Compare commits

..

1 Commits

Author SHA1 Message Date
psychedelicious
096c17465b fix(backend): use random seed for SDE & Ancestral schedulers
SDE and Ancestral schedulers use some randomness at each step when applying conditioning. We were using a static seed of `0` for this, regardless of the initial noise used. This could cause results to be a bit same-y.

Unfortunately, we do not have easy access to the seed used to create the initial noise at this time.

Changing this to use a random seed value instead of always 0.
2023-08-07 09:09:12 +10:00
35 changed files with 370 additions and 956 deletions

View File

@@ -1,20 +1,22 @@
import io
from typing import Optional
from PIL import Image
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from pydantic import BaseModel
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@@ -150,9 +152,8 @@ async def get_image_metadata(
raise HTTPException(status_code=404)
@images_router.api_route(
@images_router.get(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={

View File

@@ -661,23 +661,27 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
hue: int = Field(default=0, description="The degrees by which to rotate the hue, 0-360")
hue: int = Field(default=0, description="The degrees by which to rotate the hue")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = numpy.array(pil_image.convert("HSV"))
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Convert hue from 0..360 to 0..256
hue = int(256 * ((self.hue % 360) / 360))
# Adjust the hue
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + self.hue) % 180
# Increment each hue and wrap around at 255
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA")
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,

View File

@@ -180,6 +180,10 @@ class TextToLatentsInvocation(BaseInvocation):
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].embeds.to(device=unet.device, dtype=unet.dtype)
# for ancestral and sde schedulers
generator = torch.Generator(device=unet.device)
generator.seed()
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
@@ -198,7 +202,7 @@ class TextToLatentsInvocation(BaseInvocation):
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=unet.device).manual_seed(0),
generator=generator,
)
return conditioning_data

View File

@@ -24,10 +24,11 @@ InvokeAI:
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 0.5
max_vram_cache_size: 2.7
always_use_cpu: false
free_gpu_mem: false
Features:
restore: true
esrgan: true
patchmatch: true
internet_available: true
@@ -164,7 +165,7 @@ import pydoc
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
@@ -172,7 +173,6 @@ from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_ty
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
class InvokeAISettings(BaseSettings):
@@ -189,12 +189,7 @@ class InvokeAISettings(BaseSettings):
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
setattr(self, name, getattr(opt, name))
def to_yaml(self) -> str:
"""
@@ -287,10 +282,14 @@ class InvokeAISettings(BaseSettings):
return [
"type",
"initconf",
"gpu_mem_reserved",
"max_loaded_models",
"version",
"from_file",
"model",
"restore",
"root",
"nsfw_checker",
]
class Config:
@@ -389,11 +388,15 @@ class InvokeAIAppConfig(InvokeAISettings):
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code (DEPRECATED)", category='DEPRECATED')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='DEPRECATED')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
gpu_mem_reserved : float = Field(default=2.75, ge=0, description="DEPRECATED: use max_vram_cache_size. Amount of VRAM reserved for model storage", category='DEPRECATED')
nsfw_checker : bool = Field(default=True, description="DEPRECATED: use Web settings to enable/disable", category='DEPRECATED')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
@@ -411,7 +414,9 @@ class InvokeAIAppConfig(InvokeAISettings):
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
@@ -421,9 +426,6 @@ class InvokeAIAppConfig(InvokeAISettings):
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
# fmt: on
class Config:
validate_assignment = True
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
"""
Update settings with contents of init file, environment, and

