Compare commits

...

193 Commits

Author SHA1 Message Date
Millun Atluri
b2baead450 Corrected version 2023-10-11 21:11:03 +11:00
Millun Atluri
3be9b3ded8 Bump version to 3.3.0rc 2023-10-11 21:08:53 +11:00
Millun Atluri
47c7cff365 Updated frontend build 2023-10-11 21:07:12 +11:00
Ryan Dick
462c1d4c9b Improve model load times from disk: skip unnecessary weight init (#4840)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

This PR optimizes the time to load models from disk.
In my local testing, SDXL text_encoder_2 models saw the greatest
improvement:
- Before change, load time (disk to cpu): 14 secs
- After change, load time (disk to cpu): 4 secs

See the in-code documentation for an explanation of how this speedup is
achieved.

## Related Tickets & Documents

This change was previously proposed on the HF transformers repo, but did
not get any traction:
https://github.com/huggingface/transformers/issues/18505#issue-1330728188

## QA Instructions, Screenshots, Recordings

I don't expect any adverse effects, but the new context manager is
applied while loading **all** models, so it would make sense to exercise
everything.

## Added/updated tests?

- [x] Yes
- [ ] No
2023-10-10 13:40:20 -04:00
Ryan Dick
0ed36158c8 Merge branch 'main' into ryan/optimize-model-load 2023-10-10 13:31:08 -04:00
Ryan Dick
f3c138a208 (minor) Fix Flake8. 2023-10-10 10:06:53 -04:00
Ryan Dick
61242bf86a Fix bug in skip_torch_weight_init() where the original behavior of torch.nn.Conv*d modules wasn't being restored correctly. 2023-10-10 10:05:50 -04:00
psychedelicious
d118d02df4 feat(ui): add mapping for sketch and scribble control adapter processors 2023-10-09 23:24:56 -04:00
Ryan Dick
58b56e9b1e Add a skip_torch_weight_init() context manager to improve model load times (from disk). 2023-10-09 14:12:56 -04:00
psychedelicious
1f751f8c21 fix(ui): remove extraneous cache update 2023-10-09 20:11:21 +11:00
psychedelicious
ca95a3bd0d fix(ui): fix canvas soft-lock if canceled before first generation
The canvas needs to be set to staging mode as soon as a canvas-destined batch is enqueued. If the batch is is fully canceled before an image is generated, we need to remove that batch from the canvas `batchIds` watchlist, else canvas gets stuck in staging mode with no way to exit.

The changes here allow the batch status to be tracked, and if a batch has all its items completed, we can remove it from the `batchIds` watchlist. The `batchIds` watchlist now accurately represents *incomplete* canvas batches, fixing this cause of soft lock.
2023-10-09 20:11:21 +11:00
psychedelicious
55b40a9425 feat(events): add batch status and queue status to queue item status changed events
The UI will always re-fetch queue and batch status on receiving this event, so we may as well jsut include that data in the event and save the extra network roundtrips.
2023-10-09 20:11:21 +11:00
psychedelicious
90083cc88d fix(ui): fix use all hotkey 2023-10-09 20:03:14 +11:00
Lincoln Stein
ead754432a add a lists of t2i adapters to startup set (#4828)
## What type of PR is this? (check all applicable)

- [X] Feature

## Have you discussed this change with the InvokeAI team?
- [X] No, because: Non-controversial

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] N/A


## Description

This adds a list of T2I adapters to the “starter models” offered by the
TUI installer. None of the models is selected by default; this can be
done easily if requested. The models offered to the user are:

```
TencentARC/t2iadapter_canny_sd15v2
TencentARC/t2iadapter_sketch_sd15v2
TencentARC/t2iadapter_depth_sd15v2
TencentARC/t2iadapter_zoedepth_sd15v1
TencentARC/t2i-adapter-canny-sdxl-1.0
TencentARC/t2i-adapter-depth-zoe-sdxl-1.0
TencentARC/t2i-adapter-lineart-sdxl-1.0
TencentARC/t2i-adapter-sketch-sdxl-1.0
```

## Related Tickets & Documents

PR #4612 

## QA Instructions, Screenshots, Recordings

The revised installer has a new IP-ADAPTERS tab that looks like this:


![IMG_0255](https://github.com/invoke-ai/InvokeAI/assets/111189/0e01b1f6-7191-49a1-ac63-2c913826d299)

## Added/updated tests?

- [ ] Yes
- [X] No : It would be good to have a suite of model download tests, but
not set up yet.
2023-10-08 19:49:43 -04:00
Lincoln Stein
fa9ea93477 add a lists of t2i adapters to startup set 2023-10-08 18:53:21 -04:00
Lincoln Stein
fe0cf2c160 remove hardcoded subfolder name from model downloader 2023-10-08 17:45:39 -04:00
psychedelicious
a681fa4b03 fix(ui): invalidate query cache for all models on sync models
Also realised the tags were set up incorrectly, fixed that to get type safety with tags.
2023-10-07 22:30:15 +11:00
psychedelicious
1cc686734b feat(ui): on base model change, disable control adapters
Previously it deleted them entirely.
2023-10-07 22:30:15 +11:00
psychedelicious
82e8b92ba0 feat(ui): display toast when enabling t2i/controlnet and disabling the other 2023-10-07 22:30:15 +11:00
psychedelicious
e86658f864 feat(ui): disable invoke button if enabled control adapter model does not match base model 2023-10-07 22:30:15 +11:00
psychedelicious
ad136c2680 fix(ui): do not add control adapters with incompatible models to graph 2023-10-07 22:30:15 +11:00
psychedelicious
35374ec531 feat(ui): update graphs for multi ip adapter 2023-10-07 22:30:15 +11:00
psychedelicious
ed82bf6bb8 feat(ui): disable control adapter buttons if no models available 2023-10-07 22:30:15 +11:00
psychedelicious
078c9b6964 feat(nodes,ui): add t2i to linear UI
- Update backend metadata for t2i adapter
- Fix typo in `T2IAdapterInvocation`: `ip_adapter_model` -> `t2i_adapter_model`
- Update linear graphs to use t2i adapter
- Add client metadata recall for t2i adapter
- Fix bug with controlnet metadata recall - processor should be set to 'none' when recalling a control adapter
2023-10-07 22:30:15 +11:00
psychedelicious
1a9d2f1701 feat(ui): spruce up control adapter ui 2023-10-07 22:30:15 +11:00
psychedelicious
3e93159bce fix(ui): enable duplicated control adapter 2023-10-07 22:30:15 +11:00
psychedelicious
b57ebe52e4 chore(ui): "controlnet" -> "controladapters" 2023-10-07 22:30:15 +11:00
psychedelicious
ba4616ff89 feat(ui): add limits to enabled control adapters
- only 1 ip adapter at a time
- controlnet and t2i cannot both be active at once
2023-10-07 22:30:15 +11:00
psychedelicious
dcfbd49e1b fix(ui): fix control adapters recall 2023-10-07 22:30:15 +11:00
psychedelicious
913fc83cbf fix(ui): fix control adapter autoprocess 2023-10-07 22:30:15 +11:00
psychedelicious
6b8ce34eb3 fix(ui): fix excessive re-renders 2023-10-07 22:30:15 +11:00
psychedelicious
9508e0c9db feat(ui): refactor control adapters
Control adapters logic/state/ui is now generalized to hold controlnet, ip_adapter and t2i_adapter. In the future, other control adapter types can be added.

TODO:
- Limit IP adapter to 1
- Add T2I adapter to linear graphs
- Fix autoprocess
- T2I metadata saving & recall
- Improve on control adapters UI
2023-10-07 22:30:15 +11:00
Ryan Dick
9c720da021 Bump DenoiseLatentsInvocation version. 2023-10-06 20:43:43 -04:00
Ryan Dick
e1b576c72d yarn build 2023-10-06 20:43:43 -04:00
Ryan Dick
971ccfb081 Refactor multi-IP-Adapter to clean up the interface around changing scales. 2023-10-06 20:43:43 -04:00
Ryan Dick
43a3c3c7ea Fix typo in setting IP-Adapter scales. 2023-10-06 20:43:43 -04:00
Ryan Dick
4df1cdb34d Tidy _prepare_attention_processors(...) logic. 2023-10-06 20:43:43 -04:00
Ryan Dick
3f860c3523 Fixup IP-Adapter locale strings. 2023-10-06 20:43:43 -04:00
Ryan Dick
d8d0c9af09 Fix handling of scales with multiple IP-Adapters. 2023-10-06 20:43:43 -04:00
Ryan Dick
9403672ac0 Bugfix for multi-ip-adapter in DenoiseLatentsInvocation. 2023-10-06 20:43:43 -04:00
Ryan Dick
94591840a7 Frontend changes to enable multiple IP-Adapters in the workflow editor. 2023-10-06 20:43:43 -04:00
Ryan Dick
26b91a538a Fixes to get IP-Adapter tests working with new multi-IP-Adapter support. 2023-10-06 20:43:43 -04:00
Ryan Dick
7ca456d674 Update IP-Adapter model to enable running multiple IP-Adapters at once. (Not tested yet.) 2023-10-06 20:43:43 -04:00
Ryan Dick
78828b6b9c WIP - Accept a list of IPAdapterFields in DenoiseLatents. 2023-10-06 20:43:43 -04:00
Ryan Dick
166ff9d301 Proposal: Support slow tests that depend on models (#4813)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

This PR adds support for slow unit tests that depend on models. It
includes:
- Documentation explaining the handling of fast vs. slow unit tests.
- Utilities to assist with writing tests that depend on models.
- A sample test that loads and runs an IP-Adapter model. This is far
from complete test coverage of IP-Adapter - it's just intended as a
first example of how to write tests with models.

**Suggestion for reviewers**: Start with docs/contributing/TESTS.md

## QA Instructions, Screenshots, Recordings

I've tested it all, but it would make sense for others to try running
both the fast tests and the slow tests.

## Added/updated tests?

- [x] Yes
- [ ] No
2023-10-06 19:55:38 -04:00
Ryan Dick
4f97bd4418 Merge branch 'main' into ryan/model-tests 2023-10-06 19:47:28 -04:00
Ryan Dick
e0e001758a Remove @slow decorator in favor of @pytest.mark.slow. 2023-10-06 18:26:06 -04:00
Ryan Dick
c1887135b3 Improve model cache debug logging (#4784)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

This PR adds detailed debug logging to the model cache in order to give
more visibility into the model cache's memory utilization. **This PR
does not make any functional changes to the model cache.**

Every time a model is moved from disk to CPU, or between CPU/CUDA, a log
like this is emitted:
```bash
[2023-10-03 15:17:20,599]::[InvokeAI]::DEBUG --> Moved model '/home/ryan/invokeai/models/.cache/63742ed45b499e55620c402d6df26a20:sdxl:main:unet' from cpu to cuda in 1.23s.
Estimated model size: 4.782 GB.
Process RAM                    (-4.722): 6.987GB -> 2.265GB
libc mmap allocated            (-4.722): 6.030GB -> 1.308GB
libc arena used                (-0.061): 0.402GB -> 0.341GB
libc arena free                (+0.061): 0.006GB -> 0.067GB
libc total allocated           (-4.722): 6.439GB -> 1.717GB
libc total used                (-4.783): 6.433GB -> 1.649GB
VRAM                           (+4.881): 1.538GB -> 6.418GB
```

## Related Tickets & Documents

https://github.com/invoke-ai/InvokeAI/pull/4694 contains related fixes
to some known memory issues.

## QA Instructions, Screenshots, Recordings

Make sure debug logs are enabled and you should see the new logs.

We should test each of the following environments:
- [x] Linux
- [x] Mac OS + MPS
- [x] Windows

## Added/updated tests?

- [x] Yes
- [ ] No

Added unit tests for the new utilities. Test coverage is still low for
the ModelCache, but not worse than before.
2023-10-06 10:21:42 -04:00
Ryan Dick
096d195d6e Merge branch 'main' into ryan/model-cache-logging-only 2023-10-06 09:52:45 -04:00
Ryan Dick
7870b90717 Add TESTS.md documentation. 2023-10-05 15:38:25 -04:00
Ryan Dick
9854b244fd Fix Flake8 errors by using a pytest conftest.py file. 2023-10-05 15:36:15 -04:00
Ryan Dick
7d800e1ce3 Fix broken link in documentation to 'Frontend Documentation'. 2023-10-05 15:36:15 -04:00
Ryan Dick
1c8b1fbc53 POC of a test that depends on models. 2023-10-05 15:35:58 -04:00
Ryan Dick
594a3aef93 Set MALLOC_MMAP_THRESHOLD_=1048576 by default in invoke.sh. And add it to the manual installation docs. 2023-10-05 14:26:45 -04:00
Ryan Dick
78377469db Add support for T2I-Adapter in node workflows (#4612)
* Bump diffusers to 0.21.2.

* Add T2IAdapterInvocation boilerplate.

* Add T2I-Adapter model to model-management.

* (minor) Tidy prepare_control_image(...).

* Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation.

* Add logic for applying T2I-Adapter weights and accumulating.

* Add T2IAdapter to MODEL_CLASSES map.

* yarn typegen

* Add model probes for T2I-Adapter models.

* Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor.

* Add T2IAdapterModel.convert_if_required(...).

* Fix errors in T2I-Adapter input image sizing logic.

* Fix bug with handling of multiple T2I-Adapters.

* black / flake8

* Fix typo

* yarn build

* Add num_channels param to prepare_control_image(...).

* Link to upstream diffusers bugfix PR that currently requires a workaround.

* feat: Add Color Map Preprocessor

Needed for the color T2I Adapter

* feat: Add Color Map Preprocessor to Linear UI

* Revert "feat: Add Color Map Preprocessor"

This reverts commit a1119a00bf.

* Revert "feat: Add Color Map Preprocessor to Linear UI"

This reverts commit bd8a9b82d8.

* Fix T2I-Adapter field rendering in workflow editor.

* yarn build, yarn typegen

---------

Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-10-05 16:29:16 +11:00
Ryan Dick
fbe6452c45 Add support for IPAdapterPlusXL based on 6219530507. 2023-10-04 22:35:17 -04:00
psychedelicious
3f4ea073d1 fix(ui): throw on fetch err when copying image 2023-10-05 10:43:59 +11:00
psychedelicious
8b7f8eaea2 chore: flake8 2023-10-05 09:32:29 +11:00
psychedelicious
88e16ce051 fix(nodes): mark session queue items failed on processor error
When the processor has an error and it has a queue item, mark that item failed.

This addresses processor errors resulting in `in_progress` queue items, which create a soft lock of the processor, requiring the user to cancel the `in_progress` item before anything else processes.
2023-10-05 09:32:29 +11:00
psychedelicious
421440cae0 feat(nodes): exhaustive graph validation
Makes graph validation logic more rigorous, validating graphs when they are created as part of a session or batch.

`validate_self()` method added to `Graph` model. It does all the validation that `is_valid()` did, plus a few extras:
- unique `node.id` values across graph
- node ids match their key in `Graph.nodes`
- recursively validate subgraphs
- validate all edges
- validate graph is acyclical

The new method is required because `is_valid()` just returned a boolean. That behaviour is retained, but `validate_self()` now raises appropriate exceptions for validation errors. This are then surfaced to the client.

The function is named `validate_self()` because pydantic reserves `validate()`.

There are two main places where graphs are created - in batches and in sessions.

Field validators are added to each of these for their `graph` fields, which call the new validation logic.

**Closes #4744**

In this issue, a batch is enqueued with an invalid graph. The output field is typed as optional while the input field is required. The field types themselves are not relevant - this change addresses the case where an invalid graph was created.

The mismatched types problem is not noticed until we attempt to invoke the graph, because the graph was never *fully* validated. An error is raised during the call to `graph_execution_state.next()` in `invoker.py`. This function prepares the edges and validates them, raising an exception due to the mismatched types.

This exception is caught by the session processor, but it doesn't handle this situation well - the graph is not marked as having an error and the queue item status is never changed. The queue item is therefore forever `in_progress`, so no new queue items are popped - the app won't do anything until the queue item is canceled manually.

This commit addresses this by preventing invalid graphs from being created in the first place, addressing a substantial number of fail cases.
2023-10-05 09:32:29 +11:00
Jordan Hewitt
421021cede Add 'make 3d' plugin / community node (#4794)
* Add 'make 3d' plugin.

* Update communityNodes.md

Updated to Repo Link

---------

Co-authored-by: Jordan <srcrr-gitlab@ipriva.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
2023-10-04 21:41:21 +00:00
psychedelicious
020d4302d1 Change version bump from patch to minor
Because this adds a new field, it's a minor version bump
2023-10-05 08:24:52 +11:00
psychedelicious
8c59d2e5af chore: isort 2023-10-05 08:24:52 +11:00
psychedelicious
17d451eaa7 feat(images): add png_compress_level config
The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize

Closes #4786
2023-10-05 08:24:52 +11:00
psychedelicious
23a06fd06d feat(nodes): clear torch cache after upscaling
This can use many GB of VRAM, so we need to clean up after ourselves.
2023-10-05 08:24:52 +11:00
Darren Ringer
010c8e8038 Roll back change to buildAdHocUpscaleGraph.ts
Undo the change made here which was causing automated tests to fail.
2023-10-05 08:24:52 +11:00
Darren Ringer
dfc635223c Update upscale.py with minor style correction 2023-10-05 08:24:52 +11:00
Darren Ringer
37121a3a24 Add tile_size parameter to ESERGAN node in buildAdHocUpscaleGraph.ts
Adds tile_size parameter to support the changed ESRGAN node in invokeai/app/invocations/upscale.py
2023-10-05 08:24:52 +11:00
Darren Ringer
51b5de799a Update upscale.py to support tile kwarg of RealESRGANer
Adds tile_size field to the ESRGAN Upscaler node, which sends the tile kwarg to RealESRGANer's constructor, enabling tiled upscaling (default=512)
2023-10-05 08:24:52 +11:00
Mary Hipp
eadbe6abf7 handle 0 images/assets 2023-10-05 08:11:52 +11:00
psychedelicious
16f48a816f fix(ui): add dnd validation logic for multi-select board move 2023-10-05 08:11:52 +11:00
psychedelicious
95838e5559 fix(ui): fix remove from board dnd validation
This is fired when the dnd image is moved over the 'none' board. Weren't defaulting to 'none' for the image's board_id, resulting in it being possible to drag a 'none' image onto 'none'.
2023-10-05 08:11:52 +11:00
psychedelicious
3e8d62b1d1 fix(ui): fix duplicate image selection
Selections were not being `uniqBy()`'d, or were `uniqBy()`'d without a proper iteratee. This results in duplicate images in selections in certain situations.

Add correct `uniqBy()` to the reducer to prevent this in the future.
2023-10-05 08:11:52 +11:00
psychedelicious
2acc93eb8e feat(ui): remove all calls to getBoardImagesTotals/getBoardAssetsTotals
This caused a crapload of network requests any time an image was generated.

The counts are necessary to handle the logic for inserting images into existing image list caches; we have to keep track of the counts.

Replace tag invalidation with manual cache updates in all cases, except the initial request (which is necessary to get the initial image counts).

One subtle change is to make the counts an object instead of a number. This is required for `immer` to handle draft states. This should be raised as a bug with RTK Query, as no error is thrown when attempting to update a primitive immer draft.
2023-10-05 08:11:52 +11:00
Millun Atluri
fbb61f2334 Revert "Updated js files"
This reverts commit a0e936f3a7.
2023-10-04 22:32:00 +11:00
Millun Atluri
be85c7972b Updated js files 2023-10-04 22:32:00 +11:00
Millun Atluri
3a586fc9c4 Prevent caching to ensure updated UI is shown 2023-10-04 22:32:00 +11:00
psychedelicious
dedead672f chore(facetools): bump node patch versions
The helper function `generate_face_box_mask()` had a bug that prevented larger faces from being detected in some situations. This is resolved, and its dependent nodes (all the FaceTools nodes) have a patch version bump.
2023-10-04 09:33:14 +11:00
ymgenesis
67366921c0 add checkbounds bool
- don't check bounds on first detection before chunking, allows larger faces to be detected
2023-10-04 09:33:14 +11:00
maryhipp
5a1019d858 sort by starred and then created_at to get board cover image 2023-10-04 08:54:47 +11:00
Mary Hipp
f4ba7be918 refetch baord list when image is starred or unstarred 2023-10-04 08:54:47 +11:00
psychedelicious
069d8b5812 feat(ui): move initial IP adapter model selection to listener 2023-10-04 08:41:37 +11:00
Mary Hipp
24d73d484a IP adapter UI 2023-10-04 08:41:37 +11:00
Ryan Dick
2479a59e5e Re-enable garbage collection in model cache MemorySnapshots. 2023-10-03 15:18:47 -04:00
Ryan Dick
7d0ac2c36d (minor) clean up typos. 2023-10-03 15:00:03 -04:00
Ryan Dick
519b892f0c Add unit test for Struct_mallinfo2.__str__() 2023-10-03 14:25:34 -04:00
Ryan Dick
763dcacfd3 Add unit test for get_pretty_snapshot_diff(...). 2023-10-03 14:25:34 -04:00
Ryan Dick
3599d546e6 Add unit test for LibcUtil().mallinfo2(). 2023-10-03 14:25:34 -04:00
Ryan Dick
22a84930f6 Disable garbage collection in ModelCache calls to MemorySnapshot in order minimize snapshot overhead. 2023-10-03 14:25:34 -04:00
Ryan Dick
d64e17e043 Add README with info about glib memory fragmentation caused by the model cache. 2023-10-03 14:25:34 -04:00
Ryan Dick
ba54277011 Catch a more specific exception in environments that do not have a libc shared library. 2023-10-03 14:25:34 -04:00
Ryan Dick
5915a4a51c Minor fixes. 2023-10-03 14:25:34 -04:00
Ryan Dick
4580ba0d87 Remove logic to update model cache size estimates dynamically. 2023-10-03 14:25:34 -04:00
Ryan Dick
b9fd2e9e76 Improve get_pretty_snapshot_diff(...) message formatting. 2023-10-03 14:25:34 -04:00
Ryan Dick
75b65597af Add malloc info to MemorySnapshot. 2023-10-03 14:25:34 -04:00
Ryan Dick
2a3c0ab5d2 Move MemorySnapshot to its own file. 2023-10-03 14:25:34 -04:00
Ryan Dick
7d61373b82 Add LibcUtil class. 2023-10-03 14:25:34 -04:00
Ryan Dick
7d65555a5a Fix type error in torch device comparison. 2023-10-03 14:25:34 -04:00
Ryan Dick
123f2b2dbc Update cache model size estimates based on changes in VRAM when moving models to/from CUDA. 2023-10-03 14:25:34 -04:00
Ryan Dick
1e4e42556e Update model cache device comparison to treat 'cuda' and 'cuda:0' as the same device type. 2023-10-03 14:25:34 -04:00
Ryan Dick
1f6699ac43 Consolidate all model.to(...) calls in the model cache to use a utility function with better logging. 2023-10-03 14:25:34 -04:00
Ryan Dick
ace8665411 Add warning log if moving a model from cuda to cpu causes unexpected change in VRAM usage. 2023-10-03 14:25:34 -04:00
Ryan Dick
7fa5bae8fd Add warning log if moving model from RAM to VRAM causes an unexpected change in VRAM usage. 2023-10-03 14:25:34 -04:00
Ryan Dick
f9faca7c91 Add warning log if model mis-reports its required cache memory before load from disk. 2023-10-03 14:25:34 -04:00
Ryan Dick
594fd3ba6d Add debug logging of changes in RAM and VRAM for all model cache operations. 2023-10-03 14:25:34 -04:00
Ryan Dick
44d68f5ed5 Auto-format model_cache.py. 2023-10-03 14:25:34 -04:00
Lincoln Stein
4bda7d7df5 Add font Inter-Regular.ttf to installed assets (#4775)
## What type of PR is this? (check all applicable)

- [X] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [X] Yes

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description

This PR causes the font "Inter-Regular.ttf", which is needed by the
facetools Face Identifier node, to be installed along with other assets
in the virtual environment. It also fixes the font path resolution logic
in the invocation to work with both package and editable installs.

## Related Tickets & Documents

Closes #4771
2023-10-03 09:05:51 -04:00
Lincoln Stein
920c5dd686 remove unneeded os import 2023-10-03 08:53:47 -04:00
Lincoln Stein
4ce00a32f4 add font Inter-Regular.ttf to installed assets 2023-10-03 08:48:50 -04:00
psychedelicious
dcbb25dfea feat(ui): staging styling tweak 2023-10-03 13:46:01 +11:00
psychedelicious
6c8270dae2 fix(ui): canvas staging area works after undo 2023-10-03 13:46:01 +11:00
Millun Atluri
b19572199f Release/v3.2.0 (#4766)
## What type of PR is this? (check all applicable)

Release v3.2.0

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No

Need to update prompting docs 

## Description
3.2.0 release version

## [optional] Are there any post deployment tasks we need to perform?
2023-10-03 11:59:19 +11:00
Millun Atluri
a673c0aa14 Update JS files 2023-10-03 10:31:35 +11:00
Millun Atluri
955ef3bc54 Update version to 3.2.0 2023-10-03 10:29:27 +11:00
psychedelicious
f002ae8da5 feat(ui): max upscale pixels config (#4765)
* feat(ui): max upscale pixels config

Add `maxUpscalePixels: number` to the app config. The number should be the *total* number of pixels eg `maxUpscalePixels: 4096 * 4096`.

If not provided, any size image may be upscaled.

If the config is provided, users will see be advised if their image is too large for either model, or told to switch to an x2 model if it's only too large for x4.

The message is via tooltip in the popover and via toast if the user uses the hotkey to upscale.

* feat(ui): "mayUpscale" -> "isAllowedToUpscale"
2023-10-02 23:25:05 +00:00
Mary Hipp
208bf68ba2 fix missing toast message 2023-10-03 07:45:26 +11:00
Mary Hipp
1aba369c83 invalidate board cache when an image is added to a board 2023-10-02 19:40:11 +11:00
Millun Atluri
9ac11e793c Added GridtoGif to communityNodes.md (#4755)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [x] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description
Grid to Gif is two custom nodes, one that divides a grid image into an
image collection, the other converts an image collection into a animated
gif
2023-10-02 10:44:55 +11:00
Kyle
9b39888e2f Added GridtoGif to communityNodes.md 2023-10-01 17:42:36 -05:00
mickr777
c1715144f0 add Character Art Node's to communityNodes.md 2023-10-01 11:10:36 -04:00
blessedcoolant
929557bc6f Fix typo of Psychedelicious name (#4746)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ x ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ x ] No, because:

      
## Have you updated all relevant documentation?
- [x  ] Yes
- [ ] No
2023-09-30 22:48:30 +05:30
Kent Keirsey
811dd93912 Fix typo of Psychedelicious name 2023-09-30 12:35:49 -04:00
blessedcoolant
9a60dbd5cb add version to cv2 infill (#4741)
cv2 infill node was missing a version in its decorator, resulting in a
red exclamation mark on the node

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: is tiny

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No
2023-09-29 20:36:51 +05:30
ymgenesis
637c5b0747 add version to cv2 infill
- cv2 infill was missing a version in its decorator, resulting in a red exclamation mark on the node
2023-09-29 16:58:19 +02:00
Jonathan
27164de8b8 Fix absolute path for font file
Make the font file relative to this source file. Not ideal, but it will work no matter where InvokeAI is launched.
2023-09-29 22:05:04 +10:00
blessedcoolant
08e40d6d16 fix(ui): fit ip adapter image to panel (#4737)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Very tall IP adapter images didn't get fit to the panel. Now they do
2023-09-29 14:29:39 +05:30
psychedelicious
d905c54795 fix(ui): fit ip adapter image to panel 2023-09-29 18:54:34 +10:00
CrypticWit
dc1e804887 Workflow editor improvements - add node from empty connection and auto-connect to empy handle. (#4684)
* Initial commit of edge drag feature.

* Fixed build warnings

* code cleanup and drag to existing node

* improved isValidConnection check

* fixed build issues, removed cyclic dependency

* edge created nodes now spawn at cursor

* Add Node popover will no longer show when using drag to delete an edge.

* Fixed collection handling, added priority for handles matching name of source handle, removed current image/notes nodes from filtered list

* Fixed not properly clearing startParams when closing the Add Node popover

* fix(ui): do not allow Collect -> Iterate connection

This can be removed when #3956 is resolved

* feat(ui): use existing node validation logic in add-node-on-drop

This logic handles a number of special cases

---------

Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 18:12:57 +10:00
ymgenesis
95fd2ee6ff Nodes-FaceTools (FaceIdentifier, FaceOff, FaceMask) (#4576)
* node-FaceTools

* Added more documentation for facetools

* invert FaceMask masking

- FaceMask had face protected and surroundings change by default (face white, else black)
- Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white)

* reflect changed facemask behaviour in docs

* add FaceOff+FaceMask workflows

- Add FaceOff and FaceMask example workflows to docs/workflows

* add FaceMask+FaceOff workflows to exampleworkflows.md

- used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged

* inheriting, typehints, black/isort/flake8

- modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput
- Added type annotations to helper functions, required some reworking of code's stored data

* remove credit header

- Was in my personal/repo copy, don't think it's necessary if merged.

* Optionals & image declaration duplication

- Added Optional[] to optional outputs and types
- removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration
- Still need to find a way to deal with mask_pil None typing errors

* face(facetools): fix typing issues, add validation, clean up structure

* feat(facetools): update field descriptions

* Update FaceOff_FaceScale2x.json

- update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput

* feat(facetools): pass through original image on facemask if invalid face ids requested

* feat(facetools): tidy variable names & fn calls

* feat(facetools): bundle inter font, draw ids with it

Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses.

Only the "regular" version is bundled.

