Compare commits

..

337 Commits

Author SHA1 Message Date
Mary Hipp
f0bfa7f0e0 add button to set default settings in parameters 2024-02-29 16:24:10 -05:00
Mary Hipp
c46b2b6fa6 Merge branch 'maryhipp/default-model-settings' of https://github.com/invoke-ai/InvokeAI into maryhipp/default-model-settings 2024-02-29 14:50:37 -05:00
Mary Hipp
058cc715d4 hook MM default model settings up to API 2024-02-29 14:50:31 -05:00
maryhipp
f69e3ee01c add default_settings to metadata 2024-02-29 14:49:37 -05:00
Mary Hipp
6e0665e3d7 UI for configuring default settings for models' 2024-02-29 13:04:53 -05:00
Mary Hipp
5a35550144 add scheduler and vaePrecision to config 2024-02-29 13:02:46 -05:00
Mary Hipp
8926a1a424 lint fix 2024-02-28 12:04:51 -05:00
Mary Hipp
8566c1c7ff cleanup 2024-02-28 11:49:56 -05:00
Mary Hipp
6eb4c1ccb6 adapt embedding popover to work for trigger phrases also 2024-02-28 11:45:34 -05:00
maryhipp
ef474a3196 what have i done 2024-02-27 15:41:03 -05:00
maryhipp
16b3718d6a cleanup 2024-02-27 15:39:34 -05:00
maryhipp
30228ce2a4 fix merge 2024-02-27 15:35:27 -05:00
Mary Hipp
efb5f2d202 UI in MM to create trigger phrases 2024-02-27 15:33:11 -05:00
chainchompa
4418c118db added add all button to scan models (#5811)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2024-02-27 09:56:23 -05:00
Jennifer Player
110b0bc8fe updated to use new import model mutation 2024-02-27 09:48:41 -05:00
chainchompa
175cfe41a4 Merge branch 'next' into chainchompa/add-all-scan 2024-02-27 09:44:35 -05:00
Jennifer Player
a12d54afb9 added add all button to scan models 2024-02-27 09:43:02 -05:00
psychedelicious
18af5348a2 fix(ui): merge conflict 2024-02-27 08:38:37 -05:00
psychedelicious
b18c8e1c96 chore(ui): bump deps
The only major version is `query-string`. The breaking change for it is dropping support for old versions of node. Not a problem for us.
2024-02-27 08:38:37 -05:00
psychedelicious
ea1e647174 ci: change frontend check to dpdm 2024-02-27 08:38:37 -05:00
psychedelicious
af059f2cff feat(ui): move from madge to dpdm for circular dependencies 2024-02-27 08:38:37 -05:00
psychedelicious
d8e21091e7 tidy(ui): fix circular dependencies in listeners 2024-02-27 08:38:37 -05:00
psychedelicious
344041fd3a tidy: remove some traces of ONNX 2024-02-27 08:38:37 -05:00
psychedelicious
588a220dd4 chore(ui): typegen, update knip config
Knip should never touch the autogenerated types
2024-02-27 08:38:37 -05:00
psychedelicious
770d4092b9 chore(ui): update pnpm-lock.yaml
Forgot to run `pnpm i` earlier after removing packages.
2024-02-27 08:38:37 -05:00
psychedelicious
33fe02bdff ci: add knip to ui check workflow 2024-02-27 08:38:37 -05:00
psychedelicious
8a353bc1e3 feat(ui): configure knip 2024-02-27 08:38:37 -05:00
psychedelicious
240f4801db tidy(ui): clean up unused code 6
unused files
2024-02-27 08:38:37 -05:00
psychedelicious
da50507b2d tidy(ui): clean up unused code 5
variables, types and schemas
2024-02-27 08:38:37 -05:00
psychedelicious
67d150ab66 tidy(ui): clean up unused code 4
variables, types and schemas
2024-02-27 08:38:37 -05:00
psychedelicious
40d70add76 tidy(ui): clean up unused code 3
variables, types and schemas
2024-02-27 08:38:37 -05:00
psychedelicious
7bd9bf3ba5 tidy(ui): clean up unused code 2
types and schemas
2024-02-27 08:38:37 -05:00
psychedelicious
c94d607089 feat(mm): add log stmt for download complete event 2024-02-27 08:38:37 -05:00
psychedelicious
ad801e54d4 fix(ui): model install progress sets total bytes correctly 2024-02-27 08:38:37 -05:00
psychedelicious
fb4db83911 chore(ui): lint 2024-02-27 08:38:37 -05:00
psychedelicious
cc229c3ea0 fix(ui): fix remaining TS issues 2024-02-27 08:38:37 -05:00
psychedelicious
ca00fabd79 fix(ui): fix up MM queries & types (wip) 2024-02-27 08:38:37 -05:00
psychedelicious
b361fabf81 tidy(api): remove non-heuristic install route 2024-02-27 08:38:37 -05:00
psychedelicious
00669200c7 tidy(mm): remove ONNX from AnyModelConfig 2024-02-27 08:38:37 -05:00
psychedelicious
fa07e82d2a tidy(ui): clean up unused code 1
- Only export when necessary
- Remove totally usused functions, variables, state, etc
- Remove unused packages
2024-02-27 08:38:37 -05:00
psychedelicious
3632c5cd57 feat(ui): add knip + minimal config
https://knip.dev/

Replaces `unimported`
2024-02-27 08:38:37 -05:00
psychedelicious
daef68d3c1 fix(ui): fix missing component import 2024-02-27 08:38:37 -05:00
blessedcoolant
ba29376fba ui: split the canvas mask blur and edge size setting 2024-02-27 07:32:13 -05:00
psychedelicious
3efd9465eb feat(ui): create metadata types for control adapters
These are the same as the existing control adapter types, but the model field is non-nullable, simplifying handling of these objects.
2024-02-26 14:49:38 -05:00
psychedelicious
a3b11c04cb fix(ui): model metadata handlers use model identifiers, not configs
Model metadata includes the main model, VAE and refiner model.

These used full model configs, as returned by the server, as their metadata type.

LoRA and control adapter metadata only use the metadata identifier.

This created a difference in handling. After parsing a model/vae/refiner, we have its name and can display it. But for LoRAs and control adapters, we only have the model key and must query for the full model config to get the name.

This change makes main model/vae/refiner metadata only have the model key, like LoRAs and control adapters.

The render function is now async so fetching can occur within it. All metadata fields with models now only contain the identifier, and fetch the model name to render their values.
2024-02-26 14:49:38 -05:00
psychedelicious
8f9e3ac795 fix(ui): CanvasPasteBack types 2024-02-26 14:49:38 -05:00
psychedelicious
2367f53367 tidy(ui): remove unused metadata schemas 2024-02-26 14:49:38 -05:00
psychedelicious
8b9f0a9551 feat(nodes): update LoRAMetadataItem model
LoRA model now at under `model` not `lora.
2024-02-26 14:49:38 -05:00
psychedelicious
ab57976e42 tidy(ui): tidy model identifier logic
- Move some files around
- Use util to extract key and base from model config
2024-02-26 14:49:38 -05:00
psychedelicious
3c103c89f3 feat(ui): optimize model query caching
When we retrieve a list of models, upsert that data into the `getModelConfig` and `getModelConfigByAttrs` query caches.

With this change, calls to those two queries are almost always going to be free, because their caches will already have all models in them. The exception is queries for models that no longer exist.
2024-02-26 14:49:38 -05:00
psychedelicious
0f19176944 fix(ui): fix lora metadata item type 2024-02-26 14:49:38 -05:00
psychedelicious
fc09a954b5 fix(ui): fix node type 2024-02-26 14:49:38 -05:00
psychedelicious
e7eee29825 feat(ui): add transformation to width/height parameter schemas to round to multiple of 8
This allows image dimensions that are not multiples of 8 to still be recalled with best effort.
2024-02-26 14:49:38 -05:00
psychedelicious
2c1ba23f61 fix(ui): fix lora metadata rendering 2024-02-26 14:49:38 -05:00
psychedelicious
58ef6dc6ce fix(ui): fix type issues related to change in LoRA type 2024-02-26 14:49:38 -05:00
psychedelicious
8faefa89fe feat(ui): migrate all metadata recall logic to new system 2024-02-26 14:49:38 -05:00
psychedelicious
02f59a3831 fix(ui): use id for component key in control adapter components 2024-02-26 14:49:38 -05:00
psychedelicious
2555be3058 feat(ui): no JSX in metadata handlers 2024-02-26 14:49:38 -05:00
psychedelicious
e174ce038f feat(ui): refactor metadata handling (again)
Add concepts for metadata handlers. Handlers include parsers, recallers and validators for different metadata types:
- Parsers parse a raw metadata object of any shape to a structured object.
- Recallers load the parsed metadata into state. Recallers are optional, as some metadata types don't need to be loaded into state.
- Validators provide an additional layer of validation before recalling the metadata. This is needed because a metadata object may be valid, but not able to be recalled due to some other requirement, like base model compatibility. Validators are optional.

Sometimes metadata is not a single object but a list of items - like LoRAs. Metadata handlers may implement an optional set of "item" handlers which operate on individual items in the list.

Parsers and validators are async to allow fetching additional data, like a model config. Recallers are synchronous.

The these handlers are composed into a public API, exported as a `handlers` object. Besides the handlers functions, a metadata handler set includes:
- A function to get the label of the metadata type.
- An optional function to render the value of the metadata type.
- An optional function to render the _item_ value of the metadata type.
2024-02-26 14:49:38 -05:00
psychedelicious
0f10faf0d4 build(ui): do not fail build on eslint error in dev mode 2024-02-26 14:49:38 -05:00
psychedelicious
393e32f8a7 chore(ui): typegen 2024-02-26 14:49:38 -05:00
psychedelicious
70412464c8 feat(api): add MM get_by_attrs route
Gets the first model that matches the given name, base and type. Raises 404 if there isn't one.

This will be used for backwards compatibility with old metadata.
2024-02-26 14:49:38 -05:00
Mary Hipp
30fdb9dbfd undo 2024-02-26 14:44:37 -05:00
Mary Hipp
66f6013436 fix literal strings in MM UI 2024-02-26 14:44:37 -05:00
Mary Hipp
49b04f7db8 fix TI appearing as key in prompt 2024-02-26 14:20:28 -05:00
Mary Hipp
253dc5d43d fix base model grouping in combobox 2024-02-26 14:20:28 -05:00
psychedelicious
3ccb4e6ff9 fix(mm): fix ModelCacheBase method name 2024-02-26 17:38:31 +11:00
psychedelicious
200a9d1801 chore: ruff 2024-02-26 17:38:31 +11:00
Lincoln Stein
b09a76ea0d recover gracefuly from GPU out of memory errors (next version) 2024-02-26 17:38:31 +11:00
Lincoln Stein
8a2030e78a clear out VRAM when an OOM occurs 2024-02-26 17:38:31 +11:00
psychedelicious
dfa5505ed8 feat(ui): bulk download click to download 2024-02-25 22:23:15 -05:00
psychedelicious
f8b731b900 fix(ui): fix node types for canvas graphs 2024-02-24 19:38:16 +11:00
psychedelicious
fd9ab0fb7d chore(ui): typegen 2024-02-24 19:38:16 +11:00
psychedelicious
f504a5c96e tidy(nodes): rename canvas paste back 2024-02-24 19:38:16 +11:00
blessedcoolant
afe6639b9c fix: outpaint result not getting pasted back correctly 2024-02-24 19:38:16 +11:00
blessedcoolant
1f1bf15099 fix: lint errors 2024-02-24 19:38:16 +11:00
blessedcoolant
8fa238f100 canvas: improve paste back (or try to) 2024-02-24 19:38:16 +11:00
blessedcoolant
30b6a0ee23 wip(ui): Replace 2 Layer Coherence pass with Gradient Mask 2024-02-24 19:38:16 +11:00
psychedelicious
784878c300 chore: ruff 2024-02-24 19:04:52 +11:00
psychedelicious
b51b163400 fix(ui): fix merge issue 2024-02-24 19:04:52 +11:00
psychedelicious
7e13224ec8 fix(ui): use new scan_folder response instead of hook to determine if models are installed already 2024-02-24 19:04:52 +11:00
psychedelicious
7bc454209c chore(ui): typegen 2024-02-24 19:04:52 +11:00
psychedelicious
cc7f6c7048 feat(mm): add logic to scan_folder route to check if a model is already installed
This was done in the frontend before but it's something the backend should handle.

The logic compares the found model paths to the path and source of all installed models. It excludes core models.
2024-02-24 19:04:52 +11:00
psychedelicious
8b8d950137 chore(ui): lint 2024-02-24 19:04:52 +11:00
psychedelicious
24fd7f41ff build(ui): restore i18n eslint rule 2024-02-24 19:04:52 +11:00
psychedelicious
7c5e458372 chore: ruff 2024-02-24 19:04:52 +11:00
psychedelicious
a5dba4b0d9 fix(ui): fix metadata route 2024-02-24 19:04:52 +11:00
psychedelicious
72fb1cefff chore(ui): typegen 2024-02-24 19:04:52 +11:00
psychedelicious
a64f1c0b20 feat(api): mm metadata route "meta" -> "metadata" 2024-02-24 19:04:52 +11:00
Mary Hipp
974658107d lint fix 2024-02-24 19:04:52 +11:00
Mary Hipp
07fb5d5c19 updated translations 2024-02-24 19:04:52 +11:00
maryhipp
20c75e7a7e fix convert endpoint logic 2024-02-24 19:04:52 +11:00
Mary Hipp
cfcb68696c clean up old model manager components and endpoints 2024-02-24 19:04:52 +11:00
Mary Hipp
7b1b6d3235 add model convert to checkpoint main models 2024-02-24 19:04:52 +11:00
Mary Hipp
aefba52a0a fix logic to see if scanned models are already installed, style tweaks 2024-02-24 19:04:52 +11:00
maryhipp
6af46f9c5f add error_reason to ModelInstallJob 2024-02-24 19:04:52 +11:00
Mary Hipp
190702d011 add error_reason to UI if import fails 2024-02-24 19:04:52 +11:00
Mary Hipp
7785e8ff79 fix types for ImportQueue, add QuickAdd for scan models 2024-02-24 19:04:52 +11:00
Jennifer Player
b3beaefa04 refactored and fixed issues with advanced import form 2024-02-24 19:04:52 +11:00
psychedelicious
98be81354a fix(ui): misc MM cleanup 2024-02-24 19:04:52 +11:00
psychedelicious
2a2a5eb775 chore(ui): temp disable eslint i18 rule 2024-02-24 19:04:52 +11:00
psychedelicious
4a42b15b42 fix(ui): fix ImportMainModelResponse type 2024-02-24 19:04:52 +11:00
psychedelicious
f24d5e5e31 fix(ui): simplify model install event listeners 2024-02-24 19:04:52 +11:00
psychedelicious
4b106bc903 fix(ui): fix model install event types 2024-02-24 19:04:52 +11:00
Jennifer Player
135ef9066f added advanced import forms, not fully working yet 2024-02-24 19:04:52 +11:00
Mary Hipp
0567f98e4a get positioning/scrolling working for scan results list 2024-02-24 19:04:52 +11:00
Mary Hipp
5b66baa3ec basic scan working and renders results 2024-02-24 19:04:52 +11:00
Mary Hipp
a022aaf258 add scan model endpoint, break add model into tabs 2024-02-24 19:04:52 +11:00
Mary Hipp
94065b090a update metadata endpoint 2024-02-24 19:04:52 +11:00
maryhipp
091bf9220b allow metadata-less models to be used for GET metadata endpoint 2024-02-24 19:04:52 +11:00
Jennifer Player
8d243b1fca added status to import queue model 2024-02-24 19:04:52 +11:00
Jennifer Player
23c412e011 delete model imports and prune all finished, update state with socket messages 2024-02-24 19:04:52 +11:00
Mary Hipp
66692f02aa fix sync model endpoint 2024-02-24 19:04:52 +11:00
Mary Hipp
38af1c3a81 form error handling 2024-02-24 19:04:52 +11:00
Mary Hipp
7b4b7e3781 finish model update 2024-02-24 19:04:52 +11:00
Jennifer Player
02a3472505 added socket listeners, added more info to ui 2024-02-24 19:04:52 +11:00
Mary Hipp
909d354a38 edit view for model, depending on type and valid values 2024-02-24 19:04:52 +11:00
Mary Hipp
7801b8c42f hook up Add Model button 2024-02-24 19:04:52 +11:00
Mary Hipp
4fd259bb89 single model view 2024-02-24 19:04:52 +11:00
Jennifer Player
b8b3ef9725 added import model form and importqueue 2024-02-24 19:04:52 +11:00
Mary Hipp
3a8d5dc349 model list, filtering, searching 2024-02-24 19:04:52 +11:00
Mary Hipp
358cac9674 workspace for mary and jenn 2024-02-24 19:04:52 +11:00
Mary Hipp
bdc2b8069b get old UI working somewhat with new endpoints 2024-02-24 19:04:52 +11:00
Brandon Rising
09295ae43b Allow passing in key on register 2024-02-23 14:47:14 -05:00
Brandon Rising
80ad14d89f Remove passing keys in on register 2024-02-23 14:33:49 -05:00
Brandon Rising
c674eb3168 Run ruff 2024-02-23 14:33:49 -05:00
Brandon Rising
63138640a7 Allow users to run model manager without cuda 2024-02-23 14:33:49 -05:00
psychedelicious
d103ff0d6e fix(ui): roll back utility-types
It's `Required` util does not distribute over unions as expected. Also we have `ts-toolbelt` already for some utils.
2024-02-23 07:53:45 +11:00
psychedelicious
94931e8ac0 feat(ui): refactor metadata handling
Refactor of metadata recall handling. This is in preparation for a backwards compatibility layer for models.

- Create helpers to fetch a model outside react (e.g. not in a hook)
- Created helpers to parse model metadata
- Renamed a lot of types that were confusing and/or had naming collisions
2024-02-23 07:53:45 +11:00
psychedelicious
b409f3aaf9 chore(ui): typegen 2024-02-23 07:53:45 +11:00
psychedelicious
f96b7f2e11 fix(nodes): make fields on ModelConfigBase required
The setup of `ModelConfigBase` means autogenerated types have critical fields flagged as nullable (like `key` and `base`). Need to manually flag them as required.
2024-02-23 07:53:45 +11:00
psychedelicious
de3be4bd30 feat(ui): replace type-fest with utility-types
- The new package has more useful types
- Only used `JsonObject` from `type-fest`; added an implementation of that type
2024-02-23 07:53:45 +11:00
Lincoln Stein
cc12f57a5a several small model install enhancements
- Support extended HF repoid syntax in TUI. This allows
  installation of subfolders and safetensors files, as in
  `XpucT/Deliberate::Deliberate_v5.safetensors`

- Add `error` and `error_traceback` properties to the install
  job objects.

- Rename the `heuristic_import` route to `heuristic_install`.

- Fix the example `config` input in the `heuristic_install` route.
2024-02-23 07:48:23 +11:00
Lincoln Stein
613f11a3ac use official Deliberate download repo 2024-02-23 07:48:04 +11:00
Lincoln Stein
a6e2d2c5e0 fix repo-id for the Deliberate v5 model
prevent lora and embedding file suffixes from being stripped during installation

apply psychedelicious patch to get compel to load proper TI embedding
2024-02-23 07:48:04 +11:00
Lincoln Stein
ae14df97d6 remove startup dependency on legacy models.yaml file 2024-02-23 07:47:39 +11:00
dunkeroni
a6e1ac6096 chore: typing 2024-02-22 10:04:33 -05:00
dunkeroni
8530635540 chore: typing fix 2024-02-22 10:04:33 -05:00
dunkeroni
b2b7aed030 feat(nodes): added gradient mask node 2024-02-22 10:04:33 -05:00
Brandon Rising
970d45f691 Run ruff 2024-02-22 09:50:02 -05:00
Mary Hipp
19b9a22d93 rename endpoint for scanning 2024-02-22 09:50:02 -05:00
Brandon Rising
c0d9990344 Create /search endpoint, update model object structure in scan model page 2024-02-22 09:50:02 -05:00
psychedelicious
4ac5e307c4 chore(ui): bump deps
Notable updates:
- Minor version of RTK includes customizable selectors for RTK Query, so we can remove the patch that was added to ensure only the LRU memoize function was used for perf reasons. Updated to use the LRU memoize function.
- Major version of react-resizable-panels. No breaking changes, works great, and you can now resize all panels when dragging at the intersection point of panels. Cool!
- Minor (?) version of nanostores. `action` API is removed, we were using it in one spot. Fixed.
- @invoke-ai/eslint-config-react has all deps bumped and now has its dependent plugins/configs listed as normal dependencies (as opposed to peer deps). This means we can remove those packages from explicit dev deps.
2024-02-22 07:27:28 +11:00
psychedelicious
2815f737fe tidy(ui): remove debugging stmt 2024-02-22 07:26:47 +11:00
psychedelicious
63e96fd1ea fix(ui): handle new model format for metadata 2024-02-22 07:26:47 +11:00
psychedelicious
66ab56246a fix(ui): use model names in badges 2024-02-22 07:26:47 +11:00
psychedelicious
20a56bc757 fix(nodes): fix TI loading 2024-02-22 07:26:47 +11:00
psychedelicious
82925e1539 fix(ui): fix package build 2024-02-21 08:31:55 -05:00
psychedelicious
0137a0db7b feat(ui): do not subscribe to bulk download sio room if baseUrl is set 2024-02-21 00:00:25 +11:00
psychedelicious
b410793684 feat(ui): revise bulk download listeners
- Use a single listener for all of the to keep them in one spot
- Use the bulk download item name as a toast id so we can update the existing toasts
- Update handling to work with other environments
- Move all bulk download handling from components to listener
2024-02-21 00:00:25 +11:00
psychedelicious
894e9f127b chore(ui): typegen 2024-02-21 00:00:25 +11:00
psychedelicious
dd9b1c8eec feat(bulk_download): update response model, messages 2024-02-21 00:00:25 +11:00
Stefan Tobler
8d9c566656 implementing download for bulk_download events 2024-02-21 00:00:25 +11:00
Stefan Tobler
9db7e073a3 setting up event listeners for bulk download socket 2024-02-21 00:00:25 +11:00
psychedelicious
5f64ed5bd5 test: clean up & fix tests
- Deduplicate the mock invocation services. This is possible now that the import order issue is resolved.
- Merge `DummyEventService` into `TestEventService` and update all tests to use `TestEventService`.
2024-02-20 23:39:30 +11:00
psychedelicious
7f75f6226b tidy(bulk_download): don't store events service separately
Using the invoker object directly leaves no ambiguity as to what `_events_bus` actually is.
2024-02-20 23:39:30 +11:00
psychedelicious
6dc819fd47 tidy(bulk_download): do not rely on pagination API to get all images for board
We can get all images for the board as a list of image names, then pass that to `_image_handler` to get the DTOs, decoupling from the pagination API.
2024-02-20 23:39:30 +11:00
psychedelicious
0cc81e5d63 tidy(bulk_download): nit - use or as a coalescing operator
Just a bit cleaner.
2024-02-20 23:39:30 +11:00
psychedelicious
daecc54153 tidy(bulk_download): use single underscore for private attrs
Double underscores are used in the app but it doesn't actually do or convey anything that single underscores don't already do. Considered unpythonic except for actual dunder/magic methods.
2024-02-20 23:39:30 +11:00
psychedelicious
4c31c7f9f1 tidy(bulk_download): remove class-level attr annotations
These can be misleading as they shadow actual assigned class attributes. This pattern is in the rest of the app but it shouldn't be.
2024-02-20 23:39:30 +11:00
psychedelicious
d709c5519f tidy(bulk_download): remove extraneous abstract methods
`start`, `stop` and `__init__` are not required in implementations of an ABC or service.
2024-02-20 23:39:30 +11:00
psychedelicious
5d84ecef49 tidy(bulk_download): clean up comments 2024-02-20 23:39:30 +11:00
Stefan Tobler
641d246213 adding bulk_download_item_name to socket events 2024-02-20 23:39:30 +11:00
Stefan Tobler
2e53aa48c9 refactoring handlers to do null check 2024-02-20 23:39:30 +11:00
Stefan Tobler
ef12631450 removing dependency on an output folder, embrace python temp folder for bulk download 2024-02-20 23:39:30 +11:00
Stefan Tobler
d9eb626b62 relocating event_service fixture due to import ordering 2024-02-20 23:39:30 +11:00
Stefan Tobler
8033589629 moving the responsibility of cleaning up board names to the service not the route 2024-02-20 23:39:30 +11:00
Stefan Tobler
124075ae7a updating imports to satisfy ruff 2024-02-20 23:39:30 +11:00
Stefan Tobler
0bde933c89 using temp directory for downloads 2024-02-20 23:39:30 +11:00
Stefan Tobler
fc5c5b6bdd returning the bulk_download_item_name on response for possible polling 2024-02-20 23:39:30 +11:00
Stefan Tobler
ff53563152 narrowing bulk_download stop service scope 2024-02-20 23:39:30 +11:00
Stefan Tobler
12b0d735e7 adding test coverage for new bulk download routes 2024-02-20 23:39:30 +11:00
Stefan Tobler
d06ee94fd3 cleaning up bulk download zip after the response is complete 2024-02-20 23:39:30 +11:00
Stefan Tobler
9dbdb6cf7c replacing import removed during rebase 2024-02-20 23:39:30 +11:00
Stefan Tobler
7c091570fe 97% test coverage on bulk_download 2024-02-20 23:39:30 +11:00
Stefan Tobler
e99f3482cc refactoring bulk_download to be better managed 2024-02-20 23:39:30 +11:00
Stefan Tobler
d999c9ffd6 refactoring dummy event service, DRY principal; adding bulk_download_event to existing invoker tests 2024-02-20 23:39:30 +11:00
Stefan Tobler
888db8ac46 refactoring bulkdownload to consider image category 2024-02-20 23:39:30 +11:00
Stefan Tobler
7deef2cb27 fixing issue where default board did not return images 2024-02-20 23:39:30 +11:00
Stefan Tobler
ada807af0c using the board name to download boards 2024-02-20 23:39:30 +11:00
Stefan Tobler
aa132fb9e3 reworking some of the logic to use a default room, adding endpoint to download file on complete 2024-02-20 23:39:30 +11:00
Stefan Tobler
98a01368b8 linted and styling 2024-02-20 23:39:30 +11:00
Stefan Tobler
fc9a62dbf5 implementation of bulkdownload background task 2024-02-20 23:39:30 +11:00
Stefan Tobler
4d8bec1605 adding socket events for bulk download 2024-02-20 23:39:30 +11:00
Stefan Tobler
cf9dad83bc groundwork for the bulk_download_service 2024-02-20 23:39:30 +11:00
psychedelicious
0d0a2a5c91 fix(ui): get workflow editor model selects working 2024-02-20 13:33:31 +11:00
psychedelicious
0cab636ab0 fix(ui): get refiner model select working 2024-02-20 13:33:31 +11:00
psychedelicious
de097ec58a fix(ui): get vae model select working 2024-02-20 13:33:31 +11:00
psychedelicious
bb6f426162 fix(ui): get embedding select working 2024-02-20 13:33:31 +11:00
psychedelicious
663f135b3c fix(ui): get lora select working 2024-02-20 13:33:31 +11:00
psychedelicious
2f2097662a chore(ui): bump @invoke-ai/ui-library 2024-02-20 13:33:31 +11:00
psychedelicious
458c29cfa5 fix(ui): fix low-hanging fruit types 2024-02-20 13:33:31 +11:00
Lincoln Stein
4bec01d6f2 Add a few convenience targets to Makefile
- "test" to run pytests
- "frontend-install" to reinstall pnpm's node modeuls
2024-02-20 10:02:46 +11:00
psychedelicious
9d79ee8dc4 chore(nodes): update TODO comment 2024-02-20 09:54:01 +11:00
psychedelicious
78dd460348 tidy(nodes): clean up profiler/stats in processor, better comments 2024-02-20 09:54:01 +11:00
psychedelicious
9d27d354cf fix(nodes): fix typing on stats service context manager 2024-02-20 09:54:01 +11:00
psychedelicious
e8725a1099 fix(nodes): fix model load events
was accessing incorrect properties in event data
2024-02-20 09:54:01 +11:00
psychedelicious
479d65b6e1 feat(nodes): making invocation class var in processor 2024-02-20 09:54:01 +11:00
psychedelicious
5d4b388dfd feat(nodes): improved error messages in processor 2024-02-20 09:54:01 +11:00
psychedelicious
4956fa282b feat(nodes): make processor thread limit and polling interval configurable 2024-02-20 09:54:01 +11:00
psychedelicious
51133522b7 tests(nodes): fix tests following removal of services 2024-02-20 09:54:01 +11:00
psychedelicious
6d5cc8b1ff chore(nodes): better comments for invocation context 2024-02-20 09:54:01 +11:00
psychedelicious
08a5bb90e2 chore(nodes): "context_data" -> "data"
Changed within InvocationContext, for brevity.
2024-02-20 09:54:01 +11:00
psychedelicious
39bdf5c4e9 refactor(nodes): move is_canceled to context.util 2024-02-20 09:54:01 +11:00
psychedelicious
f31e4205aa feat(nodes): add whole queue_item to InvocationContextData
No reason to not have the whole thing in there.
2024-02-20 09:54:01 +11:00
psychedelicious
4d05c4ff66 tidy(nodes): remove extraneous comments 2024-02-20 09:54:01 +11:00
psychedelicious
7e88d2a7f1 feat(nodes): better invocation error messages 2024-02-20 09:54:01 +11:00
psychedelicious
556f6aa174 chore(nodes): add comments for cancel state 2024-02-20 09:54:01 +11:00
psychedelicious
6a74048af8 feat(nodes): promote is_canceled to public node API 2024-02-20 09:54:01 +11:00
psychedelicious
2cb51bff11 refactor(nodes): merge processors
Consolidate graph processing logic into session processor.