View File

@@ -10,15 +10,12 @@ import sys
import argparse
import io
import os
import psutil
import shutil
import textwrap
import torch
import traceback
import yaml
import warnings
from argparse import Namespace
from enum import Enum
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints
@@ -47,8 +44,6 @@ from invokeai.app.services.config import (
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
# TO DO - Move all the frontend code into invokeai.frontend.install
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
CenteredButtonPress,
@@ -58,7 +53,6 @@ from invokeai.frontend.install.widgets import (
CyclingForm,
MIN_COLS,
MIN_LINES,
WindowTooSmallException,
)
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.install.model_install_backend import (
@@ -67,7 +61,6 @@ from invokeai.backend.install.model_install_backend import (
ModelInstall,
)
from invokeai.backend.model_management.model_probe import ModelType, BaseModelType
from pydantic.error_wrappers import ValidationError
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
@@ -83,13 +76,6 @@ Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ["auto", "float16", "float32"]
GB = 1073741824 # GB in bytes
HAS_CUDA = torch.cuda.is_available()
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
MAX_VRAM /= GB
MAX_RAM = psutil.virtual_memory().total / GB
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
@@ -100,12 +86,6 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
logger = InvokeAILogger.getLogger()
class DummyWidgetValue(Enum):
zero = 0
true = True
false = False
# --------------------------------------------
def postscript(errors: None):
if not any(errors):
@@ -398,35 +378,13 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
)
self.max_cache_size = self.add_widget_intelligent(
IntTitleSlider,
name="RAM cache size (GB). Make this at least large enough to hold a single full model.",
name="Size of the RAM cache used for fast model switching (GB)",
value=old_opts.max_cache_size,
out_of=MAX_RAM,
out_of=20,
lowest=3,
begin_entry_at=6,
scroll_exit=True,
)
if HAS_CUDA:
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.max_vram_cache_size = self.add_widget_intelligent(
npyscreen.Slider,
value=old_opts.max_vram_cache_size,
out_of=round(MAX_VRAM * 2) / 2,
lowest=0.0,
relx=8,
step=0.25,
scroll_exit=True,
)
else:
self.max_vram_cache_size = DummyWidgetValue.zero
self.nextrely += 1
self.outdir = self.add_widget_intelligent(
FileBox,
@@ -443,7 +401,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.autoimport_dirs = {}
self.autoimport_dirs["autoimport_dir"] = self.add_widget_intelligent(
FileBox,
name="Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
name=f"Folder to recursively scan for new checkpoints, ControlNets, LoRAs and TI models",
value=str(config.root_path / config.autoimport_dir),
select_dir=True,
must_exist=False,
@@ -518,7 +476,6 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
"outdir",
"free_gpu_mem",
"max_cache_size",
"max_vram_cache_size",
"xformers_enabled",
"always_use_cpu",
]:
@@ -635,13 +592,13 @@ def maybe_create_models_yaml(root: Path):
# -------------------------------------
def run_console_ui(program_opts: Namespace, initfile: Path = None) -> (Namespace, Namespace):
# parse_args() will read from init file if present
invokeai_opts = default_startup_options(initfile)
invokeai_opts.root = program_opts.root
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
raise WindowTooSmallException(
"Could not increase terminal size. Try running again with a larger window or smaller font size."
)
# The third argument is needed in the Windows 11 environment to
# launch a console window running this program.
set_min_terminal_size(MIN_COLS, MIN_LINES)
# the install-models application spawns a subprocess to install
# models, and will crash unless this is set before running.
@@ -697,13 +654,10 @@ def migrate_init_file(legacy_format: Path):
old = legacy_parser.parse_args([f"@{str(legacy_format)}"])
new = InvokeAIAppConfig.get_config()
fields = [x for x, y in InvokeAIAppConfig.__fields__.items() if y.field_info.extra.get("category") != "DEPRECATED"]
fields = list(get_type_hints(InvokeAIAppConfig).keys())
for attr in fields:
if hasattr(old, attr):
try:
setattr(new, attr, getattr(old, attr))
except ValidationError as e:
print(f"* Ignoring incompatible value for field {attr}:\n {str(e)}")
setattr(new, attr, getattr(old, attr))
# a few places where the field names have changed and we have to
# manually add in the new names/values
@@ -823,7 +777,6 @@ def main():
models_to_download = default_user_selections(opt)
new_init_file = config.root_path / "invokeai.yaml"
if opt.yes_to_all:
write_default_options(opt, new_init_file)
init_options = Namespace(precision="float32" if opt.full_precision else "float16")
@@ -849,8 +802,6 @@ def main():
postscript(errors=errors)
if not opt.yes_to_all:
input("Press any key to continue...")
except WindowTooSmallException as e:
logger.error(str(e))
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")

