Compare commits

...

1047 Commits

Author SHA1 Message Date
psychedelicious
d4165317aa chore: release v4.2.9.dev12 2024-09-05 22:41:00 +10:00
psychedelicious
92482bf50d fix(ui): missing translation 2024-09-05 22:41:00 +10:00
psychedelicious
0ad118f1e9 fix(ui): save to gallery uses auto-add board 2024-09-05 22:41:00 +10:00
psychedelicious
da6d0c139b fix(ui): cancel transform/filter when deleting entity 2024-09-05 22:41:00 +10:00
psychedelicious
3103b3e440 chore(ui): lint 2024-09-05 22:41:00 +10:00
psychedelicious
c9ac44b061 feat(ui): iterate on state flow and rendering 2
- Rely on redux + reselect more
- Remove all nanostores that simply "mirrored" redux state in favor of direct subscriptions to redux store
- Add abstractions for creating redux subs and running selectors
- Add `initialize` method to CanvasModuleBase, for post-instantiation tasks
- Reduce local caching of state in modules to a minimum
2024-09-05 22:41:00 +10:00
psychedelicious
edfbf11a1c feat(ui): iterate on state flow and rendering 2024-09-05 22:41:00 +10:00
psychedelicious
4807657ac9 feat(ui): slight layout change for staging area toolbar 2024-09-05 22:41:00 +10:00
psychedelicious
e665ca0743 feat(ui): clean up adapter API 2024-09-05 22:41:00 +10:00
psychedelicious
6ec6d978ac feat(ui): streamlined state flow 2024-09-05 22:41:00 +10:00
psychedelicious
94da066d2d fix(ui): handle optimal dimension when resetting canvas 2024-09-05 22:41:00 +10:00
psychedelicious
78c070ade1 feat(ui): background and staging area modules have own store subscription and render themselves 2024-09-05 22:41:00 +10:00
psychedelicious
f587d236ed feat(ui): make rendering methods not need args
They should pull from the entity's state directly. This allows more freedom with updating the canvas.
2024-09-05 22:41:00 +10:00
psychedelicious
129cd91267 feat(ui): restore size of invoke button 2024-09-05 22:41:00 +10:00
psychedelicious
8fb8916027 tidy(ui): remove unnecessary awaits in rendering module 2024-09-05 22:41:00 +10:00
psychedelicious
139cf29e32 tidy(ui): rename some classes to better represent their responsibilities 2024-09-05 22:41:00 +10:00
psychedelicious
7cc9aa5b99 feat(ui): abstract out CanvasEntityAdapterBase
Things were getting to complex to reason about & classes a bit complicated. Trying to simplify...
2024-09-05 22:41:00 +10:00
psychedelicious
a2ba8700d4 feat(ui): revise entity rendering flow 2024-09-05 22:41:00 +10:00
psychedelicious
facd007d1e tidy(ui): remove unused id on konva nodes 2024-09-05 22:41:00 +10:00
psychedelicious
f63aab9730 tidy(ui): remove commented code 2024-09-05 22:41:00 +10:00
psychedelicious
eb230feb57 tidy(ui): remove extraneous docstrings 2024-09-05 22:41:00 +10:00
psychedelicious
438fba478c feat(ui): clean up unused tool module state 2024-09-05 22:41:00 +10:00
psychedelicious
4b65891b65 tidy(ui): disable isDebugging flag on root component 2024-09-05 22:41:00 +10:00
psychedelicious
b3c2d4d4b2 fix(ui): unable to drag while transforming after switching tools 2024-09-05 22:41:00 +10:00
psychedelicious
d535ea6119 feat(ui): prevent layer interactions when transforming or filtering 2024-09-05 22:41:00 +10:00
psychedelicious
c4ab0c9c96 feat(ui): add compositeMaskedRegions setting 2024-09-05 22:41:00 +10:00
psychedelicious
4b79d54b4f tidy(ui): merge tool slice, sendToCanvas into settings slice 2024-09-05 22:41:00 +10:00
psychedelicious
9226165530 build(ui): add csstype dev dependency 2024-09-05 22:41:00 +10:00
psychedelicious
292770e188 feat(ui): clean up tool preview rendering 2024-09-05 22:41:00 +10:00
psychedelicious
3347094254 feat(ui): tool buttons are only disabled when currently selected 2024-09-05 22:41:00 +10:00
psychedelicious
491b049e12 feat(ui): better types on CanvasStateApiModule.getEntity 2024-09-05 22:41:00 +10:00
