Compare commits

...

32 Commits

Author SHA1 Message Date
Ryan Dick
a8a2fc106d Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-09 19:54:09 +00:00
Ryan Dick
d23ad1818d Make quantized loading fast. 2024-08-09 16:39:43 +00:00
Ryan Dick
4181ab654b WIP - experimentation 2024-08-09 16:23:37 +00:00
Ryan Dick
1c97360f9f Make float16 inference work with FLUX on 24GB GPU. 2024-08-08 18:12:04 -04:00
Ryan Dick
74d6fceeb6 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-08 18:23:20 +00:00
Ryan Dick
766ddc18dc Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-08 16:40:11 +00:00
Ryan Dick
e6ff7488a1 Minor improvements to FLUX workflow. 2024-08-07 22:10:09 +00:00
Ryan Dick
89a652cfcd Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-07 19:50:03 +00:00
Ryan Dick
b227b9059d Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-07 15:12:01 +00:00
Ryan Dick
3599a4a3e4 Add sentencepiece dependency for the T5 tokenizer. 2024-08-07 14:18:19 +00:00
Ryan Dick
5dd619e137 First draft of FluxTextToImageInvocation. 2024-08-06 21:51:22 +00:00
Ryan Dick
7d447cbb88 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-06 19:34:49 +00:00
Ryan Dick
3bbba7e4b1 Update imports for compatibility with bumped diffusers version. 2024-08-06 17:56:36 +00:00
Ryan Dick
b1845019fe Bump diffusers version to include FLUX support. 2024-08-06 11:52:05 -04:00
Hosted Weblate
140670d00e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Phrixus2023
70233fae5d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1321 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Alexander Eichhorn
6f457a6c4c translationBot(ui): update translation (German)
Currently translated at 65.1% (860 of 1321 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
B N
5c319f5356 translationBot(ui): update translation (German)
Currently translated at 64.8% (857 of 1321 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Riccardo Giovanetti
991a04f090 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1303 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1294 of 1312 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
psychedelicious
c39fa75113 docs(ui): add comment in useIsTooLargeToUpscale 2024-08-06 11:49:35 +10:00
psychedelicious
f7863e17ce docs(ui): add docstring for maxUpscaleDimension 2024-08-06 11:49:35 +10:00
psychedelicious
7c526390ed fix(ui): compare upscaledPixels vs square of max dimension 2024-08-06 11:49:35 +10:00
Mary Hipp
2cff20f87a update translations, change config value to be dimension instead of total pixels 2024-08-06 11:49:35 +10:00
Mary Hipp
90ec757802 lint 2024-08-06 11:49:35 +10:00
Mary Hipp
4b85dfcefe (ui): restore optioanl limit on upcsale output resolution 2024-08-06 11:49:35 +10:00
Mary Hipp
21deefdc41 (ui): add image resolution badge to initial upscale image 2024-08-06 11:49:35 +10:00
psychedelicious
4d4f921a4e build: exclude matplotlib 3.9.1
There was a problem w/ this release on windows and the builds were pulled from pypi. When installing invoke on windows, pip attempts to build from source, but most (all?) systems won't have the prerequisites for this and installs fail.

This also affects GH actions.

The simple fix is to exclude version 3.9.1 from our deps.

For more information, see https://github.com/matplotlib/matplotlib/issues/28551
2024-08-05 08:38:44 +10:00
psychedelicious
98db8f395b feat(app): clean up DiskImageStorage types 2024-08-04 09:43:20 +10:00
psychedelicious
f465a956a3 feat(ui): remove "images can be restored" messages 2024-08-04 09:43:20 +10:00
psychedelicious
9edb02d7ef build: remove send2trash dependency 2024-08-04 09:43:20 +10:00
psychedelicious
6c4cf58a31 feat(app): delete model_images instead of using send2trash 2024-08-04 09:43:20 +10:00
psychedelicious
08993c0d29 feat(app): delete images instead of using send2trash
Closes #6709
2024-08-04 09:43:20 +10:00
29 changed files with 1354 additions and 146 deletions

View File

@@ -0,0 +1,278 @@
from pathlib import Path
from typing import Literal
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from optimum.quanto import qfloat8
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers.models.auto import AutoModelForTextEncoding
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.util.devices import TorchDevice
TFluxModelKeys = Literal["flux-schnell"]
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
auto_class = AutoModelForTextEncoding
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
use_8bit: bool = InputField(
default=False, description="Whether to quantize the transformer model to 8-bit precision."
)
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
t5_embeddings, clip_embeddings = self._encode_prompt(context, model_path)
latents = self._run_diffusion(context, model_path, clip_embeddings, t5_embeddings)
image = self._run_vae_decoding(context, model_path, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _encode_prompt(self, context: InvocationContext, flux_model_dir: Path) -> tuple[torch.Tensor, torch.Tensor]:
# Determine the T5 max sequence length based on the model.
if self.model == "flux-schnell":
max_seq_len = 256
# elif self.model == "flux-dev":
# max_seq_len = 512
else:
raise ValueError(f"Unknown model: {self.model}")
# Load the CLIP tokenizer.
clip_tokenizer_path = flux_model_dir / "tokenizer"
clip_tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path, local_files_only=True)
assert isinstance(clip_tokenizer, CLIPTokenizer)
# Load the T5 tokenizer.
t5_tokenizer_path = flux_model_dir / "tokenizer_2"
t5_tokenizer = T5TokenizerFast.from_pretrained(t5_tokenizer_path, local_files_only=True)
assert isinstance(t5_tokenizer, T5TokenizerFast)
clip_text_encoder_path = flux_model_dir / "text_encoder"
t5_text_encoder_path = flux_model_dir / "text_encoder_2"
with (
context.models.load_local_model(
model_path=clip_text_encoder_path, loader=self._load_flux_text_encoder
) as clip_text_encoder,
context.models.load_local_model(
model_path=t5_text_encoder_path, loader=self._load_flux_text_encoder_2
) as t5_text_encoder,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(t5_text_encoder, T5EncoderModel)
pipeline = FluxPipeline(
scheduler=None,
vae=None,
text_encoder=clip_text_encoder,
tokenizer=clip_tokenizer,
text_encoder_2=t5_text_encoder,
tokenizer_2=t5_tokenizer,
transformer=None,
)
# prompt_embeds: T5 embeddings
# pooled_prompt_embeds: CLIP embeddings
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=self.positive_prompt,
prompt_2=self.positive_prompt,
device=TorchDevice.choose_torch_device(),
max_sequence_length=max_seq_len,
)
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds
def _run_diffusion(
self,
context: InvocationContext,
flux_model_dir: Path,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(flux_model_dir / "scheduler", local_files_only=True)
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
transformer_path = flux_model_dir / "transformer"
with context.models.load_local_model(
model_path=transformer_path, loader=self._load_flux_transformer
) as transformer:
assert isinstance(transformer, FluxTransformer2DModel)
flux_pipeline_with_transformer = FluxPipeline(
scheduler=scheduler,
vae=None,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=transformer,
)
t5_embeddings = t5_embeddings.to(dtype=transformer.dtype)
clip_embeddings = clip_embeddings.to(dtype=transformer.dtype)
latents = flux_pipeline_with_transformer(
height=self.height,
width=self.width,
num_inference_steps=self.num_steps,
guidance_scale=self.guidance,
generator=torch.Generator().manual_seed(self.seed),
prompt_embeds=t5_embeddings,
pooled_prompt_embeds=clip_embeddings,
output_type="latent",
return_dict=False,
)[0]
assert isinstance(latents, torch.Tensor)
return latents
def _run_vae_decoding(
self,
context: InvocationContext,
flux_model_dir: Path,
latents: torch.Tensor,
) -> Image.Image:
vae_path = flux_model_dir / "vae"
with context.models.load_local_model(model_path=vae_path, loader=self._load_flux_vae) as vae:
assert isinstance(vae, AutoencoderKL)
flux_pipeline_with_vae = FluxPipeline(
scheduler=None,
vae=vae,
text_encoder=None,
tokenizer=None,
text_encoder_2=None,
tokenizer_2=None,
transformer=None,
)
latents = flux_pipeline_with_vae._unpack_latents(
latents, self.height, self.width, flux_pipeline_with_vae.vae_scale_factor
)
latents = (
latents / flux_pipeline_with_vae.vae.config.scaling_factor
) + flux_pipeline_with_vae.vae.config.shift_factor
latents = latents.to(dtype=vae.dtype)
image = flux_pipeline_with_vae.vae.decode(latents, return_dict=False)[0]
image = flux_pipeline_with_vae.image_processor.postprocess(image, output_type="pil")[0]
assert isinstance(image, Image.Image)
return image
@staticmethod
def _load_flux_text_encoder(path: Path) -> CLIPTextModel:
model = CLIPTextModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, CLIPTextModel)
return model
def _load_flux_text_encoder_2(self, path: Path) -> T5EncoderModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedModelForTextEncoding.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a T5EncoderModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): dtype?
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
q_model = QuantizedModelForTextEncoding.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = T5EncoderModel.from_pretrained(path, local_files_only=True)
assert isinstance(model, T5EncoderModel)
return model
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
if self.use_8bit:
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
else:
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
return model
@staticmethod
def _load_flux_vae(path: Path) -> AutoencoderKL:
model = AutoencoderKL.from_pretrained(path, local_files_only=True)
assert isinstance(model, AutoencoderKL)
return model