View File

@@ -228,19 +228,19 @@ the root is the InvokeAI ROOTDIR.
"""
from __future__ import annotations
import hashlib
import os
import hashlib
import textwrap
import types
import yaml
from dataclasses import dataclass
from pathlib import Path
from typing import Literal, Optional, List, Tuple, Union, Dict, Set, Callable, types
from shutil import rmtree, move
from typing import Optional, List, Literal, Tuple, Union, Dict, Set, Callable
import torch
import yaml
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from pydantic import BaseModel, Field
import invokeai.backend.util.logging as logger
@@ -259,7 +259,6 @@ from .models import (
ModelNotFoundException,
InvalidModelException,
DuplicateModelException,
ModelBase,
)
# We are only starting to number the config file with release 3.
@@ -362,7 +361,7 @@ class ModelManager(object):
if model_key.startswith("_"):
continue
model_name, base_model, model_type = self.parse_key(model_key)
model_class = self._get_implementation(base_model, model_type)
model_class = MODEL_CLASSES[base_model][model_type]
# alias for config file
model_config["model_format"] = model_config.pop("format")
self.models[model_key] = model_class.create_config(**model_config)
@@ -382,24 +381,18 @@ class ModelManager(object):
# causing otherwise unreferenced models to be removed from memory
self._read_models()
def model_exists(self, model_name: str, base_model: BaseModelType, model_type: ModelType, *, rescan=False) -> bool:
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
"""
Given a model name, returns True if it is a valid identifier.
:param model_name: symbolic name of the model in models.yaml
:param model_type: ModelType enum indicating the type of model to return
:param base_model: BaseModelType enum indicating the base model used by this model
:param rescan: if True, scan_models_directory
Given a model name, returns True if it is a valid
identifier.
"""
model_key = self.create_key(model_name, base_model, model_type)
exists = model_key in self.models
# if model not found try to find it (maybe file just pasted)
if rescan and not exists:
self.scan_models_directory(base_model=base_model, model_type=model_type)
exists = self.model_exists(model_name, base_model, model_type, rescan=False)
return exists
return model_key in self.models
@classmethod
def create_key(
@@ -450,32 +443,39 @@ class ModelManager(object):
:param model_name: symbolic name of the model in models.yaml
:param model_type: ModelType enum indicating the type of model to return
:param base_model: BaseModelType enum indicating the base model used by this model
:param submodel_type: an ModelType enum indicating the portion of
:param submode_typel: an ModelType enum indicating the portion of
the model to retrieve (e.g. ModelType.Vae)
"""
model_class = MODEL_CLASSES[base_model][model_type]
model_key = self.create_key(model_name, base_model, model_type)
if not self.model_exists(model_name, base_model, model_type, rescan=True):
raise ModelNotFoundException(f"Model not found - {model_key}")
# if model not found try to find it (maybe file just pasted)
if model_key not in self.models:
self.scan_models_directory(base_model=base_model, model_type=model_type)
if model_key not in self.models:
raise ModelNotFoundException(f"Model not found - {model_key}")
model_config = self._get_model_config(base_model, model_name, model_type)
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
if is_submodel_override:
model_type = submodel_type
submodel_type = None
model_class = self._get_implementation(base_model, model_type)
model_config = self.models[model_key]
model_path = self.resolve_model_path(model_config.path)
if not model_path.exists():
if model_class.save_to_config:
self.models[model_key].error = ModelError.NotFound
raise Exception(f'Files for model "{model_key}" not found at {model_path}')
raise Exception(f'Files for model "{model_key}" not found')
else:
self.models.pop(model_key, None)
raise ModelNotFoundException(f'Files for model "{model_key}" not found at {model_path}')
raise ModelNotFoundException(f"Model not found - {model_key}")
# vae/movq override
# TODO:
if submodel_type is not None and hasattr(model_config, submodel_type):
override_path = getattr(model_config, submodel_type)
if override_path:
model_path = self.resolve_path(override_path)
model_type = submodel_type
submodel_type = None
model_class = MODEL_CLASSES[base_model][model_type]
# TODO: path
# TODO: is it accurate to use path as id
@@ -513,55 +513,6 @@ class ModelManager(object):
_cache=self.cache,
)
def _get_model_path(
self, model_config: ModelConfigBase, submodel_type: Optional[SubModelType] = None
) -> (Path, bool):
"""Extract a model's filesystem path from its config.
:return: The fully qualified Path of the module (or submodule).
"""
model_path = model_config.path
is_submodel_override = False
# Does the config explicitly override the submodel?
if submodel_type is not None and hasattr(model_config, submodel_type):
submodel_path = getattr(model_config, submodel_type)
if submodel_path is not None:
model_path = getattr(model_config, submodel_type)
is_submodel_override = True
model_path = self.resolve_model_path(model_path)
return model_path, is_submodel_override
def _get_model_config(self, base_model: BaseModelType, model_name: str, model_type: ModelType) -> ModelConfigBase:
"""Get a model's config object."""
model_key = self.create_key(model_name, base_model, model_type)
try:
model_config = self.models[model_key]
except KeyError:
raise ModelNotFoundException(f"Model not found - {model_key}")
return model_config
def _get_implementation(self, base_model: BaseModelType, model_type: ModelType) -> type[ModelBase]:
"""Get the concrete implementation class for a specific model type."""
model_class = MODEL_CLASSES[base_model][model_type]
return model_class
def _instantiate(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
) -> ModelBase:
"""Make a new instance of this model, without loading it."""
model_config = self._get_model_config(base_model, model_name, model_type)
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
# FIXME: do non-overriden submodels get the right class?
constructor = self._get_implementation(base_model, model_type)
instance = constructor(model_path, base_model, model_type)
return instance
def model_info(
self,
model_name: str,
@@ -595,10 +546,9 @@ class ModelManager(object):
the combined format of the list_models() method.
"""
models = self.list_models(base_model, model_type, model_name)
if len(models) >= 1:
if len(models) > 1:
return models[0]
else:
return None
return None
def list_models(
self,
@@ -710,7 +660,7 @@ class ModelManager(object):
if path := model_attributes.get("path"):
model_attributes["path"] = str(self.relative_model_path(Path(path)))
model_class = self._get_implementation(base_model, model_type)
model_class = MODEL_CLASSES[base_model][model_type]
model_config = model_class.create_config(**model_attributes)
model_key = self.create_key(model_name, base_model, model_type)
@@ -901,7 +851,7 @@ class ModelManager(object):
for model_key, model_config in self.models.items():
model_name, base_model, model_type = self.parse_key(model_key)
model_class = self._get_implementation(base_model, model_type)
model_class = MODEL_CLASSES[base_model][model_type]
if model_class.save_to_config:
# TODO: or exclude_unset better fits here?
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"})
@@ -959,7 +909,7 @@ class ModelManager(object):
model_path = self.resolve_model_path(model_config.path).absolute()
if not model_path.exists():
model_class = self._get_implementation(cur_base_model, cur_model_type)
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
if model_class.save_to_config:
model_config.error = ModelError.NotFound
self.models.pop(model_key, None)
@@ -975,7 +925,7 @@ class ModelManager(object):
for cur_model_type in ModelType:
if model_type is not None and cur_model_type != model_type:
continue
model_class = self._get_implementation(cur_base_model, cur_model_type)
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
if not models_dir.exists():
@@ -991,9 +941,7 @@ class ModelManager(object):
raise DuplicateModelException(f"Model with key {model_key} added twice")
model_path = self.relative_model_path(model_path)
model_config: ModelConfigBase = model_class.probe_config(
str(model_path), model_base=cur_base_model
)
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True
except DuplicateModelException as e:

View File

@@ -80,10 +80,8 @@ class StableDiffusionXLModel(DiffusersModel):
raise Exception("Unkown stable diffusion 2.* model format")
if ckpt_config_path is None:
# avoid circular import
from .stable_diffusion import _select_ckpt_config
ckpt_config_path = _select_ckpt_config(kwargs.get("model_base", BaseModelType.StableDiffusionXL), variant)
# TO DO: implement picking
pass
return cls.create_config(
path=path,

View File

@@ -1,14 +1,9 @@
import os
import torch
import safetensors
from enum import Enum
from pathlib import Path
from typing import Optional
import safetensors
import torch
from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf
from invokeai.app.services.config import InvokeAIAppConfig
from typing import Optional, Union, Literal
from .base import (
ModelBase,
ModelConfigBase,
@@ -23,6 +18,9 @@ from .base import (
InvalidModelException,
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf
class VaeModelFormat(str, Enum):
@@ -82,7 +80,7 @@ class VaeModel(ModelBase):
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException(f"Does not exist as local file: {path}")
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):