* chore(facetools): isort & fix mypy issues

* docs(facetools): update and format docs

---------

Co-authored-by: Millun Atluri <millun.atluri@gmail.com>
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 17:54:13 +10:00
Millun Atluri
5f4eb0c3b3 update communitynodes.md to add Rotate/Flip Image to composition pack (#4735)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [X] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description
Adds another node description (Rotate/Flip Image) to Image and Mask
Composition Pack

## Related Tickets & Documents
n/a

## QA Instructions, Screenshots, Recordings
n/a
## Added/updated tests?

- [ ] Yes
- [X] No : n/a
2023-09-29 15:19:48 +10:00
Darren Ringer
d464ce509b update communitynodes.md to add Rotate/Flip Image to composition pack 2023-09-29 00:37:40 -04:00
psychedelicious
3909e68527 fix(ui): data-testId -> data-testid
Must be strict kebab-case for react to pass the attribute to DOM
2023-09-29 12:44:00 +10:00
Jonathan
848e51f72b Update communityNodes.md (#4729)
Added thresholding and halftone nodes.
2023-09-28 23:48:07 +00:00
Mary Hipp
52f8c9e16f add data-testids to UI components that may be hard to target with automation 2023-09-29 08:58:31 +10:00
psychedelicious
5174f382b9 Update LOCAL_DEVELOPMENT.md
add LSP and type checking notes
2023-09-29 00:34:39 +10:00
chainchompa
c7f80cd163 Use metadata ip adapter (#4715)
* add control net to useRecallParams

* got recall controlnets working

* fix metadata viewer controlnet

* fix type errors

* fix controlnet metadata viewer

* add ip adapter to metadata

* added ip adapter to recall parameters

* got ip adapter recall working, still need to fix type errors

* fix type issues

* clean up logs

* python formatting

* cleanup

* fix(ui): only store `image_name` as ip adapter image

* fix(ui): use nullish coalescing operator for numbers

Need to use the nullish coalescing operator `??` instead of false-y coalescing operator `||` when the value being check is a number. This prevents unintended coalescing when the value is zero and therefore false-y.

* feat(ui): fall back on default values for ip adapter metadata

* fix(ui): remove unused schema

* feat(ui): re-use existing schemas in metadata schema

* fix(ui): do not disable invocationCache

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-28 09:05:32 +00:00
Millun Atluri
309e2414ce enable downloading from subfolders for repo_ids (#4725)
[## What type of PR is this? (check all applicable)

- [X] Feature

## Have you discussed this change with the InvokeAI team?
- [X] Yes
      
## Have you updated all relevant documentation?
- [X] Yes

## Description

Very rarely a model lives in the subfolder of a non-pipeline HuggingFace
repo_id. The example I've been working with is
https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster/tree/main,
where the improved monster QR code controlnet model lives in the `v2`
subdirectory.

In order to accommodate installing such files, I have made two changes
to the model installer.

1. At installation/configuration time, if a stanza in
`INITIAL_MODELS.yaml` contains the field `subfolder`, then the model
will be installed from the indicated subfolder. The syntax in this case
is:
```
sd-1/controlnet/qrcode_monster:
   repo_id: monster-labs/control_v1p_sd15_qrcode_monster
   subfolder: v2
```
2. From within the Web GUI or the installer TUI, if you wish to indicate
that the model resides in a subfolder, you can tack ":_subfoldername_"
to the end of the repo_id. The resulting repo_id will look like:
```
monster-labs/control_v1p_sd15_qrcode_monster:v2
```

The code for introducing these changes is obscure and somewhat hacky.
However, the whole installer code base has been rewritten for the model
manager refactor (#4252 ) and I will reimplement this feature in a more
elegant way in that PR.
2023-09-28 15:26:18 +10:00
psychedelicious
6704f77d87 Merge branch 'main' into feat/install-repoid-folders 2023-09-28 13:49:57 +10:00
psychedelicious
045d3f6139 chore: flake8 2023-09-28 13:49:31 +10:00
psychedelicious
a0bd8c638e chore(ui): lint 2023-09-28 12:39:00 +10:00
Mary Hipp
de04a5f441 cleanup 2023-09-28 12:39:00 +10:00
Mary Hipp
40ed218c26 surface usage errors for cnet and upscale, handle clearing cnet if error occurs 2023-09-28 12:39:00 +10:00
Mary Hipp
807c6b41c5 surface usage errors for enqueuing batch 2023-09-28 12:39:00 +10:00
Lincoln Stein
f6bbcd0589 remove dangling debug statement 2023-09-27 22:26:26 -04:00
Lincoln Stein
ada22a799e remove dangling debug statement 2023-09-27 22:26:06 -04:00
Lincoln Stein
a42ef9c855 add documentation on syntax to use for subfolder repo_ids 2023-09-27 22:17:29 -04:00
Lincoln Stein
034af2d9f8 enable downloading from subfolders for repo_ids 2023-09-27 22:11:56 -04:00
Millun Atluri
676ccd8ebb Add IP-Adapter to docs (#4703)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-09-28 11:11:24 +10:00
Kent Keirsey
a263a4f4cc Update CONTROLNET.md 2023-09-27 20:51:02 -04:00
Millun Atluri
ef0754cdec Merge branch 'invoke-ai:main' into main 2023-09-28 09:41:29 +10:00
psychedelicious
8158124679 fix(ui): usePreselectedImage causing re-renders
This hook was rerendering any time anything changed. Moved it to a logical component, put its useEffects inside the component. This reduces the effect of the rerenders to just that tiny always-null component.
2023-09-28 09:02:45 +10:00
Ryan Dick
5d31df0cb7 Fix IP-Adapter calculation of memory footprint (#4692)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

The IP-Adapter memory footprint was not being calculated correctly.

I think we could put checks in place to catch this type of error in the
future, but for now I'm just fixing the bug.

## QA Instructions, Screenshots, Recordings

I tested manually in a debugger. There are 3 pathways for calculating
the model size. All were tested:
- From file
- From state_dict
- From model weights

## Added/updated tests?

- [ ] Yes
- [x] No : This would require the ability to run tests that depend on
models. I'm working on this in another branch, but not ready quite yet.
2023-09-27 12:03:04 -04:00
Ryan Dick
bd63454e51 Merge branch 'main' into bug/ip-adapter-calc-size 2023-09-27 11:55:55 -04:00
psychedelicious
062df07de2 fix(ui): fix loading queue item translation 2023-09-27 11:18:43 -04:00
Ryan Dick
0fc14afcf0 Merge branch 'main' into bug/ip-adapter-calc-size 2023-09-27 09:42:51 -04:00
chainchompa
4a0a1c30db use controlnet from metadata if available (#4658)
* add control net to useRecallParams

* got recall controlnets working

* fix metadata viewer controlnet

* fix type errors

* fix controlnet metadata viewer

* set control image and use correct processor type and node

* clean up logs

* recall processor using substring

* feat(ui): enable controlNet when recalling one

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-27 19:30:50 +10:00
Mary Hipp Rogers
3432fd72f8 fix auto-switch alongside starred images (#4708)
* add skeleton loading state for queue lit

* add optional selectedImage when switching a board

* unstage

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-27 07:51:37 +00:00
blessedcoolant
05a43c41f9 feat: Improve Staging Toolbar Styling 2023-09-27 17:45:39 +10:00
psychedelicious
bb48617101 fix(ui): memoize canvas context menu callback 2023-09-27 17:45:39 +10:00
psychedelicious
aa2f68f608 fix(ui): use theme colors for canvas error fallback 2023-09-27 17:45:39 +10:00
psychedelicious
fbccce7573 feat(ui): staging area toolbar enhancements
- Current image number & total are displayed
- Left/right wrap around instead of stopping on first/last image
- Disable the left/right/number buttons when showing base layer
- improved translations
2023-09-27 17:45:39 +10:00
psychedelicious
a35087ee6e feat(ui): hide mask when staging
Now you can compare inpainted area with new image data
2023-09-27 17:45:39 +10:00
psychedelicious
03e463dc89 fix(ui): reset canvas batchIds on staging area init/discard/commit
This prevents the bbox from being used inadvertantly during canvas generation
2023-09-27 17:45:39 +10:00
psychedelicious
d467e138a4 fix(ui): canvas is staging if is listening for batch ids 2023-09-27 17:45:39 +10:00
psychedelicious
ba4aaea45b fix(ui): memoize event handlers on bounding box 2023-09-27 17:45:39 +10:00
psychedelicious
53eb23b8b6 fix(ui): fix canvas staging images offset from bounding box
The staging area used the stage bbox, not the staging area bbox.
2023-09-27 17:45:39 +10:00
blessedcoolant
8b969053e7 fix: SDXL Refiner using the incorrect node during inpainting 2023-09-27 17:42:42 +10:00
psychedelicious
98a076260b fix(ui): only disable cancel item button if value is null/undefined
0 is falsy and the `item_id` is an integer
2023-09-27 14:28:26 +10:00
Millun Atluri
164877b610 Merge branch 'main' into main 2023-09-27 12:28:24 +10:00
blessedcoolant
b3f4f28d76 fix: Canvas pull getting cropped for Control Images 2023-09-27 12:25:45 +10:00
blessedcoolant
acee4bd282 fix: Always use bbox bounds for Controlnet Image (canvas) 2023-09-27 12:25:45 +10:00
Millun Atluri
fc9a7320eb Update to be more accurate 2023-09-27 12:21:20 +10:00
Millun Atluri
7c0a083b13 Merge branch 'invoke-ai:main' into main 2023-09-27 11:26:26 +10:00
psychedelicious
50d254fdb7 fix(ui): fix types for cache setting 2023-09-27 10:29:19 +10:00
psychedelicious
0cfc1c5f86 fix(ui): save cache setting to workflow
Do not strip out unknown values. Quick fix, probably not the best way to handle this.
2023-09-27 10:29:19 +10:00
Millun Atluri
f35dfa06bb Merge branch 'invoke-ai:main' into main 2023-09-27 10:10:52 +10:00
Millun Atluri
407bca5063 fix merges 2023-09-27 10:10:09 +10:00
psychedelicious
1419977e89 feat(ui): update cache status on queue event
It was polling every 5s before. No need - just invalidate the tag when we have a queue item status change event.
2023-09-27 08:56:14 +10:00
psychedelicious
a953944894 feat(ui): updatable edges in workflow editor (#4701)
- Drag the end of an edge away from its handle to disconnect it
- Drop in empty space to delete the edge
- Drop on valid handle to reconnect it
- Update connection logic slightly to allow edge updates
2023-09-26 15:54:35 +00:00
psychedelicious
a4cdaa245e feat(ui): improve error handling (#4699)
* feat(ui): add error handling for enqueueBatch route, remove sessions

This re-implements the handling for the session create/invoke errors, but for batches.

Also remove all references to the old sessions routes in the UI.

* feat(ui): improve canvas image error UI

* make canvas error state gray instead of red

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-26 15:24:53 +00:00
psychedelicious
105a4234b0 fix(ui): fix color picker on canvas (#4706)
Resolves  #4667

Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2023-09-26 14:11:12 +00:00
psychedelicious
34c563060f feat(ui): store active tab as name, not index (#4697)
This fixes an issue with tab changing when some tabs are disabled.
2023-09-26 14:06:39 +00:00
psychedelicious
d45c47db81 fix(backend): remove extra cache arg (#4698) 2023-09-26 10:03:48 -04:00
Lincoln Stein
c771a4027f Give user option to disable the configure TUI during installation (#4676)
## What type of PR is this? (check all applicable)

- [X] Feature


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] No - this should go into release notes.

## Description

During installation, the installer will now ask the user whether they
wish to perform a manual or automatic configuration of invokeai. If they
choose automatic (the default), then the install is performed without
running the TUI of the `invokeai-configure` script. Otherwise the
console-based interface is activated as usual.

This script also bumps up the default model RAM cache size to 7.5, which
improves performance on SDXL models.
2023-09-26 08:15:48 -04:00
Lincoln Stein
3fd27b1aa9 run correct version of black 2023-09-26 08:03:34 -04:00
Lincoln Stein
d59e534cad use heuristic to select RAM cache size during headless install; blackified 2023-09-26 08:03:34 -04:00
Lincoln Stein
0c97a1e7e7 give user option to disable the configure TUI during installation 2023-09-26 08:03:34 -04:00
Millun Atluri
c8b306d9f8 Update CONTROLNET.md 2023-09-26 19:20:03 +10:00
Millun Atluri
edd2c54b9e add cache 2023-09-26 18:28:52 +10:00
Millun Atluri
727cc0dafe add pics 2023-09-26 17:51:08 +10:00
Millun Atluri
4530bd46dc Added IP-Adapter 2023-09-26 17:30:34 +10:00
DekitaRPG
c8b109f52e Add 'Random Float' node <3 (#4581)
* Add 'Random Float' node <3

does what it says on the tin :)

* Add random float + random seeded float nodes

altered my random float node as requested by Millu, kept the seeded version as an alternate variant for those that would like to control the randomization seed :)

* Update math.py

* Update math.py

* feat(nodes): standardize fields to match other nodes

---------

Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-26 05:57:44 +00:00
Ryan Dick
399ebe443e Fix IP-Adapter calculation of memory footprint. 2023-09-25 18:28:10 -04:00
302 changed files with 11987 additions and 4280 deletions

View File

@@ -47,34 +47,9 @@ pip install ".[dev,test]"
These are optional groups of packages which are defined within the `pyproject.toml`
and will be required for testing the changes you make to the code.
### Running Tests
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
be found under the `./tests` folder and can be run with a single `pytest`
command. Optionally, to review test coverage you can append `--cov`.
```zsh
pytest --cov
```
Test outcomes and coverage will be reported in the terminal. In addition a more
detailed report is created in both XML and HTML format in the `./coverage`
folder. The HTML one in particular can help identify missing statements
requiring tests to ensure coverage. This can be run by opening
`./coverage/html/index.html`.
For example.
```zsh
pytest --cov; open ./coverage/html/index.html
```
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)
### Tests
See the [tests documentation](./TESTS.md) for information about running and writing tests.
### Reloading Changes
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
@@ -167,6 +142,23 @@ and so you'll have access to the same python environment as the InvokeAI app.
This is _super_ handy.
#### Enabling Type-Checking with Pylance
We use python's typing system in InvokeAI. PR reviews will include checking that types are present and correct. We don't enforce types with `mypy` at this time, but that is on the horizon.
Using a code analysis tool to automatically type check your code (and types) is very important when writing with types. These tools provide immediate feedback in your editor when types are incorrect, and following their suggestions lead to fewer runtime bugs.
Pylance, installed at the beginning of this guide, is the de-facto python LSP (language server protocol). It provides type checking in the editor (among many other features). Once installed, you do need to enable type checking manually:
- Open a python file
- Look along the status bar in VSCode for `{ } Python`
- Click the `{ }`
- Turn type checking on - basic is fine
You'll now see red squiggly lines where type issues are detected. Hover your cursor over the indicated symbols to see what's wrong.
In 99% of cases when the type checker says there is a problem, there really is a problem, and you should take some time to understand and resolve what it is pointing out.
#### Debugging configs with `launch.json`
Debugging configs are managed in a `launch.json` file. Like most VSCode configs,

View File

@@ -0,0 +1,89 @@
# InvokeAI Backend Tests
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
## Fast vs. Slow
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
'Fast' tests are run to validate every PR, and are fast enough that they can be run routinely during development.
'Slow' tests are currently only run manually on an ad-hoc basis. In the future, they may be automated to run nightly. Most developers are only expected to run the 'slow' tests that directly relate to the feature(s) that they are working on.
As a rule of thumb, tests should be marked as 'slow' if there is a chance that they take >1s (e.g. on a CPU-only machine with slow internet connection). Common examples of slow tests are tests that depend on downloading a model, or running model inference.
## Running Tests
Below are some common test commands:
```bash
# Run the fast tests. (This implicitly uses the configured default option: `-m "not slow"`.)
pytest tests/
# Equivalent command to run the fast tests.
pytest tests/ -m "not slow"
# Run the slow tests.
pytest tests/ -m "slow"
# Run the slow tests from a specific file.
pytest tests/path/to/slow_test.py -m "slow"
# Run all tests (fast and slow).
pytest tests -m ""
```
## Test Organization
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.
## Tests that depend on models
There are a few things to keep in mind when adding tests that depend on models.
1. If a required model is not already present, it should automatically be downloaded as part of the test setup.
2. If a model is already downloaded, it should not be re-downloaded unnecessarily.
3. Take reasonable care to keep the total number of models required for the tests low. Whenever possible, re-use models that are already required for other tests. If you are adding a new model, consider including a comment to explain why it is required/unique.
There are several utilities to help with model setup for tests. Here is a sample test that depends on a model:
```python
import pytest
import torch
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.util.test_utils import install_and_load_model
@pytest.mark.slow
def test_model(model_installer, torch_device):
model_info = install_and_load_model(
model_installer=model_installer,
model_path_id_or_url="HF/dummy_model_id",
model_name="dummy_model",
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.Dummy,
)
dummy_input = build_dummy_input(torch_device)
with torch.no_grad(), model_info as model:
model.to(torch_device, dtype=torch.float32)
output = model(dummy_input)
# Validate output...
```
## Test Coverage
To review test coverage, append `--cov` to your pytest command:
```bash
pytest tests/ --cov
```
Test outcomes and coverage will be reported in the terminal. In addition, a more detailed report is created in both XML and HTML format in the `./coverage` folder. The HTML output is particularly helpful in identifying untested statements where coverage should be improved. The HTML report can be viewed by opening `./coverage/html/index.html`.
??? info "HTML coverage report output"
![html-overview](../assets/contributing/html-overview.png)
![html-detail](../assets/contributing/html-detail.png)

View File

@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](development_guides/contributingToFrontend.md)
* #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
@@ -38,9 +38,9 @@ There are two paths to making a development contribution:
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
For frontend related work, **@pyschedelicious** is the best person to reach out to.
For frontend related work, **@psychedelicious** is the best person to reach out to.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@pyschedelicious**.
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.
## **What does the Code of Conduct mean for me?**

View File

@@ -10,4 +10,4 @@ When updating or creating documentation, please keep in mind InvokeAI is a tool
## Help & Questions
Please ping @imic1 or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.
Please ping @imic or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.

View File

@@ -1,13 +1,11 @@
---
title: ControlNet
title: Control Adapters
---
# :material-loupe: ControlNet
# :material-loupe: Control Adapters
## ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source
community (notably, Stanford researcher
[**@ilyasviel**](https://github.com/lllyasviel)) that allows you to
@@ -20,7 +18,7 @@ towards generating images that better fit your desired style or
outcome.
### How it works
#### How it works
ControlNet works by analyzing an input image, pre-processing that
image to identify relevant information that can be interpreted by each
@@ -30,7 +28,7 @@ composition, or other aspects of the image to better achieve a
specific result.
### Models
#### Models
InvokeAI provides access to a series of ControlNet models that provide
different effects or styles in your generated images. Currently
@@ -96,6 +94,8 @@ A model that generates normal maps from input images, allowing for more realisti
**Image Segmentation**:
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
**QR Code Monster**:
A model that helps generate creative QR codes that still scan. Can also be used to create images with text, logos or shapes within them.
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
@@ -120,7 +120,7 @@ With Pix2Pix, you can input an image into the controlnet, and then "instruct" th
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
## Using ControlNet
### Using ControlNet
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
@@ -132,3 +132,31 @@ Weight - Strength of the Controlnet model applied to the generation for the sect
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.
## IP-Adapter
[IP-Adapter](https://ip-adapter.github.io) is a tooling that allows for image prompt capabilities with text-to-image diffusion models. IP-Adapter works by analyzing the given image prompt to extract features, then passing those features to the UNet along with any other conditioning provided.
![IP-Adapter + T2I](https://github.com/tencent-ailab/IP-Adapter/raw/main/assets/demo/ip_adpter_plus_multi.jpg)
![IP-Adapter + IMG2IMG](https://github.com/tencent-ailab/IP-Adapter/blob/main/assets/demo/image-to-image.jpg)
#### Installation
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [5] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter
IP-Adapter can be used by navigating to the *Control Adapters* options and enabling IP-Adapter.
IP-Adapter requires an image to be used as the Image Prompt. It can also be used in conjunction with text prompts, Image-to-Image, Inpainting, Outpainting, ControlNets and LoRAs.
Each IP-Adapter has two settings that are applied to the IP-Adapter:
* Weight - Strength of the IP-Adapter model applied to the generation for the section, defined by start/end
* Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the IP-Adapter applied.

View File

@@ -256,6 +256,10 @@ manager, please follow these steps:
*highly recommended** if your virtual environment is located outside of
your runtime directory.
!!! tip
On linux, it is recommended to run invokeai with the following env var: `MALLOC_MMAP_THRESHOLD_=1048576`. For example: `MALLOC_MMAP_THRESHOLD_=1048576 invokeai --web`. This helps to prevent memory fragmentation that can lead to memory accumulation over time. This env var is set automatically when running via `invoke.sh`.
10. Render away!
Browse the [features](../features/index.md) section to learn about all the

View File

@@ -171,3 +171,16 @@ subfolders and organize them as you wish.
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
### Installing models that live in HuggingFace subfolders
On rare occasions you may need to install a diffusers-style model that
lives in a subfolder of a HuggingFace repo id. In this event, simply
add ":_subfolder-name_" to the end of the repo id. For example, if the
repo id is "monster-labs/control_v1p_sd15_qrcode_monster" and the model
you wish to fetch lives in a subfolder named "v2", then the repo id to
pass to the various model installers should be
```
monster-labs/control_v1p_sd15_qrcode_monster:v2
```

View File

@@ -4,12 +4,12 @@ The workflow editor is a blank canvas allowing for the use of individual functio
If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](../help/diffusion.md) Understanding how diffusion works will enable you to more easily use the Workflow Editor and build workflows to suit your needs.
## UI Features
## Features
### Linear View
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
To add an input to the Linear UI, right click on the input and select "Add to Linear View".
To add an input to the Linear UI, right click on the input label and select "Add to Linear View".
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
@@ -25,6 +25,10 @@ Any node or input field can be renamed in the workflow editor. If the input fiel
* Backspace/Delete to delete a node
* Shift+Click to drag and select multiple nodes
### Node Caching
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
## Important Concepts

View File

@@ -8,19 +8,21 @@ To download a node, simply download the `.py` node file from the link and add it
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
## Community Nodes
--------------------------------
### FaceTools
--------------------------------
### Make 3D
**Description:** FaceTools is a collection of nodes created to manipulate faces as you would in Unified Canvas. It includes FaceMask, FaceOff, and FacePlace. FaceMask autodetects a face in the image using MediaPipe and creates a mask from it. FaceOff similarly detects a face, then takes the face off of the image by adding a square bounding box around it and cropping/scaling it. FacePlace puts the bounded face image from FaceOff back onto the original image. Using these nodes with other inpainting node(s), you can put new faces on existing things, put new things around existing faces, and work closer with a face as a bounded image. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control on FaceMask and FaceOff. See GitHub repository below for usage examples.
**Description:** Create compelling 3D stereo images from 2D originals.
**Node Link:** https://github.com/ymgenesis/FaceTools/
**Node Link:** [https://gitlab.com/srcrr/shift3d/-/raw/main/make3d.py](https://gitlab.com/srcrr/shift3d)
**FaceMask Output Examples**
**Example Node Graph:** https://gitlab.com/srcrr/shift3d/-/raw/main/example-workflow.json?ref_type=heads&inline=false
![5cc8abce-53b0-487a-b891-3bf94dcc8960](https://github.com/invoke-ai/InvokeAI/assets/25252829/43f36d24-1429-4ab1-bd06-a4bedfe0955e)
![b920b710-1882-49a0-8d02-82dff2cca907](https://github.com/invoke-ai/InvokeAI/assets/25252829/7660c1ed-bf7d-4d0a-947f-1fc1679557ba)
![71a91805-fda5-481c-b380-264665703133](https://github.com/invoke-ai/InvokeAI/assets/25252829/f8f6a2ee-2b68-4482-87da-b90221d5c3e2)
**Output Examples**
![Painting of a cozy delapidated house](https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png){: style="height:512px;width:512px"}
![Photo of cute puppies](https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png){: style="height:512px;width:512px"}
--------------------------------
### Ideal Size
@@ -43,6 +45,52 @@ To use a community workflow, download the the `.json` node graph file and load i
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Thresholding
**Description:** This node generates masks for highlights, midtones, and shadows given an input image. You can optionally specify a blur for the lookup table used in making those masks from the source image.
**Node Link:** https://github.com/JPPhoto/thresholding-node
**Examples**
Input:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c88ada13-fb3d-484c-a4fe-947b44712632){: style="height:512px;width:512px"}
Highlights/Midtones/Shadows:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/727021c1-36ff-4ec8-90c8-105e00de986d" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0b721bfc-f051-404e-b905-2f16b824ddfe" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/04c1297f-1c88-42b6-a7df-dd090b976286" style="width: 30%" />
Highlights/Midtones/Shadows (with LUT blur enabled):
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/19aa718a-70c1-4668-8169-d68f4bd13771" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" style="width: 30%" />
--------------------------------
### Halftone
**Description**: Halftone converts the source image to grayscale and then performs halftoning. CMYK Halftone converts the image to CMYK and applies a per-channel halftoning to make the source image look like a magazine or newspaper. For both nodes, you can specify angles and halftone dot spacing.
**Node Link:** https://github.com/JPPhoto/halftone-node
**Example**
Input:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/fd5efb9f-4355-4409-a1c2-c1ca99e0cab4){: style="height:512px;width:512px"}
Halftone Output:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/7e606f29-e68f-4d46-b3d5-97f799a4ec2f){: style="height:512px;width:512px"}
CMYK Halftone Output:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea){: style="height:512px;width:512px"}
--------------------------------
### Retroize
@@ -77,7 +125,7 @@ Generated Prompt: An enchanted weapon will be usable by any character regardless
**Example Node Graph:** https://github.com/helix4u/load_video_frame/blob/main/Example_Workflow.json
**Output Example:**
=======
![Example animation](https://github.com/helix4u/load_video_frame/blob/main/testmp4_embed_converted.gif)
[Full mp4 of Example Output test.mp4](https://github.com/helix4u/load_video_frame/blob/main/test.mp4)
@@ -141,7 +189,8 @@ This includes 3 Nodes:
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
This includes 14 Nodes:
This includes 15 Nodes:
- *Adjust Image Hue Plus* - Rotate the hue of an image in one of several different color spaces.
- *Blend Latents/Noise (Masked)* - Use a mask to blend part of one latents tensor [including Noise outputs] into another. Can be used to "renoise" sections during a multi-stage [masked] denoising process.
- *Enhance Image* - Boost or reduce color saturation, contrast, brightness, sharpness, or invert colors of any image at any stage with this simple wrapper for pillow [PIL]'s ImageEnhance module.
@@ -154,6 +203,7 @@ This includes 14 Nodes:
- *Image Value Thresholds* - Clip an image to pure black/white beyond specified thresholds.
- *Offset Latents* - Offset a latents tensor in the vertical and/or horizontal dimensions, wrapping it around.
- *Offset Image* - Offset an image in the vertical and/or horizontal dimensions, wrapping it around.
- *Rotate/Flip Image* - Rotate an image in degrees clockwise/counterclockwise about its center, optionally resizing the image boundaries to fit, or flipping it about the vertical and/or horizontal axes.
- *Shadows/Highlights/Midtones* - Extract three masks (with adjustable hard or soft thresholds) representing shadows, midtones, and highlights regions of an image.
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
@@ -228,6 +278,36 @@ See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/READ
--------------------------------
### Image to Character Art Image Node's
**Description:** Group of nodes to convert an input image into ascii/unicode art Image
**Node Link:** https://github.com/mickr777/imagetoasciiimage
**Output Examples**
<img src="https://github.com/invoke-ai/InvokeAI/assets/115216705/8e061fcc-9a2c-4fa9-bcc7-c0f7b01e9056" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/3c4990eb-2f42-46b9-90f9-0088b939dc6a" width="300" /></br>
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/fee7f800-a4a8-41e2-a66b-c66e4343307e" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/1d9c1003-a45f-45c2-aac7-46470bb89330" width="300" />
--------------------------------
### Grid to Gif
**Description:** One node that turns a grid image into an image colletion, one node that turns an image collection into a gif
**Node Link:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py
**Example Node Graph:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/Grid%20to%20Gif%20Example%20Workflow.json
**Output Examples**
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/input.png" width="300" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/output.gif" width="300" />
--------------------------------
### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI.