View File

@@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from typing import Optional, Union
from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
@@ -20,18 +19,12 @@ from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = {}
self.__cache_ids = Queue()
self.__cache: dict[Path, PILImageType] = {}
self.__cache_ids = Queue[Path]()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -103,7 +96,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
image_path.unlink()
if image_path in self.__cache:
del self.__cache[image_path]
@@ -111,7 +104,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
thumbnail_path.unlink()
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:

View File

@@ -2,7 +2,6 @@ from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
@@ -70,7 +69,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
path.unlink()
except Exception as e:
raise ModelImageFileDeleteException from e

View File

@@ -0,0 +1,129 @@
import json
import os
import time
from pathlib import Path
from typing import Union
import torch
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto import qfloat8
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class QuantizedFluxTransformer2DModel(QuantizedDiffusersModel):
base_class = FluxTransformer2DModel
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")
def load_flux_transformer(path: Path) -> FluxTransformer2DModel:
# model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
model_8bit_path = path / "quantized"
if model_8bit_path.exists():
# The quantized model exists, load it.
# TODO(ryand): The requantize(...) operation in from_pretrained(...) is very slow. This seems like
# something that we should be able to make much faster.
q_model = QuantizedFluxTransformer2DModel.from_pretrained(model_8bit_path)
# Access the underlying wrapped model.
# We access the wrapped model, even though it is private, because it simplifies the type checking by
# always returning a FluxTransformer2DModel from this function.
model = q_model._wrapped
else:
# The quantized model does not exist yet, quantize and save it.
# TODO(ryand): Loading in float16 and then quantizing seems to result in NaNs. In order to run this on
# GPUs that don't support bfloat16, we would need to host the quantized model instead of generating it
# here.
model = FluxTransformer2DModel.from_pretrained(path, local_files_only=True, torch_dtype=torch.bfloat16)
assert isinstance(model, FluxTransformer2DModel)
q_model = QuantizedFluxTransformer2DModel.quantize(model, weights=qfloat8)
model_8bit_path.mkdir(parents=True, exist_ok=True)
q_model.save_pretrained(model_8bit_path)
# (See earlier comment about accessing the wrapped model.)
model = q_model._wrapped
assert isinstance(model, FluxTransformer2DModel)
return model
def main():
start = time.time()
model = load_flux_transformer(
Path("/data/invokeai/models/.download_cache/black-forest-labs_flux.1-schnell/FLUX.1-schnell/transformer/")
)
print(f"Time to load: {time.time() - start}s")
print("hi")
if __name__ == "__main__":
main()

View File

@@ -54,6 +54,7 @@ def filter_files(
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
)
):
paths.append(file)
@@ -62,7 +63,7 @@ def filter_files(
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
paths.append(file)
# limit search to subfolder if requested
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
if variant == ModelRepoVariant.Flax:
result.add(path)
elif path.suffix in [".json", ".txt"]:
# Note: '.model' was added to support:
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
elif path.suffix in [".json", ".txt", ".model"]:
result.add(path)
elif variant in [
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
continue
for candidate_list in subfolder_weights.values():
# Check if at least one of the files has the explicit fp16 variant.
at_least_one_fp16 = False
for candidate in candidate_list:
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
at_least_one_fp16 = True
break
if not at_least_one_fp16:
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
# we'll simply keep all the candidates. An example of a model that hits this case is
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
for candidate in candidate_list:
result.add(candidate.path)
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
# candidate.
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:
result.add(highest_score_candidate.path)

View File

@@ -0,0 +1,77 @@
import json
import os
from typing import Union
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
CONFIG_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFETENSORS_WEIGHTS_NAME,
_get_checkpoint_shard_files,
is_accelerate_available,
)
from optimum.quanto.models import QuantizedDiffusersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from invokeai.backend.requantize import requantize
class FastQuantizedDiffusersModel(QuantizedDiffusersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.base_class is None:
raise ValueError("The `base_class` attribute needs to be configured.")
if not is_accelerate_available():
raise ValueError("Reloading a quantized diffusers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
# Look for original model config file.
model_config_path = os.path.join(model_name_or_path, CONFIG_NAME)
if not os.path.exists(model_config_path):
raise ValueError(f"{CONFIG_NAME} not found in {model_name_or_path}.")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
with open(model_config_path, "r", encoding="utf-8") as f:
original_model_cls_name = json.load(f)["_class_name"]
configured_cls_name = cls.base_class.__name__
if configured_cls_name != original_model_cls_name:
raise ValueError(
f"Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name})."
)
# Create an empty model
config = cls.base_class.load_config(model_name_or_path)
with init_empty_weights():
model = cls.base_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
_, sharded_metadata = _get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFETENSORS_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,61 @@
import json
import os
from typing import Union
from optimum.quanto.models import QuantizedTransformersModel
from optimum.quanto.models.shared_dict import ShardedStateDict
from transformers import AutoConfig
from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available
from invokeai.backend.requantize import requantize
class FastQuantizedTransformersModel(QuantizedTransformersModel):
@classmethod
def from_pretrained(cls, model_name_or_path: Union[str, os.PathLike]):
"""We override the `from_pretrained()` method in order to use our custom `requantize()` implementation."""
if cls.auto_class is None:
raise ValueError(
"Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead."
)
if not is_accelerate_available():
raise ValueError("Reloading a quantized transformers model requires the accelerate library.")
from accelerate import init_empty_weights
if os.path.isdir(model_name_or_path):
# Look for a quantization map
qmap_path = os.path.join(model_name_or_path, cls._qmap_name())
if not os.path.exists(qmap_path):
raise ValueError(f"No quantization map found in {model_name_or_path}: is this a quantized model ?")
with open(qmap_path, "r", encoding="utf-8") as f:
qmap = json.load(f)
# Create an empty model
config = AutoConfig.from_pretrained(model_name_or_path)
with init_empty_weights():
model = cls.auto_class.from_config(config)
# Look for the index of a sharded checkpoint
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
if os.path.exists(checkpoint_file):
# Convert the checkpoint path to a list of shards
checkpoint_file, sharded_metadata = get_checkpoint_shard_files(model_name_or_path, checkpoint_file)
# Create a mapping for the sharded safetensor files
state_dict = ShardedStateDict(model_name_or_path, sharded_metadata["weight_map"])
else:
# Look for a single checkpoint file
checkpoint_file = os.path.join(model_name_or_path, SAFE_WEIGHTS_NAME)
if not os.path.exists(checkpoint_file):
raise ValueError(f"No safetensor weights found in {model_name_or_path}.")
# Get state_dict from model checkpoint
state_dict = load_state_dict(checkpoint_file)
# Requantize and load quantized weights from state_dict
requantize(model, state_dict=state_dict, quantization_map=qmap)
if getattr(model.config, "tie_word_embeddings", True):
# Tie output weight embeddings to input weight embeddings
# Note that if they were quantized they would NOT be tied
model.tie_weights()
# Set model in evaluation mode as it is done in transformers
model.eval()
return cls(model)
else:
raise NotImplementedError("Reloading quantized models directly from the hub is not supported yet.")

View File

@@ -0,0 +1,53 @@
from typing import Any, Dict
import torch
from optimum.quanto.quantize import _quantize_submodule
# def custom_freeze(model: torch.nn.Module):
# for name, m in model.named_modules():
# if isinstance(m, QModuleMixin):
# m.weight =
# m.freeze()
def requantize(
model: torch.nn.Module,
state_dict: Dict[str, Any],
quantization_map: Dict[str, Dict[str, str]],
device: torch.device = None,
):
if device is None:
device = next(model.parameters()).device
if device.type == "meta":
device = torch.device("cpu")
# Quantize the model with parameters from the quantization map
for name, m in model.named_modules():
qconfig = quantization_map.get(name, None)
if qconfig is not None:
weights = qconfig["weights"]
if weights == "none":
weights = None
activations = qconfig["activations"]
if activations == "none":
activations = None
_quantize_submodule(model, name, m, weights=weights, activations=activations)
# Move model parameters and buffers to CPU before materializing quantized weights
for name, m in model.named_modules():
def move_tensor(t, device):
if t.device.type == "meta":
return torch.empty_like(t, device=device)
return t.to(device)
for name, param in m.named_parameters(recurse=False):
setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu")))
for name, param in m.named_buffers(recurse=False):
setattr(m, name, move_tensor(param, "cpu"))
# Freeze model and move to target device
# freeze(model)
# model.to(device)
# Load the quantized model weights
model.load_state_dict(state_dict, strict=False)

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
"""
A ControlNet model.