View File

@@ -28,6 +28,7 @@ from npyscreen import widget
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.install.model_install_backend import (
ModelInstallList,
InstallSelections,
ModelInstall,
SchedulerPredictionType,
@@ -40,12 +41,12 @@ from invokeai.frontend.install.widgets import (
SingleSelectColumns,
TextBox,
BufferBox,
FileBox,
set_min_terminal_size,
select_stable_diffusion_config_file,
CyclingForm,
MIN_COLS,
MIN_LINES,
WindowTooSmallException,
)
from invokeai.app.services.config import InvokeAIAppConfig
@@ -155,7 +156,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
BufferBox,
name="Log Messages",
editable=False,
max_height=6,
max_height=15,
)
self.nextrely += 1
@@ -692,11 +693,7 @@ def select_and_download_models(opt: Namespace):
# needed to support the probe() method running under a subprocess
torch.multiprocessing.set_start_method("spawn")
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
raise WindowTooSmallException(
"Could not increase terminal size. Try running again with a larger window or smaller font size."
)
set_min_terminal_size(MIN_COLS, MIN_LINES)
installApp = AddModelApplication(opt)
try:
installApp.run()
@@ -790,8 +787,6 @@ def main():
curses.echo()
curses.endwin()
logger.info("Goodbye! Come back soon.")
except WindowTooSmallException as e:
logger.error(str(e))
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
logger.error("Insufficient vertical space for the interface. Please make your window taller and try again")

View File

@@ -21,40 +21,31 @@ MIN_COLS = 130
MIN_LINES = 38
class WindowTooSmallException(Exception):
pass
# -------------------------------------
def set_terminal_size(columns: int, lines: int) -> bool:
def set_terminal_size(columns: int, lines: int):
ts = get_terminal_size()
width = max(columns, ts.columns)
height = max(lines, ts.lines)
OS = platform.uname().system
screen_ok = False
while not screen_ok:
ts = get_terminal_size()
width = max(columns, ts.columns)
height = max(lines, ts.lines)
if OS == "Windows":
pass
# not working reliably - ask user to adjust the window
# _set_terminal_size_powershell(width,height)
elif OS in ["Darwin", "Linux"]:
_set_terminal_size_unix(width, height)
if OS == "Windows":
pass
# not working reliably - ask user to adjust the window
# _set_terminal_size_powershell(width,height)
elif OS in ["Darwin", "Linux"]:
_set_terminal_size_unix(width, height)
# check whether it worked....
ts = get_terminal_size()
if ts.columns < columns or ts.lines < lines:
print(
f"\033[1mThis window is too small for the interface. InvokeAI requires {columns}x{lines} (w x h) characters, but window is {ts.columns}x{ts.lines}\033[0m"
)
resp = input(
"Maximize the window and/or decrease the font size then press any key to continue. Type [Q] to give up.."
)
if resp.upper().startswith("Q"):
break
else:
screen_ok = True
return screen_ok
# check whether it worked....
ts = get_terminal_size()
pause = False
if ts.columns < columns:
print("\033[1mThis window is too narrow for the user interface.\033[0m")
pause = True
if ts.lines < lines:
print("\033[1mThis window is too short for the user interface.\033[0m")
pause = True
if pause:
input("Maximize the window then press any key to continue..")
def _set_terminal_size_powershell(width: int, height: int):
@@ -89,14 +80,14 @@ def _set_terminal_size_unix(width: int, height: int):
sys.stdout.flush()
def set_min_terminal_size(min_cols: int, min_lines: int) -> bool:
def set_min_terminal_size(min_cols: int, min_lines: int):
# make sure there's enough room for the ui
term_cols, term_lines = get_terminal_size()
if term_cols >= min_cols and term_lines >= min_lines:
return True
return
cols = max(term_cols, min_cols)
lines = max(term_lines, min_lines)
return set_terminal_size(cols, lines)
set_terminal_size(cols, lines)
class IntSlider(npyscreen.Slider):
@@ -173,7 +164,7 @@ class FloatSlider(npyscreen.Slider):
class FloatTitleSlider(npyscreen.TitleText):
_entry_type = npyscreen.Slider
_entry_type = FloatSlider
class SelectColumnBase:

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{B as m,g7 as Je,A as y,a5 as Ka,g8 as Xa,af as va,aj as d,g9 as b,ga as t,gb as Ya,gc as h,gd as ua,ge as Ja,gf as Qa,aL as Za,gg as et,ad as rt,gh as at}from"./index-dd054634.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./menu-b42141e3.js";var za=String.raw,Ca=za`
import{B as m,g7 as Je,A as y,a5 as Ka,g8 as Xa,af as va,aj as d,g9 as b,ga as t,gb as Ya,gc as h,gd as ua,ge as Ja,gf as Qa,aL as Za,gg as et,ad as rt,gh as at}from"./index-de589048.js";import{s as fa,n as o,t as tt,o as ha,p as ot,q as ma,v as ga,w as ya,x as it,y as Sa,z as pa,A as xr,B as nt,D as lt,E as st,F as xa,G as $a,H as ka,J as dt,K as _a,L as ct,M as bt,N as vt,O as ut,Q as wa,R as ft,S as ht,T as mt,U as gt,V as yt,W as St,e as pt,X as xt}from"./menu-11348abc.js";var za=String.raw,Ca=za`
:root,
:host {
--chakra-vh: 100vh;

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-dd054634.js"></script>
<script type="module" crossorigin src="./assets/index-de589048.js"></script>
</head>
<body dir="ltr">

View File

@@ -96,8 +96,7 @@ export type AppFeature =
| 'consoleLogging'
| 'dynamicPrompting'
| 'batches'
| 'syncModels'
| 'multiselect';
| 'syncModels';
/**
* A disable-able Stable Diffusion feature

