe.get_format()
fields["hash"] = fields.get("hash") or ModelHash(algorithm=hash_algo).hash(model_path)
fields["default_settings"] = fields.get("default_settings")
@@ -176,10 +178,10 @@ class ModelProbe(object):
fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant()
# additional fields needed for main and controlnet models
if (
fields["type"] in [ModelType.Main, ModelType.ControlNet, ModelType.VAE]
and fields["format"] is ModelFormat.Checkpoint
):
if fields["type"] in [ModelType.Main, ModelType.ControlNet, ModelType.VAE] and fields["format"] in [
ModelFormat.Checkpoint,
ModelFormat.BnbQuantizednf4b,
]:
ckpt_config_path = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
@@ -222,7 +224,8 @@ class ModelProbe(object):
ckpt = ckpt.get("state_dict", ckpt)
for key in [str(k) for k in ckpt.keys()]:
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.")):
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.", "double_blocks.")):
# Keys starting with double_blocks are associated with Flux models
return ModelType.Main
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
return ModelType.VAE
@@ -321,10 +324,19 @@ class ModelProbe(object):
return possible_conf.absolute()
if model_type is ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
config_file = f"stable-diffusion/{config_file}"
if base_type == BaseModelType.Flux:
# TODO: Decide between dev/schnell
checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
state_dict = checkpoint.get("state_dict") or checkpoint
if "guidance_in.out_layer.weight" in state_dict:
config_file = "flux/flux1-dev.yaml"
else:
config_file = "flux/flux1-schnell.yaml"
else:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
config_file = f"stable-diffusion/{config_file}"
elif model_type is ModelType.ControlNet:
config_file = (
"controlnet/cldm_v15.yaml"
@@ -333,7 +345,9 @@ class ModelProbe(object):
)
elif model_type is ModelType.VAE:
config_file = (
"stable-diffusion/v1-inference.yaml"
"flux/flux1-vae.yaml"
if base_type is BaseModelType.Flux
else "stable-diffusion/v1-inference.yaml"
if base_type is BaseModelType.StableDiffusion1
else "stable-diffusion/sd_xl_base.yaml"
if base_type is BaseModelType.StableDiffusionXL
@@ -416,11 +430,15 @@ class CheckpointProbeBase(ProbeBase):
self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
def get_format(self) -> ModelFormat:
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
if "double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict:
return ModelFormat.BnbQuantizednf4b
return ModelFormat("checkpoint")
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
if model_type != ModelType.Main:
base_type = self.get_base_type()
if model_type != ModelType.Main or base_type == BaseModelType.Flux:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
@@ -440,6 +458,8 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
if "double_blocks.0.img_attn.norm.key_norm.scale" in state_dict:
return BaseModelType.Flux
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
@@ -482,6 +502,7 @@ class VaeCheckpointProbe(CheckpointProbeBase):
(r"xl", BaseModelType.StableDiffusionXL),
(r"sd2", BaseModelType.StableDiffusion2),
(r"vae", BaseModelType.StableDiffusion1),
(r"FLUX.1-schnell_ae", BaseModelType.Flux),
]:
if re.search(regexp, self.model_path.name, re.IGNORECASE):
return basetype
@@ -713,6 +734,11 @@ class TextualInversionFolderProbe(FolderProbeBase):
return TextualInversionCheckpointProbe(path).get_base_type()
class T5EncoderFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat.T5Encoder
class ONNXFolderProbe(PipelineFolderProbe):
def get_base_type(self) -> BaseModelType:
# Due to the way the installer is set up, the configuration file for safetensors
@@ -805,6 +831,11 @@ class CLIPVisionFolderProbe(FolderProbeBase):
return BaseModelType.Any
class CLIPEmbedFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
return BaseModelType.Any
class SpandrelImageToImageFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
@@ -835,8 +866,10 @@ ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T5Encoder, T5EncoderFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPEmbed, CLIPEmbedFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.SpandrelImageToImage, SpandrelImageToImageFolderProbe)

View File

@@ -2,7 +2,7 @@ from typing import Optional
from pydantic import BaseModel
from invokeai.backend.model_manager.config import BaseModelType, ModelType
from invokeai.backend.model_manager.config import BaseModelType, ModelFormat, ModelType
class StarterModelWithoutDependencies(BaseModel):
@@ -11,6 +11,7 @@ class StarterModelWithoutDependencies(BaseModel):
name: str
base: BaseModelType
type: ModelType
format: Optional[ModelFormat] = None
is_installed: bool = False
@@ -51,10 +52,76 @@ cyberrealistic_negative = StarterModel(
type=ModelType.TextualInversion,
)
t5_base_encoder = StarterModel(
name="t5_base_encoder",
base=BaseModelType.Any,
source="InvokeAI/t5-v1_1-xxl::bfloat16",
description="T5-XXL text encoder (used in FLUX pipelines). ~8GB",
type=ModelType.T5Encoder,
)
t5_8b_quantized_encoder = StarterModel(
name="t5_bnb_int8_quantized_encoder",
base=BaseModelType.Any,
source="InvokeAI/t5-v1_1-xxl::bnb_llm_int8",
description="T5-XXL text encoder with bitsandbytes LLM.int8() quantization (used in FLUX pipelines). ~5GB",
type=ModelType.T5Encoder,
format=ModelFormat.T5Encoder8b,
)
clip_l_encoder = StarterModel(
name="clip-vit-large-patch14",
base=BaseModelType.Any,
source="openai/clip-vit-large-patch14",
description="CLIP-L text encoder (used in FLUX pipelines). ~3GB",
type=ModelType.CLIPEmbed,
)
flux_vae = StarterModel(
name="FLUX.1-schnell_ae",
base=BaseModelType.Flux,
source="black-forest-labs/FLUX.1-schnell::ae.safetensors",
description="FLUX VAE compatible with both schnell and dev variants.",
type=ModelType.VAE,
)
# List of starter models, displayed on the frontend.
# The order/sort of this list is not changed by the frontend - set it how you want it here.
STARTER_MODELS: list[StarterModel] = [
# region: Main
StarterModel(
name="FLUX Schnell (Quantized)",
base=BaseModelType.Flux,
source="InvokeAI/flux_schnell::transformer/bnb_nf4/flux1-schnell-bnb_nf4.safetensors",
description="FLUX schnell transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~14GB",
type=ModelType.Main,
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
),
StarterModel(
name="FLUX Dev (Quantized)",
base=BaseModelType.Flux,
source="InvokeAI/flux_dev::transformer/bnb_nf4/flux1-dev-bnb_nf4.safetensors",
description="FLUX dev transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~16GB",
type=ModelType.Main,
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
),
StarterModel(
name="FLUX Schnell",
base=BaseModelType.Flux,
source="InvokeAI/flux_schnell::transformer/base/flux1-schnell.safetensors",
description="FLUX schnell transformer in bfloat16. Total size with dependencies: ~33GB",
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
),
StarterModel(
name="FLUX Dev",
base=BaseModelType.Flux,
source="InvokeAI/flux_dev::transformer/base/flux1-dev.safetensors",
description="FLUX dev transformer in bfloat16. Total size with dependencies: ~34GB",
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
),
StarterModel(
name="CyberRealistic v4.1",
base=BaseModelType.StableDiffusion1,
@@ -125,6 +192,7 @@ STARTER_MODELS: list[StarterModel] = [
# endregion
# region VAE
sdxl_fp16_vae_fix,
flux_vae,
# endregion
# region LoRA
StarterModel(
@@ -450,6 +518,11 @@ STARTER_MODELS: list[StarterModel] = [
type=ModelType.SpandrelImageToImage,
),
# endregion
# region TextEncoders
t5_base_encoder,
t5_8b_quantized_encoder,
clip_l_encoder,
# endregion
]
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"