View File

@@ -91,7 +91,8 @@
"viewingDesc": "Bilder in großer Galerie ansehen",
"tab": "Tabulator",
"enabled": "Aktiviert",
"disabled": "Ausgeschaltet"
"disabled": "Ausgeschaltet",
"dontShowMeThese": "Zeig mir diese nicht"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -106,7 +107,6 @@
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
"featuresWillReset": "Wenn Sie dieses Bild löschen, werden diese Funktionen sofort zurückgesetzt.",
"deleteImageBin": "Gelöschte Bilder werden an den Papierkorb Ihres Betriebssystems gesendet.",
"unableToLoad": "Galerie kann nicht geladen werden",
"downloadSelection": "Auswahl herunterladen",
"currentlyInUse": "Dieses Bild wird derzeit in den folgenden Funktionen verwendet:",
@@ -628,7 +628,10 @@
"private": "Private Ordner",
"shared": "Geteilte Ordner",
"archiveBoard": "Ordner archivieren",
"archived": "Archiviert"
"archived": "Archiviert",
"noBoards": "Kein {boardType}} Ordner",
"hideBoards": "Ordner verstecken",
"viewBoards": "Ordner ansehen"
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
@@ -943,6 +946,21 @@
"paragraphs": [
"Reduziert das Ausgangsbild auf die Breite und Höhe des Ausgangsbildes. Empfohlen zu aktivieren."
]
},
"structure": {
"paragraphs": [
"Die Struktur steuert, wie genau sich das Ausgabebild an das Layout des Originals hält. Eine niedrige Struktur erlaubt größere Änderungen, während eine hohe Struktur die ursprüngliche Komposition und das Layout strikter beibehält."
]
},
"creativity": {
"paragraphs": [
"Die Kreativität bestimmt den Grad der Freiheit, die dem Modell beim Hinzufügen von Details gewährt wird. Eine niedrige Kreativität hält sich eng an das Originalbild, während eine hohe Kreativität mehr Veränderungen zulässt. Bei der Verwendung eines Prompts erhöht eine hohe Kreativität den Einfluss des Prompts."
]
},
"scale": {
"paragraphs": [
"Die Skalierung steuert die Größe des Ausgabebildes und basiert auf einem Vielfachen der Auflösung des Originalbildes. So würde z. B. eine 2-fache Hochskalierung eines 1024x1024px Bildes eine 2048x2048px große Ausgabe erzeugen."
]
}
},
"invocationCache": {

View File

@@ -373,7 +373,6 @@
"dropToUpload": "$t(gallery.drop) to Upload",
"deleteImage_one": "Delete Image",
"deleteImage_other": "Delete {{count}} Images",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"displayBoardSearch": "Display Board Search",
"displaySearch": "Display Search",
@@ -1053,11 +1052,7 @@
"remixImage": "Remix Image",
"usePrompt": "Use Prompt",
"useSeed": "Use Seed",
"width": "Width",
"isAllowedToUpscale": {
"useX2Model": "Image is too large to upscale with x4 model, use x2 model",
"tooLarge": "Image is too large to upscale, select smaller image"
}
"width": "Width"
},
"dynamicPrompts": {
"showDynamicPrompts": "Show Dynamic Prompts",
@@ -1678,6 +1673,8 @@
},
"upscaling": {
"creativity": "Creativity",
"exceedsMaxSize": "Upscale settings exceed max size limit",
"exceedsMaxSizeDetails": "Max upscale limit is {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Please try a smaller image or decrease your scale selection.",
"structure": "Structure",
"upscaleModel": "Upscale Model",
"postProcessingModel": "Post-Processing Model",

View File

@@ -88,7 +88,6 @@
"deleteImage_one": "Eliminar Imagen",
"deleteImage_many": "",
"deleteImage_other": "",
"deleteImageBin": "Las imágenes eliminadas se enviarán a la papelera de tu sistema operativo.",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"

View File

@@ -89,7 +89,8 @@
"enabled": "Abilitato",
"disabled": "Disabilitato",
"comparingDesc": "Confronta due immagini",
"comparing": "Confronta"
"comparing": "Confronta",
"dontShowMeThese": "Non mostrarmi questi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -101,7 +102,6 @@
"deleteImage_many": "Elimina {{count}} immagini",
"deleteImage_other": "Elimina {{count}} immagini",
"deleteImagePermanent": "Le immagini eliminate non possono essere ripristinate.",
"deleteImageBin": "Le immagini eliminate verranno spostate nel cestino del tuo sistema operativo.",
"assets": "Risorse",
"autoAssignBoardOnClick": "Assegna automaticamente la bacheca al clic",
"featuresWillReset": "Se elimini questa immagine, quelle funzionalità verranno immediatamente ripristinate.",
@@ -154,7 +154,9 @@
"selectAllOnPage": "Seleziona tutto nella pagina",
"selectAllOnBoard": "Seleziona tutto nella bacheca",
"exitBoardSearch": "Esci da Ricerca bacheca",
"exitSearch": "Esci dalla ricerca"
"exitSearch": "Esci dalla ricerca",
"go": "Vai",
"jump": "Salta"
},
"hotkeys": {
"keyboardShortcuts": "Tasti di scelta rapida",
@@ -571,10 +573,6 @@
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
"tooLarge": "L'immagine è troppo grande per l'ampliamento, seleziona un'immagine più piccola"
},
"imageActions": "Azioni Immagine",
"cfgRescaleMultiplier": "Moltiplicatore riscala CFG",
"useSize": "Usa Dimensioni",
@@ -630,7 +628,9 @@
"enableNSFWChecker": "Abilita controllo NSFW",
"enableInvisibleWatermark": "Abilita filigrana invisibile",
"enableInformationalPopovers": "Abilita testo informativo a comparsa",
"reloadingIn": "Ricaricando in"
"reloadingIn": "Ricaricando in",
"informationalPopoversDisabled": "Testo informativo a comparsa disabilitato",
"informationalPopoversDisabledDesc": "I testi informativi a comparsa sono disabilitati. Attivali nelle impostazioni."
},
"toast": {
"uploadFailed": "Caricamento fallito",
@@ -951,7 +951,7 @@
"deleteBoardOnly": "solo la Bacheca",
"deleteBoard": "Elimina Bacheca",
"deleteBoardAndImages": "Bacheca e Immagini",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate. Selezionando \"Elimina solo bacheca\" le immagini verranno spostate nella bacheca \"Non categorizzato\".",
"movingImagesToBoard_one": "Spostare {{count}} immagine nella bacheca:",
"movingImagesToBoard_many": "Spostare {{count}} immagini nella bacheca:",
"movingImagesToBoard_other": "Spostare {{count}} immagini nella bacheca:",
@@ -972,7 +972,8 @@
"addPrivateBoard": "Aggiungi una Bacheca Privata",
"noBoards": "Nessuna bacheca {{boardType}}",
"hideBoards": "Nascondi bacheche",
"viewBoards": "Visualizza bacheche"
"viewBoards": "Visualizza bacheche",
"deletedPrivateBoardsCannotbeRestored": "Le bacheche cancellate non possono essere ripristinate. Selezionando 'Cancella solo bacheca', le immagini verranno spostate nella bacheca \"Non categorizzato\" privata dell'autore dell'immagine."
},
"controlnet": {
"contentShuffleDescription": "Rimescola il contenuto di un'immagine",
@@ -1516,6 +1517,30 @@
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
]
},
"scale": {
"heading": "Scala",
"paragraphs": [
"La scala controlla la dimensione dell'immagine di uscita e si basa su un multiplo della risoluzione dell'immagine di ingresso. Ad esempio, un ampliamento 2x su un'immagine 1024x1024 produrrebbe in uscita a 2048x2048."
]
},
"upscaleModel": {
"paragraphs": [
"Il modello di ampliamento ridimensiona l'immagine alle dimensioni di uscita prima che vengano aggiunti i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
],
"heading": "Modello di ampliamento"
},
"creativity": {
"heading": "Creatività",
"paragraphs": [
"La creatività controlla quanta libertà è concessa al modello quando si aggiungono dettagli. Una creatività bassa rimane vicina all'immagine originale, mentre una creatività alta consente più cambiamenti. Quando si usa un prompt, una creatività alta aumenta l'influenza del prompt."
]
},
"structure": {
"heading": "Struttura",
"paragraphs": [
"La struttura determina quanto l'immagine finale rispecchierà il layout dell'originale. Una struttura bassa permette cambiamenti significativi, mentre una struttura alta conserva la composizione e il layout originali."
]
}
},
"sdxl": {

View File

@@ -109,7 +109,6 @@
"drop": "ドロップ",
"dropOrUpload": "$t(gallery.drop) またはアップロード",
"deleteImage_other": "画像を削除",
"deleteImageBin": "削除された画像はOSのゴミ箱に送られます。",
"deleteImagePermanent": "削除された画像は復元できません。",
"download": "ダウンロード",
"unableToLoad": "ギャラリーをロードできません",

View File

@@ -70,7 +70,6 @@
"gallerySettings": "갤러리 설정",
"deleteSelection": "선택 항목 삭제",
"featuresWillReset": "이 이미지를 삭제하면 해당 기능이 즉시 재설정됩니다.",
"deleteImageBin": "삭제된 이미지는 운영 체제의 Bin으로 전송됩니다.",
"assets": "자산",
"problemDeletingImagesDesc": "하나 이상의 이미지를 삭제할 수 없습니다",
"noImagesInGallery": "보여줄 이미지가 없음",

View File

@@ -97,7 +97,6 @@
"noImagesInGallery": "Geen afbeeldingen om te tonen",
"deleteImage_one": "Verwijder afbeelding",
"deleteImage_other": "",
"deleteImageBin": "Verwijderde afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
"assets": "Eigen onderdelen",
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken",
@@ -467,10 +466,6 @@
},
"imageNotProcessedForControlAdapter": "De afbeelding van controle-adapter #{{number}} is niet verwerkt"
},
"isAllowedToUpscale": {
"useX2Model": "Afbeelding is te groot om te vergroten met het x4-model. Gebruik hiervoor het x2-model",
"tooLarge": "Afbeelding is te groot om te vergoten. Kies een kleinere afbeelding"
},
"patchmatchDownScaleSize": "Verklein",
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",