View File

@@ -9,7 +9,6 @@ import { useListImagesQuery } from 'services/api/endpoints/images';
import { ImageDTO } from 'services/api/types';
import { selectionChanged } from '../store/gallerySlice';
import { imagesSelectors } from 'services/api/util';
import { useFeatureStatus } from '../../system/hooks/useFeatureStatus';
const selector = createSelector(
[stateSelector, selectListImagesBaseQueryArgs],
@@ -34,18 +33,11 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
}),
});
const isMultiSelectEnabled = useFeatureStatus('multiselect').isFeatureEnabled;
const handleClick = useCallback(
(e: MouseEvent<HTMLDivElement>) => {
if (!imageDTO) {
return;
}
if (!isMultiSelectEnabled) {
dispatch(selectionChanged([imageDTO]));
return;
}
if (e.shiftKey) {
const rangeEndImageName = imageDTO.image_name;
const lastSelectedImage = selection[selection.length - 1]?.image_name;
@@ -79,7 +71,7 @@ export const useMultiselect = (imageDTO?: ImageDTO) => {
dispatch(selectionChanged([imageDTO]));
}
},
[dispatch, imageDTO, imageDTOs, selection, isMultiSelectEnabled]
[dispatch, imageDTO, imageDTOs, selection]
);
const isSelected = useMemo(

View File

@@ -31,7 +31,7 @@ const ParamLoraCollapse = () => {
}
return (
<IAICollapse label="LoRA" activeLabel={activeLabel}>
<IAICollapse label={'LoRA'} activeLabel={activeLabel}>
<Flex sx={{ flexDir: 'column', gap: 2 }}>
<ParamLoRASelect />
<ParamLoraList />

View File

@@ -1,4 +1,3 @@
import { Divider } from '@chakra-ui/react';
import { createSelector } from '@reduxjs/toolkit';
import { stateSelector } from 'app/store/store';
import { useAppSelector } from 'app/store/storeHooks';
@@ -9,21 +8,20 @@ import ParamLora from './ParamLora';
const selector = createSelector(
stateSelector,
({ lora }) => {
return { lorasArray: map(lora.loras) };
const { loras } = lora;
return { loras };
},
defaultSelectorOptions
);
const ParamLoraList = () => {
const { lorasArray } = useAppSelector(selector);
const { loras } = useAppSelector(selector);
return (
<>
{lorasArray.map((lora, i) => (
<>
{i > 0 && <Divider key={`${lora.model_name}-divider`} pt={1} />}
<ParamLora key={lora.model_name} lora={lora} />
</>
{map(loras, (lora) => (
<ParamLora key={lora.model_name} lora={lora} />
))}
</>
);

View File

@@ -9,6 +9,7 @@ import {
CLIP_SKIP,
LORA_LOADER,
MAIN_MODEL_LOADER,
ONNX_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
@@ -35,11 +36,15 @@ export const addLoRAsToGraph = (
| undefined;
if (loraCount > 0) {
// Remove modelLoaderNodeId unet connection to feed it to LoRAs
// Remove MAIN_MODEL_LOADER unet connection to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === modelLoaderNodeId &&
e.source.node_id === MAIN_MODEL_LOADER &&
['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === ONNX_MODEL_LOADER &&
['unet'].includes(e.source.field)
)
);

View File

@@ -1,212 +0,0 @@
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { forEach, size } from 'lodash-es';
import {
MetadataAccumulatorInvocation,
SDXLLoraLoaderInvocation,
} from 'services/api/types';
import {
LORA_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
POSITIVE_CONDITIONING,
SDXL_MODEL_LOADER,
} from './constants';
export const addSDXLLoRAsToGraph = (
state: RootState,
graph: NonNullableGraph,
baseNodeId: string,
modelLoaderNodeId: string = SDXL_MODEL_LOADER
): void => {
/**
* LoRA nodes get the UNet and CLIP models from the main model loader and apply the LoRA to them.
* They then output the UNet and CLIP models references on to either the next LoRA in the chain,
* or to the inference/conditioning nodes.
*
* So we need to inject a LoRA chain into the graph.
*/
const { loras } = state.lora;
const loraCount = size(loras);
const metadataAccumulator = graph.nodes[METADATA_ACCUMULATOR] as
| MetadataAccumulatorInvocation
| undefined;
if (loraCount > 0) {
// Remove modelLoaderNodeId unet/clip/clip2 connections to feed it to LoRAs
graph.edges = graph.edges.filter(
(e) =>
!(
e.source.node_id === modelLoaderNodeId &&
['unet'].includes(e.source.field)
) &&
!(
e.source.node_id === modelLoaderNodeId &&
['clip'].includes(e.source.field)
) &&
!(
e.source.node_id === modelLoaderNodeId &&
['clip2'].includes(e.source.field)
)
);
}
// we need to remember the last lora so we can chain from it
let lastLoraNodeId = '';
let currentLoraIndex = 0;
forEach(loras, (lora) => {
const { model_name, base_model, weight } = lora;
const currentLoraNodeId = `${LORA_LOADER}_${model_name.replace('.', '_')}`;
const loraLoaderNode: SDXLLoraLoaderInvocation = {
type: 'sdxl_lora_loader',
id: currentLoraNodeId,
is_intermediate: true,
lora: { model_name, base_model },
weight,
};
// add the lora to the metadata accumulator
if (metadataAccumulator) {
metadataAccumulator.loras.push({
lora: { model_name, base_model },
weight,
});
}
// add to graph
graph.nodes[currentLoraNodeId] = loraLoaderNode;
if (currentLoraIndex === 0) {
// first lora = start the lora chain, attach directly to model loader
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: modelLoaderNodeId,
field: 'clip2',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip2',
},
});
} else {
// we are in the middle of the lora chain, instead connect to the previous lora
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'unet',
},
destination: {
node_id: currentLoraNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'clip',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: lastLoraNodeId,
field: 'clip2',
},
destination: {
node_id: currentLoraNodeId,
field: 'clip2',
},
});
}
if (currentLoraIndex === loraCount - 1) {
// final lora, end the lora chain - we need to connect up to inference and conditioning nodes
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'unet',
},
destination: {
node_id: baseNodeId,
field: 'unet',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip2',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip2',
},
});
graph.edges.push({
source: {
node_id: currentLoraNodeId,
field: 'clip2',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip2',
},
});
}
// increment the lora for the next one in the chain
lastLoraNodeId = currentLoraNodeId;
currentLoraIndex += 1;
});
};