psychedelicious
6f8fac3f73 feat(ui): update default logging context path to be string 2024-09-05 22:41:00 +10:00
psychedelicious
96ecf492cc tidy(ui): mark canvas module attrs readonly 2024-09-05 22:41:00 +10:00
psychedelicious
22597f5e0e chore: release v4.2.9.dev11 2024-09-05 22:41:00 +10:00
psychedelicious
42e2812ed2 feat(ui): tidy stateApi atoms & add docstrings 2024-09-05 22:41:00 +10:00
psychedelicious
689dd24296 feat(ui): streamline manager -> react transform interface 2024-09-05 22:41:00 +10:00
psychedelicious
f2bb078a48 tidy(ui): remove unused $isProcessingTransform atom 2024-09-05 22:41:00 +10:00
psychedelicious
0ae1004520 docs(ui): docstrings for $canvasCache 2024-09-05 22:41:00 +10:00
psychedelicious
89f3a8b91b feat(ui): tweak bookmark verbiage 2024-09-05 22:41:00 +10:00
psychedelicious
3edef0fc73 feat(ui): move transformer state to nanostores
This provides some free reactivity for this canvas-manager-managed state.
2024-09-05 22:41:00 +10:00
psychedelicious
aa0942e527 fix(ui): transform should ignore konva filters (e.g. transparency effect) 2024-09-05 22:41:00 +10:00
psychedelicious
7145c91bd2 feat(ui): add fit to bbox as transform helper 2024-09-05 22:41:00 +10:00
psychedelicious
846a88c0b8 tidy(ui): transformer organisation 2024-09-05 22:41:00 +10:00
psychedelicious
abc75e6b1b fix(ui): disable merge visible when 1 or fewer layers of type 2024-09-05 22:41:00 +10:00
psychedelicious
dc6bd98266 feat(ui): brush preview opacity at 0.5 when drawing on mask 2024-09-05 22:41:00 +10:00
psychedelicious
8df9c43079 chore(ui): lint 2024-09-05 22:41:00 +10:00
psychedelicious
ef95fee63a fix(ui): edge cases in quick switch, simpler logic 2024-09-05 22:41:00 +10:00
psychedelicious
9674485723 chore(ui): lint 2024-09-05 22:41:00 +10:00
psychedelicious
0f70989f19 feat(ui): add bookmark for quick switch 2024-09-05 22:41:00 +10:00
psychedelicious
fa691fc8d0 fix(ui): force dims on scaled bbox when manual scaling + locked aspect ratio
Closes #5590
2024-09-05 22:41:00 +10:00
psychedelicious
4a6d901a2b feat(ui): "Control Layers" -> "Layers" 2024-09-05 22:41:00 +10:00
psychedelicious
2ea8f87d82 feat(ui): "IP Adapter" -> "Global IP Adapter" 2024-09-05 22:41:00 +10:00
psychedelicious
f4b654d37c tidy(ui): canvas hotkey hooks 2024-09-05 22:41:00 +10:00
psychedelicious
7f4eab2400 feat(ui): add alt+[ and alt+] hotkeys to cycle through layers 2024-09-05 22:41:00 +10:00
psychedelicious
c7c32d67ea feat(ui): add layer quick switch
Q toggles between the last-selected layers.
2024-09-05 22:41:00 +10:00
psychedelicious
571a5f9865 feat(ui): bbox hotkey is c 2024-09-05 22:41:00 +10:00
psychedelicious
784c3b0454 fix(ui): select nonexistent entity 2024-09-05 22:41:00 +10:00
psychedelicious
1b3d415c35 feat(ui): brush & eraser width ui/ux
Use same pattern as canvas scale & opacity sliders w/ scaled slider values for precision at low values.
2024-09-05 22:41:00 +10:00
psychedelicious
c43cc0814a tidy(ui): canvas scale & entity opacity sliders 2024-09-05 22:41:00 +10:00
psychedelicious
f0332efdf3 feat(ui): hotkeys for brush/eraser size 2024-09-05 22:41:00 +10:00
psychedelicious
ff0109db52 feat(ui): use default IP adapter when creating IP adapter 2024-09-05 22:41:00 +10:00
psychedelicious
d0f8f3995f tidy(ui): organise files 2024-09-05 22:41:00 +10:00
psychedelicious
4fd1d856b8 feat(ui): remove object count from entity title
This was used for troubleshooting only.
2024-09-05 22:41:00 +10:00
psychedelicious
7697525f04 tidy(ui): misc cleanup 2024-09-05 22:41:00 +10:00
psychedelicious
31fed50f11 docs(ui): docstrings for classes (wip) 2024-09-05 22:41:00 +10:00
psychedelicious
440a75fec6 feat(ui): revised canvas module base class
Big cleanup. Makes these classes easier to implement, lots of comments and docstrings to clarify how it all works.