View File

@@ -1,6 +1,6 @@
# List of Default Nodes
The table below contains a list of the default nodes shipped with InvokeAI and their descriptions.
The table below contains a list of the default nodes shipped with InvokeAI and their descriptions.
| Node <img width=160 align="right"> | Function |
|: ---------------------------------- | :--------------------------------------------------------------------------------------|
@@ -17,11 +17,12 @@ The table below contains a list of the default nodes shipped with InvokeAI and t
|Conditioning Primitive | A conditioning tensor primitive value|
|Content Shuffle Processor | Applies content shuffle processing to image|
|ControlNet | Collects ControlNet info to pass to other nodes|
|OpenCV Inpaint | Simple inpaint using opencv.|
|Denoise Latents | Denoises noisy latents to decodable images|
|Divide Integers | Divides two numbers|
|Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator|
|Upscale (RealESRGAN) | Upscales an image using RealESRGAN.|
|[FaceMask](./detailedNodes/faceTools.md#facemask) | Generates masks for faces in an image to use with Inpainting|
|[FaceIdentifier](./detailedNodes/faceTools.md#faceidentifier) | Identifies and labels faces in an image|
|[FaceOff](./detailedNodes/faceTools.md#faceoff) | Creates a new image that is a scaled bounding box with a mask on the face for Inpainting|
|Float Math | Perform basic math operations on two floats|
|Float Primitive Collection | A collection of float primitive values|
|Float Primitive | A float primitive value|
@@ -76,6 +77,7 @@ The table below contains a list of the default nodes shipped with InvokeAI and t
|ONNX Prompt (Raw) | A node to process inputs and produce outputs. May use dependency injection in __init__ to receive providers.|
|ONNX Text to Latents | Generates latents from conditionings.|
|ONNX Model Loader | Loads a main model, outputting its submodels.|
|OpenCV Inpaint | Simple inpaint using opencv.|
|Openpose Processor | Applies Openpose processing to image|
|PIDI Processor | Applies PIDI processing to image|
|Prompts from File | Loads prompts from a text file|
@@ -97,5 +99,6 @@ The table below contains a list of the default nodes shipped with InvokeAI and t
|String Primitive | A string primitive value|
|Subtract Integers | Subtracts two numbers|
|Tile Resample Processor | Tile resampler processor|
|Upscale (RealESRGAN) | Upscales an image using RealESRGAN.|
|VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput|
|Zoe (Depth) Processor | Applies Zoe depth processing to image|

View File

@@ -0,0 +1,154 @@
# Face Nodes
## FaceOff
FaceOff mimics a user finding a face in an image and resizing the bounding box
around the head in Canvas.
Enter a face ID (found with FaceIdentifier) to choose which face to mask.
Just as you would add more context inside the bounding box by making it larger
in Canvas, the node gives you a padding input (in pixels) which will
simultaneously add more context, and increase the resolution of the bounding box
so the face remains the same size inside it.
The "Minimum Confidence" input defaults to 0.5 (50%), and represents a pass/fail
threshold a detected face must reach for it to be processed. Lowering this value
may help if detection is failing. If the detected masks are imperfect and stray
too far outside/inside of faces, the node gives you X & Y offsets to shrink/grow
the masks by a multiplier.
FaceOff will output the face in a bounded image, taking the face off of the
original image for input into any node that accepts image inputs. The node also
outputs a face mask with the dimensions of the bounded image. The X & Y outputs
are for connecting to the X & Y inputs of the Paste Image node, which will place
the bounded image back on the original image using these coordinates.
###### Inputs/Outputs
| Input | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Image | Image for face detection |
| Face ID | The face ID to process, numbered from 0. Multiple faces not supported. Find a face's ID with FaceIdentifier node. |
| Minimum Confidence | Minimum confidence for face detection (lower if detection is failing) |
| X Offset | X-axis offset of the mask |
| Y Offset | Y-axis offset of the mask |
| Padding | All-axis padding around the mask in pixels |
| Chunk | Chunk (or divide) the image into sections to greatly improve face detection success. Defaults to off, but will activate if no faces are detected normally. Activate to chunk by default. |
| Output | Description |
| ------------- | ------------------------------------------------ |
| Bounded Image | Original image bound, cropped, and resized |
| Width | The width of the bounded image in pixels |
| Height | The height of the bounded image in pixels |
| Mask | The output mask |
| X | The x coordinate of the bounding box's left side |
| Y | The y coordinate of the bounding box's top side |
## FaceMask
FaceMask mimics a user drawing masks on faces in an image in Canvas.
The "Face IDs" input allows the user to select specific faces to be masked.
Leave empty to detect and mask all faces, or a comma-separated list for a
specific combination of faces (ex: `1,2,4`). A single integer will detect and
mask that specific face. Find face IDs with the FaceIdentifier node.
The "Minimum Confidence" input defaults to 0.5 (50%), and represents a pass/fail
threshold a detected face must reach for it to be processed. Lowering this value
may help if detection is failing.
If the detected masks are imperfect and stray too far outside/inside of faces,
the node gives you X & Y offsets to shrink/grow the masks by a multiplier. All
masks shrink/grow together by the X & Y offset values.
By default, masks are created to change faces. When masks are inverted, they
change surrounding areas, protecting faces.
###### Inputs/Outputs
| Input | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Image | Image for face detection |
| Face IDs | Comma-separated list of face ids to mask eg '0,2,7'. Numbered from 0. Leave empty to mask all. Find face IDs with FaceIdentifier node. |
| Minimum Confidence | Minimum confidence for face detection (lower if detection is failing) |
| X Offset | X-axis offset of the mask |
| Y Offset | Y-axis offset of the mask |
| Chunk | Chunk (or divide) the image into sections to greatly improve face detection success. Defaults to off, but will activate if no faces are detected normally. Activate to chunk by default. |
| Invert Mask | Toggle to invert the face mask |
| Output | Description |
| ------ | --------------------------------- |
| Image | The original image |
| Width | The width of the image in pixels |
| Height | The height of the image in pixels |
| Mask | The output face mask |
## FaceIdentifier
FaceIdentifier outputs an image with detected face IDs printed in white numbers
onto each face.
Face IDs can then be used in FaceMask and FaceOff to selectively mask all, a
specific combination, or single faces.
The FaceIdentifier output image is generated for user reference, and isn't meant
to be passed on to other image-processing nodes.
The "Minimum Confidence" input defaults to 0.5 (50%), and represents a pass/fail
threshold a detected face must reach for it to be processed. Lowering this value
may help if detection is failing. If an image is changed in the slightest, run
it through FaceIdentifier again to get updated FaceIDs.
###### Inputs/Outputs
| Input | Description |
| ------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Image | Image for face detection |
| Minimum Confidence | Minimum confidence for face detection (lower if detection is failing) |
| Chunk | Chunk (or divide) the image into sections to greatly improve face detection success. Defaults to off, but will activate if no faces are detected normally. Activate to chunk by default. |
| Output | Description |
| ------ | ------------------------------------------------------------------------------------------------ |
| Image | The original image with small face ID numbers printed in white onto each face for user reference |
| Width | The width of the original image in pixels |
| Height | The height of the original image in pixels |
## Tips
- If not all target faces are being detected, activate Chunk to bypass full
image face detection and greatly improve detection success.
- Final results will vary between full-image detection and chunking for faces
that are detectable by both due to the nature of the process. Try either to
your taste.
- Be sure Minimum Confidence is set the same when using FaceIdentifier with
FaceOff/FaceMask.
- For FaceOff, use the color correction node before faceplace to correct edges
being noticeable in the final image (see example screenshot).
- Non-inpainting models may struggle to paint/generate correctly around faces.
- If your face won't change the way you want it to no matter what you change,
consider that the change you're trying to make is too much at that resolution.
For example, if an image is only 512x768 total, the face might only be 128x128
or 256x256, much smaller than the 512x512 your SD1.5 model was probably
trained on. Try increasing the resolution of the image by upscaling or
resizing, add padding to increase the bounding box's resolution, or use an
image where the face takes up more pixels.
- If the resulting face seems out of place pasted back on the original image
(ie. too large, not proportional), add more padding on the FaceOff node to
give inpainting more context. Context and good prompting are important to
keeping things proportional.
- If you find the mask is too big/small and going too far outside/inside the
area you want to affect, adjust the x & y offsets to shrink/grow the mask area
- Use a higher denoise start value to resemble aspects of the original face or
surroundings. Denoise start = 0 & denoise end = 1 will make something new,
while denoise start = 0.50 & denoise end = 1 will be 50% old and 50% new.
- mediapipe isn't good at detecting faces with lots of face paint, hair covering
the face, etc. Anything that obstructs the face will likely result in no faces
being detected.
- If you find your face isn't being detected, try lowering the minimum
confidence value from 0.5. This could result in false positives, however
(random areas being detected as faces and masked).
- After altering an image and wanting to process a different face in the newly
altered image, run the altered image through FaceIdentifier again to see the
new Face IDs. MediaPipe will most likely detect faces in a different order
after an image has been changed in the slightest.

View File

@@ -9,5 +9,6 @@ If you're interested in finding more workflows, checkout the [#share-your-workfl
* [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json)
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
* [SDXL (with Refiner) Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale w_Canny_ControlNet.json)ß
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale w_Canny_ControlNet.json)
* [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json)
* [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json)

1041
docs/workflows/FaceMask.json Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -332,6 +332,7 @@ class InvokeAiInstance:
Configure the InvokeAI runtime directory
"""
auto_install = False
# set sys.argv to a consistent state
new_argv = [sys.argv[0]]
for i in range(1, len(sys.argv)):
@@ -340,13 +341,17 @@ class InvokeAiInstance:
new_argv.append(el)
new_argv.append(sys.argv[i + 1])
elif el in ["-y", "--yes", "--yes-to-all"]:
new_argv.append(el)
auto_install = True
sys.argv = new_argv
import messages
import requests # to catch download exceptions
from messages import introduction
introduction()
auto_install = auto_install or messages.user_wants_auto_configuration()
if auto_install:
sys.argv.append("--yes")
else:
messages.introduction()
from invokeai.frontend.install.invokeai_configure import invokeai_configure

View File

@@ -7,7 +7,7 @@ import os
import platform
from pathlib import Path
from prompt_toolkit import prompt
from prompt_toolkit import HTML, prompt
from prompt_toolkit.completion import PathCompleter
from prompt_toolkit.validation import Validator
from rich import box, print
@@ -65,17 +65,50 @@ def confirm_install(dest: Path) -> bool:
if dest.exists():
print(f":exclamation: Directory {dest} already exists :exclamation:")
dest_confirmed = Confirm.ask(
":stop_sign: Are you sure you want to (re)install in this location?",
":stop_sign: (re)install in this location?",
default=False,
)
else:
print(f"InvokeAI will be installed in {dest}")
dest_confirmed = not Confirm.ask("Would you like to pick a different location?", default=False)
dest_confirmed = Confirm.ask("Use this location?", default=True)
console.line()
return dest_confirmed
def user_wants_auto_configuration() -> bool:
"""Prompt the user to choose between manual and auto configuration."""
console.rule("InvokeAI Configuration Section")
console.print(
Panel(
Group(
"\n".join(
[
"Libraries are installed and InvokeAI will now set up its root directory and configuration. Choose between:",
"",
" * AUTOMATIC configuration: install reasonable defaults and a minimal set of starter models.",
" * MANUAL configuration: manually inspect and adjust configuration options and pick from a larger set of starter models.",
"",
"Later you can fine tune your configuration by selecting option [6] 'Change InvokeAI startup options' from the invoke.bat/invoke.sh launcher script.",
]
),
),
box=box.MINIMAL,
padding=(1, 1),
)
)
choice = (
prompt(
HTML("Choose <b>&lt;a&gt;</b>utomatic or <b>&lt;m&gt;</b>anual configuration [a/m] (a): "),
validator=Validator.from_callable(
lambda n: n == "" or n.startswith(("a", "A", "m", "M")), error_message="Please select 'a' or 'm'"
),
)
or "a"
)
return choice.lower().startswith("a")
def dest_path(dest=None) -> Path:
"""
Prompt the user for the destination path and create the path

View File

@@ -46,6 +46,9 @@ if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
# Avoid glibc memory fragmentation. See invokeai/backend/model_management/README.md for details.
export MALLOC_MMAP_THRESHOLD_=1048576
# Primary function for the case statement to determine user input
do_choice() {
case $1 in

View File

@@ -68,6 +68,7 @@ class FieldDescriptions:
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
@@ -91,6 +92,9 @@ class FieldDescriptions:
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
class Input(str, Enum):

View File

@@ -0,0 +1,692 @@
import math
import re
from pathlib import Path
from typing import Optional, TypedDict
import cv2
import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType
from pydantic import validator
import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
@invocation_output("face_mask_output")
class FaceMaskOutput(ImageOutput):
"""Base class for FaceMask output"""
mask: ImageField = OutputField(description="The output mask")
@invocation_output("face_off_output")
class FaceOffOutput(ImageOutput):
"""Base class for FaceOff Output"""
mask: ImageField = OutputField(description="The output mask")
x: int = OutputField(description="The x coordinate of the bounding box's left side")
y: int = OutputField(description="The y coordinate of the bounding box's top side")
class FaceResultData(TypedDict):
image: ImageType
mask: ImageType
x_center: float
y_center: float
mesh_width: int
mesh_height: int
class FaceResultDataWithId(FaceResultData):
face_id: int
class ExtractFaceData(TypedDict):
bounded_image: ImageType
bounded_mask: ImageType
x_min: int
y_min: int
x_max: int
y_max: int
class FaceMaskResult(TypedDict):
image: ImageType
mask: ImageType
def create_white_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=255)
def create_black_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=0)
FONT_SIZE = 32
FONT_STROKE_WIDTH = 4
def prepare_faces_list(
face_result_list: list[FaceResultData],
) -> list[FaceResultDataWithId]:
"""Deduplicates a list of faces, adding IDs to them."""
deduped_faces: list[FaceResultData] = []
if len(face_result_list) == 0:
return list()
for candidate in face_result_list:
should_add = True
candidate_x_center = candidate["x_center"]
candidate_y_center = candidate["y_center"]
for face in deduped_faces:
face_center_x = face["x_center"]
face_center_y = face["y_center"]
face_radius_w = face["mesh_width"] / 2
face_radius_h = face["mesh_height"] / 2
# Determine if the center of the candidate_face is inside the ellipse of the added face
# p < 1 -> Inside
# p = 1 -> Exactly on the ellipse
# p > 1 -> Outside
p = (math.pow((candidate_x_center - face_center_x), 2) / math.pow(face_radius_w, 2)) + (
math.pow((candidate_y_center - face_center_y), 2) / math.pow(face_radius_h, 2)
)
if p < 1: # Inside of the already-added face's radius
should_add = False
break
if should_add is True:
deduped_faces.append(candidate)
sorted_faces = sorted(deduped_faces, key=lambda x: x["y_center"])
sorted_faces = sorted(sorted_faces, key=lambda x: x["x_center"])
# add face_id for reference
sorted_faces_with_ids: list[FaceResultDataWithId] = []
face_id_counter = 0
for face in sorted_faces:
sorted_faces_with_ids.append(
FaceResultDataWithId(
**face,
face_id=face_id_counter,
)
)
face_id_counter += 1
return sorted_faces_with_ids
def generate_face_box_mask(
context: InvocationContext,
minimum_confidence: float,
x_offset: float,
y_offset: float,
pil_image: ImageType,
chunk_x_offset: int = 0,
chunk_y_offset: int = 0,
draw_mesh: bool = True,
check_bounds: bool = True,
) -> list[FaceResultData]:
result = []
mask_pil = None
# Convert the PIL image to a NumPy array.
np_image = np.array(pil_image, dtype=np.uint8)
# Check if the input image has four channels (RGBA).
if np_image.shape[2] == 4:
# Convert RGBA to RGB by removing the alpha channel.
np_image = np_image[:, :, :3]
# Create a FaceMesh object for face landmark detection and mesh generation.
face_mesh = FaceMesh(
max_num_faces=999,
min_detection_confidence=minimum_confidence,
min_tracking_confidence=minimum_confidence,
)
# Detect the face landmarks and mesh in the input image.
results = face_mesh.process(np_image)
# Check if any face is detected.
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
# Search for the face_id in the detected faces.
for face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
# Get the bounding box of the face mesh.
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
x_min, x_max = min(x_coordinates), max(x_coordinates)
y_min, y_max = min(y_coordinates), max(y_coordinates)
# Calculate the width and height of the face mesh.
mesh_width = int((x_max - x_min) * np_image.shape[1])
mesh_height = int((y_max - y_min) * np_image.shape[0])
# Get the center of the face.
x_center = np.mean([landmark.x * np_image.shape[1] for landmark in face_landmarks.landmark])
y_center = np.mean([landmark.y * np_image.shape[0] for landmark in face_landmarks.landmark])
face_landmark_points = np.array(
[
[landmark.x * np_image.shape[1], landmark.y * np_image.shape[0]]
for landmark in face_landmarks.landmark
]
)
# Apply the scaling offsets to the face landmark points with a multiplier.
scale_multiplier = 0.2
x_center = np.mean(face_landmark_points[:, 0])
y_center = np.mean(face_landmark_points[:, 1])
if draw_mesh:
x_scaled = face_landmark_points[:, 0] + scale_multiplier * x_offset * (
face_landmark_points[:, 0] - x_center
)
y_scaled = face_landmark_points[:, 1] + scale_multiplier * y_offset * (
face_landmark_points[:, 1] - y_center
)
convex_hull = cv2.convexHull(np.column_stack((x_scaled, y_scaled)).astype(np.int32))
# Generate a binary face mask using the face mesh.
mask_image = np.ones(np_image.shape[:2], dtype=np.uint8) * 255
cv2.fillConvexPoly(mask_image, convex_hull, 0)
# Convert the binary mask image to a PIL Image.
init_mask_pil = Image.fromarray(mask_image, mode="L")
w, h = init_mask_pil.size
mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset)
mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset))
left_side = x_center - mesh_width
right_side = x_center + mesh_width
top_side = y_center - mesh_height
bottom_side = y_center + mesh_height
im_width, im_height = pil_image.size
over_w = im_width * 0.1
over_h = im_height * 0.1
if not check_bounds or (
(left_side >= -over_w)
and (right_side < im_width + over_w)
and (top_side >= -over_h)
and (bottom_side < im_height + over_h)
):
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
)
result.append(face)
else:
context.services.logger.info("FaceTools --> Face out of bounds, ignoring.")
return result
def extract_face(
context: InvocationContext,
image: ImageType,
face: FaceResultData,
padding: int,
) -> ExtractFaceData:
mask = face["mask"]
center_x = face["x_center"]
center_y = face["y_center"]
mesh_width = face["mesh_width"]
mesh_height = face["mesh_height"]
# Determine the minimum size of the square crop
min_size = min(mask.width, mask.height)
# Calculate the crop boundaries for the output image and mask.
mesh_width += 128 + padding # add pixels to account for mask variance
mesh_height += 128 + padding # add pixels to account for mask variance
crop_size = min(
max(mesh_width, mesh_height, 128), min_size
) # Choose the smaller of the two (given value or face mask size)
if crop_size > 128:
crop_size = (crop_size + 7) // 8 * 8 # Ensure crop side is multiple of 8
# Calculate the actual crop boundaries within the bounds of the original image.
x_min = int(center_x - crop_size / 2)
y_min = int(center_y - crop_size / 2)
x_max = int(center_x + crop_size / 2)
y_max = int(center_y + crop_size / 2)
# Adjust the crop boundaries to stay within the original image's dimensions
if x_min < 0:
context.services.logger.warning("FaceTools --> -X-axis padding reached image edge.")
x_max -= x_min
x_min = 0
elif x_max > mask.width:
context.services.logger.warning("FaceTools --> +X-axis padding reached image edge.")
x_min -= x_max - mask.width
x_max = mask.width
if y_min < 0:
context.services.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
y_max -= y_min
y_min = 0
elif y_max > mask.height:
context.services.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
y_min -= y_max - mask.height
y_max = mask.height
# Ensure the crop is square and adjust the boundaries if needed
if x_max - x_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
diff = crop_size - (x_max - x_min)
x_min -= diff // 2
x_max += diff - diff // 2
if y_max - y_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
diff = crop_size - (y_max - y_min)
y_min -= diff // 2
y_max += diff - diff // 2
context.services.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
# Crop the output image to the specified size with the center of the face mesh as the center.
mask = mask.crop((x_min, y_min, x_max, y_max))
bounded_image = image.crop((x_min, y_min, x_max, y_max))
# blur mask edge by small radius
mask = mask.filter(ImageFilter.GaussianBlur(radius=2))
return ExtractFaceData(
bounded_image=bounded_image,
bounded_mask=mask,
x_min=x_min,
y_min=y_min,
x_max=x_max,
y_max=y_max,
)
def get_faces_list(
context: InvocationContext,
image: ImageType,
should_chunk: bool,
minimum_confidence: float,
x_offset: float,
y_offset: float,
draw_mesh: bool = True,
) -> list[FaceResultDataWithId]:
result = []
# Generate the face box mask and get the center of the face.
if not should_chunk:
context.services.logger.info("FaceTools --> Attempting full image face detection.")
result = generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image,
chunk_x_offset=0,
chunk_y_offset=0,
draw_mesh=draw_mesh,
check_bounds=False,
)
if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
width, height = image.size
image_chunks = []
x_offsets = []
y_offsets = []
result = []
# If width == height, there's nothing more we can do... otherwise...
if width > height:
# Landscape - slice the image horizontally
fx = 0.0
steps = int(width * 2 / height)
while fx <= (width - height):
x = int(fx)
image_chunks.append(image.crop((x, 0, x + height - 1, height - 1)))
x_offsets.append(x)
y_offsets.append(0)
fx += (width - height) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width:
# Portrait - slice the image vertically
fy = 0.0
steps = int(height * 2 / width)
while fy <= (height - width):
y = int(fy)
image_chunks.append(image.crop((0, y, width - 1, y + width - 1)))
x_offsets.append(0)
y_offsets.append(y)
fy += (height - width) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)):
context.services.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
result = result + generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image_chunks[idx],
chunk_x_offset=x_offsets[idx],
chunk_y_offset=y_offsets[idx],
draw_mesh=draw_mesh,
)
if len(result) == 0:
# Give up
context.services.logger.warning(
"FaceTools --> No face detected in chunked input image. Passing through original image."
)
all_faces = prepare_faces_list(result)
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.1")
class FaceOffInvocation(BaseInvocation):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
image: ImageField = InputField(description="Image for face detection")
face_id: int = InputField(
default=0,
ge=0,
description="The face ID to process, numbered from 0. Multiple faces not supported. Find a face's ID with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="X-axis offset of the mask")
y_offset: float = InputField(default=0.0, description="Y-axis offset of the mask")
padding: int = InputField(default=0, description="All-axis padding around the mask in pixels")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceoff(self, context: InvocationContext, image: ImageType) -> Optional[ExtractFaceData]:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
if len(all_faces) == 0:
context.services.logger.warning("FaceOff --> No faces detected. Passing through original image.")
return None
if self.face_id > len(all_faces) - 1:
context.services.logger.warning(
f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image."
)
return None
face_data = extract_face(context=context, image=image, face=all_faces[self.face_id], padding=self.padding)
# Convert the input image to RGBA mode to ensure it has an alpha channel.
face_data["bounded_image"] = face_data["bounded_image"].convert("RGBA")
return face_data
def invoke(self, context: InvocationContext) -> FaceOffOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.faceoff(context=context, image=image)
if result is None:
result_image = image
result_mask = create_white_image(*image.size)
x = 0
y = 0
else:
result_image = result["bounded_image"]
result_mask = result["bounded_mask"]
x = result["x_min"]
y = result["y_min"]
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
image=result_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceOffOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
x=x,
y=y,
)
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.1")
class FaceMaskInvocation(BaseInvocation):
"""Face mask creation using mediapipe face detection"""
image: ImageField = InputField(description="Image to face detect")
face_ids: str = InputField(
default="",
description="Comma-separated list of face ids to mask eg '0,2,7'. Numbered from 0. Leave empty to mask all. Find face IDs with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="Offset for the X-axis of the face mask")
y_offset: float = InputField(default=0.0, description="Offset for the Y-axis of the face mask")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None:
raise ValueError('Face IDs must be a comma-separated list of integers (e.g. "1,2,3")')
return v
def facemask(self, context: InvocationContext, image: ImageType) -> FaceMaskResult:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
mask_pil = create_white_image(*image.size)
id_range = list(range(0, len(all_faces)))
ids_to_extract = id_range
if self.face_ids != "":
parsed_face_ids = [int(id) for id in self.face_ids.split(",")]
# get requested face_ids that are in range
intersected_face_ids = set(parsed_face_ids) & set(id_range)
if len(intersected_face_ids) == 0:
id_range_str = ",".join([str(id) for id in id_range])
context.services.logger.warning(
f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image."
)
return FaceMaskResult(
image=image, # original image
mask=mask_pil, # white mask
)
ids_to_extract = list(intersected_face_ids)
for face_id in ids_to_extract:
face_data = extract_face(context=context, image=image, face=all_faces[face_id], padding=0)
face_mask_pil = face_data["bounded_mask"]
x_min = face_data["x_min"]
y_min = face_data["y_min"]
x_max = face_data["x_max"]
y_max = face_data["y_max"]
mask_pil.paste(
create_black_image(x_max - x_min, y_max - y_min),
box=(x_min, y_min),
mask=ImageOps.invert(face_mask_pil),
)
if self.invert_mask:
mask_pil = ImageOps.invert(mask_pil)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return FaceMaskResult(
image=image,
mask=mask_pil,
)
def invoke(self, context: InvocationContext) -> FaceMaskOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.facemask(context=context, image=image)
image_dto = context.services.images.create(
image=result["image"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
image=result["mask"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceMaskOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
)
return output
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.1"
)
class FaceIdentifierInvocation(BaseInvocation):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect")
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceidentifier(self, context: InvocationContext, image: ImageType) -> ImageType:
image = image.copy()
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=0,
y_offset=0,
draw_mesh=False,
)
# Note - font may be found either in the repo if running an editable install, or in the venv if running a package install
font_path = [x for x in [Path(y, "inter/Inter-Regular.ttf") for y in font_assets.__path__] if x.exists()]
font = ImageFont.truetype(font_path[0].as_posix(), FONT_SIZE)
# Paste face IDs on the output image
draw = ImageDraw.Draw(image)
for face in all_faces:
x_coord = face["x_center"]
y_coord = face["y_center"]
text = str(face["face_id"])
# get bbox of the text so we can center the id on the face
_, _, bbox_w, bbox_h = draw.textbbox(xy=(0, 0), text=text, font=font, stroke_width=FONT_STROKE_WIDTH)
x = x_coord - bbox_w / 2
y = y_coord - bbox_h / 2
draw.text(
xy=(x, y),
text=str(text),
fill=(255, 255, 255, 255),
font=font,
stroke_width=FONT_STROKE_WIDTH,
stroke_fill=(0, 0, 0, 255),
)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result_image = self.faceidentifier(context=context, image=image)
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -269,7 +269,7 @@ class LaMaInfillInvocation(BaseInvocation):
)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class CV2InfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting"""

View File

@@ -10,7 +10,7 @@ import torch
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import UNet2DConditionModel
from diffusers.models.adapter import FullAdapterXL, T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
@@ -33,6 +33,7 @@ from invokeai.app.invocations.primitives import (
LatentsOutput,
build_latents_output,
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
@@ -47,6 +48,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
IPAdapterData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
@@ -196,7 +198,7 @@ def get_scheduler(
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.1.0",
version="1.3.0",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@@ -223,12 +225,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
input=Input.Connection,
ui_order=5,
)
ip_adapter: Optional[IPAdapterField] = InputField(
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6
)
t2i_adapter: Union[T2IAdapterField, list[T2IAdapterField]] = InputField(
description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7
)
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=7
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8
)
@validator("cfg_scale")
@@ -404,52 +409,150 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_ip_adapter_data(
self,
context: InvocationContext,
ip_adapter: Optional[IPAdapterField],
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
conditioning_data: ConditioningData,
unet: UNet2DConditionModel,
exit_stack: ExitStack,
) -> Optional[IPAdapterData]:
) -> Optional[list[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
to the `conditioning_data` (in-place).
"""
if ip_adapter is None:
return None
image_encoder_model_info = context.services.model_manager.get_model(
model_name=ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision,
base_model=ip_adapter.image_encoder_model.base_model,
context=context,
)
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if not isinstance(ip_adapter, list):
ip_adapter = [ip_adapter]
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.services.model_manager.get_model(
model_name=ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter,
base_model=ip_adapter.ip_adapter_model.base_model,
if len(ip_adapter) == 0:
return None
ip_adapter_data_list = []
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.services.model_manager.get_model(
model_name=single_ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter,
base_model=single_ip_adapter.ip_adapter_model.base_model,
context=context,
)
)
image_encoder_model_info = context.services.model_manager.get_model(
model_name=single_ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision,
base_model=single_ip_adapter.image_encoder_model.base_model,
context=context,
)
)
input_image = context.services.images.get_pil_image(ip_adapter.image.image_name)
input_image = context.services.images.get_pil_image(single_ip_adapter.image.image_name)
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
input_image, image_encoder_model
)
conditioning_data.ip_adapter_conditioning = IPAdapterConditioningInfo(
image_prompt_embeds, uncond_image_prompt_embeds
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
input_image, image_encoder_model
)
conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
)
)
return IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=ip_adapter.weight,
begin_step_percent=ip_adapter.begin_step_percent,
end_step_percent=ip_adapter.end_step_percent,
)
return ip_adapter_data_list
def run_t2i_adapters(
self,
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
return None
# Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField.
if isinstance(t2i_adapter, T2IAdapterField):
t2i_adapter = [t2i_adapter]
if len(t2i_adapter) == 0:
return None
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_info = context.services.model_manager.get_model(
model_name=t2i_adapter_field.t2i_adapter_model.model_name,
model_type=ModelType.T2IAdapter,
base_model=t2i_adapter_field.t2i_adapter_model.base_model,
context=context,
)
image = context.services.images.get_pil_image(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
else:
raise ValueError(
f"Unexpected T2I-Adapter base model type: '{t2i_adapter_field.t2i_adapter_model.base_model}'."
)
t2i_adapter_model: T2IAdapter
with t2i_adapter_model_info as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
if isinstance(t2i_adapter_model.adapter, FullAdapterXL):
# HACK(ryand): Work around a bug in FullAdapterXL. This is being addressed upstream in diffusers by
# this PR: https://github.com/huggingface/diffusers/pull/5134.
total_downscale_factor = total_downscale_factor // 2
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config.in_channels,
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
for idx, value in enumerate(adapter_state):
adapter_state[idx] = torch.cat([value] * 2, dim=0)
t2i_adapter_data.append(
T2IAdapterData(
adapter_state=adapter_state,
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
)
)
return t2i_adapter_data
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
@@ -522,6 +625,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
mask, masked_latents = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters(
context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True
)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
@@ -580,7 +689,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
ip_adapter=self.ip_adapter,
conditioning_data=conditioning_data,
unet=unet,
exit_stack=exit_stack,
)
@@ -602,8 +710,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
masked_latents=masked_latents,
num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data,
control_data=controlnet_data, # list[ControlNetData],
ip_adapter_data=ip_adapter_data, # IPAdapterData,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=step_callback,
)

View File

@@ -65,13 +65,27 @@ class DivideInvocation(BaseInvocation):
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
low: int = InputField(default=0, description=FieldDescriptions.inclusive_low)
high: int = InputField(default=np.iinfo(np.int32).max, description=FieldDescriptions.exclusive_high)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=np.random.randint(self.low, self.high))
@invocation("rand_float", title="Random Float", tags=["math", "float", "random"], category="math", version="1.0.0")
class RandomFloatInvocation(BaseInvocation):
"""Outputs a single random float"""
low: float = InputField(default=0.0, description=FieldDescriptions.inclusive_low)
high: float = InputField(default=1.0, description=FieldDescriptions.exclusive_high)
decimals: int = InputField(default=2, description=FieldDescriptions.decimal_places)
def invoke(self, context: InvocationContext) -> FloatOutput:
random_float = np.random.uniform(self.low, self.high)
rounded_float = round(random_float, self.decimals)
return FloatOutput(value=rounded_float)
@invocation(
"float_to_int",
title="Float To Integer",

View File

@@ -12,7 +12,10 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from ...version import __version__
@@ -25,6 +28,18 @@ class LoRAMetadataField(BaseModelExcludeNull):
weight: float = Field(description="The weight of the LoRA model")
class IPAdapterMetadataField(BaseModelExcludeNull):
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
weight: float = Field(description="The weight of the IP-Adapter model")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI."""
@@ -48,6 +63,8 @@ class CoreMetadata(BaseModelExcludeNull):
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = Field(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Optional[VAEModelField] = Field(
default=None,
@@ -123,6 +140,8 @@ class MetadataAccumulatorInvocation(BaseInvocation):
)
model: MainModelField = InputField(description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = InputField(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,