View File

@@ -54,6 +54,7 @@ def filter_files(
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
)
):
paths.append(file)
@@ -62,13 +63,13 @@ def filter_files(
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
paths.append(file)
# limit search to subfolder if requested
if subfolder:
subfolder = root / subfolder
paths = [x for x in paths if x.parent == Path(subfolder)]
paths = [x for x in paths if Path(subfolder) in x.parents]
# _filter_by_variant uniquifies the paths and returns a set
return sorted(_filter_by_variant(paths, variant))
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
if variant == ModelRepoVariant.Flax:
result.add(path)
elif path.suffix in [".json", ".txt"]:
# Note: '.model' was added to support:
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
elif path.suffix in [".json", ".txt", ".model"]:
result.add(path)
elif variant in [
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
continue
for candidate_list in subfolder_weights.values():
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
if not at_least_one_fp16:
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
# we'll simply keep all the candidates. An example of a model that hits this case is
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
for candidate in candidate_list:
result.add(candidate.path)
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
result.add(highest_score_candidate.path)

View File

@@ -0,0 +1,125 @@
import bitsandbytes as bnb
import torch
# This file contains utils for working with models that use bitsandbytes LLM.int8() quantization.
# The utils in this file are partially inspired by:
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
# cleaner by re-implementing bnb.nn.Linear8bitLt with proper use of buffers and less magic. But, for now, we try to
# stick close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
class InvokeInt8Params(bnb.nn.Int8Params):
"""We override cuda() to avoid re-quantizing the weights in the following cases:
- We loaded quantized weights from a state_dict on the cpu, and then moved the model to the gpu.
- We are moving the model back-and-forth between the cpu and gpu.
"""
def cuda(self, device):
if self.has_fp16_weights:
return super().cuda(device)
elif self.CB is not None and self.SCB is not None:
self.data = self.data.cuda()
self.CB = self.data
self.SCB = self.SCB.cuda()
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.data = CB
self.CB = CB
self.SCB = SCB
return self
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
def _load_from_state_dict(
self,
state_dict: dict[str, torch.Tensor],
prefix: str,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias", None)
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
scb = state_dict.pop(prefix + "SCB", None)
# weight_format is unused, but we pop it so we can validate that there are no unexpected keys.
_weight_format = state_dict.pop(prefix + "weight_format", None)
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
# rather than raising an exception to correctly implement this API.
assert len(state_dict) == 0
if scb is not None:
# We are loading a pre-quantized state dict.
self.weight = InvokeInt8Params(
data=weight,
requires_grad=self.weight.requires_grad,
has_fp16_weights=False,
# Note: After quantization, CB is the same as weight.
CB=weight,
SCB=scb,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
else:
# We are loading a non-quantized state dict.
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
self.weight = InvokeInt8Params(
data=weight,
requires_grad=self.weight.requires_grad,
has_fp16_weights=False,
CB=None,
SCB=None,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
def _convert_linear_layers_to_llm_8bit(
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
) -> None:
"""Convert all linear layers in the module to bnb.nn.Linear8bitLt layers."""
for name, child in module.named_children():
fullname = f"{prefix}.{name}" if prefix else name
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
has_bias = child.bias is not None
replacement = InvokeLinear8bitLt(
child.in_features,
child.out_features,
bias=has_bias,
has_fp16_weights=False,
threshold=outlier_threshold,
)
replacement.weight.data = child.weight.data
if has_bias:
replacement.bias.data = child.bias.data
replacement.requires_grad_(False)
module.__setattr__(name, replacement)
else:
_convert_linear_layers_to_llm_8bit(
child, ignore_modules, outlier_threshold=outlier_threshold, prefix=fullname
)
def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], outlier_threshold: float = 6.0):
"""Apply bitsandbytes LLM.8bit() quantization to the model."""
_convert_linear_layers_to_llm_8bit(
module=model, ignore_modules=modules_to_not_convert, outlier_threshold=outlier_threshold
)
return model

View File

@@ -0,0 +1,156 @@
import bitsandbytes as bnb
import torch
# This file contains utils for working with models that use bitsandbytes NF4 quantization.
# The utils in this file are partially inspired by:
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
# cleaner by re-implementing bnb.nn.LinearNF4 with proper use of buffers and less magic. But, for now, we try to stick
# close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
class InvokeLinearNF4(bnb.nn.LinearNF4):
"""A class that extends `bnb.nn.LinearNF4` to add the following functionality:
- Ability to load Linear NF4 layers from a pre-quantized state_dict.
- Ability to load Linear NF4 layers from a state_dict when the model is on the "meta" device.
"""
def _load_from_state_dict(
self,
state_dict: dict[str, torch.Tensor],
prefix: str,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""This method is based on the logic in the bitsandbytes serialization unit tests for `Linear4bit`:
https://github.com/bitsandbytes-foundation/bitsandbytes/blob/6d714a5cce3db5bd7f577bc447becc7a92d5ccc7/tests/test_linear4bit.py#L52-L71
"""
weight = state_dict.pop(prefix + "weight")
bias = state_dict.pop(prefix + "bias", None)
# We expect the remaining keys to be quant_state keys.
quant_state_sd = state_dict
# During serialization, the quant_state is stored as subkeys of "weight." (See
# `bnb.nn.LinearNF4._save_to_state_dict()`). We validate that they at least have the correct prefix.
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
# rather than raising an exception to correctly implement this API.
assert all(k.startswith(prefix + "weight.") for k in quant_state_sd.keys())
if len(quant_state_sd) > 0:
# We are loading a pre-quantized state dict.
self.weight = bnb.nn.Params4bit.from_prequantized(
data=weight, quantized_stats=quant_state_sd, device=weight.device
)
self.bias = bias if bias is None else torch.nn.Parameter(bias, requires_grad=False)
else:
# We are loading a non-quantized state dict.
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
self.weight = bnb.nn.Params4bit(
data=weight,
requires_grad=self.weight.requires_grad,
compress_statistics=self.weight.compress_statistics,
quant_type=self.weight.quant_type,
quant_storage=self.weight.quant_storage,
module=self,
)
self.bias = bias if bias is None else torch.nn.Parameter(bias)
def _replace_param(
param: torch.nn.Parameter | bnb.nn.Params4bit,
data: torch.Tensor,
) -> torch.nn.Parameter:
"""A helper function to replace the data of a model parameter with new data in a way that allows replacing params on
the "meta" device.
Supports both `torch.nn.Parameter` and `bnb.nn.Params4bit` parameters.
"""
if param.device.type == "meta":
# Doing `param.data = data` raises a RuntimeError if param.data was on the "meta" device, so we need to
# re-create the param instead of overwriting the data.
if isinstance(param, bnb.nn.Params4bit):
return bnb.nn.Params4bit(
data,
requires_grad=data.requires_grad,
quant_state=param.quant_state,
compress_statistics=param.compress_statistics,
quant_type=param.quant_type,
)
return torch.nn.Parameter(data, requires_grad=data.requires_grad)
param.data = data
return param
def _convert_linear_layers_to_nf4(
module: torch.nn.Module,
ignore_modules: set[str],
compute_dtype: torch.dtype,
compress_statistics: bool = False,
prefix: str = "",
) -> None:
"""Convert all linear layers in the model to NF4 quantized linear layers.
Args:
module: All linear layers in this module will be converted.
ignore_modules: A set of module prefixes to ignore when converting linear layers.
compute_dtype: The dtype to use for computation in the quantized linear layers.
compress_statistics: Whether to enable nested quantization (aka double quantization) where the quantization
constants from the first quantization are quantized again.
prefix: The prefix of the current module in the model. Used to call this function recursively.
"""
for name, child in module.named_children():
fullname = f"{prefix}.{name}" if prefix else name
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
has_bias = child.bias is not None
replacement = InvokeLinearNF4(
child.in_features,
child.out_features,
bias=has_bias,
compute_dtype=compute_dtype,
compress_statistics=compress_statistics,
)
if has_bias:
replacement.bias = _replace_param(replacement.bias, child.bias.data)
replacement.weight = _replace_param(replacement.weight, child.weight.data)
replacement.requires_grad_(False)
module.__setattr__(name, replacement)
else:
_convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname)
def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype):
"""Apply bitsandbytes nf4 quantization to the model.
You likely want to call this function inside a `accelerate.init_empty_weights()` context.
Example usage:
```
# Initialize the model from a config on the meta device.
with accelerate.init_empty_weights():
model = ModelClass.from_config(...)
# Add NF4 quantization linear layers to the model - still on the meta device.
with accelerate.init_empty_weights():
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.float16)
# Load a state_dict into the model. (Could be either a prequantized or non-quantized state_dict.)
model.load_state_dict(state_dict, strict=True, assign=True)
# Move the model to the "cuda" device. If the model was non-quantized, this is where the weight quantization takes
# place.
model.to("cuda")
```
"""
_convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype)
return model

