Compare commits

..

3 Commits

Author SHA1 Message Date
Mary Hipp
1c8a5c0788 wip 2024-10-15 14:46:50 -04:00
Mary Hipp
548750534b feat(ui): allow multiple images to be dropped for upload - client loops through, api doesnt change 2024-10-15 12:32:43 -04:00
Mary Hipp
918470e454 fix(ui): remove logic that double added uploads to boards 2024-10-15 12:32:13 -04:00
226 changed files with 2875 additions and 9956 deletions

View File

@@ -38,7 +38,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
fi &&\

View File

@@ -17,49 +17,46 @@ If you just want to use Invoke, you should use the [installer][installer link].
## Setup
1. Run through the [requirements][requirements link].
2. [Fork and clone][forking link] the [InvokeAI repo][repo link].
3. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
4. Create a python virtual environment inside the directory you just created:
1. [Fork and clone][forking link] the [InvokeAI repo][repo link].
1. Create an directory for user data (images, models, db, etc). This is typically at `~/invokeai`, but if you already have a non-dev install, you may want to create a separate directory for the dev install.
1. Create a python virtual environment inside the directory you just created:
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
```sh
python3 -m venv .venv --prompt InvokeAI-Dev
```
5. Activate the venv (you'll need to do this every time you want to run the app):
1. Activate the venv (you'll need to do this every time you want to run the app):
```sh
source .venv/bin/activate
```
```sh
source .venv/bin/activate
```
6. Install the repo as an [editable install][editable install link]:
1. Install the repo as an [editable install][editable install link]:
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
```sh
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
7. Install the frontend dev toolchain:
1. Install the frontend dev toolchain:
- [`nodejs`](https://nodejs.org/) (recommend v20 LTS)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
- [`pnpm`](https://pnpm.io/installation#installing-a-specific-version) (must be v8 - not v9!)
8. Do a production build of the frontend:
1. Do a production build of the frontend:
```sh
cd PATH_TO_INVOKEAI_REPO/invokeai/frontend/web
pnpm i
pnpm build
```
```sh
pnpm build
```
9. Start the application:
1. Start the application:
```sh
cd PATH_TO_INVOKEAI_REPO
python scripts/invokeai-web.py
```
```sh
python scripts/invokeai-web.py
```
10. Access the UI at `localhost:9090`.
1. Access the UI at `localhost:9090`.
## Updating the UI

View File

@@ -12,7 +12,7 @@ MINIMUM_PYTHON_VERSION=3.10.0
MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON=""
for candidate in python3.11 python3.10 python3 python ; do
if ppath=`which $candidate 2>/dev/null`; then
if ppath=`which $candidate`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run
if [ $($candidate --version &>/dev/null; echo ${PIPESTATUS}) -gt 0 ]; then continue; fi
@@ -30,11 +30,10 @@ done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
echo "For the best user experience we suggest enlarging or maximizing this window now."
read -p "Press any key to exit"
exit -1
fi
echo "For the best user experience we suggest enlarging or maximizing this window now."
exec $PYTHON ./lib/main.py ${@}
read -p "Press any key to exit"

View File

@@ -245,9 +245,6 @@ class InvokeAiInstance:
pip = local[self.pip]
# Uninstall xformers if it is present; the correct version of it will be reinstalled if needed
_ = pip["uninstall", "-yqq", "xformers"] & FG
pipeline = pip[
"install",
"--require-virtualenv",
@@ -410,7 +407,7 @@ def get_torch_source() -> Tuple[str | None, str | None]:
optional_modules: str | None = None
if OS == "Linux":
if device == GpuType.ROCM:
url = "https://download.pytorch.org/whl/rocm6.1"
url = "https://download.pytorch.org/whl/rocm5.6"
elif device == GpuType.CPU:
url = "https://download.pytorch.org/whl/cpu"
elif device == GpuType.CUDA:

View File

@@ -38,12 +38,7 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Cac
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.starter_models import (
STARTER_BUNDLES,
STARTER_MODELS,
StarterModel,
StarterModelWithoutDependencies,
)
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
@@ -797,52 +792,22 @@ async def convert_model(
return new_config
class StarterModelResponse(BaseModel):
starter_models: list[StarterModel]
starter_bundles: dict[str, list[StarterModel]]
def get_is_installed(
starter_model: StarterModel | StarterModelWithoutDependencies, installed_models: list[AnyModelConfig]
) -> bool:
for model in installed_models:
if model.source == starter_model.source:
return True
if (
(model.name == starter_model.name or model.name in starter_model.previous_names)
and model.base == starter_model.base
and model.type == starter_model.type
):
return True
return False
@model_manager_router.get("/starter_models", operation_id="get_starter_models", response_model=StarterModelResponse)
async def get_starter_models() -> StarterModelResponse:
@model_manager_router.get("/starter_models", operation_id="get_starter_models", response_model=list[StarterModel])
async def get_starter_models() -> list[StarterModel]:
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
installed_model_sources = {m.source for m in installed_models}
starter_models = deepcopy(STARTER_MODELS)
starter_bundles = deepcopy(STARTER_BUNDLES)
for model in starter_models:
model.is_installed = get_is_installed(model, installed_models)
if model.source in installed_model_sources:
model.is_installed = True
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []
for dep in model.dependencies or []:
if not get_is_installed(dep, installed_models):
if dep.source not in installed_model_sources:
missing_deps.append(dep)
model.dependencies = missing_deps
for bundle in starter_bundles.values():
for model in bundle:
model.is_installed = get_is_installed(model, installed_models)
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []
for dep in model.dependencies or []:
if not get_is_installed(dep, installed_models):
missing_deps.append(dep)
model.dependencies = missing_deps
return StarterModelResponse(starter_models=starter_models, starter_bundles=starter_bundles)
return starter_models
@model_manager_router.get(

View File

@@ -13,7 +13,6 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
@@ -511,7 +510,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
bgr_mode: bool = False,
) -> None:
if t2i_adapters is None:
return
@@ -521,10 +519,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
image = context.images.get_pil(t2i_adapter_field.image.image_name)
if bgr_mode: # SDXL t2i trained on cv2's BGR outputs, but PIL won't convert straight to BGR
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
@@ -553,9 +547,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [
context.images.get_pil(image.image_name, mode="RGB") for image in single_ipa_image_fields
]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
@@ -629,10 +621,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
# SDXL adapters are trained on cv2's BGR outputs
r, g, b = image.split()
image = Image.merge("RGB", (b, g, r))
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
@@ -910,8 +898,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
bgr_mode = self.unet.unet.base == BaseModelType.StableDiffusionXL
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager, bgr_mode)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)

View File

@@ -1,19 +1,15 @@
from contextlib import ExitStack
from typing import Callable, Iterator, Optional, Tuple
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as tv_transforms
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
ImageField,
Input,
InputField,
LatentsField,
@@ -21,7 +17,6 @@ from invokeai.app.invocations.fields import (
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -31,8 +26,6 @@ from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling_utils import (
clip_timestep_schedule_fractional,
@@ -56,7 +49,7 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.2.0",
version="3.1.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
@@ -89,24 +82,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
)
cfg_scale: float | list[float] = InputField(default=1.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
cfg_scale_start_step: int = InputField(
default=0,
title="CFG Scale Start Step",
description="Index of the first step to apply cfg_scale. Negative indices count backwards from the "
+ "the last step (e.g. a value of -1 refers to the final step).",
)
cfg_scale_end_step: int = InputField(
default=-1,
title="CFG Scale End Step",
description="Index of the last step to apply cfg_scale. Negative indices count backwards from the "
+ "last step (e.g. a value of -1 refers to the final step).",
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
@@ -121,15 +96,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
default=None, input=Input.Connection, description="ControlNet models."
)
controlnet_vae: VAEField | None = InputField(
default=None,
description=FieldDescriptions.vae,
input=Input.Connection,
)
ip_adapter: IPAdapterField | list[IPAdapterField] | None = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
@@ -138,19 +108,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
@@ -158,15 +115,13 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
@@ -227,16 +182,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
@@ -257,21 +204,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
noise=noise,
)
# Compute the IP-Adapter image prompt clip embeddings.
# We do this before loading other models to minimize peak memory.
# TODO(ryand): We should really do this in a separate invocation to benefit from caching.
ip_adapter_fields = self._normalize_ip_adapter_fields()
pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds = self._prep_ip_adapter_image_prompt_clip_embeds(
ip_adapter_fields, context
)
cfg_scale = self.prep_cfg_scale(
cfg_scale=self.cfg_scale,
timesteps=timesteps,
cfg_scale_start_step=self.cfg_scale_start_step,
cfg_scale_end_step=self.cfg_scale_end_step,
)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
@@ -320,88 +252,23 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
else:
raise ValueError(f"Unsupported model format: {config.format}")
# Prepare IP-Adapter extensions.
pos_ip_adapter_extensions, neg_ip_adapter_extensions = self._prep_ip_adapter_extensions(
pos_image_prompt_clip_embeds=pos_image_prompt_clip_embeds,
neg_image_prompt_clip_embeds=neg_image_prompt_clip_embeds,
ip_adapter_fields=ip_adapter_fields,
context=context,
exit_stack=exit_stack,
dtype=inference_dtype,
)
x = denoise(
model=transformer,
img=x,
img_ids=img_ids,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
cfg_scale=cfg_scale,
inpaint_extension=inpaint_extension,
controlnet_extensions=controlnet_extensions,
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
)
x = unpack(x.float(), self.height, self.width)
return x
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int
) -> list[float]:
"""Prepare the cfg_scale schedule.
- Clips the cfg_scale schedule based on cfg_scale_start_step and cfg_scale_end_step.
- If cfg_scale is a list, then it is assumed to be a schedule and is returned as-is.
- If cfg_scale is a scalar, then a linear schedule is created from cfg_scale_start_step to cfg_scale_end_step.
"""
# num_steps is the number of denoising steps, which is one less than the number of timesteps.
num_steps = len(timesteps) - 1
# Normalize cfg_scale to a list if it is a scalar.
cfg_scale_list: list[float]
if isinstance(cfg_scale, float):
cfg_scale_list = [cfg_scale] * num_steps
elif isinstance(cfg_scale, list):
cfg_scale_list = cfg_scale
else:
raise ValueError(f"Unsupported cfg_scale type: {type(cfg_scale)}")
assert len(cfg_scale_list) == num_steps
# Handle negative indices for cfg_scale_start_step and cfg_scale_end_step.
start_step_index = cfg_scale_start_step
if start_step_index < 0:
start_step_index = num_steps + start_step_index
end_step_index = cfg_scale_end_step
if end_step_index < 0:
end_step_index = num_steps + end_step_index
# Validate the start and end step indices.
if not (0 <= start_step_index < num_steps):
raise ValueError(f"Invalid cfg_scale_start_step. Out of range: {cfg_scale_start_step}.")
if not (0 <= end_step_index < num_steps):
raise ValueError(f"Invalid cfg_scale_end_step. Out of range: {cfg_scale_end_step}.")
if start_step_index > end_step_index:
raise ValueError(
f"cfg_scale_start_step ({cfg_scale_start_step}) must be before cfg_scale_end_step "
+ f"({cfg_scale_end_step})."
)
# Set values outside the start and end step indices to 1.0. This is equivalent to disabling cfg_scale for those
# steps.
clipped_cfg_scale = [1.0] * num_steps
clipped_cfg_scale[start_step_index : end_step_index + 1] = cfg_scale_list[start_step_index : end_step_index + 1]
return clipped_cfg_scale
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
@@ -541,112 +408,6 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
return controlnet_extensions
def _normalize_ip_adapter_fields(self) -> list[IPAdapterField]:
if self.ip_adapter is None:
return []
elif isinstance(self.ip_adapter, IPAdapterField):
return [self.ip_adapter]
elif isinstance(self.ip_adapter, list):
return self.ip_adapter
else:
raise ValueError(f"Unsupported IP-Adapter type: {type(self.ip_adapter)}")
def _prep_ip_adapter_image_prompt_clip_embeds(
self,
ip_adapter_fields: list[IPAdapterField],
context: InvocationContext,
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
clip_image_processor = CLIPImageProcessor()
pos_image_prompt_clip_embeds: list[torch.Tensor] = []
neg_image_prompt_clip_embeds: list[torch.Tensor] = []
for ip_adapter_field in ip_adapter_fields:
# `ip_adapter_field.image` could be a list or a single ImageField. Normalize to a list here.
ipa_image_fields: list[ImageField]
if isinstance(ip_adapter_field.image, ImageField):
ipa_image_fields = [ip_adapter_field.image]
elif isinstance(ip_adapter_field.image, list):
ipa_image_fields = ip_adapter_field.image
else:
raise ValueError(f"Unsupported IP-Adapter image type: {type(ip_adapter_field.image)}")
if len(ipa_image_fields) != 1:
raise ValueError(
f"FLUX IP-Adapter only supports a single image prompt (received {len(ipa_image_fields)})."
)
ipa_images = [context.images.get_pil(image.image_name, mode="RGB") for image in ipa_image_fields]
pos_images: list[npt.NDArray[np.uint8]] = []
neg_images: list[npt.NDArray[np.uint8]] = []
for ipa_image in ipa_images:
assert ipa_image.mode == "RGB"
pos_image = np.array(ipa_image)
# We use a black image as the negative image prompt for parity with
# https://github.com/XLabs-AI/x-flux-comfyui/blob/45c834727dd2141aebc505ae4b01f193a8414e38/nodes.py#L592-L593
# An alternative scheme would be to apply zeros_like() after calling the clip_image_processor.
neg_image = np.zeros_like(pos_image)
pos_images.append(pos_image)
neg_images.append(neg_image)
with context.models.load(ip_adapter_field.image_encoder_model) as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
clip_image: torch.Tensor = clip_image_processor(images=pos_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
pos_clip_image_embeds = image_encoder_model(clip_image).image_embeds
clip_image = clip_image_processor(images=neg_images, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder_model.device, dtype=image_encoder_model.dtype)
neg_clip_image_embeds = image_encoder_model(clip_image).image_embeds
pos_image_prompt_clip_embeds.append(pos_clip_image_embeds)
neg_image_prompt_clip_embeds.append(neg_clip_image_embeds)
return pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds
def _prep_ip_adapter_extensions(
self,
ip_adapter_fields: list[IPAdapterField],
pos_image_prompt_clip_embeds: list[torch.Tensor],
neg_image_prompt_clip_embeds: list[torch.Tensor],
context: InvocationContext,
exit_stack: ExitStack,
dtype: torch.dtype,
) -> tuple[list[XLabsIPAdapterExtension], list[XLabsIPAdapterExtension]]:
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension] = []
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension] = []
for ip_adapter_field, pos_image_prompt_clip_embed, neg_image_prompt_clip_embed in zip(
ip_adapter_fields, pos_image_prompt_clip_embeds, neg_image_prompt_clip_embeds, strict=True
):
ip_adapter_model = exit_stack.enter_context(context.models.load(ip_adapter_field.ip_adapter_model))
assert isinstance(ip_adapter_model, XlabsIpAdapterFlux)
ip_adapter_model = ip_adapter_model.to(dtype=dtype)
if ip_adapter_field.mask is not None:
raise ValueError("IP-Adapter masks are not yet supported in Flux.")
ip_adapter_extension = XLabsIPAdapterExtension(
model=ip_adapter_model,
image_prompt_clip_embed=pos_image_prompt_clip_embed,
weight=ip_adapter_field.weight,
begin_step_percent=ip_adapter_field.begin_step_percent,
end_step_percent=ip_adapter_field.end_step_percent,
)
ip_adapter_extension.run_image_proj(dtype=dtype)
pos_ip_adapter_extensions.append(ip_adapter_extension)
ip_adapter_extension = XLabsIPAdapterExtension(
model=ip_adapter_model,
image_prompt_clip_embed=neg_image_prompt_clip_embed,
weight=ip_adapter_field.weight,
begin_step_percent=ip_adapter_field.begin_step_percent,
end_step_percent=ip_adapter_field.end_step_percent,
)
ip_adapter_extension.run_image_proj(dtype=dtype)
neg_ip_adapter_extensions.append(ip_adapter_extension)
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.transformer.loras:
lora_info = context.models.load(lora.lora)

View File

@@ -1,89 +0,0 @@
from builtins import float
from typing import List, Literal, Union
from pydantic import field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import InputField, UIType
from invokeai.app.invocations.ip_adapter import (
CLIP_VISION_MODEL_MAP,
IPAdapterField,
IPAdapterInvocation,
IPAdapterOutput,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import (
IPAdapterCheckpointConfig,
IPAdapterInvokeAIConfig,
)
@invocation(
"flux_ip_adapter",
title="FLUX IP-Adapter",
tags=["ip_adapter", "control"],
category="ip_adapter",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxIPAdapterInvocation(BaseInvocation):
"""Collects FLUX IP-Adapter info to pass to other nodes."""
# FLUXIPAdapterInvocation is based closely on IPAdapterInvocation, but with some unsupported features removed.
image: ImageField = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", ui_type=UIType.IPAdapterModel
)
# Currently, the only known ViT model used by FLUX IP-Adapters is ViT-L.
clip_vision_model: Literal["ViT-L"] = InputField(description="CLIP Vision model to use.", default="ViT-L")
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, (IPAdapterInvokeAIConfig, IPAdapterCheckpointConfig))
# Note: There is a IPAdapterInvokeAIConfig.image_encoder_model_id field, but it isn't trustworthy.
image_encoder_starter_model = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model_id = image_encoder_starter_model.source
image_encoder_model_name = image_encoder_starter_model.name
image_encoder_model = IPAdapterInvocation.get_clip_image_encoder(
context, image_encoder_model_id, image_encoder_model_name
)
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=ModelIdentifierField.from_config(image_encoder_model),
weight=self.weight,
target_blocks=[], # target_blocks is currently unused for FLUX IP-Adapters.
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
mask=None, # mask is currently unused for FLUX IP-Adapters.
),
)

View File

@@ -9,7 +9,6 @@ from invokeai.app.invocations.fields import FieldDescriptions, InputField, Outpu
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import (
AnyModelConfig,
@@ -18,12 +17,6 @@ from invokeai.backend.model_manager.config import (
IPAdapterInvokeAIConfig,
ModelType,
)
from invokeai.backend.model_manager.starter_models import (
StarterModel,
clip_vit_l_image_encoder,
ip_adapter_sd_image_encoder,
ip_adapter_sdxl_image_encoder,
)
class IPAdapterField(BaseModel):
@@ -62,14 +55,10 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
CLIP_VISION_MODEL_MAP: dict[Literal["ViT-L", "ViT-H", "ViT-G"], StarterModel] = {
"ViT-L": clip_vit_l_image_encoder,
"ViT-H": ip_adapter_sd_image_encoder,
"ViT-G": ip_adapter_sdxl_image_encoder,
}
CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.5.0")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.4.1")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
@@ -81,7 +70,7 @@ class IPAdapterInvocation(BaseInvocation):
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)
clip_vision_model: Literal["ViT-H", "ViT-G", "ViT-L"] = InputField(
clip_vision_model: Literal["ViT-H", "ViT-G"] = InputField(
description="CLIP Vision model to use. Overrides model settings. Mandatory for checkpoint models.",
default="ViT-H",
ui_order=2,
@@ -122,11 +111,9 @@ class IPAdapterInvocation(BaseInvocation):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
else:
image_encoder_starter_model = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model_id = image_encoder_starter_model.source
image_encoder_model_name = image_encoder_starter_model.name
image_encoder_model_name = CLIP_VISION_MODEL_MAP[self.clip_vision_model]
image_encoder_model = self.get_clip_image_encoder(context, image_encoder_model_id, image_encoder_model_name)
image_encoder_model = self._get_image_encoder(context, image_encoder_model_name)
if self.method == "style":
if ip_adapter_info.base == "sd-1":
@@ -160,10 +147,7 @@ class IPAdapterInvocation(BaseInvocation):
),
)
@classmethod
def get_clip_image_encoder(
cls, context: InvocationContext, image_encoder_model_id: str, image_encoder_model_name: str
) -> AnyModelConfig:
def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig:
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
@@ -175,11 +159,7 @@ class IPAdapterInvocation(BaseInvocation):
)
installer = context._services.model_manager.install
# Note: We hard-code the type to CLIPVision here because if the model contains both a CLIPVision and a
# CLIPText model, the probe may treat it as a CLIPText model.
job = installer.heuristic_import(
image_encoder_model_id, ModelRecordChanges(name=image_encoder_model_name, type=ModelType.CLIPVision)
)
job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}")
installer.wait_for_job(job, timeout=600) # Wait for up to 10 minutes
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision

View File

@@ -5,7 +5,6 @@ from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
from invokeai.backend.image_util.util import pil_to_np
@invocation(
@@ -149,55 +148,3 @@ class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)
return ImageOutput.build(image_dto)
@invocation(
"apply_tensor_mask_to_image",
title="Apply Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.0.0",
)
class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies a tensor mask to an image.
The image is converted to RGBA and the mask is applied to the alpha channel."""
mask: TensorField = InputField(description="The mask tensor to apply.")
image: ImageField = InputField(description="The image to apply the mask to.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = context.tensors.load(self.mask.tensor_name)
# Squeeze the channel dimension if it exists.
if mask.dim() == 3:
mask = mask.squeeze(0)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy().astype(np.uint8)
if self.invert:
mask_np = 255 - mask_np
# Apply the mask only to the alpha channel where the original alpha is non-zero. This preserves the original
# image's transparency - else the transparent regions would end up as opaque black.
# Separate the image into R, G, B, and A channels
image_np = pil_to_np(image)
r, g, b, a = np.split(image_np, 4, axis=-1)
# Apply the mask to the alpha channel
new_alpha = np.where(a.squeeze() > 0, mask_np, a.squeeze())
# Stack the RGB channels with the modified alpha
masked_image_np = np.dstack([r.squeeze(), g.squeeze(), b.squeeze(), new_alpha])
# Convert back to an image (RGBA)
masked_image = Image.fromarray(masked_image_np.astype(np.uint8), "RGBA")
image_dto = context.images.save(image=masked_image)
return ImageOutput.build(image_dto)

View File

@@ -40,7 +40,7 @@ class IPAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model.")
clip_vision_model: Literal["ViT-L", "ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
clip_vision_model: Literal["ViT-H", "ViT-G"] = Field(description="The CLIP Vision model")
method: Literal["full", "style", "composition"] = Field(description="Method to apply IP Weights with")
weight: Union[float, list[float]] = Field(description="The weight given to the IP-Adapter")
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")

View File

@@ -1,11 +1,9 @@
from enum import Enum
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from pydantic import BaseModel, Field, model_validator
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
@@ -25,31 +23,12 @@ SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
}
class SAMPointLabel(Enum):
negative = -1
neutral = 0
positive = 1
class SAMPoint(BaseModel):
x: int = Field(..., description="The x-coordinate of the point")
y: int = Field(..., description="The y-coordinate of the point")
label: SAMPointLabel = Field(..., description="The label of the point")
class SAMPointsField(BaseModel):
points: list[SAMPoint] = Field(..., description="The points of the object")
def to_list(self) -> list[list[int]]:
return [[point.x, point.y, point.label.value] for point in self.points]
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.1.0",
version="1.0.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
@@ -61,13 +40,7 @@ class SegmentAnythingInvocation(BaseInvocation):
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] | None = InputField(
default=None, description="The bounding boxes to prompt the SAM model with."