View File

@@ -0,0 +1,83 @@
from typing import Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.backend.model_management.models.base import BaseModelType
class T2IAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model")
class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@invocation_output("t2i_adapter_output")
class T2IAdapterOutput(BaseInvocationOutput):
t2i_adapter: T2IAdapterField = OutputField(description=FieldDescriptions.t2i_adapter, title="T2I Adapter")
@invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.0"
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""
# Inputs
image: ImageField = InputField(description="The IP-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = InputField(
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
input=Input.Direct,
ui_order=-1,
)
weight: Union[float, list[float]] = InputField(
default=1, ge=0, description="The weight given to the T2I-Adapter", ui_type=UIType.Float, title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=-1, le=2, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(
default="just_resize",
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
)
def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
return T2IAdapterOutput(
t2i_adapter=T2IAdapterField(
image=self.image,
t2i_adapter_model=self.t2i_adapter_model,
weight=self.weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
resize_mode=self.resize_mode,
)
)

View File

@@ -4,12 +4,14 @@ from typing import Literal
import cv2 as cv
import numpy as np
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@@ -22,13 +24,19 @@ ESRGAN_MODELS = Literal[
"RealESRGAN_x2plus.pth",
]
if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.0.0")
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.1.0")
class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image")
model_name: ESRGAN_MODELS = InputField(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
tile_size: int = InputField(
default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@@ -86,9 +94,11 @@ class ESRGANInvocation(BaseInvocation):
model_path=str(models_path / esrgan_model_path),
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv_image = cv.cvtColor(np.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
# We can pass an `outscale` value here, but it just resizes the image by that factor after
@@ -99,6 +109,10 @@ class ESRGANInvocation(BaseInvocation):
# back to PIL
pil_image = Image.fromarray(cv.cvtColor(upscaled_image, cv.COLOR_BGR2RGB)).convert("RGBA")
torch.cuda.empty_cache()
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,

View File

@@ -241,7 +241,7 @@ class InvokeAIAppConfig(InvokeAISettings):
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
# CACHE
ram : Union[float, Literal["auto"]] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
ram : Union[float, Literal["auto"]] = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", )
@@ -255,6 +255,7 @@ class InvokeAIAppConfig(InvokeAISettings):
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", category="Generation", )
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", category="Queue", )

View File

@@ -4,7 +4,12 @@ from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.services.model_manager_service import BaseModelType, ModelInfo, ModelType, SubModelType
from invokeai.app.services.session_queue.session_queue_common import EnqueueBatchResult, SessionQueueItem
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.app.util.misc import get_timestamp
@@ -262,21 +267,31 @@ class EventServiceBase:
),
)
def emit_queue_item_status_changed(self, session_queue_item: SessionQueueItem) -> None:
def emit_queue_item_status_changed(
self,
session_queue_item: SessionQueueItem,
batch_status: BatchStatus,
queue_status: SessionQueueStatus,
) -> None:
"""Emitted when a queue item's status changes"""
self.__emit_queue_event(
event_name="queue_item_status_changed",
payload=dict(
queue_id=session_queue_item.queue_id,
queue_item_id=session_queue_item.item_id,
status=session_queue_item.status,
batch_id=session_queue_item.batch_id,
session_id=session_queue_item.session_id,
error=session_queue_item.error,
created_at=str(session_queue_item.created_at) if session_queue_item.created_at else None,
updated_at=str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
queue_id=queue_status.queue_id,
queue_item=dict(
queue_id=session_queue_item.queue_id,
item_id=session_queue_item.item_id,
status=session_queue_item.status,
batch_id=session_queue_item.batch_id,
session_id=session_queue_item.session_id,
error=session_queue_item.error,
created_at=str(session_queue_item.created_at) if session_queue_item.created_at else None,
updated_at=str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
),
batch_status=batch_status.dict(),
queue_status=queue_status.dict(),
),
)

View File

@@ -2,7 +2,7 @@
import copy
import itertools
from typing import Annotated, Any, Optional, Union, cast, get_args, get_origin, get_type_hints
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
import networkx as nx
from pydantic import BaseModel, root_validator, validator
@@ -170,6 +170,18 @@ class NodeIdMismatchError(ValueError):
pass
class InvalidSubGraphError(ValueError):
pass
class CyclicalGraphError(ValueError):
pass
class UnknownGraphValidationError(ValueError):
pass
# TODO: Create and use an Empty output?
@invocation_output("graph_output")
class GraphInvocationOutput(BaseInvocationOutput):
@@ -254,59 +266,6 @@ class Graph(BaseModel):
default_factory=list,
)
@root_validator
def validate_nodes_and_edges(cls, values):
"""Validates that all edges match nodes in the graph"""
nodes = cast(Optional[dict[str, BaseInvocation]], values.get("nodes"))
edges = cast(Optional[list[Edge]], values.get("edges"))
if nodes is not None:
# Validate that all node ids are unique
node_ids = [n.id for n in nodes.values()]
duplicate_node_ids = set([node_id for node_id in node_ids if node_ids.count(node_id) >= 2])
if duplicate_node_ids:
raise DuplicateNodeIdError(f"Node ids must be unique, found duplicates {duplicate_node_ids}")
# Validate that all node ids match the keys in the nodes dict
for k, v in nodes.items():
if k != v.id:
raise NodeIdMismatchError(f"Node ids must match, got {k} and {v.id}")
if edges is not None and nodes is not None:
# Validate that all edges match nodes in the graph
node_ids = set([e.source.node_id for e in edges] + [e.destination.node_id for e in edges])
missing_node_ids = [node_id for node_id in node_ids if node_id not in nodes]
if missing_node_ids:
raise NodeNotFoundError(
f"All edges must reference nodes in the graph, missing nodes: {missing_node_ids}"
)
# Validate that all edge fields match node fields in the graph
for edge in edges:
source_node = nodes.get(edge.source.node_id, None)
if source_node is None:
raise NodeFieldNotFoundError(f"Edge source node {edge.source.node_id} does not exist in the graph")
destination_node = nodes.get(edge.destination.node_id, None)
if destination_node is None:
raise NodeFieldNotFoundError(
f"Edge destination node {edge.destination.node_id} does not exist in the graph"
)
# output fields are not on the node object directly, they are on the output type
if edge.source.field not in source_node.get_output_type().__fields__:
raise NodeFieldNotFoundError(
f"Edge source field {edge.source.field} does not exist in node {edge.source.node_id}"
)
# input fields are on the node
if edge.destination.field not in destination_node.__fields__:
raise NodeFieldNotFoundError(
f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}"
)
return values
def add_node(self, node: BaseInvocation) -> None:
"""Adds a node to a graph
@@ -377,53 +336,108 @@ class Graph(BaseModel):
except KeyError:
pass
def is_valid(self) -> bool:
"""Validates the graph."""
def validate_self(self) -> None:
"""
Validates the graph.
Raises an exception if the graph is invalid:
- `DuplicateNodeIdError`
- `NodeIdMismatchError`
- `InvalidSubGraphError`
- `NodeNotFoundError`
- `NodeFieldNotFoundError`
- `CyclicalGraphError`
- `InvalidEdgeError`
"""
# Validate that all node ids are unique
node_ids = [n.id for n in self.nodes.values()]
duplicate_node_ids = set([node_id for node_id in node_ids if node_ids.count(node_id) >= 2])
if duplicate_node_ids:
raise DuplicateNodeIdError(f"Node ids must be unique, found duplicates {duplicate_node_ids}")
# Validate that all node ids match the keys in the nodes dict
for k, v in self.nodes.items():
if k != v.id:
raise NodeIdMismatchError(f"Node ids must match, got {k} and {v.id}")
# Validate all subgraphs
for gn in (n for n in self.nodes.values() if isinstance(n, GraphInvocation)):
if not gn.graph.is_valid():
return False
try:
gn.graph.validate_self()
except Exception as e:
raise InvalidSubGraphError(f"Subgraph {gn.id} is invalid") from e
# Validate all edges reference nodes in the graph
node_ids = set([e.source.node_id for e in self.edges] + [e.destination.node_id for e in self.edges])
if not all((self.has_node(node_id) for node_id in node_ids)):
return False
# Validate that all edges match nodes and fields in the graph
for edge in self.edges:
source_node = self.nodes.get(edge.source.node_id, None)
if source_node is None:
raise NodeNotFoundError(f"Edge source node {edge.source.node_id} does not exist in the graph")
destination_node = self.nodes.get(edge.destination.node_id, None)
if destination_node is None:
raise NodeNotFoundError(f"Edge destination node {edge.destination.node_id} does not exist in the graph")
# output fields are not on the node object directly, they are on the output type
if edge.source.field not in source_node.get_output_type().__fields__:
raise NodeFieldNotFoundError(
f"Edge source field {edge.source.field} does not exist in node {edge.source.node_id}"
)
# input fields are on the node
if edge.destination.field not in destination_node.__fields__:
raise NodeFieldNotFoundError(
f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}"
)
# Validate there are no cycles
g = self.nx_graph_flat()
if not nx.is_directed_acyclic_graph(g):
return False
raise CyclicalGraphError("Graph contains cycles")
# Validate all edge connections are valid
if not all(
(
are_connections_compatible(
self.get_node(e.source.node_id),
e.source.field,
self.get_node(e.destination.node_id),
e.destination.field,
for e in self.edges:
if not are_connections_compatible(
self.get_node(e.source.node_id),
e.source.field,
self.get_node(e.destination.node_id),
e.destination.field,
):
raise InvalidEdgeError(
f"Invalid edge from {e.source.node_id}.{e.source.field} to {e.destination.node_id}.{e.destination.field}"
)
for e in self.edges
)
# Validate all iterators & collectors
# TODO: may need to validate all iterators & collectors in subgraphs so edge connections in parent graphs will be available
for n in self.nodes.values():
if isinstance(n, IterateInvocation) and not self._is_iterator_connection_valid(n.id):
raise InvalidEdgeError(f"Invalid iterator node {n.id}")
if isinstance(n, CollectInvocation) and not self._is_collector_connection_valid(n.id):
raise InvalidEdgeError(f"Invalid collector node {n.id}")
return None
def is_valid(self) -> bool:
"""
Checks if the graph is valid.
Raises `UnknownGraphValidationError` if there is a problem validating the graph (not a validation error).
"""
try:
self.validate_self()
return True
except (
DuplicateNodeIdError,
NodeIdMismatchError,
InvalidSubGraphError,
NodeNotFoundError,
NodeFieldNotFoundError,
CyclicalGraphError,
InvalidEdgeError,
):
return False
# Validate all iterators
# TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available
if not all(
(self._is_iterator_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, IterateInvocation))
):
return False
# Validate all collectors
# TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available
if not all(
(self._is_collector_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, CollectInvocation))
):
return False
return True
except Exception as e:
raise UnknownGraphValidationError(f"Problem validating graph {e}") from e
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
@@ -804,6 +818,12 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
@validator("graph")
def graph_is_valid(cls, v: Graph):
"""Validates that the graph is valid"""
v.validate_self()
return v
class Config:
schema_extra = {
"required": [

View File

@@ -9,6 +9,7 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
@@ -79,6 +80,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__compress_level: int
def __init__(self, output_folder: Union[str, Path]):
self.__cache = dict()
@@ -87,7 +89,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
self.__compress_level = InvokeAIAppConfig.get_config().png_compress_level
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -134,7 +136,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
if original_workflow is not None:
pnginfo.add_text("invokeai_workflow", original_workflow)
image.save(image_path, "PNG", pnginfo=pnginfo)
image.save(image_path, "PNG", pnginfo=pnginfo, compress_level=self.__compress_level)
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)

View File

@@ -584,7 +584,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
ORDER BY images.created_at DESC
ORDER BY images.starred DESC, images.created_at DESC
LIMIT 1;
""",
(board_id,),

View File

@@ -1,7 +1,6 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from threading import Lock
from time import time
from typing import Optional, Union
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
@@ -59,7 +58,7 @@ class MemoryInvocationCache(InvocationCacheBase):
# If the cache is full, we need to remove the least used
number_to_delete = len(self._cache) + 1 - self._max_cache_size
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(time(), invocation_output, invocation_output.json())
self._cache[key] = CachedItem(invocation_output, invocation_output.json())
def _delete_oldest_access(self, number_to_delete: int) -> None:
number_to_delete = min(number_to_delete, len(self._cache))

View File

@@ -1,3 +1,4 @@
import traceback
from threading import BoundedSemaphore
from threading import Event as ThreadEvent
from threading import Thread
@@ -123,6 +124,10 @@ class DefaultSessionProcessor(SessionProcessorBase):
continue
except Exception as e:
self.__invoker.services.logger.error(f"Error in session processor: {e}")
if queue_item is not None:
self.__invoker.services.session_queue.cancel_queue_item(
queue_item.item_id, error=traceback.format_exc()
)
poll_now_event.wait(POLLING_INTERVAL)
continue
except Exception as e:

View File

@@ -80,7 +80,7 @@ class SessionQueueBase(ABC):
pass
@abstractmethod
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
def cancel_queue_item(self, item_id: int, error: Optional[str] = None) -> SessionQueueItem:
"""Cancels a session queue item"""
pass

View File

@@ -123,6 +123,11 @@ class Batch(BaseModel):
raise NodeNotFoundError(f"Field {batch_data.field_name} not found in node {batch_data.node_path}")
return values
@validator("graph")
def validate_graph(cls, v: Graph):
v.validate_self()
return v
class Config:
schema_extra = {
"required": [

View File

@@ -427,7 +427,13 @@ class SqliteSessionQueue(SessionQueueBase):
finally:
self.__lock.release()
queue_item = self.get_queue_item(item_id)
self.__invoker.services.events.emit_queue_item_status_changed(queue_item)
batch_status = self.get_batch_status(queue_id=queue_item.queue_id, batch_id=queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_item.queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=queue_item,
batch_status=batch_status,
queue_status=queue_status,
)
return queue_item
def is_empty(self, queue_id: str) -> IsEmptyResult:
@@ -555,10 +561,11 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return PruneResult(deleted=count)
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
def cancel_queue_item(self, item_id: int, error: Optional[str] = None) -> SessionQueueItem:
queue_item = self.get_queue_item(item_id)
if queue_item.status not in ["canceled", "failed", "completed"]:
queue_item = self._set_queue_item_status(item_id=item_id, status="canceled")
status = "failed" if error is not None else "canceled"
queue_item = self._set_queue_item_status(item_id=item_id, status=status, error=error)
self.__invoker.services.queue.cancel(queue_item.session_id)
self.__invoker.services.events.emit_session_canceled(
queue_item_id=queue_item.item_id,
@@ -608,7 +615,13 @@ class SqliteSessionQueue(SessionQueueBase):
queue_batch_id=current_queue_item.batch_id,
graph_execution_state_id=current_queue_item.session_id,
)
self.__invoker.services.events.emit_queue_item_status_changed(current_queue_item)
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=current_queue_item,
batch_status=batch_status,
queue_status=queue_status,
)
except Exception:
self.__conn.rollback()
raise
@@ -654,7 +667,13 @@ class SqliteSessionQueue(SessionQueueBase):
queue_batch_id=current_queue_item.batch_id,
graph_execution_state_id=current_queue_item.session_id,
)
self.__invoker.services.events.emit_queue_item_status_changed(current_queue_item)
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=current_queue_item,
batch_status=batch_status,
queue_status=queue_status,
)
except Exception:
self.__conn.rollback()
raise

View File

@@ -265,22 +265,41 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
def prepare_control_image(
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
# but now should be able to assume that image is a single PIL.Image, which simplifies things
image: Image,
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
# latents_to_match_resolution, # TorchTensor of shape (batch_size, 3, height, width)
width=512, # should be 8 * latent.shape[3]
height=512, # should be 8 * latent height[2]
# batch_size=1, # currently no batching
# num_images_per_prompt=1, # currently only single image
width: int,
height: int,
num_channels: int = 3,
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced",
resize_mode="just_resize_simple",
):
# FIXME: implement "crop_resize_simple" and "fill_resize_simple", or pull them out
"""Pre-process images for ControlNets or T2I-Adapters.
Args:
image (Image): The PIL image to pre-process.
width (int): The target width in pixels.
height (int): The target height in pixels.
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
device (str, optional): The target device for the output image. Defaults to "cuda".
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
Defaults to True.
control_mode (str, optional): Defaults to "balanced".
resize_mode (str, optional): Defaults to "just_resize_simple".
Raises:
NotImplementedError: If resize_mode == "crop_resize_simple".
NotImplementedError: If resize_mode == "fill_resize_simple".
ValueError: If `resize_mode` is not recognized.
ValueError: If `num_channels` is out of range.
Returns:
torch.Tensor: The pre-processed input tensor.
"""
if (
resize_mode == "just_resize_simple"
or resize_mode == "crop_resize_simple"
@@ -289,10 +308,10 @@ def prepare_control_image(
image = image.convert("RGB")
if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif resize_mode == "crop_resize_simple": # not yet implemented
pass
elif resize_mode == "fill_resize_simple": # not yet implemented
pass
elif resize_mode == "crop_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
elif resize_mode == "fill_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
nimage = np.array(image)
nimage = nimage[None, :]
nimage = np.concatenate([nimage], axis=0)
@@ -313,9 +332,11 @@ def prepare_control_image(
device=device,
)
else:
pass
print("ERROR: invalid resize_mode ==> ", resize_mode)
exit(1)
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")
if timage.shape[1] < num_channels or num_channels <= 0:
raise ValueError(f"Cannot achieve the target of num_channels={num_channels}.")
timage = timage[:, :num_channels, :, :]
timage = timage.to(device=device, dtype=dtype)
cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"

Binary file not shown.

View File

@@ -0,0 +1,94 @@
Copyright (c) 2016-2020 The Inter Project Authors.
"Inter" is trademark of Rasmus Andersson.
https://github.com/rsms/inter
This Font Software is licensed under the SIL Open Font License, Version 1.1.
This license is copied below, and is also available with a FAQ at:
http://scripts.sil.org/OFL
-----------------------------------------------------------
SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007
-----------------------------------------------------------
PREAMBLE
The goals of the Open Font License (OFL) are to stimulate worldwide
development of collaborative font projects, to support the font creation
efforts of academic and linguistic communities, and to provide a free and
open framework in which fonts may be shared and improved in partnership
with others.
The OFL allows the licensed fonts to be used, studied, modified and
redistributed freely as long as they are not sold by themselves. The
fonts, including any derivative works, can be bundled, embedded,
redistributed and/or sold with any software provided that any reserved
names are not used by derivative works. The fonts and derivatives,
however, cannot be released under any other type of license. The
requirement for fonts to remain under this license does not apply
to any document created using the fonts or their derivatives.
DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this license and clearly marked as such. This may
include source files, build scripts and documentation.
"Reserved Font Name" refers to any names specified as such after the
copyright statement(s).
"Original Version" refers to the collection of Font Software components as
distributed by the Copyright Holder(s).
"Modified Version" refers to any derivative made by adding to, deleting,
or substituting -- in part or in whole -- any of the components of the
Original Version, by changing formats or by porting the Font Software to a
new environment.
"Author" refers to any designer, engineer, programmer, technical
writer or other person who contributed to the Font Software.
PERMISSION AND CONDITIONS
Permission is hereby granted, free of charge, to any person obtaining
a copy of the Font Software, to use, study, copy, merge, embed, modify,
redistribute, and sell modified and unmodified copies of the Font
Software, subject to the following conditions:
1) Neither the Font Software nor any of its individual components,
in Original or Modified Versions, may be sold by itself.
2) Original or Modified Versions of the Font Software may be bundled,
redistributed and/or sold with any software, provided that each copy
contains the above copyright notice and this license. These can be
included either as stand-alone text files, human-readable headers or
in the appropriate machine-readable metadata fields within text or
binary files as long as those fields can be easily viewed by the user.
3) No Modified Version of the Font Software may use the Reserved Font
Name(s) unless explicit written permission is granted by the corresponding
Copyright Holder. This restriction only applies to the primary font name as
presented to the users.
4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font
Software shall not be used to promote, endorse or advertise any
Modified Version, except to acknowledge the contribution(s) of the
Copyright Holder(s) and the Author(s) or with their explicit written
permission.
5) The Font Software, modified or unmodified, in part or in whole,
must be distributed entirely under this license, and must not be
distributed under any other license. The requirement for fonts to
remain under this license does not apply to any document created
using the Font Software.
TERMINATION
This license becomes null and void if any of the above conditions are
not met.
DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM
OTHER DEALINGS IN THE FONT SOFTWARE.

View File

@@ -70,7 +70,6 @@ def get_literal_fields(field) -> list[Any]:
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
@@ -458,7 +457,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model (2GB for SD-1, 6GB for SDXL).",
begin_entry_at=0,
editable=False,
color="CONTROL",
@@ -651,8 +650,19 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
return editApp.new_opts()
def default_ramcache() -> float:
"""Run a heuristic for the default RAM cache based on installed RAM."""
# Note that on my 64 GB machine, psutil.virtual_memory().total gives 62 GB,
# So we adjust everthing down a bit.
return (
15.0 if MAX_RAM >= 60 else 7.5 if MAX_RAM >= 30 else 4 if MAX_RAM >= 14 else 2.1
) # 2.1 is just large enough for sd 1.5 ;-)
def default_startup_options(init_file: Path) -> Namespace:
opts = InvokeAIAppConfig.get_config()
opts.ram = default_ramcache()
return opts

View File

@@ -2,6 +2,7 @@
Utility (backend) functions used by model_install.py
"""
import os
import re
import shutil
import warnings
from dataclasses import dataclass, field
@@ -88,6 +89,7 @@ class ModelLoadInfo:
base_type: BaseModelType
path: Optional[Path] = None
repo_id: Optional[str] = None
subfolder: Optional[str] = None
description: str = ""
installed: bool = False
recommended: bool = False
@@ -126,7 +128,10 @@ class ModelInstall(object):
value["name"] = name
value["base_type"] = base
value["model_type"] = model_type
model_dict[key] = ModelLoadInfo(**value)
model_info = ModelLoadInfo(**value)
if model_info.subfolder and model_info.repo_id:
model_info.repo_id += f":{model_info.subfolder}"
model_dict[key] = model_info
# supplement with entries in models.yaml
installed_models = [x for x in self.mgr.list_models()]
@@ -317,46 +322,63 @@ class ModelInstall(object):
return self._install_path(Path(models_path), info)
def _install_repo(self, repo_id: str) -> AddModelResult:
# hack to recover models stored in subfolders --
# Required to get the "v2" model of monster-labs/control_v1p_sd15_qrcode_monster
subfolder = None
if match := re.match(r"^([^/]+/[^/]+):(\w+)$", repo_id):
repo_id = match.group(1)
subfolder = match.group(2)
hinfo = HfApi().model_info(repo_id)
# we try to figure out how to download this most economically
# list all the files in the repo
files = [x.rfilename for x in hinfo.siblings]
if subfolder:
files = [x for x in files if x.startswith(f"{subfolder}/")]
prefix = f"{subfolder}/" if subfolder else ""
location = None
with TemporaryDirectory(dir=self.config.models_path) as staging:
staging = Path(staging)
if "model_index.json" in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline
elif "unet/model.onnx" in files:
if f"{prefix}model_index.json" in files:
location = self._download_hf_pipeline(repo_id, staging, subfolder=subfolder) # pipeline
elif f"{prefix}unet/model.onnx" in files:
location = self._download_hf_model(repo_id, files, staging)
else:
for suffix in ["safetensors", "bin"]:
if f"pytorch_lora_weights.{suffix}" in files:
location = self._download_hf_model(repo_id, ["pytorch_lora_weights.bin"], staging) # LoRA
if f"{prefix}pytorch_lora_weights.{suffix}" in files:
location = self._download_hf_model(
repo_id, ["pytorch_lora_weights.bin"], staging, subfolder=subfolder
) # LoRA
break
elif (
self.config.precision == "float16" and f"diffusion_pytorch_model.fp16.{suffix}" in files
self.config.precision == "float16" and f"{prefix}diffusion_pytorch_model.fp16.{suffix}" in files
): # vae, controlnet or some other standalone
files = ["config.json", f"diffusion_pytorch_model.fp16.{suffix}"]
location = self._download_hf_model(repo_id, files, staging)
location = self._download_hf_model(repo_id, files, staging, subfolder=subfolder)
break
elif f"diffusion_pytorch_model.{suffix}" in files:
elif f"{prefix}diffusion_pytorch_model.{suffix}" in files:
files = ["config.json", f"diffusion_pytorch_model.{suffix}"]
location = self._download_hf_model(repo_id, files, staging)
location = self._download_hf_model(repo_id, files, staging, subfolder=subfolder)
break
elif f"learned_embeds.{suffix}" in files:
location = self._download_hf_model(repo_id, [f"learned_embeds.{suffix}"], staging)
elif f"{prefix}learned_embeds.{suffix}" in files:
location = self._download_hf_model(
repo_id, [f"learned_embeds.{suffix}"], staging, subfolder=subfolder
)
break
elif "image_encoder.txt" in files and f"ip_adapter.{suffix}" in files: # IP-Adapter
elif (
f"{prefix}image_encoder.txt" in files and f"{prefix}ip_adapter.{suffix}" in files
): # IP-Adapter
files = ["image_encoder.txt", f"ip_adapter.{suffix}"]
location = self._download_hf_model(repo_id, files, staging)
location = self._download_hf_model(repo_id, files, staging, subfolder=subfolder)
break
elif f"model.{suffix}" in files and "config.json" in files:
elif f"{prefix}model.{suffix}" in files and f"{prefix}config.json" in files:
# This elif-condition is pretty fragile, but it is intended to handle CLIP Vision models hosted
# by InvokeAI for use with IP-Adapters.
files = ["config.json", f"model.{suffix}"]
location = self._download_hf_model(repo_id, files, staging)
location = self._download_hf_model(repo_id, files, staging, subfolder=subfolder)
break
if not location:
logger.warning(f"Could not determine type of repo {repo_id}. Skipping install.")
@@ -443,9 +465,9 @@ class ModelInstall(object):
else:
return path
def _download_hf_pipeline(self, repo_id: str, staging: Path) -> Path:
def _download_hf_pipeline(self, repo_id: str, staging: Path, subfolder: str = None) -> Path:
"""
This retrieves a StableDiffusion model from cache or remote and then
Retrieve a StableDiffusion model from cache or remote and then
does a save_pretrained() to the indicated staging area.
"""
_, name = repo_id.split("/")
@@ -460,6 +482,7 @@ class ModelInstall(object):
variant=variant,
torch_dtype=precision,
safety_checker=None,
subfolder=subfolder,
)
except Exception as e: # most errors are due to fp16 not being present. Fix this to catch other errors
if "fp16" not in str(e):
@@ -474,7 +497,7 @@ class ModelInstall(object):
model.save_pretrained(staging / name, safe_serialization=True)
return staging / name
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path) -> Path:
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path, subfolder: None) -> Path:
_, name = repo_id.split("/")
location = staging / name
paths = list()
@@ -485,7 +508,7 @@ class ModelInstall(object):
model_dir=location / filePath.parent,
model_name=filePath.name,
access_token=self.access_token,
subfolder=filePath.parent,
subfolder=filePath.parent / subfolder if subfolder else filePath.parent,
)
if p:
paths.append(p)

View File

@@ -8,6 +8,8 @@ import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
# loading.
@@ -45,18 +47,16 @@ class IPAttnProcessor2_0(torch.nn.Module):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0):
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: list[float]):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
assert len(weights) == len(scales)
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self._weights = weights
self._scales = scales
def __call__(
self,
@@ -67,16 +67,6 @@ class IPAttnProcessor2_0(torch.nn.Module):
temb=None,
ip_adapter_image_prompt_embeds=None,
):
if encoder_hidden_states is not None:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
# The batch dimensions should match.
assert ip_adapter_image_prompt_embeds.shape[0] == encoder_hidden_states.shape[0]
# The channel dimensions should match.
assert ip_adapter_image_prompt_embeds.shape[2] == encoder_hidden_states.shape[2]
ip_hidden_states = ip_adapter_image_prompt_embeds
residual = hidden_states
if attn.spatial_norm is not None:
@@ -128,23 +118,36 @@ class IPAttnProcessor2_0(torch.nn.Module):
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if ip_hidden_states is not None:
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
if encoder_hidden_states is not None:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
for ipa_embed, ipa_weights, scale in zip(ip_adapter_image_prompt_embeds, self._weights, self._scales):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The channel dimensions should match.
assert ipa_embed.shape[2] == encoder_hidden_states.shape[2]
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ipa_embed
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
hidden_states = hidden_states + self.scale * ip_hidden_states
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# The output of sdpa has shape: (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)