With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.

Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.

- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
2024-02-20 09:54:01 +11:00
psychedelicious
851e835e0e tidy(nodes): remove commented tests 2024-02-20 09:48:14 +11:00
psychedelicious
fe04f28841 chore(ui): typegen 2024-02-20 09:48:14 +11:00
psychedelicious
258fc006ec tidy(nodes): remove no-op model_config
Because we now customize the JSON Schema creation for GraphExecutionState, the model_config did nothing.
2024-02-20 09:48:14 +11:00
psychedelicious
dcb4ee47d5 tidy(nodes): remove LibraryGraphs
The workflow library supersedes this unused feature.
2024-02-20 09:48:14 +11:00
psychedelicious
1a56f5aaf9 tidy(nodes): move node tests to parent dir
Thanks to the resolution of the import vs union issue, we can put tests anywhere.
2024-02-20 09:48:14 +11:00
psychedelicious
5fc745653a tidy(nodes): remove GraphInvocation
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:

1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.

The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.

2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.

3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
2024-02-20 09:48:14 +11:00
psychedelicious
47b5a90177 fix(nodes): fix OpenAPI schema generation
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
2024-02-20 09:48:14 +11:00
psychedelicious
81518ee1af feat(nodes): JIT graph nodes validation
We use pydantic to validate a union of valid invocations when instantiating a graph.

Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.

For example, consider a setup where we have 3 invocations in the app:

- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.

This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.

This PR refactors the validation of graph nodes to resolve this issue:

- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.

`BaseInvocationOutput` gets the same treatment.
2024-02-20 09:48:14 +11:00
Lincoln Stein
b06d63fb34 remove errant def that was crashing invokeai-configure 2024-02-19 17:31:53 +11:00
dunkeroni
5278a64301 one more redundant RGB convert removed 2024-02-19 17:31:08 +11:00
dunkeroni
4de4473c0f chore: ruff formatting 2024-02-19 17:31:08 +11:00
dunkeroni
2c28a850ca chore(invocations): remove redundant RGB conversions 2024-02-19 17:31:08 +11:00
dunkeroni
6dada3326d chore(invocations): use IMAGE_MODES constant literal 2024-02-19 17:31:08 +11:00
dunkeroni
2dfdc02ec8 fix: removed custom module 2024-02-19 17:31:08 +11:00
dunkeroni
1f19db4c6a fix(nodes): canny preprocessor uses RGBA again 2024-02-19 17:31:08 +11:00
dunkeroni
7c150c27f2 feat(nodes): format option for get_image method
Also default CNet preprocessors to "RGB"
2024-02-19 17:31:08 +11:00
blessedcoolant
248916c190 fix: Alpha channel causing issue with DW Processor 2024-02-19 08:17:56 +11:00
psychedelicious
be8b99eed5 final tidying before marking PR as ready for review
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation

resolve conflict with seamless.py
2024-02-19 08:16:56 +11:00
Lincoln Stein
2ad0752582 Tidy names and locations of modules
- Rename old "model_management" directory to "model_management_OLD" in order to catch
  dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
  model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
  a finalizer to the queue and installer fixtures that will stop the
  services and release threads.
2024-02-19 08:16:56 +11:00
Lincoln Stein
ba1f8878dd Fix issues identified during PR review by RyanjDick and brandonrising
- ModelMetadataStoreService is now injected into ModelRecordStoreService
  (these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
2024-02-19 08:16:56 +11:00
Brandon
bc524026f9 feat(ui): update model identifiers to use key (#5730)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Description

- Update zod schemas & types to use key instead of name/base/type
- Use new `CustomSelect` component instead of `ComboBox` for main model
select and control adapter model selects (less jank, will switch to
ComboBox based on CustomSelect for v4 so you can search the select)

## QA Instructions, Screenshots, Recordings

If you hold your breath, you should be able to generate with a control
adapter.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

This PR can be merged when approved. Frontend tests not passing.

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
2024-02-16 11:17:35 -05:00
Brandon
ad7c571983 fix(nodes): fix t2i adapter model loading (#5731)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Fixes t2i adapter loading

## Merge Plan

This PR can be merged when approved

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->
2024-02-16 11:17:21 -05:00
psychedelicious
8559c6a392 fix(nodes): fix t2i adapter model loading 2024-02-16 22:51:47 +11:00
psychedelicious
c7904a32f4 chore(ui): lint 2024-02-16 22:42:15 +11:00
psychedelicious
17f5484f5b feat(ui): fix main model & control adapter model selects 2024-02-16 22:41:09 +11:00
psychedelicious
86a372b02f refactor(ui): url builders for each router
The MM2 router is at `api/v2/models`. URL builder utils make this a bit easier to manage.
2024-02-16 21:57:30 +11:00
psychedelicious
2e9aa9391d feat(ui): update model identifier to be key (wip)
- Update most model identifiers to be `{key: string}` instead of name/base/type. Doesn't change the model select components yet.
- Update model _parameters_, stored in redux, to be `{key: string, base: BaseModel}` - we need to store the base model to be able to check model compatibility. May want to store the whole config? Not sure...
2024-02-16 18:56:02 +11:00
psychedelicious
0c8112cf28 fix(ui): update model types 2024-02-15 22:17:16 +11:00
psychedelicious
019898c7be tests(ui): add type tests 2024-02-15 22:16:55 +11:00
psychedelicious
2b1ff8d196 tests(ui): enable vitest type testing
This is useful for the zod schemas and types we have created to match the backend.
2024-02-15 22:16:11 +11:00
psychedelicious
79fb691b4d chore(ui): typegen 2024-02-15 22:15:21 +11:00
psychedelicious
560ae17e21 feat(ui): export components type 2024-02-15 21:16:25 +11:00
psychedelicious
2bd1ab2f1c fix(ui): fix type issues 2024-02-15 20:53:41 +11:00
psychedelicious
ed43472582 chore: lint 2024-02-15 20:52:44 +11:00
psychedelicious
6e5e9176c0 chore: ruff 2024-02-15 20:50:47 +11:00
psychedelicious
4c6bcdbc18 feat(nodes): update invocation context for mm2, update nodes model usage 2024-02-15 20:43:41 +11:00
Brandon Rising
20e6d4fa3c Raise InvalidModelConfigException when unable to detect load class in ModelLoader 2024-02-15 18:00:16 +11:00
Brandon Rising
8e51392910 Update _get_hf_load_class to support clipvision models 2024-02-15 18:00:16 +11:00
Brandon Rising
0b1c2acd61 References to context.services.model_manager.store.get_model can only accept keys, remove invalid assertion 2024-02-15 18:00:16 +11:00
Brandon Rising
86ac55ab5f Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager 2024-02-15 18:00:16 +11:00
Lincoln Stein
3e82f63c7e improve swagger documentation 2024-02-15 18:00:08 +11:00
Lincoln Stein
631f6cae19 fix a number of typechecking errors 2024-02-15 18:00:08 +11:00
Lincoln Stein
0845a0ed84 add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-02-15 18:00:08 +11:00
Lincoln Stein
46c8ce9fed add a JIT download_and_cache() call to the model installer 2024-02-15 18:00:08 +11:00
Lincoln Stein
13a9ea35b5 add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-02-15 18:00:08 +11:00
Lincoln Stein
94e8d1b6d5 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-15 18:00:08 +11:00
Lincoln Stein
2b1dc74080 consolidate model manager parts into a single class 2024-02-15 17:57:14 +11:00
Lincoln Stein
f7e558d165 probe for required encoder for IPAdapters and add to config 2024-02-15 17:56:01 +11:00
Lincoln Stein
d959276217 fix invokeai_configure script to work with new mm; rename CLIs 2024-02-15 17:56:01 +11:00
Lincoln Stein
dfcf38be91 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-15 17:56:01 +11:00
Lincoln Stein
fbded1c0f2 Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-02-15 17:51:07 +11:00
Lincoln Stein
ad2926a24c added textual inversion and lora loaders 2024-02-15 17:51:07 +11:00
Lincoln Stein
34d5cad4c9 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-02-15 17:51:07 +11:00
Lincoln Stein
60aa3d4893 model loading and conversion implemented for vaes 2024-02-15 17:50:51 +11:00
Lincoln Stein
5c2884569e add ram cache module and support files 2024-02-15 17:50:31 +11:00
Lincoln Stein
a1307b9f2e add concept of repo variant 2024-02-15 17:50:31 +11:00
psychedelicious
f505ec64ba tests(ui): add parseFieldType.test.ts 2024-02-15 17:32:38 +11:00
psychedelicious
f22eb368a3 feat(ui): add more types of FieldParseError
Unfortunately you cannot test for both a specific type of error and match its message. Splitting the error classes makes it easier to test expected error conditions.
2024-02-15 17:32:38 +11:00
psychedelicious
96ae22c7e0 feat(ui): add vitest
- Add vitest.
- Consolidate vite configs into single file (easier to config everything based on env for testing)
2024-02-15 17:32:38 +11:00
psychedelicious
f5447cdc23 feat(ui): workflow schema v3 (WIP)
The changes aim to deduplicate data between workflows and node templates, decoupling workflows from internal implementation details. A good amount of data that was needlessly duplicated from the node template to the workflow is removed.

These changes substantially reduce the file size of workflows (and therefore the images with embedded workflows):

- Default T2I SD1.5 workflow JSON is reduced from 23.7kb (798 lines) to 10.9kb (407 lines).
- Default tiled upscale workflow JSON is reduced from 102.7kb (3341 lines) to 51.9kb (1774 lines).

The trade-off is that we need to reference node templates to get things like the field type and other things. In practice, this is a non-issue, because we need a node template to do anything with a node anyways.

- Field types are not included in the workflow. They are always pulled from the node templates.

The field type is now properly an internal implementation detail and we can change it as needed. Previously this would require a migration for the workflow itself. With the v3 schema, the structure of a field type is an internal implementation detail that we are free to change as we see fit.

- Workflow nodes no long have an `outputs` property and there is no longer such a thing as a `FieldOutputInstance`. These are only on the templates.

These were never referenced at a time when we didn't also have the templates available, and there'd be no reason to do so.

- Node width and height are no longer stored in the node.

These weren't used. Also, per https://reactflow.dev/api-reference/types/node, we shouldn't be programmatically changing these properties. A future enhancement can properly add node resizing.

- `nodeTemplates` slice is merged back into `nodesSlice` as `nodes.templates`. Turns out it's just a hassle having these separate in separate slices.

- Workflow migration logic updated to support the new schema. V1 workflows migrate all the way to v3 now.

- Changes throughout the nodes code to accommodate the above changes.
2024-02-15 17:32:38 +11:00
psychedelicious
c76a6bd65f chore(ui): regen types 2024-02-15 17:30:03 +11:00
psychedelicious
6c4eeaa569 feat(nodes): add more missing exports to invocation_api
Crawled through a few custom nodes to figure out what I had missed.
2024-02-15 17:30:03 +11:00
psychedelicious
1bbd13ead7 chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
2024-02-15 17:30:03 +11:00
psychedelicious
321b939d0e chore(nodes): remove deprecation logic for nodes API 2024-02-15 17:30:03 +11:00
psychedelicious
8fb77e431e chore(nodes): export model-related objects from invocation_api 2024-02-15 17:30:03 +11:00
psychedelicious
083a4f3faa chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-02-15 17:30:03 +11:00
psychedelicious
2005411f7e feat(nodes): use LATENT_SCALE_FACTOR in primitives.py, noise.py
- LatentsOutput.build
- NoiseOutput.build
- Noise.width, Noise.height multiple_of
2024-02-15 17:30:03 +11:00
psychedelicious
ba7b1b2665 feat(nodes): extract LATENT_SCALE_FACTOR to constants.py 2024-02-15 17:30:03 +11:00
psychedelicious
b7ffd36cc6 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-02-15 17:30:03 +11:00
psychedelicious
199ddd6623 tests: test ObjectSerializerDisk class name extraction 2024-02-15 17:30:03 +11:00
psychedelicious
a7207ed8cf chore(nodes): update ObjectSerializerForwardCache docstring 2024-02-15 17:30:03 +11:00
psychedelicious
6bb2dda3f1 chore(nodes): fix pyright ignore 2024-02-15 17:30:03 +11:00
psychedelicious
c1e5cd5893 tidy(nodes): "latents" -> "obj" 2024-02-15 17:30:03 +11:00
psychedelicious
ff249a2315 tidy(nodes): do not store unnecessarily store invoker 2024-02-15 17:30:03 +11:00
psychedelicious
c58f8c3269 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-02-15 17:30:03 +11:00
psychedelicious
ed772a7107 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-02-15 17:30:03 +11:00
psychedelicious
cb0b389b4b tidy(nodes): clarify comment 2024-02-15 17:30:03 +11:00
psychedelicious
8892df1d97 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-02-15 17:30:03 +11:00
psychedelicious
bc5f356390 feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders 2024-02-15 17:30:03 +11:00
psychedelicious
bcb85e100d tests: fix broken tests 2024-02-15 17:30:03 +11:00
psychedelicious
1f27ddc07d tidy(nodes): minor spelling correction 2024-02-15 17:30:03 +11:00
psychedelicious
7a2b606001 tests: add object serializer tests
These test both object serializer and its forward cache implementation.
2024-02-15 17:30:03 +11:00
psychedelicious
83ddcc5f3a feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-02-15 17:30:03 +11:00
psychedelicious
55fa785561 tidy(nodes): remove object serializer on_saved
It's unused.
2024-02-15 17:30:03 +11:00
psychedelicious
06429028c8 revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-02-15 17:30:03 +11:00
psychedelicious
8b6e322697 feat(nodes): support custom exception in ephemeral disk storage 2024-02-15 17:30:03 +11:00
psychedelicious
54a67459bf feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-02-15 17:30:03 +11:00
psychedelicious
7fe5283e74 feat(nodes): create helper function to generate the item ID 2024-02-15 17:30:03 +11:00
psychedelicious
fe0391c86b feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-02-15 17:30:03 +11:00
psychedelicious
25386a76ef tidy(nodes): do not refer to files as latents in PickleStorageTorch (again) 2024-02-15 17:30:03 +11:00
psychedelicious
fd30cb4d90 feat(nodes): ItemStorageABC typevar no longer bound to pydantic.BaseModel
This bound is totally unnecessary. There's no requirement for any implementation of `ItemStorageABC` to work only on pydantic models.
2024-02-15 17:30:03 +11:00
psychedelicious
0266946d3d fix(nodes): add super init to PickleStorageTorch 2024-02-15 17:30:03 +11:00
psychedelicious
a7f91b3e01 tidy(nodes): do not refer to files as latents in PickleStorageTorch 2024-02-15 17:30:03 +11:00
psychedelicious
de0b72528c feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-02-15 17:30:03 +11:00
psychedelicious
2932652787 tidy(nodes): delete onnx.py
It doesn't work and keeping it updated to prevent the app from starting was getting tedious. Deleted.
2024-02-15 17:30:03 +11:00
psychedelicious
db6bc7305a fix(nodes): rearrange fields.py to avoid needing forward refs 2024-02-15 17:30:02 +11:00
psychedelicious
a5db204629 tidy(nodes): remove unnecessary, shadowing class attr declarations 2024-02-15 17:30:02 +11:00
psychedelicious
8e2b61e19f feat(ui): revise graphs to not use LinearUIOutputInvocation
See this comment for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629

- Remove this now-unnecessary node from all graphs
- Update graphs' terminal image-outputting nodes' `is_intermediate` and `board` fields appropriately
- Add util function to prepare the `board` field, tidy the utils
- Update `socketInvocationComplete` listener to work correctly with this change

I've manually tested all graph permutations that were changed (I think this is all...) to ensure images go to the gallery as expected:
- ad-hoc upscaling
- t2i w/ sd1.5
- t2i w/ sd1.5 & hrf
- t2i w/ sdxl
- t2i w/ sdxl + refiner
- i2i w/ sd1.5
- i2i w/ sdxl
- i2i w/ sdxl + refiner
- canvas t2i w/ sd1.5
- canvas t2i w/ sdxl
- canvas t2i w/ sdxl + refiner
- canvas i2i w/ sd1.5
- canvas i2i w/ sdxl
- canvas i2i w/ sdxl + refiner
- canvas inpaint w/ sd1.5
- canvas inpaint w/ sdxl
- canvas inpaint w/ sdxl + refiner
- canvas outpaint w/ sd1.5
- canvas outpaint w/ sdxl
- canvas outpaint w/ sdxl + refiner
2024-02-15 17:30:02 +11:00
psychedelicious
a3faa3792a chore(ui): regen types 2024-02-15 17:30:02 +11:00
psychedelicious
c16eba78ab feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-02-15 17:30:02 +11:00
psychedelicious
1a191c4655 remove unused configdict import 2024-02-15 17:30:02 +11:00
psychedelicious
e36d925bce fix(ui): remove original l2i node in HRF graph 2024-02-15 17:30:02 +11:00
psychedelicious
b1ba18b3d1 fix(nodes): do not freeze or cache config in context wrapper
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
2024-02-15 17:30:02 +11:00
psychedelicious
aff46759f9 feat(nodes): context.data -> context._data 2024-02-15 17:30:02 +11:00
psychedelicious
d7b7dcc7fe feat(nodes): context.__services -> context._services 2024-02-15 17:30:02 +11:00
psychedelicious
889a26c5b6 feat(nodes): cache invocation interface config 2024-02-15 17:30:02 +11:00
psychedelicious
b4c774896a feat(nodes): do not hide services in invocation context interfaces 2024-02-15 17:30:02 +11:00
psychedelicious
afbe889d35 fix(nodes): restore missing context type annotations 2024-02-15 17:30:02 +11:00
psychedelicious
9c1e52b1ef tests(nodes): fix mock InvocationContext 2024-02-15 17:30:02 +11:00
psychedelicious
3f5ab02da9 chore(nodes): add comments for ConfigInterface 2024-02-15 17:30:02 +11:00
psychedelicious
bf48e8a03a feat(nodes): export more things from `invocation_api" 2024-02-15 17:30:02 +11:00
psychedelicious
e52434cb99 feat(nodes): add boards interface to invocation context 2024-02-15 17:30:02 +11:00
psychedelicious
483bdbcb9f fix(nodes): restore type annotations for InvocationContext 2024-02-15 17:30:02 +11:00
psychedelicious
ae421fb4ab feat(nodes): do not freeze InvocationContextData, prevents it from being subclassesd 2024-02-15 17:30:02 +11:00
psychedelicious
cc295a9f0a feat: tweak pyright config 2024-02-15 17:30:02 +11:00
psychedelicious
a7e23af9c6 feat(nodes): create invocation_api.py
This is the public API for invocations.

Everything a custom node might need should be re-exported from this file.
2024-02-15 17:30:02 +11:00
psychedelicious
3de4390711 feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-02-15 17:30:02 +11:00
psychedelicious
3ceee2b2b2 tests: fix missing arg for InvocationContext 2024-02-15 17:30:02 +11:00
psychedelicious
5c7ed24aab feat(nodes): restore previous invocation context methods with deprecation warnings 2024-02-15 17:30:02 +11:00
psychedelicious
183c9c4799 chore: ruff 2024-02-15 17:30:02 +11:00
psychedelicious
8baf3f78a2 feat(nodes): tidy invocation_context.py, improve comments 2024-02-15 17:30:02 +11:00
psychedelicious
ac2eb16a65 tests: fix tests for new invocation context 2024-02-15 17:30:02 +11:00
psychedelicious
4aa7bee4b9 docs: update INVOCATIONS.md 2024-02-15 17:30:02 +11:00
psychedelicious
7e5ba2795e feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-02-15 17:30:02 +11:00
psychedelicious
97a6c6eea7 feat: add pyright config
I was having issues with mypy bother over- and under-reporting certain problems. I've added a pyright config.
2024-02-15 17:30:02 +11:00
psychedelicious
f0e60a4ba2 feat(nodes): restricts invocation context power
Creates a low-power `InvocationContext` with simplified methods and data.

See `invocation_context.py` for detailed comments.
2024-02-15 17:30:02 +11:00
psychedelicious
aa089e8108 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-02-15 17:30:02 +11:00
181 changed files with 2880 additions and 3932 deletions

View File

@@ -1,33 +0,0 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

28
.github/pr_labels.yml vendored
View File

@@ -1,59 +1,59 @@
root:
Root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@@ -11,7 +11,7 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*.*.*'
- 'v*'
workflow_dispatch:
permissions:

View File

@@ -1,45 +0,0 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

View File

@@ -1,68 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# When manually triggered or when called from another workflow, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:knip'
shell: bash

View File

@@ -1,48 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm test:no-watch'
shell: bash

View File

@@ -1,6 +1,6 @@
name: 'label PRs'
name: "Pull Request Labeler"
on:
- pull_request_target
- pull_request_target
jobs:
labeler:
@@ -9,10 +9,8 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
- name: Checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml
configuration-path: .github/pr_labels.yml

45
.github/workflows/lint-frontend.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Lint frontend
on:
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:dpdm'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'
- name: Knip
run: 'pnpm run lint:knip'

View File

@@ -1,49 +1,51 @@
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
name: mkdocs-material
on:
push:
branches:
- main
workflow_dispatch:
- 'refs/heads/main'
permissions:
contents: write
contents: write
jobs:
deploy:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

67
.github/workflows/pypi-release.yml vendored Normal file
View File

@@ -0,0 +1,67 @@
name: PyPI Release
on:
workflow_dispatch:
inputs:
publish_package:
description: 'Publish build on PyPi? [true/false]'
required: true
default: 'false'
jobs:
build-and-release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
working-directory: invokeai/frontend/web
- name: Build frontend
run: pnpm run build
working-directory: invokeai/frontend/web
- name: Install python dependencies
run: pip install --upgrade build twine
- name: Build python package
run: python3 -m build
- name: Upload build as workflow artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: dist
- name: Check distribution
run: twine check dist/*
- name: Check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: Publish build on PyPi
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
run: twine upload dist/*

View File

@@ -1,64 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# When manually triggered or called from another workflow, always runs the tests.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff format --check .
shell: bash

View File

@@ -1,94 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pytest

View File

@@ -1,96 +0,0 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
python-checks:
uses: ./.github/workflows/python-checks.yml
python-tests:
uses: ./.github/workflows/python-tests.yml
build:
uses: ./.github/workflows/build-installer.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

24
.github/workflows/style-checks.yml vendored Normal file
View File

@@ -0,0 +1,24 @@
name: style checks
on:
pull_request:
push:
branches: main
jobs:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install ruff
- run: ruff check --output-format=github .
- run: ruff format --check .