View File

@@ -0,0 +1,79 @@
from pathlib import Path
import accelerate
from flux.model import Flux
from flux.util import configs as flux_configs
from safetensors.torch import load_file, save_file
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
from invokeai.backend.quantization.scripts.load_flux_model_bnb_nf4 import log_time
def main():
"""A script for quantizing a FLUX transformer model using the bitsandbytes LLM.int8() quantization method.
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
etc.) are hardcoded and would need to be modified for other use cases.
"""
# Load the FLUX transformer model onto the meta device.
model_path = Path(
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
)
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
params = flux_configs["flux-schnell"].params
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
model = Flux(params)
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_int8_path = model_path.parent / "bnb_llm_int8.safetensors"
if model_int8_path.exists():
# The quantized model already exists, load it and return it.
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
sd = load_file(model_int8_path)
model.load_state_dict(sd, strict=True, assign=True)
with log_time("Move model to cuda"):
model = model.to("cuda")
print(f"Successfully loaded pre-quantized model from '{model_int8_path}'.")
else:
# The quantized model does not exist, quantize the model and save it.
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
state_dict = load_file(model_path)
# TODO(ryand): Cast the state_dict to the appropriate dtype?
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda and quantize"):
model = model.to("cuda")
with log_time("Save quantized model"):
model_int8_path.parent.mkdir(parents=True, exist_ok=True)
save_file(model.state_dict(), model_int8_path)
print(f"Successfully quantized and saved model to '{model_int8_path}'.")
assert isinstance(model, Flux)
return model
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,96 @@
import time
from contextlib import contextmanager
from pathlib import Path
import accelerate
import torch
from flux.model import Flux
from flux.util import configs as flux_configs
from safetensors.torch import load_file, save_file
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
@contextmanager
def log_time(name: str):
"""Helper context manager to log the time taken by a block of code."""
start = time.time()
try:
yield None
finally:
end = time.time()
print(f"'{name}' took {end - start:.4f} secs")
def main():
"""A script for quantizing a FLUX transformer model using the bitsandbytes NF4 quantization method.
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
etc.) are hardcoded and would need to be modified for other use cases.
"""
model_path = Path(
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
)
# inference_dtype = torch.bfloat16
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
params = flux_configs["flux-schnell"].params
# Initialize the model on the "meta" device.
with accelerate.init_empty_weights():
model = Flux(params)
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_nf4_path = model_path.parent / "bnb_nf4.safetensors"
if model_nf4_path.exists():
# The quantized model already exists, load it and return it.
print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
# Replace the linear layers with NF4 quantized linear layers (still on the meta device).
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
)
with log_time("Load state dict into model"):
state_dict = load_file(model_nf4_path)
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda"):
model = model.to("cuda")
print(f"Successfully loaded pre-quantized model from '{model_nf4_path}'.")
else:
# The quantized model does not exist, quantize the model and save it.
print(f"No pre-quantized model found at '{model_nf4_path}'. Quantizing the model...")
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
model = quantize_model_nf4(
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
)
with log_time("Load state dict into model"):
state_dict = load_file(model_path)
# TODO(ryand): Cast the state_dict to the appropriate dtype?
model.load_state_dict(state_dict, strict=True, assign=True)
with log_time("Move model to cuda and quantize"):
model = model.to("cuda")
with log_time("Save quantized model"):
model_nf4_path.parent.mkdir(parents=True, exist_ok=True)
save_file(model.state_dict(), model_nf4_path)
print(f"Successfully quantized and saved model to '{model_nf4_path}'.")
assert isinstance(model, Flux)
return model
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,92 @@
from pathlib import Path
import accelerate
from safetensors.torch import load_file, save_file
from transformers import AutoConfig, AutoModelForTextEncoding, T5EncoderModel
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
from invokeai.backend.quantization.scripts.load_flux_model_bnb_nf4 import log_time
def load_state_dict_into_t5(model: T5EncoderModel, state_dict: dict):
# There is a shared reference to a single weight tensor in the model.
# Both "encoder.embed_tokens.weight" and "shared.weight" refer to the same tensor, so only the latter should
# be present in the state_dict.
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False, assign=True)
assert len(unexpected_keys) == 0
assert set(missing_keys) == {"encoder.embed_tokens.weight"}
# Assert that the layers we expect to be shared are actually shared.
assert model.encoder.embed_tokens.weight is model.shared.weight
def main():
"""A script for quantizing a T5 text encoder model using the bitsandbytes LLM.int8() quantization method.
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
etc.) are hardcoded and would need to be modified for other use cases.
"""
model_path = Path("/data/misc/text_encoder_2")
with log_time("Intialize T5 on meta device"):
model_config = AutoConfig.from_pretrained(model_path)
with accelerate.init_empty_weights():
model = AutoModelForTextEncoding.from_config(model_config)
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
modules_to_not_convert: set[str] = set()
model_int8_path = model_path / "bnb_llm_int8.safetensors"
if model_int8_path.exists():
# The quantized model already exists, load it and return it.
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
sd = load_file(model_int8_path)
load_state_dict_into_t5(model, sd)
with log_time("Move model to cuda"):
model = model.to("cuda")
print(f"Successfully loaded pre-quantized model from '{model_int8_path}'.")
else:
# The quantized model does not exist, quantize the model and save it.
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
with log_time("Load state dict into model"):
# Load sharded state dict.
files = list(model_path.glob("*.safetensors"))
state_dict = {}
for file in files:
sd = load_file(file)
state_dict.update(sd)
load_state_dict_into_t5(model, state_dict)
with log_time("Move model to cuda and quantize"):
model = model.to("cuda")
with log_time("Save quantized model"):
model_int8_path.parent.mkdir(parents=True, exist_ok=True)
state_dict = model.state_dict()
state_dict.pop("encoder.embed_tokens.weight")
save_file(state_dict, model_int8_path)
# This handling of shared weights could also be achieved with save_model(...), but then we'd lose control
# over which keys are kept. And, the corresponding load_model(...) function does not support assign=True.
# save_model(model, model_int8_path)
print(f"Successfully quantized and saved model to '{model_int8_path}'.")
assert isinstance(model, T5EncoderModel)
return model
if __name__ == "__main__":
main()