View File

@@ -1,15 +1,15 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
from contextlib import contextmanager
from typing import Optional, Union
import torch
from diffusers.models import UNet2DConditionModel
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from .attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
from invokeai.backend.model_management.models.base import calc_model_size_by_data
from .resampler import Resampler
@@ -59,7 +59,7 @@ class IPAdapter:
def __init__(
self,
state_dict: dict[torch.Tensor],
state_dict: dict[str, torch.Tensor],
device: torch.device,
dtype: torch.dtype = torch.float16,
num_tokens: int = 4,
@@ -71,12 +71,11 @@ class IPAdapter:
self._clip_image_processor = CLIPImageProcessor()
self._state_dict = state_dict
self._image_proj_model = self._init_image_proj_model(state_dict["image_proj"])
self._image_proj_model = self._init_image_proj_model(self._state_dict["image_proj"])
# The _attn_processors will be initialized later when we have access to the UNet.
self._attn_processors = None
self.attn_weights = IPAttentionWeights.from_state_dict(state_dict["ip_adapter"]).to(
self.device, dtype=self.dtype
)
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
self.device = device
@@ -84,85 +83,14 @@ class IPAdapter:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype)
if self._attn_processors is not None:
torch.nn.ModuleList(self._attn_processors.values()).to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
def calc_size(self):
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
def _init_image_proj_model(self, state_dict):
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can later be injected into a unet, and load the IP-Adapter
attention weights into them.
Note that the `unet` param is only used to determine attention block dimensions and naming.
TODO(ryand): As a future improvement, this could all be inferred from the state_dict when the IPAdapter is
intialized.
"""
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
).to(self.device, dtype=self.dtype)
ip_layers = torch.nn.ModuleList(attn_procs.values())
ip_layers.load_state_dict(self._state_dict["ip_adapter"])
self._attn_processors = attn_procs
self._state_dict = None
# @genomancer: pushed scaling back out into its own method (like original Tencent implementation)
# which makes implementing begin_step_percent and end_step_percent easier
# but based on self._attn_processors (ala @Ryan) instead of original Tencent unet.attn_processors,
# which should make it easier to implement multiple IPAdapters
def set_scale(self, scale):
if self._attn_processors is not None:
for attn_processor in self._attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor2_0):
attn_processor.scale = scale
@contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel, scale: float):
"""A context manager that patches `unet` with this IP-Adapter's attention processors while it is active.
Yields:
None
"""
if self._attn_processors is None:
# We only have to call _prepare_attention_processors(...) once, and then the result is cached and can be
# used on any UNet model (with the same dimensions).
self._prepare_attention_processors(unet)
# Set scale
self.set_scale(scale)
# for attn_processor in self._attn_processors.values():
# if isinstance(attn_processor, IPAttnProcessor2_0):
# attn_processor.scale = scale
orig_attn_processors = unet.attn_processors
# Make a (moderately-) shallow copy of the self._attn_processors dict, because unet.set_attn_processor(...)
# actually pops elements from the passed dict.
ip_adapter_attn_processors = {k: v for k, v in self._attn_processors.items()}
try:
unet.set_attn_processor(ip_adapter_attn_processors)
yield None
finally:
unet.set_attn_processor(orig_attn_processors)
@torch.inference_mode()
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
if isinstance(pil_image, Image.Image):
@@ -202,6 +130,20 @@ class IPAdapterPlus(IPAdapter):
return image_prompt_embeds, uncond_image_prompt_embeds
class IPAdapterPlusXL(IPAdapterPlus):
"""IP-Adapter Plus for SDXL."""
def _init_image_proj_model(self, state_dict):
return Resampler.from_state_dict(
state_dict=state_dict,
depth=4,
dim_head=64,
heads=20,
num_queries=self._num_tokens,
ff_mult=4,
).to(self.device, dtype=self.dtype)
def build_ip_adapter(
ip_adapter_ckpt_path: str, device: torch.device, dtype: torch.dtype = torch.float16
) -> Union[IPAdapter, IPAdapterPlus]:
@@ -212,6 +154,14 @@ def build_ip_adapter(
is_plus = "proj.weight" not in state_dict["image_proj"]
if is_plus:
return IPAdapterPlus(state_dict, device=device, dtype=dtype)
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
# SD1 IP-Adapter Plus
return IPAdapterPlus(state_dict, device=device, dtype=dtype)
elif cross_attention_dim == 2048:
# SDXL IP-Adapter Plus
return IPAdapterPlusXL(state_dict, device=device, dtype=dtype)
else:
raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.")
else:
return IPAdapter(state_dict, device=device, dtype=dtype)

View File

@@ -0,0 +1,46 @@
import torch
class IPAttentionProcessorWeights(torch.nn.Module):
"""The IP-Adapter weights for a single attention processor.
This class is a torch.nn.Module sub-class to facilitate loading from a state_dict. It does not have a forward(...)
method.
"""
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
self.to_k_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
self.to_v_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
class IPAttentionWeights(torch.nn.Module):
"""A collection of all the `IPAttentionProcessorWeights` objects for an IP-Adapter model.
This class is a torch.nn.Module sub-class so that it inherits the `.to(...)` functionality. It does not have a
forward(...) method.
"""
def __init__(self, weights: torch.nn.ModuleDict):
super().__init__()
self._weights = weights
def get_attention_processor_weights(self, idx: int) -> IPAttentionProcessorWeights:
"""Get the `IPAttentionProcessorWeights` for the idx'th attention processor."""
# Cast to int first, because we expect the key to represent an int. Then cast back to str, because
# `torch.nn.ModuleDict` only supports str keys.
return self._weights[str(int(idx))]
@classmethod
def from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
attn_proc_weights: dict[str, IPAttentionProcessorWeights] = {}
for tensor_name, tensor in state_dict.items():
if "to_k_ip.weight" in tensor_name:
index = str(int(tensor_name.split(".")[0]))
attn_proc_weights[index] = IPAttentionProcessorWeights(tensor.shape[1], tensor.shape[0])
attn_proc_weights_module = torch.nn.ModuleDict(attn_proc_weights)
attn_proc_weights_module.load_state_dict(state_dict)
return cls(attn_proc_weights_module)

View File

@@ -0,0 +1,53 @@
from contextlib import contextmanager
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
class UNetPatcher:
"""A class that contains multiple IP-Adapters and can apply them to a UNet."""
def __init__(self, ip_adapters: list[IPAdapter]):
self._ip_adapters = ip_adapters
self._scales = [1.0] * len(self._ip_adapters)
def set_scale(self, idx: int, value: float):
self._scales[idx] = value
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them.
Note that the `unet` param is only used to determine attention block dimensions and naming.
"""
# Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor2_0()
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = IPAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
self._scales,
)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel):
"""A context manager that patches `unet` with IP-Adapter attention processors."""
attn_procs = self._prepare_attention_processors(unet)
orig_attn_processors = unet.attn_processors
try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs)
yield None
finally:
unet.set_attn_processor(orig_attn_processors)

View File

@@ -0,0 +1,27 @@
# Model Cache
## `glibc` Memory Allocator Fragmentation
Python (and PyTorch) relies on the memory allocator from the C Standard Library (`libc`). On linux, with the GNU C Standard Library implementation (`glibc`), our memory access patterns have been observed to cause severe memory fragmentation. This fragmentation results in large amounts of memory that has been freed but can't be released back to the OS. Loading models from disk and moving them between CPU/CUDA seem to be the operations that contribute most to the fragmentation. This memory fragmentation issue can result in OOM crashes during frequent model switching, even if `max_cache_size` is set to a reasonable value (e.g. a OOM crash with `max_cache_size=16` on a system with 32GB of RAM).
This problem may also exist on other OSes, and other `libc` implementations. But, at the time of writing, it has only been investigated on linux with `glibc`.
To better understand how the `glibc` memory allocator works, see these references:
- Basics: https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
- Details: https://sourceware.org/glibc/wiki/MallocInternals
Note the differences between memory allocated as chunks in an arena vs. memory allocated with `mmap`. Under `glibc`'s default configuration, most model tensors get allocated as chunks in an arena making them vulnerable to the problem of fragmentation.
We can work around this memory fragmentation issue by setting the following env var:
```bash
# Force blocks >1MB to be allocated with `mmap` so that they are released to the system immediately when they are freed.
MALLOC_MMAP_THRESHOLD_=1048576
```
See the following references for more information about the `malloc` tunable parameters:
- https://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html
- https://www.gnu.org/software/libc/manual/html_node/Memory-Allocation-Tunables.html
- https://man7.org/linux/man-pages/man3/mallopt.3.html
The model cache emits debug logs that provide visibility into the state of the `libc` memory allocator. See the `LibcUtil` class for more info on how these `libc` malloc stats are collected.

View File

@@ -0,0 +1,75 @@
import ctypes
class Struct_mallinfo2(ctypes.Structure):
"""A ctypes Structure that matches the libc mallinfo2 struct.
Docs:
- https://man7.org/linux/man-pages/man3/mallinfo.3.html
- https://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
struct mallinfo2 {
size_t arena; /* Non-mmapped space allocated (bytes) */
size_t ordblks; /* Number of free chunks */
size_t smblks; /* Number of free fastbin blocks */
size_t hblks; /* Number of mmapped regions */
size_t hblkhd; /* Space allocated in mmapped regions (bytes) */
size_t usmblks; /* See below */
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
size_t uordblks; /* Total allocated space (bytes) */
size_t fordblks; /* Total free space (bytes) */
size_t keepcost; /* Top-most, releasable space (bytes) */
};
"""
_fields_ = [
("arena", ctypes.c_size_t),
("ordblks", ctypes.c_size_t),
("smblks", ctypes.c_size_t),
("hblks", ctypes.c_size_t),
("hblkhd", ctypes.c_size_t),
("usmblks", ctypes.c_size_t),
("fsmblks", ctypes.c_size_t),
("uordblks", ctypes.c_size_t),
("fordblks", ctypes.c_size_t),
("keepcost", ctypes.c_size_t),
]
def __str__(self):
s = ""
s += f"{'arena': <10}= {(self.arena/2**30):15.5f} # Non-mmapped space allocated (GB) (uordblks + fordblks)\n"
s += f"{'ordblks': <10}= {(self.ordblks): >15} # Number of free chunks\n"
s += f"{'smblks': <10}= {(self.smblks): >15} # Number of free fastbin blocks \n"
s += f"{'hblks': <10}= {(self.hblks): >15} # Number of mmapped regions \n"
s += f"{'hblkhd': <10}= {(self.hblkhd/2**30):15.5f} # Space allocated in mmapped regions (GB)\n"
s += f"{'usmblks': <10}= {(self.usmblks): >15} # Unused\n"
s += f"{'fsmblks': <10}= {(self.fsmblks/2**30):15.5f} # Space in freed fastbin blocks (GB)\n"
s += (
f"{'uordblks': <10}= {(self.uordblks/2**30):15.5f} # Space used by in-use allocations (non-mmapped)"
" (GB)\n"
)
s += f"{'fordblks': <10}= {(self.fordblks/2**30):15.5f} # Space in free blocks (non-mmapped) (GB)\n"
s += f"{'keepcost': <10}= {(self.keepcost/2**30):15.5f} # Top-most, releasable space (GB)\n"
return s
class LibcUtil:
"""A utility class for interacting with the C Standard Library (`libc`) via ctypes.
Note that this class will raise on __init__() if 'libc.so.6' can't be found. Take care to handle environments where
this shared library is not available.
TODO: Improve cross-OS compatibility of this class.
"""
def __init__(self):
self._libc = ctypes.cdll.LoadLibrary("libc.so.6")
def mallinfo2(self) -> Struct_mallinfo2:
"""Calls `libc` `mallinfo2`.
Docs: https://man7.org/linux/man-pages/man3/mallinfo.3.html
"""
mallinfo2 = self._libc.mallinfo2
mallinfo2.restype = Struct_mallinfo2
return mallinfo2()

View File

@@ -0,0 +1,94 @@
import gc
from typing import Optional
import psutil
import torch
from invokeai.backend.model_management.libc_util import LibcUtil, Struct_mallinfo2
GB = 2**30 # 1 GB
class MemorySnapshot:
"""A snapshot of RAM and VRAM usage. All values are in bytes."""
def __init__(self, process_ram: int, vram: Optional[int], malloc_info: Optional[Struct_mallinfo2]):
"""Initialize a MemorySnapshot.
Most of the time, `MemorySnapshot` will be constructed with `MemorySnapshot.capture()`.
Args:
process_ram (int): CPU RAM used by the current process.
vram (Optional[int]): VRAM used by torch.
malloc_info (Optional[Struct_mallinfo2]): Malloc info obtained from LibcUtil.
"""
self.process_ram = process_ram
self.vram = vram
self.malloc_info = malloc_info
@classmethod
def capture(cls, run_garbage_collector: bool = True):
"""Capture and return a MemorySnapshot.
Note: This function has significant overhead, particularly if `run_garbage_collector == True`.
Args:
run_garbage_collector (bool, optional): If true, gc.collect() will be run before checking the process RAM
usage. Defaults to True.
Returns:
MemorySnapshot
"""
if run_garbage_collector:
gc.collect()
# According to the psutil docs (https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info), rss is
# supported on all platforms.
process_ram = psutil.Process().memory_info().rss
if torch.cuda.is_available():
vram = torch.cuda.memory_allocated()
else:
# TODO: We could add support for mps.current_allocated_memory() as well. Leaving out for now until we have
# time to test it properly.
vram = None
try:
malloc_info = LibcUtil().mallinfo2()
except OSError:
# This is expected in environments that do not have the 'libc.so.6' shared library.
malloc_info = None
return cls(process_ram, vram, malloc_info)
def get_pretty_snapshot_diff(snapshot_1: MemorySnapshot, snapshot_2: MemorySnapshot) -> str:
"""Get a pretty string describing the difference between two `MemorySnapshot`s."""
def get_msg_line(prefix: str, val1: int, val2: int):
diff = val2 - val1
return f"{prefix: <30} ({(diff/GB):+5.3f}): {(val1/GB):5.3f}GB -> {(val2/GB):5.3f}GB\n"
msg = ""
msg += get_msg_line("Process RAM", snapshot_1.process_ram, snapshot_2.process_ram)
if snapshot_1.malloc_info is not None and snapshot_2.malloc_info is not None:
msg += get_msg_line("libc mmap allocated", snapshot_1.malloc_info.hblkhd, snapshot_2.malloc_info.hblkhd)
msg += get_msg_line("libc arena used", snapshot_1.malloc_info.uordblks, snapshot_2.malloc_info.uordblks)
msg += get_msg_line("libc arena free", snapshot_1.malloc_info.fordblks, snapshot_2.malloc_info.fordblks)
libc_total_allocated_1 = snapshot_1.malloc_info.arena + snapshot_1.malloc_info.hblkhd
libc_total_allocated_2 = snapshot_2.malloc_info.arena + snapshot_2.malloc_info.hblkhd
msg += get_msg_line("libc total allocated", libc_total_allocated_1, libc_total_allocated_2)
libc_total_used_1 = snapshot_1.malloc_info.uordblks + snapshot_1.malloc_info.hblkhd
libc_total_used_2 = snapshot_2.malloc_info.uordblks + snapshot_2.malloc_info.hblkhd
msg += get_msg_line("libc total used", libc_total_used_1, libc_total_used_2)
if snapshot_1.vram is not None and snapshot_2.vram is not None:
msg += get_msg_line("VRAM", snapshot_1.vram, snapshot_2.vram)
return msg

View File

@@ -18,8 +18,10 @@ context. Use like this:
import gc
import hashlib
import math
import os
import sys
import time
from contextlib import suppress
from dataclasses import dataclass, field
from pathlib import Path
@@ -28,6 +30,8 @@ from typing import Any, Dict, Optional, Type, Union, types
import torch
import invokeai.backend.util.logging as logger
from invokeai.backend.model_management.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_management.model_load_optimizations import skip_torch_weight_init
from ..util.devices import choose_torch_device
from .models import BaseModelType, ModelBase, ModelType, SubModelType
@@ -44,6 +48,8 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
# actual size of a gig
GIG = 1073741824
# Size of a MB in bytes.
MB = 2**20
@dataclass
@@ -205,22 +211,44 @@ class ModelCache(object):
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
f"Loading model {model_path}, type"
f" {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
)
if self.stats:
self.stats.misses += 1
# this will remove older cached models until
# there is sufficient room to load the requested model
self._make_cache_room(model_info.get_size(submodel))
self_reported_model_size_before_load = model_info.get_size(submodel)
# Remove old models from the cache to make room for the new model.
self._make_cache_room(self_reported_model_size_before_load)
# clean memory to make MemoryUsage() more accurate
gc.collect()
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
if mem_used := model_info.get_size(submodel):
self.logger.debug(f"CPU RAM used for load: {(mem_used/GIG):.2f} GB")
# Load the model from disk and capture a memory snapshot before/after.
start_load_time = time.time()
snapshot_before = MemorySnapshot.capture()
with skip_torch_weight_init():
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
snapshot_after = MemorySnapshot.capture()
end_load_time = time.time()
cache_entry = _CacheRecord(self, model, mem_used)
self_reported_model_size_after_load = model_info.get_size(submodel)
self.logger.debug(
f"Moved model '{key}' from disk to cpu in {(end_load_time-start_load_time):.2f}s.\n"
f"Self-reported size before/after load: {(self_reported_model_size_before_load/GIG):.3f}GB /"
f" {(self_reported_model_size_after_load/GIG):.3f}GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
# We only log a warning for over-reported (not under-reported) model sizes before load. There is a known
# issue where models report their fp32 size before load, and are then loaded as fp16. Once this issue is
# addressed, it would make sense to log a warning for both over-reported and under-reported model sizes.
if (self_reported_model_size_after_load - self_reported_model_size_before_load) > 10 * MB:
self.logger.warning(
f"Model '{key}' mis-reported its size before load. Self-reported size before/after load:"
f" {(self_reported_model_size_before_load/GIG):.2f}GB /"
f" {(self_reported_model_size_after_load/GIG):.2f}GB."
)
cache_entry = _CacheRecord(self, model, self_reported_model_size_after_load)
self._cached_models[key] = cache_entry
else:
if self.stats:
@@ -240,6 +268,45 @@ class ModelCache(object):
return self.ModelLocker(self, key, cache_entry.model, gpu_load, cache_entry.size)
def _move_model_to_device(self, key: str, target_device: torch.device):
cache_entry = self._cached_models[key]
source_device = cache_entry.model.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'. This would need to be revised to support
# multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
start_model_to_time = time.time()
snapshot_before = MemorySnapshot.capture()
cache_entry.model.to(target_device)
snapshot_after = MemorySnapshot.capture()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s.\n"
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if snapshot_before.vram is not None and snapshot_after.vram is not None:
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.warning(
f"Moving model '{key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GIG):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
class ModelLocker(object):
def __init__(self, cache, key, model, gpu_load, size_needed):
"""
@@ -269,11 +336,7 @@ class ModelCache(object):
if self.cache.lazy_offloading:
self.cache._offload_unlocked_models(self.size_needed)
if self.model.device != self.cache.execution_device:
self.cache.logger.debug(f"Moving {self.key} into {self.cache.execution_device}")
with VRAMUsage() as mem:
self.model.to(self.cache.execution_device) # move into GPU
self.cache.logger.debug(f"GPU VRAM used for load: {(mem.vram_used/GIG):.2f} GB")
self.cache._move_model_to_device(self.key, self.cache.execution_device)
self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}")
self.cache._print_cuda_stats()
@@ -286,7 +349,7 @@ class ModelCache(object):
# in the event that the caller wants the model in RAM, we
# move it into CPU if it is in GPU and not locked
elif self.cache_entry.loaded and not self.cache_entry.locked:
self.model.to(self.cache.storage_device)
self.cache._move_model_to_device(self.key, self.cache.storage_device)
return self.model
@@ -339,7 +402,8 @@ class ModelCache(object):
locked_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ ="
f" {cached_models}/{loaded_models}/{locked_models}"
)
def _cache_size(self) -> int:
@@ -354,7 +418,8 @@ class ModelCache(object):
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional {(bytes_needed/GIG):.2f} GB"
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GIG):.2f} GB"
)
self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}")
@@ -387,7 +452,8 @@ class ModelCache(object):
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}, refs: {refs}"
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded},"
f" refs: {refs}"
)
# 2 refs:
@@ -423,11 +489,9 @@ class ModelCache(object):
if vram_in_use <= reserved:
break
if not cache_entry.locked and cache_entry.loaded:
self.logger.debug(f"Offloading {model_key} from {self.execution_device} into {self.storage_device}")
with VRAMUsage() as mem:
cache_entry.model.to(self.storage_device)
self.logger.debug(f"GPU VRAM freed: {(mem.vram_used/GIG):.2f} GB")
vram_in_use += mem.vram_used # note vram_used is negative
self._move_model_to_device(model_key, self.storage_device)
vram_in_use = torch.cuda.memory_allocated()
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
gc.collect()
@@ -454,16 +518,3 @@ class ModelCache(object):
with open(hashpath, "w") as f:
f.write(hash)
return hash
class VRAMUsage(object):
def __init__(self):
self.vram = None
self.vram_used = 0
def __enter__(self):
self.vram = torch.cuda.memory_allocated()
return self
def __exit__(self, *args):
self.vram_used = torch.cuda.memory_allocated() - self.vram

View File

@@ -0,0 +1,30 @@
from contextlib import contextmanager
import torch
def _no_op(*args, **kwargs):
pass
@contextmanager
def skip_torch_weight_init():
"""A context manager that monkey-patches several of the common torch layers (torch.nn.Linear, torch.nn.Conv1d, etc.)
to skip weight initialization.
By default, `torch.nn.Linear` and `torch.nn.ConvNd` layers initialize their weights (according to a particular
distribution) when __init__ is called. This weight initialization step can take a significant amount of time, and is
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
monkey-patches common torch layers to skip the weight initialization step.
"""
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd]
saved_functions = [m.reset_parameters for m in torch_modules]
try:
for torch_module in torch_modules:
torch_module.reset_parameters = _no_op
yield None
finally:
for torch_module, saved_function in zip(torch_modules, saved_functions):
torch_module.reset_parameters = saved_function

View File

@@ -57,6 +57,7 @@ class ModelProbe(object):
"AutoencoderTiny": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
}
@classmethod
@@ -408,6 +409,11 @@ class CLIPVisionCheckpointProbe(CheckpointProbeBase):
raise NotImplementedError()
class T2IAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
########################################################
# classes for probing folders
#######################################################
@@ -595,6 +601,26 @@ class CLIPVisionFolderProbe(FolderProbeBase):
return BaseModelType.Any
class T2IAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.folder_path / "config.json"
if not config_file.exists():
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
with open(config_file, "r") as file:
config = json.load(file)
adapter_type = config.get("adapter_type", None)
if adapter_type == "full_adapter_xl":
return BaseModelType.StableDiffusionXL
elif adapter_type == "full_adapter" or "light_adapter":
# I haven't seen any T2I adapter models for SD2, so assume that this is an SD1 adapter.
return BaseModelType.StableDiffusion1
else:
raise InvalidModelException(
f"Unable to determine base model for '{self.folder_path}' (adapter_type = {adapter_type})."
)
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
@@ -603,6 +629,7 @@ ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInvers
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
@@ -611,5 +638,6 @@ ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInver
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@@ -25,6 +25,7 @@ from .lora import LoRAModel
from .sdxl import StableDiffusionXLModel
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
from .t2i_adapter import T2IAdapterModel
from .textual_inversion import TextualInversionModel
from .vae import VaeModel
@@ -38,6 +39,7 @@ MODEL_CLASSES = {
ModelType.TextualInversion: TextualInversionModel,
ModelType.IPAdapter: IPAdapterModel,
ModelType.CLIPVision: CLIPVisionModel,
ModelType.T2IAdapter: T2IAdapterModel,
},
BaseModelType.StableDiffusion2: {
ModelType.ONNX: ONNXStableDiffusion2Model,
@@ -48,6 +50,7 @@ MODEL_CLASSES = {
ModelType.TextualInversion: TextualInversionModel,
ModelType.IPAdapter: IPAdapterModel,
ModelType.CLIPVision: CLIPVisionModel,
ModelType.T2IAdapter: T2IAdapterModel,
},
BaseModelType.StableDiffusionXL: {
ModelType.Main: StableDiffusionXLModel,
@@ -59,6 +62,7 @@ MODEL_CLASSES = {
ModelType.ONNX: ONNXStableDiffusion2Model,
ModelType.IPAdapter: IPAdapterModel,
ModelType.CLIPVision: CLIPVisionModel,
ModelType.T2IAdapter: T2IAdapterModel,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelType.Main: StableDiffusionXLModel,
@@ -70,6 +74,7 @@ MODEL_CLASSES = {
ModelType.ONNX: ONNXStableDiffusion2Model,
ModelType.IPAdapter: IPAdapterModel,
ModelType.CLIPVision: CLIPVisionModel,
ModelType.T2IAdapter: T2IAdapterModel,
},
BaseModelType.Any: {
ModelType.CLIPVision: CLIPVisionModel,
@@ -81,6 +86,7 @@ MODEL_CLASSES = {
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.IPAdapter: IPAdapterModel,
ModelType.T2IAdapter: T2IAdapterModel,
},
# BaseModelType.Kandinsky2_1: {
# ModelType.Main: Kandinsky2_1Model,

View File

@@ -53,6 +53,7 @@ class ModelType(str, Enum):
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
class SubModelType(str, Enum):

View File

@@ -13,6 +13,7 @@ from invokeai.backend.model_management.models.base import (
ModelConfigBase,
ModelType,
SubModelType,
calc_model_size_by_fs,
classproperty,
)
@@ -30,7 +31,7 @@ class IPAdapterModel(ModelBase):
assert model_type == ModelType.IPAdapter
super().__init__(model_path, base_model, model_type)
self.model_size = os.path.getsize(self.model_path)
self.model_size = calc_model_size_by_fs(self.model_path)
@classmethod
def detect_format(cls, path: str) -> str:
@@ -63,10 +64,13 @@ class IPAdapterModel(ModelBase):
if child_type is not None:
raise ValueError("There are no child models in an IP-Adapter model.")
return build_ip_adapter(
model = build_ip_adapter(
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
)
self.model_size = model.calc_size()
return model
@classmethod
def convert_if_required(
cls,

View File

@@ -0,0 +1,102 @@
import os
from enum import Enum
from typing import Literal, Optional
import torch
from diffusers import T2IAdapter
from invokeai.backend.model_management.models.base import (
BaseModelType,
EmptyConfigLoader,
InvalidModelException,
ModelBase,
ModelConfigBase,
ModelNotFoundException,
ModelType,
SubModelType,
calc_model_size_by_data,
calc_model_size_by_fs,
classproperty,
)
class T2IAdapterModelFormat(str, Enum):
Diffusers = "diffusers"
class T2IAdapterModel(ModelBase):
class DiffusersConfig(ModelConfigBase):
model_format: Literal[T2IAdapterModelFormat.Diffusers]
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.T2IAdapter
super().__init__(model_path, base_model, model_type)
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
model_class_name = config.get("_class_name", None)
if model_class_name not in {"T2IAdapter"}:
raise InvalidModelException(f"Invalid T2I-Adapter model. Unknown _class_name: '{model_class_name}'.")
self.model_class = self._hf_definition_to_type(["diffusers", model_class_name])
self.model_size = calc_model_size_by_fs(self.model_path)
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise ValueError(f"T2I-Adapters do not have child models. Invalid child type: '{child_type}'.")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
) -> T2IAdapter:
if child_type is not None:
raise ValueError(f"T2I-Adapters do not have child models. Invalid child type: '{child_type}'.")
model = None
for variant in ["fp16", None]:
try:
model = self.model_class.from_pretrained(
self.model_path,
torch_dtype=torch_dtype,
variant=variant,
)
break
except Exception:
pass
if not model:
raise ModelNotFoundException()
# Calculate a more accurate size after loading the model into memory.
self.model_size = calc_model_size_by_data(model)
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException(f"Model not found at '{path}'.")
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):
return T2IAdapterModelFormat.Diffusers
raise InvalidModelException(f"Unsupported T2I-Adapter format: '{path}'.")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
format = cls.detect_format(model_path)
if format == T2IAdapterModelFormat.Diffusers:
return model_path
else:
raise ValueError(f"Unsupported format: '{format}'.")