View File

@@ -100,7 +100,6 @@
"loadMore": "Показать больше",
"noImagesInGallery": "Изображений нет",
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
"deleteImage_one": "Удалить изображение",
"deleteImage_few": "Удалить {{count}} изображения",
"deleteImage_many": "Удалить {{count}} изображений",
@@ -567,10 +566,6 @@
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано"
}
},
"isAllowedToUpscale": {
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
"tooLarge": "Изображение слишком велико для увеличения. Выберите изображение меньшего размера"
},
"cfgRescaleMultiplier": "Множитель масштабирования CFG",
"patchmatchDownScaleSize": "уменьшить",
"useCpuNoise": "Использовать шум CPU",

View File

@@ -278,7 +278,6 @@
"enable": "Aç"
},
"gallery": {
"deleteImageBin": "Silinen görseller işletim sisteminin çöp kutusuna gönderilir.",
"deleteImagePermanent": "Silinen görseller geri getirilemez.",
"assets": "Özkaynaklar",
"autoAssignBoardOnClick": "Tıklanan Panoya Otomatik Atama",
@@ -622,10 +621,6 @@
"controlNetControlMode": "Yönetim Kipi",
"general": "Genel",
"seamlessYAxis": "Dikişsiz Döşeme Y Ekseni",
"isAllowedToUpscale": {
"tooLarge": "Görsel, büyütme işlemi için çok büyük, daha küçük bir boyut seçin",
"useX2Model": "Görsel 4 kat büyütme işlemi için çok geniş, 2 kat büyütmeyi kullanın"
},
"maskBlur": "Bulandırma",
"images": "Görseller",
"info": "Bilgi",