)
point_lists: list[SAMPointsField] | None = InputField(
default=None,
description="The list of point lists to prompt the SAM model with. Each list of points represents a single object.",
)
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
default=True,
@@ -77,22 +50,12 @@ class SegmentAnythingInvocation(BaseInvocation):
default="all",
)
@model_validator(mode="after")
def check_point_lists_or_bounding_box(self):
if self.point_lists is None and self.bounding_boxes is None:
raise ValueError("Either point_lists or bounding_box must be provided.")
elif self.point_lists is not None and self.bounding_boxes is not None:
raise ValueError("Only one of point_lists or bounding_box can be provided.")
return self
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if (not self.bounding_boxes or len(self.bounding_boxes) == 0) and (
not self.point_lists or len(self.point_lists) == 0
):
if len(self.bounding_boxes) == 0:
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
else:
masks = self._segment(context=context, image=image_pil)
@@ -120,13 +83,14 @@ class SegmentAnythingInvocation(BaseInvocation):
assert isinstance(sam_processor, SamProcessor)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(self, context: InvocationContext, image: Image.Image) -> list[torch.Tensor]:
def _segment(
self,
context: InvocationContext,
image: Image.Image,
) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = (
[[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes] if self.bounding_boxes else None
)
sam_points = [p.to_list() for p in self.point_lists] if self.point_lists else None
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
with (
context.models.load_remote_model(
@@ -134,7 +98,7 @@ class SegmentAnythingInvocation(BaseInvocation):
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes, point_lists=sam_points)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:
@@ -177,10 +141,9 @@ class SegmentAnythingInvocation(BaseInvocation):
return masks
def _filter_masks(
self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField] | None
) -> list[torch.Tensor]:
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
"""Filter the detected masks based on the specified mask filter."""
assert len(masks) == len(bounding_boxes)
if self.mask_filter == "all":
return masks
@@ -188,10 +151,6 @@ class SegmentAnythingInvocation(BaseInvocation):
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
assert (
bounding_boxes is not None
), "Bounding boxes must be provided to use the 'highest_box_score' mask filter."
assert len(masks) == len(bounding_boxes)
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
# cases the scores should all be non-None when using this filtering mode. That being said, -1.0 is a

View File

@@ -110,26 +110,15 @@ class DiskImageFileStorage(ImageFileStorageBase):
except Exception as e:
raise ImageFileDeleteException from e
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
base_folder = self.__thumbnails_folder if thumbnail else self.__output_folder
filename = get_thumbnail_name(image_name) if thumbnail else image_name
path = self.__output_folder / image_name
# Strip any path information from the filename
basename = Path(filename).name
if thumbnail:
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
if basename != filename:
raise ValueError("Invalid image name, potential directory traversal detected")
image_path = base_folder / basename
# Ensure the image path is within the base folder to prevent directory traversal
resolved_base = base_folder.resolve()
resolved_image_path = image_path.resolve()
if not resolved_image_path.is_relative_to(resolved_base):
raise ValueError("Image path outside outputs folder, potential directory traversal detected")
return resolved_image_path
return path
def validate_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for an image or thumbnail."""

View File

@@ -1,4 +1,3 @@
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
@@ -222,7 +221,7 @@ class ImagesInterface(InvocationContextInterface):
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object. This method returns a copy of the image.
"""Gets an image as a PIL Image object.
Args:
image_name: The name of the image to get.
@@ -234,15 +233,11 @@ class ImagesInterface(InvocationContextInterface):
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
try:
# convert makes a copy!
image = image.convert(mode)
except ValueError:
self._services.logger.warning(
f"Could not convert image from {image.mode} to {mode}. Using original mode instead."
)
else:
# copy the image to prevent the user from modifying the original
image = image.copy()
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
@@ -295,15 +290,15 @@ class TensorsInterface(InvocationContextInterface):
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name. This method returns a copy of the tensor.
"""Loads a tensor by name.
Args:
name: The name of the tensor to load.
Returns:
The tensor.
The loaded tensor.
"""
return self._services.tensors.load(name).clone()
return self._services.tensors.load(name)
class ConditioningInterface(InvocationContextInterface):
@@ -321,16 +316,16 @@ class ConditioningInterface(InvocationContextInterface):
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name. This method returns a copy of the conditioning data.
"""Loads conditioning data by name.
Args:
name: The name of the conditioning data to load.
Returns:
The conditioning data.
The loaded conditioning data.
"""
return deepcopy(self._services.conditioning.load(name))
return self._services.conditioning.load(name)
class ModelsInterface(InvocationContextInterface):

View File

@@ -1,83 +0,0 @@
import einops
import torch
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
class CustomDoubleStreamBlockProcessor:
"""A class containing a custom implementation of DoubleStreamBlock.forward() with additional features
(IP-Adapter, etc.).
"""
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
"""
img_mod1, img_mod2 = block.img_mod(vec)
txt_mod1, txt_mod2 = block.txt_mod(vec)
# prepare image for attention
img_modulated = block.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = block.img_attn.qkv(img_modulated)
img_q, img_k, img_v = einops.rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
img_q, img_k = block.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = block.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = block.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = einops.rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
txt_q, txt_k = block.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * block.img_attn.proj(img_attn)
img = img + img_mod2.gate * block.img_mlp((1 + img_mod2.scale) * block.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * block.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * block.txt_mlp((1 + txt_mod2.scale) * block.txt_norm2(txt) + txt_mod2.shift)
return img, txt, img_q
@staticmethod
def custom_double_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
img = ip_adapter_extension.run_ip_adapter(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img_q=img_q,
img=img,
)
return img, txt

View File

@@ -1,4 +1,3 @@
import math
from typing import Callable
import torch
@@ -8,7 +7,6 @@ from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFl
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
@@ -18,23 +16,15 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
guidance: float,
cfg_scale: list[float],
inpaint_extension: InpaintExtension | None,
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -47,9 +37,10 @@ def denoise(
latents=img,
),
)
step = 1
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for step_index, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
# Run ControlNet models.
@@ -57,7 +48,7 @@ def denoise(
for controlnet_extension in controlnet_extensions:
controlnet_residuals.append(
controlnet_extension.run_controlnet(
timestep_index=step_index,
timestep_index=step - 1,
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
@@ -70,7 +61,7 @@ def denoise(
)
# Merge the ControlNet residuals from multiple ControlNets.
# TODO(ryand): We may want to calculate the sum just-in-time to keep peak memory low. Keep in mind, that the
# TODO(ryand): We may want to alculate the sum just-in-time to keep peak memory low. Keep in mind, that the
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
@@ -83,39 +74,10 @@ def denoise(
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
total_num_timesteps=total_steps,
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
)
step_cfg_scale = cfg_scale[step_index]
# If step_cfg_scale, is 1.0, then we don't need to run the negative prediction.
if not math.isclose(step_cfg_scale, 1.0):
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
total_num_timesteps=total_steps,
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)
preview_img = img - t_curr * pred
img = img + (t_prev - t_curr) * pred
@@ -125,12 +87,13 @@ def denoise(
step_callback(
PipelineIntermediateState(
step=step_index + 1,
step=step,
order=1,
total_steps=total_steps,
timestep=int(t_curr),
latents=preview_img,
),
)
step += 1
return img

View File

@@ -1,89 +0,0 @@
import math
from typing import List, Union
import einops
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
class XLabsIPAdapterExtension:
def __init__(
self,
model: XlabsIpAdapterFlux,
image_prompt_clip_embed: torch.Tensor,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
):
self._model = model
self._image_prompt_clip_embed = image_prompt_clip_embed
self._weight = weight
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
self._image_proj: torch.Tensor | None = None
def _get_weight(self, timestep_index: int, total_num_timesteps: int) -> float:
first_step = math.floor(self._begin_step_percent * total_num_timesteps)
last_step = math.ceil(self._end_step_percent * total_num_timesteps)
if timestep_index < first_step or timestep_index > last_step:
return 0.0
if isinstance(self._weight, list):
return self._weight[timestep_index]
return self._weight
@staticmethod
def run_clip_image_encoder(
pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection
) -> torch.Tensor:
clip_image_processor = CLIPImageProcessor()
clip_image: torch.Tensor = clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(device=image_encoder.device, dtype=image_encoder.dtype)
clip_image_embeds = image_encoder(clip_image).image_embeds
return clip_image_embeds
def run_image_proj(self, dtype: torch.dtype):
image_prompt_clip_embed = self._image_prompt_clip_embed.to(dtype=dtype)
self._image_proj = self._model.image_proj(image_prompt_clip_embed)
def run_ip_adapter(
self,
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: DoubleStreamBlock,
img_q: torch.Tensor,
img: torch.Tensor,
) -> torch.Tensor:
"""The logic in this function is based on:
https://github.com/XLabs-AI/x-flux/blob/47495425dbed499be1e8e5a6e52628b07349cba2/src/flux/modules/layers.py#L245-L301
"""
weight = self._get_weight(timestep_index=timestep_index, total_num_timesteps=total_num_timesteps)
if weight < 1e-6:
return img
ip_adapter_block = self._model.ip_adapter_double_blocks.double_blocks[block_index]
ip_key = ip_adapter_block.ip_adapter_double_stream_k_proj(self._image_proj)
ip_value = ip_adapter_block.ip_adapter_double_stream_v_proj(self._image_proj)
# Reshape projections for multi-head attention.
ip_key = einops.rearrange(ip_key, "B L (H D) -> B H L D", H=block.num_heads)
ip_value = einops.rearrange(ip_value, "B L (H D) -> B H L D", H=block.num_heads)
# Compute attention between IP projections and the latent query.
ip_attn = torch.nn.functional.scaled_dot_product_attention(
img_q, ip_key, ip_value, dropout_p=0.0, is_causal=False
)
ip_attn = einops.rearrange(ip_attn, "B H L D -> B L (H D)", H=block.num_heads)
img = img + weight * ip_attn
return img

View File

@@ -1,93 +0,0 @@
# This file is based on:
# https://github.com/XLabs-AI/x-flux/blob/47495425dbed499be1e8e5a6e52628b07349cba2/src/flux/modules/layers.py#L221
import einops
import torch
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
class IPDoubleStreamBlockProcessor(torch.nn.Module):
"""Attention processor for handling IP-adapter with double stream block."""
def __init__(self, context_dim: int, hidden_dim: int):
super().__init__()
# Ensure context_dim matches the dimension of image_proj
self.context_dim = context_dim
self.hidden_dim = hidden_dim
# Initialize projections for IP-adapter
self.ip_adapter_double_stream_k_proj = torch.nn.Linear(context_dim, hidden_dim, bias=True)
self.ip_adapter_double_stream_v_proj = torch.nn.Linear(context_dim, hidden_dim, bias=True)
torch.nn.init.zeros_(self.ip_adapter_double_stream_k_proj.weight)
torch.nn.init.zeros_(self.ip_adapter_double_stream_k_proj.bias)
torch.nn.init.zeros_(self.ip_adapter_double_stream_v_proj.weight)
torch.nn.init.zeros_(self.ip_adapter_double_stream_v_proj.bias)
def __call__(
self,
attn: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
image_proj: torch.Tensor,
ip_scale: float = 1.0,
):
# Prepare image for attention
img_mod1, img_mod2 = attn.img_mod(vec)
txt_mod1, txt_mod2 = attn.txt_mod(vec)
img_modulated = attn.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = attn.img_attn.qkv(img_modulated)
img_q, img_k, img_v = einops.rearrange(
img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim
)
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
txt_modulated = attn.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = attn.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = einops.rearrange(
txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim
)
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn1 = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
# print(f"txt_attn shape: {txt_attn.size()}")
# print(f"img_attn shape: {img_attn.size()}")
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
# IP-adapter processing
ip_query = img_q # latent sample query
ip_key = self.ip_adapter_double_stream_k_proj(image_proj)
ip_value = self.ip_adapter_double_stream_v_proj(image_proj)
# Reshape projections for multi-head attention
ip_key = einops.rearrange(ip_key, "B L (H D) -> B H L D", H=attn.num_heads, D=attn.head_dim)
ip_value = einops.rearrange(ip_value, "B L (H D) -> B H L D", H=attn.num_heads, D=attn.head_dim)
# Compute attention between IP projections and the latent query
ip_attention = torch.nn.functional.scaled_dot_product_attention(
ip_query, ip_key, ip_value, dropout_p=0.0, is_causal=False
)
ip_attention = einops.rearrange(ip_attention, "B H L D -> B L (H D)", H=attn.num_heads, D=attn.head_dim)
img = img + ip_scale * ip_attention
return img, txt

View File

@@ -1,50 +0,0 @@
from typing import Any, Dict
import torch
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterParams
def is_state_dict_xlabs_ip_adapter(sd: Dict[str, Any]) -> bool:
"""Is the state dict for an XLabs FLUX IP-Adapter model?
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision.
"""
# If all of the expected keys are present, then this is very likely an XLabs IP-Adapter model.
expected_keys = {
"double_blocks.0.processor.ip_adapter_double_stream_k_proj.bias",
"double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight",
"double_blocks.0.processor.ip_adapter_double_stream_v_proj.bias",
"double_blocks.0.processor.ip_adapter_double_stream_v_proj.weight",
"ip_adapter_proj_model.norm.bias",
"ip_adapter_proj_model.norm.weight",
"ip_adapter_proj_model.proj.bias",
"ip_adapter_proj_model.proj.weight",
}
if expected_keys.issubset(sd.keys()):
return True
return False
def infer_xlabs_ip_adapter_params_from_state_dict(state_dict: dict[str, torch.Tensor]) -> XlabsIpAdapterParams:
num_double_blocks = 0
context_dim = 0
hidden_dim = 0
# Count the number of double blocks.
double_block_index = 0
while f"double_blocks.{double_block_index}.processor.ip_adapter_double_stream_k_proj.weight" in state_dict:
double_block_index += 1
num_double_blocks = double_block_index
hidden_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[0]
context_dim = state_dict["double_blocks.0.processor.ip_adapter_double_stream_k_proj.weight"].shape[1]
clip_embeddings_dim = state_dict["ip_adapter_proj_model.proj.weight"].shape[1]
return XlabsIpAdapterParams(
num_double_blocks=num_double_blocks,
context_dim=context_dim,
hidden_dim=hidden_dim,
clip_embeddings_dim=clip_embeddings_dim,
)

View File

@@ -1,67 +0,0 @@
from dataclasses import dataclass
import torch
from invokeai.backend.ip_adapter.ip_adapter import ImageProjModel
class IPDoubleStreamBlock(torch.nn.Module):
def __init__(self, context_dim: int, hidden_dim: int):
super().__init__()
self.context_dim = context_dim
self.hidden_dim = hidden_dim
self.ip_adapter_double_stream_k_proj = torch.nn.Linear(context_dim, hidden_dim, bias=True)
self.ip_adapter_double_stream_v_proj = torch.nn.Linear(context_dim, hidden_dim, bias=True)
class IPAdapterDoubleBlocks(torch.nn.Module):
def __init__(self, num_double_blocks: int, context_dim: int, hidden_dim: int):
super().__init__()
self.double_blocks = torch.nn.ModuleList(
[IPDoubleStreamBlock(context_dim, hidden_dim) for _ in range(num_double_blocks)]
)
@dataclass
class XlabsIpAdapterParams:
num_double_blocks: int
context_dim: int
hidden_dim: int
clip_embeddings_dim: int
class XlabsIpAdapterFlux(torch.nn.Module):
def __init__(self, params: XlabsIpAdapterParams):
super().__init__()
self.image_proj = ImageProjModel(
cross_attention_dim=params.context_dim, clip_embeddings_dim=params.clip_embeddings_dim
)
self.ip_adapter_double_blocks = IPAdapterDoubleBlocks(
num_double_blocks=params.num_double_blocks, context_dim=params.context_dim, hidden_dim=params.hidden_dim
)
def load_xlabs_state_dict(self, state_dict: dict[str, torch.Tensor], assign: bool = False):
"""We need this custom function to load state dicts rather than using .load_state_dict(...) because the model
structure does not match the state_dict structure.
"""
# Split the state_dict into the image projection model and the double blocks.
image_proj_sd: dict[str, torch.Tensor] = {}
double_blocks_sd: dict[str, torch.Tensor] = {}
for k, v in state_dict.items():
if k.startswith("ip_adapter_proj_model."):
image_proj_sd[k] = v
elif k.startswith("double_blocks."):
double_blocks_sd[k] = v
else:
raise ValueError(f"Unexpected key: {k}")
# Initialize the image projection model.
image_proj_sd = {k.replace("ip_adapter_proj_model.", ""): v for k, v in image_proj_sd.items()}
self.image_proj.load_state_dict(image_proj_sd, assign=assign)
# Initialize the double blocks.
double_blocks_sd = {k.replace("processor.", ""): v for k, v in double_blocks_sd.items()}
self.ip_adapter_double_blocks.load_state_dict(double_blocks_sd, assign=assign)

View File

@@ -5,8 +5,6 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
@@ -90,11 +88,8 @@ class Flux(nn.Module):
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None,
timestep_index: int,
total_num_timesteps: int,
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -116,19 +111,7 @@ class Flux(nn.Module):
if controlnet_double_block_residuals is not None:
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
txt=txt,
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
if controlnet_double_block_residuals is not None:
img += controlnet_double_block_residuals[block_index]

View File

@@ -168,17 +168,8 @@ def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtyp
Returns:
torch.Tensor: Image position ids.
"""
if device.type == "mps":
orig_dtype = dtype
dtype = torch.float16
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
if device.type == "mps":
img_ids.to(orig_dtype)
return img_ids

View File

@@ -1,4 +1,4 @@
from typing import Optional, TypeAlias
from typing import Optional
import torch
from PIL import Image
@@ -7,14 +7,6 @@ from transformers.models.sam.processing_sam import SamProcessor
from invokeai.backend.raw_model import RawModel
# Type aliases for the inputs to the SAM model.
ListOfBoundingBoxes: TypeAlias = list[list[int]]
"""A list of bounding boxes. Each bounding box is in the format [xmin, ymin, xmax, ymax]."""
ListOfPoints: TypeAlias = list[list[int]]
"""A list of points. Each point is in the format [x, y]."""
ListOfPointLabels: TypeAlias = list[int]
"""A list of SAM point labels. Each label is an integer where -1 is background, 0 is neutral, and 1 is foreground."""
class SegmentAnythingPipeline(RawModel):
"""A wrapper class for the transformers SAM model and processor that makes it compatible with the model manager."""
@@ -35,53 +27,20 @@ class SegmentAnythingPipeline(RawModel):
return calc_module_size(self._sam_model)
def segment(
self,
image: Image.Image,
bounding_boxes: list[list[int]] | None = None,
point_lists: list[list[list[int]]] | None = None,
) -> torch.Tensor:
def segment(self, image: Image.Image, bounding_boxes: list[list[int]]) -> torch.Tensor:
"""Run the SAM model.
Either bounding_boxes or point_lists must be provided. If both are provided, bounding_boxes will be used and
point_lists will be ignored.
Args:
image (Image.Image): The image to segment.
bounding_boxes (list[list[int]]): The bounding box prompts. Each bounding box is in the format
[xmin, ymin, xmax, ymax].
point_lists (list[list[list[int]]]): The points prompts. Each point is in the format [x, y, label].
`label` is an integer where -1 is background, 0 is neutral, and 1 is foreground.
Returns:
torch.Tensor: The segmentation masks. dtype: torch.bool. shape: [num_masks, channels, height, width].
"""
# Prep the inputs:
# - Create a list of bounding boxes or points and labels.
# - Add a batch dimension of 1 to the inputs.
if bounding_boxes:
input_boxes: list[ListOfBoundingBoxes] | None = [bounding_boxes]
input_points: list[ListOfPoints] | None = None
input_labels: list[ListOfPointLabels] | None = None
elif point_lists:
input_boxes: list[ListOfBoundingBoxes] | None = None
input_points: list[ListOfPoints] | None = []
input_labels: list[ListOfPointLabels] | None = []
for point_list in point_lists:
input_points.append([[p[0], p[1]] for p in point_list])
input_labels.append([p[2] for p in point_list])
else:
raise ValueError("Either bounding_boxes or points and labels must be provided.")
inputs = self._sam_processor(
images=image,
input_boxes=input_boxes,
input_points=input_points,
input_labels=input_labels,
return_tensors="pt",
).to(self._sam_model.device)
# Add batch dimension of 1 to the bounding boxes.
boxes = [bounding_boxes]
inputs = self._sam_processor(images=image, input_boxes=boxes, return_tensors="pt").to(self._sam_model.device)
outputs = self._sam_model(**inputs)
masks = self._sam_processor.post_process_masks(
masks=outputs.pred_masks,

View File

@@ -394,8 +394,6 @@ class IPAdapterBaseConfig(ModelConfigBase):
class IPAdapterInvokeAIConfig(IPAdapterBaseConfig):
"""Model config for IP Adapter diffusers format models."""