View File

@@ -22,7 +22,6 @@ import {
SDXL_LATENTS_TO_LATENTS,
SDXL_MODEL_LOADER,
} from './constants';
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
/**
* Builds the Image to Image tab graph.
@@ -365,8 +364,6 @@ export const buildLinearSDXLImageToImageGraph = (
},
});
addSDXLLoRAsToGraph(state, graph, SDXL_LATENTS_TO_LATENTS, SDXL_MODEL_LOADER);
// Add Refiner if enabled
if (shouldUseSDXLRefiner) {
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);

View File

@@ -4,7 +4,6 @@ import { NonNullableGraph } from 'features/nodes/types/types';
import { initialGenerationState } from 'features/parameters/store/generationSlice';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
import { addSDXLLoRAsToGraph } from './addSDXLLoRAstoGraph';
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
@@ -247,8 +246,6 @@ export const buildLinearSDXLTextToImageGraph = (
},
});
addSDXLLoRAsToGraph(state, graph, SDXL_TEXT_TO_LATENTS, SDXL_MODEL_LOADER);
// Add Refiner if enabled
if (shouldUseSDXLRefiner) {
addSDXLRefinerToGraph(state, graph, SDXL_TEXT_TO_LATENTS);

View File

@@ -4,7 +4,6 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
import SDXLImageToImageTabCoreParameters from './SDXLImageToImageTabCoreParameters';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
const SDXLImageToImageTabParameters = () => {
return (
@@ -13,7 +12,6 @@ const SDXLImageToImageTabParameters = () => {
<ProcessButtons />
<SDXLImageToImageTabCoreParameters />
<ParamSDXLRefinerCollapse />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamNoiseCollapse />
</>

View File

@@ -4,7 +4,6 @@ import ProcessButtons from 'features/parameters/components/ProcessButtons/Proces
import TextToImageTabCoreParameters from 'features/ui/components/tabs/TextToImage/TextToImageTabCoreParameters';
import ParamSDXLPromptArea from './ParamSDXLPromptArea';
import ParamSDXLRefinerCollapse from './ParamSDXLRefinerCollapse';
import ParamLoraCollapse from 'features/lora/components/ParamLoraCollapse';
const SDXLTextToImageTabParameters = () => {
return (
@@ -13,7 +12,6 @@ const SDXLTextToImageTabParameters = () => {
<ProcessButtons />
<TextToImageTabCoreParameters />
<ParamSDXLRefinerCollapse />
<ParamLoraCollapse />
<ParamDynamicPromptsCollapse />
<ParamNoiseCollapse />
</>