View File

@@ -6,7 +6,7 @@
"settingsLabel": "设置",
"img2img": "图生图",
"unifiedCanvas": "统一画布",
"nodes": "工作流编辑器",
"nodes": "工作流",
"upload": "上传",
"load": "加载",
"statusDisconnected": "未连接",
@@ -86,7 +86,12 @@
"editing": "编辑中",
"green": "绿",
"blue": "蓝",
"editingDesc": "在控制图层画布上编辑"
"editingDesc": "在控制图层画布上编辑",
"goTo": "前往",
"dontShowMeThese": "请勿显示这些内容",
"beta": "测试版",
"toResolve": "解决",
"tab": "标签页"
},
"gallery": {
"galleryImageSize": "预览大小",
@@ -94,8 +99,7 @@
"autoSwitchNewImages": "自动切换到新图像",
"loadMore": "加载更多",
"noImagesInGallery": "无图像可用于显示",
"deleteImage_other": "删除图片",
"deleteImageBin": "被删除的图片会发送到你操作系统的回收站。",
"deleteImage_other": "删除{{count}}张图片",
"deleteImagePermanent": "删除的图片无法被恢复。",
"assets": "素材",
"autoAssignBoardOnClick": "点击后自动分配面板",
@@ -133,7 +137,24 @@
"hover": "悬停",
"selectAllOnPage": "选择本页全部",
"swapImages": "交换图像",
"compareOptions": "比较选项"
"compareOptions": "比较选项",
"exitBoardSearch": "退出面板搜索",
"exitSearch": "退出搜索",
"oldestFirst": "最旧在前",
"sortDirection": "排序方向",
"showStarredImagesFirst": "优先显示收藏的图片",
"compareHelp3": "按 <Kbd>C</Kbd> 键对调正在比较的图片。",
"showArchivedBoards": "显示已归档的面板",
"newestFirst": "最新在前",
"compareHelp4": "按 <Kbd>Z</Kbd>或 <Kbd>Esc</Kbd> 键退出。",
"searchImages": "按元数据搜索",
"jump": "跳过",
"compareHelp2": "按 <Kbd>M</Kbd> 键切换不同的比较模式。",
"displayBoardSearch": "显示面板搜索",
"displaySearch": "显示搜索",
"stretchToFit": "拉伸以适应",
"exitCompare": "退出对比",
"compareHelp1": "在点击图库中的图片或使用箭头键切换比较图片时,请按住<Kbd>Alt</Kbd> 键。"
},
"hotkeys": {
"keyboardShortcuts": "快捷键",
@@ -348,7 +369,19 @@
"desc": "打开和关闭选项和图库面板",
"title": "开关选项和图库"
},
"clearSearch": "清除检索项"
"clearSearch": "清除检索项",
"toggleViewer": {
"desc": "在当前标签页的图片查看模式和编辑工作区之间切换.",
"title": "切换图片查看器"
},
"postProcess": {
"desc": "使用选定的后期处理模型对当前图像进行处理",
"title": "处理图像"
},
"remixImage": {
"title": "重新混合图像",
"desc": "使用当前图像的所有参数,但不包括随机种子"
}
},
"modelManager": {
"modelManager": "模型管理器",
@@ -396,14 +429,71 @@
"modelConversionFailed": "模型转换失败",
"baseModel": "基底模型",
"convertingModelBegin": "模型转换中. 请稍候.",
"predictionType": "预测类型(适用于 Stable Diffusion 2.x 模型和部分 Stable Diffusion 1.x 模型)",
"predictionType": "预测类型",
"advanced": "高级",
"modelType": "模型类别",
"variant": "变体",
"vae": "VAE",
"alpha": "Alpha",
"vaePrecision": "VAE 精度",
"noModelSelected": "无选中的模型"
"noModelSelected": "无选中的模型",
"modelImageUpdateFailed": "模型图像更新失败",
"scanFolder": "扫描文件夹",
"path": "路径",
"pathToConfig": "配置路径",
"cancel": "取消",
"hfTokenUnableToVerify": "无法验证HuggingFace token",
"install": "安装",
"simpleModelPlaceholder": "本地文件或diffusers文件夹的URL或路径",
"hfTokenInvalidErrorMessage": "无效或缺失的HuggingFace token.",
"noModelsInstalledDesc1": "安装模型时使用",
"inplaceInstallDesc": "安装模型时不复制文件直接从原位置加载。如果关闭此选项模型文件将在安装过程中被复制到Invoke管理的模型文件夹中.",
"installAll": "安装全部",
"noModelsInstalled": "无已安装的模型",
"urlOrLocalPathHelper": "链接应该指向单个文件.本地路径可以指向单个文件,或者对于单个扩散模型(diffusers model),可以指向一个文件夹.",
"modelSettings": "模型设置",
"useDefaultSettings": "使用默认设置",
"scanPlaceholder": "本地文件夹路径",
"installRepo": "安装仓库",
"modelImageDeleted": "模型图像已删除",
"modelImageDeleteFailed": "模型图像删除失败",
"scanFolderHelper": "此文件夹将进行递归扫描以寻找模型.对于大型文件夹,这可能需要一些时间.",
"scanResults": "扫描结果",
"noMatchingModels": "无匹配的模型",
"pruneTooltip": "清理队列中已完成的导入任务",
"urlOrLocalPath": "链接或本地路径",
"localOnly": "仅本地",
"hfTokenHelperText": "需要HuggingFace token才能使用Checkpoint模型。点击此处创建或获取您的token.",
"huggingFaceHelper": "如果在此代码库中检测到多个模型,系统将提示您选择其中一个进行安装.",
"hfTokenUnableToVerifyErrorMessage": "无法验证HuggingFace token.可能是网络问题所致.请稍后再试.",
"hfTokenSaved": "HuggingFace token已保存",
"imageEncoderModelId": "图像编码器模型ID",
"modelImageUpdated": "模型图像已更新",
"modelName": "模型名称",
"prune": "清理",
"repoVariant": "代码库版本",
"defaultSettings": "默认设置",
"inplaceInstall": "就地安装",
"main": "主界面",
"starterModels": "初始模型",
"installQueue": "安装队列",
"hfTokenInvalidErrorMessage2": "更新于其中 ",
"hfTokenInvalid": "无效或缺失的HuggingFace token",
"mainModelTriggerPhrases": "主模型触发词",
"typePhraseHere": "在此输入触发词",
"triggerPhrases": "触发词",
"metadata": "元数据",
"deleteModelImage": "删除模型图片",
"edit": "编辑",
"source": "来源",
"uploadImage": "上传图像",
"addModels": "添加模型",
"textualInversions": "文本逆向生成",
"upcastAttention": "是否为高精度权重",
"defaultSettingsSaved": "默认设置已保存",
"huggingFacePlaceholder": "所有者或模型名称",
"huggingFaceRepoID": "HuggingFace仓库ID",
"loraTriggerPhrases": "LoRA 触发词"
},
"parameters": {
"images": "图像",
@@ -446,7 +536,7 @@
"scheduler": "调度器",
"general": "通用",
"controlNetControlMode": "控制模式",
"maskBlur": "模糊",
"maskBlur": "遮罩模糊",
"invoke": {
"noNodesInGraph": "节点图中无节点",
"noModelSelected": "无已选中的模型",
@@ -460,7 +550,21 @@
"noPrompts": "没有已生成的提示词",
"noControlImageForControlAdapter": "有 #{{number}} 个 Control Adapter 缺失控制图像",
"noModelForControlAdapter": "有 #{{number}} 个 Control Adapter 没有选择模型。",
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。"
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。",
"layer": {
"initialImageNoImageSelected": "未选择初始图像",
"controlAdapterImageNotProcessed": "Control Adapter图像尚未处理",
"ipAdapterNoModelSelected": "未选择IP adapter",
"controlAdapterNoModelSelected": "未选择Control Adapter模型",
"controlAdapterNoImageSelected": "未选择Control Adapter图像",
"rgNoPromptsOrIPAdapters": "无文本提示或IP Adapters",
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
"t2iAdapterIncompatibleDimensions": "T2I Adapter需要图像尺寸为{{multiple}}的倍数",
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
"rgNoRegion": "未选择区域"
},
"imageNotProcessedForControlAdapter": "Control Adapter #{{number}} 的图像未处理"
},
"patchmatchDownScaleSize": "缩小",
"clipSkip": "CLIP 跳过层",
@@ -468,10 +572,6 @@
"coherenceMode": "模式",
"imageActions": "图像操作",
"iterations": "迭代数",
"isAllowedToUpscale": {
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"cfgRescaleMultiplier": "CFG 重缩放倍数",
"useSize": "使用尺寸",
"setToOptimalSize": "优化模型大小",
@@ -479,7 +579,21 @@
"lockAspectRatio": "锁定纵横比",
"swapDimensions": "交换尺寸",
"aspect": "纵横",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)"
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)",
"globalNegativePromptPlaceholder": "全局反向提示词",
"remixImage": "重新混合图像",
"coherenceEdgeSize": "边缘尺寸",
"postProcessing": "后处理Shift + U",
"infillMosaicTileWidth": "瓦片宽度",
"sendToUpscale": "发送到放大",
"processImage": "处理图像",
"globalPositivePromptPlaceholder": "全局正向提示词",
"globalSettings": "全局设置",
"infillMosaicTileHeight": "瓦片高度",
"infillMosaicMinColor": "最小颜色",
"infillMosaicMaxColor": "最大颜色",
"infillColorValue": "填充颜色",
"coherenceMinDenoise": "最小去噪"
},
"settings": {
"models": "模型",
@@ -509,7 +623,9 @@
"enableNSFWChecker": "启用成人内容检测器",
"enableInvisibleWatermark": "启用不可见水印",
"enableInformationalPopovers": "启用信息弹窗",
"reloadingIn": "重新加载中"
"reloadingIn": "重新加载中",
"informationalPopoversDisabled": "信息提示框已禁用",
"informationalPopoversDisabledDesc": "信息提示框已被禁用.请在设置中重新启用."
},
"toast": {
"uploadFailed": "上传失败",
@@ -518,16 +634,16 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersNotSet": "参数未设定",
"parametersNotSet": "参数未恢复",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",
"connected": "服务器连接",
"parameterSet": "参数已设定",
"parameterNotSet": "参数未设定",
"parameterSet": "参数已恢复",
"parameterNotSet": "参数未恢复",
"serverError": "服务器错误",
"canceled": "处理取消",
"problemCopyingImage": "无法复制图像",
"modelAddedSimple": "已添加模型",
"modelAddedSimple": "模型已加入队列",
"imageSavingFailed": "图像保存失败",
"canvasSentControlnetAssets": "画布已发送到 ControlNet & 素材",
"problemCopyingCanvasDesc": "无法导出基础层",
@@ -557,12 +673,28 @@
"canvasSavedGallery": "画布已保存到图库",
"imageUploadFailed": "图像上传失败",
"problemImportingMask": "导入遮罩时出现问题",
"baseModelChangedCleared_other": "基础模型已更改, 已清除或禁用 {{count}} 个不兼容的子模型",
"baseModelChangedCleared_other": "已清除或禁用{{count}}个不兼容的子模型",
"setAsCanvasInitialImage": "设为画布初始图像",
"invalidUpload": "无效的上传",
"problemDeletingWorkflow": "删除工作流时出现问题",
"workflowDeleted": "已删除工作流",
"problemRetrievingWorkflow": "检索工作流时发生问题"
"problemRetrievingWorkflow": "检索工作流时发生问题",
"baseModelChanged": "基础模型已更改",
"problemDownloadingImage": "无法下载图像",
"outOfMemoryError": "内存不足错误",
"parameters": "参数",
"resetInitialImage": "重置初始图像",
"parameterNotSetDescWithMessage": "无法恢复 {{parameter}}: {{message}}",
"parameterSetDesc": "已恢复 {{parameter}}",
"parameterNotSetDesc": "无法恢复{{parameter}}",
"sessionRef": "会话: {{sessionId}}",
"somethingWentWrong": "出现错误",
"prunedQueue": "已清理队列",
"uploadInitialImage": "上传初始图像",
"outOfMemoryErrorDesc": "您当前的生成设置已超出系统处理能力.请调整设置后再次尝试.",
"parametersSet": "参数已恢复",
"errorCopied": "错误信息已复制",
"modelImportCanceled": "模型导入已取消"
},
"unifiedCanvas": {
"layer": "图层",
@@ -616,7 +748,15 @@
"antialiasing": "抗锯齿",
"showResultsOn": "显示结果 (开)",
"showResultsOff": "显示结果 (关)",
"saveMask": "保存 $t(unifiedCanvas.mask)"
"saveMask": "保存 $t(unifiedCanvas.mask)",
"coherenceModeBoxBlur": "盒子模糊",
"showBoundingBox": "显示边界框",
"coherenceModeGaussianBlur": "高斯模糊",
"coherenceModeStaged": "分阶段",
"hideBoundingBox": "隐藏边界框",
"initialFitImageSize": "在拖放时调整图像大小以适配",
"invertBrushSizeScrollDirection": "反转滚动操作以调整画笔大小",
"discardCurrent": "放弃当前设置"
},
"accessibility": {
"invokeProgressBar": "Invoke 进度条",
@@ -746,11 +886,11 @@
"unableToExtractSchemaNameFromRef": "无法从参考中提取架构名",
"unknownOutput": "未知输出:{{name}}",
"unknownErrorValidatingWorkflow": "验证工作流时出现未知错误",
"collectionFieldType": "{{name}} 合集",
"collectionFieldType": "{{name}}(合集)",
"unknownNodeType": "未知节点类型",
"targetNodeDoesNotExist": "无效的边缘:{{node}} 的目标/输入节点不存在",
"unknownFieldType": "$t(nodes.unknownField) 类型:{{type}}",
"collectionOrScalarFieldType": "{{name}} 合集 | 标量",
"collectionOrScalarFieldType": "{{name}} (单一项目或项目集合)",
"nodeVersion": "节点版本",
"deletedInvalidEdge": "已删除无效的边缘 {{source}} -> {{target}}",
"unknownInput": "未知输入:{{name}}",
@@ -759,7 +899,27 @@
"newWorkflow": "新建工作流",
"newWorkflowDesc": "是否创建一个新的工作流?",
"newWorkflowDesc2": "当前工作流有未保存的更改。",
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})"
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})",
"resetToDefaultValue": "重置为默认值",
"clearWorkflowDesc2": "您当前的工作流有未保存的更改.",
"missingNode": "缺少调用节点",
"missingInvocationTemplate": "缺少调用模版",
"noFieldsViewMode": "此工作流程未选择任何要显示的字段.请查看完整工作流程以进行配置.",
"reorderLinearView": "调整线性视图顺序",
"viewMode": "在线性视图中使用",