View File

@@ -25,11 +25,6 @@ class BasicConditioningInfo:
return self
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo]
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
"""SDXL text conditioning information produced by Compel."""
@@ -43,6 +38,17 @@ class SDXLConditioningInfo(BasicConditioningInfo):
return super().to(device=device, dtype=dtype)
@dataclass
class FLUXConditioningInfo:
clip_embeds: torch.Tensor
t5_embeds: torch.Tensor
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
"""
A ControlNet model.

View File

@@ -0,0 +1,19 @@
repo_id: "black-forest-labs/FLUX.1-dev"
repo_ae: "ae.safetensors"
max_seq_len: 512
params:
in_channels: 64
vec_in_dim: 768
context_in_dim: 4096
hidden_size: 3072
mlp_ratio: 4.0
num_heads: 24
depth: 19
depth_single_blocks: 38
axes_dim:
- 16
- 56
- 56
theta: 10_000
qkv_bias: True
guidance_embed: True

View File

@@ -0,0 +1,19 @@
repo_id: "black-forest-labs/FLUX.1-schnell"
repo_ae: "ae.safetensors"
max_seq_len: 256
params:
in_channels: 64
vec_in_dim: 768
context_in_dim: 4096
hidden_size: 3072
mlp_ratio: 4.0
num_heads: 24
depth: 19
depth_single_blocks: 38
axes_dim:
- 16
- 56
- 56
theta: 10_000
qkv_bias: True
guidance_embed: False

View File

@@ -0,0 +1,16 @@
repo_id: "black-forest-labs/FLUX.1-schnell"
repo_path: "ae.safetensors"
params:
resolution: 256
in_channels: 3
ch: 128
out_ch: 3
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
z_channels: 16
scale_factor: 0.3611
shift_factor: 0.1159

View File

@@ -784,6 +784,7 @@
"simpleModelPlaceholder": "URL or path to a local file or diffusers folder",
"source": "Source",
"starterModels": "Starter Models",
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
"syncModels": "Sync Models",
"textualInversions": "Textual Inversions",
"triggerPhrases": "Trigger Phrases",

View File

@@ -12,10 +12,18 @@ type Props = {
export const StarterModelsResultItem = memo(({ result }: Props) => {
const { t } = useTranslation();
const allSources = useMemo(() => {
const _allSources = [{ source: result.source, config: { name: result.name, description: result.description } }];
const _allSources = [
{
source: result.source,
config: { name: result.name, description: result.description, type: result.type, base: result.base, format: result.format },
},
];
if (result.dependencies) {
for (const d of result.dependencies) {
_allSources.push({ source: d.source, config: { name: d.name, description: d.description } });
_allSources.push({
source: d.source,
config: { name: d.name, description: d.description, type: d.type, base: d.base, format: d.format },
});
}
}
return _allSources;

View File

@@ -13,6 +13,7 @@ const BASE_COLOR_MAP: Record<BaseModelType, string> = {
'sd-2': 'teal',
sdxl: 'invokeBlue',
'sdxl-refiner': 'invokeBlue',
flux: 'gold',
};
const ModelBaseBadge = ({ base }: Props) => {

View File

@@ -13,6 +13,9 @@ const FORMAT_NAME_MAP: Record<AnyModelConfig['format'], string> = {
invokeai: 'internal',
embedding_file: 'embedding',
embedding_folder: 'embedding',
t5_encoder: 't5_encoder',
t5_encoder_8b: 't5_encoder_8b',
bnb_quantized_nf4b: 'quantized',
};
const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
@@ -22,6 +25,9 @@ const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
invokeai: 'base',
embedding_file: 'base',
embedding_folder: 'base',
t5_encoder: 'base',
t5_encoder_8b: 'base',
bnb_quantized_nf4b: 'base',
};
const ModelFormatBadge = ({ format }: Props) => {

View File

@@ -5,6 +5,7 @@ import type { FilterableModelType } from 'features/modelManagerV2/store/modelMan
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import {
useClipEmbedModels,
useControlNetModels,
useEmbeddingModels,
useIPAdapterModels,
@@ -13,6 +14,7 @@ import {
useRefinerModels,
useSpandrelImageToImageModels,
useT2IAdapterModels,
useT5EncoderModels,
useVAEModels,
} from 'services/api/hooks/modelsByType';
import type { AnyModelConfig } from 'services/api/types';
@@ -73,6 +75,18 @@ const ModelList = () => {
[vaeModels, searchTerm, filteredModelType]
);
const [t5EncoderModels, { isLoading: isLoadingT5EncoderModels }] = useT5EncoderModels();
const filteredT5EncoderModels = useMemo(
() => modelsFilter(t5EncoderModels, searchTerm, filteredModelType),
[t5EncoderModels, searchTerm, filteredModelType]
);
const [clipEmbedModels, { isLoading: isLoadingClipEmbedModels }] = useClipEmbedModels();
const filteredClipEmbedModels = useMemo(
() => modelsFilter(clipEmbedModels, searchTerm, filteredModelType),
[clipEmbedModels, searchTerm, filteredModelType]
);
const [spandrelImageToImageModels, { isLoading: isLoadingSpandrelImageToImageModels }] =
useSpandrelImageToImageModels();
const filteredSpandrelImageToImageModels = useMemo(
@@ -90,7 +104,9 @@ const ModelList = () => {
filteredT2IAdapterModels.length +
filteredIPAdapterModels.length +
filteredVAEModels.length +
filteredSpandrelImageToImageModels.length
filteredSpandrelImageToImageModels.length +
t5EncoderModels.length +
clipEmbedModels.length
);
}, [
filteredControlNetModels.length,
@@ -102,6 +118,8 @@ const ModelList = () => {
filteredT2IAdapterModels.length,
filteredVAEModels.length,
filteredSpandrelImageToImageModels.length,
t5EncoderModels.length,
clipEmbedModels.length,
]);
return (
@@ -154,6 +172,16 @@ const ModelList = () => {
{!isLoadingT2IAdapterModels && filteredT2IAdapterModels.length > 0 && (
<ModelListWrapper title={t('common.t2iAdapter')} modelList={filteredT2IAdapterModels} key="t2i-adapters" />
)}
{/* T5 Encoders List */}
{isLoadingT5EncoderModels && <FetchingModelsLoader loadingMessage="Loading T5 Encoder Models..." />}
{!isLoadingT5EncoderModels && filteredT5EncoderModels.length > 0 && (
<ModelListWrapper title="T5 Encoder" modelList={filteredT5EncoderModels} key="t5-encoder" />
)}
{/* Clip Embed List */}
{isLoadingClipEmbedModels && <FetchingModelsLoader loadingMessage="Loading Clip Embed Models..." />}
{!isLoadingClipEmbedModels && filteredClipEmbedModels.length > 0 && (
<ModelListWrapper title="Clip Embed" modelList={filteredClipEmbedModels} key="clip-embed" />
)}
{/* Spandrel Image to Image List */}
{isLoadingSpandrelImageToImageModels && (
<FetchingModelsLoader loadingMessage="Loading Image-to-Image Models..." />