# TODO(ryand): Should we deprecate this field? From what I can tell, it hasn't been probed correctly for a long
# time. Need to go through the history to make sure I'm understanding this fully.
image_encoder_model_id: str
format: Literal[ModelFormat.InvokeAI]

View File

@@ -1,41 +0,0 @@
from pathlib import Path
from typing import Optional
from transformers import CLIPVisionModelWithProjection
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
DiffusersConfigBase,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.CLIPVision, format=ModelFormat.Diffusers)
class ClipVisionLoader(ModelLoader):
"""Class to load CLIPVision models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, DiffusersConfigBase):
raise ValueError("Only DiffusersConfigBase models are currently supported here.")
if submodel_type is not None:
raise Exception("There are no submodels in CLIP Vision models.")
model_path = Path(config.path)
model = CLIPVisionModelWithProjection.from_pretrained(
model_path, torch_dtype=self._torch_dtype, local_files_only=True
)
assert isinstance(model, CLIPVisionModelWithProjection)
return model

View File

@@ -19,10 +19,6 @@ from invokeai.backend.flux.controlnet.state_dict_utils import (
is_state_dict_xlabs_controlnet,
)
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.ip_adapter.state_dict_utils import infer_xlabs_ip_adapter_params_from_state_dict
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import (
XlabsIpAdapterFlux,
)
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.util import ae_params, params
@@ -39,7 +35,6 @@ from invokeai.backend.model_manager.config import (
CLIPEmbedDiffusersConfig,
ControlNetCheckpointConfig,
ControlNetDiffusersConfig,
IPAdapterCheckpointConfig,
MainBnbQuantized4bCheckpointConfig,
MainCheckpointConfig,
MainGGUFCheckpointConfig,
@@ -175,7 +170,7 @@ class T5EncoderCheckpointModel(ModelLoader):
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2:
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2", torch_dtype="auto")
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2")
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
@@ -357,26 +352,3 @@ class FluxControlnetModel(ModelLoader):
model.load_state_dict(sd, assign=True)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.IPAdapter, format=ModelFormat.Checkpoint)
class FluxIpAdapterModel(ModelLoader):
"""Class to load FLUX IP-Adapter models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, IPAdapterCheckpointConfig):
raise ValueError(f"Unexpected model config type: {type(config)}.")
sd = load_file(Path(config.path))
params = infer_xlabs_ip_adapter_params_from_state_dict(sd)
with accelerate.init_empty_weights():
model = XlabsIpAdapterFlux(params=params)
model.load_xlabs_state_dict(sd, assign=True)
return model

View File

@@ -22,6 +22,7 @@ from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.CLIPVision, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T2IAdapter, format=ModelFormat.Diffusers)
class GenericDiffusersLoader(ModelLoader):
"""Class to load simple diffusers models."""

View File

@@ -117,6 +117,8 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
load_class = load_classes[config.base][config.variant]
except KeyError as e:
raise Exception(f"No diffusers pipeline known for base={config.base}, variant={config.variant}") from e
prediction_type = config.prediction_type.value
upcast_attention = config.upcast_attention
# Without SilenceWarnings we get log messages like this:
# site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
@@ -127,7 +129,13 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
# ['text_model.embeddings.position_ids']
with SilenceWarnings():
pipeline = load_class.from_single_file(config.path, torch_dtype=self._torch_dtype)
pipeline = load_class.from_single_file(
config.path,
torch_dtype=self._torch_dtype,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
load_safety_checker=False,
)
if not submodel_type:
return pipeline

View File

@@ -20,7 +20,7 @@ from typing import Optional
import requests
from huggingface_hub import HfApi, configure_http_backend, hf_hub_url
from huggingface_hub.errors import RepositoryNotFoundError, RevisionNotFoundError
from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session

View File

@@ -14,7 +14,6 @@ from invokeai.backend.flux.controlnet.state_dict_utils import (
is_state_dict_instantx_controlnet,
is_state_dict_xlabs_controlnet,
)
from invokeai.backend.flux.ip_adapter.state_dict_utils import is_state_dict_xlabs_ip_adapter
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
is_state_dict_likely_in_flux_diffusers_format,
)
@@ -244,6 +243,8 @@ class ModelProbe(object):
"cond_stage_model.",
"first_stage_model.",
"model.diffusion_model.",
# FLUX models in the official BFL format contain keys with the "double_blocks." prefix.
"double_blocks.",
# Some FLUX checkpoint files contain transformer keys prefixed with "model.diffusion_model".
# This prefix is typically used to distinguish between multiple models bundled in a single file.
"model.diffusion_model.double_blocks.",
@@ -251,10 +252,6 @@ class ModelProbe(object):
):
# Keys starting with double_blocks are associated with Flux models
return ModelType.Main
# FLUX models in the official BFL format contain keys with the "double_blocks." prefix, but we must be
# careful to avoid false positives on XLabs FLUX IP-Adapter models.
elif key.startswith("double_blocks.") and "ip_adapter" not in key:
return ModelType.Main
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
return ModelType.VAE
elif key.startswith(("lora_te_", "lora_unet_")):
@@ -277,14 +274,7 @@ class ModelProbe(object):
)
):
return ModelType.ControlNet
elif key.startswith(
(
"image_proj.",
"ip_adapter.",
# XLabs FLUX IP-Adapter models have keys startinh with "ip_adapter_proj_model.".
"ip_adapter_proj_model.",
)
):
elif key.startswith(("image_proj.", "ip_adapter.")):
return ModelType.IPAdapter
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
@@ -462,9 +452,8 @@ MODEL_NAME_TO_PREPROCESSOR = {
"normal": "normalbae_image_processor",
"sketch": "pidi_image_processor",
"scribble": "lineart_image_processor",
"lineart anime": "lineart_anime_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"lineart": "lineart_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",
@@ -683,10 +672,6 @@ class IPAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
if is_state_dict_xlabs_ip_adapter(checkpoint):
return BaseModelType.Flux
for key in checkpoint.keys():
if not key.startswith(("image_proj.", "ip_adapter.")):
continue

File diff suppressed because it is too large Load Diff

View File

@@ -54,11 +54,6 @@ GGML_TENSOR_OP_TABLE = {
torch.ops.aten.mul.Tensor: dequantize_and_run, # pyright: ignore
}
if torch.backends.mps.is_available():
GGML_TENSOR_OP_TABLE.update(
{torch.ops.aten.linear.default: dequantize_and_run} # pyright: ignore
)
class GGMLTensor(torch.Tensor):
"""A torch.Tensor sub-class holding a quantized GGML tensor.

View File

@@ -33,7 +33,7 @@ class PreviewExt(ExtensionBase):
def initial_preview(self, ctx: DenoiseContext):
self.callback(
PipelineIntermediateState(
step=0,
step=-1,
order=ctx.scheduler.order,
total_steps=len(ctx.inputs.timesteps),
timestep=int(ctx.scheduler.config.num_train_timesteps), # TODO: is there any code which uses it?

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,9 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
# NOTE(ryand): I'm not the origina author of this code, but for future reference, it appears that this class was copied
# from diffusers in order to add support for the encoder_attention_mask argument.
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
"""
A ControlNet model.

View File

@@ -58,7 +58,7 @@
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.43",
"@invoke-ai/ui-library": "^0.0.42",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
@@ -114,7 +114,8 @@
},
"peerDependencies": {
"react": "^18.2.0",
"react-dom": "^18.2.0"
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
},
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
@@ -148,8 +149,8 @@
"prettier": "^3.3.3",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.3.4",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.7.5",
"type-fest": "^4.26.1",
"typescript": "^5.6.2",
"vite": "^5.4.8",
"vite-plugin-css-injected-by-js": "^3.5.2",

View File

@@ -24,8 +24,8 @@ dependencies:
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.43
version: 0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.42
version: 0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -277,12 +277,12 @@ devDependencies:
storybook:
specifier: ^8.3.4
version: 8.3.4
ts-toolbelt:
specifier: ^9.6.0
version: 9.6.0
tsafe:
specifier: ^1.7.5
version: 1.7.5
type-fest:
specifier: ^4.26.1
version: 4.26.1
typescript:
specifier: ^5.6.2
version: 5.6.2
@@ -1696,20 +1696,20 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-t3fPYyks07ue3dEBPJuTHbeDLnDckDCOrtvc07mMDbLOnlPEZ0StaeiNGH+oO8qLzAuMAlSTdswgHfzTc2MmPw==}
/@invoke-ai/ui-library@0.0.42(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-OuDXRipBO5mu+Nv4qN8cd8MiwiGBdq6h4PirVgPI9/ltbdcIzePgUJ0dJns26lflHSTRWW38I16wl4YTw3mNWA==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@fontsource-variable/inter': 5.1.0
@@ -8830,6 +8830,10 @@ packages:
resolution: {integrity: sha512-tLJxacIQUM82IR7JO1UUkKlYuUTmoY9HBJAmNWFzheSlDS5SPMcNIepejHJa4BpPQLAcbRhRf3GDJzyj6rbKvA==}
dev: false
/ts-toolbelt@9.6.0:
resolution: {integrity: sha512-nsZd8ZeNUzukXPlJmTBwUAuABDe/9qtVDelJeT/qW0ow3ZS3BsQJtNkan1802aM9Uf68/Y8ljw86Hu0h5IUW3w==}
dev: true
/tsafe@1.7.5:
resolution: {integrity: sha512-tbNyyBSbwfbilFfiuXkSOj82a6++ovgANwcoqBAcO9/REPoZMEQoE8kWPeO0dy5A2D/2Lajr8Ohue5T0ifIvLQ==}
dev: true

View File

@@ -93,9 +93,7 @@
"placeholderSelectAModel": "Modell auswählen",
"reset": "Zurücksetzen",
"none": "Keine",
"new": "Neu",
"ok": "OK",
"close": "Schließen"
"new": "Neu"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -158,11 +156,7 @@
"displayBoardSearch": "Board durchsuchen",
"displaySearch": "Bild suchen",
"go": "Los",
"jump": "Springen",
"assetsTab": "Dateien, die Sie zur Verwendung in Ihren Projekten hochgeladen haben.",
"imagesTab": "Bilder, die Sie in Invoke erstellt und gespeichert haben.",
"boardsSettings": "Ordnereinstellungen",
"imagesSettings": "Galeriebildereinstellungen"
"jump": "Springen"
},
"hotkeys": {
"noHotkeysFound": "Kein Hotkey gefunden",
@@ -273,18 +267,6 @@
"applyFilter": {
"title": "Filter anwenden",
"desc": "Wende den ausstehenden Filter auf die ausgewählte Ebene an."
},
"cancelFilter": {
"title": "Filter abbrechen",
"desc": "Den ausstehenden Filter abbrechen."
},
"applyTransform": {
"desc": "Die ausstehende Transformation auf die ausgewählte Ebene anwenden.",
"title": "Transformation anwenden"
},
"cancelTransform": {
"title": "Transformation abbrechen",
"desc": "Die ausstehende Transformation abbrechen."
}
},
"viewer": {
@@ -581,18 +563,7 @@
"scanResults": "Ergebnisse des Scans",
"urlOrLocalPathHelper": "URLs sollten auf eine einzelne Datei deuten. Lokale Pfade können zusätzlich auch auf einen Ordner für ein einzelnes Diffusers-Modell hinweisen.",
"inplaceInstallDesc": "Installieren Sie Modelle, ohne die Dateien zu kopieren. Wenn Sie das Modell verwenden, wird es direkt von seinem Speicherort geladen. Wenn deaktiviert, werden die Dateien während der Installation in das von Invoke verwaltete Modellverzeichnis kopiert.",
"scanFolderHelper": "Der Ordner wird rekursiv nach Modellen durchsucht. Dies kann bei sehr großen Ordnern etwas dauern.",
"includesNModels": "Enthält {{n}} Modelle und deren Abhängigkeiten",
"starterBundles": "Starterpakete",
"installingXModels_one": "{{count}} Modell wird installiert",
"installingXModels_other": "{{count}} Modelle werden installiert",
"skippingXDuplicates_one": ", überspringe {{count}} Duplikat",
"skippingXDuplicates_other": ", überspringe {{count}} Duplikate",
"installingModel": "Modell wird installiert",
"loraTriggerPhrases": "LoRA-Auslösephrasen",
"installingBundle": "Bündel wird installiert",
"triggerPhrases": "Auslösephrasen",
"mainModelTriggerPhrases": "Hauptmodell-Auslösephrasen"
"scanFolderHelper": "Der Ordner wird rekursiv nach Modellen durchsucht. Dies kann bei sehr großen Ordnern etwas dauern."
},
"parameters": {
"images": "Bilder",
@@ -696,8 +667,7 @@
"about": "Über",
"submitSupportTicket": "Support-Ticket senden",
"toggleRightPanel": "Rechtes Bedienfeld umschalten (G)",
"toggleLeftPanel": "Linkes Bedienfeld umschalten (T)",
"uploadImages": "Bild(er) hochladen"
"toggleLeftPanel": "Linkes Bedienfeld umschalten (T)"
},
"boards": {
"autoAddBoard": "Board automatisch erstellen",
@@ -732,7 +702,7 @@
"shared": "Geteilte Ordner",
"archiveBoard": "Ordner archivieren",
"archived": "Archiviert",
"noBoards": "Kein {{boardType}} Ordner",
"noBoards": "Kein {boardType}} Ordner",
"hideBoards": "Ordner verstecken",
"viewBoards": "Ordner ansehen",
"deletedPrivateBoardsCannotbeRestored": "Gelöschte Boards können nicht wiederhergestellt werden. Wenn Sie „Nur Board löschen“ wählen, werden die Bilder in einen privaten, nicht kategorisierten Status für den Ersteller des Bildes versetzt.",
@@ -841,8 +811,7 @@
"parameterSet": "Parameter {{parameter}} setzen",
"recallParameter": "{{label}} Abrufen",
"parsingFailed": "Parsing Fehlgeschlagen",
"canvasV2Metadata": "Leinwand",
"guidance": "Führung"
"canvasV2Metadata": "Leinwand"
},
"popovers": {
"noiseUseCPU": {
@@ -1168,9 +1137,7 @@
"workflowNotes": "Notizen",
"workflowTags": "Tags",
"workflowVersion": "Version",
"saveToGallery": "In Galerie speichern",
"noWorkflows": "Keine Arbeitsabläufe",
"noMatchingWorkflows": "Keine passenden Arbeitsabläufe"
"saveToGallery": "In Galerie speichern"
},
"hrf": {
"enableHrf": "Korrektur für hohe Auflösungen",

View File

@@ -12,8 +12,7 @@
"resetUI": "$t(accessibility.reset) UI",
"toggleRightPanel": "Toggle Right Panel (G)",
"toggleLeftPanel": "Toggle Left Panel (T)",
"uploadImage": "Upload Image",
"uploadImages": "Upload Image(s)"
"uploadImage": "Upload Image"
},
"boards": {
"addBoard": "Add Board",
@@ -94,7 +93,6 @@
"close": "Close",
"copy": "Copy",
"copyError": "$t(gallery.copy) Error",
"clipboard": "Clipboard",
"on": "On",
"off": "Off",
"or": "or",
@@ -682,8 +680,7 @@
"recallParameters": "Recall Parameters",
"recallParameter": "Recall {{label}}",
"scheduler": "Scheduler",
"seamlessXAxis": "Seamless X Axis",
"seamlessYAxis": "Seamless Y Axis",
"seamless": "Seamless",
"seed": "Seed",
"steps": "Steps",
"strength": "Image to image strength",
@@ -714,12 +711,8 @@
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
"noDefaultSettings": "No default settings configured for this model. Visit the Model Manager to add default settings.",
"defaultSettings": "Default Settings",
"defaultSettingsSaved": "Default Settings Saved",
"defaultSettingsOutOfSync": "Some settings do not match the model's defaults:",
"restoreDefaultSettings": "Click to use the model's default settings.",
"usingDefaultSettings": "Using model's default settings",
"delete": "Delete",
"deleteConfig": "Delete Config",
"deleteModel": "Delete Model",
@@ -735,7 +728,6 @@
"huggingFaceHelper": "If multiple models are found in this repo, you will be prompted to select one to install.",
"hfToken": "HuggingFace Token",
"imageEncoderModelId": "Image Encoder Model ID",
"includesNModels": "Includes {{n}} models and their dependencies",
"installQueue": "Install Queue",
"inplaceInstall": "In-place install",
"inplaceInstallDesc": "Install models without copying the files. When using the model, it will be loaded from its this location. If disabled, the model file(s) will be copied into the Invoke-managed models directory during installation.",
@@ -789,8 +781,6 @@
"simpleModelPlaceholder": "URL or path to a local file or diffusers folder",
"source": "Source",
"spandrelImageToImage": "Image to Image (Spandrel)",
"starterBundles": "Starter Bundles",
"starterBundleHelpText": "Easily install all models needed to get started with a base model, including a main model, controlnets, IP adapters, and more. Selecting a bundle will skip any models that you already have installed.",
"starterModels": "Starter Models",
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
"syncModels": "Sync Models",
@@ -804,16 +794,11 @@
"uploadImage": "Upload Image",
"urlOrLocalPath": "URL or Local Path",
"urlOrLocalPathHelper": "URLs should point to a single file. Local paths can point to a single file or folder for a single diffusers model.",
"useDefaultSettings": "Use Default Settings",
"vae": "VAE",
"vaePrecision": "VAE Precision",
"variant": "Variant",
"width": "Width",
"installingBundle": "Installing Bundle",
"installingModel": "Installing Model",
"installingXModels_one": "Installing {{count}} model",
"installingXModels_other": "Installing {{count}} models",
"skippingXDuplicates_one": ", skipping {{count}} duplicate",
"skippingXDuplicates_other": ", skipping {{count}} duplicates"
"width": "Width"
},
"models": {
"addLora": "Add LoRA",
@@ -1113,9 +1098,6 @@
"enableInformationalPopovers": "Enable Informational Popovers",
"informationalPopoversDisabled": "Informational Popovers Disabled",
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
"enableModelDescriptions": "Enable Model Descriptions in Dropdowns",
"modelDescriptionsDisabled": "Model Descriptions in Dropdowns Disabled",
"modelDescriptionsDisabledDesc": "Model descriptions in dropdowns have been disabled. Enable them in Settings.",
"enableInvisibleWatermark": "Enable Invisible Watermark",
"enableNSFWChecker": "Enable NSFW Checker",
"general": "General",
@@ -1140,8 +1122,7 @@
"reloadingIn": "Reloading in"
},
"toast": {
"addedToBoard": "Added to board {{name}}'s assets",
"addedToUncategorized": "Added to board $t(boards.uncategorized)'s assets",
"addedToBoard": "Added to board",
"baseModelChanged": "Base Model Changed",
"baseModelChangedCleared_one": "Cleared or disabled {{count}} incompatible submodel",
"baseModelChangedCleared_other": "Cleared or disabled {{count}} incompatible submodels",
@@ -1190,10 +1171,7 @@
"setNodeField": "Set as node field",
"somethingWentWrong": "Something Went Wrong",
"uploadFailed": "Upload failed",
"imagesWillBeAddedTo": "Uploaded images will be added to board {{boardName}}'s assets.",
"uploadFailedInvalidUploadDesc_withCount_one": "Must be maximum of 1 PNG or JPEG image.",
"uploadFailedInvalidUploadDesc_withCount_other": "Must be maximum of {{count}} PNG or JPEG images.",
"uploadFailedInvalidUploadDesc": "Must be PNG or JPEG images.",
"uploadFailedInvalidUploadDesc": "Must be PNG or JPEG images",
"workflowLoaded": "Workflow Loaded",
"problemRetrievingWorkflow": "Problem Retrieving Workflow",
"workflowDeleted": "Workflow Deleted",
@@ -1259,33 +1237,6 @@
"heading": "Mask Adjustments",
"paragraphs": ["Adjust the mask."]
},
"inpainting": {
"heading": "Inpainting",
"paragraphs": ["Controls which area is modified, guided by Denoising Strength."]
},
"rasterLayer": {
"heading": "Raster Layer",
"paragraphs": ["Pixel-based content of your canvas, used during image generation."]
},
"regionalGuidance": {
"heading": "Regional Guidance",
"paragraphs": ["Brush to guide where elements from global prompts should appear."]
},
"regionalGuidanceAndReferenceImage": {
"heading": "Regional Guidance and Regional Reference Image",
"paragraphs": [
"For Regional Guidance, brush to guide where elements from global prompts should appear.",
"For Regional Reference Image, brush to apply a reference image to specific areas."
]
},
"globalReferenceImage": {
"heading": "Global Reference Image",
"paragraphs": ["Applies a reference image to influence the entire generation."]