View File

@@ -24,6 +24,7 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from ..util import auto_detect_slice_size, normalize_device
@@ -173,6 +174,16 @@ class IPAdapterData:
end_step_percent: float = Field(default=1.0)
@dataclass
class T2IAdapterData:
"""A structure containing the information required to apply conditioning from a single T2I-Adapter model."""
adapter_state: dict[torch.Tensor] = Field()
weight: Union[float, list[float]] = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
@dataclass
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
r"""
@@ -326,7 +337,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance: List[Callable] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[IPAdapterData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
seed: Optional[int] = None,
@@ -379,6 +391,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=callback,
)
finally:
@@ -398,7 +411,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[IPAdapterData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
):
self._adjust_memory_efficient_attention(latents)
@@ -411,6 +425,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if timesteps.shape[0] == 0:
return latents, attention_map_saver
ip_adapter_unet_patcher = None
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
@@ -421,11 +436,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
weight = ip_adapter_data.weight[0] if isinstance(ip_adapter_data.weight, List) else ip_adapter_data.weight
attn_ctx = ip_adapter_data.ip_adapter_model.apply_ip_adapter_attention(
unet=self.invokeai_diffuser.model,
scale=weight,
)
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
@@ -454,6 +466,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
)
latents = step_output.prev_sample
@@ -499,7 +513,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count: int,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[IPAdapterData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@@ -512,26 +528,30 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# handle IP-Adapter
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
first_adapter_step = math.floor(ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(ip_adapter_data.end_step_percent * total_step_count)
weight = (
ip_adapter_data.weight[step_index]
if isinstance(ip_adapter_data.weight, List)
else ip_adapter_data.weight
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# only apply IP-Adapter if current step is within the IP-Adapter's begin/end step range
# ip_adapter_data.ip_adapter_model.set_scale(ip_adapter_data.weight)
ip_adapter_data.ip_adapter_model.set_scale(weight)
else:
# otherwise, set IP-Adapter scale to 0, so it has no effect
ip_adapter_data.ip_adapter_model.set_scale(0.0)
for i, single_ip_adapter_data in enumerate(ip_adapter_data):
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
weight = (
single_ip_adapter_data.weight[step_index]
if isinstance(single_ip_adapter_data.weight, List)
else single_ip_adapter_data.weight
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
ip_adapter_unet_patcher.set_scale(i, weight)
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
ip_adapter_unet_patcher.set_scale(i, 0.0)
# handle ControlNet(s)
# default is no controlnet, so set controlnet processing output to None
controlnet_down_block_samples, controlnet_mid_block_sample = None, None
if control_data is not None:
controlnet_down_block_samples, controlnet_mid_block_sample = self.invokeai_diffuser.do_controlnet_step(
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None
mid_block_additional_residual = None
if control_data is not None and t2i_adapter_data is not None:
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
elif control_data is not None:
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
control_data=control_data,
sample=latent_model_input,
timestep=timestep,
@@ -539,6 +559,32 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=total_step_count,
conditioning_data=conditioning_data,
)
elif t2i_adapter_data is not None:
accum_adapter_state = None
for single_t2i_adapter_data in t2i_adapter_data:
# Determine the T2I-Adapter weights for the current denoising step.
first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count)
last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count)
t2i_adapter_weight = (
single_t2i_adapter_data.weight[step_index]
if isinstance(single_t2i_adapter_data.weight, list)
else single_t2i_adapter_data.weight
)
if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step:
# If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0
# so it has no effect.
t2i_adapter_weight = 0.0
# Apply the t2i_adapter_weight, and accumulate.
if accum_adapter_state is None:
# Handle the first T2I-Adapter.
accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state]
else:
# Add to the previous adapter states.
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
down_block_additional_residuals = accum_adapter_state
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
@@ -547,8 +593,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=total_step_count,
conditioning_data=conditioning_data,
# extra:
down_block_additional_residuals=controlnet_down_block_samples, # from controlnet(s)
mid_block_additional_residual=controlnet_mid_block_sample, # from controlnet(s)
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
)
guidance_scale = conditioning_data.guidance_scale

View File

@@ -81,7 +81,7 @@ class ConditioningData:
"""
postprocessing_settings: Optional[PostprocessingSettings] = None
ip_adapter_conditioning: Optional[IPAdapterConditioningInfo] = None
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
@property
def dtype(self):

View File

@@ -346,12 +346,10 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": torch.cat(
[
conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds,
conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds,
]
)
"ip_adapter_image_prompt_embeds": [
torch.cat([ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds])
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
added_cond_kwargs = None
@@ -418,7 +416,10 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds
"ip_adapter_image_prompt_embeds": [
ipa_conditioning.uncond_image_prompt_embeds
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
added_cond_kwargs = None
@@ -444,7 +445,10 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds
"ip_adapter_image_prompt_embeds": [
ipa_conditioning.cond_image_prompt_embeds
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
added_cond_kwargs = None

View File

@@ -0,0 +1,67 @@
import contextlib
from pathlib import Path
from typing import Optional, Union
import pytest
import torch
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
from invokeai.backend.install.model_install_backend import ModelInstall
from invokeai.backend.model_management.model_manager import ModelInfo
from invokeai.backend.model_management.models.base import BaseModelType, ModelNotFoundException, ModelType, SubModelType
@pytest.fixture(scope="session")
def torch_device():
return "cuda" if torch.cuda.is_available() else "cpu"
@pytest.fixture(scope="module")
def model_installer():
"""A global ModelInstall pytest fixture to be used by many tests."""
# HACK(ryand): InvokeAIAppConfig.get_config() returns a singleton config object. This can lead to weird interactions
# between tests that need to alter the config. For example, some tests change the 'root' directory in the config,
# which can cause `install_and_load_model(...)` to re-download the model unnecessarily. As a temporary workaround,
# we pass a kwarg to get_config, which causes the config to be re-loaded. To fix this properly, we should stop using
# a singleton.
return ModelInstall(InvokeAIAppConfig.get_config(log_level="info"))
def install_and_load_model(
model_installer: ModelInstall,
model_path_id_or_url: Union[str, Path],
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
) -> ModelInfo:
"""Install a model if it is not already installed, then get the ModelInfo for that model.
This is intended as a utility function for tests.
Args:
model_installer (ModelInstall): The model installer.
model_path_id_or_url (Union[str, Path]): The path, HF ID, URL, etc. where the model can be installed from if it
is not already installed.
model_name (str): The model name, forwarded to ModelManager.get_model(...).
base_model (BaseModelType): The base model, forwarded to ModelManager.get_model(...).
model_type (ModelType): The model type, forwarded to ModelManager.get_model(...).
submodel_type (Optional[SubModelType]): The submodel type, forwarded to ModelManager.get_model(...).
Returns:
ModelInfo
"""
# If the requested model is already installed, return its ModelInfo.
with contextlib.suppress(ModelNotFoundException):
return model_installer.mgr.get_model(model_name, base_model, model_type, submodel_type)
# Install the requested model.
model_installer.heuristic_import(model_path_id_or_url)
try:
return model_installer.mgr.get_model(model_name, base_model, model_type, submodel_type)
except ModelNotFoundException as e:
raise Exception(
"Failed to get model info after installing it. There could be a mismatch between the requested model and"
f" the installation id ('{model_path_id_or_url}'). Error: {e}"
)

View File

@@ -60,6 +60,9 @@ sd-1/main/trinart_stable_diffusion_v2:
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
repo_id: naclbit/trinart_stable_diffusion_v2
recommended: False
sd-1/controlnet/qrcode_monster:
repo_id: monster-labs/control_v1p_sd15_qrcode_monster
subfolder: v2
sd-1/controlnet/canny:
repo_id: lllyasviel/control_v11p_sd15_canny
recommended: True
@@ -93,6 +96,22 @@ sd-1/controlnet/tile:
repo_id: lllyasviel/control_v11f1e_sd15_tile
sd-1/controlnet/ip2p:
repo_id: lllyasviel/control_v11e_sd15_ip2p
sd-1/t2i_adapter/canny-sd15:
repo_id: TencentARC/t2iadapter_canny_sd15v2
sd-1/t2i_adapter/sketch-sd15:
repo_id: TencentARC/t2iadapter_sketch_sd15v2
sd-1/t2i_adapter/depth-sd15:
repo_id: TencentARC/t2iadapter_depth_sd15v2
sd-1/t2i_adapter/zoedepth-sd15:
repo_id: TencentARC/t2iadapter_zoedepth_sd15v1
sdxl/t2i_adapter/canny-sdxl:
repo_id: TencentARC/t2i-adapter-canny-sdxl-1.0
sdxl/t2i_adapter/zoedepth-sdxl:
repo_id: TencentARC/t2i-adapter-depth-zoe-sdxl-1.0
sdxl/t2i_adapter/lineart-sdxl:
repo_id: TencentARC/t2i-adapter-lineart-sdxl-1.0
sdxl/t2i_adapter/sketch-sdxl:
repo_id: TencentARC/t2i-adapter-sketch-sdxl-1.0
sd-1/embedding/EasyNegative:
path: https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors
recommended: True

View File

@@ -98,15 +98,16 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.tabs = self.add_widget_intelligent(
SingleSelectColumns,
values=[
"STARTER MODELS",
"MAIN MODELS",
"STARTERS",
"MAINS",
"CONTROLNETS",
"T2I-ADAPTERS",
"IP-ADAPTERS",
"LORA/LYCORIS",
"TEXTUAL INVERSION",
"LORAS",
"TI EMBEDDINGS",
],
value=[self.current_tab],
columns=6,
columns=7,
max_height=2,
relx=8,
scroll_exit=True,
@@ -131,6 +132,12 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.t2i_models = self.add_model_widgets(
model_type=ModelType.T2IAdapter,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table, self.nextrely)
self.nextrely = top_of_table
self.ipadapter_models = self.add_model_widgets(
model_type=ModelType.IPAdapter,
@@ -351,6 +358,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.t2i_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,
@@ -541,6 +549,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.t2i_models,
self.ipadapter_models,
self.lora_models,
self.ti_models,

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,280 @@
import{w as s,h_ as T,v as l,a2 as I,h$ as R,ae as V,i0 as z,i1 as j,i2 as D,i3 as F,i4 as G,i5 as W,i6 as K,aG as H,i7 as U,i8 as Y}from"./index-90346e33.js";import{M as Z}from"./MantineProvider-486d4834.js";var P=String.raw,E=P`
:root,
:host {
--chakra-vh: 100vh;
}
@supports (height: -webkit-fill-available) {
:root,
:host {
--chakra-vh: -webkit-fill-available;
}
}
@supports (height: -moz-fill-available) {
:root,
:host {
--chakra-vh: -moz-fill-available;
}
}
@supports (height: 100dvh) {
:root,
:host {
--chakra-vh: 100dvh;
}
}
`,B=()=>s.jsx(T,{styles:E}),J=({scope:e=""})=>s.jsx(T,{styles:P`
html {
line-height: 1.5;
-webkit-text-size-adjust: 100%;
font-family: system-ui, sans-serif;
-webkit-font-smoothing: antialiased;
text-rendering: optimizeLegibility;
-moz-osx-font-smoothing: grayscale;
touch-action: manipulation;
}
body {
position: relative;
min-height: 100%;
margin: 0;
font-feature-settings: "kern";
}
${e} :where(*, *::before, *::after) {
border-width: 0;
border-style: solid;
box-sizing: border-box;
word-wrap: break-word;
}
main {
display: block;
}
${e} hr {
border-top-width: 1px;
box-sizing: content-box;
height: 0;
overflow: visible;
}
${e} :where(pre, code, kbd,samp) {
font-family: SFMono-Regular, Menlo, Monaco, Consolas, monospace;
font-size: 1em;
}
${e} a {
background-color: transparent;
color: inherit;
text-decoration: inherit;
}
${e} abbr[title] {
border-bottom: none;
text-decoration: underline;
-webkit-text-decoration: underline dotted;
text-decoration: underline dotted;
}
${e} :where(b, strong) {
font-weight: bold;
}
${e} small {
font-size: 80%;
}
${e} :where(sub,sup) {
font-size: 75%;
line-height: 0;
position: relative;
vertical-align: baseline;
}
${e} sub {
bottom: -0.25em;
}
${e} sup {
top: -0.5em;
}
${e} img {
border-style: none;
}
${e} :where(button, input, optgroup, select, textarea) {
font-family: inherit;
font-size: 100%;
line-height: 1.15;
margin: 0;
}
${e} :where(button, input) {
overflow: visible;
}
${e} :where(button, select) {
text-transform: none;
}
${e} :where(
button::-moz-focus-inner,
[type="button"]::-moz-focus-inner,
[type="reset"]::-moz-focus-inner,
[type="submit"]::-moz-focus-inner
) {
border-style: none;
padding: 0;
}
${e} fieldset {
padding: 0.35em 0.75em 0.625em;
}
${e} legend {
box-sizing: border-box;
color: inherit;
display: table;
max-width: 100%;
padding: 0;
white-space: normal;
}
${e} progress {
vertical-align: baseline;
}
${e} textarea {
overflow: auto;
}
${e} :where([type="checkbox"], [type="radio"]) {
box-sizing: border-box;
padding: 0;
}
${e} input[type="number"]::-webkit-inner-spin-button,
${e} input[type="number"]::-webkit-outer-spin-button {
-webkit-appearance: none !important;
}
${e} input[type="number"] {
-moz-appearance: textfield;
}
${e} input[type="search"] {
-webkit-appearance: textfield;
outline-offset: -2px;
}
${e} input[type="search"]::-webkit-search-decoration {
-webkit-appearance: none !important;
}
${e} ::-webkit-file-upload-button {
-webkit-appearance: button;
font: inherit;
}
${e} details {
display: block;
}
${e} summary {
display: list-item;
}
template {
display: none;
}
[hidden] {
display: none !important;
}
${e} :where(
blockquote,
dl,
dd,
h1,
h2,
h3,
h4,
h5,
h6,
hr,
figure,
p,
pre
) {
margin: 0;
}
${e} button {
background: transparent;
padding: 0;
}
${e} fieldset {
margin: 0;
padding: 0;
}
${e} :where(ol, ul) {
margin: 0;
padding: 0;
}
${e} textarea {
resize: vertical;
}
${e} :where(button, [role="button"]) {
cursor: pointer;
}
${e} button::-moz-focus-inner {
border: 0 !important;
}
${e} table {
border-collapse: collapse;
}
${e} :where(h1, h2, h3, h4, h5, h6) {
font-size: inherit;
font-weight: inherit;
}
${e} :where(button, input, optgroup, select, textarea) {
padding: 0;
line-height: inherit;
color: inherit;
}
${e} :where(img, svg, video, canvas, audio, iframe, embed, object) {
display: block;
}
${e} :where(img, video) {
max-width: 100%;
height: auto;
}
[data-js-focus-visible]
:focus:not([data-focus-visible-added]):not(
[data-focus-visible-disabled]
) {
outline: none;
box-shadow: none;
}
${e} select::-ms-expand {
display: none;
}
${E}
`}),g={light:"chakra-ui-light",dark:"chakra-ui-dark"};function Q(e={}){const{preventTransition:o=!0}=e,n={setDataset:r=>{const t=o?n.preventTransition():void 0;document.documentElement.dataset.theme=r,document.documentElement.style.colorScheme=r,t==null||t()},setClassName(r){document.body.classList.add(r?g.dark:g.light),document.body.classList.remove(r?g.light:g.dark)},query(){return window.matchMedia("(prefers-color-scheme: dark)")},getSystemTheme(r){var t;return((t=n.query().matches)!=null?t:r==="dark")?"dark":"light"},addListener(r){const t=n.query(),i=a=>{r(a.matches?"dark":"light")};return typeof t.addListener=="function"?t.addListener(i):t.addEventListener("change",i),()=>{typeof t.removeListener=="function"?t.removeListener(i):t.removeEventListener("change",i)}},preventTransition(){const r=document.createElement("style");return r.appendChild(document.createTextNode("*{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}")),document.head.appendChild(r),()=>{window.getComputedStyle(document.body),requestAnimationFrame(()=>{requestAnimationFrame(()=>{document.head.removeChild(r)})})}}};return n}var X="chakra-ui-color-mode";function L(e){return{ssr:!1,type:"localStorage",get(o){if(!(globalThis!=null&&globalThis.document))return o;let n;try{n=localStorage.getItem(e)||o}catch{}return n||o},set(o){try{localStorage.setItem(e,o)}catch{}}}}var ee=L(X),M=()=>{};function S(e,o){return e.type==="cookie"&&e.ssr?e.get(o):o}function O(e){const{value:o,children:n,options:{useSystemColorMode:r,initialColorMode:t,disableTransitionOnChange:i}={},colorModeManager:a=ee}=e,d=t==="dark"?"dark":"light",[u,p]=l.useState(()=>S(a,d)),[y,b]=l.useState(()=>S(a)),{getSystemTheme:w,setClassName:k,setDataset:x,addListener:$}=l.useMemo(()=>Q({preventTransition:i}),[i]),v=t==="system"&&!u?y:u,c=l.useCallback(h=>{const f=h==="system"?w():h;p(f),k(f==="dark"),x(f),a.set(f)},[a,w,k,x]);I(()=>{t==="system"&&b(w())},[]),l.useEffect(()=>{const h=a.get();if(h){c(h);return}if(t==="system"){c("system");return}c(d)},[a,d,t,c]);const C=l.useCallback(()=>{c(v==="dark"?"light":"dark")},[v,c]);l.useEffect(()=>{if(r)return $(c)},[r,$,c]);const A=l.useMemo(()=>({colorMode:o??v,toggleColorMode:o?M:C,setColorMode:o?M:c,forced:o!==void 0}),[v,C,c,o]);return s.jsx(R.Provider,{value:A,children:n})}O.displayName="ColorModeProvider";var te=["borders","breakpoints","colors","components","config","direction","fonts","fontSizes","fontWeights","letterSpacings","lineHeights","radii","shadows","sizes","space","styles","transition","zIndices"];function re(e){return V(e)?te.every(o=>Object.prototype.hasOwnProperty.call(e,o)):!1}function m(e){return typeof e=="function"}function oe(...e){return o=>e.reduce((n,r)=>r(n),o)}var ne=e=>function(...n){let r=[...n],t=n[n.length-1];return re(t)&&r.length>1?r=r.slice(0,r.length-1):t=e,oe(...r.map(i=>a=>m(i)?i(a):ae(a,i)))(t)},ie=ne(j);function ae(...e){return z({},...e,_)}function _(e,o,n,r){if((m(e)||m(o))&&Object.prototype.hasOwnProperty.call(r,n))return(...t)=>{const i=m(e)?e(...t):e,a=m(o)?o(...t):o;return z({},i,a,_)}}var q=l.createContext({getDocument(){return document},getWindow(){return window}});q.displayName="EnvironmentContext";function N(e){const{children:o,environment:n,disabled:r}=e,t=l.useRef(null),i=l.useMemo(()=>n||{getDocument:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument)!=null?u:document},getWindow:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument.defaultView)!=null?u:window}},[n]),a=!r||!n;return s.jsxs(q.Provider,{value:i,children:[o,a&&s.jsx("span",{id:"__chakra_env",hidden:!0,ref:t})]})}N.displayName="EnvironmentProvider";var se=e=>{const{children:o,colorModeManager:n,portalZIndex:r,resetScope:t,resetCSS:i=!0,theme:a={},environment:d,cssVarsRoot:u,disableEnvironment:p,disableGlobalStyle:y}=e,b=s.jsx(N,{environment:d,disabled:p,children:o});return s.jsx(D,{theme:a,cssVarsRoot:u,children:s.jsxs(O,{colorModeManager:n,options:a.config,children:[i?s.jsx(J,{scope:t}):s.jsx(B,{}),!y&&s.jsx(F,{}),r?s.jsx(G,{zIndex:r,children:b}):b]})})},le=e=>function({children:n,theme:r=e,toastOptions:t,...i}){return s.jsxs(se,{theme:r,...i,children:[s.jsx(W,{value:t==null?void 0:t.defaultOptions,children:n}),s.jsx(K,{...t})]})},de=le(j);const ue=()=>l.useMemo(()=>({colorScheme:"dark",fontFamily:"'Inter Variable', sans-serif",components:{ScrollArea:{defaultProps:{scrollbarSize:10},styles:{scrollbar:{"&:hover":{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}},thumb:{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}}}}}),[]),ce=L("@@invokeai-color-mode");function he({children:e}){const{i18n:o}=H(),n=o.dir(),r=l.useMemo(()=>ie({...U,direction:n}),[n]);l.useEffect(()=>{document.body.dir=n},[n]);const t=ue();return s.jsx(Z,{theme:t,children:s.jsx(de,{theme:r,colorModeManager:ce,toastOptions:Y,children:e})})}const ve=l.memo(he);export{ve as default};

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -3,6 +3,9 @@
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="0">
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="./assets/favicon-0d253ced.ico" />
<style>
@@ -12,7 +15,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-f6c3f475.js"></script>
<script type="module" crossorigin src="./assets/index-90346e33.js"></script>
</head>
<body dir="ltr">

View File

@@ -13,14 +13,15 @@
"reset": "Reset",
"rotateClockwise": "Rotate Clockwise",
"rotateCounterClockwise": "Rotate Counter-Clockwise",
"showGallery": "Show Gallery",
"showGalleryPanel": "Show Gallery Panel",
"showOptionsPanel": "Show Side Panel",
"toggleAutoscroll": "Toggle autoscroll",
"toggleLogViewer": "Toggle Log Viewer",
"uploadImage": "Upload Image",
"useThisParameter": "Use this parameter",
"zoomIn": "Zoom In",
"zoomOut": "Zoom Out"
"zoomOut": "Zoom Out",
"loadMore": "Load More"
},
"boards": {
"addBoard": "Add Board",
@@ -48,8 +49,10 @@
"cancel": "Cancel",
"close": "Close",
"communityLabel": "Community",
"controlNet": "Controlnet",
"controlNet": "ControlNet",
"controlAdapter": "Control Adapter",
"ipAdapter": "IP Adapter",
"t2iAdapter": "T2I Adapter",
"darkMode": "Dark Mode",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
@@ -57,6 +60,7 @@
"githubLabel": "Github",
"hotkeysLabel": "Hotkeys",
"imagePrompt": "Image Prompt",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
"langArabic": "العربية",
"langBrPortuguese": "Português do Brasil",
@@ -80,6 +84,7 @@
"load": "Load",
"loading": "Loading",
"loadingInvokeAI": "Loading Invoke AI",
"learnMore": "Learn More",
"modelManager": "Model Manager",
"nodeEditor": "Node Editor",
"nodes": "Workflow Editor",
@@ -110,6 +115,7 @@
"statusModelChanged": "Model Changed",
"statusModelConverted": "Model Converted",
"statusPreparing": "Preparing",
"statusProcessing": "Processing",
"statusProcessingCanceled": "Processing Canceled",
"statusProcessingComplete": "Processing Complete",
"statusRestoringFaces": "Restoring Faces",
@@ -126,6 +132,16 @@
"upload": "Upload"
},
"controlnet": {
"controlAdapter": "Control Adapter",
"controlnet": "$t(controlnet.controlAdapter) #{{number}} ($t(common.controlNet))",
"ip_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.t2iAdapter))",
"addControlNet": "Add $t(common.controlNet)",
"addIPAdapter": "Add $t(common.ipAdapter)",
"addT2IAdapter": "Add $t(common.t2iAdapter)",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) enabled, $t(common.t2iAdapter)s disabled",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) enabled, $t(common.controlNet)s disabled",
"controlNetT2IMutexDesc": "$t(common.controlNet) and $t(common.t2iAdapter) at same time is currently unsupported.",
"amult": "a_mult",
"autoConfigure": "Auto configure processor",
"balanced": "Balanced",
@@ -133,6 +149,8 @@
"bgth": "bg_th",
"canny": "Canny",
"cannyDescription": "Canny edge detection",
"colorMap": "Color",
"colorMapDescription": "Generates a color map from the image",
"coarse": "Coarse",
"contentShuffle": "Content Shuffle",
"contentShuffleDescription": "Shuffles the content in an image",
@@ -156,6 +174,7 @@
"hideAdvanced": "Hide Advanced",
"highThreshold": "High Threshold",
"imageResolution": "Image Resolution",
"colorMapTileSize": "Tile Size",
"importImageFromCanvas": "Import Image From Canvas",
"importMaskFromCanvas": "Import Mask From Canvas",
"incompatibleBaseModel": "Incompatible base model:",
@@ -203,6 +222,81 @@
"incompatibleModel": "Incompatible base model:",
"noMatchingEmbedding": "No matching Embeddings"
},
"queue": {
"queue": "Queue",
"queueFront": "Add to Front of Queue",
"queueBack": "Add to Queue",
"queueCountPrediction": "Add {{predicted}} to Queue",
"queueMaxExceeded": "Max of {{max_queue_size}} exceeded, would skip {{skip}}",
"queuedCount": "{{pending}} Pending",
"queueTotal": "{{total}} Total",
"queueEmpty": "Queue Empty",
"enqueueing": "Queueing Batch",
"resume": "Resume",
"resumeTooltip": "Resume Processor",
"resumeSucceeded": "Processor Resumed",
"resumeFailed": "Problem Resuming Processor",
"pause": "Pause",
"pauseTooltip": "Pause Processor",
"pauseSucceeded": "Processor Paused",
"pauseFailed": "Problem Pausing Processor",
"cancel": "Cancel",
"cancelTooltip": "Cancel Current Item",
"cancelSucceeded": "Item Canceled",
"cancelFailed": "Problem Canceling Item",
"prune": "Prune",
"pruneTooltip": "Prune {{item_count}} Completed Items",
"pruneSucceeded": "Pruned {{item_count}} Completed Items from Queue",
"pruneFailed": "Problem Pruning Queue",
"clear": "Clear",
"clearTooltip": "Cancel and Clear All Items",
"clearSucceeded": "Queue Cleared",
"clearFailed": "Problem Clearing Queue",
"cancelBatch": "Cancel Batch",
"cancelItem": "Cancel Item",
"cancelBatchSucceeded": "Batch Canceled",
"cancelBatchFailed": "Problem Canceling Batch",
"clearQueueAlertDialog": "Clearing the queue immediately cancels any processing items and clears the queue entirely.",
"clearQueueAlertDialog2": "Are you sure you want to clear the queue?",
"current": "Current",
"next": "Next",
"status": "Status",
"total": "Total",
"pending": "Pending",
"in_progress": "In Progress",
"completed": "Completed",
"failed": "Failed",
"canceled": "Canceled",
"completedIn": "Completed in",
"batch": "Batch",
"item": "Item",
"session": "Session",
"batchValues": "Batch Values",
"notReady": "Unable to Queue",
"batchQueued": "Batch Queued",
"batchQueuedDesc": "Added {{item_count}} sessions to {{direction}} of queue",
"front": "front",
"back": "back",
"batchFailedToQueue": "Failed to Queue Batch",
"graphQueued": "Graph queued",
"graphFailedToQueue": "Failed to queue graph"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
"cacheSize": "Cache Size",
"maxCacheSize": "Max Cache Size",
"hits": "Cache Hits",
"misses": "Cache Misses",
"clear": "Clear",
"clearSucceeded": "Invocation Cache Cleared",
"clearFailed": "Problem Clearing Invocation Cache",
"enable": "Enable",
"enableSucceeded": "Invocation Cache Enabled",
"enableFailed": "Problem Enabling Invocation Cache",
"disable": "Disable",
"disableSucceeded": "Invocation Cache Disabled",
"disableFailed": "Problem Disabling Invocation Cache"
},
"gallery": {
"allImagesLoaded": "All Images Loaded",
"assets": "Assets",
@@ -615,7 +709,7 @@
"noLoRAsAvailable": "No LoRAs available",
"noMatchingLoRAs": "No matching LoRAs",
"noMatchingModels": "No matching Models",
"noModelsAvailable": "No Modelss available",
"noModelsAvailable": "No models available",
"selectLoRA": "Select a LoRA",
"selectModel": "Select a Model"
},
@@ -624,6 +718,8 @@
"addNodeToolTip": "Add Node (Shift+A, Space)",
"animatedEdges": "Animated Edges",
"animatedEdgesHelp": "Animate selected edges and edges connected to selected nodes",
"boardField": "Board",
"boardFieldDescription": "A gallery board",
"boolean": "Booleans",
"booleanCollection": "Boolean Collection",
"booleanCollectionDescription": "A collection of booleans.",
@@ -633,6 +729,7 @@
"cannotConnectInputToInput": "Cannot connect input to input",
"cannotConnectOutputToOutput": "Cannot connect output to output",
"cannotConnectToSelf": "Cannot connect to self",
"cannotDuplicateConnection": "Cannot create duplicate connections",
"clipField": "Clip",
"clipFieldDescription": "Tokenizer and text_encoder submodels.",
"collection": "Collection",
@@ -641,7 +738,8 @@
"collectionItemDescription": "TODO",
"colorCodeEdges": "Color-Code Edges",
"colorCodeEdgesHelp": "Color-code edges according to their connected fields",
"colorCollectionDescription": "A collection of colors.",
"colorCollection": "A collection of colors.",
"colorCollectionDescription": "TODO",
"colorField": "Color",
"colorFieldDescription": "A RGBA color.",
"colorPolymorphic": "Color Polymorphic",
@@ -688,7 +786,8 @@
"imageFieldDescription": "Images may be passed between nodes.",
"imagePolymorphic": "Image Polymorphic",
"imagePolymorphicDescription": "A collection of images.",
"inputFields": "Input Feilds",
"inputField": "Input Field",
"inputFields": "Input Fields",
"inputMayOnlyHaveOneConnection": "Input may only have one connection",
"inputNode": "Input Node",
"integer": "Integer",
@@ -698,6 +797,14 @@
"integerPolymorphic": "Integer Polymorphic",
"integerPolymorphicDescription": "A collection of integers.",
"invalidOutputSchema": "Invalid output schema",
"ipAdapter": "IP-Adapter",
"ipAdapterCollection": "IP-Adapters Collection",
"ipAdapterCollectionDescription": "A collection of IP-Adapters.",
"ipAdapterDescription": "An Image Prompt Adapter (IP-Adapter).",
"ipAdapterModel": "IP-Adapter Model",
"ipAdapterModelDescription": "IP-Adapter Model Field",
"ipAdapterPolymorphic": "IP-Adapter Polymorphic",
"ipAdapterPolymorphicDescription": "A collection of IP-Adapters.",
"latentsCollection": "Latents Collection",
"latentsCollectionDescription": "Latents may be passed between nodes.",
"latentsField": "Latents",
@@ -706,6 +813,7 @@
"latentsPolymorphicDescription": "Latents may be passed between nodes.",
"loadingNodes": "Loading Nodes...",
"loadWorkflow": "Load Workflow",
"noWorkflow": "No Workflow",
"loRAModelField": "LoRA",
"loRAModelFieldDescription": "TODO",
"mainModelField": "Model",
@@ -727,14 +835,15 @@
"noImageFoundState": "No initial image found in state",
"noMatchingNodes": "No matching nodes",
"noNodeSelected": "No node selected",
"noOpacity": "Node Opacity",
"nodeOpacity": "Node Opacity",
"noOutputRecorded": "No outputs recorded",
"noOutputSchemaName": "No output schema name found in ref object",
"notes": "Notes",
"notesDescription": "Add notes about your workflow",
"oNNXModelField": "ONNX Model",
"oNNXModelFieldDescription": "ONNX model field.",
"outputFields": "Output Feilds",
"outputField": "Output Field",
"outputFields": "Output Fields",
"outputNode": "Output node",
"outputSchemaNotFound": "Output schema not found",
"pickOne": "Pick One",
@@ -783,6 +892,7 @@
"unknownNode": "Unknown Node",
"unknownTemplate": "Unknown Template",
"unkownInvocation": "Unknown Invocation type",
"updateNode": "Update Node",
"updateApp": "Update App",
"vaeField": "Vae",
"vaeFieldDescription": "Vae submodel.",
@@ -806,7 +916,7 @@
"zoomOutNodes": "Zoom Out"
},
"parameters": {
"aspectRatio": "Ratio",
"aspectRatio": "Aspect Ratio",
"boundingBoxHeader": "Bounding Box",
"boundingBoxHeight": "Bounding Box Height",
"boundingBoxWidth": "Bounding Box Width",
@@ -819,6 +929,7 @@
},
"cfgScale": "CFG Scale",
"clipSkip": "CLIP Skip",
"clipSkipWithLayerCount": "CLIP Skip {{layerCount}}",
"closeViewer": "Close Viewer",
"codeformerFidelity": "Fidelity",
"coherenceMode": "Mode",
@@ -853,10 +964,12 @@
"missingFieldTemplate": "Missing field template",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} missing input",
"missingNodeTemplate": "Missing node template",
"noControlImageForControlNet": "ControlNet {{index}} has no control image",
"noControlImageForControlAdapter": "Control Adapter {{number}} has no control image",
"noInitialImageSelected": "No initial image selected",
"noModelForControlNet": "ControlNet {{index}} has no model selected.",
"noModelForControlAdapter": "Control Adapter {{number}} has no model selected.",
"incompatibleBaseModelForControlAdapter": "Control Adapter {{number}} model is invalid with main model.",
"noModelSelected": "No model selected",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"readyToInvoke": "Ready to Invoke",
"systemBusy": "System busy",
@@ -875,7 +988,12 @@
"perlinNoise": "Perlin Noise",
"positivePromptPlaceholder": "Positive Prompt",
"randomizeSeed": "Randomize Seed",
"manualSeed": "Manual Seed",
"randomSeed": "Random Seed",
"restoreFaces": "Restore Faces",
"iterations": "Iterations",
"iterationsWithCount_one": "{{count}} Iteration",
"iterationsWithCount_other": "{{count}} Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
"scaledHeight": "Scaled H",
@@ -886,13 +1004,17 @@
"seamlessTiling": "Seamless Tiling",
"seamlessXAxis": "X Axis",
"seamlessYAxis": "Y Axis",
"seamlessX": "Seamless X",
"seamlessY": "Seamless Y",
"seamlessX&Y": "Seamless X & Y",
"seamLowThreshold": "Low",
"seed": "Seed",
"seedWeights": "Seed Weights",
"imageActions": "Image Actions",
"sendTo": "Send to",
"sendToImg2Img": "Send to Image to Image",
"sendToUnifiedCanvas": "Send To Unified Canvas",
"showOptionsPanel": "Show Options Panel",
"showOptionsPanel": "Show Side Panel (O or T)",
"showPreview": "Show Preview",
"shuffle": "Shuffle Seed",
"steps": "Steps",
@@ -901,24 +1023,39 @@
"tileSize": "Tile Size",
"toggleLoopback": "Toggle Loopback",
"type": "Type",
"upscale": "Upscale",
"upscale": "Upscale (Shift + U)",
"upscaleImage": "Upscale Image",
"upscaling": "Upscaling",
"useAll": "Use All",
"useCpuNoise": "Use CPU Noise",
"cpuNoise": "CPU Noise",
"gpuNoise": "GPU Noise",
"useInitImg": "Use Initial Image",
"usePrompt": "Use Prompt",
"useSeed": "Use Seed",
"variationAmount": "Variation Amount",
"variations": "Variations",
"vSymmetryStep": "V Symmetry Step",
"width": "Width"
"width": "Width",
"isAllowedToUpscale": {
"useX2Model": "Image is too large to upscale with x4 model, use x2 model",
"tooLarge": "Image is too large to upscale, select smaller image"
}
},
"prompt": {
"dynamicPrompts": {
"combinatorial": "Combinatorial Generation",
"dynamicPrompts": "Dynamic Prompts",
"enableDynamicPrompts": "Enable Dynamic Prompts",
"maxPrompts": "Max Prompts"
"maxPrompts": "Max Prompts",
"promptsWithCount_one": "{{count}} Prompt",
"promptsWithCount_other": "{{count}} Prompts",
"seedBehaviour": {
"label": "Seed Behaviour",
"perIterationLabel": "Seed per Iteration",
"perIterationDesc": "Use a different seed for each iteration",
"perPromptLabel": "Seed per Image",
"perPromptDesc": "Use a different seed for each image"
}
},
"sdxl": {
"cfgScale": "CFG Scale",
@@ -969,7 +1106,8 @@
},
"toast": {
"addedToBoard": "Added to board",
"baseModelChangedCleared": "Base model changed, cleared",
"baseModelChangedCleared_one": "Base model changed, cleared or disabled {{number}} incompatible submodel",
"baseModelChangedCleared_many": "$t(toast.baseModelChangedCleared_one)s",
"canceled": "Processing Canceled",
"canvasCopiedClipboard": "Canvas Copied to Clipboard",
"canvasDownloaded": "Canvas Downloaded",
@@ -989,7 +1127,6 @@
"imageSavingFailed": "Image Saving Failed",
"imageUploaded": "Image Uploaded",
"imageUploadFailed": "Image Upload Failed",
"incompatibleSubmodel": "incompatible submodel",
"initialImageNotSet": "Initial Image Not Set",
"initialImageNotSetDesc": "Could not load initial image",
"initialImageSet": "Initial Image Set",
@@ -1066,6 +1203,210 @@
"variations": "Try a variation with a value between 0.1 and 1.0 to change the result for a given seed. Interesting variations of the seed are between 0.1 and 0.3."
}
},
"popovers": {
"clipSkip": {
"heading": "CLIP Skip",
"paragraphs": [
"Choose how many layers of the CLIP model to skip.",
"Some models work better with certain CLIP Skip settings.",
"A higher value typically results in a less detailed image."
]
},
"paramNegativeConditioning": {
"heading": "Negative Prompt",
"paragraphs": [
"The generation process avoids the concepts in the negative prompt. Use this to exclude qualities or objects from the output.",
"Supports Compel syntax and embeddings."
]
},
"paramPositiveConditioning": {
"heading": "Positive Prompt",
"paragraphs": [
"Guides the generation process. You may use any words or phrases.",
"Compel and Dynamic Prompts syntaxes and embeddings."
]
},
"paramScheduler": {
"heading": "Scheduler",
"paragraphs": [
"Scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output."
]
},
"compositingBlur": {
"heading": "Blur",
"paragraphs": ["The blur radius of the mask."]
},
"compositingBlurMethod": {
"heading": "Blur Method",
"paragraphs": ["The method of blur applied to the masked area."]
},
"compositingCoherencePass": {
"heading": "Coherence Pass",
"paragraphs": [
"A second round of denoising helps to composite the Inpainted/Outpainted image."
]
},
"compositingCoherenceMode": {
"heading": "Mode",
"paragraphs": ["The mode of the Coherence Pass."]
},
"compositingCoherenceSteps": {
"heading": "Steps",
"paragraphs": [
"Number of denoising steps used in the Coherence Pass.",
"Same as the main Steps parameter."
]
},
"compositingStrength": {
"heading": "Strength",
"paragraphs": [
"Denoising strength for the Coherence Pass.",
"Same as the Image to Image Denoising Strength parameter."
]
},
"compositingMaskAdjustments": {
"heading": "Mask Adjustments",
"paragraphs": ["Adjust the mask."]
},
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"Which steps of the denoising process will have the ControlNet applied.",
"ControlNets applied at the beginning of the process guide composition, and ControlNets applied at the end guide details."
]
},
"controlNetControlMode": {
"heading": "Control Mode",
"paragraphs": [
"Lends more weight to either the prompt or ControlNet."
]
},
"controlNetResizeMode": {
"heading": "Resize Mode",
"paragraphs": [
"How the ControlNet image will be fit to the image output size."
]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
"ControlNets provide guidance to the generation process, helping create images with controlled composition, structure, or style, depending on the model selected."
]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
"How strongly the ControlNet will impact the generated image."
]
},
"dynamicPrompts": {
"heading": "Dynamic Prompts",
"paragraphs": [
"Dynamic Prompts parses a single prompt into many.",
"The basic syntax is \"a {red|green|blue} ball\". This will produce three prompts: \"a red ball\", \"a green ball\" and \"a blue ball\".",
"You can use the syntax as many times as you like in a single prompt, but be sure to keep the number of prompts generated in check with the Max Prompts setting."
]
},
"dynamicPromptsMaxPrompts": {
"heading": "Max Prompts",
"paragraphs": [
"Limits the number of prompts that can be generated by Dynamic Prompts."
]
},
"dynamicPromptsSeedBehaviour": {
"heading": "Seed Behaviour",
"paragraphs": [
"Controls how the seed is used when generating prompts.",
"Per Iteration will use a unique seed for each iteration. Use this to explore prompt variations on a single seed.",
"For example, if you have 5 prompts, each image will use the same seed.",
"Per Image will use a unique seed for each image. This provides more variation."
]
},
"infillMethod": {
"heading": "Infill Method",
"paragraphs": ["Method to infill the selected area."]
},
"lora": {
"heading": "LoRA Weight",
"paragraphs": [
"Higher LoRA weight will lead to larger impacts on the final image."
]
},
"noiseUseCPU": {
"heading": "Use CPU Noise",
"paragraphs": [
"Controls whether noise is generated on the CPU or GPU.",
"With CPU Noise enabled, a particular seed will produce the same image on any machine.",
"There is no performance impact to enabling CPU Noise."
]
},
"paramCFGScale": {
"heading": "CFG Scale",
"paragraphs": [
"Controls how much your prompt influences the generation process."
]
},
"paramDenoisingStrength": {
"heading": "Denoising Strength",
"paragraphs": [
"How much noise is added to the input image.",
"0 will result in an identical image, while 1 will result in a completely new image."
]
},
"paramIterations": {
"heading": "Iterations",
"paragraphs": [
"The number of images to generate.",
"If Dynamic Prompts is enabled, each of the prompts will be generated this many times."
]
},
"paramModel": {
"heading": "Model",
"paragraphs": [
"Model used for the denoising steps.",
"Different models are typically trained to specialize in producing particular aesthetic results and content."
]
},
"paramRatio": {
"heading": "Aspect Ratio",
"paragraphs": [
"The aspect ratio of the dimensions of the image generated.",
"An image size (in number of pixels) equivalent to 512x512 is recommended for SD1.5 models and a size equivalent to 1024x1024 is recommended for SDXL models."
]
},
"paramSeed": {
"heading": "Seed",
"paragraphs": [
"Controls the starting noise used for generation.",
"Disable “Random Seed” to produce identical results with the same generation settings."
]
},
"paramSteps": {
"heading": "Steps",
"paragraphs": [
"Number of steps that will be performed in each generation.",
"Higher step counts will typically create better images but will require more generation time."
]
},
"paramVAE": {
"heading": "VAE",
"paragraphs": [
"Model used for translating AI output into the final image."
]
},
"paramVAEPrecision": {
"heading": "VAE Precision",
"paragraphs": [
"The precision used during VAE encoding and decoding. FP16/half precision is more efficient, at the expense of minor image variations."
]
},
"scaleBeforeProcessing": {
"heading": "Scale Before Processing",
"paragraphs": [
"Scales the selected area to the size best suited for the model before the image generation process."
]
}
},
"ui": {
"hideProgressImages": "Hide Progress Images",
"lockRatio": "Lock Ratio",
@@ -1128,6 +1469,8 @@
"showCanvasDebugInfo": "Show Additional Canvas Info",
"showGrid": "Show Grid",
"showHide": "Show/Hide",
"showResultsOn": "Show Results (On)",
"showResultsOff": "Show Results (Off)",
"showIntermediates": "Show Intermediates",
"snapToGrid": "Snap to Grid",
"undo": "Undo"