129
.github/workflows/test-invoke-pip.yml vendored Normal file
View File

@@ -0,0 +1,129 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

View File

@@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: preserve
proseWrap: always
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@@ -1,142 +0,0 @@
# Release Process
The app is published in twice, in different build formats.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation of the `invokeai` package from any of these methods.
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
3. Upload the zip file created in **`build`** job into the Assets section of the release notes. You can also upload the zip into the body of the release notes, since it can be hard for users to find the Assets section.
4. Check the **Set as a pre-release** and **Create a discussion for this release** checkboxes at the bottom of the release page.
5. Publish the pre-release.
6. Announce the pre-release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release

View File

@@ -1,45 +0,0 @@
# Invocation API
Each invocation's `invoke` method is provided a single arg - the Invocation
Context.
This object provides access to various methods, used to interact with the
application. Loading and saving images, logging messages, etc.
!!! warning ""
This API may shift slightly until the release of v4.0.0 as we work through a few final updates to the Model Manager.
```py
class MyInvocation(BaseInvocation):
...
def invoke(self, context: InvocationContext) -> ImageOutput:
image_pil = context.images.get_pil(image_name)
# Do something to the image
image_dto = context.images.save(image_pil)
# Log a message
context.logger.info(f"Did something cool, image saved!")
...
```
<!-- prettier-ignore-start -->
::: invokeai.app.services.shared.invocation_context.InvocationContext
options:
members: false
::: invokeai.app.services.shared.invocation_context.ImagesInterface
::: invokeai.app.services.shared.invocation_context.TensorsInterface
::: invokeai.app.services.shared.invocation_context.ConditioningInterface
::: invokeai.app.services.shared.invocation_context.ModelsInterface
::: invokeai.app.services.shared.invocation_context.LoggerInterface
::: invokeai.app.services.shared.invocation_context.ConfigInterface
::: invokeai.app.services.shared.invocation_context.UtilInterface
::: invokeai.app.services.shared.invocation_context.BoardsInterface
<!-- prettier-ignore-end -->

View File

@@ -1,148 +0,0 @@
# Invoke v4.0.0 Nodes API Migration guide
Invoke v4.0.0 is versioned as such due to breaking changes to the API utilized
by nodes, both core and custom.
## Motivation
Prior to v4.0.0, the `invokeai` python package has not be set up to be utilized
as a library. That is to say, it didn't have any explicitly public API, and node
authors had to work with the unstable internal application API.
v4.0.0 introduces a stable public API for nodes.
## Changes
There are two node-author-facing changes:
1. Import Paths
1. Invocation Context API
### Import Paths
All public objects are now exported from `invokeai.invocation_api`:
```py
# Old
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.primitives import ImageField
# New
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
```
It's possible that we've missed some classes you need in your node. Please let
us know if that's the case.
### Invocation Context API
Most nodes utilize the Invocation Context, an object that is passed to the
`invoke` that provides access to data and services a node may need.
Until now, that object and the services it exposed were internal. Exposing them
to nodes means that changes to our internal implementation could break nodes.
The methods on the services are also often fairly complicated and allowed nodes
to footgun.
In v4.0.0, this object has been refactored to be much simpler.
See [INVOCATION_API](./INVOCATION_API.md) for full details of the API.
!!! warning ""
This API may shift slightly until the release of v4.0.0 as we work through a few final updates to the Model Manager.
#### Improved Service Methods
The biggest offender was the image save method:
```py
# Old
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
# New
image_dto = context.images.save(image=image)
```
Other methods are simplified, or enhanced with additional functionality:
```py
# Old
image = context.services.images.get_pil_image(image_name)
# New
image = context.images.get_pil(image_name)
image_cmyk = context.images.get_pil(image_name, "CMYK")
```
We also had some typing issues around tensors:
```py
# Old
# `latents` typed as `torch.Tensor`, but could be `ConditioningFieldData`
latents = context.services.latents.get(self.latents.latents_name)
# `data` typed as `torch.Tenssor,` but could be `ConditioningFieldData`
context.services.latents.save(latents_name, data)
# New - separate methods for tensors and conditioning data w/ correct typing
# Also, the service generates the names
tensor_name = context.tensors.save(tensor)
tensor = context.tensors.load(tensor_name)
# For conditioning
cond_name = context.conditioning.save(cond_data)
cond_data = context.conditioning.load(cond_name)
```
#### Output Construction
Core Outputs have builder functions right on them - no need to manually
construct these objects, or use an extra utility:
```py
# Old
image_output = ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
latents_output = build_latents_output(latents_name=name, latents=latents, seed=None)
noise_output = NoiseOutput(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
cond_output = ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# New
image_output = ImageOutput.build(image_dto)
latents_output = LatentsOutput.build(latents_name=name, latents=noise, seed=self.seed)
noise_output = NoiseOutput.build(latents_name=name, latents=noise, seed=self.seed)
cond_output = ConditioningOutput.build(conditioning_name)
```
You can still create the objects using constructors if you want, but we suggest
using the builder methods.

View File

@@ -32,7 +32,6 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Image Resize Plus](#image-resize-plus)
+ [Latent Upscale](#latent-upscale)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations)
@@ -291,13 +290,6 @@ View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
--------------------------------
### Latent Upscale
**Description:** This node uses a small (~2.4mb) model to upscale the latents used in a Stable Diffusion 1.5 or Stable Diffusion XL image generation, rather than the typical interpolation method, avoiding the traditional downsides of the latent upscale technique.
**Node Link:** [https://github.com/gogurtenjoyer/latent-upscale](https://github.com/gogurtenjoyer/latent-upscale)
--------------------------------
### Load Video Frame
@@ -354,21 +346,12 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node
- `Metadata From Image` - Provides Metadata from an image
- `Metadata To String` - Extracts a String value of a label from metadata
- `Metadata To Integer` - Extracts an Integer value of a label from metadata
- `Metadata To Float` - Extracts a Float value of a label from metadata
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata
- `Metadata To Bool` - Extracts Bool types from metadata
- `Metadata To Model` - Extracts model types from metadata
- `Metadata To SDXL Model` - Extracts SDXL model types from metadata
- `Metadata To LoRAs` - Extracts Loras from metadata.
- `Metadata To SDXL LoRAs` - Extracts SDXL Loras from metadata
- `Metadata To ControlNets` - Extracts ControNets from metadata
- `Metadata To IP-Adapters` - Extracts IP-Adapters from metadata
- `Metadata To T2I-Adapters` - Extracts T2I-Adapters from metadata
- `Denoise Latents + Metadata` - This is an inherited version of the existing `Denoise Latents` node but with a metadata input and output.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes

View File

@@ -19,8 +19,6 @@ their descriptions.
| Conditioning Primitive | A conditioning tensor primitive value |
| Content Shuffle Processor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| Create Denoise Mask | Converts a greyscale or transparency image into a mask for denoising. |
| Create Gradient Mask | Creates a mask for Gradient ("soft", "differential") inpainting that gradually expands during denoising. Improves edge coherence. |
| Denoise Latents | Denoises noisy latents to decodable images |
| Divide Integers | Divides two numbers |
| Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator |

View File

@@ -0,0 +1,5 @@
mkdocs
mkdocs-material>=8, <9
mkdocs-git-revision-date-localized-plugin
mkdocs-redirects==1.2.0

View File

@@ -0,0 +1,5 @@
:root {
--md-primary-fg-color: #35A4DB;
--md-primary-fg-color--light: #35A4DB;
--md-primary-fg-color--dark: #35A4DB;
}

View File

@@ -2,18 +2,22 @@
set -e
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat
}
if [[ ! -z "${VIRTUAL_ENV}" ]]; then
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
@@ -22,63 +26,31 @@ fi
cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
VERSION=$(
cd ..
python3 -c "from invokeai.version import __version__ as version; print(version)"
python -c "from invokeai.version import __version__ as version; print(version)"
)
VERSION="v${VERSION}"
if [[ ! -z ${CI} ]]; then
echo
echo -e "${BCYAN}CI environment detected${RESET}"
echo
else
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
fi
PATCH=""
VERSION="v${VERSION}${PATCH}"
echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD
echo
# ---------------------- FRONTEND ----------------------
pushd ../invokeai/frontend/web >/dev/null
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
if [[ ! -z ${CI} ]]; then
echo "Building frontend without checks..."
# In CI, we have already done the frontend checks and can just build
pnpm vite build
else
echo "Running checks and building frontend..."
# This runs all the frontend checks and builds
pnpm build
fi
echo
popd
# ---------------------- BACKEND ----------------------
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python3 -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -rf ../build
python3 -m build --outdir dist/ ../.
# ----------------------
echo
@@ -106,28 +78,10 @@ chmod a+x InvokeAI-Installer/install.sh
cp install.bat.in InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
FILENAME=InvokeAI-installer-$VERSION.zip
# Zip everything up
zip -r ${FILENAME} InvokeAI-Installer
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
echo
echo -e "${BGREEN}Built installer: ./${FILENAME}${RESET}"
echo -e "${BGREEN}Built PyPi distribution: ./dist${RESET}"
# clean up, but only if we are not in a github action
if [[ -z ${CI} ]]; then
echo
echo "Cleaning up intermediate build files..."
rm -rf InvokeAI-Installer tmp ../invokeai/frontend/web/dist/
fi
if [[ ! -z ${CI} ]]; then
echo
echo "Setting GitHub action outputs..."
echo "INSTALLER_FILENAME=${FILENAME}" >>$GITHUB_OUTPUT
echo "INSTALLER_PATH=installer/${FILENAME}" >>$GITHUB_OUTPUT
echo "DIST_PATH=installer/dist/" >>$GITHUB_OUTPUT
fi
# clean up
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
exit 0

View File

@@ -2,12 +2,12 @@
set -e
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
@@ -23,40 +23,49 @@ function git_show {
VERSION=$(
cd ..
python3 -c "from invokeai.version import __version__ as version; print(version)"
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e "${BGREEN}git remote -v${RESET}:"
git remote -v
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on origin remote${RESET}? "
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on origin remote..."
git push origin :refs/tags/$VERSION
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} on locally..."
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Pushing updated tags to origin remote..."
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
git push origin --tags
fi
exit 0

View File

@@ -5,6 +5,7 @@ import pathlib
import shutil
from hashlib import sha1
from random import randbytes
import traceback
from typing import Any, Dict, List, Optional, Set
from fastapi import Body, Path, Query, Response
@@ -244,7 +245,6 @@ async def get_model_metadata(
return result
@model_manager_router.patch(
"/i/{key}/metadata",
operation_id="update_model_metadata",
@@ -258,23 +258,24 @@ async def get_model_metadata(
)
async def update_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
changes: ModelMetadataChanges = Body(description="The changes"),
changes: ModelMetadataChanges = Body(description="The changes")
) -> Optional[AnyModelRepoMetadata]:
"""Updates or creates a model metadata object."""
record_store = ApiDependencies.invoker.services.model_manager.store
metadata_store = ApiDependencies.invoker.services.model_manager.store.metadata_store
try:
original_metadata = record_store.get_metadata(key)
if original_metadata:
if changes.trigger_phrases:
original_metadata.trigger_phrases = changes.trigger_phrases
if changes.default_settings:
original_metadata.default_settings = changes.default_settings
metadata_store.update_metadata(key, original_metadata)
else:
metadata_store.add_metadata(
key, BaseMetadata(name="", author="", default_settings=changes.default_settings)
)
metadata_store.add_metadata(key, BaseMetadata(name="", author="",trigger_phrases=changes.trigger_phrases, default_settings=changes.default_settings))
except Exception as e:
raise HTTPException(
status_code=500,
@@ -494,7 +495,6 @@ async def add_model_record(
)
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
@@ -537,7 +537,6 @@ async def install_model(
source=source,
config=config,
access_token=access_token,
inplace=bool(inplace),
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:

View File

@@ -2,7 +2,6 @@
# which are imported/used before parse_args() is called will get the default config values instead of the
# values from the command line or config file.
import sys
from contextlib import asynccontextmanager
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.version.invokeai_version import __version__
@@ -72,25 +71,9 @@ logger = InvokeAILogger.get_logger(config=app_config)
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(
title="Invoke - Community Edition",
docs_url=None,
redoc_url=None,
separate_input_output_schemas=False,
lifespan=lifespan,
)
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
# Add event handler
event_handler_id: int = id(app)
@@ -113,6 +96,18 @@ app.add_middleware(
app.add_middleware(GZipMiddleware, minimum_size=1000)
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event() -> None:
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
# Shut down threads
@app.on_event("shutdown")
async def shutdown_event() -> None:
ApiDependencies.shutdown()
# Include all routers
app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(model_manager.model_manager_router, prefix="/api")

View File

@@ -1,23 +1,24 @@
from typing import Iterator, List, Optional, Tuple, Union, cast
from typing import Iterator, List, Optional, Tuple, Union
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from transformers import CLIPTokenizer
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
MaskField,
OutputField,
UIComponent,
)
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import ModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
@@ -25,9 +26,15 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ExtraConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.textual_inversion import TextualInversionModelRaw
from invokeai.backend.util.devices import torch_dtype
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .model import ClipField
# unconditioned: Optional[torch.Tensor]
@@ -44,7 +51,7 @@ from .model import ClipField
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.2.0",
version="1.0.1",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@@ -59,19 +66,11 @@ class CompelInvocation(BaseInvocation):
description=FieldDescriptions.clip,
input=Input.Connection,
)
mask: Optional[MaskField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
mask_weight: float = InputField(default=1.0, description="")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
@@ -83,10 +82,21 @@ class CompelInvocation(BaseInvocation):
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
name = trigger[1:-1]
try:
loaded_model = context.models.load(key=name).model
assert isinstance(loaded_model, TextualInversionModelRaw)
ti_list.append((name, loaded_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
tokenizer,
ti_manager,
),
@@ -94,9 +104,8 @@ class CompelInvocation(BaseInvocation):
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@@ -130,13 +139,7 @@ class CompelInvocation(BaseInvocation):
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
mask=self.mask,
mask_weight=self.mask_weight,
)
)
return ConditioningOutput.build(conditioning_name)
class SDXLPromptInvocationBase:
@@ -152,11 +155,7 @@ class SDXLPromptInvocationBase:
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, (CLIPTextModel, CLIPTextModelWithProjection))
# return zero on empty
if prompt == "" and zero_on_empty:
@@ -190,10 +189,25 @@ class SDXLPromptInvocationBase:
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name = trigger[1:-1]
try:
ti_model = context.models.load_by_attrs(
model_name=name, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
).model
assert isinstance(ti_model, TextualInversionModelRaw)
ti_list.append((name, ti_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
logger.warning(f'trigger: "{trigger}" not found')
except ValueError:
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
tokenizer,
ti_manager,
),
@@ -201,10 +215,8 @@ class SDXLPromptInvocationBase:
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
):
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
text_encoder = cast(CLIPTextModel, text_encoder)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@@ -250,7 +262,7 @@ class SDXLPromptInvocationBase:
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.2.0",
version="1.0.1",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@@ -274,11 +286,6 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
mask: Optional[MaskField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
mask_weight: float = InputField(default=1.0, description="")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
c1, c1_pooled, ec1 = self.run_clip_compel(
@@ -340,13 +347,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
mask=self.mask,
mask_weight=self.mask_weight,
)
)
return ConditioningOutput.build(conditioning_name)
@invocation(
@@ -395,7 +396,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(conditioning=ConditioningField(conditioning_name=conditioning_name, mask_weight=1.0))
return ConditioningOutput.build(conditioning_name)
@invocation_output("clip_skip_output")

View File

@@ -1,40 +0,0 @@
import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import InputField, WithMetadata
from invokeai.app.invocations.primitives import MaskField, MaskOutput
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
height: int = InputField(description="The height of the entire mask.")
width: int = InputField(description="The width of the entire mask.")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[
:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width
] = True
mask_name = context.tensors.save(mask)
return MaskOutput(
mask=MaskField(mask_name=mask_name),
width=self.width,
height=self.height,
)

View File

@@ -194,12 +194,6 @@ class BoardField(BaseModel):
board_id: str = Field(description="The id of the board")
class MaskField(BaseModel):
"""A mask primitive field."""
mask_name: str = Field(description="The name of the mask.")
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
@@ -231,12 +225,7 @@ class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[MaskField] = Field(
default=None,
description="The bool mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
mask_weight: float = Field(description="")
# endregion
class MetadataField(RootModel):

View File

@@ -93,7 +93,7 @@ class IPAdapterInvocation(BaseInvocation):
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision
)
assert len(image_encoder_models) == 1
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)

View File

@@ -1,5 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
import math
from contextlib import ExitStack
from functools import singledispatchmethod
@@ -9,7 +9,6 @@ import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
@@ -56,14 +55,7 @@ from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.stable_diffusion.diffusers_pipeline import (
@@ -73,6 +65,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
T2IAdapterData,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
@@ -180,16 +173,6 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
)
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
@@ -210,42 +193,38 @@ class CreateGradientMaskInvocation(BaseInvocation):
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
# redistribute blur so that the edges are 0 and blur out to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is masked to any degree, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# multiply original mask to force actually masked regions to 0
blur_tensor = mask_tensor * blur_tensor
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=None,
gradient=True,
)
@@ -291,11 +270,11 @@ def get_scheduler(
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=0
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(
default=None,
@@ -372,190 +351,41 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
def _get_text_embeddings_and_masks(
self,
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.mask_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
def _preprocess_regional_prompt_mask(
self, mask: Optional[torch.Tensor], target_height: int, target_width: int
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using nearest neighbor interpolation.
Returns:
torch.Tensor: The processed mask. dtype: torch.bool, shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=torch.bool)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
mask = tf(mask)
return mask
def concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
conditioning_fields: list[ConditioningField],
latent_height: int,
latent_width: int,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
extra_conditioning = None
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
mask = masks[prompt_idx]
if (
text_embedding_info.extra_conditioning is not None
and text_embedding_info.extra_conditioning.wants_cross_attention_control
):
extra_conditioning = text_embedding_info.extra_conditioning
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
# embedding_ranges.append(
# Range(
# start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
# )
# )
# HACK(ryand): Contrary to its name, tokens_count_including_eos_bos does not seem to include eos and bos
# in the count.
embedding_ranges.append(
Range(
start=cur_text_embedding_len + 1,
end=cur_text_embedding_len
+ text_embedding_info.extra_conditioning.tokens_count_including_eos_bos,
)
)
processed_masks.append(self._preprocess_regional_prompt_mask(mask, latent_height, latent_width))
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(
masks=torch.cat(processed_masks, dim=1),
ranges=embedding_ranges,
mask_weights=[x.mask_weight for x in conditioning_fields],
)
if extra_conditioning is not None and len(text_conditionings) > 1:
raise ValueError(
"Prompt-to-prompt cross-attention control (a.k.a. `swap()`) is not supported when using multiple "
"prompts."
)
if is_sdxl:
return SDXLConditioningInfo(
embeds=text_embedding,
extra_conditioning=extra_conditioning,
pooled_embeds=pooled_embedding,
add_time_ids=add_time_ids,
), regions
return BasicConditioningInfo(
embeds=text_embedding,
extra_conditioning=extra_conditioning,
), regions
def get_conditioning_data(
self,
context: InvocationContext,
scheduler: Scheduler,
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
) -> TextConditioningData:
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
cond_list = self.positive_conditioning
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = self.negative_conditioning
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
seed: int,
) -> ConditioningData:
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
extra_conditioning_info = c.extra_conditioning
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = self.concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
conditioning_fields=cond_list,
latent_height=latent_height,
latent_width=latent_width,
)
uncond_text_embedding, uncond_regions = self.concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
conditioning_fields=uncond_list,
latent_height=latent_height,
latent_width=latent_width,
)
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
# flip all bits to have noise different from initial
generator=torch.Generator(device=unet.device).manual_seed(seed ^ 0xFFFFFFFF),
)
return conditioning_data
@@ -661,6 +491,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
self,
context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
conditioning_data: ConditioningData,
exit_stack: ExitStack,
) -> Optional[list[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
@@ -677,6 +508,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
return None
ip_adapter_data_list = []
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(key=single_ip_adapter.ip_adapter_model.key)
@@ -699,13 +531,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
single_ipa_images, image_encoder_model
)
conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
)
)
@@ -795,7 +630,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
@@ -824,15 +658,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
scheduler_step_kwargs = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs
return num_inference_steps, timesteps, init_timestep
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
@@ -925,10 +751,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
pipeline = self.create_pipeline(unet, scheduler)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
)
conditioning_data = self.get_conditioning_data(context, scheduler, unet, seed)
controlnet_data = self.prep_control_data(
context=context,
@@ -942,19 +765,22 @@ class DenoiseLatentsInvocation(BaseInvocation):
ip_adapter_data = self.prep_ip_adapter_data(
context=context,
ip_adapter=self.ip_adapter,
conditioning_data=conditioning_data,
exit_stack=exit_stack,
)
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
num_inference_steps, timesteps, init_timestep = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
result_latents = pipeline.latents_from_embeddings(
(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
@@ -964,7 +790,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,

View File

@@ -14,7 +14,6 @@ from invokeai.app.invocations.fields import (
Input,
InputField,
LatentsField,
MaskField,
OutputField,
UIComponent,
)
@@ -230,18 +229,6 @@ class StringCollectionInvocation(BaseInvocation):
# region Image
@invocation_output("mask_output")
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor.
dtype: torch.bool
shape: (1, height, width).
"""
mask: MaskField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("image_output")
class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
@@ -427,6 +414,10 @@ class ConditioningOutput(BaseInvocationOutput):
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "ConditioningOutput":
return cls(conditioning=ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_collection_output")
class ConditioningCollectionOutput(BaseInvocationOutput):

View File

@@ -166,7 +166,6 @@ two configs are kept in separate sections of the config file:
...
"""
from __future__ import annotations
import os

View File

@@ -1,5 +1,4 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress

View File

@@ -224,6 +224,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()

View File

@@ -28,7 +28,6 @@ class InstallStatus(str, Enum):
WAITING = "waiting" # waiting to be dequeued
DOWNLOADING = "downloading" # downloading of model files in process
DOWNLOADS_DONE = "downloads_done" # downloading done, waiting to run
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
@@ -230,11 +229,6 @@ class ModelInstallJob(BaseModel):
"""Return true if job is downloading."""
return self.status == InstallStatus.DOWNLOADING
@property
def downloads_done(self) -> bool:
"""Return true if job's downloads ae done."""
return self.status == InstallStatus.DOWNLOADS_DONE
@property
def running(self) -> bool:
"""Return true if job is running."""

View File

@@ -7,6 +7,7 @@ import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from random import randbytes
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Set, Union
@@ -20,7 +21,6 @@ from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@@ -28,6 +28,7 @@ from invokeai.backend.model_manager.config import (
ModelRepoVariant,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
from invokeai.backend.model_manager.metadata import (
AnyModelRepoMetadata,
CivitaiMetadataFetch,
@@ -150,9 +151,9 @@ class ModelInstallService(ModelInstallServiceBase):
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["key"] = config.get("key", uuid_string())
info: AnyModelConfig = self._probe_model(Path(model_path), config)
old_hash = info.current_hash
if preferred_name := config.get("name"):
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
@@ -166,6 +167,8 @@ class ModelInstallService(ModelInstallServiceBase):
raise DuplicateModelException(
f"A model named {model_path.name} is already installed at {dest_path.as_posix()}"
) from excp
new_hash = FastModelHash.hash(new_path)
assert new_hash == old_hash, f"{model_path}: Model hash changed during installation, possibly corrupted."
return self._register(
new_path,
@@ -178,14 +181,13 @@ class ModelInstallService(ModelInstallServiceBase):
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: bool = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
@@ -280,9 +282,9 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info("Model installer (re)initialized")
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path).absolute() for x in self.record_store.all_models()}
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback, config=self._app_config)
search = ModelSearch(on_model_found=callback)
self._models_installed.clear()
search.search(scan_dir)
return list(self._models_installed)
@@ -368,7 +370,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._signal_job_errored(job)
elif (
job.waiting or job.downloads_done
job.waiting or job.downloading
): # local jobs will be in waiting state, remote jobs will be downloading state
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
@@ -446,7 +448,7 @@ class ModelInstallService(ModelInstallServiceBase):
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
def _sync_model_path(self, key: str) -> AnyModelConfig:
def _sync_model_path(self, key: str, ignore_hash_change: bool = False) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
@@ -467,7 +469,14 @@ class ModelInstallService(ModelInstallServiceBase):
new_path = models_dir / model.base.value / model.type.value / model.name
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
new_hash = FastModelHash.hash(new_path)
model.path = new_path.relative_to(models_dir).as_posix()
if model.current_hash != new_hash:
assert (
ignore_hash_change
), f"{model.name}: Model hash changed during installation, model is possibly corrupted"
model.current_hash = new_hash
self._logger.info(f"Model has new hash {model.current_hash}, but will continue to be identified by {key}")
self.record_store.update_model(key, model)
return model
@@ -527,17 +536,16 @@ class ModelInstallService(ModelInstallServiceBase):
setattr(info, key, value)
return info
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
# Note that we may be passed a pre-populated AnyModelConfig object,
# in which case the key field should have been populated by the caller (e.g. in `install_path`).
config["key"] = config.get("key", uuid_string())
key = self._create_key()
if config and not config.get("key", None):
config["key"] = key
info = info or ModelProbe.probe(model_path, config)
override_key: Optional[str] = config.get("key") if config else None
assert info.original_hash # always assigned by probe()
info.key = override_key or info.original_hash
model_path = model_path.absolute()
if model_path.is_relative_to(self.app_config.models_path):
@@ -741,8 +749,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._download_cache.pop(download_job.source, None)
# are there any more active jobs left in this task?
if install_job.downloading and all(x.complete for x in install_job.download_parts):
install_job.status = InstallStatus.DOWNLOADS_DONE
if all(x.complete for x in install_job.download_parts):
# now enqueue job for actual installation into the models directory
self._install_queue.put(install_job)
# Let other threads know that the number of downloads has changed

View File

@@ -7,21 +7,23 @@ from abc import ABC, abstractmethod
from typing import List, Optional, Set, Tuple
from pydantic import Field
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from invokeai.backend.model_manager.metadata.metadata_base import ModelDefaultSettings
class ModelMetadataChanges(BaseModelExcludeNull, extra="allow"):
"""A set of changes to apply to model metadata.
Only limited changes are valid:
- `trigger_phrases`: the list of trigger phrases for this model
- `default_settings`: the user-configured default settings for this model
"""
default_settings: Optional[ModelDefaultSettings] = Field(
default=None, description="The user-configured default settings for this model"
)
trigger_phrases: Optional[List[str]] = Field(default=None, description="The model's list of trigger phrases")
"""The model's list of trigger phrases"""
default_settings: Optional[ModelDefaultSettings] = Field(default=None, description="The user-configured default settings for this model")
"""The user-configured default settings for this model"""

View File

@@ -115,6 +115,8 @@ class ModelMetadataStoreSQL(ModelMetadataStoreBase):
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
except Exception as e:
raise e
return self.get_metadata(model_key)
@@ -182,7 +184,7 @@ class ModelMetadataStoreSQL(ModelMetadataStoreBase):
def _update_tags(self, model_key: str, tags: Optional[Set[str]]) -> None:
"""Update tags for the model referenced by model_key."""
if tags:
# remove previous tags from this model
# remove previous tags from this model
self._cursor.execute(
"""--sql
DELETE FROM model_tags

View File

@@ -1,5 +1,4 @@
"""Init file for model record services."""
from .model_records_base import ( # noqa F401
DuplicateModelException,
InvalidModelException,

