Compare commits

...

25 Commits

Author SHA1 Message Date
Millun Atluri
6539ef7c9f {release} v3.6.3 (#5696)
## What type of PR is this? (check all applicable)
Release Invoke 3.6.3


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description
Invoke 3.6.3 Release



## QA Instructions, Screenshots, Recordings
Test the installer:
[InvokeAI-installer-v3.6.3.zip](https://github.com/invoke-ai/InvokeAI/files/14233359/InvokeAI-installer-v3.6.3.zip)

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan
Merge once approved
<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
## [optional] Are there any post deployment tasks we need to perform?
1. Release on PyPi & GitHub
2. Announce on Discord
2024-02-11 16:02:30 -05:00
Millun Atluri
14c9a1e4f3 Merge branch 'main' into release/3.6.3 2024-02-11 15:36:05 -05:00
Millun Atluri
64b0feca31 Update ruff 2024-02-11 15:24:28 -05:00
Millun Atluri
0be9a2d906 Update string formatting 2024-02-11 15:24:28 -05:00
Millun Atluri
d925f721b9 fix references to .env.sample (#5695)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: it is text only, simple, and (hopefully) self-evident

      
## Have you updated all relevant documentation?
- [x] Yes - as far as I can grep.
- [ ] No


## Description

`.env.sample` was misspelled as `env.sample` in a few places.

This changes documentation only. You may need to re-build/deploy docs,
I'm not sure.
2024-02-11 13:43:14 -05:00
Millun Atluri
4e5be1891a {release} v3.6.3 2024-02-11 10:34:47 -07:00
Adam Monsen
156d4ec3b2 fix references to .env.sample 2024-02-10 21:11:22 -08:00
psychedelicious
c45a43519a chore: bump deps
- ruff 0.1.11 -> 0.2.1
- update config format
2024-02-11 08:50:49 +11:00
psychedelicious
763816ca0c chore: bump deps
- pydantic 2.5.3 -> 2.6.1
- uvicorn 0.25.0 -> 0.27.1
2024-02-11 08:50:49 +11:00
B N
83a7c9059f translationBot(ui): update translation (German)
Currently translated at 78.1% (1107 of 1416 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-02-11 08:40:55 +11:00
psychedelicious
c5f069a255 feat(backend): remove dependency on basicsr
`basicsr` has a hard dependency on torchvision <= 0.16 and is unmaintained. Extract the code we need from it and remove the dep.

Closes #5108
2024-02-11 08:34:54 +11:00
Brandon
cd169ee082 fix(nodes): deep copy graph inputs (#5686)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

The change to memory session storage brings a subtle behaviour change.

Previously, we serialized and deserialized everything (e.g. field state,
invocation outputs, etc) constantly. The meant we were effectively
working with deep-copied objects at all time. We could mutate objects
freely without worrying about other references to the object.

With memory storage, objects are now passed around by reference, and we
cannot handle them in the same way.

This is problematic for nodes that mutate their own inputs. There are
two ways this causes a problem:

- An output is used as input for multiple nodes. If the first node
mutates the output object while `invoke`ing, the next node will get the
mutated object.
- The invocation cache stores live python objects. When a node mutates
an output pulled from the cache, the next node that uses the cached
object will get the mutated object.

The solution is to deep-copy a node's inputs as they are set,
effectively reproducing the same behaviour as we had with the SQLite
session storage. Nodes can safely mutate their inputs and those changes
never leave the node's scope.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes  #5665

The root issue affects CLIP Skip because that node mutates its input
`ClipField`. Specifically, it increments `self.clip.skipped_layers` and
passes `self.clip` as its output. I don't know if there are any other
nodes that do this.

## QA Instructions, Screenshots, Recordings

Two issues to reproduce. 

First is the caching issue:


![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7a251e48-bc70-4b8e-8816-84aac41ce4d3)

Note the cache is enabled. Run this simple graph a couple times, and
check the outputs of the CLIP Skip node. You'll see the `skipped_layers`
value increasing each time.

Second is the nodes-sharing-inputs issue:


![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/ecdaefab-2beb-4950-b4bf-2a5738ce6832)

Note the cache is _disabled_. Run the graph a couple times and check the
outputs of the two CLIP Skip nodes. You'll see that one has the expected
value for `skipped_layers` and the other has double that.

Now update to the PR and try again. You should see `skipped_layers` is
the right value in all cases.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

This PR can be merged when approved. It needs a real review with
braintime.

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
2024-02-09 13:24:10 -05:00
Brandon
66b106f107 Merge branch 'main' into fix/nodes/deep-copy-inputs 2024-02-09 11:49:16 -05:00
psychedelicious
b10d745dae fix(ui): when using control image dimensions, round to 8
The control image dimensions were set directly without rounding them to 8, causing an error during generation if they weren't a multiple of 8.
2024-02-09 08:44:11 -05:00
psychedelicious
d20f98fb4f fix(nodes): deep copy graph inputs
The change to memory session storage brings a subtle behaviour change.

Previously, we serialized and deserialized everything (e.g. field state, invocation outputs, etc) constantly. The meant we were effectively working with deep-copied objects at all time. We could mutate objects freely without worrying about other references to the object.

With memory storage, objects are now passed around by reference, and we cannot handle them in the same way.

This is problematic for nodes that mutate their own inputs. There are two ways this causes a problem:

- An output is used as input for multiple nodes. If the first node mutates the output object while `invoke`ing, the next node will get the mutated object.
- The invocation cache stores live python objects. When a node mutates an output pulled from the cache, the next node that uses the cached object will get the mutated object.

The solution is to deep-copy a node's inputs as they are set, effectively reproducing the same behaviour as we had with the SQLite session storage. Nodes can safely mutate their inputs and those changes never leave the node's scope.

Closes  #5665
2024-02-09 21:17:32 +11:00
psychedelicious
c9c150f850 feat(ui): use cfgRescaleMultiplier on canvas graphs 2024-02-09 18:53:08 +11:00
skunkworxdark
a60e2b7c77 fix existing graphs with cfg_RescaleMultiplier not used 2024-02-09 18:53:08 +11:00
psychedelicious
da6e5b2ba1 fix(ui): fix lora count badge when none enabled 2024-02-08 19:22:28 -05:00
psychedelicious
c65d497cbc fix(ui): filter disabled LoRAs on sdxl 2024-02-08 19:22:28 -05:00
B N
a68d8fe203 translationBot(ui): update translation (German)
Currently translated at 74.4% (1054 of 1416 strings)

translationBot(ui): update translation (German)

Currently translated at 69.6% (986 of 1416 strings)

translationBot(ui): update translation (German)

Currently translated at 68.6% (972 of 1416 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-02-09 10:10:50 +11:00
Jennifer Player
5de2288cfa addressed feedback 2024-02-09 10:09:27 +11:00
Jennifer Player
2ce70b4457 added button on hover for exposing fields to linear workflow ui 2024-02-09 10:09:27 +11:00
Brandon Rising
6c5f743e2b Upgrade version of fastapi and socketio 2024-02-09 09:04:01 +11:00
Millun Atluri
bb242c4e1e Print correct version when a non-default version is selected for install (#5675)
…elected

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

Small bugfix: the installer would always print the latest stable version
as the one to be installed, even if a different one was selected. The
selected version would still be installed correctly. This PR fixes the
message.