View File

@@ -19,6 +19,8 @@ export const ModelTypeFilter = memo(() => {
controlnet: 'ControlNet',
vae: 'VAE',
t2i_adapter: t('common.t2iAdapter'),
t5_encoder: 'T5Encoder',
clip_embed: 'Clip Embed',
ip_adapter: t('common.ipAdapter'),
clip_vision: 'Clip Vision',
spandrel_image_to_image: 'Image-to-Image',

View File

@@ -14,6 +14,8 @@ import {
isEnumFieldInputTemplate,
isFloatFieldInputInstance,
isFloatFieldInputTemplate,
isFluxMainModelFieldInputInstance,
isFluxMainModelFieldInputTemplate,
isImageFieldInputInstance,
isImageFieldInputTemplate,
isIntegerFieldInputInstance,
@@ -38,6 +40,8 @@ import {
isStringFieldInputTemplate,
isT2IAdapterModelFieldInputInstance,
isT2IAdapterModelFieldInputTemplate,
isT5EncoderModelFieldInputInstance,
isT5EncoderModelFieldInputTemplate,
isVAEModelFieldInputInstance,
isVAEModelFieldInputTemplate,
} from 'features/nodes/types/field';
@@ -48,6 +52,7 @@ import BooleanFieldInputComponent from './inputs/BooleanFieldInputComponent';
import ColorFieldInputComponent from './inputs/ColorFieldInputComponent';
import ControlNetModelFieldInputComponent from './inputs/ControlNetModelFieldInputComponent';
import EnumFieldInputComponent from './inputs/EnumFieldInputComponent';
import FluxMainModelFieldInputComponent from './inputs/FluxMainModelFieldInputComponent';
import ImageFieldInputComponent from './inputs/ImageFieldInputComponent';
import IPAdapterModelFieldInputComponent from './inputs/IPAdapterModelFieldInputComponent';
import LoRAModelFieldInputComponent from './inputs/LoRAModelFieldInputComponent';
@@ -59,6 +64,7 @@ import SDXLMainModelFieldInputComponent from './inputs/SDXLMainModelFieldInputCo
import SpandrelImageToImageModelFieldInputComponent from './inputs/SpandrelImageToImageModelFieldInputComponent';
import StringFieldInputComponent from './inputs/StringFieldInputComponent';
import T2IAdapterModelFieldInputComponent from './inputs/T2IAdapterModelFieldInputComponent';
import T5EncoderModelFieldInputComponent from './inputs/T5EncoderModelFieldInputComponent';
import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
type InputFieldProps = {
@@ -113,6 +119,10 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
return <VAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isT5EncoderModelFieldInputInstance(fieldInstance) && isT5EncoderModelFieldInputTemplate(fieldTemplate)) {
return <T5EncoderModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isLoRAModelFieldInputInstance(fieldInstance) && isLoRAModelFieldInputTemplate(fieldTemplate)) {
return <LoRAModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
@@ -145,6 +155,9 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
if (isColorFieldInputInstance(fieldInstance) && isColorFieldInputTemplate(fieldTemplate)) {
return <ColorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isFluxMainModelFieldInputInstance(fieldInstance) && isFluxMainModelFieldInputTemplate(fieldTemplate)) {
return <FluxMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isSDXLMainModelFieldInputInstance(fieldInstance) && isSDXLMainModelFieldInputTemplate(fieldTemplate)) {
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;

View File

@@ -0,0 +1,55 @@
import { Combobox, Flex, FormControl } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useFluxModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate>;
const FluxMainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useFluxModels();
const _onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChange,
isLoading,
selectedModel: field.value,
});
return (
<Flex w="full" alignItems="center" gap={2}>
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
<Combobox
value={value}
placeholder={placeholder}
options={options}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Flex>
);
};
export default memo(FluxMainModelFieldInputComponent);

View File

@@ -0,0 +1,60 @@
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { fieldT5EncoderValueChanged } from 'features/nodes/store/nodesSlice';
import type { T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useT5EncoderModels } from 'services/api/hooks/modelsByType';
import type { T5Encoder8bModelConfig, T5EncoderModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate>;
const T5EncoderModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const { t } = useTranslation();
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useT5EncoderModels();
const _onChange = useCallback(
(value: T5Encoder8bModelConfig | T5EncoderModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldT5EncoderValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChange,
isLoading,
selectedModel: field.value,
});
return (
<Flex w="full" alignItems="center" gap={2}>
<Tooltip label={!disabledTabs.includes('models') && t('modelManager.starterModelsInModelManager')}>
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
<Combobox
value={value}
placeholder={placeholder}
options={options}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
</Flex>
);
};
export default memo(T5EncoderModelFieldInputComponent);

View File

@@ -23,6 +23,7 @@ import type {
StatefulFieldValue,
StringFieldValue,
T2IAdapterModelFieldValue,
T5EncoderModelFieldValue,
VAEModelFieldValue,
} from 'features/nodes/types/field';
import {
@@ -44,6 +45,7 @@ import {
zStatefulFieldValue,
zStringFieldValue,
zT2IAdapterModelFieldValue,
zT5EncoderModelFieldValue,
zVAEModelFieldValue,
} from 'features/nodes/types/field';
import type { AnyNode, InvocationNodeEdge } from 'features/nodes/types/invocation';
@@ -341,6 +343,9 @@ export const nodesSlice = createSlice({
) => {
fieldValueReducer(state, action, zSpandrelImageToImageModelFieldValue);
},
fieldT5EncoderValueChanged: (state, action: FieldValueAction<T5EncoderModelFieldValue>) => {
fieldValueReducer(state, action, zT5EncoderModelFieldValue);
},
fieldEnumModelValueChanged: (state, action: FieldValueAction<EnumFieldValue>) => {
fieldValueReducer(state, action, zEnumFieldValue);
},
@@ -402,6 +407,7 @@ export const {
fieldSchedulerValueChanged,
fieldStringValueChanged,
fieldVaeModelValueChanged,
fieldT5EncoderValueChanged,
nodeEditorReset,
nodeIsIntermediateChanged,
nodeIsOpenChanged,
@@ -514,6 +520,7 @@ export const isAnyNodeOrEdgeMutation = isAnyOf(
fieldSchedulerValueChanged,
fieldStringValueChanged,
fieldVaeModelValueChanged,
fieldT5EncoderValueChanged,
nodesChanged,
nodeIsIntermediateChanged,
nodeIsOpenChanged,

View File

@@ -61,7 +61,7 @@ export type SchedulerField = z.infer<typeof zSchedulerField>;
// #endregion
// #region Model-related schemas
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner', 'flux']);
const zModelType = z.enum([
'main',
'vae',
@@ -73,9 +73,12 @@ const zModelType = z.enum([
'onnx',
'clip_vision',
'spandrel_image_to_image',
't5_encoder',
'clip_embed',
]);
const zSubModelType = z.enum([
'unet',
'transformer',
'text_encoder',
'text_encoder_2',
'tokenizer',