View File

@@ -4,7 +4,6 @@ import {
ASSETS_CATEGORIES,
BoardId,
IMAGE_CATEGORIES,
IMAGE_LIMIT,
} from 'features/gallery/store/types';
import { keyBy } from 'lodash';
import { ApiFullTagDescription, LIST_TAG, api } from '..';
@@ -168,14 +167,7 @@ export const imagesApi = api.injectEndpoints({
},
};
},
invalidatesTags: (result, error, { imageDTOs }) => {
// for now, assume bulk delete is all on one board
const boardId = imageDTOs[0]?.board_id;
return [
{ type: 'BoardImagesTotal', id: boardId ?? 'none' },
{ type: 'BoardAssetsTotal', id: boardId ?? 'none' },
];
},
invalidatesTags: (result, error, imageDTOs) => [],
async onQueryStarted({ imageDTOs }, { dispatch, queryFulfilled }) {
/**
* Cache changes for `deleteImages`:
@@ -897,25 +889,18 @@ export const imagesApi = api.injectEndpoints({
board_id,
},
}),
invalidatesTags: (result, error, { imageDTOs, board_id }) => {
//assume all images are being moved from one board for now
const oldBoardId = imageDTOs[0]?.board_id;
return [
// update the destination board
{ type: 'Board', id: board_id ?? 'none' },
// update new board totals
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
// update old board totals
{ type: 'BoardImagesTotal', id: oldBoardId ?? 'none' },
{ type: 'BoardAssetsTotal', id: oldBoardId ?? 'none' },
// update the no_board totals
{ type: 'BoardImagesTotal', id: 'none' },
{ type: 'BoardAssetsTotal', id: 'none' },
];
},
invalidatesTags: (result, error, { board_id }) => [
// update the destination board
{ type: 'Board', id: board_id ?? 'none' },
// update old board totals
{ type: 'BoardImagesTotal', id: board_id ?? 'none' },
{ type: 'BoardAssetsTotal', id: board_id ?? 'none' },
// update the no_board totals
{ type: 'BoardImagesTotal', id: 'none' },
{ type: 'BoardAssetsTotal', id: 'none' },
],
async onQueryStarted(
{ board_id: new_board_id, imageDTOs },
{ board_id, imageDTOs },
{ dispatch, queryFulfilled, getState }
) {
try {
@@ -935,7 +920,7 @@ export const imagesApi = api.injectEndpoints({
'getImageDTO',
image_name,
(draft) => {
draft.board_id = new_board_id;
draft.board_id = board_id;
}
)
);
@@ -961,7 +946,7 @@ export const imagesApi = api.injectEndpoints({
);
const queryArgs = {
board_id: new_board_id,
board_id,
categories,
};
@@ -969,24 +954,23 @@ export const imagesApi = api.injectEndpoints({
queryArgs
)(getState());
const { data: previousTotal } = IMAGE_CATEGORIES.includes(
const { data: total } = IMAGE_CATEGORIES.includes(
imageDTO.image_category
)
? boardsApi.endpoints.getBoardImagesTotal.select(
new_board_id ?? 'none'
imageDTO.board_id ?? 'none'
)(getState())
: boardsApi.endpoints.getBoardAssetsTotal.select(
new_board_id ?? 'none'
imageDTO.board_id ?? 'none'
)(getState());
const isCacheFullyPopulated =
currentCache.data &&
currentCache.data.ids.length >= (previousTotal ?? 0);
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
const isInDateRange =
(previousTotal || 0) >= IMAGE_LIMIT
? getIsImageInDateRange(currentCache.data, imageDTO)
: true;
const isInDateRange = getIsImageInDateRange(
currentCache.data,
imageDTO
);
if (isCacheFullyPopulated || isInDateRange) {
// *upsert* to $cache
@@ -997,7 +981,7 @@ export const imagesApi = api.injectEndpoints({
(draft) => {
imagesAdapter.upsertOne(draft, {
...imageDTO,
board_id: new_board_id,
board_id,
});
}
)
@@ -1113,10 +1097,10 @@ export const imagesApi = api.injectEndpoints({
const isCacheFullyPopulated =
currentCache.data && currentCache.data.ids.length >= (total ?? 0);
const isInDateRange =
(total || 0) >= IMAGE_LIMIT
? getIsImageInDateRange(currentCache.data, imageDTO)
: true;
const isInDateRange = getIsImageInDateRange(
currentCache.data,
imageDTO
);
if (isCacheFullyPopulated || isInDateRange) {
// *upsert* to $cache
@@ -1127,7 +1111,7 @@ export const imagesApi = api.injectEndpoints({
(draft) => {
imagesAdapter.upsertOne(draft, {
...imageDTO,
board_id: 'none',
board_id: undefined,
});
}
)

View File

@@ -1443,7 +1443,7 @@ export type components = {
* @description The nodes in this graph
*/
nodes?: {
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
[key: string]: (components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
};
/**
* Edges
@@ -1486,7 +1486,7 @@ export type components = {
* @description The results of node executions
*/
results: {
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["SDXLLoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["ONNXModelLoaderOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["StringOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
};
/**
* Errors
@@ -1904,40 +1904,6 @@ export type components = {
*/
image_name: string;
};
/**
* ImageHueAdjustmentInvocation
* @description Adjusts the Hue of an image.
*/
ImageHueAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_hue_adjust
* @enum {string}
*/
type?: "img_hue_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Hue
* @description The degrees by which to rotate the hue, 0-360
* @default 0
*/
hue?: number;
};
/**
* ImageInverseLerpInvocation
* @description Inverse linear interpolation of all pixels of an image
@@ -2018,40 +1984,6 @@ export type components = {
*/
max?: number;
};
/**
* ImageLuminosityAdjustmentInvocation
* @description Adjusts the Luminosity (Value) of an image.
*/
ImageLuminosityAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_luminosity_adjust
* @enum {string}
*/
type?: "img_luminosity_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Luminosity
* @description The factor by which to adjust the luminosity (value)
* @default 1
*/
luminosity?: number;
};
/**
* ImageMetadata
* @description An image's generation metadata
@@ -2307,40 +2239,6 @@ export type components = {
*/
resample_mode?: "nearest" | "box" | "bilinear" | "hamming" | "bicubic" | "lanczos";
};
/**
* ImageSaturationAdjustmentInvocation
* @description Adjusts the Saturation of an image.
*/
ImageSaturationAdjustmentInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default img_saturation_adjust
* @enum {string}
*/
type?: "img_saturation_adjust";
/**
* Image
* @description The image to adjust
*/
image?: components["schemas"]["ImageField"];
/**
* Saturation
* @description The factor by which to adjust the saturation
* @default 1
*/
saturation?: number;
};
/**
* ImageScaleInvocation
* @description Scales an image by a factor
@@ -5014,82 +4912,6 @@ export type components = {
*/
denoising_end?: number;
};
/**
* SDXLLoraLoaderInvocation
* @description Apply selected lora to unet and text_encoder.
*/
SDXLLoraLoaderInvocation: {
/**
* Id
* @description The id of this node. Must be unique among all nodes.
*/
id: string;
/**
* Is Intermediate
* @description Whether or not this node is an intermediate node.
* @default false
*/
is_intermediate?: boolean;
/**
* Type
* @default sdxl_lora_loader
* @enum {string}
*/
type?: "sdxl_lora_loader";
/**
* Lora
* @description Lora model name
*/
lora?: components["schemas"]["LoRAModelField"];
/**
* Weight
* @description With what weight to apply lora
* @default 0.75
*/
weight?: number;
/**
* Unet
* @description UNet model for applying lora
*/
unet?: components["schemas"]["UNetField"];
/**
* Clip
* @description Clip model for applying lora
*/
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Clip2 model for applying lora
*/
clip2?: components["schemas"]["ClipField"];
};
/**
* SDXLLoraLoaderOutput
* @description Model loader output
*/
SDXLLoraLoaderOutput: {
/**
* Type
* @default sdxl_lora_loader_output
* @enum {string}
*/
type?: "sdxl_lora_loader_output";
/**
* Unet
* @description UNet submodel
*/
unet?: components["schemas"]["UNetField"];
/**
* Clip
* @description Tokenizer and text_encoder submodels
*/
clip?: components["schemas"]["ClipField"];
/**
* Clip2
* @description Tokenizer2 and text_encoder2 submodels
*/
clip2?: components["schemas"]["ClipField"];
};
/**
* SDXLModelLoaderInvocation
* @description Loads an sdxl base model, outputting its submodels.
@@ -6139,24 +5961,6 @@ export type components = {
*/
image?: components["schemas"]["ImageField"];
};
/**
* ControlNetModelFormat
* @description An enumeration.
* @enum {string}
*/
ControlNetModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionXLModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion1ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionOnnxModelFormat
* @description An enumeration.
@@ -6169,6 +5973,24 @@ export type components = {
* @enum {string}
*/
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusion1ModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
/**
* StableDiffusionXLModelFormat
* @description An enumeration.
* @enum {string}
*/
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
/**
* ControlNetModelFormat
* @description An enumeration.
* @enum {string}
*/
ControlNetModelFormat: "checkpoint" | "diffusers";
};
responses: never;
parameters: never;
@@ -6279,7 +6101,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {
@@ -6316,7 +6138,7 @@ export type operations = {
};
requestBody: {
content: {
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["SDXLLoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["ImageHueAdjustmentInvocation"] | components["schemas"]["ImageLuminosityAdjustmentInvocation"] | components["schemas"]["ImageSaturationAdjustmentInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
"application/json": components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ImageNSFWBlurInvocation"] | components["schemas"]["ImageWatermarkInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["ONNXPromptInvocation"] | components["schemas"]["ONNXTextToLatentsInvocation"] | components["schemas"]["ONNXLatentsToImageInvocation"] | components["schemas"]["ONNXSD1ModelLoaderInvocation"] | components["schemas"]["OnnxModelLoaderInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["ParamStringInvocation"] | components["schemas"]["ParamPromptInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ESRGANInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
};
};
responses: {