## QA Instructions, Screenshots, Recordings

Select a pre-release version on install and observe the correct version
being printed. Compare to current behaviour to ascertain the fix.

## Merge Plan

- "This PR can be merged when approved"

## Added/updated tests?

- [ ] Yes
- [x] No
2024-02-08 11:07:14 -05:00
Eugene Brodsky
c9e246ed1b fix(installer): print correct version when a non-default version is selected 2024-02-08 09:56:56 -05:00
31 changed files with 819 additions and 185 deletions

View File

@@ -28,7 +28,7 @@ This is done via Docker Desktop preferences
### Configure Invoke environment
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`

View File

@@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.

View File

@@ -91,8 +91,8 @@ def choose_version(available_releases: tuple | None = None) -> str:
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
console.print(f" Version {choices[0]} will be installed.")
console.line()
return "stable" if response == "" else response

View File

@@ -14,7 +14,7 @@ class SocketIO:
def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
app.mount("/ws", self.__app)
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)

View File

@@ -5,12 +5,12 @@ from typing import Literal
import cv2
import numpy as np
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device

View File

@@ -2,7 +2,7 @@
import copy
import itertools
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
import networkx as nx
from pydantic import BaseModel, ConfigDict, field_validator, model_validator
@@ -141,6 +141,16 @@ def are_connections_compatible(
return are_connection_types_compatible(from_node_field, to_node_field)
T = TypeVar("T")
def copydeep(obj: T) -> T:
"""Deep-copies an object. If it is a pydantic model, use the model's copy method."""
if isinstance(obj, BaseModel):
return obj.model_copy(deep=True)
return copy.deepcopy(obj)
class NodeAlreadyInGraphError(ValueError):
pass
@@ -1118,17 +1128,22 @@ class GraphExecutionState(BaseModel):
def _prepare_inputs(self, node: BaseInvocation):
input_edges = [e for e in self.execution_graph.edges if e.destination.node_id == node.id]
# Inputs must be deep-copied, else if a node mutates the object, other nodes that get the same input
# will see the mutation.
if isinstance(node, CollectInvocation):
output_collection = [
getattr(self.results[edge.source.node_id], edge.source.field)
copydeep(getattr(self.results[edge.source.node_id], edge.source.field))
for edge in input_edges
if edge.destination.field == "item"
]
node.collection = output_collection
else:
for edge in input_edges:
output_value = getattr(self.results[edge.source.node_id], edge.source.field)
setattr(node, edge.destination.field, output_value)
setattr(
node,
edge.destination.field,
copydeep(getattr(self.results[edge.source.node_id], edge.source.field)),
)
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:

View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2022 BasicSR Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,18 @@
"""
Adapted from https://github.com/XPixelGroup/BasicSR
License: Apache-2.0
As of Feb 2024, `basicsr` appears to be unmaintained. It imports a function from `torchvision` that is removed in
`torchvision` 0.17. Here is the deprecation warning:
UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in
0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in
torchvision.transforms.v2.functional.
As a result, a dependency on `basicsr` means we cannot keep our `torchvision` dependency up to date.
Because we only rely on a single class `RRDBNet` from `basicsr`, we've copied the relevant code here and removed the
dependency on `basicsr`.
The code is almost unchanged, only a few type annotations have been added. The license is also copied.
"""

View File

@@ -0,0 +1,75 @@
from typing import Type
import torch
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
@torch.no_grad()
def default_init_weights(
module_list: list[nn.Module] | nn.Module, scale: float = 1, bias_fill: float = 0, **kwargs
) -> None:
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
def make_layer(basic_block: Type[nn.Module], num_basic_block: int, **kwarg) -> nn.Sequential:
"""Make layers by stacking the same blocks.
Args:
basic_block (Type[nn.Module]): nn.Module class for basic block.
num_basic_block (int): number of blocks.
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
# TODO: may write a cpp file
def pixel_unshuffle(x: torch.Tensor, scale: int) -> torch.Tensor:
"""Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)

View File

@@ -0,0 +1,125 @@
import torch
from torch import nn as nn
from torch.nn import functional as F
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
# Empirically, we use 0.2 to scale the residual for better performance
return x5 * 0.2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
# Empirically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
We extend ESRGAN for scale x2 and scale x1.
Note: This is one option for scale 1, scale 2 in RRDBNet.
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_feat (int): Channel number of intermediate features.
Default: 64
num_block (int): Block number in the trunk network. Defaults: 23
num_grow_ch (int): Channels for each growth. Default: 32.
"""
def __init__(
self,
num_in_ch: int,
num_out_ch: int,
scale: int = 4,
num_feat: int = 64,
num_block: int = 23,
num_grow_ch: int = 32,
) -> None:
super(RRDBNet, self).__init__()
self.scale = scale
if scale == 2:
num_in_ch = num_in_ch * 4
elif scale == 1:
num_in_ch = num_in_ch * 16
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.scale == 2:
feat = pixel_unshuffle(x, scale=2)
elif self.scale == 1:
feat = pixel_unshuffle(x, scale=4)
else:
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
# upsample
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out

View File

@@ -7,10 +7,10 @@ import cv2
import numpy as np
import numpy.typing as npt
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.util.devices import choose_torch_device
"""