View File

@@ -31,6 +31,7 @@ export const MODEL_TYPES = [
'ControlNetModelField',
'LoRAModelField',
'MainModelField',
'FluxMainModelField',
'SDXLMainModelField',
'SDXLRefinerModelField',
'VaeModelField',
@@ -38,6 +39,7 @@ export const MODEL_TYPES = [
'VAEField',
'CLIPField',
'T2IAdapterModelField',
'T5EncoderField',
'SpandrelImageToImageModelField',
];
@@ -50,6 +52,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
CLIPField: 'green.500',
ColorField: 'pink.300',
ConditioningField: 'cyan.500',
FluxConditioningField: 'cyan.500',
ControlField: 'teal.500',
ControlNetModelField: 'teal.500',
EnumField: 'blue.500',
@@ -61,6 +64,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
LatentsField: 'pink.500',
LoRAModelField: 'teal.500',
MainModelField: 'teal.500',
FluxMainModelField: 'teal.500',
SDXLMainModelField: 'teal.500',
SDXLRefinerModelField: 'teal.500',
SpandrelImageToImageModelField: 'teal.500',
@@ -68,6 +72,8 @@ export const FIELD_COLORS: { [key: string]: string } = {
T2IAdapterField: 'teal.500',
T2IAdapterModelField: 'teal.500',
UNetField: 'red.500',
T5EncoderField: 'green.500',
TransformerField: 'red.500',
VAEField: 'blue.500',
VAEModelField: 'teal.500',
};

View File

@@ -115,6 +115,10 @@ const zSDXLMainModelFieldType = zFieldTypeBase.extend({
name: z.literal('SDXLMainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zFluxMainModelFieldType = zFieldTypeBase.extend({
name: z.literal('FluxMainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSDXLRefinerModelFieldType = zFieldTypeBase.extend({
name: z.literal('SDXLRefinerModelField'),
originalType: zStatelessFieldType.optional(),
@@ -143,6 +147,10 @@ const zSpandrelImageToImageModelFieldType = zFieldTypeBase.extend({
name: z.literal('SpandrelImageToImageModelField'),
originalType: zStatelessFieldType.optional(),
});
const zT5EncoderModelFieldType = zFieldTypeBase.extend({
name: z.literal('T5EncoderModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSchedulerFieldType = zFieldTypeBase.extend({
name: z.literal('SchedulerField'),
originalType: zStatelessFieldType.optional(),
@@ -158,6 +166,7 @@ const zStatefulFieldType = z.union([
zModelIdentifierFieldType,
zMainModelFieldType,
zSDXLMainModelFieldType,
zFluxMainModelFieldType,
zSDXLRefinerModelFieldType,
zVAEModelFieldType,
zLoRAModelFieldType,
@@ -165,6 +174,7 @@ const zStatefulFieldType = z.union([
zIPAdapterModelFieldType,
zT2IAdapterModelFieldType,
zSpandrelImageToImageModelFieldType,
zT5EncoderModelFieldType,
zColorFieldType,
zSchedulerFieldType,
]);
@@ -447,6 +457,29 @@ export const isSDXLMainModelFieldInputTemplate = (val: unknown): val is SDXLMain
zSDXLMainModelFieldInputTemplate.safeParse(val).success;
// #endregion
// #region FluxMainModelField
const zFluxMainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL models only.
const zFluxMainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zFluxMainModelFieldValue,
});
const zFluxMainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zFluxMainModelFieldType,
originalType: zFieldType.optional(),
default: zFluxMainModelFieldValue,
});
const zFluxMainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zFluxMainModelFieldType,
});
export type FluxMainModelFieldInputInstance = z.infer<typeof zFluxMainModelFieldInputInstance>;
export type FluxMainModelFieldInputTemplate = z.infer<typeof zFluxMainModelFieldInputTemplate>;
export const isFluxMainModelFieldInputInstance = (val: unknown): val is FluxMainModelFieldInputInstance =>
zFluxMainModelFieldInputInstance.safeParse(val).success;
export const isFluxMainModelFieldInputTemplate = (val: unknown): val is FluxMainModelFieldInputTemplate =>
zFluxMainModelFieldInputTemplate.safeParse(val).success;
// #endregion
// #region SDXLRefinerModelField
/** @alias */ // tells knip to ignore this duplicate export
@@ -613,6 +646,29 @@ export const isSpandrelImageToImageModelFieldInputTemplate = (
zSpandrelImageToImageModelFieldInputTemplate.safeParse(val).success;
// #endregion
// #region T5EncoderModelField
export const zT5EncoderModelFieldValue = zModelIdentifierField.optional();
const zT5EncoderModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zT5EncoderModelFieldValue,
});
const zT5EncoderModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zT5EncoderModelFieldType,
originalType: zFieldType.optional(),
default: zT5EncoderModelFieldValue,
});
export type T5EncoderModelFieldValue = z.infer<typeof zT5EncoderModelFieldValue>;
export type T5EncoderModelFieldInputInstance = z.infer<typeof zT5EncoderModelFieldInputInstance>;
export type T5EncoderModelFieldInputTemplate = z.infer<typeof zT5EncoderModelFieldInputTemplate>;
export const isT5EncoderModelFieldInputInstance = (val: unknown): val is T5EncoderModelFieldInputInstance =>
zT5EncoderModelFieldInputInstance.safeParse(val).success;
export const isT5EncoderModelFieldInputTemplate = (val: unknown): val is T5EncoderModelFieldInputTemplate =>
zT5EncoderModelFieldInputTemplate.safeParse(val).success;
// #endregio
// #region SchedulerField
export const zSchedulerFieldValue = zSchedulerField.optional();
@@ -693,6 +749,7 @@ export const zStatefulFieldValue = z.union([
zModelIdentifierFieldValue,
zMainModelFieldValue,
zSDXLMainModelFieldValue,
zFluxMainModelFieldValue,
zSDXLRefinerModelFieldValue,
zVAEModelFieldValue,
zLoRAModelFieldValue,
@@ -700,6 +757,7 @@ export const zStatefulFieldValue = z.union([
zIPAdapterModelFieldValue,
zT2IAdapterModelFieldValue,
zSpandrelImageToImageModelFieldValue,
zT5EncoderModelFieldValue,
zColorFieldValue,
zSchedulerFieldValue,
]);
@@ -720,6 +778,7 @@ const zStatefulFieldInputInstance = z.union([
zBoardFieldInputInstance,
zModelIdentifierFieldInputInstance,
zMainModelFieldInputInstance,
zFluxMainModelFieldInputInstance,
zSDXLMainModelFieldInputInstance,
zSDXLRefinerModelFieldInputInstance,
zVAEModelFieldInputInstance,
@@ -728,6 +787,7 @@ const zStatefulFieldInputInstance = z.union([
zIPAdapterModelFieldInputInstance,
zT2IAdapterModelFieldInputInstance,
zSpandrelImageToImageModelFieldInputInstance,
zT5EncoderModelFieldInputInstance,
zColorFieldInputInstance,
zSchedulerFieldInputInstance,
]);
@@ -749,6 +809,7 @@ const zStatefulFieldInputTemplate = z.union([
zBoardFieldInputTemplate,
zModelIdentifierFieldInputTemplate,
zMainModelFieldInputTemplate,
zFluxMainModelFieldInputTemplate,
zSDXLMainModelFieldInputTemplate,
zSDXLRefinerModelFieldInputTemplate,
zVAEModelFieldInputTemplate,
@@ -757,6 +818,7 @@ const zStatefulFieldInputTemplate = z.union([
zIPAdapterModelFieldInputTemplate,
zT2IAdapterModelFieldInputTemplate,
zSpandrelImageToImageModelFieldInputTemplate,
zT5EncoderModelFieldInputTemplate,
zColorFieldInputTemplate,
zSchedulerFieldInputTemplate,
zStatelessFieldInputTemplate,
@@ -779,6 +841,7 @@ const zStatefulFieldOutputTemplate = z.union([
zBoardFieldOutputTemplate,
zModelIdentifierFieldOutputTemplate,
zMainModelFieldOutputTemplate,
zFluxMainModelFieldOutputTemplate,
zSDXLMainModelFieldOutputTemplate,
zSDXLRefinerModelFieldOutputTemplate,
zVAEModelFieldOutputTemplate,