View File

@@ -39,6 +39,7 @@ Typical usage:
configs = store.search_by_attr(base_model='sd-2', model_type='main')
"""
import json
import sqlite3
from math import ceil

View File

@@ -200,7 +200,6 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(

View File

@@ -65,86 +65,75 @@ class InvocationContextInterface:
class BoardsInterface(InvocationContextInterface):
def create(self, board_name: str) -> BoardDTO:
"""Creates a board.
"""
Creates a board.
Args:
board_name: The name of the board to create.
Returns:
The created board DTO.
:param board_name: The name of the board to create.
"""
return self._services.boards.create(board_name)
def get_dto(self, board_id: str) -> BoardDTO:
"""Gets a board DTO.
"""
Gets a board DTO.
Args:
board_id: The ID of the board to get.
Returns:
The board DTO.
:param board_id: The ID of the board to get.
"""
return self._services.boards.get_dto(board_id)
def get_all(self) -> list[BoardDTO]:
"""Gets all boards.
Returns:
A list of all boards.
"""
Gets all boards.
"""
return self._services.boards.get_all()
def add_image_to_board(self, board_id: str, image_name: str) -> None:
"""Adds an image to a board.
"""
Adds an image to a board.
Args:
board_id: The ID of the board to add the image to.
image_name: The name of the image to add to the board.
:param board_id: The ID of the board to add the image to.
:param image_name: The name of the image to add to the board.
"""
return self._services.board_images.add_image_to_board(board_id, image_name)
def get_all_image_names_for_board(self, board_id: str) -> list[str]:
"""Gets all image names for a board.
"""
Gets all image names for a board.
Args:
board_id: The ID of the board to get the image names for.
Returns:
A list of all image names for the board.
:param board_id: The ID of the board to get the image names for.
"""
return self._services.board_images.get_all_board_image_names_for_board(board_id)
class LoggerInterface(InvocationContextInterface):
def debug(self, message: str) -> None:
"""Logs a debug message.
"""
Logs a debug message.
Args:
message: The message to log.
:param message: The message to log.
"""
self._services.logger.debug(message)
def info(self, message: str) -> None:
"""Logs an info message.
"""
Logs an info message.
Args:
message: The message to log.
:param message: The message to log.
"""
self._services.logger.info(message)
def warning(self, message: str) -> None:
"""Logs a warning message.
"""
Logs a warning message.
Args:
message: The message to log.
:param message: The message to log.
"""
self._services.logger.warning(message)
def error(self, message: str) -> None:
"""Logs an error message.
"""
Logs an error message.
Args:
message: The message to log.
:param message: The message to log.
"""
self._services.logger.error(message)
@@ -157,23 +146,20 @@ class ImagesInterface(InvocationContextInterface):
image_category: ImageCategory = ImageCategory.GENERAL,
metadata: Optional[MetadataField] = None,
) -> ImageDTO:
"""Saves an image, returning its DTO.
"""
Saves an image, returning its DTO.
If the current queue item has a workflow or metadata, it is automatically saved with the image.
Args:
image: The image to save, as a PIL image.
board_id: The board ID to add the image to, if it should be added. It the invocation \
:param image: The image to save, as a PIL image.
:param board_id: The board ID to add the image to, if it should be added. It the invocation \
inherits from `WithBoard`, that board will be used automatically. **Use this only if \
you want to override or provide a board manually!**
image_category: The category of the image. Only the GENERAL category is added \
:param image_category: The category of the image. Only the GENERAL category is added \
to the gallery.
metadata: The metadata to save with the image, if it should have any. If the \
:param metadata: The metadata to save with the image, if it should have any. If the \
invocation inherits from `WithMetadata`, that metadata will be used automatically. \
**Use this only if you want to override or provide metadata manually!**
Returns:
The saved image DTO.
"""
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
@@ -203,14 +189,11 @@ class ImagesInterface(InvocationContextInterface):
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object.
"""
Gets an image as a PIL Image object.
Args:
image_name: The name of the image to get.
mode: The color mode to convert the image to. If None, the original mode is used.
Returns:
The image as a PIL Image object.
:param image_name: The name of the image to get.
:param mode: The color mode to convert the image to. If None, the original mode is used.
"""
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
@@ -223,76 +206,58 @@ class ImagesInterface(InvocationContextInterface):
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
"""Gets an image's metadata, if it has any.
"""
Gets an image's metadata, if it has any.
Args:
image_name: The name of the image to get the metadata for.
Returns:
The image's metadata, if it has any.
:param image_name: The name of the image to get the metadata for.
"""
return self._services.images.get_metadata(image_name)
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image as an ImageDTO object.
"""
Gets an image as an ImageDTO object.
Args:
image_name: The name of the image to get.
Returns:
The image as an ImageDTO object.
:param image_name: The name of the image to get.
"""
return self._services.images.get_dto(image_name)
class TensorsInterface(InvocationContextInterface):
def save(self, tensor: Tensor) -> str:
"""Saves a tensor, returning its name.
"""
Saves a tensor, returning its name.
Args:
tensor: The tensor to save.
Returns:
The name of the saved tensor.
:param tensor: The tensor to save.
"""
name = self._services.tensors.save(obj=tensor)
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name.
"""
Loads a tensor by name.
Args:
name: The name of the tensor to load.
Returns:
The loaded tensor.
:param name: The name of the tensor to load.
"""
return self._services.tensors.load(name)
class ConditioningInterface(InvocationContextInterface):
def save(self, conditioning_data: ConditioningFieldData) -> str:
"""Saves a conditioning data object, returning its name.
"""
Saves a conditioning data object, returning its name.
Args:
conditioning_data: The conditioning data to save.
Returns:
The name of the saved conditioning data.
:param conditioning_data: The conditioning data to save.
"""
name = self._services.conditioning.save(obj=conditioning_data)
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name.
"""
Loads conditioning data by name.
Args:
name: The name of the conditioning data to load.
Returns:
The loaded conditioning data.
:param name: The name of the conditioning data to load.
"""
return self._services.conditioning.load(name)
@@ -300,25 +265,20 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
def exists(self, key: str) -> bool:
"""Checks if a model exists.
"""
Checks if a model exists.
Args:
key: The key of the model.
Returns:
True if the model exists, False if not.
:param key: The key of the model.
"""
return self._services.model_manager.store.exists(key)
def load(self, key: str, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""Loads a model.
"""
Loads a model.
Args:
key: The key of the model.
submodel_type: The submodel of the model to get.
Returns:
An object representing the loaded model.
:param key: The key of the model.
:param submodel_type: The submodel of the model to get.
:returns: An object representing the loaded model.
"""
# The model manager emits events as it loads the model. It needs the context data to build
@@ -329,95 +289,75 @@ class ModelsInterface(InvocationContextInterface):
)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
self, model_name: str, base_model: BaseModelType, model_type: ModelType, submodel: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model by its attributes.
"""
Loads a model by its attributes.
Args:
name: Name of the model.
base: The models' base type, e.g. `BaseModelType.StableDiffusion1`, `BaseModelType.StableDiffusionXL`, etc.
type: Type of the model, e.g. `ModelType.Main`, `ModelType.Vae`, etc.
submodel_type: The type of submodel to load, e.g. `SubModelType.UNet`, `SubModelType.TextEncoder`, etc. Only main
models have submodels.
Returns:
An object representing the loaded model.
:param model_name: Name of to be fetched.
:param base_model: Base model
:param model_type: Type of the model
:param submodel: For main (pipeline models), the submodel to fetch
"""
return self._services.model_manager.load_model_by_attr(
model_name=name,
base_model=base,
model_type=type,
submodel=submodel_type,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
context_data=self._data,
)
def get_config(self, key: str) -> AnyModelConfig:
"""Gets a model's config.
"""
Gets a model's info, an dict-like object.
Args:
key: The key of the model.
Returns:
The model's config.
:param key: The key of the model.
"""
return self._services.model_manager.store.get_model(key=key)
def get_metadata(self, key: str) -> Optional[AnyModelRepoMetadata]:
"""Gets a model's metadata, if it has any.
"""
Gets a model's metadata, if it has any.
Args:
key: The key of the model.
Returns:
The model's metadata, if it has any.
:param key: The key of the model.
"""
return self._services.model_manager.store.get_metadata(key=key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.
"""
Searches for models by path.
Args:
path: The path to search for.
Returns:
A list of models that match the path.
:param path: The path to search for.
"""
return self._services.model_manager.store.search_by_path(path)
def search_by_attrs(
self,
name: Optional[str] = None,
base: Optional[BaseModelType] = None,
type: Optional[ModelType] = None,
format: Optional[ModelFormat] = None,
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
) -> list[AnyModelConfig]:
"""Searches for models by attributes.
"""
Searches for models by attributes.
Args:
name: The name to search for (exact match).
base: The base to search for, e.g. `BaseModelType.StableDiffusion1`, `BaseModelType.StableDiffusionXL`, etc.
type: Type type of model to search for, e.g. `ModelType.Main`, `ModelType.Vae`, etc.
format: The format of model to search for, e.g. `ModelFormat.Checkpoint`, `ModelFormat.Diffusers`, etc.
Returns:
A list of models that match the attributes.
:param model_name: Name of to be fetched.
:param base_model: Base model
:param model_type: Type of the model
:param submodel: For main (pipeline models), the submodel to fetch
"""
return self._services.model_manager.store.search_by_attr(
model_name=name,
base_model=base,
model_type=type,
model_format=format,
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_format=model_format,
)
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:
"""Gets the app's config.
Returns:
The app's config.
"""
"""Gets the app's config."""
return self._services.configuration.get_config()
@@ -430,11 +370,7 @@ class UtilInterface(InvocationContextInterface):
self._cancel_event = cancel_event
def is_canceled(self) -> bool:
"""Checks if the current session has been canceled.
Returns:
True if the current session has been canceled, False if not.
"""
"""Checks if the current invocation has been canceled."""
return self._cancel_event.is_set()
def sd_step_callback(self, intermediate_state: PipelineIntermediateState, base_model: BaseModelType) -> None:
@@ -444,9 +380,8 @@ class UtilInterface(InvocationContextInterface):
This should be called after each denoising step.
Args:
intermediate_state: The intermediate state of the diffusion pipeline.
base_model: The base model for the current denoising step.
:param intermediate_state: The intermediate state of the diffusion pipeline.
:param base_model: The base model for the current denoising step.
"""
stable_diffusion_step_callback(
@@ -459,17 +394,8 @@ class UtilInterface(InvocationContextInterface):
class InvocationContext:
"""Provides access to various services and data for the current invocation.
Attributes:
images (ImagesInterface): Methods to save, get and update images and their metadata.
tensors (TensorsInterface): Methods to save and get tensors, including image, noise, masks, and masked images.
conditioning (ConditioningInterface): Methods to save and get conditioning data.
models (ModelsInterface): Methods to check if a model exists, get a model, and get a model's info.
logger (LoggerInterface): The app logger.
config (ConfigInterface): The app config.
util (UtilInterface): Utility methods, including a method to check if an invocation was canceled and step callbacks.
boards (BoardsInterface): Methods to interact with boards.
"""
The `InvocationContext` provides access to various services and data for the current invocation.
"""
def __init__(
@@ -512,14 +438,11 @@ def build_invocation_context(
data: InvocationContextData,
cancel_event: threading.Event,
) -> InvocationContext:
"""Builds the invocation context for a specific invocation execution.
"""
Builds the invocation context for a specific invocation execution.
Args:
services: The invocation services to wrap.
data: The invocation context data.
Returns:
The invocation context.
:param services: The invocation services to wrap.
:param data: The invocation context data.
"""
logger = LoggerInterface(services=services, data=data)

View File

@@ -3,6 +3,7 @@
import json
import sqlite3
from hashlib import sha1
from logging import Logger
from pathlib import Path
from typing import Optional
@@ -21,7 +22,7 @@ from invokeai.backend.model_manager.config import (
ModelConfigFactory,
ModelType,
)
from invokeai.backend.model_manager.hash import ModelHash
from invokeai.backend.model_manager.hash import FastModelHash
ModelsValidator = TypeAdapter(AnyModelConfig)
@@ -72,27 +73,19 @@ class MigrateModelYamlToDb1:
base_type, model_type, model_name = str(model_key).split("/")
try:
hash = ModelHash().hash(self.config.models_path / stanza.path)
hash = FastModelHash.hash(self.config.models_path / stanza.path)
except OSError:
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
continue
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()
stanza["base"] = BaseModelType(base_type)
stanza["type"] = ModelType(model_type)
stanza["name"] = model_name
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_key = hash # deterministic key assignment
# special case for ip adapters, which need the new `image_encoder_model_id` field
if stanza["type"] == ModelType.IPAdapter:
try:
stanza["image_encoder_model_id"] = self._get_image_encoder_model_id(
self.config.models_path / stanza.path
)
except OSError:
self.logger.warning(f"Could not determine image encoder for {stanza.path}. Skipping.")
continue
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
@@ -102,7 +95,7 @@ class MigrateModelYamlToDb1:
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
self._update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {new_key}")
self.logger.info(f"Adding model {model_name} with key {model_key}")
self._add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
@@ -156,8 +149,3 @@ class MigrateModelYamlToDb1:
)
except sqlite3.IntegrityError as exc:
raise DuplicateModelException(f"{record.name}: model is already in database") from exc
def _get_image_encoder_model_id(self, model_path: Path) -> str:
with open(model_path / "image_encoder.txt") as f:
encoder = f.read()
return encoder.strip()

View File

@@ -17,7 +17,8 @@ class MigrateCallback(Protocol):
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None: ...
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
class MigrationError(RuntimeError):

View File

@@ -1,47 +1,8 @@
import re
from typing import List, Tuple
import invokeai.backend.util.logging as logger
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, ModelType
from invokeai.backend.textual_inversion import TextualInversionModelRaw
def extract_ti_triggers_from_prompt(prompt: str) -> List[str]:
ti_triggers: List[str] = []
def extract_ti_triggers_from_prompt(prompt: str) -> list[str]:
ti_triggers = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
ti_triggers.append(str(trigger))
ti_triggers.append(trigger)
return ti_triggers
def generate_ti_list(
prompt: str, base: BaseModelType, context: InvocationContext
) -> List[Tuple[str, TextualInversionModelRaw]]:
ti_list: List[Tuple[str, TextualInversionModelRaw]] = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name_or_key = trigger[1:-1]
try:
loaded_model = context.models.load(key=name_or_key)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base
ti_list.append((name_or_key, model))
except UnknownModelException:
try:
loaded_model = context.models.load_by_attrs(
name=name_or_key, base=base, type=ModelType.TextualInversion
)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base
ti_list.append((name_or_key, model))
except UnknownModelException:
pass
except ValueError:
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
except AssertionError:
logger.warning(f'trigger: "{trigger}" not a valid textual inversion model for this graph')
except Exception:
logger.warning(f'Failed to load TI model for trigger: "{trigger}"')
return ti_list

View File

@@ -1,7 +1,6 @@
"""
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401

View File

@@ -3,7 +3,6 @@ This module defines a singleton object, "invisible_watermark" that
wraps the invisible watermark model. It respects the global "invisible_watermark"
configuration variable, that allows the watermarking to be supressed.
"""
import cv2
import numpy as np
from imwatermark import WatermarkEncoder

View File

@@ -4,7 +4,6 @@ wraps the actual patchmatch object. It respects the global
"try_patchmatch" attribute, so that patchmatch loading can
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger

View File

@@ -6,7 +6,6 @@ PngWriter -- Converts Images generated by T2I into PNGs, finds
Exports function retrieve_metadata(path)
"""
import json
import os
import re

View File

@@ -3,7 +3,6 @@ This module defines a singleton object, "safety_checker" that
wraps the safety_checker model. It respects the global "nsfw_checker"
configuration variable, that allows the checker to be supressed.
"""
import numpy as np
from PIL import Image

View File

@@ -1,7 +1,6 @@
"""
Check that the invokeai_root is correctly configured and exit if not.
"""
import sys
from invokeai.app.services.config import InvokeAIAppConfig

View File

@@ -1,5 +1,4 @@
"""Utility (backend) functions used by model_install.py"""
from logging import Logger
from pathlib import Path
from typing import Any, Dict, List, Optional

View File

@@ -0,0 +1,182 @@
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
# tencent-ailab comment:
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
# loading.
class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module):
def __init__(self):
DiffusersAttnProcessor2_0.__init__(self)
nn.Module.__init__(self)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the
ip_adapter_image_prompt_embeds parameter.
"""
return DiffusersAttnProcessor2_0.__call__(
self, attn, hidden_states, encoder_hidden_states, attention_mask, temb
)
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, weights: list[IPAttentionProcessorWeights], scales: list[float]):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
assert len(weights) == len(scales)
self._weights = weights
self._scales = scales
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
ip_adapter_image_prompt_embeds=None,
):
"""Apply IP-Adapter attention.
Args:
ip_adapter_image_prompt_embeds (torch.Tensor): The image prompt embeddings.
Shape: (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@@ -1,55 +1,52 @@
from contextlib import contextmanager
from typing import Optional
from diffusers.models import UNet2DConditionModel
from invokeai.backend.ip_adapter.attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.custom_attention import CustomAttnProcessor2_0
class UNetAttentionPatcher:
"""A class for patching a UNet with CustomAttnProcessor2_0 attention layers."""
class UNetPatcher:
"""A class that contains multiple IP-Adapters and can apply them to a UNet."""
def __init__(self, ip_adapters: Optional[list[IPAdapter]]):
def __init__(self, ip_adapters: list[IPAdapter]):
self._ip_adapters = ip_adapters
self._ip_adapter_scales = None
if self._ip_adapters is not None:
self._ip_adapter_scales = [1.0] * len(self._ip_adapters)
self._scales = [1.0] * len(self._ip_adapters)
def set_scale(self, idx: int, value: float):
self._ip_adapter_scales[idx] = value
self._scales[idx] = value
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
"""Prepare a dict of attention processors that can be injected into a unet, and load the IP-Adapter attention
weights into them (if IP-Adapters are being applied).
weights into them.
Note that the `unet` param is only used to determine attention block dimensions and naming.
"""
# Construct a dict of attention processors based on the UNet's architecture.
attn_procs = {}
for idx, name in enumerate(unet.attn_processors.keys()):
if name.endswith("attn1.processor") or self._ip_adapters is None:
# "attn1" processors do not use IP-Adapters.
attn_procs[name] = CustomAttnProcessor2_0()
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor2_0()
else:
# Collect the weights from each IP Adapter for the idx'th attention processor.
attn_procs[name] = CustomAttnProcessor2_0(
attn_procs[name] = IPAttnProcessor2_0(
[ip_adapter.attn_weights.get_attention_processor_weights(idx) for ip_adapter in self._ip_adapters],
self._ip_adapter_scales,
self._scales,
)
return attn_procs
@contextmanager
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel):
"""A context manager that patches `unet` with CustomAttnProcessor2_0 attention layers."""
"""A context manager that patches `unet` with IP-Adapter attention processors."""
attn_procs = self._prepare_attention_processors(unet)
orig_attn_processors = unet.attn_processors
try:
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from
# the passed dict. So, if you wanted to keep the dict for future use, you'd have to make a
# moderately-shallow copy of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
# Note to future devs: set_attn_processor(...) does something slightly unexpected - it pops elements from the
# passed dict. So, if you wanted to keep the dict for future use, you'd have to make a moderately-shallow copy
# of it. E.g. `attn_procs_copy = {k: v for k, v in attn_procs.items()}`.
unet.set_attn_processor(attn_procs)
yield None
finally:

View File

@@ -1,5 +1,4 @@
"""Re-export frequently-used symbols from the Model Manager backend."""
from .config import (
AnyModel,
AnyModelConfig,

View File

@@ -19,7 +19,6 @@ Typical usage:
Validation errors will raise an InvalidModelConfigException error.
"""
import time
from enum import Enum
from typing import Literal, Optional, Type, Union

View File

@@ -15,7 +15,7 @@
#
# Adapted for use in InvokeAI by Lincoln Stein, July 2023
#
"""Conversion script for the Stable Diffusion checkpoints."""
""" Conversion script for the Stable Diffusion checkpoints."""
import re
from contextlib import nullcontext

View File

@@ -11,175 +11,56 @@ from invokeai.backend.model_managre.model_hash import FastModelHash
import hashlib
import os
from pathlib import Path
from typing import Callable, Literal, Optional, Union
from typing import Dict, Union
from blake3 import blake3
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
ALGORITHM = Literal[
"md5",
"sha1",
"sha224",
"sha256",
"sha384",
"sha512",
"blake2b",
"blake2s",
"sha3_224",
"sha3_256",
"sha3_384",
"sha3_512",
"shake_128",
"shake_256",
"blake3",
]
from imohash import hashfile
class ModelHash:
"""
Creates a hash of a model using a specified algorithm.
class FastModelHash(object):
"""FastModelHash obect provides one public class method, hash()."""
Args:
algorithm: Hashing algorithm to use. Defaults to BLAKE3.
file_filter: A function that takes a file name and returns True if the file should be included in the hash.
@classmethod
def hash(cls, model_location: Union[str, Path]) -> str:
"""
Return hexdigest string for model located at model_location.
If the model is a single file, it is hashed directly using the provided algorithm.
If the model is a directory, each model weights file in the directory is hashed using the provided algorithm.
Only files with the following extensions are hashed: .ckpt, .safetensors, .bin, .pt, .pth
The final hash is computed by hashing the hashes of all model files in the directory using BLAKE3, ensuring
that directory hashes are never weaker than the file hashes.
Usage:
```py
# BLAKE3 hash
ModelHash().hash("path/to/some/model.safetensors")
# MD5
ModelHash("md5").hash("path/to/model/dir/")
```
"""
def __init__(self, algorithm: ALGORITHM = "blake3", file_filter: Optional[Callable[[str], bool]] = None) -> None:
if algorithm == "blake3":
self._hash_file = self._blake3
elif algorithm in hashlib.algorithms_available:
self._hash_file = self._get_hashlib(algorithm)
:param model_location: Path to the model
"""
model_location = Path(model_location)
if model_location.is_file():
return cls._hash_file(model_location)
elif model_location.is_dir():
return cls._hash_dir(model_location)
else:
raise ValueError(f"Algorithm {algorithm} not available")
raise OSError(f"Not a valid file or directory: {model_location}")
self._file_filter = file_filter or self._default_file_filter
def hash(self, model_path: Union[str, Path]) -> str:
@classmethod
def _hash_file(cls, model_location: Union[str, Path]) -> str:
"""
Return hexdigest of hash of model located at model_path using the algorithm provided at class instantiation.
Fasthash a single file and return its hexdigest.
If model_path is a directory, the hash is computed by hashing the hashes of all model files in the
directory. The final composite hash is always computed using BLAKE3.
Args:
model_path: Path to the model
Returns:
str: Hexdigest of the hash of the model
:param model_location: Path to the model file
"""
# we return md5 hash of the filehash to make it shorter
# cryptographic security not needed here
return hashlib.md5(hashfile(model_location)).hexdigest()
model_path = Path(model_path)
if model_path.is_file():
return self._hash_file(model_path)
elif model_path.is_dir():
return self._hash_dir(model_path)
else:
raise OSError(f"Not a valid file or directory: {model_path}")
@classmethod
def _hash_dir(cls, model_location: Union[str, Path]) -> str:
components: Dict[str, str] = {}
def _hash_dir(self, dir: Path) -> str:
"""Compute the hash for all files in a directory and return a hexdigest.
for root, _dirs, files in os.walk(model_location):
for file in files:
# only tally tensor files because diffusers config files change slightly
# depending on how the model was downloaded/converted.
if not file.endswith((".ckpt", ".safetensors", ".bin", ".pt", ".pth")):
continue
path = (Path(root) / file).as_posix()
fast_hash = cls._hash_file(path)
components.update({path: fast_hash})
Args:
dir: Path to the directory
Returns:
str: Hexdigest of the hash of the directory
"""
model_component_paths = self._get_file_paths(dir, self._file_filter)
component_hashes: list[str] = []
for component in sorted(model_component_paths):
component_hashes.append(self._hash_file(component))
# BLAKE3 is cryptographically secure. We may as well fall back on a secure algorithm
# for the composite hash
composite_hasher = blake3()
for h in component_hashes:
composite_hasher.update(h.encode("utf-8"))
return composite_hasher.hexdigest()
@staticmethod
def _get_file_paths(model_path: Path, file_filter: Callable[[str], bool]) -> list[Path]:
"""Return a list of all model files in the directory.
Args:
model_path: Path to the model
file_filter: Function that takes a file name and returns True if the file should be included in the list.
Returns:
List of all model files in the directory
"""
files: list[Path] = []
for root, _dirs, _files in os.walk(model_path):
for file in _files:
if file_filter(file):
files.append(Path(root, file))
return files
@staticmethod
def _blake3(file_path: Path) -> str:
"""Hashes a file using BLAKE3
Args:
file_path: Path to the file to hash
Returns:
Hexdigest of the hash of the file
"""
file_hasher = blake3(max_threads=blake3.AUTO)
file_hasher.update_mmap(file_path)
return file_hasher.hexdigest()
@staticmethod
def _get_hashlib(algorithm: ALGORITHM) -> Callable[[Path], str]:
"""Factory function that returns a function to hash a file with the given algorithm.
Args:
algorithm: Hashing algorithm to use
Returns:
A function that hashes a file using the given algorithm
"""
def hashlib_hasher(file_path: Path) -> str:
"""Hashes a file using a hashlib algorithm. Uses `memoryview` to avoid reading the entire file into memory."""
hasher = hashlib.new(algorithm)
buffer = bytearray(128 * 1024)
mv = memoryview(buffer)
with open(file_path, "rb", buffering=0) as f:
while n := f.readinto(mv):
hasher.update(mv[:n])
return hasher.hexdigest()
return hashlib_hasher
@staticmethod
def _default_file_filter(file_path: str) -> bool:
"""A default file filter that only includes files with the following extensions: .ckpt, .safetensors, .bin, .pt, .pth
Args:
file_path: Path to the file
Returns:
True if the file matches the given extensions, otherwise False
"""
return file_path.endswith(MODEL_FILE_EXTENSIONS)
# hash all the model hashes together, using alphabetic file order
md5 = hashlib.md5()
for _path, fast_hash in sorted(components.items()):
md5.update(fast_hash.encode("utf-8"))
return md5.hexdigest()

View File

@@ -2,7 +2,6 @@
"""
Init file for the model loader.
"""
from importlib import import_module
from pathlib import Path

View File

@@ -1,7 +1,6 @@
"""
Disk-based converted model cache.
"""
from abc import ABC, abstractmethod
from pathlib import Path

View File

@@ -14,7 +14,6 @@ Use like this:
).load_model(model_config, submodel_type)
"""
import hashlib
from abc import ABC, abstractmethod
from pathlib import Path