- Add default implementations for `destroy`, `repr` and `getLoggingContext`
- Tidy individual module configs
- Update `CanvasManager.buildLogger` to accept a canvas module as the arg
- Add `CanvasManager.buildPath`
2024-09-05 22:41:00 +10:00
psychedelicious
72fd370ba6 feat(ui): split canvas tool previews into modules 2024-09-05 22:41:00 +10:00
psychedelicious
6f9085d2d9 fix(ui): reject on dataURLToImageData 2024-09-05 22:41:00 +10:00
psychedelicious
dd5de2dc95 fix(ui): correctly set last cursor pos to null 2024-09-05 22:41:00 +10:00
psychedelicious
0f9708373d chore: release v4.2.9.dev10 2024-09-05 22:41:00 +10:00
psychedelicious
5f7e6379ad feat(ui): remove entity list context menu (again)
stupid events
2024-09-05 22:41:00 +10:00
psychedelicious
26e9936240 fix(ui): entity groups not collapsing 2024-09-05 22:41:00 +10:00
psychedelicious
f863c08a55 chore: release v4.2.9.dev9 2024-09-05 22:41:00 +10:00
psychedelicious
ba7420c6e7 fix(ui): entity opacity number input focus prevents slider from opening 2024-09-05 22:41:00 +10:00
psychedelicious
263c251cb3 feat(ui): add merge visible for raster and inpaint mask layers
I don't think it makes sense to merge control layers or regional guidance layers because they have additional state.
2024-09-05 22:41:00 +10:00
psychedelicious
5f21d01f35 fix(ui): save to gallery rect too large
Was including all layer types in the rect - only want the raster layers.
2024-09-05 22:41:00 +10:00
psychedelicious
db333c1c6f fix(ui): canvasToBlob not raising error correctly 2024-09-05 22:41:00 +10:00
psychedelicious
f6f077d0b8 feat(ui): add save to gallery button 2024-09-05 22:41:00 +10:00
psychedelicious
5dfa5c9a48 fix(ui): fix getRectUnion util, add some tests 2024-09-05 22:41:00 +10:00
psychedelicious
bfc4f4a88b fix(ui): modals not staying open
TBH not sure exactly why this broke. Fixed by rollback back the use of a render prop in favor of global state. Also revised the API of `useBoolean` and `buildUseBoolean`.
2024-09-05 22:41:00 +10:00
psychedelicious
efb99695a7 fix(ui): correct labels for generation tab origin 2024-09-05 22:41:00 +10:00
psychedelicious
a72c38273c fix(ui): context menu doesn't work for new entities
I do not understand why this fixes the issue, doesn't seem like it should. But it does.
2024-09-05 22:41:00 +10:00
psychedelicious
7d06453086 tidy(ui): organise tool module 2024-09-05 22:41:00 +10:00
psychedelicious
35654c38dc fix(ui): staging hotkeys enabled at wrong times 2024-09-05 22:41:00 +10:00
psychedelicious
e2fde5c152 fix(ui): incorrect batch origin preventing progress/staging 2024-09-05 22:41:00 +10:00
psychedelicious
35a74f99d0 feat(ui): restore minimal HUD 2024-09-05 22:41:00 +10:00
psychedelicious
48b4e00373 feat(ui): remove unused asPreview for StageComponent 2024-09-05 22:41:00 +10:00
psychedelicious
c51cdbec35 chore(ui): lint 2024-09-05 22:41:00 +10:00
psychedelicious
64ac64e9f6 chore: release v4.2.9.dev8 2024-09-05 22:41:00 +10:00
psychedelicious
550842fb61 feat(ui): revise generation mode logic
- Canvas generation mode is replace with a boolean `sendToCanvas` flag. When off, images generated on the canvas go to the gallery. When on, they get added to the staging area.
- When an image result is received, if its destination is the canvas, staging is automatically started.
- Updated queue list to show the destination column.
- Added `IconSwitch` component to represent binary choices, used for the new `sendToCanvas` flag and image viewer toggle.
- Remove the queue actions menu in `QueueControls`. Move the queue count badge to the cancel button.
- Redo layout of `QueueControls` to prevent duplicate queue count badges.
- Fix issue where gallery and options panels could show thru transparent regions of queue tab.
- Disable panel hotkeys when on mm/queue tabs.
2024-09-05 22:41:00 +10:00
psychedelicious
647aae8dd1 chore(ui): typegen 2024-09-05 22:41:00 +10:00
psychedelicious
b18acdda6b feat(app): add destination column to session_queue
The frontend needs to know where queue items came from (i.e. which tab), and where results are going to (i.e. send images to gallery or canvas). The `origin` column is not quite enough to represent this cleanly.