View File

@@ -56,7 +56,7 @@
"nodeEditor": "Knoten Editor",
"statusMergingModels": "Modelle zusammenführen",
"ipAdapter": "IP Adapter",
"controlAdapter": "Control Adapter",
"controlAdapter": "Control-Adapter",
"auto": "Automatisch",
"controlNet": "ControlNet",
"imageFailedToLoad": "Kann Bild nicht laden",
@@ -75,12 +75,12 @@
"linear": "Linear",
"imagePrompt": "Bild Prompt",
"checkpoint": "Checkpoint",
"inpaint": "inpaint",
"inpaint": "Inpaint",
"simple": "Einfach",
"template": "Vorlage",
"outputs": "Ausgabe",
"data": "Daten",
"safetensors": "Safetensors",
"safetensors": "Safe-Tensors",
"outpaint": "Ausmalen",
"details": "Details",
"format": "Format",
@@ -161,16 +161,16 @@
"hotkeys": {
"keyboardShortcuts": "Tastenkürzel",
"appHotkeys": "App-Tastenkombinationen",
"generalHotkeys": "Allgemeine Tastenkürzel",
"galleryHotkeys": "Galerie Tastenkürzel",
"unifiedCanvasHotkeys": "Unified Canvas Tastenkürzel",
"generalHotkeys": "Allgemein",
"galleryHotkeys": "Galerie",
"unifiedCanvasHotkeys": "Leinwand",
"invoke": {
"desc": "Ein Bild erzeugen",
"title": "Invoke"
},
"cancel": {
"title": "Abbrechen",
"desc": "Bilderzeugung abbrechen"
"desc": "Aktuelle Bilderzeugung abbrechen"
},
"focusPrompt": {
"title": "Fokussiere Prompt",
@@ -356,7 +356,7 @@
"title": "Staging-Bild akzeptieren",
"desc": "Akzeptieren Sie das aktuelle Bild des Staging-Bereichs"
},
"nodesHotkeys": "Knoten Tastenkürzel",
"nodesHotkeys": "Knoten",
"addNodes": {
"title": "Knotenpunkt hinzufügen",
"desc": "Öffnet das Menü zum Hinzufügen von Knoten"
@@ -399,7 +399,7 @@
"vaeLocation": "VAE Ort",
"vaeLocationValidationMsg": "Pfad zum Speicherort Ihres VAE.",
"width": "Breite",
"widthValidationMsg": "Standardbreite Ihres Models.",
"widthValidationMsg": "Standardbreite Ihres Modells.",
"height": "Höhe",
"heightValidationMsg": "Standardbhöhe Ihres Models.",
"addModel": "Modell hinzufügen",
@@ -501,7 +501,7 @@
"quickAdd": "Schnell hinzufügen",
"simpleModelDesc": "Geben Sie einen Pfad zu einem lokalen Diffusers-Modell, einem lokalen Checkpoint-/Safetensors-Modell, einer HuggingFace-Repo-ID oder einer Checkpoint-/Diffusers-Modell-URL an.",
"modelDeleted": "Modell gelöscht",
"inpainting": "v1 Inpainting",
"inpainting": "V1-Inpainting",
"modelUpdateFailed": "Modellaktualisierung fehlgeschlagen",
"useCustomConfig": "Benutzerdefinierte Konfiguration verwenden",
"settings": "Einstellungen",
@@ -518,7 +518,7 @@
"interpolationType": "Interpolationstyp",
"oliveModels": "Olives",
"variant": "Variante",
"loraModels": "LoRAs",
"loraModels": "\"LoRAs\"",
"modelDeleteFailed": "Modell konnte nicht gelöscht werden",
"mergedModelName": "Zusammengeführter Modellname",
"checkpointOrSafetensors": "$t(common.checkpoint) / $t(common.safetensors)",
@@ -603,7 +603,8 @@
"resetWebUIDesc2": "Wenn die Bilder nicht in der Galerie angezeigt werden oder etwas anderes nicht funktioniert, versuchen Sie bitte, die Einstellungen zurückzusetzen, bevor Sie einen Fehler auf GitHub melden.",
"resetComplete": "Die Web-Oberfläche wurde zurückgesetzt.",
"models": "Modelle",
"useSlidersForAll": "Schieberegler für alle Optionen verwenden"
"useSlidersForAll": "Schieberegler für alle Optionen verwenden",
"showAdvancedOptions": "Erweiterte Optionen anzeigen"
},
"toast": {
"tempFoldersEmptied": "Temp-Ordner geleert",
@@ -646,7 +647,7 @@
"upscale": "Verwenden Sie ESRGAN, um das Bild unmittelbar nach der Erzeugung zu vergrößern.",
"faceCorrection": "Gesichtskorrektur mit GFPGAN oder Codeformer: Der Algorithmus erkennt Gesichter im Bild und korrigiert alle Fehler. Ein hoher Wert verändert das Bild stärker, was zu attraktiveren Gesichtern führt. Codeformer mit einer höheren Genauigkeit bewahrt das Originalbild auf Kosten einer stärkeren Gesichtskorrektur.",
"imageToImage": "Bild zu Bild lädt ein beliebiges Bild als Ausgangsbild, aus dem dann zusammen mit dem Prompt ein neues Bild erzeugt wird. Je höher der Wert ist, desto stärker wird das Ergebnisbild verändert. Werte von 0,0 bis 1,0 sind möglich, der empfohlene Bereich ist .25-.75",
"boundingBox": "Der Begrenzungsrahmen ist derselbe wie die Einstellungen für Breite und Höhe bei Text zu Bild oder Bild zu Bild. Es wird nur der Bereich innerhalb des Rahmens verarbeitet.",
"boundingBox": "Der Begrenzungsrahmen ist derselbe wie die Einstellungen für Breite und Höhe bei Text-zu-Bild oder Bild-zu-Bild. Es wird nur der Bereich innerhalb des Rahmens verarbeitet.",
"seamCorrection": "Steuert die Behandlung von sichtbaren Übergängen, die zwischen den erzeugten Bildern auf der Leinwand auftreten.",
"infillAndScaling": "Verwalten Sie Infill-Methoden (für maskierte oder gelöschte Bereiche der Leinwand) und Skalierung (nützlich für kleine Begrenzungsrahmengrößen)."
}
@@ -714,7 +715,7 @@
"showResultsOff": "Zeige Ergebnisse (Aus)"
},
"accessibility": {
"modelSelect": "Model Auswahl",
"modelSelect": "Modell-Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
@@ -726,11 +727,11 @@
"modifyConfig": "Optionen einstellen",
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showOptionsPanel": "Zeige Optionen",
"showOptionsPanel": "Seitenpanel anzeigen",
"reset": "Zurücksetzten",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn drehen",
"showGalleryPanel": "Galeriefenster anzeigen",
"exitViewer": "Betrachten beenden",
"menu": "Menü",
@@ -752,7 +753,7 @@
"selectBoard": "Ordner aussuchen",
"cancel": "Abbrechen",
"addBoard": "Ordner hinzufügen",
"uncategorized": "Nicht kategorisiert",
"uncategorized": "Ohne Kategorie",
"downloadBoard": "Ordner runterladen",
"changeBoard": "Ordner wechseln",
"loading": "Laden...",
@@ -784,7 +785,7 @@
"depthMidasDescription": "Tiefenmap erstellen mit Midas",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) ist aktiv, $t(common.controlNet) ist deaktiviert",
"weight": "Breite",
"weight": "Einfluss",
"selectModel": "Wähle ein Modell",
"depthMidas": "Tiefe (Midas)",
"w": "W",
@@ -809,14 +810,14 @@
"controlAdapter_other": "Control Adapter",
"colorMapTileSize": "Kachelgröße",
"depthZoeDescription": "Tiefenmap erstellen mit Zoe",
"setControlImageDimensions": "Setze Control Bild Auflösung auf Breite/Höhe",
"setControlImageDimensions": "Setze Control-Bild Auflösung auf Breite/Höhe",
"handAndFace": "Hand und Gesicht",
"enableIPAdapter": "Aktiviere IP Adapter",
"resize": "Größe ändern",
"resetControlImage": "Zurücksetzen vom Referenz Bild",
"balanced": "Ausgewogen",
"prompt": "Prompt",
"resizeMode": "Größenänderungsmodus",
"resizeMode": "Größe",
"processor": "Prozessor",
"saveControlImage": "Speichere Referenz Bild",
"safe": "Speichern",
@@ -841,10 +842,10 @@
"autoConfigure": "Prozessor automatisch konfigurieren",
"normalBaeDescription": "Normale BAE-Verarbeitung",