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for LoRA model loading in InvokeAI."""
from logging import Logger
from pathlib import Path
from typing import Optional, Tuple

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for StableDiffusion model loading in InvokeAI."""
from pathlib import Path
from typing import Optional

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for TI model loading in InvokeAI."""
from pathlib import Path
from typing import Optional, Tuple

View File

@@ -18,7 +18,6 @@ assert isinstance(data, CivitaiMetadata)
if data.allow_commercial_use:
print("Commercial use of this model is allowed")
"""
from .fetch import CivitaiMetadataFetch, HuggingFaceMetadataFetch, ModelMetadataFetchBase
from .metadata_base import (
AnyModelRepoMetadata,

View File

@@ -160,10 +160,11 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
nsfw=model_json["nsfw"],
restrictions=LicenseRestrictions(
AllowNoCredit=model_json["allowNoCredit"],
AllowCommercialUse={CommercialUsage(x) for x in model_json["allowCommercialUse"]},
AllowCommercialUse=CommercialUsage(model_json["allowCommercialUse"]),
AllowDerivatives=model_json["allowDerivatives"],
AllowDifferentLicense=model_json["allowDifferentLicense"],
),
trigger_phrases=version_json["trainedWords"],
)
def from_civitai_versionid(self, version_id: int, model_id: Optional[int] = None) -> CivitaiMetadata:

View File

@@ -24,8 +24,8 @@ from pydantic import BaseModel, Field, TypeAdapter
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from typing_extensions import Annotated
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.backend.model_manager import ModelRepoVariant
from ..util import select_hf_files
@@ -55,8 +55,8 @@ class LicenseRestrictions(BaseModel):
AllowDifferentLicense: bool = Field(
description="if true, derivatives of this model be redistributed under a different license", default=False
)
AllowCommercialUse: Optional[Set[CommercialUsage] | CommercialUsage] = Field(
description="Type of commercial use allowed if no commercial use is allowed.", default=None
AllowCommercialUse: Optional[CommercialUsage] = Field(
description="Type of commercial use allowed or 'No' if no commercial use is allowed.", default=None
)
@@ -77,16 +77,14 @@ class ModelDefaultSettings(BaseModel):
cfg_scale: float | None
cfg_rescale_multiplier: float | None
class ModelMetadataBase(BaseModel):
"""Base class for model metadata information."""
name: str = Field(description="model's name")
author: str = Field(description="model's author")
tags: Optional[Set[str]] = Field(description="tags provided by model source", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(
description="default settings for this model", default=None
)
trigger_phrases: Optional[List[str]] = Field(description="trigger phrases for this model", default=None)
default_settings: Optional[ModelDefaultSettings] = Field(description="default settings for this model", default=None)
class BaseMetadata(ModelMetadataBase):
@@ -155,10 +153,7 @@ class CivitaiMetadata(ModelMetadataWithFiles):
if self.restrictions.AllowCommercialUse is None:
return False
else:
# accommodate schema change
acu = self.restrictions.AllowCommercialUse
commercial_usage = acu if isinstance(acu, set) else {acu}
return CommercialUsage.No not in commercial_usage
return self.restrictions.AllowCommercialUse != CommercialUsage("None")
@property
def allow_derivatives(self) -> bool:

View File

@@ -21,7 +21,7 @@ from .config import (
ModelVariantType,
SchedulerPredictionType,
)
from .hash import ModelHash
from .hash import FastModelHash
from .util.model_util import lora_token_vector_length, read_checkpoint_meta
CkptType = Dict[str, Any]
@@ -147,7 +147,7 @@ class ModelProbe(object):
if not probe_class:
raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}")
hash = ModelHash().hash(model_path)
hash = FastModelHash.hash(model_path)
probe = probe_class(model_path)
fields["path"] = model_path.as_posix()
@@ -188,7 +188,7 @@ class ModelProbe(object):
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields) # , key=fields.get("key", None))
model_info = ModelConfigFactory.make_config(fields, key=fields.get("key", None))
return model_info
@classmethod

View File

@@ -28,7 +28,6 @@ from typing import Callable, Optional, Set, Union
from pydantic import BaseModel, Field
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
default_logger: Logger = InvokeAILogger.get_logger()
@@ -118,10 +117,13 @@ class ModelSearch(ModelSearchBase):
"""
models_found: Set[Path] = Field(default_factory=set)
config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
scanned_dirs: Set[Path] = Field(default_factory=set)
pruned_paths: Set[Path] = Field(default_factory=set)
def search_started(self) -> None:
self.models_found = set()
self.scanned_dirs = set()
self.pruned_paths = set()
if self.on_search_started:
self.on_search_started(self._directory)
@@ -137,53 +139,53 @@ class ModelSearch(ModelSearchBase):
def search(self, directory: Union[Path, str]) -> Set[Path]:
self._directory = Path(directory)
if not self._directory.is_absolute():
self._directory = self.config.models_path / self._directory
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(self._directory)
self._walk_directory(directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str], max_depth: int = 20) -> None:
absolute_path = Path(path)
if (
len(absolute_path.parts) - len(self._directory.parts) > max_depth
or not absolute_path.exists()
or absolute_path.parent in self.models_found
):
return
entries = os.scandir(absolute_path.as_posix())
entries = [entry for entry in entries if not entry.name.startswith(".")]
dirs = [entry for entry in entries if entry.is_dir()]
file_names = [entry.name for entry in entries if entry.is_file()]
if any(
x in file_names
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
try:
self.model_found(absolute_path)
return
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
return
def _walk_directory(self, path: Union[Path, str]) -> None:
for root, dirs, files in os.walk(path, followlinks=True):
# don't descend into directories that start with a "."
# to avoid the Mac .DS_STORE issue.
if str(Path(root).name).startswith("."):
self.pruned_paths.add(Path(root))
if any(Path(root).is_relative_to(x) for x in self.pruned_paths):
continue
for n in file_names:
if n.endswith((".ckpt", ".bin", ".pth", ".safetensors", ".pt")):
try:
self.model_found(absolute_path / n)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
self.stats.items_scanned += len(dirs) + len(files)
for d in dirs:
path = Path(root) / d
if path.parent in self.scanned_dirs:
self.scanned_dirs.add(path)
continue
if any(
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
self.scanned_dirs.add(path)
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for d in dirs:
self._walk_directory(absolute_path / d)
for f in files:
path = Path(root) / f
if path.parent in self.scanned_dirs:
continue
if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))

View File

@@ -1,16 +1,15 @@
# Copyright (c) 2024 Ryan Dick, Lincoln D. Stein, and the InvokeAI Development Team
"""These classes implement model patching with LoRAs and Textual Inversions."""
from __future__ import annotations
import pickle
from contextlib import contextmanager
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from typing import Any, Dict, Iterator, List, Optional, Tuple
import numpy as np
import torch
from diffusers import OnnxRuntimeModel, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from transformers import CLIPTextModel, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager import AnyModel
@@ -169,7 +168,7 @@ class ModelPatcher:
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: Union[CLIPTextModel, CLIPTextModelWithProjection],
text_encoder: CLIPTextModel,
ti_list: List[Tuple[str, TextualInversionModelRaw]],
) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]:
init_tokens_count = None
@@ -266,7 +265,7 @@ class ModelPatcher:
@contextmanager
def apply_clip_skip(
cls,
text_encoder: Union[CLIPTextModel, CLIPTextModelWithProjection],
text_encoder: CLIPTextModel,
clip_skip: int,
) -> None:
skipped_layers = []

View File

@@ -1,14 +1,15 @@
"""
Initialization file for the invokeai.backend.stable_diffusion package
"""
from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401
from .diffusion import InvokeAIDiffuserComponent # noqa: F401
from .diffusion.cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .seamless import set_seamless # noqa: F401
__all__ = [
"PipelineIntermediateState",
"StableDiffusionGeneratorPipeline",
"InvokeAIDiffuserComponent",
"AttentionMapSaver",
"set_seamless",
]

View File

@@ -12,6 +12,7 @@ import torch
import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
@@ -23,14 +24,11 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
IPAdapterConditioningInfo,
TextConditioningData,
)
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
from ..util import auto_detect_slice_size, normalize_device
from .diffusion import AttentionMapSaver, InvokeAIDiffuserComponent
@dataclass
@@ -41,6 +39,7 @@ class PipelineIntermediateState:
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
attention_map_saver: Optional[AttentionMapSaver] = None
@dataclass
@@ -173,11 +172,10 @@ class ControlNetData:
@dataclass
class IPAdapterData:
ip_adapter_model: IPAdapter
ip_adapter_conditioning: IPAdapterConditioningInfo
# Either a single weight applied to all steps, or a list of weights for each step.
ip_adapter_model: IPAdapter = Field(default=None)
# TODO: change to polymorphic so can do different weights per step (once implemented...)
weight: Union[float, List[float]] = Field(default=1.0)
# weight: float = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
@@ -192,6 +190,19 @@ class T2IAdapterData:
end_step_percent: float = Field(default=1.0)
@dataclass
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
r"""
Output class for InvokeAI's Stable Diffusion pipeline.
Args:
attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user
after generation completes. Optional.
"""
attention_map_saver: Optional[AttentionMapSaver]
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
@@ -318,8 +329,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self,
latents: torch.Tensor,
num_inference_steps: int,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
conditioning_data: ConditioningData,
*,
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
@@ -333,9 +343,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False,
seed: Optional[int] = None,
) -> torch.Tensor:
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if init_timestep.shape[0] == 0:
return latents
return latents, None
if additional_guidance is None:
additional_guidance = []
@@ -375,11 +385,10 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try:
latents = self.generate_latents_from_embeddings(
latents, attention_map_saver = self.generate_latents_from_embeddings(
latents,
timesteps,
conditioning_data,
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
@@ -393,59 +402,46 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if mask is not None and not gradient_mask:
latents = torch.lerp(orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype))
return latents
return latents, attention_map_saver
def generate_latents_from_embeddings(
self,
latents: torch.Tensor,
timesteps,
conditioning_data: TextConditioningData,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: ConditioningData,
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
) -> torch.Tensor:
):
self._adjust_memory_efficient_attention(latents)
if additional_guidance is None:
additional_guidance = []
batch_size = latents.shape[0]
attention_map_saver: Optional[AttentionMapSaver] = None
if timesteps.shape[0] == 0:
return latents
return latents, attention_map_saver
extra_conditioning_info = conditioning_data.cond_text.extra_conditioning
use_cross_attention_control = (
extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control
)
use_ip_adapter = ip_adapter_data is not None
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
if use_cross_attention_control and use_ip_adapter:
raise ValueError(
"Prompt-to-prompt cross-attention control (`.swap()`) and IP-Adapter cannot be used simultaneously."
)
if use_cross_attention_control and use_regional_prompting:
raise ValueError(
"Prompt-to-prompt cross-attention control (`.swap()`) and regional prompting cannot be used simultaneously."
)
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_cross_attention_control:
ip_adapter_unet_patcher = None
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info,
extra_conditioning_info=conditioning_data.extra,
step_count=len(self.scheduler.timesteps),
)
if use_ip_adapter or use_regional_prompting:
ip_adapters = [ipa.ip_adapter_model for ipa in ip_adapter_data] if use_ip_adapter else None
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = False
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
with attn_ctx:
if callback is not None:
@@ -468,16 +464,31 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
unet_attention_patcher=unet_attention_patcher,
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
)
latents = step_output.prev_sample
latents = self.invokeai_diffuser.do_latent_postprocessing(
postprocessing_settings=conditioning_data.postprocessing_settings,
latents=latents,
sigma=batched_t,
step_index=i,
total_step_count=len(timesteps),
)
predicted_original = getattr(step_output, "pred_original_sample", None)
# TODO resuscitate attention map saving
# if i == len(timesteps)-1 and extra_conditioning_info is not None:
# eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
# attention_map_token_ids = range(1, eos_token_index)
# attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:])
# self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
if callback is not None:
callback(
PipelineIntermediateState(
@@ -487,25 +498,25 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
attention_map_saver=attention_map_saver,
)
)
return latents
return latents, attention_map_saver
@torch.inference_mode()
def step(
self,
t: torch.Tensor,
latents: torch.Tensor,
conditioning_data: TextConditioningData,
conditioning_data: ConditioningData,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
unet_attention_patcher: Optional[UNetAttentionPatcher] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
@@ -528,14 +539,20 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
unet_attention_patcher.set_scale(i, weight)
ip_adapter_unet_patcher.set_scale(i, weight)
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
unet_attention_patcher.set_scale(i, 0.0)
ip_adapter_unet_patcher.set_scale(i, 0.0)
# Handle ControlNet(s)
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None
mid_block_additional_residual = None
down_intrablock_additional_residuals = None
# if control_data is not None and t2i_adapter_data is not None:
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
# raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
# elif control_data is not None:
if control_data is not None:
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
control_data=control_data,
@@ -545,9 +562,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
total_step_count=total_step_count,
conditioning_data=conditioning_data,
)
# Handle T2I-Adapter(s)
down_intrablock_additional_residuals = None
# elif t2i_adapter_data is not None:
if t2i_adapter_data is not None:
accum_adapter_state = None
for single_t2i_adapter_data in t2i_adapter_data:
@@ -573,19 +588,16 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
# down_block_additional_residuals = accum_adapter_state
down_intrablock_additional_residuals = accum_adapter_state
ip_adapter_conditioning = None
if ip_adapter_data is not None:
ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
timestep=t, # TODO: debug how handled batched and non batched timesteps
step_index=step_index,
total_step_count=total_step_count,
conditioning_data=conditioning_data,
ip_adapter_conditioning=ip_adapter_conditioning,
# extra:
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
@@ -605,7 +617,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
# TODO: issue to diffusers?
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call

View File

@@ -1,5 +1,6 @@
"""
Initialization file for invokeai.models.diffusion
"""
from .cross_attention_control import InvokeAICrossAttentionMixin # noqa: F401
from .cross_attention_map_saving import AttentionMapSaver # noqa: F401
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent # noqa: F401

View File

@@ -1,5 +1,7 @@
from dataclasses import dataclass
from typing import List, Optional, Union
import dataclasses
import inspect
from dataclasses import dataclass, field
from typing import Any, List, Optional, Union
import torch
@@ -8,11 +10,6 @@ from .cross_attention_control import Arguments
@dataclass
class ExtraConditioningInfo:
"""Extra conditioning information produced by Compel.
This is used for prompt-to-prompt cross-attention control (a.k.a. `.swap()` in Compel).
"""
tokens_count_including_eos_bos: int
cross_attention_control_args: Optional[Arguments] = None
@@ -23,10 +20,12 @@ class ExtraConditioningInfo:
@dataclass
class BasicConditioningInfo:
"""SD 1/2 text conditioning information produced by Compel."""
embeds: torch.Tensor
# TODO(ryand): Right now we awkwardly copy the extra conditioning info from here up to `ConditioningData`. This
# should only be stored in one place.
extra_conditioning: Optional[ExtraConditioningInfo]
# weight: float
# mode: ConditioningAlgo
def to(self, device, dtype=None):
self.embeds = self.embeds.to(device=device, dtype=dtype)
@@ -40,8 +39,6 @@ class ConditioningFieldData:
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
"""SDXL text conditioning information produced by Compel."""
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
@@ -51,6 +48,14 @@ class SDXLConditioningInfo(BasicConditioningInfo):
return super().to(device=device, dtype=dtype)
@dataclass(frozen=True)
class PostprocessingSettings:
threshold: float
warmup: float
h_symmetry_time_pct: Optional[float]
v_symmetry_time_pct: Optional[float]
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor
@@ -64,55 +69,42 @@ class IPAdapterConditioningInfo:
@dataclass
class Range:
start: int
end: int
class ConditioningData:
unconditioned_embeddings: BasicConditioningInfo
text_embeddings: BasicConditioningInfo
"""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
"""
guidance_scale: Union[float, List[float]]
""" for models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7 .
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
"""
guidance_rescale_multiplier: float = 0
extra: Optional[ExtraConditioningInfo] = None
scheduler_args: dict[str, Any] = field(default_factory=dict)
"""
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
"""
postprocessing_settings: Optional[PostprocessingSettings] = None
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
class TextConditioningRegions:
def __init__(
self,
masks: torch.Tensor,
ranges: list[Range],
mask_weights: list[float],
):
# A binary mask indicating the regions of the image that the prompt should be applied to.
# Shape: (1, num_prompts, height, width)
# Dtype: torch.bool
self.masks = masks
@property
def dtype(self):
return self.text_embeddings.dtype
# A list of ranges indicating the start and end indices of the embeddings that corresponding mask applies to.
# ranges[i] contains the embedding range for the i'th prompt / mask.
self.ranges = ranges
self.mask_weights = mask_weights
assert self.masks.shape[1] == len(self.ranges) == len(self.mask_weights)
class TextConditioningData:
def __init__(
self,
uncond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
cond_text: Union[BasicConditioningInfo, SDXLConditioningInfo],
uncond_regions: Optional[TextConditioningRegions],
cond_regions: Optional[TextConditioningRegions],
guidance_scale: Union[float, List[float]],
guidance_rescale_multiplier: float = 0,
):
self.uncond_text = uncond_text
self.cond_text = cond_text
self.uncond_regions = uncond_regions
self.cond_regions = cond_regions
# Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
# `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
# Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
# images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
self.guidance_scale = guidance_scale
# For models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7.
# See [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
self.guidance_rescale_multiplier = guidance_rescale_multiplier
def is_sdxl(self):
assert isinstance(self.uncond_text, SDXLConditioningInfo) == isinstance(self.cond_text, SDXLConditioningInfo)
return isinstance(self.cond_text, SDXLConditioningInfo)
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args)
step_method = inspect.signature(scheduler.step)
for name, value in kwargs.items():
try:
step_method.bind_partial(**{name: value})
except TypeError:
# FIXME: don't silently discard arguments
pass # debug("%s does not accept argument named %r", scheduler, name)
else:
scheduler_args[name] = value
return dataclasses.replace(self, scheduler_args=scheduler_args)

View File

@@ -3,13 +3,19 @@
import enum
import math
from dataclasses import dataclass, field
from typing import Optional
from typing import Callable, Optional
import diffusers
import psutil
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.attention_processor import Attention, SlicedAttnProcessor
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, SlicedAttnProcessor
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype
@@ -19,14 +25,72 @@ class CrossAttentionType(enum.Enum):
TOKENS = 2
class CrossAttnControlContext:
def __init__(self, arguments: Arguments):
class Context:
cross_attention_mask: Optional[torch.Tensor]
cross_attention_index_map: Optional[torch.Tensor]
class Action(enum.Enum):
NONE = 0
SAVE = (1,)
APPLY = 2
def __init__(self, arguments: Arguments, step_count: int):
"""
:param arguments: Arguments for the cross-attention control process
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
"""
self.cross_attention_mask: Optional[torch.Tensor] = None
self.cross_attention_index_map: Optional[torch.Tensor] = None
self.cross_attention_mask = None
self.cross_attention_index_map = None
self.self_cross_attention_action = Context.Action.NONE
self.tokens_cross_attention_action = Context.Action.NONE
self.arguments = arguments
self.step_count = step_count
self.self_cross_attention_module_identifiers = []
self.tokens_cross_attention_module_identifiers = []
self.saved_cross_attention_maps = {}
self.clear_requests(cleanup=True)
def register_cross_attention_modules(self, model):
for name, _module in get_cross_attention_modules(model, CrossAttentionType.SELF):
if name in self.self_cross_attention_module_identifiers:
raise AssertionError(f"name {name} cannot appear more than once")
self.self_cross_attention_module_identifiers.append(name)
for name, _module in get_cross_attention_modules(model, CrossAttentionType.TOKENS):
if name in self.tokens_cross_attention_module_identifiers:
raise AssertionError(f"name {name} cannot appear more than once")
self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.SAVE
else:
self.tokens_cross_attention_action = Context.Action.SAVE
def request_apply_saved_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = Context.Action.APPLY
else:
self.tokens_cross_attention_action = Context.Action.APPLY
def is_tokens_cross_attention(self, module_identifier) -> bool:
return module_identifier in self.tokens_cross_attention_module_identifiers
def get_should_save_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.SAVE
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.SAVE
return False
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == Context.Action.APPLY
elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == Context.Action.APPLY
return False
def get_active_cross_attention_control_types_for_step(
self, percent_through: float = None
@@ -47,8 +111,219 @@ class CrossAttnControlContext:
to_control.append(CrossAttentionType.TOKENS)
return to_control
def save_slice(
self,
identifier: str,
slice: torch.Tensor,
dim: Optional[int],
offset: int,
slice_size: Optional[int],
):
if identifier not in self.saved_cross_attention_maps:
self.saved_cross_attention_maps[identifier] = {
"dim": dim,
"slice_size": slice_size,
"slices": {offset or 0: slice},
}
else:
self.saved_cross_attention_maps[identifier]["slices"][offset or 0] = slice
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: CrossAttnControlContext):
def get_slice(
self,
identifier: str,
requested_dim: Optional[int],
requested_offset: int,
slice_size: int,
):
saved_attention_dict = self.saved_cross_attention_maps[identifier]
if requested_dim is None:
if saved_attention_dict["dim"] is not None:
raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
return saved_attention_dict["slices"][0]
if saved_attention_dict["dim"] == requested_dim:
if slice_size != saved_attention_dict["slice_size"]:
raise RuntimeError(
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}"
)
return saved_attention_dict["slices"][requested_offset]
if saved_attention_dict["dim"] is None:
whole_saved_attention = saved_attention_dict["slices"][0]
if requested_dim == 0:
return whole_saved_attention[requested_offset : requested_offset + slice_size]
elif requested_dim == 1:
return whole_saved_attention[:, requested_offset : requested_offset + slice_size]
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
def get_slicing_strategy(self, identifier: str) -> tuple[Optional[int], Optional[int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None:
return None, None
return saved_attention["dim"], saved_attention["slice_size"]
def clear_requests(self, cleanup=True):
self.tokens_cross_attention_action = Context.Action.NONE
self.self_cross_attention_action = Context.Action.NONE
if cleanup:
self.saved_cross_attention_maps = {}
def offload_saved_attention_slices_to_cpu(self):
for _key, map_dict in self.saved_cross_attention_maps.items():
for offset, slice in map_dict["slices"].items():
map_dict[offset] = slice.to("cpu")
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
def __init__(self):
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
self.attention_slice_wrangler = None
self.slicing_strategy_getter = None
self.attention_slice_calculated_callback = None
def set_attention_slice_wrangler(
self,
wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]],
):
"""
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
Pass None to use the default attention calculation.
:return:
"""
self.attention_slice_wrangler = wrangler
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int, int]]]):
self.slicing_strategy_getter = getter
def set_attention_slice_calculated_callback(self, callback: Optional[Callable[[torch.Tensor], None]]):
self.attention_slice_calculated_callback = callback
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
# calculate attention scores
# attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)
attention_scores = torch.baddbmm(
torch.empty(
query.shape[0],
query.shape[1],
key.shape[1],
dtype=query.dtype,
device=query.device,
),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
# calculate attention slice by taking the best scores for each latent pixel
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
attention_slice_wrangler = self.attention_slice_wrangler
if attention_slice_wrangler is not None:
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
else:
attention_slice = default_attention_slice
if self.attention_slice_calculated_callback is not None:
self.attention_slice_calculated_callback(attention_slice, dim, offset, slice_size)
hidden_states = torch.bmm(attention_slice, value)
return hidden_states
def einsum_op_slice_dim0(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
return r
def einsum_op_slice_dim1(self, q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
return r
def einsum_op_mps_v1(self, q, k, v):
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
return self.einsum_op_slice_dim1(q, k, v, slice_size)
def einsum_op_mps_v2(self, q, k, v):
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
return self.einsum_lowest_level(q, k, v, None, None, None)
else:
return self.einsum_op_slice_dim0(q, k, v, 1)
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return self.einsum_lowest_level(q, k, v, None, None, None)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(self, q, k, v):
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
slicing_strategy_getter = self.slicing_strategy_getter
if slicing_strategy_getter is not None:
(dim, slice_size) = slicing_strategy_getter(self)
if dim is not None:
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
if dim == 0:
return self.einsum_op_slice_dim0(q, k, v, slice_size)
elif dim == 1:
return self.einsum_op_slice_dim1(q, k, v, slice_size)
# fallback for when there is no saved strategy, or saved strategy does not slice
mem_free_total = get_mem_free_total(q.device)
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def get_invokeai_attention_mem_efficient(self, q, k, v):
if q.device.type == "cuda":
# print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
return self.einsum_op_cuda(q, k, v)
if q.device.type == "mps" or q.device.type == "cpu":
if self.mem_total_gb >= 32:
return self.einsum_op_mps_v1(q, k, v)
return self.einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return self.einsum_op_tensor_mem(q, k, v, 32)
def restore_default_cross_attention(
model,
is_running_diffusers: bool,
restore_attention_processor: Optional[AttentionProcessor] = None,
):
if is_running_diffusers:
unet = model
unet.set_attn_processor(restore_attention_processor or AttnProcessor())
else:
remove_attention_function(model)
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
@@ -87,6 +362,170 @@ def setup_cross_attention_control_attention_processors(unet: UNet2DConditionMode
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
cross_attention_class: type = InvokeAIDiffusersCrossAttention
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [
(name, module)
for name, module in model.named_modules()
if isinstance(module, cross_attention_class) and which_attn in name
]
cross_attention_modules_in_model_count = len(attention_module_tuples)
expected_count = 16
if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work.
logger.error(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching "
"failed or some assumption has changed about the structure of the model itself. Please fix the "
f"monkey-patching, and/or update the {expected_count} above to an appropriate number, and/or find and "
"inform someone who knows what it means. This error is non-fatal, but it is likely that .swap() and "
"attention map display will not work properly until it is fixed."
)
return attention_module_tuples
def inject_attention_function(unet, context: Context):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler(module, suggested_attention_slice: torch.Tensor, dim, offset, slice_size):
# memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
attention_slice = suggested_attention_slice
if context.get_should_save_maps(module.identifier):
# print(module.identifier, "saving suggested_attention_slice of shape",
# suggested_attention_slice.shape, "dim", dim, "offset", offset)
slice_to_save = attention_slice.to("cpu") if dim is not None else attention_slice
context.save_slice(
module.identifier,
slice_to_save,
dim=dim,
offset=offset,
slice_size=slice_size,
)
elif context.get_should_apply_saved_maps(module.identifier):
# print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
# slice may have been offloaded to CPU
saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
if context.is_tokens_cross_attention(module.identifier):
index_map = context.cross_attention_index_map
remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
this_attention_slice = suggested_attention_slice
mask = context.cross_attention_mask.to(torch_dtype(suggested_attention_slice.device))
saved_mask = mask
this_mask = 1 - mask
attention_slice = remapped_saved_attention_slice * saved_mask + this_attention_slice * this_mask
else:
# just use everything
attention_slice = saved_attention_slice
return attention_slice
cross_attention_modules = get_cross_attention_modules(
unet, CrossAttentionType.TOKENS
) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for identifier, module in cross_attention_modules:
module.identifier = identifier
try:
module.set_attention_slice_wrangler(attention_slice_wrangler)
module.set_slicing_strategy_getter(lambda module: context.get_slicing_strategy(identifier)) # noqa: B023
except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}") # TODO
else:
raise
def remove_attention_function(unet):
cross_attention_modules = get_cross_attention_modules(
unet, CrossAttentionType.TOKENS
) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
for _identifier, module in cross_attention_modules:
try:
# clear wrangler callback
module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None)
except AttributeError as e:
if is_attribute_error_about(e, "set_attention_slice_wrangler"):
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}")
else:
raise
def is_attribute_error_about(error: AttributeError, attribute: str):
if hasattr(error, "name"): # Python 3.10
return error.name == attribute
else: # Python 3.9
return attribute in str(error)
def get_mem_free_total(device):
# only on cuda
if not torch.cuda.is_available():
return None
stats = torch.cuda.memory_stats(device)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.Attention, InvokeAICrossAttentionMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
InvokeAICrossAttentionMixin.__init__(self)
def _attention(self, query, key, value, attention_mask=None):
# default_result = super()._attention(query, key, value)
if attention_mask is not None:
print(f"{type(self).__name__} ignoring passed-in attention_mask")
attention_result = self.get_invokeai_attention_mem_efficient(query, key, value)
hidden_states = self.reshape_batch_dim_to_heads(attention_result)
return hidden_states
## 🧨diffusers implementation follows
"""
# base implementation
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
"""
@dataclass
class SwapCrossAttnContext:
modified_text_embeddings: torch.Tensor
@@ -94,6 +533,18 @@ class SwapCrossAttnContext:
mask: torch.Tensor # in the target space of the index_map
cross_attention_types_to_do: list[CrossAttentionType] = field(default_factory=list)
def __int__(
self,
cac_types_to_do: [CrossAttentionType],
modified_text_embeddings: torch.Tensor,
index_map: torch.Tensor,
mask: torch.Tensor,
):
self.cross_attention_types_to_do = cac_types_to_do
self.modified_text_embeddings = modified_text_embeddings
self.index_map = index_map
self.mask = mask
def wants_cross_attention_control(self, attn_type: CrossAttentionType) -> bool:
return attn_type in self.cross_attention_types_to_do