View File

@@ -3,6 +3,9 @@
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="0">
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="favicon.ico" />
<style>

View File

@@ -157,6 +157,7 @@
"prettier": "^3.0.2",
"rollup-plugin-visualizer": "^5.9.2",
"ts-toolbelt": "^9.6.0",
"typescript": "^5.2.2",
"vite": "^4.4.9",
"vite-plugin-css-injected-by-js": "^3.3.0",
"vite-plugin-dts": "^3.5.2",

View File

@@ -49,8 +49,10 @@
"cancel": "Cancel",
"close": "Close",
"communityLabel": "Community",
"controlNet": "Controlnet",
"controlNet": "ControlNet",
"controlAdapter": "Control Adapter",
"ipAdapter": "IP Adapter",
"t2iAdapter": "T2I Adapter",
"darkMode": "Dark Mode",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
@@ -58,6 +60,7 @@
"githubLabel": "Github",
"hotkeysLabel": "Hotkeys",
"imagePrompt": "Image Prompt",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
"langArabic": "العربية",
"langBrPortuguese": "Português do Brasil",
@@ -79,7 +82,7 @@
"lightMode": "Light Mode",
"linear": "Linear",
"load": "Load",
"loading": "Loading $t({{noun}})...",
"loading": "Loading",
"loadingInvokeAI": "Loading Invoke AI",
"learnMore": "Learn More",
"modelManager": "Model Manager",
@@ -129,6 +132,16 @@
"upload": "Upload"
},
"controlnet": {
"controlAdapter": "Control Adapter",
"controlnet": "$t(controlnet.controlAdapter) #{{number}} ($t(common.controlNet))",
"ip_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter) #{{number}} ($t(common.t2iAdapter))",
"addControlNet": "Add $t(common.controlNet)",
"addIPAdapter": "Add $t(common.ipAdapter)",
"addT2IAdapter": "Add $t(common.t2iAdapter)",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) enabled, $t(common.t2iAdapter)s disabled",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) enabled, $t(common.controlNet)s disabled",
"controlNetT2IMutexDesc": "$t(common.controlNet) and $t(common.t2iAdapter) at same time is currently unsupported.",
"amult": "a_mult",
"autoConfigure": "Auto configure processor",
"balanced": "Balanced",
@@ -696,7 +709,7 @@
"noLoRAsAvailable": "No LoRAs available",
"noMatchingLoRAs": "No matching LoRAs",
"noMatchingModels": "No matching Models",
"noModelsAvailable": "No Modelss available",
"noModelsAvailable": "No models available",
"selectLoRA": "Select a LoRA",
"selectModel": "Select a Model"
},
@@ -716,6 +729,7 @@
"cannotConnectInputToInput": "Cannot connect input to input",
"cannotConnectOutputToOutput": "Cannot connect output to output",
"cannotConnectToSelf": "Cannot connect to self",
"cannotDuplicateConnection": "Cannot create duplicate connections",
"clipField": "Clip",
"clipFieldDescription": "Tokenizer and text_encoder submodels.",
"collection": "Collection",
@@ -783,6 +797,14 @@
"integerPolymorphic": "Integer Polymorphic",
"integerPolymorphicDescription": "A collection of integers.",
"invalidOutputSchema": "Invalid output schema",
"ipAdapter": "IP-Adapter",
"ipAdapterCollection": "IP-Adapters Collection",
"ipAdapterCollectionDescription": "A collection of IP-Adapters.",
"ipAdapterDescription": "An Image Prompt Adapter (IP-Adapter).",
"ipAdapterModel": "IP-Adapter Model",
"ipAdapterModelDescription": "IP-Adapter Model Field",
"ipAdapterPolymorphic": "IP-Adapter Polymorphic",
"ipAdapterPolymorphicDescription": "A collection of IP-Adapters.",
"latentsCollection": "Latents Collection",
"latentsCollectionDescription": "Latents may be passed between nodes.",
"latentsField": "Latents",
@@ -942,9 +964,10 @@
"missingFieldTemplate": "Missing field template",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} missing input",
"missingNodeTemplate": "Missing node template",
"noControlImageForControlNet": "ControlNet {{index}} has no control image",
"noControlImageForControlAdapter": "Control Adapter {{number}} has no control image",
"noInitialImageSelected": "No initial image selected",
"noModelForControlNet": "ControlNet {{index}} has no model selected.",
"noModelForControlAdapter": "Control Adapter {{number}} has no model selected.",
"incompatibleBaseModelForControlAdapter": "Control Adapter {{number}} model is invalid with main model.",
"noModelSelected": "No model selected",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
@@ -1013,7 +1036,11 @@
"variationAmount": "Variation Amount",
"variations": "Variations",
"vSymmetryStep": "V Symmetry Step",
"width": "Width"
"width": "Width",
"isAllowedToUpscale": {
"useX2Model": "Image is too large to upscale with x4 model, use x2 model",
"tooLarge": "Image is too large to upscale, select smaller image"
}
},
"dynamicPrompts": {
"combinatorial": "Combinatorial Generation",
@@ -1079,7 +1106,8 @@
},
"toast": {
"addedToBoard": "Added to board",
"baseModelChangedCleared": "Base model changed, cleared",
"baseModelChangedCleared_one": "Base model changed, cleared or disabled {{number}} incompatible submodel",
"baseModelChangedCleared_many": "$t(toast.baseModelChangedCleared_one)s",
"canceled": "Processing Canceled",
"canvasCopiedClipboard": "Canvas Copied to Clipboard",
"canvasDownloaded": "Canvas Downloaded",
@@ -1099,7 +1127,6 @@
"imageSavingFailed": "Image Saving Failed",
"imageUploaded": "Image Uploaded",
"imageUploadFailed": "Image Upload Failed",
"incompatibleSubmodel": "incompatible submodel",
"initialImageNotSet": "Initial Image Not Set",
"initialImageNotSetDesc": "Could not load initial image",
"initialImageSet": "Initial Image Set",
@@ -1442,6 +1469,8 @@
"showCanvasDebugInfo": "Show Additional Canvas Info",
"showGrid": "Show Grid",
"showHide": "Show/Hide",
"showResultsOn": "Show Results (On)",
"showResultsOff": "Show Results (Off)",
"showIntermediates": "Show Intermediates",
"snapToGrid": "Snap to Grid",
"undo": "Undo"

View File

@@ -1,6 +1,8 @@
import { Flex, Grid } from '@chakra-ui/react';
import { useStore } from '@nanostores/react';
import { useLogger } from 'app/logging/useLogger';
import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
import { $headerComponent } from 'app/store/nanostores/headerComponent';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { PartialAppConfig } from 'app/types/invokeai';
import ImageUploader from 'common/components/ImageUploader';
@@ -14,12 +16,10 @@ import i18n from 'i18n';
import { size } from 'lodash-es';
import { memo, useCallback, useEffect } from 'react';
import { ErrorBoundary } from 'react-error-boundary';
import { usePreselectedImage } from '../../features/parameters/hooks/usePreselectedImage';
import AppErrorBoundaryFallback from './AppErrorBoundaryFallback';
import GlobalHotkeys from './GlobalHotkeys';
import PreselectedImage from './PreselectedImage';
import Toaster from './Toaster';
import { useStore } from '@nanostores/react';
import { $headerComponent } from 'app/store/nanostores/headerComponent';
const DEFAULT_CONFIG = {};
@@ -36,8 +36,7 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
const logger = useLogger('system');
const dispatch = useAppDispatch();
const { handleSendToCanvas, handleSendToImg2Img, handleUseAllMetadata } =
usePreselectedImage(selectedImage?.imageName);
const handleReset = useCallback(() => {
localStorage.clear();
location.reload();
@@ -59,24 +58,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
dispatch(appStarted());
}, [dispatch]);
useEffect(() => {
if (selectedImage && selectedImage.action === 'sendToCanvas') {
handleSendToCanvas();
}
}, [selectedImage, handleSendToCanvas]);
useEffect(() => {
if (selectedImage && selectedImage.action === 'sendToImg2Img') {
handleSendToImg2Img();
}
}, [selectedImage, handleSendToImg2Img]);
useEffect(() => {
if (selectedImage && selectedImage.action === 'useAllParameters') {
handleUseAllMetadata();
}
}, [selectedImage, handleUseAllMetadata]);
const headerComponent = useStore($headerComponent);
return (
@@ -112,6 +93,7 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
<ChangeBoardModal />
<Toaster />
<GlobalHotkeys />
<PreselectedImage selectedImage={selectedImage} />
</ErrorBoundary>
);
};

View File

@@ -0,0 +1,16 @@
import { usePreselectedImage } from 'features/parameters/hooks/usePreselectedImage';
import { memo } from 'react';
type Props = {
selectedImage?: {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
};
const PreselectedImage = (props: Props) => {
usePreselectedImage(props.selectedImage);
return null;
};
export default memo(PreselectedImage);

View File

@@ -5,7 +5,7 @@ import {
} from '@chakra-ui/react';
import { ReactNode, memo, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { theme as invokeAITheme } from 'theme/theme';
import { TOAST_OPTIONS, theme as invokeAITheme } from 'theme/theme';
import '@fontsource-variable/inter';
import { MantineProvider } from '@mantine/core';
@@ -39,7 +39,11 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
return (
<MantineProvider theme={mantineTheme}>
<ChakraProvider theme={theme} colorModeManager={manager}>
<ChakraProvider
theme={theme}
colorModeManager={manager}
toastOptions={TOAST_OPTIONS}
>
{children}
</ChakraProvider>
</MantineProvider>

View File

@@ -1,5 +1,5 @@
import { canvasPersistDenylist } from 'features/canvas/store/canvasPersistDenylist';
import { controlNetDenylist } from 'features/controlNet/store/controlNetDenylist';
import { controlAdaptersPersistDenylist } from 'features/controlAdapters/store/controlAdaptersPersistDenylist';
import { dynamicPromptsPersistDenylist } from 'features/dynamicPrompts/store/dynamicPromptsPersistDenylist';
import { galleryPersistDenylist } from 'features/gallery/store/galleryPersistDenylist';
import { nodesPersistDenylist } from 'features/nodes/store/nodesPersistDenylist';
@@ -20,7 +20,7 @@ const serializationDenylist: {
postprocessing: postprocessingPersistDenylist,
system: systemPersistDenylist,
ui: uiPersistDenylist,
controlNet: controlNetDenylist,
controlNet: controlAdaptersPersistDenylist,
dynamicPrompts: dynamicPromptsPersistDenylist,
};

View File

@@ -1,5 +1,5 @@
import { initialCanvasState } from 'features/canvas/store/canvasSlice';
import { initialControlNetState } from 'features/controlNet/store/controlNetSlice';
import { initialControlAdapterState } from 'features/controlAdapters/store/controlAdaptersSlice';
import { initialDynamicPromptsState } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { initialGalleryState } from 'features/gallery/store/gallerySlice';
import { initialNodesState } from 'features/nodes/store/nodesSlice';
@@ -25,7 +25,7 @@ const initialStates: {
config: initialConfigState,
ui: initialUIState,
hotkeys: initialHotkeysState,
controlNet: initialControlNetState,
controlAdapters: initialControlAdapterState,
dynamicPrompts: initialDynamicPromptsState,
sdxl: initialSDXLState,
};

View File

@@ -54,21 +54,6 @@ import { addModelSelectedListener } from './listeners/modelSelected';
import { addModelsLoadedListener } from './listeners/modelsLoaded';
import { addDynamicPromptsListener } from './listeners/promptChanged';
import { addReceivedOpenAPISchemaListener } from './listeners/receivedOpenAPISchema';
import {
addSessionCanceledFulfilledListener,
addSessionCanceledPendingListener,
addSessionCanceledRejectedListener,
} from './listeners/sessionCanceled';
import {
addSessionCreatedFulfilledListener,
addSessionCreatedPendingListener,
addSessionCreatedRejectedListener,
} from './listeners/sessionCreated';
import {
addSessionInvokedFulfilledListener,
addSessionInvokedPendingListener,
addSessionInvokedRejectedListener,
} from './listeners/sessionInvoked';
import { addSocketConnectedEventListener as addSocketConnectedListener } from './listeners/socketio/socketConnected';
import { addSocketDisconnectedEventListener as addSocketDisconnectedListener } from './listeners/socketio/socketDisconnected';
import { addGeneratorProgressEventListener as addGeneratorProgressListener } from './listeners/socketio/socketGeneratorProgress';
@@ -86,6 +71,8 @@ import { addStagingAreaImageSavedListener } from './listeners/stagingAreaImageSa
import { addTabChangedListener } from './listeners/tabChanged';
import { addUpscaleRequestedListener } from './listeners/upscaleRequested';
import { addWorkflowLoadedListener } from './listeners/workflowLoaded';
import { addBatchEnqueuedListener } from './listeners/batchEnqueued';
import { addControlAdapterAddedOrEnabledListener } from './listeners/controlAdapterAddedOrEnabled';
export const listenerMiddleware = createListenerMiddleware();
@@ -136,6 +123,7 @@ addEnqueueRequestedCanvasListener();
addEnqueueRequestedNodes();
addEnqueueRequestedLinear();
addAnyEnqueuedListener();
addBatchEnqueuedListener();
// Canvas actions
addCanvasSavedToGalleryListener();
@@ -175,21 +163,6 @@ addSessionRetrievalErrorEventListener();
addInvocationRetrievalErrorEventListener();
addSocketQueueItemStatusChangedEventListener();
// Session Created
addSessionCreatedPendingListener();
addSessionCreatedFulfilledListener();
addSessionCreatedRejectedListener();
// Session Invoked
addSessionInvokedPendingListener();
addSessionInvokedFulfilledListener();
addSessionInvokedRejectedListener();
// Session Canceled
addSessionCanceledPendingListener();
addSessionCanceledFulfilledListener();
addSessionCanceledRejectedListener();
// ControlNet
addControlNetImageProcessedListener();
addControlNetAutoProcessListener();
@@ -227,3 +200,7 @@ addTabChangedListener();
// Dynamic prompts
addDynamicPromptsListener();
// Display toast when controlnet or t2i adapter enabled
// TODO: Remove when they can both be enabled at same time
addControlAdapterAddedOrEnabledListener();

View File

@@ -0,0 +1,101 @@
import { createStandaloneToast } from '@chakra-ui/react';
import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
import { t } from 'i18next';
import { get, truncate, upperFirst } from 'lodash-es';
import { queueApi } from 'services/api/endpoints/queue';
import { TOAST_OPTIONS, theme } from 'theme/theme';
import { startAppListening } from '..';
const { toast } = createStandaloneToast({
theme: theme,
defaultOptions: TOAST_OPTIONS.defaultOptions,
});
export const addBatchEnqueuedListener = () => {
// success
startAppListening({
matcher: queueApi.endpoints.enqueueBatch.matchFulfilled,
effect: async (action) => {
const response = action.payload;
const arg = action.meta.arg.originalArgs;
logger('queue').debug(
{ enqueueResult: parseify(response) },
'Batch enqueued'
);
if (!toast.isActive('batch-queued')) {
toast({
id: 'batch-queued',
title: t('queue.batchQueued'),
description: t('queue.batchQueuedDesc', {
item_count: response.enqueued,
direction: arg.prepend ? t('queue.front') : t('queue.back'),
}),
duration: 1000,
status: 'success',
});
}
},
});
// error
startAppListening({
matcher: queueApi.endpoints.enqueueBatch.matchRejected,
effect: async (action) => {
const response = action.payload;
const arg = action.meta.arg.originalArgs;
if (!response) {
toast({
title: t('queue.batchFailedToQueue'),
status: 'error',
description: 'Unknown Error',
});
logger('queue').error(
{ batchConfig: parseify(arg), error: parseify(response) },
t('queue.batchFailedToQueue')
);
return;
}
const result = zPydanticValidationError.safeParse(response);
if (result.success) {
result.data.data.detail.map((e) => {
toast({
id: 'batch-failed-to-queue',
title: truncate(upperFirst(e.msg), { length: 128 }),
status: 'error',
description: truncate(
`Path:
${e.loc.join('.')}`,
{ length: 128 }
),
});
});
} else {
let detail = 'Unknown Error';
let duration = undefined;
if (response.status === 403 && 'body' in response) {
detail = get(response, 'body.detail', 'Unknown Error');
} else if (response.status === 403 && 'error' in response) {
detail = get(response, 'error.detail', 'Unknown Error');
} else if (response.status === 403 && 'data' in response) {
detail = get(response, 'data.detail', 'Unknown Error');
duration = 15000;
}
toast({
title: t('queue.batchFailedToQueue'),
status: 'error',
description: detail,
...(duration ? { duration } : {}),
});
}
logger('queue').error(
{ batchConfig: parseify(arg), error: parseify(response) },
t('queue.batchFailedToQueue')
);
},
});
};

View File

@@ -1,8 +1,5 @@
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import {
controlNetReset,
ipAdapterStateReset,
} from 'features/controlNet/store/controlNetSlice';
import { controlAdaptersReset } from 'features/controlAdapters/store/controlAdaptersSlice';
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
@@ -20,8 +17,7 @@ export const addDeleteBoardAndImagesFulfilledListener = () => {
let wasInitialImageReset = false;
let wasCanvasReset = false;
let wasNodeEditorReset = false;
let wasControlNetReset = false;
let wasIPAdapterReset = false;
let wereControlAdaptersReset = false;
const state = getState();
deleted_images.forEach((image_name) => {
@@ -42,14 +38,9 @@ export const addDeleteBoardAndImagesFulfilledListener = () => {
wasNodeEditorReset = true;
}
if (imageUsage.isControlNetImage && !wasControlNetReset) {
dispatch(controlNetReset());
wasControlNetReset = true;
}
if (imageUsage.isIPAdapterImage && !wasIPAdapterReset) {
dispatch(ipAdapterStateReset());
wasIPAdapterReset = true;
if (imageUsage.isControlImage && !wereControlAdaptersReset) {
dispatch(controlAdaptersReset());
wereControlAdaptersReset = true;
}
});
},

View File

@@ -25,7 +25,7 @@ export const addBoardIdSelectedListener = () => {
const state = getState();
const board_id = boardIdSelected.match(action)
? action.payload
? action.payload.boardId
: state.gallery.selectedBoardId;
const galleryView = galleryViewChanged.match(action)
@@ -55,7 +55,12 @@ export const addBoardIdSelectedListener = () => {
if (boardImagesData) {
const firstImage = imagesSelectors.selectAll(boardImagesData)[0];
dispatch(imageSelected(firstImage ?? null));
const selectedImage = imagesSelectors.selectById(
boardImagesData,
action.payload.selectedImageName
);
dispatch(imageSelected(selectedImage || firstImage || null));
} else {
// board has no images - deselect
dispatch(imageSelected(null));

View File

@@ -1,22 +1,23 @@
import { logger } from 'app/logging/logger';
import { canvasImageToControlNet } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { t } from 'i18next';
import { canvasImageToControlAdapter } from 'features/canvas/store/actions';
export const addCanvasImageToControlNetListener = () => {
startAppListening({
actionCreator: canvasImageToControlNet,
actionCreator: canvasImageToControlAdapter,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { id } = action.payload;
let blob;
let blob: Blob;
try {
blob = await getBaseLayerBlob(state);
blob = await getBaseLayerBlob(state, true);
} catch (err) {
log.error(String(err));
dispatch(
@@ -36,10 +37,10 @@ export const addCanvasImageToControlNetListener = () => {
file: new File([blob], 'savedCanvas.png', {
type: 'image/png',
}),
image_category: 'mask',
image_category: 'control',
is_intermediate: false,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
crop_visible: false,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.canvasSentControlnetAssets') },
@@ -50,8 +51,8 @@ export const addCanvasImageToControlNetListener = () => {
const { image_name } = imageDTO;
dispatch(
controlNetImageChanged({
controlNetId: action.payload.controlNet.controlNetId,
controlAdapterImageChanged({
id,
controlImage: image_name,
})
);

View File

@@ -1,19 +1,19 @@
import { logger } from 'app/logging/logger';
import { canvasMaskToControlNet } from 'features/canvas/store/actions';
import { canvasMaskToControlAdapter } from 'features/canvas/store/actions';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { controlNetImageChanged } from 'features/controlNet/store/controlNetSlice';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { t } from 'i18next';
export const addCanvasMaskToControlNetListener = () => {
startAppListening({
actionCreator: canvasMaskToControlNet,
actionCreator: canvasMaskToControlAdapter,
effect: async (action, { dispatch, getState }) => {
const log = logger('canvas');
const state = getState();
const { id } = action.payload;
const canvasBlobsAndImageData = await getCanvasData(
state.canvas.layerState,
state.canvas.boundingBoxCoordinates,
@@ -50,7 +50,7 @@ export const addCanvasMaskToControlNetListener = () => {
image_category: 'mask',
is_intermediate: false,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
crop_visible: false,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.maskSentControlnetAssets') },
@@ -61,8 +61,8 @@ export const addCanvasMaskToControlNetListener = () => {
const { image_name } = imageDTO;
dispatch(
controlNetImageChanged({
controlNetId: action.payload.controlNet.controlNetId,
controlAdapterImageChanged({
id,
controlImage: image_name,
})
);