"showEdgeLabelsHelp": "在边缘上显示标签,指示连接的节点",
"cannotMixAndMatchCollectionItemTypes": "集合项目类型不能混用",
"missingFieldTemplate": "缺少字段模板",
"editMode": "在工作流编辑器中编辑",
"showEdgeLabels": "显示边缘标签",
"clearWorkflowDesc": "是否清除当前工作流并创建新的?",
"graph": "图表",
"noGraph": "无图表",
"edit": "编辑",
"clearWorkflow": "清除工作流",
"imageAccessError": "无法找到图像 {{image_name}},正在恢复默认设置",
"boardAccessError": "无法找到面板 {{board_id}},正在恢复默认设置",
"modelAccessError": "无法找到模型 {{key}},正在恢复默认设置"
},
"controlnet": {
"resize": "直接缩放",
@@ -799,7 +959,7 @@
"mediapipeFaceDescription": "使用 Mediapipe 检测面部",
"depthZoeDescription": "使用 Zoe 生成深度图",
"hedDescription": "整体嵌套边缘检测",
"setControlImageDimensions": "设定控制图像尺寸宽/高为",
"setControlImageDimensions": "复制尺寸到宽度/高度(为模型优化)",
"amult": "角度倍率 (a_mult)",
"bgth": "背景移除阈值 (bg_th)",
"lineartAnimeDescription": "动漫风格线稿处理",
@@ -810,7 +970,7 @@
"addControlNet": "添加 $t(common.controlNet)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"safe": "保守模式",
"scribble": "草绘 (scribble)",
"scribble": "草绘",
"maxFaces": "最大面部数",
"pidi": "PIDI",
"normalBae": "Normal BAE",
@@ -925,7 +1085,8 @@
"steps": "步数",
"posStylePrompt": "正向样式提示词",
"refiner": "Refiner",
"freePromptStyle": "手动输入样式提示词"
"freePromptStyle": "手动输入样式提示词",
"refinerSteps": "精炼步数"
},
"metadata": {
"positivePrompt": "正向提示词",
@@ -952,7 +1113,12 @@
"recallParameters": "召回参数",
"noRecallParameters": "未找到要召回的参数",
"vae": "VAE",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "所有提示",
"parsingFailed": "解析失败",
"recallParameter": "调用{{label}}",
"imageDimensions": "图像尺寸",
"parameterSet": "已设置参数{{parameter}}"
},
"models": {
"noMatchingModels": "无相匹配的模型",
@@ -965,7 +1131,8 @@
"esrganModel": "ESRGAN 模型",
"addLora": "添加 LoRA",
"lora": "LoRA",
"defaultVAE": "默认 VAE"
"defaultVAE": "默认 VAE",
"concepts": "概念"
},
"boards": {
"autoAddBoard": "自动添加面板",
@@ -987,8 +1154,23 @@
"deleteBoardOnly": "仅删除面板",
"deleteBoard": "删除面板",
"deleteBoardAndImages": "删除面板和图像",
"deletedBoardsCannotbeRestored": "删除的面板无法恢复",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:"
"deletedBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”选项后,相关图片将会被移至未分类区域。",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:",
"selectedForAutoAdd": "已选中自动添加",
"hideBoards": "隐藏面板",
"noBoards": "没有{{boardType}}类型的面板",
"unarchiveBoard": "恢复面板",
"viewBoards": "查看面板",
"addPrivateBoard": "创建私密面板",
"addSharedBoard": "创建共享面板",
"boards": "面板",
"imagesWithCount_other": "{{count}}张图片",
"deletedPrivateBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”后,相关图片将会被移至图片创建者的私密未分类区域。",
"private": "私密面板",
"shared": "共享面板",
"archiveBoard": "归档面板",
"archived": "已归档",
"assetsWithCount_other": "{{count}}项资源"
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1030,32 +1212,33 @@
"paramVAEPrecision": {
"heading": "VAE 精度",
"paragraphs": [
"VAE 编解码过程使用的精度。FP16/半精度以微小的图像变化为代价提高效率。"
"VAE编码和解码过程使用的精度.",
"Fp16/半精度更高效,但可能会造成图像的一些微小差异."
]
},
"compositingCoherenceMode": {
"heading": "模式",
"paragraphs": [
"一致性层模式。"
"用于将新生成的遮罩区域与原图像融合的方法."
]
},
"controlNetResizeMode": {
"heading": "缩放模式",
"paragraphs": [
"ControlNet 输入图像适应输出图像大小的方法"
"调整Control Adapter输入图像大小以适应输出图像尺寸的方法."
]
},
"clipSkip": {
"paragraphs": [
"选择要跳过 CLIP 模型多少层。",
"部分模型跳过特定数值的层时效果会更好。"
"跳过CLIP模型的层数.",
"某些模型更适合结合CLIP Skip功能使用."
],
"heading": "CLIP 跳过层"
},
"paramModel": {
"heading": "模型",
"paragraphs": [
"用于去噪过程的模型。"
"用于图像生成的模型.不同的模型经过训练,专门用于产生不同的美学效果和内容."
]
},
"paramIterations": {
@@ -1087,19 +1270,21 @@
"paramScheduler": {
"heading": "调度器",
"paragraphs": [
"调度器 (采样器) 定义如何在图像迭代过程中添加噪声,或者定义如何根据一个模型的输出来更新采样。"
"生成过程中所使用的调度器.",
"每个调度器决定了在生成过程中如何逐步向图像添加噪声,或者如何根据模型的输出更新样本."
]
},
"controlNetWeight": {
"heading": "权重",
"paragraphs": [
"ControlNet 对生成图像的影响强度。"
"Control Adapter的权重.权重越高,对最终图像的影响越大."
]
},
"paramCFGScale": {
"heading": "CFG 等级",
"paragraphs": [
"控制提示对生成过程的影响程度。"
"控制提示对生成过程的影响程度.",
"较高的CFG比例值可能会导致生成结果过度饱和和扭曲. "
]
},
"paramSteps": {
@@ -1117,28 +1302,29 @@
]
},
"lora": {
"heading": "LoRA 权重",
"heading": "LoRA",
"paragraphs": [
"更高的 LoRA 权重会对最终图像产生更大的影响。"
"与基础模型结合使用的轻量级模型."
]
},
"infillMethod": {
"heading": "填充方法",
"paragraphs": [
"填充选定区域的方式。"
"在重绘过程中使用的填充方法."
]
},
"controlNetBeginEnd": {
"heading": "开始 / 结束步数百分比",
"paragraphs": [
"去噪过程中在哪部分步数应用 ControlNet。",
"在组合处理开始阶段应用 ControlNet且在引导细节生成的结束阶段应用 ControlNet。"
"去噪过程中应用Control Adapter 的部分.",
"通常,在去噪过程初期应用Control Adapters用于指导整体构图而在后期应用Control Adapters则用于调整细节。"
]
},
"scaleBeforeProcessing": {
"heading": "处理前缩放",
"paragraphs": [
"生成图像前将所选区域缩放为最适合模型的大小。"
"\"自动\"选项会在图像生成之前将所选区域调整到最适合模型的大小.",
"\"手动\"选项允许您在图像生成之前自行选择所选区域的宽度和高度."
]
},
"paramDenoisingStrength": {
@@ -1152,13 +1338,13 @@
"heading": "种子",
"paragraphs": [
"控制用于生成的起始噪声。",
"禁用 “随机种子” 来以相同设置生成相同的结果"
"禁用\"随机\"选项,以使用相同的生成设置产生一致的结果."
]
},
"controlNetControlMode": {
"heading": "控制模式",
"paragraphs": [
"提示词ControlNet 增加更大的权重"
"提示词ControlNet之间分配更多的权重."
]
},
"dynamicPrompts": {
@@ -1199,7 +1385,171 @@
"paramCFGRescaleMultiplier": {
"heading": "CFG 重缩放倍数",
"paragraphs": [
"CFG导的重缩放倍率,用于通过 zero-terminal SNR (ztsnr) 训练的模型。推荐设为 0.7。"
"CFG导的重缩放乘数,适用于使用零终端信噪比(ztsnr训练的模型.",
"对于这些模型,建议的数值为0.7."
]
},
"imageFit": {
"paragraphs": [
"将初始图像调整到与输出图像相同的宽度和高度.建议启用此功能."
],
"heading": "将初始图像适配到输出大小"
},
"paramAspect": {
"paragraphs": [
"生成图像的宽高比.调整宽高比会相应地更新图像的宽度和高度.",
"选择\"优化\"将把图像的宽度和高度设置为所选模型的最优尺寸."
],
"heading": "宽高比"
},
"refinerSteps": {
"paragraphs": [
"在图像生成过程中的细化阶段将执行的步骤数.",
"与生成步骤相似."
],
"heading": "步数"
},
"compositingMaskBlur": {
"heading": "遮罩模糊",
"paragraphs": [
"遮罩的模糊范围."
]
},
"compositingCoherenceMinDenoise": {
"paragraphs": [
"连贯模式下的最小去噪力度",
"在图像修复或重绘过程中,连贯区域的最小去噪力度"
],
"heading": "最小去噪"
},
"loraWeight": {
"paragraphs": [
"LoRA的权重,权重越高对最终图像的影响越大."
],
"heading": "权重"
},
"paramHrf": {
"heading": "启用高分辨率修复",
"paragraphs": [
"以高于模型最优分辨率的大分辨率生成高质量图像.这通常用于防止生成图像中出现重复内容."
]
},
"compositingCoherenceEdgeSize": {
"paragraphs": [
"连贯处理的边缘尺寸."
],
"heading": "边缘尺寸"
},
"paramWidth": {
"paragraphs": [
"生成图像的宽度.必须是8的倍数."
],
"heading": "宽度"
},
"refinerScheduler": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的调度程序.",
"与生成调度程序相似."
],
"heading": "调度器"
},
"seamlessTilingXAxis": {
"paragraphs": [
"沿水平轴将图像进行无缝平铺."
],
"heading": "无缝平铺X轴"
},
"paramUpscaleMethod": {
"heading": "放大方法",
"paragraphs": [
"用于高分辨率修复的图像放大方法."
]
},
"refinerModel": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的模型.",
"与生成模型相似."
],
"heading": "精炼模型"
},
"paramHeight": {
"paragraphs": [
"生成图像的高度.必须是8的倍数."
],
"heading": "高"
},
"patchmatchDownScaleSize": {
"heading": "缩小",
"paragraphs": [
"在填充之前图像缩小的程度.",
"较高的缩小比例会提升处理速度,但可能会降低图像质量."
]
},
"seamlessTilingYAxis": {
"heading": "Y轴上的无缝平铺",
"paragraphs": [
"沿垂直轴将图像进行无缝平铺."
]
},
"ipAdapterMethod": {
"paragraphs": [
"当前IP Adapter的应用方法."
],
"heading": "方法"
},
"controlNetProcessor": {
"paragraphs": [
"处理输入图像以引导生成过程的方法.不同的处理器会在生成图像中产生不同的效果或风格."
],
"heading": "处理器"
},
"refinerPositiveAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有高美学评分的图像."
],
"heading": "正面美学评分"
},
"refinerStart": {
"paragraphs": [
"在图像生成过程中精炼阶段开始被使用的时刻.",
"0表示精炼器将全程参与图像生成,0.8表示细化器仅在生成过程的最后20%阶段被使用."
],
"heading": "精炼开始"
},
"refinerCfgScale": {
"paragraphs": [
"控制提示对生成过程的影响程度.",
"与生成CFG Scale相似."
]
},
"structure": {
"heading": "结构",
"paragraphs": [
"结构决定了输出图像在多大程度上保持原始图像的布局.较低的结构设置允许进行较大的变化,而较高的结构设置则会严格保持原始图像的构图和布局."
]
},
"creativity": {
"paragraphs": [
"创造力决定了模型在添加细节时的自由度.较低的创造力会使生成结果更接近原始图像,而较高的创造力则允许更多的变化.在使用提示时,较高的创造力会增加提示对生成结果的影响."
],
"heading": "创造力"
},
"refinerNegativeAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有低美学评分的图像."
],
"heading": "负面美学评分"
},
"upscaleModel": {
"heading": "放大模型",
"paragraphs": [
"上采样模型在添加细节之前将图像放大到输出尺寸.虽然可以使用任何支持的上采样模型,但有些模型更适合处理特定类型的图像,例如照片或线条画."
]
},
"scale": {
"heading": "缩放",
"paragraphs": [
"比例控制决定了输出图像的大小,它是基于输入图像分辨率的倍数来计算的.例如对一张1024x1024的图像进行2倍上采样将会得到一张2048x2048的输出图像."
]
}
},
@@ -1259,7 +1609,16 @@
"updated": "已更新",
"userWorkflows": "我的工作流",
"projectWorkflows": "项目工作流",
"opened": "已打开"
"opened": "已打开",
"noRecentWorkflows": "没有最近的工作流",
"workflowCleared": "工作流已清除",
"saveWorkflowToProject": "保存工作流到项目",
"noWorkflows": "无工作流",
"convertGraph": "转换图表",
"loadWorkflow": "$t(common.load) 工作流",
"noUserWorkflows": "没有用户工作流",
"loadFromGraph": "从图表加载工作流",
"autoLayout": "自动布局"
},
"app": {
"storeNotInitialized": "商店尚未初始化"
@@ -1287,5 +1646,68 @@
"prompt": {
"addPromptTrigger": "添加提示词触发器",
"noMatchingTriggers": "没有匹配的触发器"
},
"controlLayers": {
"autoNegative": "自动反向",
"opacityFilter": "透明度滤镜",
"deleteAll": "删除所有",
"moveForward": "向前移动",
"layers_other": "层",
"globalControlAdapterLayer": "全局 $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"moveBackward": "向后移动",
"regionalGuidance": "区域导向",
"controlLayers": "控制层",
"moveToBack": "移动到后面",
"brushSize": "笔刷尺寸",
"moveToFront": "移动到前面",
"addLayer": "添加层",
"deletePrompt": "删除提示词",
"resetRegion": "重置区域",
"debugLayers": "调试图层",
"maskPreviewColor": "遮罩预览颜色",
"addPositivePrompt": "添加 $t(common.positivePrompt)",
"addNegativePrompt": "添加 $t(common.negativePrompt)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"globalIPAdapterLayer": "全局 $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"globalInitialImage": "全局初始图像",
"noLayersAdded": "没有层被添加",
"globalIPAdapter": "全局 $t(common.ipAdapter)",
"resetProcessor": "重置处理器至默认值",
"globalMaskOpacity": "全局遮罩透明度",
"rectangle": "矩形",
"opacity": "透明度",
"clearProcessor": "清除处理器",
"globalControlAdapter": "全局 $t(controlnet.controlAdapter_one)"
},
"ui": {
"tabs": {
"generation": "生成",
"queue": "队列",
"canvas": "画布",
"upscaling": "放大中",
"workflows": "工作流",
"models": "模型"
}
},
"upscaling": {
"structure": "结构",
"upscaleModel": "放大模型",
"missingUpscaleModel": "缺少放大模型",
"missingTileControlNetModel": "没有安装有效的tile ControlNet 模型",
"missingUpscaleInitialImage": "缺少用于放大的原始图像",
"creativity": "创造力",
"postProcessingModel": "后处理模型",
"scale": "缩放",
"tileControlNetModelDesc": "根据所选的主模型架构选择相应的Tile ControlNet模型",
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
"mainModelDesc": "主模型SD1.5或SDXL架构"
},
"upsell": {
"inviteTeammates": "邀请团队成员",
"professional": "专业",
"professionalUpsell": "可在 Invoke 的专业版中使用.点击此处或访问 invoke.com/pricing 了解更多详情.",
"shareAccess": "共享访问权限"
}
}