View File

@@ -0,0 +1,100 @@
import math
from typing import Optional
import torch
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from torchvision.transforms.functional import resize as tv_resize
class AttentionMapSaver:
def __init__(self, token_ids: range, latents_shape: torch.Size):
self.token_ids = token_ids
self.latents_shape = latents_shape
# self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]])
self.collated_maps: dict[str, torch.Tensor] = {}
def clear_maps(self):
self.collated_maps = {}
def add_attention_maps(self, maps: torch.Tensor, key: str):
"""
Accumulate the given attention maps and store by summing with existing maps at the passed-in key (if any).
:param maps: Attention maps to store. Expected shape [A, (H*W), N] where A is attention heads count, H and W are the map size (fixed per-key) and N is the number of tokens (typically 77).
:param key: Storage key. If a map already exists for this key it will be summed with the incoming data. In this case the maps sizes (H and W) should match.
:return: None
"""
key_and_size = f"{key}_{maps.shape[1]}"
# extract desired tokens
maps = maps[:, :, self.token_ids]
# merge attention heads to a single map per token
maps = torch.sum(maps, 0)
# store
if key_and_size not in self.collated_maps:
self.collated_maps[key_and_size] = torch.zeros_like(maps, device="cpu")
self.collated_maps[key_and_size] += maps.cpu()
def write_maps_to_disk(self, path: str):
pil_image = self.get_stacked_maps_image()
if pil_image is not None:
pil_image.save(path, "PNG")
def get_stacked_maps_image(self) -> Optional[Image.Image]:
"""
Scale all collected attention maps to the same size, blend them together and return as an image.
:return: An image containing a vertical stack of blended attention maps, one for each requested token.
"""
num_tokens = len(self.token_ids)
if num_tokens == 0:
return None
latents_height = self.latents_shape[0]
latents_width = self.latents_shape[1]
merged = None
for _key, maps in self.collated_maps.items():
# maps has shape [(H*W), N] for N tokens
# but we want [N, H, W]
this_scale_factor = math.sqrt(maps.shape[0] / (latents_width * latents_height))
this_maps_height = int(float(latents_height) * this_scale_factor)
this_maps_width = int(float(latents_width) * this_scale_factor)
# and we need to do some dimension juggling
maps = torch.reshape(
torch.swapdims(maps, 0, 1),
[num_tokens, this_maps_height, this_maps_width],
)
# scale to output size if necessary
if this_scale_factor != 1:
maps = tv_resize(maps, [latents_height, latents_width], InterpolationMode.BICUBIC)
# normalize
maps_min = torch.min(maps)
maps_range = torch.max(maps) - maps_min
# print(f"map {key} size {[this_maps_width, this_maps_height]} range {[maps_min, maps_min + maps_range]}")
maps_normalized = (maps - maps_min) / maps_range
# expand to (-0.1, 1.1) and clamp
maps_normalized_expanded = maps_normalized * 1.1 - 0.05
maps_normalized_expanded_clamped = torch.clamp(maps_normalized_expanded, 0, 1)
# merge together, producing a vertical stack
maps_stacked = torch.reshape(
maps_normalized_expanded_clamped,
[num_tokens * latents_height, latents_width],
)
if merged is None:
merged = maps_stacked
else:
# screen blend
merged = 1 - (1 - maps_stacked) * (1 - merged)
if merged is None:
return None
merged_bytes = merged.mul(0xFF).byte()
return Image.fromarray(merged_bytes.numpy(), mode="L")

View File

@@ -1,242 +0,0 @@
import math
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
from diffusers.utils import USE_PEFT_BACKEND
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
class CustomAttnProcessor2_0(AttnProcessor2_0):
"""A custom implementation of AttnProcessor2_0 that supports additional Invoke features.
This implementation is based on
https://github.com/huggingface/diffusers/blame/fcfa270fbd1dc294e2f3a505bae6bcb791d721c3/src/diffusers/models/attention_processor.py#L1204
Supported custom features:
- IP-Adapter
- Regional prompt attention
"""
def __init__(
self,
ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None,
ip_adapter_scales: Optional[list[float]] = None,
):
"""Initialize a CustomAttnProcessor2_0.
Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are
layer-specific are passed to __init__().
Args:
ip_adapter_weights: The IP-Adapter attention weights. ip_adapter_weights[i] contains the attention weights
for the i'th IP-Adapter.
ip_adapter_scales: The IP-Adapter attention scales. ip_adapter_scales[i] contains the attention scale for
the i'th IP-Adapter.
"""
super().__init__()
self._ip_adapter_weights = ip_adapter_weights
self._ip_adapter_scales = ip_adapter_scales
assert (self._ip_adapter_weights is None) == (self._ip_adapter_scales is None)
if self._ip_adapter_weights is not None:
assert len(ip_adapter_weights) == len(ip_adapter_scales)
def _is_ip_adapter_enabled(self) -> bool:
return self._ip_adapter_weights is not None
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
# For regional prompting:
regional_prompt_data: Optional[RegionalPromptData] = None,
percent_through: Optional[float] = None,
# For IP-Adapter:
ip_adapter_image_prompt_embeds: Optional[list[torch.Tensor]] = None,
) -> torch.FloatTensor:
"""Apply attention.
Args:
regional_prompt_data: The regional prompt data for the current batch. If not None, this will be used to
apply regional prompt masking.
ip_adapter_image_prompt_embeds: The IP-Adapter image prompt embeddings for the current batch.
ip_adapter_image_prompt_embeds[i] contains the image prompt embeddings for the i'th IP-Adapter. Each
tensor has shape (batch_size, num_ip_images, seq_len, ip_embedding_len).
"""
# If true, we are doing cross-attention, if false we are doing self-attention.
is_cross_attention = encoder_hidden_states is not None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
# Handle regional prompt attention masks.
if regional_prompt_data is not None:
assert percent_through is not None
_, query_seq_len, _ = hidden_states.shape
if is_cross_attention:
prompt_region_attention_mask = regional_prompt_data.get_cross_attn_mask(
query_seq_len=query_seq_len, key_seq_len=sequence_length
)
# TODO(ryand): Avoid redundant type/device conversion here.
prompt_region_attention_mask = prompt_region_attention_mask.to(
dtype=hidden_states.dtype, device=hidden_states.device
)
attn_mask_weight = 1.0 * ((1 - percent_through) ** 5)
else: # self-attention
prompt_region_attention_mask = regional_prompt_data.get_self_attn_mask(
query_seq_len=query_seq_len,
percent_through=percent_through,
)
attn_mask_weight = 0.3 * ((1 - percent_through) ** 5)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if regional_prompt_data is not None and percent_through < 0.3:
# Don't apply to uncond????
prompt_region_attention_mask = attn.prepare_attention_mask(
prompt_region_attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
prompt_region_attention_mask = prompt_region_attention_mask.view(
batch_size, attn.heads, -1, prompt_region_attention_mask.shape[-1]
)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor
m_pos = attn_weight.max(dim=-1, keepdim=True)[0] - attn_weight
m_neg = attn_weight - attn_weight.min(dim=-1, keepdim=True)[0]
prompt_region_attention_mask = attn_mask_weight * (
m_pos * prompt_region_attention_mask - m_neg * (1.0 - prompt_region_attention_mask)
)
if attention_mask is None:
attention_mask = prompt_region_attention_mask
else:
attention_mask = prompt_region_attention_mask + attention_mask
else:
pass
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# End unmodified block from AttnProcessor2_0.
# Apply IP-Adapter conditioning.
if is_cross_attention and self._is_ip_adapter_enabled():
if self._is_ip_adapter_enabled():
assert ip_adapter_image_prompt_embeds is not None
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._ip_adapter_weights, self._ip_adapter_scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.
assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1]
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)
# Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
# Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
# Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim)
hidden_states = hidden_states + scale * ip_hidden_states
else:
# If IP-Adapter is not enabled, then ip_adapter_image_prompt_embeds should not be passed in.
assert ip_adapter_image_prompt_embeds is None
# Start unmodified block from AttnProcessor2_0.
# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states

View File

@@ -1,164 +0,0 @@
import torch
import torch.nn.functional as F
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:
def __init__(
self,
regions: list[TextConditioningRegions],
device: torch.device,
dtype: torch.dtype,
max_downscale_factor: int = 8,
):
"""Initialize a `RegionalPromptData` object.
Args:
regions (list[TextConditioningRegions]): regions[i] contains the prompt regions for the i'th sample in the
batch.
device (torch.device): The device to use for the attention masks.
dtype (torch.dtype): The data type to use for the attention masks.
max_downscale_factor: Spatial masks will be prepared for downscale factors from 1 to max_downscale_factor
in steps of 2x.
"""
self._regions = regions
self._device = device
self._dtype = dtype
# self._spatial_masks_by_seq_len[b][s] contains the spatial masks for the b'th batch sample with a query
# sequence length of s.
self._spatial_masks_by_seq_len: list[dict[int, torch.Tensor]] = self._prepare_spatial_masks(
regions, max_downscale_factor
)
self._negative_cross_attn_mask_score = 0.0
self._size_weight = 1.0
def _prepare_spatial_masks(
self, regions: list[TextConditioningRegions], max_downscale_factor: int = 8
) -> list[dict[int, torch.Tensor]]:
"""Prepare the spatial masks for all downscaling factors."""
# batch_masks_by_seq_len[b][s] contains the spatial masks for the b'th batch sample with a query sequence length
# of s.
batch_sample_masks_by_seq_len: list[dict[int, torch.Tensor]] = []
for batch_sample_regions in regions:
batch_sample_masks_by_seq_len.append({})
# Convert the bool masks to float masks so that max pooling can be applied.
batch_sample_masks = batch_sample_regions.masks.to(device=self._device, dtype=self._dtype)
# Downsample the spatial dimensions by factors of 2 until max_downscale_factor is reached.
downscale_factor = 1
while downscale_factor <= max_downscale_factor:
b, _num_prompts, h, w = batch_sample_masks.shape
assert b == 1
query_seq_len = h * w
batch_sample_masks_by_seq_len[-1][query_seq_len] = batch_sample_masks
downscale_factor *= 2
if downscale_factor <= max_downscale_factor:
# We use max pooling because we downscale to a pretty low resolution, so we don't want small prompt
# regions to be lost entirely.
# TODO(ryand): In the future, we may want to experiment with other downsampling methods, and could
# potentially use a weighted mask rather than a binary mask.
batch_sample_masks = F.max_pool2d(batch_sample_masks, kernel_size=2, stride=2)
return batch_sample_masks_by_seq_len
def get_cross_attn_mask(self, query_seq_len: int, key_seq_len: int) -> torch.Tensor:
"""Get the cross-attention mask for the given query sequence length.
Args:
query_seq_len: The length of the flattened spatial features at the current downscaling level.
key_seq_len (int): The sequence length of the prompt embeddings (which act as the key in the cross-attention
layers). This is most likely equal to the max embedding range end, but we pass it explicitly to be sure.
Returns:
torch.Tensor: The masks.
shape: (batch_size, query_seq_len, key_seq_len).
dtype: float
The mask is a binary mask with values of 0.0 and 1.0.
"""
batch_size = len(self._spatial_masks_by_seq_len)
batch_spatial_masks = [self._spatial_masks_by_seq_len[b][query_seq_len] for b in range(batch_size)]
# Create an empty attention mask with the correct shape.
attn_mask = torch.zeros((batch_size, query_seq_len, key_seq_len), dtype=self._dtype, device=self._device)
for batch_idx in range(batch_size):
batch_sample_spatial_masks = batch_spatial_masks[batch_idx]
batch_sample_regions = self._regions[batch_idx]
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
_, num_prompts, _, _ = batch_sample_spatial_masks.shape
batch_sample_query_masks = batch_sample_spatial_masks.view((1, num_prompts, query_seq_len, 1))
for prompt_idx, embedding_range in enumerate(batch_sample_regions.ranges):
batch_sample_query_scores = batch_sample_query_masks[0, prompt_idx, :, :]
size = batch_sample_query_scores.sum() / batch_sample_query_scores.numel()
mask_weight = batch_sample_regions.mask_weights[prompt_idx]
# size = size.to(dtype=batch_sample_query_scores.dtype)
# batch_sample_query_mask = batch_sample_query_scores > 0.5
# batch_sample_query_scores[batch_sample_query_mask] = 1.0 * (1.0 - size)
# batch_sample_query_scores[~batch_sample_query_mask] = 0.0
attn_mask[batch_idx, :, embedding_range.start : embedding_range.end] = batch_sample_query_scores * (
mask_weight + self._size_weight * (1 - size)
)
return attn_mask
def get_self_attn_mask(self, query_seq_len: int, percent_through: float) -> torch.Tensor:
"""Get the self-attention mask for the given query sequence length.
Args:
query_seq_len: The length of the flattened spatial features at the current downscaling level.
Returns:
torch.Tensor: The masks.
shape: (batch_size, query_seq_len, query_seq_len).
dtype: float
The mask is a binary mask with values of 0.0 and 1.0.
"""
batch_size = len(self._spatial_masks_by_seq_len)
batch_spatial_masks = [self._spatial_masks_by_seq_len[b][query_seq_len] for b in range(batch_size)]
# Create an empty attention mask with the correct shape.
attn_mask = torch.zeros((batch_size, query_seq_len, query_seq_len), dtype=self._dtype, device=self._device)
for batch_idx in range(batch_size):
batch_sample_spatial_masks = batch_spatial_masks[batch_idx]
batch_sample_regions = self._regions[batch_idx]
# Flatten the spatial dimensions of the mask by reshaping to (1, num_prompts, query_seq_len, 1).
_, num_prompts, _, _ = batch_sample_spatial_masks.shape
batch_sample_query_masks = batch_sample_spatial_masks.view((1, num_prompts, query_seq_len, 1))
for prompt_idx in range(num_prompts):
prompt_query_mask = batch_sample_query_masks[0, prompt_idx, :, 0] # Shape: (query_seq_len,)
size = prompt_query_mask.sum() / prompt_query_mask.numel()
size = size.to(dtype=prompt_query_mask.dtype)
mask_weight = batch_sample_regions.mask_weights[prompt_idx]
# Multiply a (1, query_seq_len) mask by a (query_seq_len, 1) mask to get a (query_seq_len,
# query_seq_len) mask.
# TODO(ryand): Is += really the best option here? Maybe elementwise max is better?
attn_mask[batch_idx, :, :] = torch.maximum(
attn_mask[batch_idx, :, :],
prompt_query_mask.unsqueeze(0)
* prompt_query_mask.unsqueeze(1)
* (mask_weight + self._size_weight * (1 - size)),
)
# if attn_mask[batch_idx].max() < 0.01:
# attn_mask[batch_idx, ...] = 1.0
# attn_mask[attn_mask > 0.5] = 1.0
# attn_mask[attn_mask <= 0.5] = 0.0
# attn_mask_min = attn_mask[batch_idx].min()
# # Adjust so that the minimum value is 0.0 regardless of whether all pixels are covered or not.
# if abs(attn_mask_min) > 0.0001:
# attn_mask[batch_idx] = attn_mask[batch_idx] - attn_mask_min
return attn_mask

View File

@@ -1,7 +1,6 @@
from __future__ import annotations
import math
import time
from contextlib import contextmanager
from typing import Any, Callable, Optional, Union
@@ -11,20 +10,20 @@ from typing_extensions import TypeAlias
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ConditioningData,
ExtraConditioningInfo,
IPAdapterConditioningInfo,
Range,
TextConditioningData,
TextConditioningRegions,
PostprocessingSettings,
SDXLConditioningInfo,
)
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
from .cross_attention_control import (
Context,
CrossAttentionType,
CrossAttnControlContext,
SwapCrossAttnContext,
get_cross_attention_modules,
setup_cross_attention_control_attention_processors,
)
from .cross_attention_map_saving import AttentionMapSaver
ModelForwardCallback: TypeAlias = Union[
# x, t, conditioning, Optional[cross-attention kwargs]
@@ -59,6 +58,7 @@ class InvokeAIDiffuserComponent:
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
"""
config = InvokeAIAppConfig.get_config()
self.conditioning = None
self.model = model
self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
@@ -69,12 +69,14 @@ class InvokeAIDiffuserComponent:
self,
unet: UNet2DConditionModel,
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int,
):
old_attn_processors = unet.attn_processors
try:
self.cross_attention_control_context = CrossAttnControlContext(
self.cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
@@ -85,6 +87,27 @@ class InvokeAIDiffuserComponent:
finally:
self.cross_attention_control_context = None
unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving
# self.remove_attention_map_saving()
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:
# sliced tokens attention map saving is not implemented
return
saver.add_attention_maps(slice, key)
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for identifier, module in tokens_cross_attention_modules:
key = "down" if identifier.startswith("down") else "up" if identifier.startswith("up") else "mid"
module.set_attention_slice_calculated_callback(
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key)
)
def remove_attention_map_saving(self):
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
for _, module in tokens_cross_attention_modules:
module.set_attention_slice_calculated_callback(None)
def do_controlnet_step(
self,
@@ -93,7 +116,7 @@ class InvokeAIDiffuserComponent:
timestep: torch.Tensor,
step_index: int,
total_step_count: int,
conditioning_data: TextConditioningData,
conditioning_data,
):
down_block_res_samples, mid_block_res_sample = None, None
@@ -126,30 +149,38 @@ class InvokeAIDiffuserComponent:
added_cond_kwargs = None
if cfg_injection: # only applying ControlNet to conditional instead of in unconditioned
if conditioning_data.is_sdxl():
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.cond_text.add_time_ids,
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
encoder_hidden_states = conditioning_data.cond_text.embeds
encoder_hidden_states = conditioning_data.text_embeddings.embeds
encoder_attention_mask = None
else:
if conditioning_data.is_sdxl():
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat(
[
conditioning_data.uncond_text.pooled_embeds,
conditioning_data.cond_text.pooled_embeds,
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[conditioning_data.uncond_text.add_time_ids, conditioning_data.cond_text.add_time_ids],
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
dim=0,
),
}
(encoder_hidden_states, encoder_attention_mask) = self._concat_conditionings_for_batch(
conditioning_data.uncond_text.embeds, conditioning_data.cond_text.embeds
(
encoder_hidden_states,
encoder_attention_mask,
) = self._concat_conditionings_for_batch(
conditioning_data.unconditioned_embeddings.embeds,
conditioning_data.text_embeddings.embeds,
)
if isinstance(control_datum.weight, list):
# if controlnet has multiple weights, use the weight for the current step
@@ -193,56 +224,68 @@ class InvokeAIDiffuserComponent:
self,
sample: torch.Tensor,
timestep: torch.Tensor,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
conditioning_data, # TODO: type
step_index: int,
total_step_count: int,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
**kwargs,
):
percent_through = step_index / total_step_count
cross_attention_control_types_to_do = []
context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None:
cross_attention_control_types_to_do = (
self.cross_attention_control_context.get_active_cross_attention_control_types_for_step(percent_through)
percent_through = step_index / total_step_count
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(
percent_through
)
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
if wants_cross_attention_control or self.sequential_guidance:
# If wants_cross_attention_control is True, we force the sequential mode to be used, because cross-attention
# control is currently only supported in sequential mode.
if wants_cross_attention_control:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_cross_attention_controlled_conditioning(
sample,
timestep,
conditioning_data,
cross_attention_control_types_to_do,
**kwargs,
)
elif self.sequential_guidance:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_standard_conditioning_sequentially(
x=sample,
sigma=timestep,
conditioning_data=conditioning_data,
ip_adapter_conditioning=ip_adapter_conditioning,
percent_through=percent_through,
cross_attention_control_types_to_do=cross_attention_control_types_to_do,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
sample,
timestep,
conditioning_data,
**kwargs,
)
else:
(
unconditioned_next_x,
conditioned_next_x,
) = self._apply_standard_conditioning(
x=sample,
sigma=timestep,
conditioning_data=conditioning_data,
percent_through=percent_through,
ip_adapter_conditioning=ip_adapter_conditioning,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
sample,
timestep,
conditioning_data,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
def do_latent_postprocessing(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
sigma,
step_index,
total_step_count,
) -> torch.Tensor:
if postprocessing_settings is not None:
percent_through = step_index / total_step_count
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
return latents
def _concat_conditionings_for_batch(self, unconditioning, conditioning):
def _pad_conditioning(cond, target_len, encoder_attention_mask):
conditioning_attention_mask = torch.ones(
@@ -290,82 +333,58 @@ class InvokeAIDiffuserComponent:
return torch.cat([unconditioning, conditioning]), encoder_attention_mask
def _apply_standard_conditioning(
self,
x,
sigma,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
percent_through: float,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
):
# methods below are called from do_diffusion_step and should be considered private to this class.
def _apply_standard_conditioning(self, x, sigma, conditioning_data: ConditioningData, **kwargs):
"""Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at
the cost of higher memory usage.
"""
x_twice = torch.cat([x] * 2)
sigma_twice = torch.cat([sigma] * 2)
cross_attention_kwargs = {}
if ip_adapter_conditioning is not None:
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.stack([ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds])
for ipa_conditioning in ip_adapter_conditioning
]
uncond_text = conditioning_data.uncond_text
cond_text = conditioning_data.cond_text
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.stack(
[ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds]
)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
added_cond_kwargs = None
if conditioning_data.is_sdxl():
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
added_cond_kwargs = {
"text_embeds": torch.cat([uncond_text.pooled_embeds, cond_text.pooled_embeds], dim=0),
"time_ids": torch.cat([uncond_text.add_time_ids, cond_text.add_time_ids], dim=0),
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.unconditioned_embeddings.pooled_embeds,
conditioning_data.text_embeddings.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.unconditioned_embeddings.add_time_ids,
conditioning_data.text_embeddings.add_time_ids,
],
dim=0,
),
}
both_conditionings, encoder_attention_mask = self._concat_conditionings_for_batch(
uncond_text.embeds, cond_text.embeds
conditioning_data.unconditioned_embeddings.embeds, conditioning_data.text_embeddings.embeds
)
if conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None:
# TODO(ryand): We currently initialize RegionalPromptData for every denoising step. The text conditionings
# and masks are not changing from step-to-step, so this really only needs to be done once. While this seems
# painfully inefficient, the time spent is typically negligible compared to the forward inference pass of
# the UNet. The main reason that this hasn't been moved up to eliminate redundancy is that it is slightly
# awkward to handle both standard conditioning and sequential conditioning further up the stack.
regions = []
for c, r in [
(conditioning_data.uncond_text, conditioning_data.uncond_regions),
(conditioning_data.cond_text, conditioning_data.cond_regions),
]:
if r is None:
# Create a dummy mask and range for text conditioning that doesn't have region masks.
_, _, h, w = x.shape
r = TextConditioningRegions(
masks=torch.ones((1, 1, h, w), dtype=torch.bool),
ranges=[Range(start=0, end=c.embeds.shape[1])],
mask_weights=[0.0],
)
regions.append(r)
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=regions, device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = percent_through
time.sleep(1.0)
both_results = self.model_forward_callback(
x_twice,
sigma_twice,
both_conditionings,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
down_block_additional_residuals=down_block_additional_residuals,
mid_block_additional_residual=mid_block_additional_residual,
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
unconditioned_next_x, conditioned_next_x = both_results.chunk(2)
return unconditioned_next_x, conditioned_next_x
@@ -374,20 +393,15 @@ class InvokeAIDiffuserComponent:
self,
x: torch.Tensor,
sigma,
conditioning_data: TextConditioningData,
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
cross_attention_control_types_to_do: list[CrossAttentionType],
percent_through: float,
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
conditioning_data: ConditioningData,
**kwargs,
):
"""Runs the conditioned and unconditioned UNet forward passes sequentially for lower memory usage at the cost of
slower execution speed.
"""
# Since we are running the conditioned and unconditioned passes sequentially, we need to split the ControlNet
# and T2I-Adapter residuals into two chunks.
# low-memory sequential path
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
@@ -396,6 +410,7 @@ class InvokeAIDiffuserComponent:
cond_down_block.append(_cond_down)
uncond_down_intrablock, cond_down_intrablock = None, None
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
if down_intrablock_additional_residuals is not None:
uncond_down_intrablock, cond_down_intrablock = [], []
for down_intrablock in down_intrablock_additional_residuals:
@@ -404,111 +419,151 @@ class InvokeAIDiffuserComponent:
cond_down_intrablock.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
# If cross-attention control is enabled, prepare the SwapCrossAttnContext.
cross_attn_processor_context = None
if self.cross_attention_control_context is not None:
# Note that the SwapCrossAttnContext is initialized with an empty list of cross_attention_types_to_do.
# This list is empty because cross-attention control is not applied in the unconditioned pass. This field
# will be populated before the conditioned pass.
cross_attn_processor_context = SwapCrossAttnContext(
modified_text_embeddings=self.cross_attention_control_context.arguments.edited_conditioning,
index_map=self.cross_attention_control_context.cross_attention_index_map,
mask=self.cross_attention_control_context.cross_attention_mask,
cross_attention_types_to_do=[],
)
#####################
# Unconditioned pass
#####################
cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the unconditioned pass.
if ip_adapter_conditioning is not None:
# Run unconditional UNet denoising.
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
for ipa_conditioning in ip_adapter_conditioning
]
# Prepare cross-attention control kwargs for the unconditioned pass.
if cross_attn_processor_context is not None:
cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the unconditioned pass.
added_cond_kwargs = None
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": conditioning_data.uncond_text.pooled_embeds,
"time_ids": conditioning_data.uncond_text.add_time_ids,
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
# Prepare prompt regions for the unconditioned pass.
if conditioning_data.uncond_regions is not None:
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=[conditioning_data.uncond_regions], device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = percent_through
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids,
}
# Run unconditioned UNet denoising (i.e. negative prompt).
unconditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.uncond_text.embeds,
conditioning_data.unconditioned_embeddings.embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
down_intrablock_additional_residuals=uncond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
###################
# Conditioned pass
###################
cross_attention_kwargs = {}
# Prepare IP-Adapter cross-attention kwargs for the conditioned pass.
if ip_adapter_conditioning is not None:
# Run conditional UNet denoising.
cross_attention_kwargs = None
if conditioning_data.ip_adapter_conditioning is not None:
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
cross_attention_kwargs["ip_adapter_image_prompt_embeds"] = [
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
for ipa_conditioning in ip_adapter_conditioning
]
# Prepare cross-attention control kwargs for the conditioned pass.
if cross_attn_processor_context is not None:
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
cross_attention_kwargs["swap_cross_attn_context"] = cross_attn_processor_context
# Prepare SDXL conditioning kwargs for the conditioned pass.
added_cond_kwargs = None
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": conditioning_data.cond_text.pooled_embeds,
"time_ids": conditioning_data.cond_text.add_time_ids,
cross_attention_kwargs = {
"ip_adapter_image_prompt_embeds": [
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
]
}
# Prepare prompt regions for the conditioned pass.
if conditioning_data.cond_regions is not None:
cross_attention_kwargs["regional_prompt_data"] = RegionalPromptData(
regions=[conditioning_data.cond_regions], device=x.device, dtype=x.dtype
)
cross_attention_kwargs["percent_through"] = percent_through
added_cond_kwargs = None
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
# Run conditioned UNet denoising (i.e. positive prompt).
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.cond_text.embeds,
conditioning_data.text_embeddings.embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
down_intrablock_additional_residuals=cond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
def _apply_cross_attention_controlled_conditioning(
self,
x: torch.Tensor,
sigma,
conditioning_data,
cross_attention_control_types_to_do,
**kwargs,
):
context: Context = self.cross_attention_control_context
uncond_down_block, cond_down_block = None, None
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
if down_block_additional_residuals is not None:
uncond_down_block, cond_down_block = [], []
for down_block in down_block_additional_residuals:
_uncond_down, _cond_down = down_block.chunk(2)
uncond_down_block.append(_uncond_down)
cond_down_block.append(_cond_down)
uncond_down_intrablock, cond_down_intrablock = None, None
down_intrablock_additional_residuals = kwargs.pop("down_intrablock_additional_residuals", None)
if down_intrablock_additional_residuals is not None:
uncond_down_intrablock, cond_down_intrablock = [], []
for down_intrablock in down_intrablock_additional_residuals:
_uncond_down, _cond_down = down_intrablock.chunk(2)
uncond_down_intrablock.append(_uncond_down)
cond_down_intrablock.append(_cond_down)
uncond_mid_block, cond_mid_block = None, None
mid_block_additional_residual = kwargs.pop("mid_block_additional_residual", None)
if mid_block_additional_residual is not None:
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
cross_attn_processor_context = SwapCrossAttnContext(
modified_text_embeddings=context.arguments.edited_conditioning,
index_map=context.cross_attention_index_map,
mask=context.cross_attention_mask,
cross_attention_types_to_do=[],
)
added_cond_kwargs = None
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.unconditioned_embeddings.pooled_embeds,
"time_ids": conditioning_data.unconditioned_embeddings.add_time_ids,
}
# no cross attention for unconditioning (negative prompt)
unconditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.unconditioned_embeddings.embeds,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=uncond_down_block,
mid_block_additional_residual=uncond_mid_block,
down_intrablock_additional_residuals=uncond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
if is_sdxl:
added_cond_kwargs = {
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
"time_ids": conditioning_data.text_embeddings.add_time_ids,
}
# do requested cross attention types for conditioning (positive prompt)
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
conditioned_next_x = self.model_forward_callback(
x,
sigma,
conditioning_data.text_embeddings.embeds,
{"swap_cross_attn_context": cross_attn_processor_context},
down_block_additional_residuals=cond_down_block,
mid_block_additional_residual=cond_mid_block,
down_intrablock_additional_residuals=cond_down_intrablock,
added_cond_kwargs=added_cond_kwargs,
**kwargs,
)
return unconditioned_next_x, conditioned_next_x
@@ -517,3 +572,115 @@ class InvokeAIDiffuserComponent:
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
combined_next_x = unconditioned_next_x + scaled_delta
return combined_next_x
def apply_symmetry(
self,
postprocessing_settings: PostprocessingSettings,
latents: torch.Tensor,
percent_through: float,
) -> torch.Tensor:
# Reset our last percent through if this is our first step.
if percent_through == 0.0:
self.last_percent_through = 0.0
if postprocessing_settings is None:
return latents
# Check for out of bounds
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
if h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0):
h_symmetry_time_pct = None
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
if v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0):
v_symmetry_time_pct = None
dev = latents.device.type
latents.to(device="cpu")
if (
h_symmetry_time_pct is not None
and self.last_percent_through < h_symmetry_time_pct
and percent_through >= h_symmetry_time_pct
):
# Horizontal symmetry occurs on the 3rd dimension of the latent
width = latents.shape[3]
x_flipped = torch.flip(latents, dims=[3])
latents = torch.cat(
[
latents[:, :, :, 0 : int(width / 2)],
x_flipped[:, :, :, int(width / 2) : int(width)],
],
dim=3,
)
if (
v_symmetry_time_pct is not None
and self.last_percent_through < v_symmetry_time_pct
and percent_through >= v_symmetry_time_pct
):
# Vertical symmetry occurs on the 2nd dimension of the latent
height = latents.shape[2]
y_flipped = torch.flip(latents, dims=[2])
latents = torch.cat(
[
latents[:, :, 0 : int(height / 2)],
y_flipped[:, :, int(height / 2) : int(height)],
],
dim=2,
)
self.last_percent_through = percent_through
return latents.to(device=dev)
# todo: make this work
@classmethod
def apply_conjunction(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2) # aka sigmas
deltas = None
uncond_latents = None
weighted_cond_list = (
c_or_weighted_c_list if isinstance(c_or_weighted_c_list, list) else [(c_or_weighted_c_list, 1)]
)
# below is fugly omg
conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = math.ceil(len(conditionings) / 2)
deltas = None
for chunk_index in range(chunk_count):
offset = chunk_index * 2
chunk_size = min(2, len(conditionings) - offset)
if chunk_size == 1:
c_in = conditionings[offset]
latents_a = forward_func(x_in[:-1], t_in[:-1], c_in)
latents_b = None
else:
c_in = torch.cat(conditionings[offset : offset + 2])
latents_a, latents_b = forward_func(x_in, t_in, c_in).chunk(2)
# first chunk is guaranteed to be 2 entries: uncond_latents + first conditioining
if chunk_index == 0:
uncond_latents = latents_a
deltas = latents_b - uncond_latents
else:
deltas = torch.cat((deltas, latents_a - uncond_latents))
if latents_b is not None:
deltas = torch.cat((deltas, latents_b - uncond_latents))
# merge the weighted deltas together into a single merged delta
per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
normalize = False
if normalize:
per_delta_weights /= torch.sum(per_delta_weights)
reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)
# assert(0 == len(torch.nonzero(old_return_value - (uncond_latents + deltas_merged * cond_scale))))
return uncond_latents + deltas_merged * global_guidance_scale