"noneDescription": "Es wurde keine Verarbeitung angewendet",
"openPose": "Openpose",
"lineartAnime": "Lineart Anime",
"openPose": "Openpose / \"Pose nutzen\"",
"lineartAnime": "Lineart Anime / \"Strichzeichnung Anime\"",
"mediapipeFaceDescription": "Gesichtserkennung mit Mediapipe",
"canny": "Canny",
"canny": "\"Canny\"",
"hedDescription": "Ganzheitlich verschachtelte Kantenerkennung",
"scribble": "Scribble",
"maxFaces": "Maximale Anzahl Gesichter",
@@ -853,7 +854,7 @@
"modelSize": "Modell Größe",
"small": "Klein",
"base": "Basis",
"depthAnything": "Depth Anything",
"depthAnything": "Depth Anything / \"Tiefe irgendwas\"",
"depthAnythingDescription": "Erstellung einer Tiefenkarte mit der Depth Anything-Technik"
},
"queue": {
@@ -915,7 +916,9 @@
"openQueue": "Warteschlange öffnen",
"batchFailedToQueue": "Fehler beim Einreihen in die Stapelverarbeitung",
"batchFieldValues": "Stapelverarbeitungswerte",
"batchQueued": "Stapelverarbeitung eingereiht"
"batchQueued": "Stapelverarbeitung eingereiht",
"graphQueued": "Graph eingereiht",
"graphFailedToQueue": "Fehler beim Einreihen des Graphen"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
@@ -936,46 +939,130 @@
"generationMode": "Generierungsmodus",
"Threshold": "Rauschen-Schwelle",
"seed": "Seed",
"perlin": "Perlin Noise",
"perlin": "Perlin-Rauschen",
"hiresFix": "Optimierung für hohe Auflösungen",
"initImage": "Erstes Bild",
"variations": "Samengewichtspaare",
"variations": "Seed-Gewichtungs-Paare",
"vae": "VAE",
"workflow": "Arbeitsablauf",
"scheduler": "Planer",
"noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden",
"recallParameters": "Recall Parameters"
"recallParameters": "Parameter wiederherstellen"
},
"popovers": {
"noiseUseCPU": {
"heading": "Nutze Prozessor rauschen"
"heading": "Nutze Prozessor rauschen",
"paragraphs": [
"Entscheidet, ob auf der CPU oder GPU Rauschen erzeugt wird.",
"Mit aktiviertem CPU-Rauschen wird ein bestimmter Seedwert das gleiche Bild auf jeder Maschine erzeugen.",
"CPU-Rauschen einzuschalten beeinflusst nicht die Systemleistung."
]
},
"paramModel": {
"heading": "Modell"
"heading": "Modell",
"paragraphs": [
"Modell für die Entrauschungsschritte.",
"Verschiedene Modelle werden in der Regel so trainiert, dass sie sich auf die Erzeugung bestimmter Ästhetik und/oder Inhalte spezialisiert."
]
},
"paramIterations": {
"heading": "Iterationen"
"heading": "Iterationen",
"paragraphs": [
"Die Anzahl der Bilder, die erzeugt werden sollen.",
"Wenn \"Dynamische Prompts\" aktiviert ist, wird jeder einzelne Prompt so oft generiert."
]
},
"paramCFGScale": {
"heading": "CFG-Skala"
"heading": "CFG-Skala",
"paragraphs": [
"Bestimmt, wie viel Ihr Prompt den Erzeugungsprozess beeinflusst."
]
},
"paramSteps": {
"heading": "Schritte"
"heading": "Schritte",
"paragraphs": [
"Anzahl der Schritte, die bei jeder Generierung durchgeführt werden.",
"Höhere Schrittzahlen werden in der Regel bessere Bilder ergeben, aber mehr Zeit benötigen."
]
},
"lora": {
"heading": "LoRA Gewichte"
"heading": "LoRA Gewichte",
"paragraphs": [
"Höhere LoRA-Wichtungen führen zu größeren Auswirkungen auf das endgültige Bild."
]
},
"infillMethod": {
"heading": "Füllmethode"
"heading": "Füllmethode",
"paragraphs": [
"Infill-Methode für den ausgewählten Bereich."
]
},
"paramVAE": {
"heading": "VAE"
"heading": "VAE",
"paragraphs": [
"Verwendetes Modell, um den KI-Ausgang in das endgültige Bild zu übersetzen."
]
},
"paramRatio": {
"heading": "Seitenverhältnis",
"paragraphs": [
"Das Seitenverhältnis des erzeugten Bildes.",
"Für SD1.5-Modelle wird eine Bildgröße von 512x512 Pixel empfohlen, für SDXL-Modelle sind es 1024x1024 Pixel."
]
},
"paramDenoisingStrength": {
"paragraphs": [
"Wie viel Rauschen dem Eingabebild hinzugefügt wird.",
"0 wird zu einem identischen Bild führen, während 1 zu einem völlig neuen Bild führt."
],
"heading": "Stärke der Entrauschung"
},
"paramVAEPrecision": {
"heading": "VAE-Präzision",
"paragraphs": [
"Die bei der VAE-Kodierung und Dekodierung verwendete Präzision. FP16/Halbpräzision ist effizienter, aber auf Kosten kleiner Bildvariationen."
]
},
"paramCFGRescaleMultiplier": {
"heading": "CFG Rescale Multiplikator",
"paragraphs": [
"Rescale-Multiplikator für die CFG-Lenkung, der für Modelle verwendet wird, die mit dem zero-terminal SNR (ztsnr) trainiert wurden. Empfohlener Wert: 0,7."
]
},
"scaleBeforeProcessing": {
"paragraphs": [
"Skaliert den ausgewählten Bereich auf die Größe, die für das Modell am besten geeignet ist."
],
"heading": "Skalieren vor der Verarbeitung"
},
"paramSeed": {
"paragraphs": [
"Kontrolliert das für die Erzeugung verwendete Startrauschen.",
"Deaktivieren Sie “Random Seed”, um identische Ergebnisse mit den gleichen Generierungseinstellungen zu erzeugen."
],
"heading": "Seed"
},
"dynamicPromptsMaxPrompts": {
"paragraphs": [
"Beschränkt die Anzahl der Prompts, die von \"Dynamic Prompts\" generiert werden können."
],
"heading": "Maximale Prompts"
},
"dynamicPromptsSeedBehaviour": {
"paragraphs": [
"Bestimmt, wie der Seed-Wert beim Erzeugen von Prompts verwendet wird.",
"Verwenden Sie dies, um schnelle Variationen eines einzigen Seeds zu erkunden.",
"Wenn Sie z. B. 5 Prompts haben, wird jedes Bild den selben Seed-Wert verwenden.",
"\"Per Bild\" wird einen einzigartigen Seed-Wert für jedes Bild verwenden. Dies bietet mehr Variationen."
],
"heading": "Seed-Verhalten"
}
},
"ui": {
"lockRatio": "Verhältnis sperren",
"hideProgressImages": "Verstecke Prozess Bild",
"showProgressImages": "Zeige Prozess Bild"
"showProgressImages": "Zeige Prozess Bild",
"swapSizes": "Tausche Größen"
},
"invocationCache": {
"disable": "Deaktivieren",
@@ -989,7 +1076,7 @@
"enableFailed": "Problem beim Aktivieren des Zwischenspeichers",
"disableFailed": "Problem bei Deaktivierung des Cache",
"enableSucceeded": "Zwischenspeicher aktiviert",
"disableSucceeded": "Aufrufcache deaktiviert",
"disableSucceeded": "Invocation-Cache deaktiviert",
"clearSucceeded": "Zwischenspeicher gelöscht",
"invocationCache": "Zwischenspeicher",
"clearFailed": "Problem beim Löschen des Zwischenspeichers"
@@ -1035,15 +1122,15 @@
"collectionFieldType": "{{name}} Sammlung",
"controlCollectionDescription": "Kontrollinformationen zwischen Knotenpunkten weitergegeben.",
"connectionWouldCreateCycle": "Verbindung würde einen Kreislauf/cycle schaffen",
"ipAdapterDescription": "Ein Adapter für die Bildabfrage (IP-Adapter) / Bilderprompt-Adapter.",
"ipAdapterDescription": "Ein Adapter für die Bildabfrage (IP-Adapter) / Bildprompt-Adapter.",
"controlField": "Kontrolle",
"inputFields": "Eingabefelder",
"imageField": "Bild",
"inputMayOnlyHaveOneConnection": "Eingang darf nur eine Verbindung haben",
"integerCollectionDescription": "Eine Sammlung ganzer Zahlen.",