A `destination` column provides the frontend what it needs to handle incoming generations.
2024-09-05 22:41:00 +10:00
psychedelicious
f501e6ea29 tidy(ui): ViewerToggleMenu -> ViewerToggle 2024-09-05 22:41:00 +10:00
psychedelicious
c3eb691e57 feat(ui): alt quick switches to color picker 2024-09-05 22:41:00 +10:00
psychedelicious
39a004c20e feat(ui): tweak add entity button layout 2024-09-05 22:41:00 +10:00
psychedelicious
6f5674659e feat(ui): restore context menu for entity list 2024-09-05 22:41:00 +10:00
psychedelicious
bbfaa60821 feat(ui): add delete button to each layer 2024-09-05 22:41:00 +10:00
psychedelicious
9aa3ffffee feat(ui): add + buttons to entity categories 2024-09-05 22:41:00 +10:00
psychedelicious
2b1d442269 feat(ui): tweak brush fill UI 2024-09-05 22:41:00 +10:00
psychedelicious
4433cd2749 feat(ui): do not select layer on staging accept 2024-09-05 22:40:59 +10:00
psychedelicious
05931cc06b fix(ui): more fiddly queue count layout stuff 2024-09-05 22:40:59 +10:00
psychedelicious
261dd0cb40 fix(ui): floating params panel invoke button loading state 2024-09-05 22:40:59 +10:00
psychedelicious
12298008c7 feat(ui): move canvas undo/redo to hook 2024-09-05 22:40:59 +10:00
psychedelicious
69f9932f37 fix(ui): queue count badge positioning 2024-09-05 22:40:59 +10:00
psychedelicious
a52060ca33 fix(ui): add node cmdk only enabled on workflows tab 2024-09-05 22:40:59 +10:00
psychedelicious
82e804ea2c chore: release v4.2.9.dev7 2024-09-05 22:40:59 +10:00
psychedelicious
ef4cff5113 fix(ui): pending node connection stuck 2024-09-05 22:40:59 +10:00
psychedelicious
9b2405f185 chore(ui): lint 2024-09-05 22:40:59 +10:00
psychedelicious
0359cb7365 chore: release v4.2.9.dev6 2024-09-05 22:40:59 +10:00
psychedelicious
57cb08a05b feat(ui): migrate add node popover to cmdk
Put this together as a way to figure out the library before moving on to the full app cmdk. Works great.
2024-09-05 22:40:59 +10:00
psychedelicious
29ae30b974 fix(ui): schema parsing now that node_pack is guaranteed to be present 2024-09-05 22:40:59 +10:00
psychedelicious
4a74f67258 chore(ui): typegen 2024-09-05 22:40:59 +10:00
psychedelicious
b02c4d6bf8 fix(app): node_pack not added to openapi schema correctly 2024-09-05 22:40:59 +10:00
psychedelicious
e7a8992f59 fix(ui): unnecessary z-index on invoke button 2024-09-05 22:40:59 +10:00
psychedelicious
6875e72b40 feat(ui): split settings modal 2024-09-05 22:40:59 +10:00
psychedelicious
7ca732b9bf perf(ui): disable useInert on modals
This hook forcibly updates _all_ portals with `data-hidden=true` when the modal opens - then reverts it when the modal closes. It's intended to help screen readers. Unfortunately, this absolutely tanks performance because we have many portals. React needs to do alot of layout calculations (not re-renders).

IMO this behaviour is a bug in chakra. The modals which generated the portals are hidden by default, so this data attr should really be set by default. Dunno why it isn't.
2024-09-05 22:40:59 +10:00
psychedelicious
0e6a11f53d feat(ui): fix queue item count badge positioning
Previously this badge, floating over the queue menu button next to the invoke button, was rendered within the existing layout. When I initially positioned it, the app layout interfered - it would extend into an area reserved for a flex gap, which cut off the badge.

As a (bad) workaround, I had shifted the whole app down a few pixels to make room for it. What I should have done is what I've done in this commit - render the badge in a portal to take it out of the layout so we don't need that extra vertical padding.

Sleekified some styling a bit too.
2024-09-05 22:40:59 +10:00
psychedelicious
1681ae0d49 fix(ui): transparency effect not updating 2024-09-05 22:40:59 +10:00
psychedelicious
0a6c63f10b feat(ui): tidy canvas toolbar buttons 2024-09-05 22:40:59 +10:00
psychedelicious
2cb218e69a feat(ui): revised viewer toggle @joshistoast 2024-09-05 22:40:59 +10:00
psychedelicious
4ea1622260 fix(ui): opacity reset value incorrect 2024-09-05 22:40:59 +10:00
psychedelicious
78fff1c7bc revert(ui): roll back flip, doesn't work with rotate yet 2024-09-05 22:40:59 +10:00
psychedelicious
8a860eeecd fix(ui): disable opacity slider fully when no valid entity selected 2024-09-05 22:40:59 +10:00
psychedelicious
ba5fef621a fix(ui): layer preview image sometimes not rendering
The canvas size was dynamic based on the container div's size. When the div was hidden (e.g. when selecting another tab), the container's effective size is 0. This resulted in the preview image canvas being drawn at a scale of 0.