View File

@@ -1,5 +1,4 @@
"""
Initialization file for invokeai.backend.training
"""
from .textual_inversion_training import do_textual_inversion_training, parse_args # noqa: F401

View File

@@ -858,9 +858,9 @@ def do_textual_inversion_training(
# Let's make sure we don't update any embedding weights besides the newly added token
index_no_updates = torch.arange(len(tokenizer)) != placeholder_token_id
with torch.no_grad():
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = (
orig_embeds_params[index_no_updates]
)
accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[index_no_updates]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:

View File

@@ -1,7 +1,6 @@
"""
Initialization file for invokeai.backend.util
"""
from .attention import auto_detect_slice_size # noqa: F401
from .devices import ( # noqa: F401
CPU_DEVICE,

View File

@@ -3,7 +3,6 @@
Utility routine used for autodetection of optimal slice size
for attention mechanism.
"""
import psutil
import torch

View File

@@ -1,5 +1,4 @@
"""Context class to silence transformers and diffusers warnings."""
import warnings
from typing import Any

View File

@@ -340,17 +340,14 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
return None
with (
open(dest, open_mode) as file,
tqdm(
desc=str(dest),
initial=exist_size,
total=content_length,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar,
):
with open(dest, open_mode) as file, tqdm(
desc=str(dest),
initial=exist_size,
total=content_length,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)

View File

@@ -1,5 +1,4 @@
"""
Initialization file for invokeai.frontend.CLI
"""
from .CLI import main as invokeai_command_line_interface # noqa: F401

View File

@@ -1,7 +1,6 @@
"""
Wrapper for invokeai.backend.configure.invokeai_configure
"""
from ...backend.install.invokeai_configure import main as invokeai_configure # noqa: F401
__all__ = ["invokeai_configure"]

View File

@@ -2,7 +2,6 @@
Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>.
"""
import os
import platform
from distutils.version import LooseVersion

View File

@@ -1,7 +1,6 @@
"""
Widget class definitions used by model_select.py, merge_diffusers.py and textual_inversion.py
"""
import curses
import math
import os

View File

@@ -1,5 +1,4 @@
"""
Initialization file for invokeai.frontend.merge
"""
from .merge_diffusers import main as invokeai_merge_diffusers # noqa: F401

View File

@@ -4,7 +4,6 @@ used to merge 2-3 models together and create a new InvokeAI-registered diffusion
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import argparse
import curses
import re

View File

@@ -1,5 +1,4 @@
"""
Initialization file for invokeai.frontend.training
"""
from .textual_inversion import main as invokeai_textual_inversion # noqa: F401

View File

@@ -6,6 +6,7 @@ This is the frontend to "textual_inversion_training.py".
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
"""
import os
import re
import shutil

View File

@@ -81,7 +81,7 @@
"outputs": "Ausgabe",
"data": "Daten",
"safetensors": "Safe-Tensors",
"outpaint": "Outpaint (Außen ausmalen)",
"outpaint": "Ausmalen",
"details": "Details",
"format": "Format",
"unknown": "Unbekannt",
@@ -110,18 +110,17 @@
"nextPage": "Nächste Seite",
"unknownError": "Unbekannter Fehler",
"unsaved": "Nicht gespeichert",
"aboutDesc": "Verwenden Sie Invoke für die Arbeit? Siehe hier:",
"aboutDesc": "Verwenden Sie Invoke für die Arbeit? Dann siehe hier:",
"localSystem": "Lokales System",
"orderBy": "Ordnen nach",
"saveAs": "Speichern als",
"saveAs": "Speicher als",
"updated": "Aktualisiert",
"copy": "Kopieren",
"aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen"
"aboutHeading": "Nutzen Sie Ihre kreative Energie"
},
"gallery": {
"generations": "Erzeugungen",
"showGenerations": "Zeige Ergebnisse",
"showGenerations": "Zeige Erzeugnisse",
"uploads": "Uploads",
"showUploads": "Zeige Uploads",
"galleryImageSize": "Bildgröße",
@@ -134,6 +133,8 @@
"loadMore": "Mehr laden",
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"preparingDownload": "bereite Download vor",
"preparingDownloadFailed": "Problem beim Download vorbereiten",
"deleteImage": "Lösche Bild",
"copy": "Kopieren",
"download": "Runterladen",
@@ -149,9 +150,9 @@
"problemDeletingImagesDesc": "Ein oder mehrere Bilder konnten nicht gelöscht werden",
"starImage": "Bild markieren",
"assets": "Ressourcen",
"unstarImage": "Markierung entfernen",
"unstarImage": "Markierung Entfernen",
"image": "Bild",
"deleteSelection": "Lösche Auswahl",
"deleteSelection": "Lösche markierte",
"dropToUpload": "$t(gallery.drop) zum hochladen",
"dropOrUpload": "$t(gallery.drop) oder hochladen",
"drop": "Ablegen",
@@ -589,21 +590,10 @@
"general": "Allgemein",
"hiresStrength": "High Res Stärke",
"hidePreview": "Verstecke Vorschau",
"showPreview": "Zeige Vorschau",
"aspect": "Seitenverhältnis",
"aspectRatio": "Seitenverhältnis",
"scheduler": "Planer",
"aspectRatioFree": "Frei",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (kann zu groß sein)",
"lockAspectRatio": "Seitenverhältnis sperren",
"swapDimensions": "Seitenverhältnis umkehren",
"setToOptimalSize": "Optimiere Größe für Modell",
"useSize": "Maße übernehmen",
"remixImage": "Remix des Bilds erstellen",
"imageActions": "Weitere Bildaktionen"
"showPreview": "Zeige Vorschau"
},
"settings": {
"displayInProgress": "Zwischenbilder anzeigen",
"displayInProgress": "Bilder in Bearbeitung anzeigen",
"saveSteps": "Speichern der Bilder alle n Schritte",
"confirmOnDelete": "Bestätigen beim Löschen",
"displayHelpIcons": "Hilfesymbole anzeigen",
@@ -616,34 +606,7 @@
"useSlidersForAll": "Schieberegler für alle Optionen verwenden",
"showAdvancedOptions": "Erweiterte Optionen anzeigen",
"alternateCanvasLayout": "Alternatives Leinwand-Layout",
"clearIntermediatesDesc1": "Das Löschen der Zwischenbilder setzt Leinwand und ControlNet zurück.",
"favoriteSchedulers": "Lieblings-Planer",
"favoriteSchedulersPlaceholder": "Keine Planer favorisiert",
"generation": "Erzeugung",
"enableInformationalPopovers": "Info-Popouts anzeigen",
"shouldLogToConsole": "Konsole loggen",
"showProgressInViewer": "Zwischenbilder im Viewer anzeigen",
"clearIntermediatesDesc3": "Ihre Bilder werden nicht gelöscht.",
"clearIntermediatesWithCount_one": "Lösche {{count}} Zwischenbilder",
"clearIntermediatesWithCount_other": "Lösche {{count}} Zwischenbilder",
"reloadingIn": "Neuladen in",
"enableNodesEditor": "Nodes Editor aktivieren",
"autoChangeDimensions": "Breite/Höhe auf Modellstandard setzen",
"experimental": "Experimentell",
"intermediatesCleared_one": "{{count}} Zwischenbilder gelöscht",
"intermediatesCleared_other": "{{count}} Zwischenbilder gelöscht",
"enableInvisibleWatermark": "Unsichtbares Wasserzeichen aktivieren",
"general": "Allgemein",
"consoleLogLevel": "Protokollierungsstufe",
"clearIntermediatesDisabled": "Warteschlange muss leer sein, um Zwischenbilder zu löschen",
"developer": "Entwickler",
"antialiasProgressImages": "Zwischenbilder mit Anti-Alias",
"beta": "Beta",
"ui": "Benutzeroberfläche",
"clearIntermediatesDesc2": "Zwischenbilder sind Nebenprodukte der Erstellung. Sie zu löschen macht Festplattenspeicher frei.",
"clearIntermediates": "Zwischenbilder löschen",
"intermediatesClearedFailed": "Problem beim Löschen der Zwischenbilder",
"enableNSFWChecker": "Auf unangemessene Inhalte prüfen"
"clearIntermediatesDesc1": "Das Löschen der Zwischenprodukte setzt Leinwand und ControlNet zurück."
},
"toast": {
"tempFoldersEmptied": "Temp-Ordner geleert",
@@ -688,9 +651,7 @@
"problemCopyingCanvas": "Problem beim Kopieren der Leinwand",
"problemCopyingCanvasDesc": "Kann Basis-Layer nicht exportieren",
"problemDownloadingCanvas": "Problem beim Herunterladen der Leinwand",
"setAsCanvasInitialImage": "Als Ausgangsbild gesetzt",
"addedToBoard": "Dem Board hinzugefügt",
"loadedWithWarnings": "Workflow mit Warnungen geladen"
"setAsCanvasInitialImage": "Als Ausgangsbild gesetzt"
},
"tooltip": {
"feature": {
@@ -772,23 +733,23 @@
"accessibility": {
"modelSelect": "Modell-Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Vorheriges Bild",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
"copyMetadataJson": "Kopiere JSON-Metadaten",
"copyMetadataJson": "Kopiere Metadaten JSON",
"zoomIn": "Vergrößern",
"rotateClockwise": "Im Uhrzeigersinn drehen",
"flipHorizontally": "Horizontal drehen",
"flipVertically": "Vertikal drehen",
"modifyConfig": "Optionen einstellen",
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log-Betrachter ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showOptionsPanel": "Seitenpanel anzeigen",
"reset": "Zurücksetzten",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn drehen",
"showGalleryPanel": "Galerie-Panel anzeigen",
"exitViewer": "Betrachter beenden",
"showGalleryPanel": "Galeriefenster anzeigen",
"exitViewer": "Betrachten beenden",
"menu": "Menü",
"loadMore": "Mehr laden",
"invokeProgressBar": "Invoke Fortschrittsanzeige",
@@ -798,7 +759,7 @@
"about": "Über"
},
"boards": {
"autoAddBoard": "Automatisches Hinzufügen zum Board",
"autoAddBoard": "Automatisches Hinzufügen zum Ordner",
"topMessage": "Dieser Ordner enthält Bilder die in den folgenden Funktionen verwendet werden:",
"move": "Bewegen",
"menuItemAutoAdd": "Auto-Hinzufügen zu diesem Ordner",
@@ -807,13 +768,13 @@
"noMatching": "Keine passenden Ordner",
"selectBoard": "Ordner aussuchen",
"cancel": "Abbrechen",
"addBoard": "Board hinzufügen",
"addBoard": "Ordner hinzufügen",
"uncategorized": "Ohne Kategorie",
"downloadBoard": "Ordner runterladen",
"changeBoard": "Ordner wechseln",
"loading": "Laden...",
"clearSearch": "Suche leeren",
"bottomMessage": "Löschen des Boards und seiner Bilder setzt alle Funktionen zurück, die sie gerade verwenden.",
"bottomMessage": "Durch das Löschen dieses Ordners und seiner Bilder werden alle Funktionen zurückgesetzt, die sie derzeit verwenden.",
"deleteBoardOnly": "Nur Ordner löschen",
"deleteBoard": "Löschen Ordner",
"deleteBoardAndImages": "Löschen Ordner und Bilder",
@@ -859,7 +820,7 @@
"colorMap": "Farbe",
"lowThreshold": "Niedrige Schwelle",
"highThreshold": "Hohe Schwelle",
"toggleControlNet": "Dieses ControlNet ein- oder ausschalten",
"toggleControlNet": "Schalten ControlNet um",
"delete": "Löschen",
"controlAdapter_one": "Control Adapter",
"controlAdapter_other": "Control Adapter",
@@ -904,23 +865,18 @@
"maxFaces": "Maximale Anzahl Gesichter",
"resizeSimple": "Größe ändern (einfach)",
"large": "Groß",
"modelSize": "Modellgröße",
"modelSize": "Modell Größe",
"small": "Klein",
"base": "Basis",
"depthAnything": "Depth Anything",
"depthAnythingDescription": "Erstellung einer Tiefenkarte mit der Depth-Anything-Technik",
"face": "Gesicht",
"body": "Körper",
"hands": "Hände",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose"
"depthAnything": "Depth Anything / \"Tiefe irgendwas\"",
"depthAnythingDescription": "Erstellung einer Tiefenkarte mit der Depth Anything-Technik"
},
"queue": {
"status": "Status",
"cancelTooltip": "Aktuellen Aufgabe abbrechen",
"queueEmpty": "Warteschlange leer",
"in_progress": "In Arbeit",
"queueFront": "Am Anfang der Warteschlange einreihen",
"queueFront": "An den Anfang der Warteschlange tun",
"completed": "Fertig",
"queueBack": "In die Warteschlange",
"clearFailed": "Probleme beim leeren der Warteschlange",
@@ -948,7 +904,7 @@
"batchValues": "Stapel Werte",
"queueCountPrediction": "{{promptsCount}} Prompts × {{iterations}} Iterationen -> {{count}} Generationen",
"queuedCount": "{{pending}} wartenden Elemente",
"clearQueueAlertDialog": "\"Die Warteschlange leeren\" stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"clearQueueAlertDialog": "Die Warteschlange leeren, stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",
"cancelBatch": "Stapel stoppen",
@@ -957,20 +913,20 @@
"cancelBatchFailed": "Problem beim Abbruch vom Stapel",
"clearQueueAlertDialog2": "Warteschlange wirklich leeren?",
"pruneSucceeded": "{{item_count}} abgeschlossene Elemente aus der Warteschlange entfernt",
"pauseSucceeded": "Prozess angehalten",
"pauseSucceeded": "Prozessor angehalten",
"cancelFailed": "Problem beim Stornieren des Auftrags",
"pauseFailed": "Problem beim Anhalten des Prozesses",
"pauseFailed": "Problem beim Anhalten des Prozessors",
"front": "Vorne",
"pruneTooltip": "Bereinigen Sie {{item_count}} abgeschlossene Aufträge",
"resumeFailed": "Problem beim Fortsetzen des Prozesses",
"resumeFailed": "Problem beim wieder aufnehmen von Prozessor",
"pruneFailed": "Problem beim leeren der Warteschlange",
"pauseTooltip": "Prozess anhalten",
"back": "Ende",
"resumeSucceeded": "Prozess wird fortgesetzt",
"resumeTooltip": "Prozess wieder aufnehmen",
"pauseTooltip": "Pause von Prozessor",
"back": "Hinten",
"resumeSucceeded": "Prozessor wieder aufgenommen",
"resumeTooltip": "Prozessor wieder aufnehmen",
"time": "Zeit",
"batchQueuedDesc_one": "{{count}} Eintrag an {{direction}} der Wartschlange hinzugefügt",
"batchQueuedDesc_other": "{{count}} Einträge an {{direction}} der Wartschlange hinzugefügt",
"batchQueuedDesc_one": "{{count}} Eintrag ans {{direction}} der Wartschlange hinzugefügt",
"batchQueuedDesc_other": "{{count}} Einträge ans {{direction}} der Wartschlange hinzugefügt",
"openQueue": "Warteschlange öffnen",
"batchFailedToQueue": "Fehler beim Einreihen in die Stapelverarbeitung",
"batchFieldValues": "Stapelverarbeitungswerte",
@@ -1005,12 +961,11 @@
"workflow": "Workflow",
"scheduler": "Planer",
"noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden",
"recallParameters": "Parameter wiederherstellen",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"recallParameters": "Parameter wiederherstellen"
},
"popovers": {
"noiseUseCPU": {
"heading": "Nutze CPU-Rauschen",
"heading": "Nutze Prozessor rauschen",
"paragraphs": [
"Entscheidet, ob auf der CPU oder GPU Rauschen erzeugt wird.",
"Mit aktiviertem CPU-Rauschen wird ein bestimmter Seedwert das gleiche Bild auf jeder Maschine erzeugen.",
@@ -1020,7 +975,8 @@
"paramModel": {
"heading": "Modell",
"paragraphs": [
"Modell für die Entrauschungsschritte."
"Modell für die Entrauschungsschritte.",
"Verschiedene Modelle werden in der Regel so trainiert, dass sie sich auf die Erzeugung bestimmter Ästhetik und/oder Inhalte spezialisiert."
]
},
"paramIterations": {
@@ -1128,23 +1084,12 @@
"Wie stark wird das ControlNet das generierte Bild beeinflussen wird."
],
"heading": "Einfluss"
},
"paramScheduler": {
"paragraphs": [
"\"Planer\" definiert, wie iterativ Rauschen zu einem Bild hinzugefügt wird, oder wie ein Sample bei der Ausgabe eines Modells aktualisiert wird."
],
"heading": "Planer"
},
"imageFit": {
"paragraphs": [
"Reduziert das Ausgangsbild auf die Breite und Höhe des Ausgangsbildes. Empfohlen zu aktivieren."
]
}
},
"ui": {
"lockRatio": "Verhältnis sperren",
"hideProgressImages": "Fortschrittsbilder verbergen",
"showProgressImages": "Fortschrittsbilder anzeigen",
"hideProgressImages": "Verstecke Prozess Bild",
"showProgressImages": "Zeige Prozess Bild",
"swapSizes": "Tausche Größen"
},
"invocationCache": {
@@ -1342,19 +1287,7 @@
"vaeFieldDescription": "VAE Submodell.",
"unknownInput": "Unbekannte Eingabe: {{name}}",
"unknownNodeType": "Unbekannter Knotentyp",
"float": "Kommazahlen",
"latentsPolymorphic": "Latents Polymorph",
"integerPolymorphicDescription": "Eine Sammlung von ganzen Zahlen.",
"integerPolymorphic": "Ganze Zahl Polymorph",
"ipAdapterPolymorphic": "IP-Adapter Polymorph",
"floatPolymorphic": "Fließkommazahl Polymorph",
"enumDescription": "Aufzählungen sind Werte, die eine von mehreren Optionen sein können.",
"floatCollection": "Fließkommazahl Sammlung",
"enum": "Aufzählung",
"floatPolymorphicDescription": "Eine Sammlung von Fließkommazahlen",
"fullyContainNodes": "Vollständig ausgewählte Nodes auswählen",
"editMode": "Im Workflow-Editor bearbeiten",
"floatCollectionDescription": "Eine Sammlung von Fließkommazahlen"
"float": "Kommazahlen"
},
"hrf": {
"enableHrf": "Korrektur für hohe Auflösungen",
@@ -1403,12 +1336,12 @@
},
"control": {
"title": "Kontrolle",
"controlAdaptersTab": "Kontroll-Adapter",
"ipTab": "Bild-Prompts"
"controlAdaptersTab": "Kontroll Adapter",
"ipTab": "Bild Beschreibung"
},
"compositing": {
"coherenceTab": "Kohärenzpass",
"infillTab": "Füllung / Infill",
"infillTab": "Füllung",
"title": "Compositing"
}
},
@@ -1446,15 +1379,5 @@
},
"app": {
"storeNotInitialized": "App-Store ist nicht initialisiert"
},
"sdxl": {
"concatPromptStyle": "Verknüpfen von Prompt & Stil",
"scheduler": "Planer",
"steps": "Schritte",
"useRefiner": "Refiner verwenden",
"selectAModel": "Modell auswählen"
},
"dynamicPrompts": {
"showDynamicPrompts": "Dynamische Prompts anzeigen"
}
}