"integerDescription": "Das sind ganze Zahlen ohne Dezimalpunkt.",
"integerDescription": "\"Integer\" sind ganze Zahlen ohne Dezimalpunkt.",
"conditioningPolymorphic": "Konditionierung polymorphisch",
"conditioningPolymorphicDescription": "Die Konditionierung kann zwischen den Knotenpunkten weitergegeben werden.",
"conditioningPolymorphicDescription": "Die Konditionierung kann zwischen den Knoten weitergegeben werden.",
"invalidOutputSchema": "Ungültiges Ausgabeschema",
"ipAdapterModel": "IP-Adapter Modell",
"conditioningFieldDescription": "Die Konditionierung kann zwischen den Knotenpunkten weitergegeben werden.",
@@ -1065,10 +1152,117 @@
"imageCollection": "Bildersammlung",
"imageCollectionDescription": "Eine Sammlung von Bildern.",
"denoiseMaskField": "Entrauschen-Maske",
"ipAdapterCollection": "IP-Adapter Sammlung"
"ipAdapterCollection": "IP-Adapter Sammlung",
"newWorkflowDesc2": "Ihr aktueller Arbeitsablauf hat ungespeicherte Änderungen.",
"problemSettingTitle": "Problem beim Einstellen des Titels",
"noConnectionData": "Keine Verbindungsdaten",
"outputField": "Ausgabefeld",
"outputFieldInInput": "Ausgabefeld im Eingang",
"problemReadingWorkflow": "Problem beim Lesen des Arbeitsablaufs vom Bild",
"reloadNodeTemplates": "Knoten-Vorlagen neu laden",
"newWorkflow": "Neuer Arbeitsablauf",
"newWorkflowDesc": "Einen neuen Arbeitsablauf erstellen?",
"noFieldsLinearview": "Keine Felder zur linearen Ansicht hinzugefügt",
"clearWorkflow": "Arbeitsablauf löschen",
"clearWorkflowDesc": "Diesen Arbeitsablauf löschen und neu starten?",
"noConnectionInProgress": "Es besteht keine Verbindung",
"notes": "Anmerkungen",
"nodeVersion": "Knoten Version",
"noOutputSchemaName": "Kein Name des Ausgabeschemas im ref-Objekt gefunden",
"node": "Knoten",
"nodeSearch": "Knoten suchen",
"removeLinearView": "Entfernen aus Linear View",
"nodeOutputs": "Knoten-Ausgänge",
"nodeTemplate": "Knoten-Vorlage",
"nodeType": "Knotentyp",
"noFieldType": "Kein Feldtyp",
"oNNXModelField": "ONNX-Modell",
"noMatchingNodes": "Keine passenden Knoten",
"noNodeSelected": "Kein Knoten gewählt",
"noImageFoundState": "Kein Anfangsbild im Status gefunden",
"nodeOpacity": "Knoten-Deckkraft",
"noOutputRecorded": "Keine Ausgänge aufgezeichnet",
"outputSchemaNotFound": "Ausgabeschema nicht gefunden",
"oNNXModelFieldDescription": "ONNX-Modellfeld.",
"outputNode": "Ausgabeknoten",
"pickOne": "Eins auswählen",
"problemReadingMetadata": "Problem beim Lesen von Metadaten aus dem Bild",
"notesDescription": "Anmerkungen zum Arbeitsablauf hinzufügen",
"outputFields": "Ausgabefelder",
"sDXLRefinerModelField": "Refiner-Modell",
"sDXLMainModelFieldDescription": "SDXL Modellfeld.",
"clearWorkflowDesc2": "Ihr aktueller Arbeitsablauf hat ungespeicherte Änderungen.",
"skipped": "Übersprungen",
"schedulerDescription": "Zu erledigen",
"scheduler": "Planer",
"showGraphNodes": "Graph Overlay anzeigen",
"showMinimapnodes": "MiniMap anzeigen",
"sDXLMainModelField": "SDXL Modell",
"skippedReservedInput": "Reserviertes Eingabefeld übersprungen",
"sDXLRefinerModelFieldDescription": "Zu erledigen",
"showLegendNodes": "Feldtyp-Legende anzeigen",
"skippedReservedOutput": "Reserviertes Ausgangsfeld übersprungen",
"skippingInputNoTemplate": "Überspringe Eingabefeld ohne Vorlage",
"executionStateCompleted": "Erledigt",
"denoiseMaskFieldDescription": "Denoise Maske kann zwischen Knoten weitergegeben werden",
"downloadWorkflow": "Workflow JSON herunterladen",
"executionStateInProgress": "In Bearbeitung",
"snapToGridHelp": "Knoten am Gitternetz einrasten bei Bewegung",
"controlCollection": "Control-Sammlung",
"controlFieldDescription": "Control-Informationen zwischen Knotenpunkten weitergegeben.",
"latentsField": "Latents",
"mainModelFieldDescription": "Zu erledigen",
"missingTemplate": "Ungültiger Knoten: Knoten {{node}} vom Typ {{type}} fehlt Vorlage (nicht installiert?)",
"skippingUnknownInputType": "Überspringe unbekannten Eingabe-Feldtyp",
"stringCollectionDescription": "Eine Sammlung von Zeichenfolgen.",
"string": "Zeichenfolge",
"stringCollection": "Sammlung von Zeichenfolgen",
"stringDescription": "Zeichenfolgen (Strings) sind Text.",
"fieldTypesMustMatch": "Feldtypen müssen übereinstimmen",
"fitViewportNodes": "An Ansichtsgröße anpassen",
"missingCanvaInitMaskImages": "Fehlende Startbilder und Masken auf der Arbeitsfläche",
"missingCanvaInitImage": "Fehlendes Startbild auf der Arbeitsfläche",
"ipAdapterModelDescription": "IP-Adapter-Modellfeld",
"latentsPolymorphicDescription": "Zwischen Nodes können Latents weitergegeben werden.",
"loadingNodes": "Lade Nodes...",
"latentsCollectionDescription": "Zwischen Knoten können Latents weitergegeben werden.",
"mismatchedVersion": "Ungültiger Knoten: Knoten {{node}} vom Typ {{type}} hat keine passende Version (Update versuchen?)",
"colorCollectionDescription": "Zu erledigen",
"ipAdapterPolymorphicDescription": "Eine Sammlung von IP-Adaptern.",
"fullyContainNodesHelp": "Nodes müssen vollständig innerhalb der Auswahlbox sein, um ausgewählt werden zu können",
"latentsFieldDescription": "Zwischen Nodes können Latents weitergegeben werden.",
"noWorkflow": "Kein Workflow",
"hideGraphNodes": "Graph Overlay verbergen",
"sourceNode": "Quellknoten",
"executionStateError": "Fehler",
"latentsCollection": "Latents Sammlung",
"maybeIncompatible": "Möglicherweise inkompatibel mit installierten",
"nodePack": "Knoten-Pack",
"skippingUnknownOutputType": "Überspringe unbekannten Ausgabe-Feldtyp",
"loadWorkflow": "Lade Workflow",
"snapToGrid": "Am Gitternetz einrasten",
"skippingReservedFieldType": "Überspringe reservierten Feldtyp",
"loRAModelField": "LoRA",
"loRAModelFieldDescription": "Zu erledigen",
"mainModelField": "Modell",
"doesNotExist": "existiert nicht",
"vaeField": "VAE",
"unknownOutput": "Unbekannte Ausgabe: {{name}}",
"updateNode": "Knoten updaten",
"edge": "Rand / Kante",
"sourceNodeDoesNotExist": "Ungültiger Rand: Quell- / Ausgabe-Knoten {{node}} existiert nicht",
"updateAllNodes": "Update Knoten",
"allNodesUpdated": "Alle Knoten aktualisiert",
"unknownTemplate": "Unbekannte Vorlage",
"floatDescription": "Floats sind Zahlen mit einem Dezimalpunkt.",
"updateApp": "Update App",
"vaeFieldDescription": "VAE Submodell.",
"unknownInput": "Unbekannte Eingabe: {{name}}",
"unknownNodeType": "Unbekannter Knotentyp",
"float": "Kommazahlen"
},
"hrf": {
"enableHrf": "Aktivieren Sie die Korrektur für hohe Auflösungen",
"enableHrf": "Korrektur für hohe Auflösungen",
"upscaleMethod": "Vergrößerungsmethoden",
"enableHrfTooltip": "Generieren Sie mit einer niedrigeren Anfangsauflösung, skalieren Sie auf die Basisauflösung hoch und führen Sie dann Image-to-Image aus.",
"metadata": {