Fixed by using an absolute size for the canvas container.
2024-09-05 22:40:59 +10:00
psychedelicious
0920a8f28f feat(ui): tweak regional prompt box styles 2024-09-05 22:40:59 +10:00
psychedelicious
fbc6680773 feat(ui): tweak enabled/locked toggle styles 2024-09-05 22:40:59 +10:00
psychedelicious
1b945d2d42 feat(ui): tweak filter styling 2024-09-05 22:40:59 +10:00
psychedelicious
4a934305f5 feat(ui): add flip & reset to transform 2024-09-05 22:40:59 +10:00
psychedelicious
829b680b4d tidy(ui): use helper to sync scaled bbox size on model change 2024-09-05 22:40:59 +10:00
psychedelicious
abb02ecdb7 fix(ui): randomize seed toggle linked to prompt concat 2024-09-05 22:40:59 +10:00
psychedelicious
db2003b3b6 chore: release v4.2.9.dev5 2024-09-05 22:40:59 +10:00
psychedelicious
86d3b60f54 chore(ui): lint 2024-09-05 22:40:59 +10:00
psychedelicious
2493d3f841 feat(ui): generalize mask fill, add to action bar 2024-09-05 22:40:59 +10:00
psychedelicious
63c61c7fa6 feat(ui): implement interaction locking on layers 2024-09-05 22:40:59 +10:00
psychedelicious
a584453fb2 feat(ui): iterate on layer actions
- Add lock toggle
- Tweak lock and enabled styles
- Update entity list action bar w/ delete & delete all
- Move add layer menu to action bar
- Adjust opacity slider style
2024-09-05 22:40:59 +10:00
psychedelicious
c2dd0bed17 feat(ui): collapsible entity groups 2024-09-05 22:40:59 +10:00
psychedelicious
4f793d750d tidy(ui): rename some classes to be consistent 2024-09-05 22:40:59 +10:00
psychedelicious
6c49921c76 feat(ui): tuned canvas undo/redo
- Throttle pushing to history for actions of the same type, starting with 1000ms throttle.
- History has a limit of 64 items, same as workflow editor
- Add clear history button
- Fix an issue where entity transformers would reset the entity state when the entity is fully transparent, resetting the redo stack. This could happen when you undo to the starting state of a layer
2024-09-05 22:40:59 +10:00
psychedelicious
41ece76d61 tidy(ui): move all undoable reducers back to canvas slice 2024-09-05 22:40:59 +10:00
psychedelicious
6c4c58206d fix(ui): dnd image count 2024-09-05 22:40:59 +10:00
psychedelicious
ee71ab3330 fix(ui): canvas entity opacity scale 2024-09-05 22:40:59 +10:00
psychedelicious
e83069ed94 perf(ui): optimize all selectors 2
Mostly selector optimization. Still a few places to tidy up but I'll get to that later.
2024-09-05 22:40:59 +10:00
psychedelicious
4ad748514e perf(ui): optimize all selectors 1
I learned that the inline selector syntax recreates the selector function on every render:

```ts
const val = useAppSelector((s) => s.slice.val)
```

Not good! Better is to create a selector outside the function and use it. Doing that for all selectors now, most of the way through now. Feels snappier.
2024-09-05 22:40:59 +10:00
psychedelicious
b649bf2556 feat(ui): rough out undo/redo on canvas 2024-09-05 22:40:59 +10:00
psychedelicious
fbbbef4aef chore: release v4.2.9.dev4
Canvas dev build.
2024-09-05 22:40:59 +10:00
psychedelicious
734fca622c fix(ui): handle error from internal konva method
We are dipping into konva's private API for preview images and it appears to be unsafe (got an error once). Wrapped in a try/catch.
2024-09-05 22:40:59 +10:00
psychedelicious
958fae1370 feat(ui): split out loras state from canvas rendering state 2024-09-05 22:40:59 +10:00
psychedelicious
eac0bdcd9b feat(ui): split out session state from canvas rendering state 2024-09-05 22:40:59 +10:00
psychedelicious
29b7d1f7a6 feat(ui): split out settings state from canvas rendering state 2024-09-05 22:40:59 +10:00
psychedelicious
aff8209764 feat(ui): split out tool state from canvas rendering state 2024-09-05 22:40:59 +10:00
psychedelicious
e9ec9840f1 feat(ui): split out params/compositing state from canvas rendering state
First step to restoring undo/redo - the undoable state must be in its own slice. So params and settings must be isolated.
2024-09-05 22:40:59 +10:00
psychedelicious
afbe5d7e07 feat(ui): add CanvasModuleBase class to standardize canvas APIs
I did this ages ago but undid it for some reason, not sure why. Caught a few issues related to subscriptions.
2024-09-05 22:40:59 +10:00
psychedelicious
71c7dabb48 feat(ui): move selected tool and tool buffer out of redux
This ephemeral state can live in the canvas classes.
2024-09-05 22:40:59 +10:00
psychedelicious
733266fdf7 feat(ui): move ephemeral state into canvas classes
Things like `$lastCursorPos` are now created within the canvas drawing classes. Consumers in react access them via `useCanvasManager`.