View File

@@ -0,0 +1,87 @@
import { isAnyOf } from '@reduxjs/toolkit';
import {
controlAdapterAdded,
controlAdapterAddedFromImage,
controlAdapterIsEnabledChanged,
controlAdapterRecalled,
selectControlAdapterAll,
selectControlAdapterById,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { ControlAdapterType } from 'features/controlAdapters/store/types';
import { addToast } from 'features/system/store/systemSlice';
import i18n from 'i18n';
import { startAppListening } from '..';
const isAnyControlAdapterAddedOrEnabled = isAnyOf(
controlAdapterAdded,
controlAdapterAddedFromImage,
controlAdapterRecalled,
controlAdapterIsEnabledChanged
);
/**
* Until we can have both controlnet and t2i adapter enabled at once, they are mutually exclusive
* This displays a toast when one is enabled and the other is already enabled, or one is added
* with the other enabled
*/
export const addControlAdapterAddedOrEnabledListener = () => {
startAppListening({
matcher: isAnyControlAdapterAddedOrEnabled,
effect: async (action, { dispatch, getOriginalState }) => {
const controlAdapters = getOriginalState().controlAdapters;
const hasEnabledControlNets = selectControlAdapterAll(
controlAdapters
).some((ca) => ca.isEnabled && ca.type === 'controlnet');
const hasEnabledT2IAdapters = selectControlAdapterAll(
controlAdapters
).some((ca) => ca.isEnabled && ca.type === 't2i_adapter');
let caType: ControlAdapterType | null = null;
if (controlAdapterAdded.match(action)) {
caType = action.payload.type;
}
if (controlAdapterAddedFromImage.match(action)) {
caType = action.payload.type;
}
if (controlAdapterRecalled.match(action)) {
caType = action.payload.type;
}
if (controlAdapterIsEnabledChanged.match(action)) {
const _caType = selectControlAdapterById(
controlAdapters,
action.payload.id
)?.type;
if (!_caType) {
return;
}
caType = _caType;
}
if (
(caType === 'controlnet' && hasEnabledT2IAdapters) ||
(caType === 't2i_adapter' && hasEnabledControlNets)
) {
const title =
caType === 'controlnet'
? i18n.t('controlnet.controlNetEnabledT2IDisabled')
: i18n.t('controlnet.t2iEnabledControlNetDisabled');
const description = i18n.t('controlnet.controlNetT2IMutexDesc');
dispatch(
addToast({
title,
description,
status: 'warning',
})
);
}
},
});
};

View File

@@ -1,15 +1,24 @@
import { AnyListenerPredicate } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
import { controlAdapterImageProcessed } from 'features/controlAdapters/store/actions';
import {
controlNetAutoConfigToggled,
controlNetImageChanged,
controlNetModelChanged,
controlNetProcessorParamsChanged,
controlNetProcessorTypeChanged,
} from 'features/controlNet/store/controlNetSlice';
controlAdapterAutoConfigToggled,
controlAdapterImageChanged,
controlAdapterModelChanged,
controlAdapterProcessorParamsChanged,
controlAdapterProcessortTypeChanged,
selectControlAdapterById,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { startAppListening } from '..';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
type AnyControlAdapterParamChangeAction =
| ReturnType<typeof controlAdapterProcessorParamsChanged>
| ReturnType<typeof controlAdapterModelChanged>
| ReturnType<typeof controlAdapterImageChanged>
| ReturnType<typeof controlAdapterProcessortTypeChanged>
| ReturnType<typeof controlAdapterAutoConfigToggled>;
const predicate: AnyListenerPredicate<RootState> = (
action,
@@ -17,35 +26,37 @@ const predicate: AnyListenerPredicate<RootState> = (
prevState
) => {
const isActionMatched =
controlNetProcessorParamsChanged.match(action) ||
controlNetModelChanged.match(action) ||
controlNetImageChanged.match(action) ||
controlNetProcessorTypeChanged.match(action) ||
controlNetAutoConfigToggled.match(action);
controlAdapterProcessorParamsChanged.match(action) ||
controlAdapterModelChanged.match(action) ||
controlAdapterImageChanged.match(action) ||
controlAdapterProcessortTypeChanged.match(action) ||
controlAdapterAutoConfigToggled.match(action);
if (!isActionMatched) {
return false;
}
if (controlNetAutoConfigToggled.match(action)) {
const { id } = action.payload;
const prevCA = selectControlAdapterById(prevState.controlAdapters, id);
const ca = selectControlAdapterById(state.controlAdapters, id);
if (
!prevCA ||
!isControlNetOrT2IAdapter(prevCA) ||
!ca ||
!isControlNetOrT2IAdapter(ca)
) {
return false;
}
if (controlAdapterAutoConfigToggled.match(action)) {
// do not process if the user just disabled auto-config
if (
prevState.controlNet.controlNets[action.payload.controlNetId]
?.shouldAutoConfig === true
) {
if (prevCA.shouldAutoConfig === true) {
return false;
}
}
const cn = state.controlNet.controlNets[action.payload.controlNetId];
if (!cn) {
// something is wrong, the controlNet should exist
return false;
}
const { controlImage, processorType, shouldAutoConfig } = cn;
if (controlNetModelChanged.match(action) && !shouldAutoConfig) {
const { controlImage, processorType, shouldAutoConfig } = ca;
if (controlAdapterModelChanged.match(action) && !shouldAutoConfig) {
// do not process if the action is a model change but the processor settings are dirty
return false;
}
@@ -67,7 +78,7 @@ export const addControlNetAutoProcessListener = () => {
predicate,
effect: async (action, { dispatch, cancelActiveListeners, delay }) => {
const log = logger('session');
const { controlNetId } = action.payload;
const { id } = (action as AnyControlAdapterParamChangeAction).payload;
// Cancel any in-progress instances of this listener
cancelActiveListeners();
@@ -75,7 +86,7 @@ export const addControlNetAutoProcessListener = () => {
// Delay before starting actual work
await delay(300);
dispatch(controlNetImageProcessed({ controlNetId }));
dispatch(controlAdapterImageProcessed({ id }));
},
});
};

View File

@@ -1,7 +1,11 @@
import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import { controlNetImageProcessed } from 'features/controlNet/store/actions';
import { controlNetProcessedImageChanged } from 'features/controlNet/store/controlNetSlice';
import {
pendingControlImagesCleared,
controlAdapterImageChanged,
selectControlAdapterById,
controlAdapterProcessedImageChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { SAVE_IMAGE } from 'features/nodes/util/graphBuilders/constants';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
@@ -11,28 +15,34 @@ import { isImageOutput } from 'services/api/guards';
import { Graph, ImageDTO } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { startAppListening } from '..';
import { controlAdapterImageProcessed } from 'features/controlAdapters/store/actions';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
export const addControlNetImageProcessedListener = () => {
startAppListening({
actionCreator: controlNetImageProcessed,
actionCreator: controlAdapterImageProcessed,
effect: async (action, { dispatch, getState, take }) => {
const log = logger('session');
const { controlNetId } = action.payload;
const controlNet = getState().controlNet.controlNets[controlNetId];
const { id } = action.payload;
const ca = selectControlAdapterById(getState().controlAdapters, id);
if (!controlNet?.controlImage) {
if (!ca?.controlImage || !isControlNetOrT2IAdapter(ca)) {
log.error('Unable to process ControlNet image');
return;
}
if (ca.processorType === 'none' || ca.processorNode.type === 'none') {
return;
}
// ControlNet one-off procressing graph is just the processor node, no edges.
// Also we need to grab the image.
const graph: Graph = {
nodes: {
[controlNet.processorNode.id]: {
...controlNet.processorNode,
[ca.processorNode.id]: {
...ca.processorNode,
is_intermediate: true,
image: { image_name: controlNet.controlImage },
image: { image_name: ca.controlImage },
},
[SAVE_IMAGE]: {
id: SAVE_IMAGE,
@@ -44,7 +54,7 @@ export const addControlNetImageProcessedListener = () => {
edges: [
{
source: {
node_id: controlNet.processorNode.id,
node_id: ca.processorNode.id,
field: 'image',
},
destination: {
@@ -99,14 +109,36 @@ export const addControlNetImageProcessedListener = () => {
// Update the processed image in the store
dispatch(
controlNetProcessedImageChanged({
controlNetId,
controlAdapterProcessedImageChanged({
id,
processedControlImage: processedControlImage.image_name,
})
);
}
} catch {
} catch (error) {
log.error({ graph: parseify(graph) }, t('queue.graphFailedToQueue'));
// handle usage-related errors
if (error instanceof Object) {
if ('data' in error && 'status' in error) {
if (error.status === 403) {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const detail = (error.data as any)?.detail || 'Unknown Error';
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
description: detail,
duration: 15000,
})
);
dispatch(pendingControlImagesCleared());
dispatch(controlAdapterImageChanged({ id, controlImage: null }));
return;
}
}
}
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),

View File

@@ -12,8 +12,6 @@ import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGeneratio
import { canvasGraphBuilt } from 'features/nodes/store/actions';
import { buildCanvasGraph } from 'features/nodes/util/graphBuilders/buildCanvasGraph';
import { prepareLinearUIBatch } from 'features/nodes/util/graphBuilders/buildLinearBatchConfig';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import { ImageDTO } from 'services/api/types';
@@ -140,8 +138,6 @@ export const addEnqueueRequestedCanvasListener = () => {
const enqueueResult = await req.unwrap();
req.reset();
log.debug({ enqueueResult: parseify(enqueueResult) }, 'Batch enqueued');
const batchId = enqueueResult.batch.batch_id as string; // we know the is a string, backend provides it
// Prep the canvas staging area if it is not yet initialized
@@ -158,28 +154,8 @@ export const addEnqueueRequestedCanvasListener = () => {
// Associate the session with the canvas session ID
dispatch(canvasBatchIdAdded(batchId));
dispatch(
addToast({
title: t('queue.batchQueued'),
description: t('queue.batchQueuedDesc', {
item_count: enqueueResult.enqueued,
direction: prepend ? t('queue.front') : t('queue.back'),
}),
status: 'success',
})
);
} catch {
log.error(
{ batchConfig: parseify(batchConfig) },
t('queue.batchFailedToQueue')
);
dispatch(
addToast({
title: t('queue.batchFailedToQueue'),
status: 'error',
})
);
// no-op
}
},
});

View File

@@ -1,13 +1,9 @@
import { logger } from 'app/logging/logger';
import { enqueueRequested } from 'app/store/actions';
import { parseify } from 'common/util/serialize';
import { prepareLinearUIBatch } from 'features/nodes/util/graphBuilders/buildLinearBatchConfig';
import { buildLinearImageToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearImageToImageGraph';
import { buildLinearSDXLImageToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearSDXLImageToImageGraph';
import { buildLinearSDXLTextToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearSDXLTextToImageGraph';
import { buildLinearTextToImageGraph } from 'features/nodes/util/graphBuilders/buildLinearTextToImageGraph';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import { startAppListening } from '..';
@@ -18,7 +14,6 @@ export const addEnqueueRequestedLinear = () => {
(action.payload.tabName === 'txt2img' ||
action.payload.tabName === 'img2img'),
effect: async (action, { getState, dispatch }) => {
const log = logger('queue');
const state = getState();
const model = state.generation.model;
const { prepend } = action.payload;
@@ -41,38 +36,12 @@ export const addEnqueueRequestedLinear = () => {
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
try {
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const enqueueResult = await req.unwrap();
req.reset();
log.debug({ enqueueResult: parseify(enqueueResult) }, 'Batch enqueued');
dispatch(
addToast({
title: t('queue.batchQueued'),
description: t('queue.batchQueuedDesc', {
item_count: enqueueResult.enqueued,
direction: prepend ? t('queue.front') : t('queue.back'),
}),
status: 'success',
})
);
} catch {
log.error(
{ batchConfig: parseify(batchConfig) },
t('queue.batchFailedToQueue')
);
dispatch(
addToast({
title: t('queue.batchFailedToQueue'),
status: 'error',
})
);
}
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
},
});
};

View File

@@ -1,9 +1,5 @@
import { logger } from 'app/logging/logger';
import { enqueueRequested } from 'app/store/actions';
import { parseify } from 'common/util/serialize';
import { buildNodesGraph } from 'features/nodes/util/graphBuilders/buildNodesGraph';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import { BatchConfig } from 'services/api/types';
import { startAppListening } from '..';
@@ -13,9 +9,7 @@ export const addEnqueueRequestedNodes = () => {
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
enqueueRequested.match(action) && action.payload.tabName === 'nodes',
effect: async (action, { getState, dispatch }) => {
const log = logger('queue');
const state = getState();
const { prepend } = action.payload;
const graph = buildNodesGraph(state.nodes);
const batchConfig: BatchConfig = {
batch: {
@@ -25,38 +19,12 @@ export const addEnqueueRequestedNodes = () => {
prepend: action.payload.prepend,
};
try {
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const enqueueResult = await req.unwrap();
req.reset();
log.debug({ enqueueResult: parseify(enqueueResult) }, 'Batch enqueued');
dispatch(
addToast({
title: t('queue.batchQueued'),
description: t('queue.batchQueuedDesc', {
item_count: enqueueResult.enqueued,
direction: prepend ? t('queue.front') : t('queue.back'),
}),
status: 'success',
})
);
} catch {
log.error(
{ batchConfig: parseify(batchConfig) },
'Failed to enqueue batch'
);
dispatch(
addToast({
title: t('queue.batchFailedToQueue'),
status: 'error',
})
);
}
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
},
});
};

View File

@@ -1,10 +1,10 @@
import { logger } from 'app/logging/logger';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import {
controlNetImageChanged,
controlNetProcessedImageChanged,
ipAdapterImageChanged,
} from 'features/controlNet/store/controlNetSlice';
controlAdapterImageChanged,
controlAdapterProcessedImageChanged,
selectControlAdapterAll,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
@@ -17,6 +17,7 @@ import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images';
import { imagesAdapter } from 'services/api/util';
import { startAppListening } from '..';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
export const addRequestedSingleImageDeletionListener = () => {
startAppListening({
@@ -90,35 +91,28 @@ export const addRequestedSingleImageDeletionListener = () => {
dispatch(clearInitialImage());
}
// reset controlNets that use the deleted images
forEach(getState().controlNet.controlNets, (controlNet) => {
// reset control adapters that use the deleted images
forEach(selectControlAdapterAll(getState().controlAdapters), (ca) => {
if (
controlNet.controlImage === imageDTO.image_name ||
controlNet.processedControlImage === imageDTO.image_name
ca.controlImage === imageDTO.image_name ||
(isControlNetOrT2IAdapter(ca) &&
ca.processedControlImage === imageDTO.image_name)
) {
dispatch(
controlNetImageChanged({
controlNetId: controlNet.controlNetId,
controlAdapterImageChanged({
id: ca.id,
controlImage: null,
})
);
dispatch(
controlNetProcessedImageChanged({
controlNetId: controlNet.controlNetId,
controlAdapterProcessedImageChanged({
id: ca.id,
processedControlImage: null,
})
);
}
});
// Remove IP Adapter Set Image if image is deleted.
if (
getState().controlNet.ipAdapterInfo.adapterImage?.image_name ===
imageDTO.image_name
) {
dispatch(ipAdapterImageChanged(null));
}
// reset nodes that use the deleted images
getState().nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
@@ -215,35 +209,28 @@ export const addRequestedMultipleImageDeletionListener = () => {
dispatch(clearInitialImage());
}
// reset controlNets that use the deleted images
forEach(getState().controlNet.controlNets, (controlNet) => {
// reset control adapters that use the deleted images
forEach(selectControlAdapterAll(getState().controlAdapters), (ca) => {
if (
controlNet.controlImage === imageDTO.image_name ||
controlNet.processedControlImage === imageDTO.image_name
ca.controlImage === imageDTO.image_name ||
(isControlNetOrT2IAdapter(ca) &&
ca.processedControlImage === imageDTO.image_name)
) {
dispatch(
controlNetImageChanged({
controlNetId: controlNet.controlNetId,
controlAdapterImageChanged({
id: ca.id,
controlImage: null,
})
);
dispatch(
controlNetProcessedImageChanged({
controlNetId: controlNet.controlNetId,
controlAdapterProcessedImageChanged({
id: ca.id,
processedControlImage: null,
})
);
}
});
// Remove IP Adapter Set Image if image is deleted.
if (
getState().controlNet.ipAdapterInfo.adapterImage?.image_name ===
imageDTO.image_name
) {
dispatch(ipAdapterImageChanged(null));
}
// reset nodes that use the deleted images
getState().nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {

View File

@@ -3,11 +3,9 @@ import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import {
controlNetImageChanged,
controlNetIsEnabledChanged,
ipAdapterImageChanged,
isIPAdapterEnabledChanged,
} from 'features/controlNet/store/controlNetSlice';
controlAdapterImageChanged,
controlAdapterIsEnabledChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import {
TypesafeDraggableData,
TypesafeDroppableData,
@@ -90,39 +88,26 @@ export const addImageDroppedListener = () => {
* Image dropped on ControlNet
*/
if (
overData.actionType === 'SET_CONTROLNET_IMAGE' &&
overData.actionType === 'SET_CONTROL_ADAPTER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { controlNetId } = overData.context;
const { id } = overData.context;
dispatch(
controlNetImageChanged({
controlAdapterImageChanged({
id,
controlImage: activeData.payload.imageDTO.image_name,
controlNetId,
})
);
dispatch(
controlNetIsEnabledChanged({
controlNetId,
controlAdapterIsEnabledChanged({
id,
isEnabled: true,
})
);
return;
}
/**
* Image dropped on IP Adapter image
*/
if (
overData.actionType === 'SET_IP_ADAPTER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
dispatch(ipAdapterImageChanged(activeData.payload.imageDTO));
dispatch(isIPAdapterEnabledChanged(true));
return;
}
/**
* Image dropped on Canvas
*/

View File

@@ -18,8 +18,7 @@ export const addImageToDeleteSelectedListener = () => {
const isImageInUse =
imagesUsage.some((i) => i.isCanvasImage) ||
imagesUsage.some((i) => i.isInitialImage) ||
imagesUsage.some((i) => i.isControlNetImage) ||
imagesUsage.some((i) => i.isIPAdapterImage) ||
imagesUsage.some((i) => i.isControlImage) ||
imagesUsage.some((i) => i.isNodesImage);
if (shouldConfirmOnDelete || isImageInUse) {

View File

@@ -2,11 +2,9 @@ import { UseToastOptions } from '@chakra-ui/react';
import { logger } from 'app/logging/logger';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
import {
controlNetImageChanged,
controlNetIsEnabledChanged,
ipAdapterImageChanged,
isIPAdapterEnabledChanged,
} from 'features/controlNet/store/controlNetSlice';
controlAdapterImageChanged,
controlAdapterIsEnabledChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { addToast } from 'features/system/store/systemSlice';
@@ -16,11 +14,6 @@ import { boardsApi } from 'services/api/endpoints/boards';
import { startAppListening } from '..';
import { imagesApi } from '../../../../../services/api/endpoints/images';
const DEFAULT_UPLOADED_TOAST: UseToastOptions = {
title: t('toast.imageUploaded'),
status: 'success',
};
export const addImageUploadedFulfilledListener = () => {
startAppListening({
matcher: imagesApi.endpoints.uploadImage.matchFulfilled,
@@ -43,6 +36,11 @@ export const addImageUploadedFulfilledListener = () => {
return;
}
const DEFAULT_UPLOADED_TOAST: UseToastOptions = {
title: t('toast.imageUploaded'),
status: 'success',
};
// default action - just upload and alert user
if (postUploadAction?.type === 'TOAST') {
const { toastOptions } = postUploadAction;
@@ -87,17 +85,17 @@ export const addImageUploadedFulfilledListener = () => {
return;
}
if (postUploadAction?.type === 'SET_CONTROLNET_IMAGE') {
const { controlNetId } = postUploadAction;
if (postUploadAction?.type === 'SET_CONTROL_ADAPTER_IMAGE') {
const { id } = postUploadAction;
dispatch(
controlNetIsEnabledChanged({
controlNetId,
controlAdapterIsEnabledChanged({
id,
isEnabled: true,
})
);
dispatch(
controlNetImageChanged({
controlNetId,
controlAdapterImageChanged({
id,
controlImage: imageDTO.image_name,
})
);
@@ -110,18 +108,6 @@ export const addImageUploadedFulfilledListener = () => {
return;
}
if (postUploadAction?.type === 'SET_IP_ADAPTER_IMAGE') {
dispatch(ipAdapterImageChanged(imageDTO));
dispatch(isIPAdapterEnabledChanged(true));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setIPAdapterImage'),
})
);
return;
}
if (postUploadAction?.type === 'SET_INITIAL_IMAGE') {
dispatch(initialImageChanged(imageDTO));
dispatch(

View File

@@ -1,9 +1,9 @@
import { logger } from 'app/logging/logger';
import { setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
import {
controlNetRemoved,
ipAdapterStateReset,
} from 'features/controlNet/store/controlNetSlice';
controlAdapterIsEnabledChanged,
selectControlAdapterAll,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { loraRemoved } from 'features/lora/store/loraSlice';
import { modelSelected } from 'features/parameters/store/actions';
import {
@@ -15,9 +15,9 @@ import {
import { zMainOrOnnxModel } from 'features/parameters/types/parameterSchemas';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
import { forEach } from 'lodash-es';
import { startAppListening } from '..';
import { t } from 'i18next';
export const addModelSelectedListener = () => {
startAppListening({
@@ -60,33 +60,27 @@ export const addModelSelectedListener = () => {
}
// handle incompatible controlnets
const { controlNets } = state.controlNet;
forEach(controlNets, (controlNet, controlNetId) => {
if (controlNet.model?.base_model !== base_model) {
dispatch(controlNetRemoved({ controlNetId }));
selectControlAdapterAll(state.controlAdapters).forEach((ca) => {
if (ca.model?.base_model !== base_model) {
dispatch(
controlAdapterIsEnabledChanged({ id: ca.id, isEnabled: false })
);
modelsCleared += 1;
}
});
// handle incompatible IP-Adapter
const { ipAdapterInfo } = state.controlNet;
if (
ipAdapterInfo.model &&
ipAdapterInfo.model.base_model !== base_model
) {
dispatch(ipAdapterStateReset());
modelsCleared += 1;
}
if (modelsCleared > 0) {
dispatch(
addToast(
makeToast({
title: `${t(
'toast.baseModelChangedCleared'
)} ${modelsCleared} ${t('toast.incompatibleSubmodel')}${
modelsCleared === 1 ? '' : 's'
}`,
title: t(
modelsCleared === 1
? 'toast.baseModelChangedCleared_one'
: 'toast.baseModelChangedCleared_many',
{
number: modelsCleared,
}
),
status: 'warning',
})
)

View File

@@ -1,5 +1,10 @@
import { logger } from 'app/logging/logger';
import { controlNetRemoved } from 'features/controlNet/store/controlNetSlice';
import {
controlAdapterModelCleared,
selectAllControlNets,
selectAllIPAdapters,
selectAllT2IAdapters,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { loraRemoved } from 'features/lora/store/loraSlice';
import {
modelChanged,
@@ -216,21 +221,71 @@ export const addModelsLoadedListener = () => {
`ControlNet models loaded (${action.payload.ids.length})`
);
const controlNets = getState().controlNet.controlNets;
forEach(controlNets, (controlNet, controlNetId) => {
const isControlNetAvailable = some(
selectAllControlNets(getState().controlAdapters).forEach((ca) => {
const isModelAvailable = some(
action.payload.entities,
(m) =>
m?.model_name === controlNet?.model?.model_name &&
m?.base_model === controlNet?.model?.base_model
m?.model_name === ca?.model?.model_name &&
m?.base_model === ca?.model?.base_model
);
if (isControlNetAvailable) {
if (isModelAvailable) {
return;
}
dispatch(controlNetRemoved({ controlNetId }));
dispatch(controlAdapterModelCleared({ id: ca.id }));
});
},
});
startAppListening({
matcher: modelsApi.endpoints.getT2IAdapterModels.matchFulfilled,
effect: async (action, { getState, dispatch }) => {
// ControlNet models loaded - need to remove missing ControlNets from state
const log = logger('models');
log.info(
{ models: action.payload.entities },
`ControlNet models loaded (${action.payload.ids.length})`
);
selectAllT2IAdapters(getState().controlAdapters).forEach((ca) => {
const isModelAvailable = some(
action.payload.entities,
(m) =>
m?.model_name === ca?.model?.model_name &&
m?.base_model === ca?.model?.base_model
);
if (isModelAvailable) {
return;
}
dispatch(controlAdapterModelCleared({ id: ca.id }));
});
},
});
startAppListening({
matcher: modelsApi.endpoints.getIPAdapterModels.matchFulfilled,
effect: async (action, { getState, dispatch }) => {
// ControlNet models loaded - need to remove missing ControlNets from state
const log = logger('models');
log.info(
{ models: action.payload.entities },
`IP Adapter models loaded (${action.payload.ids.length})`
);
selectAllIPAdapters(getState().controlAdapters).forEach((ca) => {
const isModelAvailable = some(
action.payload.entities,
(m) =>
m?.model_name === ca?.model?.model_name &&
m?.base_model === ca?.model?.base_model
);
if (isModelAvailable) {
return;
}
dispatch(controlAdapterModelCleared({ id: ca.id }));
});
},
});

View File

@@ -1,44 +0,0 @@
import { logger } from 'app/logging/logger';
import { serializeError } from 'serialize-error';
import { sessionCanceled } from 'services/api/thunks/session';
import { startAppListening } from '..';
export const addSessionCanceledPendingListener = () => {
startAppListening({
actionCreator: sessionCanceled.pending,
effect: () => {
//
},
});
};
export const addSessionCanceledFulfilledListener = () => {
startAppListening({
actionCreator: sessionCanceled.fulfilled,
effect: (action) => {
const log = logger('session');
const { session_id } = action.meta.arg;
log.debug({ session_id }, `Session canceled (${session_id})`);
},
});
};
export const addSessionCanceledRejectedListener = () => {
startAppListening({
actionCreator: sessionCanceled.rejected,
effect: (action) => {
const log = logger('session');
const { session_id } = action.meta.arg;
if (action.payload) {
const { error } = action.payload;
log.error(
{
session_id,
error: serializeError(error),
},
`Problem canceling session`
);
}
},
});
};

View File

@@ -1,45 +0,0 @@
import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import { serializeError } from 'serialize-error';
import { sessionCreated } from 'services/api/thunks/session';
import { startAppListening } from '..';
export const addSessionCreatedPendingListener = () => {
startAppListening({
actionCreator: sessionCreated.pending,
effect: () => {
//
},
});
};
export const addSessionCreatedFulfilledListener = () => {
startAppListening({
actionCreator: sessionCreated.fulfilled,
effect: (action) => {
const log = logger('session');
const session = action.payload;
log.debug(
{ session: parseify(session) },
`Session created (${session.id})`
);
},
});
};
export const addSessionCreatedRejectedListener = () => {
startAppListening({
actionCreator: sessionCreated.rejected,
effect: (action) => {
const log = logger('session');
if (action.payload) {
const { error, status } = action.payload;
const graph = parseify(action.meta.arg);
log.error(
{ graph, status, error: serializeError(error) },
`Problem creating session`
);
}
},
});
};

View File

@@ -1,44 +0,0 @@
import { logger } from 'app/logging/logger';
import { serializeError } from 'serialize-error';
import { sessionInvoked } from 'services/api/thunks/session';
import { startAppListening } from '..';
export const addSessionInvokedPendingListener = () => {
startAppListening({
actionCreator: sessionInvoked.pending,
effect: () => {
//
},
});
};
export const addSessionInvokedFulfilledListener = () => {
startAppListening({
actionCreator: sessionInvoked.fulfilled,
effect: (action) => {
const log = logger('session');
const { session_id } = action.meta.arg;
log.debug({ session_id }, `Session invoked (${session_id})`);
},
});
};
export const addSessionInvokedRejectedListener = () => {
startAppListening({
actionCreator: sessionInvoked.rejected,
effect: (action) => {
const log = logger('session');
const { session_id } = action.meta.arg;
if (action.payload) {
const { error } = action.payload;
log.error(
{
session_id,
error: serializeError(error),
},
`Problem invoking session`
);
}
},
});
};

View File

@@ -8,6 +8,7 @@ import {
} from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import { CANVAS_OUTPUT } from 'features/nodes/util/graphBuilders/constants';
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
import { isImageOutput } from 'services/api/guards';
import { imagesAdapter } from 'services/api/util';
@@ -70,10 +71,21 @@ export const addInvocationCompleteEventListener = () => {
)
);
// update the total images for the board
dispatch(
boardsApi.util.updateQueryData(
'getBoardImagesTotal',
imageDTO.board_id ?? 'none',
(draft) => {
// eslint-disable-next-line @typescript-eslint/no-unused-vars
draft.total += 1;
}
)
);
dispatch(
imagesApi.util.invalidateTags([
{ type: 'BoardImagesTotal', id: imageDTO.board_id },
{ type: 'BoardAssetsTotal', id: imageDTO.board_id },
{ type: 'Board', id: imageDTO.board_id ?? 'none' },
])
);
@@ -81,9 +93,32 @@ export const addInvocationCompleteEventListener = () => {
// If auto-switch is enabled, select the new image
if (shouldAutoSwitch) {
// if auto-add is enabled, switch the board as the image comes in
dispatch(galleryViewChanged('images'));
dispatch(boardIdSelected(imageDTO.board_id ?? 'none'));
// if auto-add is enabled, switch the gallery view and board if needed as the image comes in
if (gallery.galleryView !== 'images') {
dispatch(galleryViewChanged('images'));
}
if (
imageDTO.board_id &&
imageDTO.board_id !== gallery.selectedBoardId
) {
dispatch(
boardIdSelected({
boardId: imageDTO.board_id,
selectedImageName: imageDTO.image_name,
})
);
}
if (!imageDTO.board_id && gallery.selectedBoardId !== 'none') {
dispatch(
boardIdSelected({
boardId: 'none',
selectedImageName: imageDTO.image_name,
})
);
}
dispatch(imageSelected(imageDTO));
}
}

Some files were not shown because too many files have changed in this diff Show More