View File

@@ -65,11 +65,15 @@ export type AppConfig = {
*/
shouldUpdateImagesOnConnect: boolean;
shouldFetchMetadataFromApi: boolean;
/**
* Sets a size limit for outputs on the upscaling tab. This is a maximum dimension, so the actual max number of pixels
* will be the square of this value.
*/
maxUpscaleDimension?: number;
allowPrivateBoards: boolean;
disabledTabs: InvokeTabName[];
disabledFeatures: AppFeature[];
disabledSDFeatures: SDFeature[];
canRestoreDeletedImagesFromBin: boolean;
nodesAllowlist: string[] | undefined;
nodesDenylist: string[] | undefined;
metadataFetchDebounce?: number;

View File

@@ -16,6 +16,7 @@ import { selectWorkflowSettingsSlice } from 'features/nodes/store/workflowSettin
import { isInvocationNode } from 'features/nodes/types/invocation';
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { selectUpscalelice } from 'features/parameters/store/upscaleSlice';
import { selectConfigSlice } from 'features/system/store/configSlice';
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import i18n from 'i18next';
@@ -42,6 +43,7 @@ const createSelector = (templates: Templates) =>
selectControlLayersSlice,
activeTabNameSelector,
selectUpscalelice,
selectConfigSlice,
],
(
controlAdapters,
@@ -52,7 +54,8 @@ const createSelector = (templates: Templates) =>
dynamicPrompts,
controlLayers,
activeTabName,
upscale
upscale,
config
) => {
const { model } = generation;
const { size } = controlLayers.present;
@@ -209,6 +212,16 @@ const createSelector = (templates: Templates) =>
} else if (activeTabName === 'upscaling') {
if (!upscale.upscaleInitialImage) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleInitialImage') });
} else if (config.maxUpscaleDimension) {
const { width, height } = upscale.upscaleInitialImage;
const { scale } = upscale;
const maxPixels = config.maxUpscaleDimension ** 2;
const upscaledPixels = width * scale * height * scale;
if (upscaledPixels > maxPixels) {
reasons.push({ content: i18n.t('upscaling.exceedsMaxSize') });
}
}
if (!upscale.upscaleModel) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleModel') });

View File

@@ -56,7 +56,6 @@ const DeleteImageModal = () => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const shouldConfirmOnDelete = useAppSelector((s) => s.system.shouldConfirmOnDelete);
const canRestoreDeletedImagesFromBin = useAppSelector((s) => s.config.canRestoreDeletedImagesFromBin);
const isModalOpen = useAppSelector((s) => s.deleteImageModal.isModalOpen);
const { imagesToDelete, imagesUsage, imageUsageSummary } = useAppSelector(selectImageUsages);
@@ -90,7 +89,7 @@ const DeleteImageModal = () => {
<Flex direction="column" gap={3}>
<ImageUsageMessage imageUsage={imageUsageSummary} />
<Divider />
<Text>{canRestoreDeletedImagesFromBin ? t('gallery.deleteImageBin') : t('gallery.deleteImagePermanent')}</Text>
<Text>{t('gallery.deleteImagePermanent')}</Text>
<Text>{t('common.areYouSure')}</Text>
<FormControl>
<FormLabel>{t('common.dontAskMeAgain')}</FormLabel>

View File

@@ -35,7 +35,6 @@ type Props = {
const DeleteBoardModal = (props: Props) => {
const { boardToDelete, setBoardToDelete } = props;
const { t } = useTranslation();
const canRestoreDeletedImagesFromBin = useAppSelector((s) => s.config.canRestoreDeletedImagesFromBin);
const { currentData: boardImageNames, isFetching: isFetchingBoardNames } = useListAllImageNamesForBoardQuery(
boardToDelete?.board_id ?? skipToken
);
@@ -125,9 +124,7 @@ const DeleteBoardModal = (props: Props) => {
? t('boards.deletedPrivateBoardsCannotbeRestored')
: t('boards.deletedBoardsCannotbeRestored')}
</Text>
<Text>
{canRestoreDeletedImagesFromBin ? t('gallery.deleteImageBin') : t('gallery.deleteImagePermanent')}
</Text>
<Text>{t('gallery.deleteImagePermanent')}</Text>
</Flex>
</AlertDialogBody>
<AlertDialogFooter>

View File

@@ -0,0 +1,29 @@
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import { selectUpscalelice } from 'features/parameters/store/upscaleSlice';
import { selectConfigSlice } from 'features/system/store/configSlice';
import { useMemo } from 'react';
import type { ImageDTO } from 'services/api/types';
const createIsTooLargeToUpscaleSelector = (imageDTO?: ImageDTO) =>
createMemoizedSelector(selectUpscalelice, selectConfigSlice, (upscale, config) => {
const { upscaleModel, scale } = upscale;
const { maxUpscaleDimension } = config;
if (!maxUpscaleDimension || !upscaleModel || !imageDTO) {
// When these are missing, another warning will be shown
return false;
}
const { width, height } = imageDTO;
const maxPixels = maxUpscaleDimension ** 2;
const upscaledPixels = width * scale * height * scale;
return upscaledPixels > maxPixels;
});
export const useIsTooLargeToUpscale = (imageDTO?: ImageDTO) => {
const selectIsTooLargeToUpscale = useMemo(() => createIsTooLargeToUpscaleSelector(imageDTO), [imageDTO]);
return useAppSelector(selectIsTooLargeToUpscale);
};