},
"regionalReferenceImage": {
"heading": "Regional Reference Image",
"paragraphs": ["Brush to apply a reference image to specific areas."]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
@@ -1683,8 +1634,6 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"canvasAsRasterLayer": "$t(controlLayers.canvas) as $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) as $t(controlLayers.controlLayer)",
"referenceImage": "Reference Image",
"regionalReferenceImage": "Regional Reference Image",
"globalReferenceImage": "Global Reference Image",
@@ -1725,18 +1674,8 @@
"layer_other": "Layers",
"layer_withCount_one": "Layer ({{count}})",
"layer_withCount_other": "Layers ({{count}})",
"convertRasterLayerTo": "Convert $t(controlLayers.rasterLayer) To",
"convertControlLayerTo": "Convert $t(controlLayers.controlLayer) To",
"convertInpaintMaskTo": "Convert $t(controlLayers.inpaintMask) To",
"convertRegionalGuidanceTo": "Convert $t(controlLayers.regionalGuidance) To",
"copyRasterLayerTo": "Copy $t(controlLayers.rasterLayer) To",
"copyControlLayerTo": "Copy $t(controlLayers.controlLayer) To",
"copyInpaintMaskTo": "Copy $t(controlLayers.inpaintMask) To",
"copyRegionalGuidanceTo": "Copy $t(controlLayers.regionalGuidance) To",
"newRasterLayer": "New $t(controlLayers.rasterLayer)",
"newControlLayer": "New $t(controlLayers.controlLayer)",
"newInpaintMask": "New $t(controlLayers.inpaintMask)",
"newRegionalGuidance": "New $t(controlLayers.regionalGuidance)",
"convertToControlLayer": "Convert to Control Layer",
"convertToRasterLayer": "Convert to Raster Layer",
"transparency": "Transparency",
"enableTransparencyEffect": "Enable Transparency Effect",
"disableTransparencyEffect": "Disable Transparency Effect",
@@ -1760,7 +1699,6 @@
"newGallerySessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be sent to the gallery.",
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"replaceCurrent": "Replace Current",
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced",
@@ -1814,7 +1752,7 @@
"label": "Canny Edge Detection",
"description": "Generates an edge map from the selected layer using the Canny edge detection algorithm.",
"low_threshold": "Low Threshold",
"high_threshold": "High Threshold"
"high_threshold": "Hight Threshold"
},
"color_map": {
"label": "Color Map",
@@ -1890,25 +1828,6 @@
"apply": "Apply",
"cancel": "Cancel"
},
"selectObject": {
"selectObject": "Select Object",
"pointType": "Point Type",
"invertSelection": "Invert Selection",
"include": "Include",
"exclude": "Exclude",
"neutral": "Neutral",
"apply": "Apply",
"reset": "Reset",
"saveAs": "Save As",
"cancel": "Cancel",
"process": "Process",
"help1": "Select a single target object. Add <Bold>Include</Bold> and <Bold>Exclude</Bold> points to indicate which parts of the layer are part of the target object.",
"help2": "Start with one <Bold>Include</Bold> point within the target object. Add more points to refine the selection. Fewer points typically produce better results.",
"help3": "Invert the selection to select everything except the target object.",
"clickToAdd": "Click on the layer to add a point",
"dragToMove": "Drag a point to move it",
"clickToRemove": "Click on a point to remove it"
},
"settings": {
"snapToGrid": {
"label": "Snap to Grid",
@@ -1919,10 +1838,10 @@
"label": "Preserve Masked Region",
"alert": "Preserving Masked Region"
},
"isolatedStagingPreview": "Isolated Staging Preview",
"isolatedPreview": "Isolated Preview",
"isolatedLayerPreview": "Isolated Layer Preview",
"isolatedLayerPreviewDesc": "Whether to show only this layer when performing operations like filtering or transforming.",
"isolatedStagingPreview": "Isolated Staging Preview",
"isolatedFilteringPreview": "Isolated Filtering Preview",
"isolatedTransformingPreview": "Isolated Transforming Preview",
"invertBrushSizeScrollDirection": "Invert Scroll for Brush Size",
"pressureSensitivity": "Pressure Sensitivity"
},
@@ -1948,8 +1867,6 @@
"newRegionalReferenceImage": "New Regional Reference Image",
"newControlLayer": "New Control Layer",
"newRasterLayer": "New Raster Layer",
"newInpaintMask": "New Inpaint Mask",
"newRegionalGuidance": "New Regional Guidance",
"cropCanvasToBbox": "Crop Canvas to Bbox"
},
"stagingArea": {
@@ -2073,20 +1990,18 @@
}
},
"newUserExperience": {
"toGetStartedLocal": "To get started, make sure to download or import models needed to run Invoke. Then, enter a prompt in the box and click <StrongComponent>Invoke</StrongComponent> to generate your first image. Select a prompt template to improve results. You can choose to save your images directly to the <StrongComponent>Gallery</StrongComponent> or edit them to the <StrongComponent>Canvas</StrongComponent>.",
"toGetStarted": "To get started, enter a prompt in the box and click <StrongComponent>Invoke</StrongComponent> to generate your first image. Select a prompt template to improve results. You can choose to save your images directly to the <StrongComponent>Gallery</StrongComponent> or edit them to the <StrongComponent>Canvas</StrongComponent>.",
"gettingStartedSeries": "Want more guidance? Check out our <LinkComponent>Getting Started Series</LinkComponent> for tips on unlocking the full potential of the Invoke Studio.",
"downloadStarterModels": "Download Starter Models",
"importModels": "Import Models",
"noModelsInstalled": "It looks like you don't have any models installed"
"gettingStartedSeries": "Want more guidance? Check out our <LinkComponent>Getting Started Series</LinkComponent> for tips on unlocking the full potential of the Invoke Studio."
},
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"line1": "<ItalicComponent>Select Object</ItalicComponent> tool for precise object selection and editing",
"line2": "Expanded Flux support, now with Global Reference Images",
"line3": "Improved tooltips and context menus",
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
"canvasV2Announcement": {
"newCanvas": "A powerful new control canvas",
"newLayerTypes": "New layer types for even more control",
"fluxSupport": "Support for the Flux family of models",
"readReleaseNotes": "Read Release Notes",
"watchReleaseVideo": "Watch Release Video",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
}
}
}

View File

@@ -224,9 +224,7 @@
"createIssue": "Crear un problema",
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
"mode": "Modo",
"submitSupportTicket": "Enviar Ticket de Soporte",
"toggleRightPanel": "Activar o desactivar el panel derecho (G)",
"toggleLeftPanel": "Activar o desactivar el panel izquierdo (T)"
"submitSupportTicket": "Enviar Ticket de Soporte"
},
"nodes": {
"zoomInNodes": "Acercar",
@@ -275,12 +273,7 @@
"addSharedBoard": "Agregar Panel Compartido",
"boards": "Paneles",
"archiveBoard": "Archivar Panel",
"archived": "Archivado",
"selectedForAutoAdd": "Seleccionado para agregar automáticamente",
"unarchiveBoard": "Desarchivar el tablero",
"noBoards": "No hay tableros {{boardType}}",
"shared": "Carpetas compartidas",
"deletedPrivateBoardsCannotbeRestored": "Los tableros eliminados no se pueden restaurar. Al elegir \"Eliminar solo tablero\", las imágenes se colocan en un estado privado y sin categoría para el creador de la imagen."
"archived": "Archivado"
},
"accordions": {
"compositing": {
@@ -323,13 +316,5 @@
"inviteTeammates": "Invitar compañeros de equipo",
"shareAccess": "Compartir acceso",
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haz clic aquí o visita invoke.com/pricing para obtener más detalles."
},
"controlLayers": {
"layer_one": "Capa",
"layer_many": "Capas",
"layer_other": "Capas",
"layer_withCount_one": "({{count}}) capa",
"layer_withCount_many": "({{count}}) capas",
"layer_withCount_other": "({{count}}) capas"
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -91,8 +91,7 @@
"reset": "Reimposta",
"none": "Niente",
"new": "Nuovo",
"view": "Vista",
"close": "Chiudi"
"view": "Vista"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -158,9 +157,7 @@
"openViewer": "Apri visualizzatore",
"closeViewer": "Chiudi visualizzatore",
"imagesTab": "Immagini create e salvate in Invoke.",
"assetsTab": "File che hai caricato per usarli nei tuoi progetti.",
"boardsSettings": "Impostazioni Bacheche",
"imagesSettings": "Impostazioni Immagini Galleria"
"assetsTab": "File che hai caricato per usarli nei tuoi progetti."
},
"hotkeys": {
"searchHotkeys": "Cerca tasti di scelta rapida",
@@ -577,18 +574,7 @@
"noMatchingModels": "Nessun modello corrispondente",
"starterModelsInModelManager": "I modelli iniziali possono essere trovati in Gestione Modelli",
"spandrelImageToImage": "Immagine a immagine (Spandrel)",
"learnMoreAboutSupportedModels": "Scopri di più sui modelli che supportiamo",
"starterBundles": "Pacchetti per iniziare",
"installingBundle": "Installazione del pacchetto",
"skippingXDuplicates_one": ", saltando {{count}} duplicato",
"skippingXDuplicates_many": ", saltando {{count}} duplicati",
"skippingXDuplicates_other": ", saltando {{count}} duplicati",
"installingModel": "Installazione del modello",
"installingXModels_one": "Installazione di {{count}} modello",
"installingXModels_many": "Installazione di {{count}} modelli",
"installingXModels_other": "Installazione di {{count}} modelli",
"includesNModels": "Include {{n}} modelli e le loro dipendenze",
"starterBundleHelpText": "Installa facilmente tutti i modelli necessari per iniziare con un modello base, tra cui un modello principale, controlnet, adattatori IP e altro. Selezionando un pacchetto salterai tutti i modelli che hai già installato."
"learnMoreAboutSupportedModels": "Scopri di più sui modelli che supportiamo"
},
"parameters": {
"images": "Immagini",
@@ -733,7 +719,7 @@
"serverError": "Errore del Server",
"connected": "Connesso al server",
"canceled": "Elaborazione annullata",
"uploadFailedInvalidUploadDesc": "Devono essere immagini PNG o JPEG.",
"uploadFailedInvalidUploadDesc": "Deve essere una singola immagine PNG o JPEG",
"parameterSet": "Parametro richiamato",
"parameterNotSet": "Parametro non richiamato",
"problemCopyingImage": "Impossibile copiare l'immagine",
@@ -742,7 +728,7 @@
"baseModelChangedCleared_other": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
"loadedWithWarnings": "Flusso di lavoro caricato con avvisi",
"imageUploaded": "Immagine caricata",
"addedToBoard": "Aggiunto alle risorse della bacheca {{name}}",
"addedToBoard": "Aggiunto alla bacheca",
"modelAddedSimple": "Modello aggiunto alla Coda",
"imageUploadFailed": "Caricamento immagine non riuscito",
"setControlImage": "Imposta come immagine di controllo",
@@ -780,13 +766,7 @@
"imageSaved": "Immagine salvata",
"imageSavingFailed": "Salvataggio dell'immagine non riuscito",
"layerCopiedToClipboard": "Livello copiato negli appunti",
"imageNotLoadedDesc": "Impossibile trovare l'immagine",
"linkCopied": "Collegamento copiato",
"addedToUncategorized": "Aggiunto alle risorse della bacheca $t(boards.uncategorized)",
"imagesWillBeAddedTo": "Le immagini caricate verranno aggiunte alle risorse della bacheca {{boardName}}.",
"uploadFailedInvalidUploadDesc_withCount_one": "Devi caricare al massimo 1 immagine PNG o JPEG.",
"uploadFailedInvalidUploadDesc_withCount_many": "Devi caricare al massimo {{count}} immagini PNG o JPEG.",
"uploadFailedInvalidUploadDesc_withCount_other": "Devi caricare al massimo {{count}} immagini PNG o JPEG."
"imageNotLoadedDesc": "Impossibile trovare l'immagine"
},
"accessibility": {
"invokeProgressBar": "Barra di avanzamento generazione",
@@ -801,8 +781,7 @@
"about": "Informazioni",
"submitSupportTicket": "Invia ticket di supporto",
"toggleLeftPanel": "Attiva/disattiva il pannello sinistro (T)",
"toggleRightPanel": "Attiva/disattiva il pannello destro (G)",
"uploadImages": "Carica immagine(i)"
"toggleRightPanel": "Attiva/disattiva il pannello destro (G)"
},
"nodes": {
"zoomOutNodes": "Rimpicciolire",
@@ -943,7 +922,7 @@
"saveToGallery": "Salva nella Galleria",
"noMatchingWorkflows": "Nessun flusso di lavoro corrispondente",
"noWorkflows": "Nessun flusso di lavoro",
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>."
"workflowHelpText": "Hai bisogno di aiuto? Consulta la nostra guida <LinkComponent>Introduzione ai flussi di lavoro</LinkComponent>"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1540,8 +1519,7 @@
"parameterSet": "Parametro {{parameter}} impostato",
"parsingFailed": "Analisi non riuscita",
"recallParameter": "Richiama {{label}}",
"canvasV2Metadata": "Tela",
"guidance": "Guida"
"canvasV2Metadata": "Tela"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",
@@ -1592,12 +1570,7 @@
"defaultWorkflows": "Flussi di lavoro predefiniti",
"uploadAndSaveWorkflow": "Carica nella libreria",
"chooseWorkflowFromLibrary": "Scegli il flusso di lavoro dalla libreria",
"deleteWorkflow2": "Vuoi davvero eliminare questo flusso di lavoro? Questa operazione non può essere annullata.",
"edit": "Modifica",
"download": "Scarica",
"copyShareLink": "Copia Condividi Link",
"copyShareLinkForWorkflow": "Copia Condividi Link del Flusso di lavoro",
"delete": "Elimina"
"deleteWorkflow2": "Vuoi davvero eliminare questo flusso di lavoro? Questa operazione non può essere annullata."
},
"accordions": {
"compositing": {
@@ -1897,11 +1870,7 @@
"fitToBbox": "Adatta al Riquadro",
"transform": "Trasforma",
"apply": "Applica",
"cancel": "Annulla",
"fitMode": "Adattamento",
"fitModeContain": "Contieni",
"fitModeFill": "Riempi",
"fitModeCover": "Copri"
"cancel": "Annulla"
},
"stagingArea": {
"next": "Successiva",
@@ -1936,8 +1905,7 @@
"newRasterLayer": "Nuovo Livello Raster",
"saveCanvasToGallery": "Salva la Tela nella Galleria",
"saveToGalleryGroup": "Salva nella Galleria"
},
"newImg2ImgCanvasFromImage": "Nuova Immagine da immagine"
}
},
"ui": {
"tabs": {
@@ -2023,11 +1991,7 @@
},
"newUserExperience": {
"gettingStartedSeries": "Desideri maggiori informazioni? Consulta la nostra <LinkComponent>Getting Started Series</LinkComponent> per suggerimenti su come sfruttare appieno il potenziale di Invoke Studio.",
"toGetStarted": "Per iniziare, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>.",
"importModels": "Importa modelli",
"downloadStarterModels": "Scarica i modelli per iniziare",
"noModelsInstalled": "Sembra che tu non abbia installato alcun modello",
"toGetStartedLocal": "Per iniziare, assicurati di scaricare o importare i modelli necessari per eseguire Invoke. Quindi, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>."
"toGetStarted": "Per iniziare, inserisci un prompt nella casella e fai clic su <StrongComponent>Invoke</StrongComponent> per generare la tua prima immagine. Seleziona un modello di prompt per migliorare i risultati. Puoi scegliere di salvare le tue immagini direttamente nella <StrongComponent>Galleria</StrongComponent> o modificarle nella <StrongComponent>Tela</StrongComponent>."
},
"whatsNew": {
"canvasV2Announcement": {

View File

@@ -94,8 +94,7 @@
"reset": "Сброс",
"none": "Ничего",
"new": "Новый",
"ok": "Ok",
"close": "Закрыть"
"ok": "Ok"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@@ -161,9 +160,7 @@
"openViewer": "Открыть просмотрщик",
"closeViewer": "Закрыть просмотрщик",
"imagesTab": "Изображения, созданные и сохраненные в Invoke.",
"assetsTab": "Файлы, которые вы загрузили для использования в своих проектах.",
"boardsSettings": "Настройки доски",
"imagesSettings": "Настройки галереи изображений"
"assetsTab": "Файлы, которые вы загрузили для использования в своих проектах."
},
"hotkeys": {
"searchHotkeys": "Поиск горячих клавиш",
@@ -586,18 +583,7 @@
"learnMoreAboutSupportedModels": "Подробнее о поддерживаемых моделях",
"t5Encoder": "T5 энкодер",
"spandrelImageToImage": "Image to Image (Spandrel)",
"clipEmbed": "CLIP Embed",
"installingXModels_one": "Установка {{count}} модели",
"installingXModels_few": "Установка {{count}} моделей",
"installingXModels_many": "Установка {{count}} моделей",
"installingBundle": "Установка пакета",
"installingModel": "Установка модели",
"starterBundles": "Стартовые пакеты",
"skippingXDuplicates_one": ", пропуская {{count}} дубликат",
"skippingXDuplicates_few": ", пропуская {{count}} дубликата",
"skippingXDuplicates_many": ", пропуская {{count}} дубликатов",
"includesNModels": "Включает в себя {{n}} моделей и их зависимостей",
"starterBundleHelpText": "Легко установите все модели, необходимые для начала работы с базовой моделью, включая основную модель, сети управления, IP-адаптеры и многое другое. При выборе комплекта все уже установленные модели будут пропущены."
"clipEmbed": "CLIP Embed"
},
"parameters": {
"images": "Изображения",
@@ -744,7 +730,7 @@
"serverError": "Ошибка сервера",
"connected": "Подключено к серверу",
"canceled": "Обработка отменена",
"uploadFailedInvalidUploadDesc": "Это должны быть изображения PNG или JPEG.",
"uploadFailedInvalidUploadDesc": "Должно быть одно изображение в формате PNG или JPEG",
"parameterNotSet": "Параметр не задан",
"parameterSet": "Параметр задан",
"problemCopyingImage": "Не удается скопировать изображение",
@@ -756,7 +742,7 @@
"setNodeField": "Установить как поле узла",
"invalidUpload": "Неверная загрузка",
"imageUploaded": "Изображение загружено",
"addedToBoard": "Добавлено в активы доски {{name}}",
"addedToBoard": "Добавлено на доску",
"workflowLoaded": "Рабочий процесс загружен",
"problemDeletingWorkflow": "Проблема с удалением рабочего процесса",
"modelAddedSimple": "Модель добавлена в очередь",
@@ -791,13 +777,7 @@
"unableToLoadStylePreset": "Невозможно загрузить предустановку стиля",
"layerCopiedToClipboard": "Слой скопирован в буфер обмена",
"sentToUpscale": "Отправить на увеличение",
"layerSavedToAssets": "Слой сохранен в активах",
"linkCopied": "Ссылка скопирована",
"addedToUncategorized": "Добавлено в активы доски $t(boards.uncategorized)",
"imagesWillBeAddedTo": "Загруженные изображения будут добавлены в активы доски {{boardName}}.",
"uploadFailedInvalidUploadDesc_withCount_one": "Должно быть не более {{count}} изображения в формате PNG или JPEG.",
"uploadFailedInvalidUploadDesc_withCount_few": "Должно быть не более {{count}} изображений в формате PNG или JPEG.",
"uploadFailedInvalidUploadDesc_withCount_many": "Должно быть не более {{count}} изображений в формате PNG или JPEG."
"layerSavedToAssets": "Слой сохранен в активах"
},
"accessibility": {
"uploadImage": "Загрузить изображение",
@@ -812,8 +792,7 @@
"about": "Об этом",
"submitSupportTicket": "Отправить тикет в службу поддержки",
"toggleRightPanel": "Переключить правую панель (G)",
"toggleLeftPanel": "Переключить левую панель (T)",
"uploadImages": "Загрузить изображения"
"toggleLeftPanel": "Переключить левую панель (T)"
},
"nodes": {
"zoomInNodes": "Увеличьте масштаб",
@@ -954,7 +933,7 @@
"saveToGallery": "Сохранить в галерею",
"noWorkflows": "Нет рабочих процессов",
"noMatchingWorkflows": "Нет совпадающих рабочих процессов",
"workflowHelpText": "Нужна помощь? Ознакомьтесь с нашим руководством <LinkComponent>Getting Started with Workflows</LinkComponent>."
"workflowHelpText": "Нужна помощь? Ознакомьтесь с нашим руководством <LinkComponent>Getting Started with Workflows</LinkComponent>"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@@ -1430,8 +1409,7 @@
"recallParameter": "Отозвать {{label}}",
"allPrompts": "Все запросы",
"imageDimensions": "Размеры изображения",
"canvasV2Metadata": "Холст",
"guidance": "Точность"
"canvasV2Metadata": "Холст"
},
"queue": {
"status": "Статус",
@@ -1583,12 +1561,7 @@
"defaultWorkflows": "Стандартные рабочие процессы",
"deleteWorkflow2": "Вы уверены, что хотите удалить этот рабочий процесс? Это нельзя отменить.",
"chooseWorkflowFromLibrary": "Выбрать рабочий процесс из библиотеки",
"uploadAndSaveWorkflow": "Загрузить в библиотеку",
"edit": "Редактировать",
"download": "Скачать",
"copyShareLink": "Скопировать ссылку на общий доступ",
"copyShareLinkForWorkflow": "Скопировать ссылку на общий доступ для рабочего процесса",
"delete": "Удалить"
"uploadAndSaveWorkflow": "Загрузить в библиотеку"
},
"hrf": {
"enableHrf": "Включить исправление высокого разрешения",
@@ -1917,10 +1890,7 @@
"fitToBbox": "Вместить в рамку",
"reset": "Сбросить",
"apply": "Применить",
"cancel": "Отменить",
"fitModeContain": "Уместить",
"fitMode": "Режим подгонки",
"fitModeFill": "Заполнить"
"cancel": "Отменить"
},
"disableAutoNegative": "Отключить авто негатив",
"deleteReferenceImage": "Удалить эталонное изображение",
@@ -1950,8 +1920,7 @@
"globalReferenceImage": "Глобальное эталонное изображение",
"sendToGallery": "Отправить в галерею",
"referenceImage": "Эталонное изображение",
"addGlobalReferenceImage": "Добавить $t(controlLayers.globalReferenceImage)",
"newImg2ImgCanvasFromImage": "Новое img2img из изображения"
"addGlobalReferenceImage": "Добавить $t(controlLayers.globalReferenceImage)"
},
"ui": {
"tabs": {

View File

@@ -4,7 +4,6 @@ import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
import { useStudioInitAction } from 'app/hooks/useStudioInitAction';
import { useSyncQueueStatus } from 'app/hooks/useSyncQueueStatus';
import { useLogger } from 'app/logging/useLogger';
import { useSyncLoggingConfig } from 'app/logging/useSyncLoggingConfig';
import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/appStarted';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import type { PartialAppConfig } from 'app/types/invokeai';
@@ -33,6 +32,7 @@ import { selectLanguage } from 'features/system/store/systemSelectors';
import { AppContent } from 'features/ui/components/AppContent';
import { DeleteWorkflowDialog } from 'features/workflowLibrary/components/DeleteLibraryWorkflowConfirmationAlertDialog';
import { NewWorkflowConfirmationAlertDialog } from 'features/workflowLibrary/components/NewWorkflowConfirmationAlertDialog';
import { AnimatePresence } from 'framer-motion';
import i18n from 'i18n';
import { size } from 'lodash-es';
import { memo, useCallback, useEffect } from 'react';
@@ -60,7 +60,6 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
useGlobalModifiersInit();
useGlobalHotkeys();
useGetOpenAPISchemaQuery();
useSyncLoggingConfig();
const { dropzone, isHandlingUpload, setIsHandlingUpload } = useFullscreenDropzone();
@@ -102,9 +101,11 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
>
<input {...dropzone.getInputProps()} />
<AppContent />
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
)}
<AnimatePresence>
{dropzone.isDragActive && isHandlingUpload && (
<ImageUploadOverlay dropzone={dropzone} setIsHandlingUpload={setIsHandlingUpload} />
)}
</AnimatePresence>
</Box>
<DeleteImageModal />
<ChangeBoardModal />

View File

@@ -2,8 +2,6 @@ import 'i18n';
import type { Middleware } from '@reduxjs/toolkit';
import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
import type { LoggingOverrides } from 'app/logging/logger';
import { $loggingOverrides, configureLogging } from 'app/logging/logger';
import { $authToken } from 'app/store/nanostores/authToken';
import { $baseUrl } from 'app/store/nanostores/baseUrl';
import { $customNavComponent } from 'app/store/nanostores/customNavComponent';
@@ -22,7 +20,7 @@ import Loading from 'common/components/Loading/Loading';
import AppDndContext from 'features/dnd/components/AppDndContext';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useLayoutEffect, useMemo } from 'react';
import React, { lazy, memo, useEffect, useMemo } from 'react';
import { Provider } from 'react-redux';
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
import { $socketOptions } from 'services/events/stores';
@@ -48,7 +46,6 @@ interface Props extends PropsWithChildren {
isDebugging?: boolean;
logo?: ReactNode;
workflowCategories?: WorkflowCategory[];
loggingOverrides?: LoggingOverrides;
}
const InvokeAIUI = ({
@@ -68,26 +65,7 @@ const InvokeAIUI = ({
isDebugging = false,
logo,
workflowCategories,
loggingOverrides,
}: Props) => {
useLayoutEffect(() => {
/*
* We need to configure logging before anything else happens - useLayoutEffect ensures we set this at the first
* possible opportunity.