For example:
```tsx
const canvasManager = useCanvasManager();
const lastCursorPos = useStore(canvasManager.stateApi.$lastCursorPos);
```
2024-09-05 22:40:59 +10:00
psychedelicious
2fb79a10be feat(ui): normalize all actions to accept an entityIdentifier
Previously, canvas actions specific to an entity type only needed the id of that entity type. This allowed you to pass in the id of an entity of the wrong type.

All actions for a specific entity now take a full entity identifier, and the entity identifier type can be narrowed.

`selectEntity` and `selectEntityOrThrow` now need a full entity identifier, and narrow their return values to a specific entity type _if_ the entity identifier is narrowed.

The types for canvas entities are updated with optional type parameters for this purpose.

All reducers, actions and components have been updated.
2024-09-05 22:40:59 +10:00
psychedelicious
3dde01d642 feat(ui): move events into modules who care about them 2024-09-05 22:40:59 +10:00
psychedelicious
0e95d7f729 fix(ui): color picker resets brush opacity 2024-09-05 22:40:59 +10:00
psychedelicious
5d76a3cb4f fix(ui): scaled bbox loses sync 2024-09-05 22:40:59 +10:00
psychedelicious
67531e0dc4 feat(ui): add context menu to entity list 2024-09-05 22:40:59 +10:00
psychedelicious
a903e6eab5 chore(ui): bump @invoke-ai/ui-library 2024-09-05 22:40:59 +10:00
psychedelicious
2ea921c2ca fix(ui): missing vae precision in graph builders 2024-09-05 22:40:59 +10:00
psychedelicious
14caa82bc2 chore: release v4.2.9.dev3
Instead of using dates, just going to increment.
2024-09-05 22:40:59 +10:00
psychedelicious
a8d2670622 feat(ui): use new Result utils for enqueueing 2024-09-05 22:40:59 +10:00
psychedelicious
708f2f2814 fix(ui): graph building issue w/ controlnet 2024-09-05 22:40:59 +10:00
psychedelicious
a92f82f06f feat(ui): add Result type & helpers
Wrappers to capture errors and turn into results:
- `withResult` wraps a sync function
- `withResultAsync` wraps an async function