View File

@@ -15,12 +15,14 @@ const FIELD_VALUE_FALLBACK_MAP: Record<StatefulFieldType['name'], FieldValue> =
MainModelField: undefined,
SchedulerField: 'euler',
SDXLMainModelField: undefined,
FluxMainModelField: undefined,
SDXLRefinerModelField: undefined,
StringField: '',
T2IAdapterModelField: undefined,
SpandrelImageToImageModelField: undefined,
VAEModelField: undefined,
ControlNetModelField: undefined,
T5EncoderModelField: undefined,
};
export const buildFieldInputInstance = (id: string, template: FieldInputTemplate): FieldInputInstance => {

View File

@@ -8,6 +8,7 @@ import type {
FieldInputTemplate,
FieldType,
FloatFieldInputTemplate,
FluxMainModelFieldInputTemplate,
ImageFieldInputTemplate,
IntegerFieldInputTemplate,
IPAdapterModelFieldInputTemplate,
@@ -22,6 +23,7 @@ import type {
StatelessFieldInputTemplate,
StringFieldInputTemplate,
T2IAdapterModelFieldInputTemplate,
T5EncoderModelFieldInputTemplate,
VAEModelFieldInputTemplate,
} from 'features/nodes/types/field';
import { isStatefulFieldType } from 'features/nodes/types/field';
@@ -180,6 +182,20 @@ const buildSDXLMainModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLMainMo
return template;
};
const buildFluxMainModelFieldInputTemplate: FieldInputTemplateBuilder<FluxMainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: FluxMainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildRefinerModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLRefinerModelFieldInputTemplate> = ({
schemaObject,
baseField,
@@ -208,6 +224,20 @@ const buildVAEModelFieldInputTemplate: FieldInputTemplateBuilder<VAEModelFieldIn
return template;
};
const buildT5EncoderModelFieldInputTemplate: FieldInputTemplateBuilder<T5EncoderModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: T5EncoderModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildLoRAModelFieldInputTemplate: FieldInputTemplateBuilder<LoRAModelFieldInputTemplate> = ({
schemaObject,
baseField,
@@ -386,11 +416,13 @@ export const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputT
MainModelField: buildMainModelFieldInputTemplate,
SchedulerField: buildSchedulerFieldInputTemplate,
SDXLMainModelField: buildSDXLMainModelFieldInputTemplate,
FluxMainModelField: buildFluxMainModelFieldInputTemplate,
SDXLRefinerModelField: buildRefinerModelFieldInputTemplate,
StringField: buildStringFieldInputTemplate,
T2IAdapterModelField: buildT2IAdapterModelFieldInputTemplate,
SpandrelImageToImageModelField: buildSpandrelImageToImageModelFieldInputTemplate,
VAEModelField: buildVAEModelFieldInputTemplate,
T5EncoderModelField: buildT5EncoderModelFieldInputTemplate,
} as const;
export const buildFieldInputTemplate = (

View File

@@ -29,6 +29,7 @@ const MODEL_FIELD_TYPES = [
'ModelIdentifier',
'MainModelField',
'SDXLMainModelField',
'FluxMainModelField',
'SDXLRefinerModelField',
'VAEModelField',
'LoRAModelField',

View File

@@ -8,7 +8,7 @@ import { modelSelected } from 'features/parameters/store/actions';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useMainModels } from 'services/api/hooks/modelsByType';
import { useSDMainModels } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
const selectModel = createMemoizedSelector(selectGenerationSlice, (generation) => generation.model);
@@ -17,7 +17,7 @@ const ParamMainModelSelect = () => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const selectedModel = useAppSelector(selectModel);
const [modelConfigs, { isLoading }] = useMainModels();
const [modelConfigs, { isLoading }] = useSDMainModels();
const tooltipLabel = useMemo(() => {
if (!modelConfigs.length || !selectedModel) {
return;

View File

@@ -9,6 +9,7 @@ export const MODEL_TYPE_MAP = {
'sd-2': 'Stable Diffusion 2.x',
sdxl: 'Stable Diffusion XL',
'sdxl-refiner': 'Stable Diffusion XL Refiner',
flux: 'Flux',
};
/**
@@ -20,6 +21,7 @@ export const MODEL_TYPE_SHORT_MAP = {
'sd-2': 'SD2.X',
sdxl: 'SDXL',
'sdxl-refiner': 'SDXLR',
flux: 'FLUX',
};
/**
@@ -46,6 +48,10 @@ export const CLIP_SKIP_MAP = {
maxClip: 24,
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
},
flux: {
maxClip: 0,
markers: [],
},
};
/**

View File

@@ -3,16 +3,20 @@ import { useMemo } from 'react';
import { modelConfigsAdapterSelectors, useGetModelConfigsQuery } from 'services/api/endpoints/models';
import type { AnyModelConfig } from 'services/api/types';
import {
isClipEmbedModelConfig,
isControlNetModelConfig,
isControlNetOrT2IAdapterModelConfig,
isFluxMainModelModelConfig,
isIPAdapterModelConfig,
isLoRAModelConfig,
isNonRefinerMainModelConfig,
isNonRefinerNonFluxMainModelConfig,
isNonSDXLMainModelConfig,
isRefinerMainModelModelConfig,
isSDXLMainModelModelConfig,
isSpandrelImageToImageModelConfig,
isT2IAdapterModelConfig,
isT5EncoderModelConfig,
isTIModelConfig,
isVAEModelConfig,
} from 'services/api/types';
@@ -32,14 +36,18 @@ const buildModelsHook =
return [modelConfigs, result] as const;
};
export const useSDMainModels = buildModelsHook(isNonRefinerNonFluxMainModelConfig);
export const useMainModels = buildModelsHook(isNonRefinerMainModelConfig);
export const useNonSDXLMainModels = buildModelsHook(isNonSDXLMainModelConfig);
export const useRefinerModels = buildModelsHook(isRefinerMainModelModelConfig);
export const useFluxModels = buildModelsHook(isFluxMainModelModelConfig);
export const useSDXLModels = buildModelsHook(isSDXLMainModelModelConfig);
export const useLoRAModels = buildModelsHook(isLoRAModelConfig);
export const useControlNetAndT2IAdapterModels = buildModelsHook(isControlNetOrT2IAdapterModelConfig);
export const useControlNetModels = buildModelsHook(isControlNetModelConfig);
export const useT2IAdapterModels = buildModelsHook(isT2IAdapterModelConfig);
export const useT5EncoderModels = buildModelsHook(isT5EncoderModelConfig);
export const useClipEmbedModels = buildModelsHook(isClipEmbedModelConfig);
export const useSpandrelImageToImageModels = buildModelsHook(isSpandrelImageToImageModelConfig);
export const useIPAdapterModels = buildModelsHook(isIPAdapterModelConfig);
export const useEmbeddingModels = buildModelsHook(isTIModelConfig);