*
* Once redux initializes, we will check the user's settings and update the logging config accordingly. See
* `useSyncLoggingConfig`.
*/
$loggingOverrides.set(loggingOverrides);
// Until we get the user's settings, we will use the overrides OR default values.
configureLogging(
loggingOverrides?.logIsEnabled ?? true,
loggingOverrides?.logLevel ?? 'debug',
loggingOverrides?.logNamespaces ?? '*'
);
}, [loggingOverrides]);
useEffect(() => {
// configure API client token
if (token) {

View File

@@ -12,7 +12,7 @@ import { parseAndRecallAllMetadata } from 'features/metadata/util/handlers';
import { $isWorkflowListMenuIsOpen } from 'features/nodes/store/workflowListMenu';
import { $isStylePresetsMenuOpen, activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { toast } from 'features/toast/toast';
import { activeTabCanvasRightPanelChanged, setActiveTab } from 'features/ui/store/uiSlice';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
import { useCallback, useEffect, useRef } from 'react';
import { useTranslation } from 'react-i18next';
@@ -140,7 +140,6 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
case 'generation':
// Go to the canvas tab, open the image viewer, and enable send-to-gallery mode
store.dispatch(setActiveTab('canvas'));
store.dispatch(activeTabCanvasRightPanelChanged('gallery'));
store.dispatch(settingsSendToCanvasChanged(false));
$imageViewer.set(true);
break;

View File

@@ -9,10 +9,11 @@ const serializeMessage: MessageSerializer = (message) => {
};
ROARR.serializeMessage = serializeMessage;
ROARR.write = createLogWriter();
const BASE_CONTEXT = {};
export const BASE_CONTEXT = {};
const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
export const $logger = atom<Logger>(Roarr.child(BASE_CONTEXT));
export const zLogNamespace = z.enum([
'canvas',
@@ -34,22 +35,8 @@ export const zLogLevel = z.enum(['trace', 'debug', 'info', 'warn', 'error', 'fat
export type LogLevel = z.infer<typeof zLogLevel>;
export const isLogLevel = (v: unknown): v is LogLevel => zLogLevel.safeParse(v).success;
/**
* Override logging settings.
* @property logIsEnabled Override the enabled log state. Omit to use the user's settings.
* @property logNamespaces Override the enabled log namespaces. Use `"*"` for all namespaces. Omit to use the user's settings.
* @property logLevel Override the log level. Omit to use the user's settings.
*/
export type LoggingOverrides = {
logIsEnabled?: boolean;
logNamespaces?: LogNamespace[] | '*';
logLevel?: LogLevel;
};
export const $loggingOverrides = atom<LoggingOverrides | undefined>();
// Translate human-readable log levels to numbers, used for log filtering
const LOG_LEVEL_MAP: Record<LogLevel, number> = {
export const LOG_LEVEL_MAP: Record<LogLevel, number> = {
trace: 10,
debug: 20,
info: 30,
@@ -57,40 +44,3 @@ const LOG_LEVEL_MAP: Record<LogLevel, number> = {
error: 50,
fatal: 60,
};
/**
* Configure logging, pushing settings to local storage.
*
* @param logIsEnabled Whether logging is enabled
* @param logLevel The log level
* @param logNamespaces A list of log namespaces to enable, or '*' to enable all
*/
export const configureLogging = (
logIsEnabled: boolean = true,
logLevel: LogLevel = 'warn',
logNamespaces: LogNamespace[] | '*'
): void => {
if (!logIsEnabled) {
// Disable console log output
localStorage.setItem('ROARR_LOG', 'false');
} else {
// Enable console log output
localStorage.setItem('ROARR_LOG', 'true');
// Use a filter to show only logs of the given level
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
const namespaces = logNamespaces === '*' ? zLogNamespace.options : logNamespaces;
if (namespaces.length > 0) {
filter += ` AND (${namespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
} else {
// This effectively hides all logs because we use namespaces for all logs
filter += ' AND context.namespace:undefined';
}
localStorage.setItem('ROARR_FILTER', filter);
}
ROARR.write = createLogWriter();
};

View File

@@ -1,9 +1,53 @@
import { useMemo } from 'react';
import { createLogWriter } from '@roarr/browser-log-writer';
import { useAppSelector } from 'app/store/storeHooks';
import {
selectSystemLogIsEnabled,
selectSystemLogLevel,
selectSystemLogNamespaces,
} from 'features/system/store/systemSlice';
import { useEffect, useMemo } from 'react';
import { ROARR, Roarr } from 'roarr';
import type { LogNamespace } from './logger';
import { logger } from './logger';
import { $logger, BASE_CONTEXT, LOG_LEVEL_MAP, logger } from './logger';
export const useLogger = (namespace: LogNamespace) => {
const logLevel = useAppSelector(selectSystemLogLevel);
const logNamespaces = useAppSelector(selectSystemLogNamespaces);
const logIsEnabled = useAppSelector(selectSystemLogIsEnabled);
// The provided Roarr browser log writer uses localStorage to config logging to console
useEffect(() => {
if (logIsEnabled) {
// Enable console log output
localStorage.setItem('ROARR_LOG', 'true');
// Use a filter to show only logs of the given level
let filter = `context.logLevel:>=${LOG_LEVEL_MAP[logLevel]}`;
if (logNamespaces.length > 0) {
filter += ` AND (${logNamespaces.map((ns) => `context.namespace:${ns}`).join(' OR ')})`;
} else {
filter += ' AND context.namespace:undefined';
}
localStorage.setItem('ROARR_FILTER', filter);
} else {
// Disable console log output
localStorage.setItem('ROARR_LOG', 'false');
}
ROARR.write = createLogWriter();
}, [logLevel, logIsEnabled, logNamespaces]);
// Update the module-scoped logger context as needed
useEffect(() => {
// TODO: type this properly
//eslint-disable-next-line @typescript-eslint/no-explicit-any
const newContext: Record<string, any> = {
...BASE_CONTEXT,
};
$logger.set(Roarr.child(newContext));
}, []);
const log = useMemo(() => logger(namespace), [namespace]);
return log;

View File

@@ -1,43 +0,0 @@
import { useStore } from '@nanostores/react';
import { $loggingOverrides, configureLogging } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import {
selectSystemLogIsEnabled,
selectSystemLogLevel,
selectSystemLogNamespaces,
} from 'features/system/store/systemSlice';
import { useLayoutEffect } from 'react';
/**
* This hook synchronizes the logging configuration stored in Redux with the logging system, which uses localstorage.
*
* The sync is one-way: from Redux to localstorage. This means that changes made in the UI will be reflected in the
* logging system, but changes made directly to localstorage will not be reflected in the UI.
*
* See {@link configureLogging}
*/
export const useSyncLoggingConfig = () => {
useAssertSingleton('useSyncLoggingConfig');
const loggingOverrides = useStore($loggingOverrides);
const logLevel = useAppSelector(selectSystemLogLevel);
const logNamespaces = useAppSelector(selectSystemLogNamespaces);
const logIsEnabled = useAppSelector(selectSystemLogIsEnabled);
useLayoutEffect(() => {
configureLogging(
loggingOverrides?.logIsEnabled ?? logIsEnabled,
loggingOverrides?.logLevel ?? logLevel,
loggingOverrides?.logNamespaces ?? logNamespaces
);
}, [
logIsEnabled,
logLevel,
logNamespaces,
loggingOverrides?.logIsEnabled,
loggingOverrides?.logLevel,
loggingOverrides?.logNamespaces,
]);
};

View File

@@ -7,20 +7,12 @@ import { diff } from 'jsondiffpatch';
/**
* Super simple logger middleware. Useful for debugging when the redux devtools are awkward.
*/
export const getDebugLoggerMiddleware =
(options?: { withDiff?: boolean; withNextState?: boolean }): Middleware =>
(api: MiddlewareAPI) =>
(next) =>
(action) => {
const originalState = api.getState();
console.log('REDUX: dispatching', action);
const result = next(action);
const nextState = api.getState();
if (options?.withNextState) {
console.log('REDUX: next state', nextState);
}
if (options?.withDiff) {
console.log('REDUX: diff', diff(originalState, nextState));
}
return result;
};
export const debugLoggerMiddleware: Middleware = (api: MiddlewareAPI) => (next) => (action) => {
const originalState = api.getState();
console.log('REDUX: dispatching', action);
const result = next(action);
const nextState = api.getState();
console.log('REDUX: next state', nextState);
console.log('REDUX: diff', diff(originalState, nextState));
return result;
};

View File

@@ -29,13 +29,13 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const { autoAddBoardId, selectedBoardId } = state.gallery;
// If the deleted board was currently selected, we should reset the selected board to uncategorized
if (selectedBoardId !== 'none' && deletedBoardId === selectedBoardId) {
if (deletedBoardId === selectedBoardId) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// If the deleted board was selected for auto-add, we should reset the auto-add board to uncategorized
if (autoAddBoardId !== 'none' && deletedBoardId === autoAddBoardId) {
if (deletedBoardId === autoAddBoardId) {
dispatch(autoAddBoardIdChanged('none'));
}
},
@@ -46,11 +46,11 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
effect: (action, { dispatch, getState }) => {
const state = getState();
const { shouldShowArchivedBoards, selectedBoardId, autoAddBoardId } = state.gallery;
const { shouldShowArchivedBoards } = state.gallery;
const wasArchived = action.meta.arg.originalArgs.changes.archived === true;
if (selectedBoardId !== 'none' && autoAddBoardId !== 'none' && wasArchived && !shouldShowArchivedBoards) {
if (wasArchived && !shouldShowArchivedBoards) {
dispatch(autoAddBoardIdChanged('none'));
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
@@ -80,7 +80,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where selected board is archived
const selectedBoard = queryResult.data.find((b) => b.board_id === selectedBoardId);
if (selectedBoardId !== 'none' && (!selectedBoard || selectedBoard.archived)) {
if (!selectedBoard || selectedBoard.archived) {
// If we can't find the selected board or it's archived, we should reset the selected board to uncategorized
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
@@ -88,7 +88,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where auto-add board is archived
const autoAddBoard = queryResult.data.find((b) => b.board_id === autoAddBoardId);
if (autoAddBoardId !== 'none' && (!autoAddBoard || autoAddBoard.archived)) {
if (!autoAddBoard || autoAddBoard.archived) {
// If we can't find the auto-add board or it's archived, we should reset the selected board to uncategorized
dispatch(autoAddBoardIdChanged('none'));
}
@@ -106,13 +106,13 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const { selectedBoardId, autoAddBoardId } = state.gallery;
// Handle the case where selected board isn't in the list of boards
if (selectedBoardId !== 'none' && !boards.find((b) => b.board_id === selectedBoardId)) {
if (!boards.find((b) => b.board_id === selectedBoardId)) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// Handle the case where auto-add board isn't in the list of boards
if (autoAddBoardId !== 'none' && !boards.find((b) => b.board_id === autoAddBoardId)) {
if (!boards.find((b) => b.board_id === autoAddBoardId)) {
dispatch(autoAddBoardIdChanged('none'));
}
},

View File

@@ -8,7 +8,6 @@ import {
controlLayerAdded,
entityRasterized,
entitySelected,
inpaintMaskAdded,
rasterLayerAdded,
referenceImageAdded,
referenceImageIPAdapterImageChanged,
@@ -18,7 +17,6 @@ import {
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import type {
CanvasControlLayerState,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
@@ -112,46 +110,6 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
return;
}
/**
/**
* Image dropped on Inpaint Mask
*/
if (
overData.actionType === 'ADD_INPAINT_MASK_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasInpaintMaskState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(inpaintMaskAdded({ overrides, isSelected: true }));
return;
}
/**
/**
* Image dropped on Regional Guidance
*/
if (
overData.actionType === 'ADD_REGIONAL_GUIDANCE_FROM_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const imageObject = imageDTOToImageObject(activeData.payload.imageDTO);
const { x, y } = selectCanvasSlice(getState()).bbox.rect;
const overrides: Partial<CanvasRegionalGuidanceState> = {
objects: [imageObject],
position: { x, y },
};
dispatch(rgAdded({ overrides, isSelected: true }));
return;
}
/**
* Image dropped on Raster layer
*/

View File

@@ -1,6 +1,5 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { RootState } from 'app/store/store';
import {
entityRasterized,
entitySelected,
@@ -21,39 +20,24 @@ import { imagesApi } from 'services/api/endpoints/images';
const log = logger('gallery');
/**
* Gets the description for the toast that is shown when an image is uploaded.
* @param boardId The board id of the uploaded image
* @param state The current state of the app
* @returns
*/
const getUploadedToastDescription = (boardId: string, state: RootState) => {
if (boardId === 'none') {
return t('toast.addedToUncategorized');
}
// Attempt to get the board's name for the toast
const queryArgs = selectListBoardsQueryArgs(state);
const { data } = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
// Fall back to just the board id if we can't find the board for some reason
const board = data?.find((b) => b.board_id === boardId);
return t('toast.addedToBoard', { name: board?.board_name ?? boardId });
};
let lastUploadedToastTimeout: number | null = null;
export const addImageUploadedFulfilledListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: imagesApi.endpoints.uploadImage.matchFulfilled,
effect: (action, { dispatch, getState }) => {
const imageDTO = action.payload;
const state = getState();
const { autoAddBoardId } = state.gallery;
log.debug({ imageDTO }, 'Image uploaded');
const { postUploadAction } = action.meta.arg.originalArgs;
if (!postUploadAction) {
if (
// No further actions needed for intermediate images,
action.payload.is_intermediate &&
// unless they have an explicit post-upload action
!postUploadAction
) {
return;
}
@@ -63,41 +47,50 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
status: 'success',
} as const;
const BATCH_UPLOADED_TOAST = {
id: 'BATCH_UPLOADED',
title: t('toast.imageUploaded'),
status: 'info',
withCount: true,
duration: null
} as const;
// default action - just upload and alert user
if (postUploadAction.type === 'TOAST') {
const boardId = imageDTO.board_id ?? 'none';
if (lastUploadedToastTimeout !== null) {
window.clearTimeout(lastUploadedToastTimeout);
}
const toastApi = toast({
...DEFAULT_UPLOADED_TOAST,
title: postUploadAction.title || DEFAULT_UPLOADED_TOAST.title,
description: getUploadedToastDescription(boardId, state),
duration: null, // we will close the toast manually
});
lastUploadedToastTimeout = window.setTimeout(() => {
toastApi.close();
}, 3000);
/**
* We only want to change the board and view if this is the first upload of a batch, else we end up hijacking
* the user's gallery board and view selection:
* - User uploads multiple images
* - A couple uploads finish, but others are pending still
* - User changes the board selection
* - Pending uploads finish and change the board back to the original board
* - User is confused as to why the board changed
*
* Default to true to not require _all_ image upload handlers to set this value
*/
const isFirstUploadOfBatch = action.meta.arg.originalArgs.isFirstUploadOfBatch ?? true;
if (isFirstUploadOfBatch) {
dispatch(boardIdSelected({ boardId }));
if (postUploadAction?.type === 'TOAST') {
if (!autoAddBoardId || autoAddBoardId === 'none') {
const title = postUploadAction.title || DEFAULT_UPLOADED_TOAST.title;
if (postUploadAction.batchCount) {
toast({ ...BATCH_UPLOADED_TOAST, title });
} else {
toast({ ...DEFAULT_UPLOADED_TOAST, title });
}
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('assets'));
} else {
// Attempt to get the board's name for the toast
const queryArgs = selectListBoardsQueryArgs(state);
const { data } = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
const title = postUploadAction.title || DEFAULT_UPLOADED_TOAST.title;
// Fall back to just the board id if we can't find the board for some reason
const board = data?.find((b) => b.board_id === autoAddBoardId);
const description = board
? `${t('toast.addedToBoard')} ${board.board_name}`
: `${t('toast.addedToBoard')} ${autoAddBoardId}`;
toast({
...DEFAULT_UPLOADED_TOAST,
title,
description,
});
dispatch(boardIdSelected({ boardId: autoAddBoardId }));
dispatch(galleryViewChanged('assets'));
}
return;
}
if (postUploadAction.type === 'SET_UPSCALE_INITIAL_IMAGE') {
if (postUploadAction?.type === 'SET_UPSCALE_INITIAL_IMAGE') {
dispatch(upscaleInitialImageChanged(imageDTO));
toast({
...DEFAULT_UPLOADED_TOAST,
@@ -106,14 +99,21 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
if (postUploadAction.type === 'SET_IPA_IMAGE') {
// if (postUploadAction?.type === 'SET_CA_IMAGE') {
// const { id } = postUploadAction;
// dispatch(caImageChanged({ id, imageDTO }));
// toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
// return;
// }
if (postUploadAction?.type === 'SET_IPA_IMAGE') {
const { id } = postUploadAction;
dispatch(referenceImageIPAdapterImageChanged({ entityIdentifier: { id, type: 'reference_image' }, imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: t('toast.setControlImage') });
return;
}
if (postUploadAction.type === 'SET_RG_IP_ADAPTER_IMAGE') {
if (postUploadAction?.type === 'SET_RG_IP_ADAPTER_IMAGE') {
const { id, referenceImageId } = postUploadAction;
dispatch(
rgIPAdapterImageChanged({ entityIdentifier: { id, type: 'regional_guidance' }, referenceImageId, imageDTO })
@@ -122,14 +122,14 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
if (postUploadAction.type === 'SET_NODES_IMAGE') {
if (postUploadAction?.type === 'SET_NODES_IMAGE') {
const { nodeId, fieldName } = postUploadAction;
dispatch(fieldImageValueChanged({ nodeId, fieldName, value: imageDTO }));
toast({ ...DEFAULT_UPLOADED_TOAST, description: `${t('toast.setNodeField')} ${fieldName}` });
return;
}
if (postUploadAction.type === 'REPLACE_LAYER_WITH_IMAGE') {
if (postUploadAction?.type === 'REPLACE_LAYER_WITH_IMAGE') {
const { entityIdentifier } = postUploadAction;
const state = getState();

View File

@@ -1,7 +1,7 @@
import type { FilterType } from 'features/controlLayers/store/filters';
import type { ParameterPrecision, ParameterScheduler } from 'features/parameters/types/parameterSchemas';
import type { TabName } from 'features/ui/store/uiTypes';
import type { PartialDeep } from 'type-fest';
import type { O } from 'ts-toolbelt';
/**
* A disable-able application feature
@@ -79,7 +79,6 @@ export type AppConfig = {
metadataFetchDebounce?: number;
workflowFetchDebounce?: number;
isLocal?: boolean;
maxImageUploadCount?: number;
sd: {
defaultModel?: string;
disabledControlNetModels: string[];
@@ -119,4 +118,4 @@ export type AppConfig = {
};
};
export type PartialAppConfig = PartialDeep<AppConfig>;
export type PartialAppConfig = O.Partial<AppConfig, 'deep'>;

View File

@@ -1,14 +1,15 @@
import { Flex, Text } from '@invoke-ai/ui-library';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
isOver: boolean;
label?: string;
withBackdrop?: boolean;
};
const IAIDropOverlay = (props: Props) => {
const { isOver, label, withBackdrop = true } = props;
const { t } = useTranslation();
const { isOver, label = t('gallery.drop') } = props;
return (
<Flex position="absolute" top={0} right={0} bottom={0} left={0}>
<Flex
@@ -19,7 +20,7 @@ const IAIDropOverlay = (props: Props) => {
left={0}
w="full"
h="full"
bg={withBackdrop ? 'base.900' : 'transparent'}
bg="base.900"
opacity={0.7}
borderRadius="base"
alignItems="center"
@@ -44,18 +45,16 @@ const IAIDropOverlay = (props: Props) => {
alignItems="center"
justifyContent="center"
>
{label && (
<Text
fontSize="lg"
fontWeight="semibold"
color={isOver ? 'invokeYellow.300' : 'base.500'}
transitionProperty="common"
transitionDuration="0.1s"
textAlign="center"
>
{label}
</Text>
)}
<Text
fontSize="lg"
fontWeight="semibold"
color={isOver ? 'invokeYellow.300' : 'base.500'}
transitionProperty="common"
transitionDuration="0.1s"
textAlign="center"
>
{label}
</Text>
</Flex>
</Flex>
);

View File

@@ -26,9 +26,5 @@ export const IconMenuItem = ({ tooltip, icon, ...props }: Props) => {
};
export const IconMenuItemGroup = ({ children }: { children: ReactNode }) => {
return (
<Flex gap={2} justifyContent="space-between">
{children}
</Flex>
);
return <Flex gap={2}>{children}</Flex>;
};

View File

@@ -1,12 +1,22 @@
import { Box, Flex, Heading } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import type { AnimationProps } from 'framer-motion';
import { motion } from 'framer-motion';
import { memo } from 'react';
import type { DropzoneState } from 'react-dropzone';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
import { useBoardName } from 'services/api/hooks/useBoardName';
const initial: AnimationProps['initial'] = {
opacity: 0,
};
const animate: AnimationProps['animate'] = {
opacity: 1,
transition: { duration: 0.1 },
};
const exit: AnimationProps['exit'] = {
opacity: 0,
transition: { duration: 0.1 },
};
type ImageUploadOverlayProps = {
dropzone: DropzoneState;
@@ -14,6 +24,7 @@ type ImageUploadOverlayProps = {
};
const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
const { t } = useTranslation();
const { dropzone, setIsHandlingUpload } = props;
useHotkeys(
@@ -25,65 +36,67 @@ const ImageUploadOverlay = (props: ImageUploadOverlayProps) => {
);
return (
<Box position="absolute" top={0} right={0} bottom={0} left={0} zIndex={999} backdropFilter="blur(20px)">
<Flex position="absolute" top={0} right={0} bottom={0} left={0} bg="base.900" opacity={0.7} />
<Box
key="image-upload-overlay"
initial={initial}
animate={animate}
exit={exit}
as={motion.div}
position="absolute"
top={0}
insetInlineStart={0}
width="100dvw"
height="100dvh"
zIndex={999}
backdropFilter="blur(20px)"
>
<Flex
position="absolute"
flexDir="column"
gap={4}
top={2}
right={2}
bottom={2}
left={2}
opacity={1}
borderWidth={2}
borderColor={dropzone.isDragAccept ? 'invokeYellow.300' : 'error.500'}
borderRadius="base"
borderStyle="dashed"
transitionProperty="common"
transitionDuration="0.1s"
top={0}
insetInlineStart={0}
w="full"
h="full"
bg="base.900"
opacity={0.7}
alignItems="center"
justifyContent="center"
color={dropzone.isDragReject ? 'error.300' : undefined}
transitionProperty="common"
transitionDuration="0.1s"
/>
<Flex
position="absolute"
top={0}
insetInlineStart={0}
width="full"
height="full"
alignItems="center"
justifyContent="center"
p={4}
>
{dropzone.isDragAccept && <DragAcceptMessage />}
{!dropzone.isDragAccept && <DragRejectMessage />}
<Flex
width="full"
height="full"
alignItems="center"
justifyContent="center"
flexDir="column"
gap={4}
borderWidth={3}
borderRadius="xl"
borderStyle="dashed"
color="base.100"
borderColor="base.200"
>
{dropzone.isDragAccept ? (
<Heading size="lg">{t('gallery.dropToUpload')}</Heading>
) : (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc')}</Heading>
</>
)}
</Flex>
</Flex>
</Box>
);
};
export default memo(ImageUploadOverlay);
const DragAcceptMessage = () => {
const { t } = useTranslation();
const selectedBoardId = useAppSelector(selectSelectedBoardId);
const boardName = useBoardName(selectedBoardId);
return (
<>
<Heading size="lg">{t('gallery.dropToUpload')}</Heading>
<Heading size="md">{t('toast.imagesWillBeAddedTo', { boardName })}</Heading>
</>
);
};
const DragRejectMessage = () => {
const { t } = useTranslation();
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
if (maxImageUploadCount === undefined) {
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc')}</Heading>
</>
);
}
return (
<>
<Heading size="lg">{t('toast.invalidUpload')}</Heading>
<Heading size="md">{t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount })}</Heading>
</>
);
};

View File

@@ -23,10 +23,8 @@ export type Feature =
| 'dynamicPrompts'
| 'dynamicPromptsMaxPrompts'
| 'dynamicPromptsSeedBehaviour'
| 'globalReferenceImage'
| 'imageFit'
| 'infillMethod'
| 'inpainting'
| 'ipAdapterMethod'
| 'lora'
| 'loraWeight'
@@ -48,7 +46,6 @@ export type Feature =
| 'paramVAEPrecision'
| 'paramWidth'
| 'patchmatchDownScaleSize'
| 'rasterLayer'
| 'refinerModel'
| 'refinerNegativeAestheticScore'
| 'refinerPositiveAestheticScore'
@@ -56,9 +53,6 @@ export type Feature =
| 'refinerStart'
| 'refinerSteps'
| 'refinerCfgScale'
| 'regionalGuidance'
| 'regionalGuidanceAndReferenceImage'
| 'regionalReferenceImage'
| 'scaleBeforeProcessing'
| 'seamlessTilingXAxis'
| 'seamlessTilingYAxis'
@@ -82,24 +76,6 @@ export const POPOVER_DATA: { [key in Feature]?: PopoverData } = {
clipSkip: {
href: 'https://support.invoke.ai/support/solutions/articles/151000178161-advanced-settings',
},
inpainting: {
href: 'https://support.invoke.ai/support/solutions/articles/151000096702-inpainting-outpainting-and-bounding-box',
},
rasterLayer: {
href: 'https://support.invoke.ai/support/solutions/articles/151000094998-raster-layers-and-initial-images',
},
regionalGuidance: {
href: 'https://support.invoke.ai/support/solutions/articles/151000165024-regional-guidance-layers',
},
regionalGuidanceAndReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000165024-regional-guidance-layers',
},
globalReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000159340-global-and-regional-reference-images-ip-adapters-',
},
regionalReferenceImage: {
href: 'https://support.invoke.ai/support/solutions/articles/151000159340-global-and-regional-reference-images-ip-adapters-',
},
controlNet: {
href: 'https://support.invoke.ai/support/solutions/articles/151000105880',
},

View File

@@ -127,6 +127,8 @@ export const buildUseDisclosure = (defaultIsOpen: boolean): [() => UseDisclosure
*
* Hook to manage a boolean state. Use this for a local boolean state.