Comments, tests.
2024-09-05 22:40:59 +10:00
psychedelicious
45e6c5523d chore: release v4.2.9.dev20240824 2024-09-05 22:40:59 +10:00
psychedelicious
247378ed73 fix(ui): lint & fix issues with adding regional ip adapters 2024-09-05 22:40:59 +10:00
psychedelicious
51146f760c feat(ui): add knipignore tag
I'm not ready to delete some things but still want to build the app.
2024-09-05 22:40:59 +10:00
psychedelicious
6ee8de882b feat(ui): duplicate entity 2024-09-05 22:40:59 +10:00
psychedelicious
73804abb55 feat(ui): autocomplete on getPrefixeId 2024-09-05 22:40:59 +10:00
psychedelicious
f075c1dcc1 feat(ui): paste canvas gens back on source in generate mode 2024-09-05 22:40:59 +10:00
psychedelicious
b1dd3adddc chore(ui): typegen 2024-09-05 22:40:59 +10:00
psychedelicious
0a10bba783 feat(nodes): CanvasV2MaskAndCropInvocation can paste generated image back on source
This is needed for `Generate` mode.
2024-09-05 22:40:59 +10:00
psychedelicious
92c670c454 fix(ui): extraneous entity preview updates 2024-09-05 22:40:59 +10:00
psychedelicious
5b709dd458 fix(ui): newly-added entities are selected 2024-09-05 22:40:59 +10:00
psychedelicious
bbdc736e1b feat(ui): add crosshair to color picker 2024-09-05 22:40:59 +10:00
psychedelicious
c8e330101d fix(ui): color picker ignores alpha 2024-09-05 22:40:59 +10:00
psychedelicious
ea6cd090c2 fix(ui): calculate renderable entities correctly in tool module 2024-09-05 22:40:59 +10:00
psychedelicious
f50945ec89 feat(ui): better color picker 2024-09-05 22:40:59 +10:00
psychedelicious
6cffca5283 feat(ui): colored mask preview image 2024-09-05 22:40:59 +10:00
psychedelicious
07c1b5b680 fix(ui): new rectangles don't trigger rerender 2024-09-05 22:40:59 +10:00
psychedelicious
a55eb2fca9 chore: bump version v4.2.9.dev20240823 2024-09-05 22:40:59 +10:00
psychedelicious
f9e801782b feat(ui): disable most interaction while filtering 2024-09-05 22:40:43 +10:00
psychedelicious
7cd8beda56 fix(ui): filter preview offset 2024-09-05 22:40:43 +10:00
psychedelicious
8d1095bd72 feat(ui): tweak layout of staging area toolbar 2024-09-05 22:40:43 +10:00
psychedelicious
9317831648 chore(ui): typegen 2024-09-05 22:40:43 +10:00
psychedelicious
2de16d970c tidy(app): clean up app changes for canvas v2 2024-09-05 22:40:43 +10:00
psychedelicious
e99e1f3464 feat(ui): use singleton for clear q confirm dialog 2024-09-05 22:40:43 +10:00
psychedelicious
5f044f1eda fix(ui): rip out broken recall logic, NO TS ERRORS 2024-09-05 22:40:43 +10:00
psychedelicious
d443afd1fc chore(ui): lint 2024-09-05 22:40:43 +10:00
psychedelicious
28ef63991c fix(ui): staging area interaction scopes 2024-09-05 22:40:43 +10:00
psychedelicious
b60692d1ac fix(ui): staging area actions 2024-09-05 22:40:43 +10:00
psychedelicious
4cffb7df6e tidy(ui): more cleanup 2024-09-05 22:40:43 +10:00
psychedelicious
1ce52dba41 fix(ui): upscale tab graph 2024-09-05 22:40:43 +10:00
psychedelicious
047fa8a135 fix(ui): sdxl graph builder 2024-09-05 22:40:43 +10:00
psychedelicious
e664d6a6e0 fix(ui): select next entity in the list when deleting 2024-09-05 22:40:43 +10:00
psychedelicious
3532c3414f feat(ui): fix delete layer hotkey 2024-09-05 22:40:43 +10:00
psychedelicious
d8447abd64 tidy(ui): "eye dropper" -> "color picker" 2024-09-05 22:40:43 +10:00
psychedelicious
b06d4e25e1 tidy(ui): regional guidance buttons 2024-09-05 22:40:43 +10:00
psychedelicious
aeac1edb0b feat(ui): update entity list menu 2024-09-05 22:40:43 +10:00
psychedelicious
594aa9da61 feat(ui): add log debug button 2024-09-05 22:40:43 +10:00
psychedelicious
0918732f36 chore(ui): lint 2024-09-05 22:40:43 +10:00
psychedelicious
0a9bd3f691 chore(ui): prettier 2024-09-05 22:40:43 +10:00
psychedelicious
12616cd073 chore(ui): eslint 2024-09-05 22:40:43 +10:00
psychedelicious
19378199d4 tidy(ui): remove unused stuff 4 2024-09-05 22:40:43 +10:00
psychedelicious
36c2409dd6 tidy(ui): remove unused stuff 3 2024-09-05 22:40:43 +10:00
psychedelicious
849356485f tidy(ui): remove unused pkg @chakra-ui/react-use-size 2024-09-05 22:40:43 +10:00
psychedelicious
f68f98e5cd feat(ui): revise graph building for control layers, fix issues w/ invocation complete events 2024-09-05 22:40:43 +10:00
psychedelicious
c8abcd6f66 feat(ui): use unique id for metadata in Graph class 2024-09-05 22:40:43 +10:00
psychedelicious