View File

@@ -5,6 +5,7 @@ import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDndImage from 'common/components/IAIDndImage';
import IAIDndImageIcon from 'common/components/IAIDndImageIcon';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import { setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
import { useControlAdapterControlImage } from 'features/controlAdapters/hooks/useControlAdapterControlImage';
import { useControlAdapterProcessedControlImage } from 'features/controlAdapters/hooks/useControlAdapterProcessedControlImage';
@@ -91,19 +92,14 @@ const ControlAdapterImagePreview = ({ isSmall, id }: Props) => {
return;
}
const width = roundToMultiple(controlImage.width, 8);
const height = roundToMultiple(controlImage.height, 8);
if (activeTabName === 'unifiedCanvas') {
dispatch(
setBoundingBoxDimensions(
{
width: controlImage.width,
height: controlImage.height,
},
optimalDimension
)
);
dispatch(setBoundingBoxDimensions({ width, height }, optimalDimension));
} else {
dispatch(widthChanged(controlImage.width));
dispatch(heightChanged(controlImage.height));
dispatch(widthChanged(width));
dispatch(heightChanged(height));
}
}, [controlImage, activeTabName, dispatch, optimalDimension]);

View File

@@ -1,84 +0,0 @@
import type { ContextMenuProps } from '@invoke-ai/ui-library';
import { ContextMenu, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useFieldInputKind } from 'features/nodes/hooks/useFieldInputKind';
import { useFieldLabel } from 'features/nodes/hooks/useFieldLabel';
import { useFieldTemplateTitle } from 'features/nodes/hooks/useFieldTemplateTitle';
import {
selectWorkflowSlice,
workflowExposedFieldAdded,
workflowExposedFieldRemoved,
} from 'features/nodes/store/workflowSlice';
import type { ReactNode } from 'react';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiMinusBold, PiPlusBold } from 'react-icons/pi';
type Props = {
nodeId: string;
fieldName: string;
kind: 'input' | 'output';
children: ContextMenuProps<HTMLDivElement>['children'];
};
const FieldContextMenu = ({ nodeId, fieldName, kind, children }: Props) => {
const dispatch = useAppDispatch();
const label = useFieldLabel(nodeId, fieldName);
const fieldTemplateTitle = useFieldTemplateTitle(nodeId, fieldName, kind);
const input = useFieldInputKind(nodeId, fieldName);
const { t } = useTranslation();
const selectIsExposed = useMemo(
() =>
createSelector(selectWorkflowSlice, (workflow) => {
return Boolean(workflow.exposedFields.find((f) => f.nodeId === nodeId && f.fieldName === fieldName));
}),
[fieldName, nodeId]
);
const mayExpose = useMemo(() => input && ['any', 'direct'].includes(input), [input]);
const isExposed = useAppSelector(selectIsExposed);
const handleExposeField = useCallback(() => {
dispatch(workflowExposedFieldAdded({ nodeId, fieldName }));
}, [dispatch, fieldName, nodeId]);
const handleUnexposeField = useCallback(() => {
dispatch(workflowExposedFieldRemoved({ nodeId, fieldName }));
}, [dispatch, fieldName, nodeId]);
const menuItems = useMemo(() => {
const menuItems: ReactNode[] = [];
if (mayExpose && !isExposed) {
menuItems.push(
<MenuItem key={`${nodeId}.${fieldName}.expose-field`} icon={<PiPlusBold />} onClick={handleExposeField}>
{t('nodes.addLinearView')}
</MenuItem>
);
}
if (mayExpose && isExposed) {
menuItems.push(
<MenuItem key={`${nodeId}.${fieldName}.unexpose-field`} icon={<PiMinusBold />} onClick={handleUnexposeField}>
{t('nodes.removeLinearView')}
</MenuItem>
);
}
return menuItems;
}, [fieldName, handleExposeField, handleUnexposeField, isExposed, mayExpose, nodeId, t]);
const renderMenuFunc = useCallback(
() =>
!menuItems.length ? null : (
<MenuList visibility="visible">
<MenuGroup title={label || fieldTemplateTitle || t('nodes.unknownField')}>{menuItems}</MenuGroup>
</MenuList>
),
[fieldTemplateTitle, label, menuItems, t]
);
return <ContextMenu renderMenu={renderMenuFunc}>{children}</ContextMenu>;
};
export default memo(FieldContextMenu);