* @param defaultIsOpen Initial state of the disclosure
*
* @knipignore
*/
export const useDisclosure = (defaultIsOpen: boolean): UseDisclosure => {
const [isOpen, set] = useState(defaultIsOpen);

View File

@@ -1,8 +1,6 @@
import { logger } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { Text } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { toast } from 'features/toast/toast';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { useCallback, useEffect, useState } from 'react';
@@ -11,8 +9,7 @@ import { useDropzone } from 'react-dropzone';
import { useTranslation } from 'react-i18next';
import { useUploadImageMutation } from 'services/api/endpoints/images';
import type { PostUploadAction } from 'services/api/types';
const log = logger('gallery');
import { batchIndexIncremented, uploadingBatchChanged } from '../../features/gallery/store/gallerySlice';
const accept: Accept = {
'image/png': ['.png'],
@@ -20,81 +17,114 @@ const accept: Accept = {
};
export const useFullscreenDropzone = () => {
useAssertSingleton('useFullscreenDropzone');
const { t } = useTranslation();
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const [isHandlingUpload, setIsHandlingUpload] = useState<boolean>(false);
const [uploadImage] = useUploadImageMutation();
const activeTabName = useAppSelector(selectActiveTab);
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
const dispatch = useAppDispatch()
const getPostUploadAction = useCallback((): PostUploadAction => {
if (activeTabName === 'upscaling') {
return { type: 'SET_UPSCALE_INITIAL_IMAGE' };
} else {
return { type: 'TOAST' };
}
}, [activeTabName]);
const getPostUploadAction = useCallback(
(singleImage: boolean): PostUploadAction | undefined => {
if (singleImage && activeTabName === 'upscaling') {
return { type: 'SET_UPSCALE_INITIAL_IMAGE' };
} else if (singleImage) {
return { type: 'TOAST' };
}
},
[activeTabName]
);
const fileRejectionCallback = useCallback(
(rejection: FileRejection) => {
setIsHandlingUpload(true);
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description: rejection.errors.map((error) => error.message).join('\n'),
status: 'error',
});
},
[t]
);
const fileAcceptedCallback = useCallback(
(file: File, postUploadAction: PostUploadAction | undefined) => {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
});
},
[autoAddBoardId, uploadImage]
);
const onDrop = useCallback(
(acceptedFiles: Array<File>, fileRejections: Array<FileRejection>) => {
if (fileRejections.length > 0) {
const errors = fileRejections.map((rejection) => ({
errors: rejection.errors.map(({ message }) => message),
file: rejection.file.path,
}));
log.error({ errors }, 'Invalid upload');
const description =
maxImageUploadCount === undefined
? t('toast.uploadFailedInvalidUploadDesc')
: t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount });
if (fileRejections.length > 1) {
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description,
description: t('toast.uploadFailedInvalidUploadDesc'),
status: 'error',
});
setIsHandlingUpload(false);
return;
}
for (const [i, file] of acceptedFiles.entries()) {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction: getPostUploadAction(),
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
// The `imageUploaded` listener does some extra logic, like switching to the asset view on upload on the
// first upload of a "batch".
isFirstUploadOfBatch: i === 0,
});
}
fileRejections.forEach((rejection: FileRejection) => {
fileRejectionCallback(rejection);
});
setIsHandlingUpload(false);
const postUploadAction = getPostUploadAction(acceptedFiles.length === 1);
if (acceptedFiles.length === 1) {
acceptedFiles.forEach((file: File) => {
fileAcceptedCallback(file, postUploadAction);
});
} else {
const batchTotal = acceptedFiles.length
let index = 0
// dispatch(uploadingBatchChanged({uploadingBatch: true, batchTotal: acceptedFiles.length}))
toast({
id: 'BATCH_UPLOADING',
title: "Batch uploading",
status: 'info',
updateDescription: true,
description: `Uploading ${index} or ${batchTotal}`,
duration: null
});
acceptedFiles.forEach((file: File) => {
fileAcceptedCallback(file, undefined);
toast({
id: 'BATCH_UPLOADING',
title: "Batch uploading",
status: 'info',
updateDescription: true,
description: `Uploading ${index} of ${batchTotal}`,
duration: null
});
});
}
},
[t, maxImageUploadCount, uploadImage, getPostUploadAction, autoAddBoardId]
[t, fileAcceptedCallback, fileRejectionCallback, getPostUploadAction]
);
const onDragOver = useCallback(() => {
setIsHandlingUpload(true);
}, []);
const onDragLeave = useCallback(() => {
setIsHandlingUpload(false);
}, []);
const dropzone = useDropzone({
accept,
noClick: true,
onDrop,
onDragOver,
onDragLeave,
noKeyboard: true,
multiple: maxImageUploadCount === undefined || maxImageUploadCount > 1,
maxFiles: maxImageUploadCount,
});
useEffect(() => {
@@ -122,3 +152,5 @@ export const useFullscreenDropzone = () => {
return { dropzone, isHandlingUpload, setIsHandlingUpload };
};

View File

@@ -4,7 +4,6 @@ import { useAppSelector } from 'app/store/storeHooks';
import type { GroupBase } from 'chakra-react-select';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
import { groupBy, reduce } from 'lodash-es';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -38,7 +37,6 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
): UseGroupedModelComboboxReturn => {
const { t } = useTranslation();
const base = useAppSelector(selectBaseWithSDXLFallback);
const shouldShowModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, groupByType = false } = arg;
const options = useMemo<GroupBase<ComboboxOption>[]>(() => {
if (!modelConfigs) {
@@ -53,7 +51,6 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
options: val.map((model) => ({
label: model.name,
value: model.key,
description: (shouldShowModelDescriptions && model.description) || undefined,
isDisabled: getIsDisabled ? getIsDisabled(model) : false,
})),
});
@@ -63,7 +60,7 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
);
_options.sort((a) => (a.label?.split('/')[0]?.toLowerCase().includes(base) ? -1 : 1));
return _options;
}, [modelConfigs, groupByType, getIsDisabled, base, shouldShowModelDescriptions]);
}, [modelConfigs, groupByType, getIsDisabled, base]);
const value = useMemo(
() =>

View File

@@ -1,12 +1,7 @@
import { logger } from 'app/logging/logger';
import { useAppSelector } from 'app/store/storeHooks';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { selectMaxImageUploadCount } from 'features/system/store/configSlice';
import { toast } from 'features/toast/toast';
import { useCallback } from 'react';
import type { FileRejection } from 'react-dropzone';
import { useDropzone } from 'react-dropzone';
import { useTranslation } from 'react-i18next';
import { useUploadImageMutation } from 'services/api/endpoints/images';
import type { PostUploadAction } from 'services/api/types';
@@ -16,8 +11,6 @@ type UseImageUploadButtonArgs = {
allowMultiple?: boolean;
};
const log = logger('gallery');
/**
* Provides image uploader functionality to any component.
*
@@ -37,58 +30,24 @@ const log = logger('gallery');
* <Button {...getUploadButtonProps()} /> // will open the file dialog on click
* <input {...getUploadInputProps()} /> // hidden, handles native upload functionality
*/
export const useImageUploadButton = ({
postUploadAction,
isDisabled,
allowMultiple = false,
}: UseImageUploadButtonArgs) => {
export const useImageUploadButton = ({ postUploadAction, isDisabled, allowMultiple }: UseImageUploadButtonArgs) => {
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const [uploadImage] = useUploadImageMutation();
const maxImageUploadCount = useAppSelector(selectMaxImageUploadCount);
const { t } = useTranslation();
const onDropAccepted = useCallback(
(files: File[]) => {
for (const [i, file] of files.entries()) {
for (const file of files) {
uploadImage({
file,
image_category: 'user',
is_intermediate: false,
postUploadAction: postUploadAction ?? { type: 'TOAST' },
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
isFirstUploadOfBatch: i === 0,
});
}
},
[autoAddBoardId, postUploadAction, uploadImage]
);
const onDropRejected = useCallback(
(fileRejections: FileRejection[]) => {
if (fileRejections.length > 0) {
const errors = fileRejections.map((rejection) => ({
errors: rejection.errors.map(({ message }) => message),
file: rejection.file.path,
}));
log.error({ errors }, 'Invalid upload');
const description =
maxImageUploadCount === undefined
? t('toast.uploadFailedInvalidUploadDesc')
: t('toast.uploadFailedInvalidUploadDesc_withCount', { count: maxImageUploadCount });
toast({
id: 'UPLOAD_FAILED',
title: t('toast.uploadFailed'),
description,
status: 'error',
});
return;
}
},
[maxImageUploadCount, t]
);
const {
getRootProps: getUploadButtonProps,
getInputProps: getUploadInputProps,
@@ -96,11 +55,9 @@ export const useImageUploadButton = ({
} = useDropzone({
accept: { 'image/png': ['.png'], 'image/jpeg': ['.jpg', '.jpeg', '.png'] },
onDropAccepted,
onDropRejected,
disabled: isDisabled,
noDrag: true,
multiple: allowMultiple && (maxImageUploadCount === undefined || maxImageUploadCount > 1),
maxFiles: maxImageUploadCount,
multiple: allowMultiple || false,
});
return { getUploadButtonProps, getUploadInputProps, openUploader };

View File

@@ -1,7 +1,5 @@
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import type { ModelIdentifierField } from 'features/nodes/types/common';
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import type { AnyModelConfig } from 'services/api/types';
@@ -26,16 +24,13 @@ type UseModelComboboxReturn = {
export const useModelCombobox = <T extends AnyModelConfig>(arg: UseModelComboboxArg<T>): UseModelComboboxReturn => {
const { t } = useTranslation();
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, optionsFilter = () => true } = arg;
const shouldShowModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const options = useMemo<ComboboxOption[]>(() => {
return modelConfigs.filter(optionsFilter).map((model) => ({
label: model.name,
value: model.key,
description: (shouldShowModelDescriptions && model.description) || undefined,
isDisabled: getIsDisabled ? getIsDisabled(model) : false,
}));
}, [optionsFilter, getIsDisabled, modelConfigs, shouldShowModelDescriptions]);
}, [optionsFilter, getIsDisabled, modelConfigs]);
const value = useMemo(
() => options.find((m) => (selectedModel ? m.value === selectedModel.key : false)),

View File

@@ -1,161 +0,0 @@
import type { MenuButtonProps, MenuItemProps, MenuListProps, MenuProps } from '@invoke-ai/ui-library';
import { Box, Flex, Icon, Text } from '@invoke-ai/ui-library';
import { useDisclosure } from 'common/hooks/useBoolean';
import type { FocusEventHandler, PointerEvent, RefObject } from 'react';
import { useCallback, useEffect, useRef } from 'react';
import { PiCaretRightBold } from 'react-icons/pi';
import { useDebouncedCallback } from 'use-debounce';
const offset: [number, number] = [0, 8];
type UseSubMenuReturn = {
parentMenuItemProps: Partial<MenuItemProps>;
menuProps: Partial<MenuProps>;
menuButtonProps: Partial<MenuButtonProps>;
menuListProps: Partial<MenuListProps> & { ref: RefObject<HTMLDivElement> };
};
/**
* A hook that provides the necessary props to create a sub-menu within a menu.
*
* The sub-menu should be wrapped inside a parent `MenuItem` component.
*
* Use SubMenuButtonContent to render a button with a label and a right caret icon.
*
* TODO(psyche): Add keyboard handling for sub-menu.
*
* @example
* ```tsx
* const SubMenuExample = () => {
* const subMenu = useSubMenu();
* return (
* <Menu>
* <MenuButton>Open Parent Menu</MenuButton>
* <MenuList>
* <MenuItem>Parent Item 1</MenuItem>
* <MenuItem>Parent Item 2</MenuItem>
* <MenuItem>Parent Item 3</MenuItem>
* <MenuItem {...subMenu.parentMenuItemProps} icon={<PiImageBold />}>
* <Menu {...subMenu.menuProps}>
* <MenuButton {...subMenu.menuButtonProps}>
* <SubMenuButtonContent label="Open Sub Menu" />
* </MenuButton>
* <MenuList {...subMenu.menuListProps}>
* <MenuItem>Sub Item 1</MenuItem>
* <MenuItem>Sub Item 2</MenuItem>
* <MenuItem>Sub Item 3</MenuItem>
* </MenuList>
* </Menu>
* </MenuItem>
* </MenuList>
* </Menu>
* );
* };
* ```
*/
export const useSubMenu = (): UseSubMenuReturn => {
const subMenu = useDisclosure(false);
const menuListRef = useRef<HTMLDivElement>(null);
const closeDebounced = useDebouncedCallback(subMenu.close, 300);
const openAndCancelPendingClose = useCallback(() => {
closeDebounced.cancel();
subMenu.open();
}, [closeDebounced, subMenu]);
const toggleAndCancelPendingClose = useCallback(() => {
if (subMenu.isOpen) {
subMenu.close();
return;
} else {
closeDebounced.cancel();
subMenu.toggle();
}
}, [closeDebounced, subMenu]);
const onBlurMenuList = useCallback<FocusEventHandler<HTMLDivElement>>(
(e) => {
// Don't trigger blur if focus is moving to a child element - e.g. from a sub-menu item to another sub-menu item
if (e.currentTarget.contains(e.relatedTarget)) {
closeDebounced.cancel();
return;
}
subMenu.close();
},
[closeDebounced, subMenu]
);
const onParentMenuItemPointerLeave = useCallback(
(e: PointerEvent<HTMLButtonElement>) => {
/**
* The pointerleave event is triggered when the pen or touch device is lifted, which would close the sub-menu.
* However, we want to keep the sub-menu open until the pen or touch device pressed some other element. This
* will be handled in the useEffect below - just ignore the pointerleave event for pen and touch devices.
*/
if (e.pointerType === 'pen' || e.pointerType === 'touch') {
return;
}
subMenu.close();
},
[subMenu]
);
/**
* When using a mouse, the pointerleave events close the menu. But when using a pen or touch device, we need to close
* the sub-menu when the user taps outside of the menu list. So we need to listen for clicks outside of the menu list
* and close the menu accordingly.