View File

@@ -304,6 +304,12 @@
"method": "High Resolution Fix Method"
}
},
"prompt": {
"addPromptTrigger": "Add Prompt Trigger",
"compatibleEmbeddings": "Compatible Embeddings",
"noPromptTriggers": "No triggers available",
"noMatchingTriggers": "No matching triggers"
},
"embedding": {
"addEmbedding": "Add Embedding",
"incompatibleModel": "Incompatible base model:",
@@ -867,7 +873,6 @@
"models": {
"addLora": "Add LoRA",
"allLoRAsAdded": "All LoRAs added",
"concepts": "Concepts",
"loraAlreadyAdded": "LoRA already added",
"esrganModel": "ESRGAN Model",
"loading": "loading",
@@ -1464,8 +1469,9 @@
"clipSkip": {
"heading": "CLIP Skip",
"paragraphs": [
"How many layers of the CLIP model to skip.",
"Certain models are better suited to be used with CLIP Skip."
"Choose how many layers of the CLIP model to skip.",
"Some models work better with certain CLIP Skip settings.",
"A higher value typically results in a less detailed image."
]
},
"paramNegativeConditioning": {
@@ -1485,8 +1491,7 @@
"paramScheduler": {
"heading": "Scheduler",
"paragraphs": [
"Scheduler used during the generation process.",
"Each scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output."
"Scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output."
]
},
"compositingMaskBlur": {
@@ -1503,7 +1508,7 @@
},
"compositingCoherenceMode": {
"heading": "Mode",
"paragraphs": ["Method used to create a coherent image with the newly generated masked area."]
"paragraphs": ["The mode of the Coherence Pass."]
},
"compositingCoherenceEdgeSize": {
"heading": "Edge Size",
@@ -1520,38 +1525,30 @@
"heading": "Mask Adjustments",
"paragraphs": ["Adjust the mask."]
},
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"Which steps of the denoising process will have the ControlNet applied.",
"ControlNets applied at the beginning of the process guide composition, and ControlNets applied at the end guide details."
]
},
"controlNetControlMode": {
"heading": "Control Mode",
"paragraphs": ["Lends more weight to either the prompt or ControlNet."]
},
"controlNetResizeMode": {
"heading": "Resize Mode",
"paragraphs": ["How the ControlNet image will be fit to the image output size."]
},
"controlNet": {
"heading": "ControlNet",
"paragraphs": [
"ControlNets provide guidance to the generation process, helping create images with controlled composition, structure, or style, depending on the model selected."
]
},
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"The part of the of the denoising process that will have the Control Adapter applied.",
"Generally, Control Adapters applied at the start of the process guide composition, and Control Adapters applied at the end guide details."
]
},
"controlNetControlMode": {
"heading": "Control Mode",
"paragraphs": ["Lend more weight to either the prompt or ControlNet."]
},
"controlNetProcessor": {
"heading": "Processor",
"paragraphs": [
"Method of processing the input image to guide the generation process. Different processors will providedifferent effects or styles in your generated images."
]
},
"controlNetResizeMode": {
"heading": "Resize Mode",
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
"Weight of the Control Adapter. Higher weight will lead to larger impacts on the final image."
]
"paragraphs": ["How strongly the ControlNet will impact the generated image."]
},
"dynamicPrompts": {
"heading": "Dynamic Prompts",
@@ -1574,23 +1571,13 @@
"Per Image will use a unique seed for each image. This provides more variation."
]
},
"imageFit": {
"heading": "Fit Initial Image to Output Size",
"paragraphs": [
"Resizes the initial image to the width and height of the output image. Recommended to enable."
]
},
"infillMethod": {
"heading": "Infill Method",
"paragraphs": ["Method of infilling during the Outpainting or Inpainting process."]
"paragraphs": ["Method to infill the selected area."]
},
"lora": {
"heading": "LoRA",
"paragraphs": ["Lightweight models that are used in conjunction with base models."]
},
"loraWeight": {
"heading": "Weight",
"paragraphs": ["Weight of the LoRA. Higher weight will lead to larger impacts on the final image."]
"heading": "LoRA Weight",
"paragraphs": ["Higher LoRA weight will lead to larger impacts on the final image."]
},
"noiseUseCPU": {
"heading": "Use CPU Noise",
@@ -1600,25 +1587,14 @@
"There is no performance impact to enabling CPU Noise."
]
},
"paramAspect": {
"heading": "Aspect",
"paragraphs": [
"Aspect ratio of the generated image. Changing the ratio will update the Width and Height accordingly.",
"“Optimize” will set the Width and Height to optimal dimensions for the chosen model."
]
},
"paramCFGScale": {
"heading": "CFG Scale",
"paragraphs": [
"Controls how much the prompt influences the generation process.",
"High CFG Scale values can result in over-saturation and distorted generation results. "
]
"paragraphs": ["Controls how much your prompt influences the generation process."]
},
"paramCFGRescaleMultiplier": {
"heading": "CFG Rescale Multiplier",
"paragraphs": [
"Rescale multiplier for CFG guidance, used for models trained using zero-terminal SNR (ztsnr).",
"Suggested value of 0.7 for these models."
"Rescale multiplier for CFG guidance, used for models trained using zero-terminal SNR (ztsnr). Suggested value 0.7."
]
},
"paramDenoisingStrength": {
@@ -1628,16 +1604,6 @@
"0 will result in an identical image, while 1 will result in a completely new image."
]
},
"paramHeight": {
"heading": "Height",
"paragraphs": ["Height of the generated image. Must be a multiple of 8."]
},
"paramHrf": {
"heading": "Enable High Resolution Fix",
"paragraphs": [
"Generate high quality images at a larger resolution than optimal for the model. Generally used to prevent duplication in the generated image."
]
},
"paramIterations": {
"heading": "Iterations",
"paragraphs": [
@@ -1648,7 +1614,8 @@
"paramModel": {
"heading": "Model",
"paragraphs": [
"Model used for generation. Different models are trained to specialize in producing different aesthetic results and content."
"Model used for the denoising steps.",
"Different models are typically trained to specialize in producing particular aesthetic results and content."
]
},
"paramRatio": {
@@ -1662,7 +1629,7 @@
"heading": "Seed",
"paragraphs": [
"Controls the starting noise used for generation.",
"Disable the “Random” option to produce identical results with the same generation settings."
"Disable “Random Seed” to produce identical results with the same generation settings."
]
},
"paramSteps": {
@@ -1672,10 +1639,6 @@
"Higher step counts will typically create better images but will require more generation time."
]
},
"paramUpscaleMethod": {
"heading": "Upscale Method",
"paragraphs": ["Method used to upscale the image for High Resolution Fix."]
},
"paramVAE": {
"heading": "VAE",
"paragraphs": ["Model used for translating AI output into the final image."]
@@ -1683,82 +1646,14 @@
"paramVAEPrecision": {
"heading": "VAE Precision",
"paragraphs": [
"The precision used during VAE encoding and decoding.",
"Fp16/Half precision is more efficient, at the expense of minor image variations."
]
},
"paramWidth": {
"heading": "Width",
"paragraphs": ["Width of the generated image. Must be a multiple of 8."]
},
"patchmatchDownScaleSize": {
"heading": "Downscale",
"paragraphs": [
"How much downscaling occurs before infilling.",
"Higher downscaling will improve performance and reduce quality."
]
},
"refinerModel": {
"heading": "Refiner Model",
"paragraphs": [
"Model used during the refiner portion of the generation process.",
"Similar to the Generation Model."
]
},
"refinerPositiveAestheticScore": {
"heading": "Positive Aesthetic Score",
"paragraphs": [
"Weight generations to be more similar to images with a high aesthetic score, based on the training data."
]
},
"refinerNegativeAestheticScore": {
"heading": "Negative Aesthetic Score",
"paragraphs": [
"Weight generations to be more similar to images with a low aesthetic score, based on the training data."
]
},
"refinerScheduler": {
"heading": "Scheduler",
"paragraphs": [
"Scheduler used during the refiner portion of the generation process.",
"Similar to the Generation Scheduler."
]
},
"refinerStart": {
"heading": "Refiner Start",
"paragraphs": [
"Where in the generation process the refiner will start to be used.",
"0 means the refiner will be used for the entire generation process, 0.8 means the refiner will be used for the last 20% of the generation process."
]
},
"refinerSteps": {
"heading": "Steps",
"paragraphs": [
"Number of steps that will be performed during the refiner portion of the generation process.",
"Similar to the Generation Steps."
]
},
"refinerCfgScale": {
"heading": "CFG Scale",
"paragraphs": [
"Controls how much the prompt influences the generation process.",
"Similar to the Generation CFG Scale."
"The precision used during VAE encoding and decoding. FP16/half precision is more efficient, at the expense of minor image variations."
]
},
"scaleBeforeProcessing": {
"heading": "Scale Before Processing",
"paragraphs": [
"“Auto” scales the selected area to the size best suited for the model before the image generation process.",
"“Manual” allows you to choose the width and height the selected area will be scaled to before the image generation process."
"Scales the selected area to the size best suited for the model before the image generation process."
]
},
"seamlessTilingXAxis": {
"heading": "Seamless Tiling X Axis",
"paragraphs": ["Seamlessly tile an image along the horizontal axis."]
},
"seamlessTilingYAxis": {
"heading": "Seamless Tiling Y Axis",
"paragraphs": ["Seamlessly tile an image along the vertical axis."]
}
},
"ui": {

View File

@@ -505,6 +505,8 @@
"seamLowThreshold": "Bajo",
"coherencePassHeader": "Parámetros de la coherencia",
"compositingSettingsHeader": "Ajustes de la composición",
"coherenceSteps": "Pasos",
"coherenceStrength": "Fuerza",
"patchmatchDownScaleSize": "Reducir a escala",
"coherenceMode": "Modo"
},

View File

@@ -47,7 +47,7 @@
"statusModelConverted": "Modello Convertito",
"statusConvertingModel": "Conversione Modello",
"loading": "Caricamento in corso",
"loadingInvokeAI": "Caricamento di Invoke AI",
"loadingInvokeAI": "Caricamento Invoke AI",
"postprocessing": "Post Elaborazione",
"txt2img": "Testo a Immagine",
"accept": "Accetta",
@@ -61,7 +61,7 @@
"imagePrompt": "Prompt Immagine",
"darkMode": "Modalità scura",
"batch": "Gestione Lotto",
"modelManager": "Gestore Modelli",
"modelManager": "Gestore modello",
"communityLabel": "Comunità",
"nodeEditor": "Editor dei nodi",
"statusProcessing": "Elaborazione in corso",
@@ -81,7 +81,7 @@
"error": "Errore",
"installed": "Installato",
"template": "Schema",
"outputs": "Risultati",
"outputs": "Uscite",
"data": "Dati",
"somethingWentWrong": "Qualcosa è andato storto",
"copyError": "$t(gallery.copy) Errore",
@@ -93,7 +93,7 @@
"created": "Creato",
"prevPage": "Pagina precedente",
"delete": "Elimina",
"orderBy": "Ordina per",
"orderBy": "Ordinato per",
"nextPage": "Pagina successiva",
"saveAs": "Salva come",
"unsaved": "Non salvato",
@@ -109,13 +109,7 @@
"green": "Verde",
"blue": "Blu",
"alpha": "Alfa",
"copy": "Copia",
"on": "Attivato",
"checkpoint": "Checkpoint",
"safetensors": "Safetensors",
"ai": "ia",
"file": "File",
"toResolve": "Da risolvere"
"copy": "Copia"
},
"gallery": {
"generations": "Generazioni",
@@ -143,6 +137,8 @@
"copy": "Copia",
"download": "Scarica",
"setCurrentImage": "Imposta come immagine corrente",
"preparingDownload": "Preparazione del download",
"preparingDownloadFailed": "Problema durante la preparazione del download",
"downloadSelection": "Scarica gli elementi selezionati",
"noImageSelected": "Nessuna immagine selezionata",
"deleteSelection": "Elimina la selezione",
@@ -608,6 +604,8 @@
"seamLowThreshold": "Basso",
"seamHighThreshold": "Alto",
"coherencePassHeader": "Passaggio di coerenza",
"coherenceSteps": "Passi",
"coherenceStrength": "Forza",
"compositingSettingsHeader": "Impostazioni di composizione",
"patchmatchDownScaleSize": "Ridimensiona",
"coherenceMode": "Modalità",
@@ -936,7 +934,7 @@
"executionStateCompleted": "Completato",
"boardFieldDescription": "Una bacheca della galleria",
"addNodeToolTip": "Aggiungi nodo (Shift+A, Space)",
"sDXLRefinerModelField": "Modello Affinatore",
"sDXLRefinerModelField": "Modello Refiner",
"problemReadingMetadata": "Problema durante la lettura dei metadati dall'immagine",
"colorCodeEdgesHelp": "Bordi con codice colore in base ai campi collegati",
"animatedEdges": "Bordi animati",
@@ -1140,11 +1138,7 @@
"unsupportedAnyOfLength": "unione di troppi elementi ({{count}})",
"clearWorkflowDesc": "Cancellare questo flusso di lavoro e avviarne uno nuovo?",
"clearWorkflow": "Cancella il flusso di lavoro",
"clearWorkflowDesc2": "Il tuo flusso di lavoro attuale presenta modifiche non salvate.",
"viewMode": "Utilizzare nella vista lineare",
"reorderLinearView": "Riordina la vista lineare",
"editMode": "Modifica nell'editor del flusso di lavoro",
"resetToDefaultValue": "Ripristina il valore predefinito"
"clearWorkflowDesc2": "Il tuo flusso di lavoro attuale presenta modifiche non salvate."
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -1247,16 +1241,7 @@
"large": "Grande",
"small": "Piccolo",
"depthAnythingDescription": "Generazione di mappe di profondità utilizzando la tecnica Depth Anything",
"modelSize": "Dimensioni del modello",
"dwOpenposeDescription": "Stima della posa umana utilizzando DW Openpose",
"face": "Viso",
"body": "Corpo",
"hands": "Mani",
"lineartAnime": "Linea Anime",
"base": "Base",
"lineart": "Linea",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"mediapipeFace": "Mediapipe Volto"
"modelSize": "Dimensioni del modello"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",
@@ -1336,7 +1321,7 @@
"noModelsAvailable": "Nessun modello disponibile",
"selectModel": "Seleziona un modello",
"selectLoRA": "Seleziona un LoRA",
"noRefinerModelsInstalled": "Nessun modello affinatore SDXL installato",
"noRefinerModelsInstalled": "Nessun modello SDXL Refiner installato",
"noLoRAsInstalled": "Nessun LoRA installato",
"esrganModel": "Modello ESRGAN",
"addLora": "Aggiungi LoRA",
@@ -1386,8 +1371,7 @@
"popovers": {
"paramScheduler": {
"paragraphs": [
"Il campionatore utilizzato durante il processo di generazione.",
"Ciascun campionatore definisce come aggiungere in modo iterativo il rumore a un'immagine o come aggiornare un campione in base all'output di un modello."
"Il campionatore definisce come aggiungere in modo iterativo il rumore a un'immagine o come aggiornare un campione in base all'output di un modello."
],
"heading": "Campionatore"
},
@@ -1397,16 +1381,30 @@
"Regola la maschera."
]
},
"compositingCoherenceSteps": {
"heading": "Passi",
"paragraphs": [
"Numero di passi di riduzione del rumore utilizzati nel Passaggio di Coerenza.",
"Uguale al parametro principale Passi."
]
},
"compositingBlur": {
"heading": "Sfocatura",
"paragraphs": [
"Il raggio di sfocatura della maschera."
]
},
"compositingCoherenceMode": {
"heading": "Modalità",
"paragraphs": [
"Metodo utilizzato per creare un'immagine coerente con l'area mascherata appena generata."
"La modalità del Passaggio di Coerenza."
]
},
"clipSkip": {
"paragraphs": [
"Scegli quanti livelli del modello CLIP saltare.",
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip."
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip.",
"Un valore più alto in genere produce un'immagine meno dettagliata."
]
},
"compositingCoherencePass": {
@@ -1415,6 +1413,13 @@
"Un secondo ciclo di riduzione del rumore aiuta a comporre l'immagine Inpaint/Outpaint."
]
},
"compositingStrength": {
"heading": "Forza",
"paragraphs": [
"Intensità di riduzione del rumore per il passaggio di coerenza.",
"Uguale al parametro intensità di riduzione del rumore da immagine a immagine."
]
},
"paramNegativeConditioning": {
"paragraphs": [
"Il processo di generazione evita i concetti nel prompt negativo. Utilizzatelo per escludere qualità o oggetti dall'output.",
@@ -1438,8 +1443,8 @@
"controlNetBeginEnd": {
"heading": "Percentuale passi Inizio / Fine",
"paragraphs": [
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli."
"A quali passi del processo di rimozione del rumore verrà applicato ControlNet.",
"I ControlNet applicati all'inizio del processo guidano la composizione, mentre i ControlNet applicati alla fine guidano i dettagli."
]
},
"noiseUseCPU": {
@@ -1452,8 +1457,7 @@
},
"scaleBeforeProcessing": {
"paragraphs": [
"\"Auto\" ridimensiona l'area selezionata alla dimensione più adatta al modello prima del processo di generazione dell'immagine.",
"\"Manuale\" consente di scegliere la larghezza e l'altezza a cui verrà ridimensionata l'area selezionata prima del processo di generazione dell'immagine."
"Ridimensiona l'area selezionata alla dimensione più adatta al modello prima del processo di generazione dell'immagine."
],
"heading": "Scala prima dell'elaborazione"
},
@@ -1488,21 +1492,20 @@
"paramVAEPrecision": {
"heading": "Precisione VAE",
"paragraphs": [
"La precisione utilizzata durante la codifica e decodifica VAE.",
"Fp16/Mezza precisione è più efficiente, a scapito di minori variazioni dell'immagine."
"La precisione utilizzata durante la codifica e decodifica VAE. FP16/mezza precisione è più efficiente, a scapito di minori variazioni dell'immagine."
]
},
"paramSeed": {
"paragraphs": [
"Controlla il rumore iniziale utilizzato per la generazione.",
"Disabilita l'opzione \"Casuale\" per produrre risultati identici con le stesse impostazioni di generazione."
"Disabilita seme \"Casuale\" per produrre risultati identici con le stesse impostazioni di generazione."
],
"heading": "Seme"
},
"controlNetResizeMode": {
"heading": "Modalità ridimensionamento",
"paragraphs": [
"Metodo per adattare le dimensioni dell'immagine in ingresso dell'adattatore di controllo alle dimensioni della generazione di output."
"Come l'immagine ControlNet verrà adattata alle dimensioni di output dell'immagine."
]
},
"dynamicPromptsSeedBehaviour": {
@@ -1517,7 +1520,8 @@
"paramModel": {
"heading": "Modello",
"paragraphs": [
"Modello utilizzato per la generazione. Diversi modelli vengono addestrati per specializzarsi nella produzione di risultati e contenuti estetici diversi."
"Modello utilizzato per i passaggi di riduzione del rumore.",
"Diversi modelli sono generalmente addestrati per specializzarsi nella produzione di particolari risultati e contenuti estetici."
]
},
"paramDenoisingStrength": {
@@ -1535,26 +1539,25 @@
},
"infillMethod": {
"paragraphs": [
"Metodo di riempimento durante il processo di Outpainting o Inpainting."
"Metodo per riempire l'area selezionata."
],
"heading": "Metodo di riempimento"
},
"controlNetWeight": {
"heading": "Peso",
"paragraphs": [
"Peso dell'adattatore di controllo. Un peso maggiore portea impatti maggiori sull'immagine finale."
"Quanto forte sal'impatto di ControlNet sull'immagine generata."
]
},
"paramCFGScale": {
"heading": "Scala CFG",
"paragraphs": [
"Controlla quanto il prompt influenza il processo di generazione.",
"Valori elevati della scala CFG possono provocare una saturazione eccessiva e distorsioni nei risultati della generazione. "
"Controlla quanto il tuo prompt influenza il processo di generazione."
]
},
"controlNetControlMode": {
"paragraphs": [
"Attribuisce più peso al prompt oppure a ControlNet."
"Attribuisce più peso al prompt o a ControlNet."
],
"heading": "Modalità di controllo"
},
@@ -1566,9 +1569,9 @@
]
},
"lora": {
"heading": "LoRA",
"heading": "Peso LoRA",
"paragraphs": [
"Modelli leggeri utilizzati insieme ai modelli base."
"Un peso LoRA più elevato porterà a impatti maggiori sull'immagine finale."
]
},
"controlNet": {
@@ -1580,123 +1583,7 @@
"paramCFGRescaleMultiplier": {
"heading": "Moltiplicatore di riscala CFG",
"paragraphs": [
"Moltiplicatore di riscala per la guida CFG, utilizzato per modelli addestrati utilizzando SNR a terminale zero (ztsnr).",
"Valore suggerito di 0.7 per questi modelli."
]
},
"controlNetProcessor": {
"heading": "Processore",
"paragraphs": [
"Metodo di elaborazione dell'immagine di input per guidare il processo di generazione. Processori diversi forniranno effetti o stili diversi nelle immagini generate."
]
},
"imageFit": {
"heading": "Adatta l'immagine iniziale alle dimensioni di output",
"paragraphs": [
"Ridimensiona l'immagine iniziale in base alla larghezza e all'altezza dell'immagine di output. Si consiglia di abilitarlo."
]
},
"loraWeight": {
"heading": "Peso",
"paragraphs": [
"Peso del LoRA. Un peso maggiore comporterà un impatto maggiore sull'immagine finale."
]
},
"paramAspect": {
"heading": "Aspetto",
"paragraphs": [
"Proporzioni dell'immagine generata. La modifica del rapporto aggiornerà di conseguenza la larghezza e l'altezza.",
"\"Ottimizza\" imposterà la larghezza e l'altezza alle dimensioni ottimali per il modello scelto."
]
},
"paramHeight": {
"heading": "Altezza",
"paragraphs": [
"Altezza dell'immagine generata. Deve essere un multiplo di 8."
]
},
"paramHrf": {
"heading": "Abilita correzione alta risoluzione",
"paragraphs": [
"Genera immagini di alta qualità con una risoluzione maggiore di quella ottimale per il modello. Generalmente utilizzato per impedire la duplicazione nell'immagine generata."
]
},
"paramUpscaleMethod": {
"heading": "Metodo di ampliamento",
"paragraphs": [
"Metodo utilizzato per eseguire l'ampliamento dell'immagine per la correzione ad alta risoluzione."
]
},
"patchmatchDownScaleSize": {
"heading": "Ridimensiona",
"paragraphs": [
"Quanto ridimensionamento avviene prima del riempimento.",
"Un ridimensionamento più elevato migliorerà le prestazioni e ridurrà la qualità."
]
},
"paramWidth": {
"paragraphs": [
"Larghezza dell'immagine generata. Deve essere un multiplo di 8."
],
"heading": "Larghezza"
},
"refinerModel": {
"heading": "Modello Affinatore",
"paragraphs": [
"Modello utilizzato durante la parte di affinamento del processo di generazione.",
"Simile al modello di generazione."
]
},
"refinerNegativeAestheticScore": {
"paragraphs": [
"Valuta le generazioni in modo che siano più simili alle immagini con un punteggio estetico basso, in base ai dati di addestramento."
],
"heading": "Punteggio estetico negativo"
},
"refinerScheduler": {
"paragraphs": [
"Campionatore utilizzato durante la parte di affinamento del processo di generazione.",
"Simile al campionatore di generazione."
],
"heading": "Campionatore"
},
"refinerStart": {
"heading": "Inizio affinamento",
"paragraphs": [
"A che punto nel processo di generazione inizierà ad essere utilizzato l'affinatore.",
"0 significa che l'affinatore verrà utilizzato per l'intero processo di generazione, 0.8 significa che l'affinatore verrà utilizzato per l'ultimo 20% del processo di generazione."
]
},
"refinerSteps": {
"heading": "Passi",
"paragraphs": [
"Numero di passi che verranno eseguiti durante la parte di affinamento del processo di generazione.",
"Simile ai passi di generazione."
]
},
"refinerCfgScale": {
"heading": "Scala CFG",
"paragraphs": [
"Controlla quanto il prompt influenza il processo di generazione.",
"Simile alla scala CFG di generazione."
]
},
"seamlessTilingXAxis": {
"heading": "Asse X di piastrellatura senza cuciture",
"paragraphs": [
"Affianca senza soluzione di continuità un'immagine lungo l'asse orizzontale."
]
},
"seamlessTilingYAxis": {
"heading": "Asse Y di piastrellatura senza cuciture",
"paragraphs": [
"Affianca senza soluzione di continuità un'immagine lungo l'asse verticale."
]
},
"refinerPositiveAestheticScore": {
"heading": "Punteggio estetico positivo",
"paragraphs": [
"Valuta le generazioni in modo che siano più simili alle immagini con un punteggio estetico elevato, in base ai dati di addestramento."
"Moltiplicatore di riscala per la guida CFG, utilizzato per modelli addestrati utilizzando SNR a terminale zero (ztsnr). Valore suggerito 0.7."
]
}
},
@@ -1745,8 +1632,7 @@
"steps": "Passi",
"scheduler": "Campionatore",
"recallParameters": "Richiama i parametri",
"noRecallParameters": "Nessun parametro da richiamare trovato",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"noRecallParameters": "Nessun parametro da richiamare trovato"
},
"hrf": {
"enableHrf": "Abilita Correzione Alta Risoluzione",

Some files were not shown because too many files have changed in this diff Show More