View File

@@ -0,0 +1,67 @@
import { IconButton } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
selectWorkflowSlice,
workflowExposedFieldAdded,
workflowExposedFieldRemoved,
} from 'features/nodes/store/workflowSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiMinusBold, PiPlusBold } from 'react-icons/pi';
type Props = {
nodeId: string;
fieldName: string;
};
const FieldLinearViewToggle = ({ nodeId, fieldName }: Props) => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const selectIsExposed = useMemo(
() =>
createSelector(selectWorkflowSlice, (workflow) => {
return Boolean(workflow.exposedFields.find((f) => f.nodeId === nodeId && f.fieldName === fieldName));
}),
[fieldName, nodeId]
);
const isExposed = useAppSelector(selectIsExposed);
const handleExposeField = useCallback(() => {
dispatch(workflowExposedFieldAdded({ nodeId, fieldName }));
}, [dispatch, fieldName, nodeId]);
const handleUnexposeField = useCallback(() => {
dispatch(workflowExposedFieldRemoved({ nodeId, fieldName }));
}, [dispatch, fieldName, nodeId]);
if (!isExposed) {
return (
<IconButton
variant="ghost"
tooltip={t('nodes.addLinearView')}
aria-label={t('nodes.addLinearView')}
icon={<PiPlusBold />}
onClick={handleExposeField}
pointerEvents="auto"
size="xs"
/>
);
} else {
return (
<IconButton
variant="ghost"
tooltip={t('nodes.removeLinearView')}
aria-label={t('nodes.removeLinearView')}
icon={<PiMinusBold />}
onClick={handleUnexposeField}
pointerEvents="auto"
size="xs"
/>
);
}
};
export default memo(FieldLinearViewToggle);

View File

@@ -4,12 +4,12 @@ import { useDoesInputHaveValue } from 'features/nodes/hooks/useDoesInputHaveValu
import { useFieldInputInstance } from 'features/nodes/hooks/useFieldInputInstance';
import { useFieldInputTemplate } from 'features/nodes/hooks/useFieldInputTemplate';
import type { PropsWithChildren } from 'react';
import { memo, useMemo } from 'react';
import { memo, useCallback, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import EditableFieldTitle from './EditableFieldTitle';
import FieldContextMenu from './FieldContextMenu';
import FieldHandle from './FieldHandle';
import FieldLinearViewToggle from './FieldLinearViewToggle';
import InputFieldRenderer from './InputFieldRenderer';
interface Props {
@@ -22,6 +22,7 @@ const InputField = ({ nodeId, fieldName }: Props) => {
const fieldTemplate = useFieldInputTemplate(nodeId, fieldName);
const fieldInstance = useFieldInputInstance(nodeId, fieldName);
const doesFieldHaveValue = useDoesInputHaveValue(nodeId, fieldName);
const [isHovered, setIsHovered] = useState(false);
const { isConnected, isConnectionInProgress, isConnectionStartField, connectionError, shouldDim } =
useConnectionState({ nodeId, fieldName, kind: 'input' });
@@ -46,6 +47,14 @@ const InputField = ({ nodeId, fieldName }: Props) => {
return false;
}, [fieldTemplate, isConnected, doesFieldHaveValue]);
const onMouseEnter = useCallback(() => {
setIsHovered(true);
}, []);
const onMouseLeave = useCallback(() => {
setIsHovered(false);
}, []);
if (!fieldTemplate || !fieldInstance) {
return (
<InputFieldWrapper shouldDim={shouldDim}>
@@ -87,19 +96,17 @@ const InputField = ({ nodeId, fieldName }: Props) => {
return (
<InputFieldWrapper shouldDim={shouldDim}>
<FormControl isInvalid={isMissingInput} isDisabled={isConnected} orientation="vertical" px={2}>
<Flex flexDir="column" w="full" gap={1}>
<FieldContextMenu nodeId={nodeId} fieldName={fieldName} kind="input">
{(ref) => (
<EditableFieldTitle
ref={ref}
nodeId={nodeId}
fieldName={fieldName}
kind="input"
isMissingInput={isMissingInput}
withTooltip
/>
)}
</FieldContextMenu>
<Flex flexDir="column" w="full" gap={1} onMouseEnter={onMouseEnter} onMouseLeave={onMouseLeave}>
<Flex>
<EditableFieldTitle
nodeId={nodeId}
fieldName={fieldName}
kind="input"
isMissingInput={isMissingInput}
withTooltip
/>
{isHovered && <FieldLinearViewToggle nodeId={nodeId} fieldName={fieldName} />}
</Flex>
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
</Flex>
</FormControl>

View File

@@ -1,7 +1,7 @@
import type { RootState } from 'app/store/store';
import type { LoRAMetadataItem } from 'features/nodes/types/metadata';
import { zLoRAMetadataItem } from 'features/nodes/types/metadata';
import { forEach, size } from 'lodash-es';
import { filter, size } from 'lodash-es';
import type { NonNullableGraph, SDXLLoraLoaderInvocation } from 'services/api/types';
import {
@@ -31,8 +31,8 @@ export const addSDXLLoRAsToGraph = (
* So we need to inject a LoRA chain into the graph.
*/
const { loras } = state.lora;
const loraCount = size(loras);
const enabledLoRAs = filter(state.lora.loras, (l) => l.isEnabled ?? false);
const loraCount = size(enabledLoRAs);
if (loraCount === 0) {
return;
@@ -59,7 +59,7 @@ export const addSDXLLoRAsToGraph = (
let lastLoraNodeId = '';
let currentLoraIndex = 0;
forEach(loras, (lora) => {
enabledLoRAs.forEach((lora) => {
const { model_name, base_model, weight } = lora;
const currentLoraNodeId = `${LORA_LOADER}_${model_name.replace('.', '_')}`;

View File

@@ -123,6 +123,7 @@ export const buildCanvasImageToImageGraph = (state: RootState, initialImage: Ima
id: DENOISE_LATENTS,
is_intermediate,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 1 - strength,

View File

@@ -58,6 +58,7 @@ export const buildCanvasInpaintGraph = (
negativePrompt,
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
steps,
img2imgStrength: strength,
@@ -152,6 +153,7 @@ export const buildCanvasInpaintGraph = (
is_intermediate,
steps: steps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - strength,
denoising_end: 1,
@@ -175,6 +177,7 @@ export const buildCanvasInpaintGraph = (
is_intermediate,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - canvasCoherenceStrength,
denoising_end: 1,

View File

@@ -60,6 +60,7 @@ export const buildCanvasOutpaintGraph = (
negativePrompt,
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
steps,
img2imgStrength: strength,
@@ -161,6 +162,7 @@ export const buildCanvasOutpaintGraph = (
is_intermediate,
steps: steps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - strength,
denoising_end: 1,
@@ -184,6 +186,7 @@ export const buildCanvasOutpaintGraph = (
is_intermediate,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - canvasCoherenceStrength,
denoising_end: 1,