View File

@@ -166,9 +166,6 @@ export type OnnxModelLoaderInvocation = TypeReq<
export type LoraLoaderInvocation = TypeReq<
components['schemas']['LoraLoaderInvocation']
>;
export type SDXLLoraLoaderInvocation = TypeReq<
components['schemas']['SDXLLoraLoaderInvocation']
>;
export type MetadataAccumulatorInvocation = TypeReq<
components['schemas']['MetadataAccumulatorInvocation']
>;

View File

@@ -1 +1 @@
__version__ = "3.0.2"
__version__ = "3.0.2a1"

View File

@@ -100,7 +100,7 @@ dependencies = [
"dev" = [
"pudb",
]
"test" = ["pytest>6.0.0", "pytest-cov", "pytest-datadir", "black"]
"test" = ["pytest>6.0.0", "pytest-cov", "black"]
"xformers" = [
"xformers~=0.0.19; sys_platform!='darwin'",
"triton; sys_platform=='linux'",

View File

@@ -1,38 +0,0 @@
from pathlib import Path
import pytest
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend import ModelManager, BaseModelType, ModelType, SubModelType
BASIC_MODEL_NAME = ("SDXL base", BaseModelType.StableDiffusionXL, ModelType.Main)
VAE_OVERRIDE_MODEL_NAME = ("SDXL with VAE", BaseModelType.StableDiffusionXL, ModelType.Main)
@pytest.fixture
def model_manager(datadir) -> ModelManager:
InvokeAIAppConfig.get_config(root=datadir)
return ModelManager(datadir / "configs" / "relative_sub.models.yaml")
def test_get_model_names(model_manager: ModelManager):
names = model_manager.model_names()
assert names[:2] == [BASIC_MODEL_NAME, VAE_OVERRIDE_MODEL_NAME]
def test_get_model_path_for_diffusers(model_manager: ModelManager, datadir: Path):
model_config = model_manager._get_model_config(BASIC_MODEL_NAME[1], BASIC_MODEL_NAME[0], BASIC_MODEL_NAME[2])
top_model_path, is_override = model_manager._get_model_path(model_config)
expected_model_path = datadir / "models" / "sdxl" / "main" / "SDXL base 1_0"
assert top_model_path == expected_model_path
assert not is_override
def test_get_model_path_for_overridden_vae(model_manager: ModelManager, datadir: Path):
model_config = model_manager._get_model_config(
VAE_OVERRIDE_MODEL_NAME[1], VAE_OVERRIDE_MODEL_NAME[0], VAE_OVERRIDE_MODEL_NAME[2]
)
vae_model_path, is_override = model_manager._get_model_path(model_config, SubModelType.Vae)
expected_vae_path = datadir / "models" / "sdxl" / "vae" / "sdxl-vae-fp16-fix"
assert vae_model_path == expected_vae_path
assert is_override

View File

@@ -1,15 +0,0 @@
__metadata__:
version: 3.0.0
sdxl/main/SDXL base:
path: sdxl/main/SDXL base 1_0
description: SDXL base v1.0
variant: normal
format: diffusers
sdxl/main/SDXL with VAE:
path: sdxl/main/SDXL base 1_0
description: SDXL with customized VAE
vae: sdxl/vae/sdxl-vae-fp16-fix/
variant: normal
format: diffusers