*/
useEffect(() => {
const el = menuListRef.current;
if (!el) {
return;
}
const controller = new AbortController();
window.addEventListener(
'click',
(e) => {
if (menuListRef.current?.contains(e.target as Node)) {
return;
}
subMenu.close();
},
{ signal: controller.signal }
);
return () => {
controller.abort();
};
}, [subMenu]);
return {
parentMenuItemProps: {
onClick: toggleAndCancelPendingClose,
onPointerEnter: openAndCancelPendingClose,
onPointerLeave: onParentMenuItemPointerLeave,
closeOnSelect: false,
},
menuProps: {
isOpen: subMenu.isOpen,
onClose: subMenu.close,
placement: 'right',
offset: offset,
closeOnBlur: false,
},
menuButtonProps: {
as: Box,
width: 'full',
height: 'full',
},
menuListProps: {
ref: menuListRef,
onPointerEnter: openAndCancelPendingClose,
onPointerLeave: closeDebounced,
onBlur: onBlurMenuList,
},
};
};
export const SubMenuButtonContent = ({ label }: { label: string }) => {
return (
<Flex w="full" h="full" flexDir="row" justifyContent="space-between" alignItems="center">
<Text>{label}</Text>
<Icon as={PiCaretRightBold} />
</Flex>
);
};

View File

@@ -1,12 +1,4 @@
type SerializableValue =
| string
| number
| boolean
| null
| undefined
| SerializableValue[]
| readonly SerializableValue[]
| SerializableObject;
type SerializableValue = string | number | boolean | null | undefined | SerializableValue[] | SerializableObject;
export type SerializableObject = {
[k: string | number]: SerializableValue;
};

View File

@@ -1,6 +1,5 @@
import { Button, Flex, Heading } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import {
useAddControlLayer,
useAddGlobalReferenceImage,
@@ -29,80 +28,70 @@ export const CanvasAddEntityButtons = memo(() => {
<Flex position="relative" flexDir="column" gap={4} top="20%">
<Flex flexDir="column" justifyContent="flex-start" gap={2}>
<Heading size="xs">{t('controlLayers.global')}</Heading>
<InformationalPopover feature="globalReferenceImage">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addGlobalReferenceImage}
>
{t('controlLayers.globalReferenceImage')}
</Button>
</InformationalPopover>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addGlobalReferenceImage}
isDisabled={isFLUX}
>
{t('controlLayers.globalReferenceImage')}
</Button>
</Flex>
<Flex flexDir="column" gap={2}>
<Heading size="xs">{t('controlLayers.regional')}</Heading>
<InformationalPopover feature="inpainting">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addInpaintMask}
>
{t('controlLayers.inpaintMask')}
</Button>
</InformationalPopover>
<InformationalPopover feature="regionalGuidance">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX}
>
{t('controlLayers.regionalGuidance')}
</Button>
</InformationalPopover>
<InformationalPopover feature="regionalReferenceImage">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalReferenceImage}
isDisabled={isFLUX}
>
{t('controlLayers.regionalReferenceImage')}
</Button>
</InformationalPopover>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addInpaintMask}
>
{t('controlLayers.inpaintMask')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX}
>
{t('controlLayers.regionalGuidance')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalReferenceImage}
isDisabled={isFLUX}
>
{t('controlLayers.regionalReferenceImage')}
</Button>
</Flex>
<Flex flexDir="column" justifyContent="flex-start" gap={2}>
<Heading size="xs">{t('controlLayers.layer_other')}</Heading>
<InformationalPopover feature="controlNet">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addControlLayer}
>
{t('controlLayers.controlLayer')}
</Button>
</InformationalPopover>
<InformationalPopover feature="rasterLayer">
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRasterLayer}
>
{t('controlLayers.rasterLayer')}
</Button>
</InformationalPopover>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addControlLayer}
>
{t('controlLayers.controlLayer')}
</Button>
<Button
size="sm"
variant="ghost"
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRasterLayer}
>
{t('controlLayers.rasterLayer')}
</Button>
</Flex>
</Flex>
</Flex>

View File

@@ -13,7 +13,7 @@ export const CanvasAlertsPreserveMask = memo(() => {
}
return (
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content" alignSelf="flex-end">
<AlertIcon />
<AlertTitle>{t('controlLayers.settings.preserveMask.alert')}</AlertTitle>
</Alert>

View File

@@ -98,7 +98,7 @@ const CanvasAlertsSelectedEntityStatusContent = memo(({ entityIdentifier, adapte
}
return (
<Alert status={alert.status} borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
<Alert status={alert.status} borderRadius="base" fontSize="sm" shadow="md" w="fit-content" alignSelf="flex-end">
<AlertIcon />
<AlertTitle>{alert.title}</AlertTitle>
</Alert>

View File

@@ -2,10 +2,14 @@ import { Alert, AlertDescription, AlertIcon, AlertTitle, Button, Flex } from '@i
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useBoolean } from 'common/hooks/useBoolean';
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
import {
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useCurrentDestination } from 'features/queue/hooks/useCurrentDestination';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { activeTabCanvasRightPanelChanged, setActiveTab } from 'features/ui/store/uiSlice';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { AnimatePresence, motion } from 'framer-motion';
import type { PropsWithChildren, ReactNode } from 'react';
import { useCallback, useMemo } from 'react';
@@ -13,11 +17,10 @@ import { Trans, useTranslation } from 'react-i18next';
const ActivateImageViewerButton = (props: PropsWithChildren) => {
const imageViewer = useImageViewer();
const dispatch = useAppDispatch();
const onClick = useCallback(() => {
imageViewer.open();
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [imageViewer, dispatch]);
selectCanvasRightPanelGalleryTab();
}, [imageViewer]);
return (
<Button onClick={onClick} size="sm" variant="link" color="base.50">
{props.children}
@@ -57,7 +60,7 @@ const ActivateCanvasButton = (props: PropsWithChildren) => {
const imageViewer = useImageViewer();
const onClick = useCallback(() => {
dispatch(setActiveTab('canvas'));
dispatch(activeTabCanvasRightPanelChanged('layers'));
selectCanvasRightPanelLayersTab();
imageViewer.close();
}, [dispatch, imageViewer]);
return (
@@ -132,6 +135,7 @@ const AlertWrapper = ({
fontSize="sm"
shadow="md"
w="fit-content"
alignSelf="flex-end"
>
<Flex w="full" alignItems="center">
<AlertIcon />

View File

@@ -1,24 +0,0 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { selectAutoProcess, settingsAutoProcessToggled } from 'features/controlLayers/store/canvasSettingsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
export const CanvasAutoProcessSwitch = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const autoProcess = useAppSelector(selectAutoProcess);
const onChange = useCallback(() => {
dispatch(settingsAutoProcessToggled());
}, [dispatch]);
return (
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.filter.autoProcess')}</FormLabel>
<Switch size="sm" isChecked={autoProcess} onChange={onChange} />
</FormControl>
);
});
CanvasAutoProcessSwitch.displayName = 'CanvasAutoProcessSwitch';

View File

@@ -1,5 +1,4 @@
import { Menu, MenuButton, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { MenuGroup, MenuItem } from '@invoke-ai/ui-library';
import { CanvasContextMenuItemsCropCanvasToBbox } from 'features/controlLayers/components/CanvasContextMenu/CanvasContextMenuItemsCropCanvasToBbox';
import { NewLayerIcon } from 'features/controlLayers/components/common/icons';
import {
@@ -17,8 +16,6 @@ import { PiFloppyDiskBold } from 'react-icons/pi';
export const CanvasContextMenuGlobalMenuItems = memo(() => {
const { t } = useTranslation();
const saveSubMenu = useSubMenu();
const newSubMenu = useSubMenu();
const isBusy = useCanvasIsBusy();
const saveCanvasToGallery = useSaveCanvasToGallery();
const saveBboxToGallery = useSaveBboxToGallery();
@@ -31,41 +28,27 @@ export const CanvasContextMenuGlobalMenuItems = memo(() => {
<>
<MenuGroup title={t('controlLayers.canvasContextMenu.canvasGroup')}>
<CanvasContextMenuItemsCropCanvasToBbox />
<MenuItem {...saveSubMenu.parentMenuItemProps} icon={<PiFloppyDiskBold />}>
<Menu {...saveSubMenu.menuProps}>
<MenuButton {...saveSubMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.canvasContextMenu.saveToGalleryGroup')} />
</MenuButton>
<MenuList {...saveSubMenu.menuListProps}>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveCanvasToGallery}>
{t('controlLayers.canvasContextMenu.saveCanvasToGallery')}
</MenuItem>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveBboxToGallery}>
{t('controlLayers.canvasContextMenu.saveBboxToGallery')}
</MenuItem>
</MenuList>
</Menu>
</MenuGroup>
<MenuGroup title={t('controlLayers.canvasContextMenu.saveToGalleryGroup')}>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveCanvasToGallery}>
{t('controlLayers.canvasContextMenu.saveCanvasToGallery')}
</MenuItem>
<MenuItem {...newSubMenu.parentMenuItemProps} icon={<NewLayerIcon />}>
<Menu {...newSubMenu.menuProps}>
<MenuButton {...newSubMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.canvasContextMenu.bboxGroup')} />
</MenuButton>
<MenuList {...newSubMenu.menuListProps}>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newGlobalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newGlobalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRegionalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newControlLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newControlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRasterLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
<MenuItem icon={<PiFloppyDiskBold />} isDisabled={isBusy} onClick={saveBboxToGallery}>
{t('controlLayers.canvasContextMenu.saveBboxToGallery')}
</MenuItem>
</MenuGroup>
<MenuGroup title={t('controlLayers.canvasContextMenu.bboxGroup')}>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newGlobalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newGlobalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRegionalReferenceImageFromBbox}>
{t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newControlLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newControlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} isDisabled={isBusy} onClick={newRasterLayerFromBbox}>
{t('controlLayers.canvasContextMenu.newRasterLayer')}
</MenuItem>
</MenuGroup>
</>

View File

@@ -1,43 +1,39 @@
import { MenuGroup } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { ControlLayerMenuItems } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItems';
import { InpaintMaskMenuItems } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItems';
import { IPAdapterMenuItems } from 'features/controlLayers/components/IPAdapter/IPAdapterMenuItems';
import { RasterLayerMenuItems } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItems';
import { RegionalGuidanceMenuItems } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceMenuItems';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import {
EntityIdentifierContext,
useEntityIdentifierContext,
} from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityTypeString } from 'features/controlLayers/hooks/useEntityTypeString';
import { useEntityTitle } from 'features/controlLayers/hooks/useEntityTitle';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import type { PropsWithChildren } from 'react';
import {
isFilterableEntityIdentifier,
isSaveableEntityIdentifier,
isTransformableEntityIdentifier,
} from 'features/controlLayers/store/types';
import { memo } from 'react';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
const CanvasContextMenuSelectedEntityMenuItemsContent = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const title = useEntityTitle(entityIdentifier);
if (entityIdentifier.type === 'raster_layer') {
return <RasterLayerMenuItems />;
}
if (entityIdentifier.type === 'control_layer') {
return <ControlLayerMenuItems />;
}
if (entityIdentifier.type === 'inpaint_mask') {
return <InpaintMaskMenuItems />;
}
if (entityIdentifier.type === 'regional_guidance') {
return <RegionalGuidanceMenuItems />;
}
if (entityIdentifier.type === 'reference_image') {
return <IPAdapterMenuItems />;
}
assert<Equals<typeof entityIdentifier.type, never>>(false);
return (
<MenuGroup title={title}>
{isFilterableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsFilter />}
{isTransformableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsTransform />}
{isSaveableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsCopyToClipboard />}
{isSaveableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsSave />}
{isTransformableEntityIdentifier(entityIdentifier) && <CanvasEntityMenuItemsCropToBbox />}
<CanvasEntityMenuItemsDelete />
</MenuGroup>
);
});
CanvasContextMenuSelectedEntityMenuItemsContent.displayName = 'CanvasContextMenuSelectedEntityMenuItemsContent';
export const CanvasContextMenuSelectedEntityMenuItems = memo(() => {
@@ -49,20 +45,9 @@ export const CanvasContextMenuSelectedEntityMenuItems = memo(() => {
return (
<EntityIdentifierContext.Provider value={selectedEntityIdentifier}>
<CanvasContextMenuSelectedEntityMenuGroup>
<CanvasContextMenuSelectedEntityMenuItemsContent />
</CanvasContextMenuSelectedEntityMenuGroup>
<CanvasContextMenuSelectedEntityMenuItemsContent />
</EntityIdentifierContext.Provider>
);
});
CanvasContextMenuSelectedEntityMenuItems.displayName = 'CanvasContextMenuSelectedEntityMenuItems';
const CanvasContextMenuSelectedEntityMenuGroup = memo((props: PropsWithChildren) => {
const entityIdentifier = useEntityIdentifierContext();
const title = useEntityTypeString(entityIdentifier.type);
return <MenuGroup title={title}>{props.children}</MenuGroup>;
});
CanvasContextMenuSelectedEntityMenuGroup.displayName = 'CanvasContextMenuSelectedEntityMenuGroup';

View File

@@ -62,7 +62,6 @@ export const CanvasDropArea = memo(() => {
data={addControlLayerFromImageDropData}
/>
</GridItem>
<GridItem position="relative">
<IAIDroppable
dropLabel={t('controlLayers.canvasContextMenu.newRegionalReferenceImage')}

View File

@@ -29,7 +29,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
<Menu>
<MenuButton
as={IconButton}
minW={8}
size="sm"
variant="link"
alignSelf="stretch"
tooltip={t('controlLayers.addLayer')}
@@ -40,7 +40,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
/>
<MenuList>
<MenuGroup title={t('controlLayers.global')}>
<MenuItem icon={<PiPlusBold />} onClick={addGlobalReferenceImage}>
<MenuItem icon={<PiPlusBold />} onClick={addGlobalReferenceImage} isDisabled={isFLUX}>
{t('controlLayers.globalReferenceImage')}
</MenuItem>
</MenuGroup>

View File

@@ -4,7 +4,6 @@ import { EntityListSelectedEntityActionBarDuplicateButton } from 'features/contr
import { EntityListSelectedEntityActionBarFill } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarFill';
import { EntityListSelectedEntityActionBarFilterButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarFilterButton';
import { EntityListSelectedEntityActionBarOpacity } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarOpacity';
import { EntityListSelectedEntityActionBarSelectObjectButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarSelectObjectButton';
import { EntityListSelectedEntityActionBarTransformButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarTransformButton';
import { memo } from 'react';
@@ -17,7 +16,6 @@ export const EntityListSelectedEntityActionBar = memo(() => {
<Spacer />
<EntityListSelectedEntityActionBarFill />
<Flex h="full">
<EntityListSelectedEntityActionBarSelectObjectButton />
<EntityListSelectedEntityActionBarFilterButton />
<EntityListSelectedEntityActionBarTransformButton />
<EntityListSelectedEntityActionBarSaveToAssetsButton />

View File

@@ -23,7 +23,7 @@ export const EntityListSelectedEntityActionBarDuplicateButton = memo(() => {
<IconButton
onClick={onClick}
isDisabled={!selectedEntityIdentifier || isBusy}
minW={8}
size="sm"
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.duplicate')}

View File

@@ -5,7 +5,7 @@ import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/sel
import { isFilterableEntityIdentifier } from 'features/controlLayers/store/types';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiShootingStarFill } from 'react-icons/pi';
import { PiShootingStarBold } from 'react-icons/pi';
export const EntityListSelectedEntityActionBarFilterButton = memo(() => {
const { t } = useTranslation();
@@ -24,12 +24,12 @@ export const EntityListSelectedEntityActionBarFilterButton = memo(() => {
<IconButton
onClick={filter.start}
isDisabled={filter.isDisabled}
minW={8}
size="sm"
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.filter.filter')}
tooltip={t('controlLayers.filter.filter')}
icon={<PiShootingStarFill />}
icon={<PiShootingStarBold />}
/>
);
});

View File

@@ -31,7 +31,7 @@ export const EntityListSelectedEntityActionBarSaveToAssetsButton = memo(() => {
<IconButton
onClick={onClick}
isDisabled={!selectedEntityIdentifier || isBusy}
minW={8}
size="sm"
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.saveLayerToAssets')}

View File

@@ -1,37 +0,0 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useEntitySegmentAnything } from 'features/controlLayers/hooks/useEntitySegmentAnything';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import { isSegmentableEntityIdentifier } from 'features/controlLayers/store/types';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiShapesFill } from 'react-icons/pi';
export const EntityListSelectedEntityActionBarSelectObjectButton = memo(() => {
const { t } = useTranslation();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const segment = useEntitySegmentAnything(selectedEntityIdentifier);
if (!selectedEntityIdentifier) {
return null;
}
if (!isSegmentableEntityIdentifier(selectedEntityIdentifier)) {
return null;
}
return (
<IconButton
onClick={segment.start}
isDisabled={segment.isDisabled}
minW={8}
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.selectObject.selectObject')}
tooltip={t('controlLayers.selectObject.selectObject')}
icon={<PiShapesFill />}
/>
);
});
EntityListSelectedEntityActionBarSelectObjectButton.displayName = 'EntityListSelectedEntityActionBarSelectObjectButton';

View File

@@ -24,7 +24,7 @@ export const EntityListSelectedEntityActionBarTransformButton = memo(() => {
<IconButton
onClick={transform.start}
isDisabled={transform.isDisabled}
minW={8}
size="sm"
variant="link"
alignSelf="stretch"
aria-label={t('controlLayers.transform.transform')}

View File

@@ -10,7 +10,6 @@ import { CanvasDropArea } from 'features/controlLayers/components/CanvasDropArea
import { Filter } from 'features/controlLayers/components/Filters/Filter';
import { CanvasHUD } from 'features/controlLayers/components/HUD/CanvasHUD';
import { InvokeCanvasComponent } from 'features/controlLayers/components/InvokeCanvasComponent';
import { SelectObject } from 'features/controlLayers/components/SelectObject/SelectObject';
import { StagingAreaIsStagingGate } from 'features/controlLayers/components/StagingArea/StagingAreaIsStagingGate';
import { StagingAreaToolbar } from 'features/controlLayers/components/StagingArea/StagingAreaToolbar';
import { CanvasToolbar } from 'features/controlLayers/components/Toolbar/CanvasToolbar';
@@ -25,8 +24,8 @@ const MenuContent = () => {
return (
<CanvasManagerProviderGate>
<MenuList>
<CanvasContextMenuSelectedEntityMenuItems />
<CanvasContextMenuGlobalMenuItems />
<CanvasContextMenuSelectedEntityMenuItems />
</MenuList>
</CanvasManagerProviderGate>
);
@@ -71,16 +70,12 @@ export const CanvasMainPanelContent = memo(() => {
>
<InvokeCanvasComponent />
<CanvasManagerProviderGate>
<Flex
position="absolute"
flexDir="column"
top={1}
insetInlineStart={1}
pointerEvents="none"
gap={2}
alignItems="flex-start"
>
{showHUD && <CanvasHUD />}
{showHUD && (
<Flex position="absolute" top={1} insetInlineStart={1} pointerEvents="none">
<CanvasHUD />
</Flex>
)}
<Flex flexDir="column" position="absolute" top={1} insetInlineEnd={1} pointerEvents="none" gap={2}>
<CanvasAlertsSelectedEntityStatus />
<CanvasAlertsPreserveMask />
<CanvasAlertsSendingToGallery />
@@ -106,7 +101,6 @@ export const CanvasMainPanelContent = memo(() => {
<CanvasManagerProviderGate>
<Filter />
<Transform />
<SelectObject />
</CanvasManagerProviderGate>
</Flex>
<CanvasDropArea />

View File

@@ -1,28 +0,0 @@
import { FormControl, FormLabel, Switch, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
selectIsolatedLayerPreview,
settingsIsolatedLayerPreviewToggled,
} from 'features/controlLayers/store/canvasSettingsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
export const CanvasOperationIsolatedLayerPreviewSwitch = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const isolatedLayerPreview = useAppSelector(selectIsolatedLayerPreview);
const onChangeIsolatedPreview = useCallback(() => {
dispatch(settingsIsolatedLayerPreviewToggled());
}, [dispatch]);
return (
<Tooltip label={t('controlLayers.settings.isolatedLayerPreviewDesc')}>
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.settings.isolatedPreview')}</FormLabel>
<Switch size="sm" isChecked={isolatedLayerPreview} onChange={onChangeIsolatedPreview} />
</FormControl>
</Tooltip>
);
});
CanvasOperationIsolatedLayerPreviewSwitch.displayName = 'CanvasOperationIsolatedLayerPreviewSwitch';

View File

@@ -1,50 +1,31 @@
import { useDndContext } from '@dnd-kit/core';
import { Box, Button, Spacer, Tab, TabList, TabPanel, TabPanels, Tabs } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDropOverlay from 'common/components/IAIDropOverlay';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { CanvasLayersPanelContent } from 'features/controlLayers/components/CanvasLayersPanelContent';
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import {
$canvasRightPanelTabIndex,
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { selectEntityCountActive } from 'features/controlLayers/store/selectors';
import GalleryPanelContent from 'features/gallery/components/GalleryPanelContent';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { selectActiveTabCanvasRightPanel } from 'features/ui/store/uiSelectors';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo, useRef, useState } from 'react';
import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
export const CanvasRightPanel = memo(() => {
const { t } = useTranslation();
const activeTab = useAppSelector(selectActiveTabCanvasRightPanel);
const tabIndex = useStore($canvasRightPanelTabIndex);
const imageViewer = useImageViewer();
const dispatch = useAppDispatch();
const tabIndex = useMemo(() => {
if (activeTab === 'gallery') {
return 1;
} else {
return 0;
}
}, [activeTab]);
const onClickViewerToggleButton = useCallback(() => {
if (activeTab !== 'gallery') {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
if ($canvasRightPanelTabIndex.get() !== 1) {
$canvasRightPanelTabIndex.set(1);
}
imageViewer.toggle();
}, [imageViewer, activeTab, dispatch]);
const onChangeTab = useCallback(
(index: number) => {
if (index === 0) {
dispatch(activeTabCanvasRightPanelChanged('layers'));
} else {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}
},
[dispatch]
);
}, [imageViewer]);
useRegisteredHotkeys({
id: 'toggleViewer',
category: 'viewer',
@@ -53,7 +34,7 @@ export const CanvasRightPanel = memo(() => {
});
return (
<Tabs index={tabIndex} onChange={onChangeTab} w="full" h="full" display="flex" flexDir="column">
<Tabs index={tabIndex} onChange={$canvasRightPanelTabIndex.set} w="full" h="full" display="flex" flexDir="column">
<TabList alignItems="center">
<PanelTabs />
<Spacer />
@@ -79,33 +60,27 @@ CanvasRightPanel.displayName = 'CanvasRightPanel';
const PanelTabs = memo(() => {
const { t } = useTranslation();
const activeTab = useAppSelector(selectActiveTabCanvasRightPanel);
const activeEntityCount = useAppSelector(selectEntityCountActive);
const tabTimeout = useRef<number | null>(null);
const dndCtx = useDndContext();
const dispatch = useAppDispatch();
const [mouseOverTab, setMouseOverTab] = useState<'layers' | 'gallery' | null>(null);