File diff suppressed because one or more lines are too long

View File

@@ -51,6 +51,9 @@ export type VAEModelConfig = S['VAECheckpointConfig'] | S['VAEDiffusersConfig'];
export type ControlNetModelConfig = S['ControlNetDiffusersConfig'] | S['ControlNetCheckpointConfig'];
export type IPAdapterModelConfig = S['IPAdapterInvokeAIConfig'] | S['IPAdapterCheckpointConfig'];
export type T2IAdapterModelConfig = S['T2IAdapterConfig'];
type ClipEmbedModelConfig = S['CLIPEmbedDiffusersConfig'];
export type T5EncoderModelConfig = S['T5EncoderConfig'];
export type T5Encoder8bModelConfig = S['T5Encoder8bConfig'];
export type SpandrelImageToImageModelConfig = S['SpandrelImageToImageConfig'];
type TextualInversionModelConfig = S['TextualInversionFileConfig'] | S['TextualInversionFolderConfig'];
type DiffusersModelConfig = S['MainDiffusersConfig'];
@@ -62,6 +65,9 @@ export type AnyModelConfig =
| VAEModelConfig
| ControlNetModelConfig
| IPAdapterModelConfig
| T5EncoderModelConfig
| T5Encoder8bModelConfig
| ClipEmbedModelConfig
| T2IAdapterModelConfig
| SpandrelImageToImageModelConfig
| TextualInversionModelConfig
@@ -88,6 +94,16 @@ export const isT2IAdapterModelConfig = (config: AnyModelConfig): config is T2IAd
return config.type === 't2i_adapter';
};
export const isT5EncoderModelConfig = (
config: AnyModelConfig
): config is T5EncoderModelConfig | T5Encoder8bModelConfig => {
return config.type === 't5_encoder';
};
export const isClipEmbedModelConfig = (config: AnyModelConfig): config is ClipEmbedModelConfig => {
return config.type === 'clip_embed';
};
export const isSpandrelImageToImageModelConfig = (
config: AnyModelConfig
): config is SpandrelImageToImageModelConfig => {
@@ -110,6 +126,10 @@ export const isNonRefinerMainModelConfig = (config: AnyModelConfig): config is M
return config.type === 'main' && config.base !== 'sdxl-refiner';
};
export const isNonRefinerNonFluxMainModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base !== 'sdxl-refiner' && config.base !== 'flux';
};
export const isRefinerMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'sdxl-refiner';
};
@@ -118,6 +138,10 @@ export const isSDXLMainModelModelConfig = (config: AnyModelConfig): config is Ma
return config.type === 'main' && config.base === 'sdxl';
};
export const isFluxMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && config.base === 'flux';
};
export const isNonSDXLMainModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
return config.type === 'main' && (config.base === 'sd-1' || config.base === 'sd-2');
};

View File

@@ -33,11 +33,13 @@ classifiers = [
]
dependencies = [
# Core generation dependencies, pinned for reproducible builds.
"accelerate==0.30.1",
"accelerate==0.33.0",
"bitsandbytes==0.43.3; sys_platform!='darwin'",
"clip_anytorch==2.6.0", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel==2.0.2",
"controlnet-aux==0.0.7",
"diffusers[torch]==0.27.2",
"flux @ git+https://github.com/black-forest-labs/flux.git@c23ae247225daba30fbd56058d247cc1b1fc20a3",
"invisible-watermark==0.2.0", # needed to install SDXL base and refiner using their repo_ids
"mediapipe==0.10.7", # needed for "mediapipeface" controlnet model
"numpy==1.26.4", # >1.24.0 is needed to use the 'strict' argument to np.testing.assert_array_equal()
@@ -46,18 +48,20 @@ dependencies = [
"opencv-python==4.9.0.80",
"pytorch-lightning==2.1.3",
"safetensors==0.4.3",
# sentencepiece is required to load T5TokenizerFast (used by FLUX).
"sentencepiece==0.2.0",
"spandrel==0.3.4",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"torch==2.2.2",
"torch==2.4.0",
"torchmetrics==0.11.4",
"torchsde==0.2.6",
"torchvision==0.17.2",
"torchvision==0.19.0",
"transformers==4.41.1",
# Core application dependencies, pinned for reproducible builds.
"fastapi-events==0.11.1",
"fastapi==0.111.0",
"huggingface-hub==0.23.1",
"huggingface-hub==0.24.5",
"pydantic-settings==2.2.1",
"pydantic==2.7.2",
"python-socketio==5.11.1",

View File

@@ -326,3 +326,80 @@ def test_select_multiple_weights(
) -> None:
filtered_files = filter_files(sd15_test_files, variant)
assert set(filtered_files) == {Path(f) for f in expected_files}
@pytest.fixture
def flux_schnell_test_files() -> list[Path]:
return [
Path(f)
for f in [
"FLUX.1-schnell/.gitattributes",
"FLUX.1-schnell/README.md",
"FLUX.1-schnell/ae.safetensors",
"FLUX.1-schnell/flux1-schnell.safetensors",
"FLUX.1-schnell/model_index.json",
"FLUX.1-schnell/scheduler/scheduler_config.json",
"FLUX.1-schnell/schnell_grid.jpeg",
"FLUX.1-schnell/text_encoder/config.json",
"FLUX.1-schnell/text_encoder/model.safetensors",
"FLUX.1-schnell/text_encoder_2/config.json",
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
"FLUX.1-schnell/tokenizer/merges.txt",
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
"FLUX.1-schnell/tokenizer/vocab.json",
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
"FLUX.1-schnell/tokenizer_2/spiece.model",
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
"FLUX.1-schnell/transformer/config.json",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
"FLUX.1-schnell/vae/config.json",
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
]
]
@pytest.mark.parametrize(
["variant", "expected_files"],
[
(
ModelRepoVariant.Default,
[
"FLUX.1-schnell/model_index.json",
"FLUX.1-schnell/scheduler/scheduler_config.json",
"FLUX.1-schnell/text_encoder/config.json",
"FLUX.1-schnell/text_encoder/model.safetensors",
"FLUX.1-schnell/text_encoder_2/config.json",
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
"FLUX.1-schnell/tokenizer/merges.txt",
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
"FLUX.1-schnell/tokenizer/vocab.json",
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
"FLUX.1-schnell/tokenizer_2/spiece.model",
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
"FLUX.1-schnell/transformer/config.json",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
"FLUX.1-schnell/vae/config.json",
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
],
),
],
)
def test_select_flux_schnell_files(
flux_schnell_test_files: list[Path], variant: ModelRepoVariant, expected_files: list[str]
) -> None:
filtered_files = filter_files(flux_schnell_test_files, variant)
assert set(filtered_files) == {Path(f) for f in expected_files}