View File

@@ -1,4 +1,4 @@
import { Flex } from '@invoke-ai/ui-library';
import { Flex, Text } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDndImage from 'common/components/IAIDndImage';
import IAIDndImageIcon from 'common/components/IAIDndImageIcon';
@@ -41,13 +41,30 @@ export const UpscaleInitialImage = () => {
postUploadAction={postUploadAction}
/>
{imageDTO && (
<Flex position="absolute" flexDir="column" top={1} insetInlineEnd={1} gap={1}>
<IAIDndImageIcon
onClick={onReset}
icon={<PiArrowCounterClockwiseBold size={16} />}
tooltip={t('controlnet.resetControlImage')}
/>
</Flex>
<>
<Flex position="absolute" flexDir="column" top={1} insetInlineEnd={1} gap={1}>
<IAIDndImageIcon
onClick={onReset}
icon={<PiArrowCounterClockwiseBold size={16} />}
tooltip={t('controlnet.resetControlImage')}
/>
</Flex>
<Text
position="absolute"
background="base.900"
color="base.50"
fontSize="sm"
fontWeight="semibold"
bottom={0}
left={0}
opacity={0.7}
px={2}
lineHeight={1.25}
borderTopEndRadius="base"
borderBottomStartRadius="base"
pointerEvents="none"
>{`${imageDTO.width}x${imageDTO.height}`}</Text>
</>
)}
</Flex>
</Flex>

View File

@@ -1,6 +1,7 @@
import { Button, Flex, ListItem, Text, UnorderedList } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { $installModelsTab } from 'features/modelManagerV2/subpanels/InstallModels';
import { useIsTooLargeToUpscale } from 'features/parameters/hooks/useIsTooLargeToUpscale';
import { tileControlnetModelChanged } from 'features/parameters/store/upscaleSlice';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { useCallback, useEffect, useMemo } from 'react';
@@ -12,10 +13,13 @@ export const UpscaleWarning = () => {
const model = useAppSelector((s) => s.generation.model);
const upscaleModel = useAppSelector((s) => s.upscale.upscaleModel);
const tileControlnetModel = useAppSelector((s) => s.upscale.tileControlnetModel);
const upscaleInitialImage = useAppSelector((s) => s.upscale.upscaleInitialImage);
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useControlNetModels();
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
const shouldShowButton = useMemo(() => !disabledTabs.includes('models'), [disabledTabs]);
const maxUpscaleDimension = useAppSelector((s) => s.config.maxUpscaleDimension);
const isTooLargeToUpscale = useIsTooLargeToUpscale(upscaleInitialImage || undefined);
useEffect(() => {
const validModel = modelConfigs.find((cnetModel) => {
@@ -24,7 +28,7 @@ export const UpscaleWarning = () => {
dispatch(tileControlnetModelChanged(validModel || null));
}, [model?.base, modelConfigs, dispatch]);
const warnings = useMemo(() => {
const modelWarnings = useMemo(() => {
const _warnings: string[] = [];
if (!model) {
_warnings.push(t('upscaling.mainModelDesc'));
@@ -35,33 +39,44 @@ export const UpscaleWarning = () => {
if (!upscaleModel) {
_warnings.push(t('upscaling.upscaleModelDesc'));
}
return _warnings;
}, [model, tileControlnetModel, upscaleModel, t]);
const otherWarnings = useMemo(() => {
const _warnings: string[] = [];
if (isTooLargeToUpscale && maxUpscaleDimension) {
_warnings.push(
t('upscaling.exceedsMaxSizeDetails', { maxUpscaleDimension: maxUpscaleDimension.toLocaleString() })
);
}
return _warnings;
}, [isTooLargeToUpscale, t, maxUpscaleDimension]);
const handleGoToModelManager = useCallback(() => {
dispatch(setActiveTab('models'));
$installModelsTab.set(3);
}, [dispatch]);
if (!warnings.length || isLoading || !shouldShowButton) {
if ((!modelWarnings.length && !otherWarnings.length) || isLoading || !shouldShowButton) {
return null;
}
return (
<Flex bg="error.500" borderRadius="base" padding={4} direction="column" fontSize="sm" gap={2}>
<Text>
<Trans
i18nKey="upscaling.missingModelsWarning"
components={{
LinkComponent: (
<Button size="sm" flexGrow={0} variant="link" color="base.50" onClick={handleGoToModelManager} />
),
}}
/>
</Text>
{!!modelWarnings.length && (
<Text>
<Trans
i18nKey="upscaling.missingModelsWarning"
components={{
LinkComponent: (
<Button size="sm" flexGrow={0} variant="link" color="base.50" onClick={handleGoToModelManager} />
),
}}
/>
</Text>
)}
<UnorderedList>
{warnings.map((warning) => (
{[...modelWarnings, ...otherWarnings].map((warning) => (
<ListItem key={warning}>{warning}</ListItem>
))}
</UnorderedList>

View File

@@ -24,7 +24,6 @@ const initialConfigState: AppConfig = {
disabledSDFeatures: ['variation', 'symmetry', 'hires', 'perlinNoise', 'noiseThreshold'],
nodesAllowlist: undefined,
nodesDenylist: undefined,
canRestoreDeletedImagesFromBin: true,
sd: {
disabledControlNetModels: [],
disabledControlNetProcessors: [],

View File

@@ -33,31 +33,35 @@ classifiers = [
]
dependencies = [
# Core generation dependencies, pinned for reproducible builds.
"accelerate==0.30.1",
"accelerate==0.33.0",
"clip_anytorch==2.6.0", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel==2.0.2",
"controlnet-aux==0.0.7",
"diffusers[torch]==0.27.2",
# TODO(ryand): Bump this once the next diffusers release is ready.
"diffusers[torch] @ git+https://github.com/huggingface/diffusers.git@4c6152c2fb0ade468aadb417102605a07a8635d3",
"invisible-watermark==0.2.0", # needed to install SDXL base and refiner using their repo_ids
"mediapipe==0.10.7", # needed for "mediapipeface" controlnet model
"numpy==1.26.4", # >1.24.0 is needed to use the 'strict' argument to np.testing.assert_array_equal()
"onnx==1.15.0",
"onnxruntime==1.16.3",
"opencv-python==4.9.0.80",
"optimum-quanto==0.2.4",
"pytorch-lightning==2.1.3",
"safetensors==0.4.3",
# sentencepiece is required to load T5TokenizerFast (used by FLUX).
"sentencepiece==0.2.0",
"spandrel==0.3.4",
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
"torch==2.2.2",
"torch==2.4.0",
"torchmetrics==0.11.4",
"torchsde==0.2.6",
"torchvision==0.17.2",
"torchvision==0.19.0",
"transformers==4.41.1",
# Core application dependencies, pinned for reproducible builds.
"fastapi-events==0.11.1",
"fastapi==0.111.0",
"huggingface-hub==0.23.1",
"huggingface-hub==0.24.5",
"pydantic-settings==2.2.1",
"pydantic==2.7.2",
"python-socketio==5.11.1",
@@ -74,7 +78,8 @@ dependencies = [
"easing-functions",
"einops",
"facexlib",
"matplotlib", # needed for plotting of Penner easing functions
# Exclude 3.9.1 which has a problem on windows, see https://github.com/matplotlib/matplotlib/issues/28551
"matplotlib!=3.9.1",
"npyscreen",
"omegaconf",
"picklescan",
@@ -89,7 +94,6 @@ dependencies = [
"rich~=13.3",
"scikit-image~=0.21.0",
"semver~=3.0.1",
"send2trash",
"test-tube~=0.7.5",
"windows-curses; sys_platform=='win32'",
]

View File

@@ -326,3 +326,80 @@ def test_select_multiple_weights(
) -> None:
filtered_files = filter_files(sd15_test_files, variant)
assert set(filtered_files) == {Path(f) for f in expected_files}
@pytest.fixture
def flux_schnell_test_files() -> list[Path]:
return [
Path(f)
for f in [
"FLUX.1-schnell/.gitattributes",
"FLUX.1-schnell/README.md",
"FLUX.1-schnell/ae.safetensors",
"FLUX.1-schnell/flux1-schnell.safetensors",
"FLUX.1-schnell/model_index.json",
"FLUX.1-schnell/scheduler/scheduler_config.json",
"FLUX.1-schnell/schnell_grid.jpeg",
"FLUX.1-schnell/text_encoder/config.json",
"FLUX.1-schnell/text_encoder/model.safetensors",
"FLUX.1-schnell/text_encoder_2/config.json",
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
"FLUX.1-schnell/tokenizer/merges.txt",
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
"FLUX.1-schnell/tokenizer/vocab.json",
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
"FLUX.1-schnell/tokenizer_2/spiece.model",
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
"FLUX.1-schnell/transformer/config.json",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
"FLUX.1-schnell/vae/config.json",
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
]
]
@pytest.mark.parametrize(
["variant", "expected_files"],
[
(
ModelRepoVariant.Default,
[
"FLUX.1-schnell/model_index.json",
"FLUX.1-schnell/scheduler/scheduler_config.json",
"FLUX.1-schnell/text_encoder/config.json",
"FLUX.1-schnell/text_encoder/model.safetensors",
"FLUX.1-schnell/text_encoder_2/config.json",
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
"FLUX.1-schnell/tokenizer/merges.txt",
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
"FLUX.1-schnell/tokenizer/vocab.json",
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
"FLUX.1-schnell/tokenizer_2/spiece.model",
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
"FLUX.1-schnell/transformer/config.json",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
"FLUX.1-schnell/vae/config.json",
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
],
),
],
)
def test_select_flux_schnell_files(
flux_schnell_test_files: list[Path], variant: ModelRepoVariant, expected_files: list[str]
) -> None:
filtered_files = filter_files(flux_schnell_test_files, variant)
assert set(filtered_files) == {Path(f) for f in expected_files}