const onOnMouseOverLayersTab = useCallback(() => {
setMouseOverTab('layers');
tabTimeout.current = window.setTimeout(() => {
if (dndCtx.active) {
dispatch(activeTabCanvasRightPanelChanged('layers'));
selectCanvasRightPanelLayersTab();
}
}, 300);
}, [dndCtx.active, dispatch]);
}, [dndCtx.active]);
const onOnMouseOverGalleryTab = useCallback(() => {
setMouseOverTab('gallery');
tabTimeout.current = window.setTimeout(() => {
if (dndCtx.active) {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
selectCanvasRightPanelGalleryTab();
}
}, 300);
}, [dndCtx.active, dispatch]);
}, [dndCtx.active]);
const onMouseOut = useCallback(() => {
setMouseOverTab(null);
if (tabTimeout.current) {
clearTimeout(tabTimeout.current);
}
@@ -124,17 +99,9 @@ const PanelTabs = memo(() => {
<Box as="span" w="full">
{layersTabLabel}
</Box>
{dndCtx.active && activeTab !== 'layers' && (
<IAIDropOverlay isOver={mouseOverTab === 'layers'} withBackdrop={false} />
)}
</Tab>
<Tab position="relative" onMouseOver={onOnMouseOverGalleryTab} onMouseOut={onMouseOut} w={32}>
<Box as="span" w="full">
{t('gallery.gallery')}
</Box>
{dndCtx.active && activeTab !== 'gallery' && (
<IAIDropOverlay isOver={mouseOverTab === 'gallery'} withBackdrop={false} />
)}
<Tab position="relative" onMouseOver={onOnMouseOverGalleryTab} onMouseOut={onMouseOut}>
{t('gallery.gallery')}
</Tab>
</>
);

View File

@@ -21,7 +21,7 @@ import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/s
import type { CanvasEntityIdentifier, ControlModeV2 } from 'features/controlLayers/store/types';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold, PiShootingStarFill, PiUploadBold } from 'react-icons/pi';
import { PiBoundingBoxBold, PiShootingStarBold, PiUploadBold } from 'react-icons/pi';
import type { ControlNetModelConfig, PostUploadAction, T2IAdapterModelConfig } from 'services/api/types';
const useControlLayerControlAdapter = (entityIdentifier: CanvasEntityIdentifier<'control_layer'>) => {
@@ -93,7 +93,7 @@ export const ControlLayerControlAdapter = memo(() => {
variant="link"
aria-label={t('controlLayers.filter.filter')}
tooltip={t('controlLayers.filter.filter')}
icon={<PiShootingStarFill />}
icon={<PiShootingStarBold />}
/>
<IconButton
onClick={pullBboxIntoLayer}

View File

@@ -1,15 +1,14 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { ControlLayerMenuItemsConvertToSubMenu } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsConvertToSubMenu';
import { ControlLayerMenuItemsCopyToSubMenu } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsCopyToSubMenu';
import { ControlLayerMenuItemsConvertControlToRaster } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsConvertControlToRaster';
import { ControlLayerMenuItemsTransparencyEffect } from 'features/controlLayers/components/ControlLayer/ControlLayerMenuItemsTransparencyEffect';
import { memo } from 'react';
@@ -24,12 +23,11 @@ export const ControlLayerMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<CanvasEntityMenuItemsSelectObject />
<ControlLayerMenuItemsConvertControlToRaster />
<ControlLayerMenuItemsTransparencyEffect />
<MenuDivider />
<ControlLayerMenuItemsCopyToSubMenu />
<ControlLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
</>
);

View File

@@ -0,0 +1,27 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { controlLayerConvertedToRasterLayer } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiLightningBold } from 'react-icons/pi';
export const ControlLayerMenuItemsConvertControlToRaster = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertControlLayerToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem onClick={convertControlLayerToRasterLayer} icon={<PiLightningBold />} isDisabled={!isInteractable}>
{t('controlLayers.convertToRasterLayer')}
</MenuItem>
);
});
ControlLayerMenuItemsConvertControlToRaster.displayName = 'ControlLayerMenuItemsConvertControlToRaster';

View File

@@ -1,56 +0,0 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
controlLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const ControlLayerMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToRegionalGuidance = useCallback(() => {
dispatch(controlLayerConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
const convertToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToInpaintMask} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem onClick={convertToRasterLayer} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.rasterLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ControlLayerMenuItemsConvertToSubMenu.displayName = 'ControlLayerMenuItemsConvertToSubMenu';

View File

@@ -1,58 +0,0 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import {
controlLayerConvertedToInpaintMask,
controlLayerConvertedToRasterLayer,
controlLayerConvertedToRegionalGuidance,
} from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const ControlLayerMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('control_layer');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToInpaintMask = useCallback(() => {
dispatch(controlLayerConvertedToInpaintMask({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToRegionalGuidance = useCallback(() => {
dispatch(controlLayerConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
const copyToRasterLayer = useCallback(() => {
dispatch(controlLayerConvertedToRasterLayer({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyControlLayerTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToInpaintMask} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem onClick={copyToRasterLayer} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ControlLayerMenuItemsCopyToSubMenu.displayName = 'ControlLayerMenuItemsCopyToSubMenu';

View File

@@ -1,43 +1,41 @@
import {
Button,
ButtonGroup,
Flex,
Heading,
Menu,
MenuButton,
MenuItem,
MenuList,
Spacer,
Spinner,
} from '@invoke-ai/ui-library';
import { Button, ButtonGroup, Flex, FormControl, FormLabel, Heading, Spacer, Switch } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import { CanvasAutoProcessSwitch } from 'features/controlLayers/components/CanvasAutoProcessSwitch';
import { CanvasOperationIsolatedLayerPreviewSwitch } from 'features/controlLayers/components/CanvasOperationIsolatedLayerPreviewSwitch';
import { FilterSettings } from 'features/controlLayers/components/Filters/FilterSettings';
import { FilterTypeSelect } from 'features/controlLayers/components/Filters/FilterTypeSelect';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import type { CanvasEntityAdapterControlLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterControlLayer';
import type { CanvasEntityAdapterRasterLayer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityAdapterRasterLayer';
import { selectAutoProcess } from 'features/controlLayers/store/canvasSettingsSlice';
import {
selectAutoProcessFilter,
selectIsolatedFilteringPreview,
settingsAutoProcessFilterToggled,
settingsIsolatedFilteringPreviewToggled,
} from 'features/controlLayers/store/canvasSettingsSlice';
import type { FilterConfig } from 'features/controlLayers/store/filters';
import { IMAGE_FILTERS } from 'features/controlLayers/store/filters';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCaretDownBold } from 'react-icons/pi';
import { PiArrowsCounterClockwiseBold, PiCheckBold, PiShootingStarBold, PiXBold } from 'react-icons/pi';
const FilterContent = memo(
({ adapter }: { adapter: CanvasEntityAdapterRasterLayer | CanvasEntityAdapterControlLayer }) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const ref = useRef<HTMLDivElement>(null);
useFocusRegion('canvas', ref, { focusOnMount: true });
const config = useStore(adapter.filterer.$filterConfig);
const isCanvasFocused = useIsRegionFocused('canvas');
const isProcessing = useStore(adapter.filterer.$isProcessing);
const hasImageState = useStore(adapter.filterer.$hasImageState);
const autoProcess = useAppSelector(selectAutoProcess);
const hasProcessed = useStore(adapter.filterer.$hasProcessed);
const autoProcessFilter = useAppSelector(selectAutoProcessFilter);
const isolatedFilteringPreview = useAppSelector(selectIsolatedFilteringPreview);
const onChangeIsolatedPreview = useCallback(() => {
dispatch(settingsIsolatedFilteringPreviewToggled());
}, [dispatch]);
const onChangeFilterConfig = useCallback(
(filterConfig: FilterConfig) => {
@@ -53,26 +51,14 @@ const FilterContent = memo(
[adapter.filterer.$filterConfig]
);
const onChangeAutoProcessFilter = useCallback(() => {
dispatch(settingsAutoProcessFilterToggled());
}, [dispatch]);
const isValid = useMemo(() => {
return IMAGE_FILTERS[config.type].validateConfig?.(config as never) ?? true;
}, [config]);
const saveAsInpaintMask = useCallback(() => {
adapter.filterer.saveAs('inpaint_mask');
}, [adapter.filterer]);
const saveAsRegionalGuidance = useCallback(() => {
adapter.filterer.saveAs('regional_guidance');
}, [adapter.filterer]);
const saveAsRasterLayer = useCallback(() => {
adapter.filterer.saveAs('raster_layer');
}, [adapter.filterer]);
const saveAsControlLayer = useCallback(() => {
adapter.filterer.saveAs('control_layer');
}, [adapter.filterer]);
useRegisteredHotkeys({
id: 'applyFilter',
category: 'canvas',
@@ -108,64 +94,54 @@ const FilterContent = memo(
{t('controlLayers.filter.filter')}
</Heading>
<Spacer />
<CanvasAutoProcessSwitch />
<CanvasOperationIsolatedLayerPreviewSwitch />
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.filter.autoProcess')}</FormLabel>
<Switch size="sm" isChecked={autoProcessFilter} onChange={onChangeAutoProcessFilter} />
</FormControl>
<FormControl w="min-content">
<FormLabel m={0}>{t('controlLayers.settings.isolatedPreview')}</FormLabel>
<Switch size="sm" isChecked={isolatedFilteringPreview} onChange={onChangeIsolatedPreview} />
</FormControl>
</Flex>
<FilterTypeSelect filterType={config.type} onChange={onChangeFilterType} />
<FilterSettings filterConfig={config} onChange={onChangeFilterConfig} />
<ButtonGroup isAttached={false} size="sm" w="full">
<Button
variant="ghost"
leftIcon={<PiShootingStarBold />}
onClick={adapter.filterer.processImmediate}
isLoading={isProcessing}
loadingText={t('controlLayers.filter.process')}
isDisabled={isProcessing || !isValid || (autoProcess && hasImageState)}
isDisabled={!isValid || autoProcessFilter}
>
{t('controlLayers.filter.process')}
{isProcessing && <Spinner ms={3} boxSize={5} color="base.600" />}
</Button>
<Spacer />
<Button
leftIcon={<PiArrowsCounterClockwiseBold />}
onClick={adapter.filterer.reset}
isDisabled={isProcessing}
isLoading={isProcessing}
loadingText={t('controlLayers.filter.reset')}
variant="ghost"
>
{t('controlLayers.filter.reset')}
</Button>
<Button
onClick={adapter.filterer.apply}
loadingText={t('controlLayers.filter.apply')}
variant="ghost"
isDisabled={isProcessing || !isValid || !hasImageState}
leftIcon={<PiCheckBold />}
onClick={adapter.filterer.apply}
isLoading={isProcessing}
loadingText={t('controlLayers.filter.apply')}
isDisabled={!isValid || !hasProcessed}
>
{t('controlLayers.filter.apply')}
</Button>
<Menu>
<MenuButton
as={Button}
loadingText={t('controlLayers.selectObject.saveAs')}
variant="ghost"
isDisabled={isProcessing || !isValid || !hasImageState}
rightIcon={<PiCaretDownBold />}
>
{t('controlLayers.selectObject.saveAs')}
</MenuButton>
<MenuList>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsInpaintMask}>
{t('controlLayers.newInpaintMask')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsRegionalGuidance}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsControlLayer}>
{t('controlLayers.newControlLayer')}
</MenuItem>
<MenuItem isDisabled={isProcessing || !isValid || !hasImageState} onClick={saveAsRasterLayer}>
{t('controlLayers.newRasterLayer')}
</MenuItem>
</MenuList>
</Menu>
<Button variant="ghost" onClick={adapter.filterer.cancel} loadingText={t('controlLayers.filter.cancel')}>
<Button
variant="ghost"
leftIcon={<PiXBold />}
onClick={adapter.filterer.cancel}
loadingText={t('controlLayers.filter.cancel')}
>
{t('controlLayers.filter.cancel')}
</Button>
</ButtonGroup>

View File

@@ -1,22 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoGlobalReferenceImage } from 'features/controlLayers/hooks/saveCanvasHooks';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold } from 'react-icons/pi';
export const IPAdapterMenuItemPullBbox = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext('reference_image');
const pullBboxIntoIPAdapter = usePullBboxIntoGlobalReferenceImage(entityIdentifier);
const isBusy = useCanvasIsBusy();
return (
<MenuItem onClick={pullBboxIntoIPAdapter} icon={<PiBoundingBoxBold />} isDisabled={isBusy}>
{t('controlLayers.pullBboxIntoReferenceImage')}
</MenuItem>
);
});
IPAdapterMenuItemPullBbox.displayName = 'IPAdapterMenuItemPullBbox';

View File

@@ -1,22 +1,16 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { IPAdapterMenuItemPullBbox } from 'features/controlLayers/components/IPAdapter/IPAdapterMenuItemPullBbox';
import { memo } from 'react';
export const IPAdapterMenuItems = memo(() => {
return (
<>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
<MenuDivider />
<IPAdapterMenuItemPullBbox />
</>
<IconMenuItemGroup>
<CanvasEntityMenuItemsArrange />
<CanvasEntityMenuItemsDuplicate />
<CanvasEntityMenuItemsDelete asIcon />
</IconMenuItemGroup>
);
});

View File

@@ -2,7 +2,7 @@ import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { selectBase, selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { selectBase } from 'features/controlLayers/store/paramsSlice';
import type { CLIPVisionModelV2 } from 'features/controlLayers/store/types';
import { isCLIPVisionModelV2 } from 'features/controlLayers/store/types';
import { memo, useCallback, useMemo } from 'react';
@@ -11,13 +11,9 @@ import { useIPAdapterModels } from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, IPAdapterModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
// at this time, ViT-L is the only supported clip model for FLUX IP adapter
const FLUX_CLIP_VISION = 'ViT-L';
const CLIP_VISION_OPTIONS = [
{ label: 'ViT-H', value: 'ViT-H' },
{ label: 'ViT-G', value: 'ViT-G' },
{ label: FLUX_CLIP_VISION, value: FLUX_CLIP_VISION },
];
type Props = {
@@ -51,8 +47,6 @@ export const IPAdapterModel = memo(({ modelKey, onChangeModel, clipVisionModel,
[onChangeCLIPVisionModel]
);
const isFLUX = useAppSelector(selectIsFLUX);
const getIsDisabled = useCallback(
(model: AnyModelConfig): boolean => {
const isCompatible = currentBaseModel === model.base;
@@ -70,16 +64,10 @@ export const IPAdapterModel = memo(({ modelKey, onChangeModel, clipVisionModel,
isLoading,
});
const clipVisionOptions = useMemo(() => {
return CLIP_VISION_OPTIONS.map((option) => ({
...option,
isDisabled: isFLUX && option.value !== FLUX_CLIP_VISION,
}));
}, [isFLUX]);
const clipVisionModelValue = useMemo(() => {
return CLIP_VISION_OPTIONS.find((o) => o.value === clipVisionModel);
}, [clipVisionModel]);
const clipVisionModelValue = useMemo(
() => CLIP_VISION_OPTIONS.find((o) => o.value === clipVisionModel),
[clipVisionModel]
);
return (
<Flex gap={2}>
@@ -97,7 +85,7 @@ export const IPAdapterModel = memo(({ modelKey, onChangeModel, clipVisionModel,
{selectedModel?.format === 'checkpoint' && (
<FormControl isInvalid={!value || currentBaseModel !== selectedModel?.base} width="max-content" minWidth={28}>
<Combobox
options={clipVisionOptions}
options={CLIP_VISION_OPTIONS}
placeholder={t('common.placeholderSelectAModel')}
value={clipVisionModelValue}
onChange={_onChangeCLIPVisionModel}

View File

@@ -16,7 +16,6 @@ import {
referenceImageIPAdapterModelChanged,
referenceImageIPAdapterWeightChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CLIPVisionModelV2, IPMethodV2 } from 'features/controlLayers/store/types';
import type { IPAImageDropData } from 'features/dnd/types';
@@ -91,8 +90,6 @@ export const IPAdapterSettings = memo(() => {
const pullBboxIntoIPAdapter = usePullBboxIntoGlobalReferenceImage(entityIdentifier);
const isBusy = useCanvasIsBusy();
const isFLUX = useAppSelector(selectIsFLUX);
return (
<CanvasEntitySettingsWrapper>
<Flex flexDir="column" gap={2} position="relative" w="full">
@@ -116,7 +113,7 @@ export const IPAdapterSettings = memo(() => {
</Flex>
<Flex gap={2} w="full" alignItems="center">
<Flex flexDir="column" gap={2} w="full">
{!isFLUX && <IPAdapterMethod method={ipAdapter.method} onChange={onChangeIPMethod} />}
<IPAdapterMethod method={ipAdapter.method} onChange={onChangeIPMethod} />
<Weight weight={ipAdapter.weight} onChange={onChangeWeight} />
<BeginEndStepPct beginEndStepPct={ipAdapter.beginEndStepPct} onChange={onChangeBeginEndStepPct} />
</Flex>

View File

@@ -14,7 +14,7 @@ type Props = {
};
export const InpaintMask = memo(({ id }: Props) => {
const entityIdentifier = useMemo<CanvasEntityIdentifier<'inpaint_mask'>>(() => ({ id, type: 'inpaint_mask' }), [id]);
const entityIdentifier = useMemo<CanvasEntityIdentifier>(() => ({ id, type: 'inpaint_mask' }), [id]);
return (
<EntityIdentifierContext.Provider value={entityIdentifier}>

View File

@@ -5,8 +5,6 @@ import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/componen
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { InpaintMaskMenuItemsConvertToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsConvertToSubMenu';
import { InpaintMaskMenuItemsCopyToSubMenu } from 'features/controlLayers/components/InpaintMask/InpaintMaskMenuItemsCopyToSubMenu';
import { memo } from 'react';
export const InpaintMaskMenuItems = memo(() => {
@@ -20,8 +18,6 @@ export const InpaintMaskMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<MenuDivider />
<InpaintMaskMenuItemsCopyToSubMenu />
<InpaintMaskMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
</>
);

View File

@@ -1,38 +0,0 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiSwapBold } from 'react-icons/pi';
export const InpaintMaskMenuItemsConvertToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const convertToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier, replace: true }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiSwapBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.convertInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem onClick={convertToRegionalGuidance} icon={<PiSwapBold />} isDisabled={!isInteractable}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
InpaintMaskMenuItemsConvertToSubMenu.displayName = 'InpaintMaskMenuItemsConvertToSubMenu';

View File

@@ -1,40 +0,0 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { inpaintMaskConvertedToRegionalGuidance } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCopyBold } from 'react-icons/pi';
export const InpaintMaskMenuItemsCopyToSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('inpaint_mask');
const isInteractable = useIsEntityInteractable(entityIdentifier);
const copyToRegionalGuidance = useCallback(() => {
dispatch(inpaintMaskConvertedToRegionalGuidance({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiCopyBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.copyInpaintMaskTo')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<CanvasEntityMenuItemsCopyToClipboard />
<MenuItem onClick={copyToRegionalGuidance} icon={<PiCopyBold />} isDisabled={!isInteractable}>
{t('controlLayers.newRegionalGuidance')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
InpaintMaskMenuItemsCopyToSubMenu.displayName = 'InpaintMaskMenuItemsCopyToSubMenu';

View File

@@ -3,12 +3,15 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { buildUseBoolean } from 'common/hooks/useBoolean';
import { newCanvasSessionRequested, newGallerySessionRequested } from 'features/controlLayers/store/actions';
import {
selectCanvasRightPanelGalleryTab,
selectCanvasRightPanelLayersTab,
} from 'features/controlLayers/store/ephemeral';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import {
selectSystemShouldConfirmOnNewSession,
shouldConfirmOnNewSessionToggled,
} from 'features/system/store/systemSlice';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -24,7 +27,7 @@ export const useNewGallerySession = () => {
const newGallerySessionImmediate = useCallback(() => {
dispatch(newGallerySessionRequested());
imageViewer.open();
dispatch(activeTabCanvasRightPanelChanged('gallery'));
selectCanvasRightPanelGalleryTab();
}, [dispatch, imageViewer]);
const newGallerySessionWithDialog = useCallback(() => {
@@ -47,7 +50,7 @@ export const useNewCanvasSession = () => {
const newCanvasSessionImmediate = useCallback(() => {
dispatch(newCanvasSessionRequested());
imageViewer.close();
dispatch(activeTabCanvasRightPanelChanged('layers'));
selectCanvasRightPanelLayersTab();
}, [dispatch, imageViewer]);
const newCanvasSessionWithDialog = useCallback(() => {

View File

@@ -1,15 +1,14 @@
import { MenuDivider } from '@invoke-ai/ui-library';
import { IconMenuItemGroup } from 'common/components/IconMenuItem';
import { CanvasEntityMenuItemsArrange } from 'features/controlLayers/components/common/CanvasEntityMenuItemsArrange';
import { CanvasEntityMenuItemsCopyToClipboard } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCopyToClipboard';
import { CanvasEntityMenuItemsCropToBbox } from 'features/controlLayers/components/common/CanvasEntityMenuItemsCropToBbox';
import { CanvasEntityMenuItemsDelete } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDelete';
import { CanvasEntityMenuItemsDuplicate } from 'features/controlLayers/components/common/CanvasEntityMenuItemsDuplicate';
import { CanvasEntityMenuItemsFilter } from 'features/controlLayers/components/common/CanvasEntityMenuItemsFilter';
import { CanvasEntityMenuItemsSave } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSave';
import { CanvasEntityMenuItemsSelectObject } from 'features/controlLayers/components/common/CanvasEntityMenuItemsSelectObject';
import { CanvasEntityMenuItemsTransform } from 'features/controlLayers/components/common/CanvasEntityMenuItemsTransform';
import { RasterLayerMenuItemsConvertToSubMenu } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsConvertToSubMenu';
import { RasterLayerMenuItemsCopyToSubMenu } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsCopyToSubMenu';
import { RasterLayerMenuItemsConvertRasterToControl } from 'features/controlLayers/components/RasterLayer/RasterLayerMenuItemsConvertRasterToControl';
import { memo } from 'react';
export const RasterLayerMenuItems = memo(() => {
@@ -23,11 +22,10 @@ export const RasterLayerMenuItems = memo(() => {
<MenuDivider />
<CanvasEntityMenuItemsTransform />
<CanvasEntityMenuItemsFilter />
<CanvasEntityMenuItemsSelectObject />
<RasterLayerMenuItemsConvertRasterToControl />
<MenuDivider />
<RasterLayerMenuItemsCopyToSubMenu />
<RasterLayerMenuItemsConvertToSubMenu />
<CanvasEntityMenuItemsCropToBbox />
<CanvasEntityMenuItemsCopyToClipboard />
<CanvasEntityMenuItemsSave />
</>
);

View File

@@ -0,0 +1,36 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { selectDefaultControlAdapter } from 'features/controlLayers/hooks/addLayerHooks';
import { useIsEntityInteractable } from 'features/controlLayers/hooks/useEntityIsInteractable';
import { rasterLayerConvertedToControlLayer } from 'features/controlLayers/store/canvasSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiLightningBold } from 'react-icons/pi';
export const RasterLayerMenuItemsConvertRasterToControl = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('raster_layer');
const defaultControlAdapter = useAppSelector(selectDefaultControlAdapter);
const isInteractable = useIsEntityInteractable(entityIdentifier);
const onClick = useCallback(() => {
dispatch(
rasterLayerConvertedToControlLayer({
entityIdentifier,
overrides: {
controlAdapter: defaultControlAdapter,
},
})
);
}, [defaultControlAdapter, dispatch, entityIdentifier]);
return (
<MenuItem onClick={onClick} icon={<PiLightningBold />} isDisabled={!isInteractable}>
{t('controlLayers.convertToControlLayer')}
</MenuItem>
);
});
RasterLayerMenuItemsConvertRasterToControl.displayName = 'RasterLayerMenuItemsConvertRasterToControl';

Some files were not shown because too many files have changed in this diff Show More