View File

@@ -124,6 +124,7 @@ export const buildCanvasSDXLImageToImageGraph = (state: RootState, initialImage:
id: SDXL_DENOISE_LATENTS,
is_intermediate,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: refinerModel ? Math.min(refinerStart, 1 - strength) : 1 - strength,

View File

@@ -60,6 +60,7 @@ export const buildCanvasSDXLInpaintGraph = (
negativePrompt,
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
steps,
seed,
@@ -151,6 +152,7 @@ export const buildCanvasSDXLInpaintGraph = (
is_intermediate,
steps: steps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: refinerModel ? Math.min(refinerStart, 1 - strength) : 1 - strength,
denoising_end: refinerModel ? refinerStart : 1,
@@ -174,6 +176,7 @@ export const buildCanvasSDXLInpaintGraph = (
is_intermediate,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - canvasCoherenceStrength,
denoising_end: 1,

View File

@@ -62,6 +62,7 @@ export const buildCanvasSDXLOutpaintGraph = (
negativePrompt,
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
steps,
seed,
@@ -160,6 +161,7 @@ export const buildCanvasSDXLOutpaintGraph = (
is_intermediate,
steps: steps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: refinerModel ? Math.min(refinerStart, 1 - strength) : 1 - strength,
denoising_end: refinerModel ? refinerStart : 1,
@@ -183,6 +185,7 @@ export const buildCanvasSDXLOutpaintGraph = (
is_intermediate,
steps: canvasCoherenceSteps,
cfg_scale: cfg_scale,
cfg_rescale_multiplier,
scheduler: scheduler,
denoising_start: 1 - canvasCoherenceStrength,
denoising_end: 1,

View File

@@ -117,6 +117,7 @@ export const buildCanvasSDXLTextToImageGraph = (state: RootState): NonNullableGr
id: SDXL_DENOISE_LATENTS,
is_intermediate,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 0,

View File

@@ -115,6 +115,7 @@ export const buildCanvasTextToImageGraph = (state: RootState): NonNullableGraph
id: DENOISE_LATENTS,
is_intermediate,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 0,

View File

@@ -123,6 +123,7 @@ export const buildLinearImageToImageGraph = (state: RootState): NonNullableGraph
type: 'denoise_latents',
id: DENOISE_LATENTS,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 1 - strength,

View File

@@ -126,6 +126,7 @@ export const buildLinearSDXLImageToImageGraph = (state: RootState): NonNullableG
type: 'denoise_latents',
id: SDXL_DENOISE_LATENTS,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: refinerModel ? Math.min(refinerStart, 1 - strength) : 1 - strength,

View File

@@ -109,6 +109,7 @@ export const buildLinearSDXLTextToImageGraph = (state: RootState): NonNullableGr
type: 'denoise_latents',
id: SDXL_DENOISE_LATENTS,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 0,

View File

@@ -23,7 +23,7 @@ import ParamMainModelSelect from 'features/parameters/components/MainModel/Param
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
import { useExpanderToggle } from 'features/settingsAccordions/hooks/useExpanderToggle';
import { useStandaloneAccordionToggle } from 'features/settingsAccordions/hooks/useStandaloneAccordionToggle';
import { filter, size } from 'lodash-es';
import { filter } from 'lodash-es';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -33,7 +33,7 @@ const formLabelProps: FormLabelProps = {
const badgesSelector = createMemoizedSelector(selectLoraSlice, selectGenerationSlice, (lora, generation) => {
const enabledLoRAsCount = filter(lora.loras, (l) => !!l.isEnabled).length;
const loraTabBadges = size(lora.loras) ? [enabledLoRAsCount] : [];
const loraTabBadges = enabledLoRAsCount ? [enabledLoRAsCount] : [];
const accordionBadges: (string | number)[] = [];
if (generation.model) {
accordionBadges.push(generation.model.model_name);

View File

@@ -1 +1 @@
__version__ = "3.6.2"
__version__ = "3.6.3"

View File

@@ -34,7 +34,6 @@ classifiers = [
dependencies = [
# Core generation dependencies, pinned for reproducible builds.
"accelerate==0.26.1",
"basicsr==1.4.2",
"clip_anytorch==2.5.2", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel==2.0.2",
"controlnet-aux==0.0.7",
@@ -55,13 +54,13 @@ dependencies = [
"transformers==4.37.2",
# Core application dependencies, pinned for reproducible builds.
"fastapi-events==0.10.0",
"fastapi==0.108.0",
"fastapi-events==0.10.1",
"fastapi==0.109.2",
"huggingface-hub==0.20.3",
"pydantic-settings==2.1.0",
"pydantic==2.5.3",
"python-socketio==5.11.0",
"uvicorn[standard]==0.25.0",
"pydantic==2.6.1",
"python-socketio==5.11.1",
"uvicorn[standard]==0.27.1",
# Auxiliary dependencies, pinned only if necessary.
"albumentations",
@@ -111,7 +110,7 @@ dependencies = [
]
"dev" = ["jurigged", "pudb", "snakeviz", "gprof2dot"]
"test" = [
"ruff==0.1.11",
"ruff==0.2.1",
"ruff-lsp",
"mypy",
"pre-commit",
@@ -140,7 +139,7 @@ dependencies = [
"invokeai-merge2" = "invokeai.frontend.merge.merge_diffusers2:main"
"invokeai-ti" = "invokeai.frontend.training:invokeai_textual_inversion"
"invokeai-model-install" = "invokeai.frontend.install.model_install:main"
"invokeai-model-install2" = "invokeai.frontend.install.model_install2:main" # will eventually be renamed to invokeai-model-install
"invokeai-model-install2" = "invokeai.frontend.install.model_install2:main" # will eventually be renamed to invokeai-model-install
"invokeai-migrate3" = "invokeai.backend.install.migrate_to_3:main"
"invokeai-update" = "invokeai.frontend.install.invokeai_update:main"
"invokeai-metadata" = "invokeai.backend.image_util.invoke_metadata:main"
@@ -207,13 +206,6 @@ output = "coverage/index.xml"
#=== Begin: Ruff
[tool.ruff]
line-length = 120
ignore = [
"E501", # https://docs.astral.sh/ruff/rules/line-too-long/
"C901", # https://docs.astral.sh/ruff/rules/complex-structure/
"B008", # https://docs.astral.sh/ruff/rules/function-call-in-default-argument/
"B904", # https://docs.astral.sh/ruff/rules/raise-without-from-inside-except/
]
select = ["B", "C", "E", "F", "W", "I"]
exclude = [
".git",
"__pycache__",
@@ -222,6 +214,15 @@ exclude = [
"invokeai/frontend/web/node_modules/",
".venv*",
]
[tool.ruff.lint]
ignore = [
"E501", # https://docs.astral.sh/ruff/rules/line-too-long/
"C901", # https://docs.astral.sh/ruff/rules/complex-structure/
"B008", # https://docs.astral.sh/ruff/rules/function-call-in-default-argument/
"B904", # https://docs.astral.sh/ruff/rules/raise-without-from-inside-except/
]
select = ["B", "C", "E", "F", "W", "I"]
#=== End: Ruff
#=== Begin: MyPy