f81c87b685 tidy(ui): remove unused stuff 2 2024-09-05 22:40:43 +10:00
psychedelicious
a807957967 tidy(ui): remove unused stuff 2024-09-05 22:40:43 +10:00
psychedelicious
314f650b45 tidy(ui): reduce use of parseify util 2024-09-05 22:40:43 +10:00
psychedelicious
2a96554935 feat(ui): refine canvas entity list items & menus 2024-09-05 22:40:43 +10:00
psychedelicious
3dbe5b3755 feat(ui): canvas layer preview, revised reactivity for adapters 2024-09-05 22:40:43 +10:00
psychedelicious
eca4a2dec7 feat(ui): add SyncableMap
Can be used with useSyncExternal store to make a `Map` reactive.
2024-09-05 22:40:43 +10:00
psychedelicious
e8cb0b0971 tidy(ui): removed unused transform methods from canvasmanager 2024-09-05 22:40:43 +10:00
psychedelicious
90799d6f1b feat(ui): transform tool ux 2024-09-05 22:40:43 +10:00
psychedelicious
86791a0701 feat(ui): rough out canvas mode 2024-09-05 22:40:43 +10:00
psychedelicious
81052d9a18 feat(ui): add canvas autosave checkbox 2024-09-05 22:40:43 +10:00
psychedelicious
f0baabf735 fix(ui): memory leak when getting image DTO
must unsubscribe!
2024-09-05 22:40:43 +10:00
psychedelicious
815d938cf6 feat(ui): rework settings menu 2024-09-05 22:40:43 +10:00
psychedelicious
81baa1e2fd feat(ui): no entities fallback buttons 2024-09-05 22:40:43 +10:00
psychedelicious
151ee00273 perf(ui): optimize gallery image delete button rendering 2024-09-05 22:40:43 +10:00
psychedelicious
949d3b016d feat(ui): remove "solid" background option 2024-09-05 22:40:43 +10:00
psychedelicious
49a2f3d7d7 tidy(ui): organise files and classes 2024-09-05 22:40:43 +10:00
psychedelicious
22d0a02a66 tidy(ui): abstract compositing logic to module 2024-09-05 22:40:43 +10:00
psychedelicious
ea5454f6b2 fix(ui): fix canvas cache property access 2024-09-05 22:40:43 +10:00
psychedelicious
8fc881080f tidy(ui): clean up CanvasFilter class 2024-09-05 22:40:43 +10:00
psychedelicious
c5ba513873 tidy(ui): clean up a few bits and bobs 2024-09-05 22:40:43 +10:00
psychedelicious
53370b6580 tidy(ui): abstract canvas rendering logic to module 2024-09-05 22:40:43 +10:00
psychedelicious
527de60428 tidy(ui): abstract caching logic to module 2024-09-05 22:40:43 +10:00
psychedelicious
af048a134e tidy(ui): abstract worker logic to module 2024-09-05 22:40:43 +10:00
psychedelicious
40682b9695 tidy(ui): abstract stage logic into module 2024-09-05 22:40:43 +10:00
psychedelicious
0487c80615 feat(ui): add entity group hiding 2024-09-05 22:40:43 +10:00
psychedelicious
303352dd1c feat(ui): move all caching out of redux
While we lose the benefit of the caches persisting across reloads, this is a much simpler way to handle things. If we need a persistent cache, we can explore it in the future.
2024-09-05 22:40:43 +10:00
psychedelicious
01b34100b3 feat(ui): revised rasterization caching
- use `stable-hash` to generate stable, non-crypto hashes for cache entries, instead of using deep object comparisons
- use an object to store image name caches
2024-09-05 22:40:43 +10:00
psychedelicious
0dcfad50ec feat(ui): revise filter implementation 2024-09-05 22:40:43 +10:00
psychedelicious
1f99426180 fix(ui): add button to delete inpaint mask 2024-09-05 22:40:43 +10:00
psychedelicious
0b898906a5 feat(ui): add contexts/hooks to access entity adapters directly 2024-09-05 22:40:43 +10:00
psychedelicious
0c46e694c8 feat(ui): add CanvasManagerProviderGate
This context waits to render its children its until the canvas manager is available. Then its children have access to the manager directly via hook.
2024-09-05 22:40:43 +10:00
psychedelicious
80e71bd1f1 feat(ui) do not set $canvasManager until ready 2024-09-05 22:40:43 +10:00
psychedelicious
5013169170 fix(ui): inpaint mask naming 2024-09-05 22:40:43 +10:00
psychedelicious
59e0c86211 feat(ui): efficient canvas compositing
Also solves issue of exporting layers at different opacities than what is visible
2024-09-05 22:40:43 +10:00
psychedelicious
82cefce743 feat(ui): allow multiple inpaint masks
This is easier than making it a nullable singleton
2024-09-05 22:40:43 +10:00
psychedelicious
8f942603c6 fix(ui): missing rasterization cache invalidations 2024-09-05 22:40:43 +10:00
psychedelicious
228cea3e29 feat(ui): iterate on filter UI, flow 2024-09-05 22:40:43 +10:00
psychedelicious
71639631c8 fix(ui): rehydration data loss 2024-09-05 22:40:43 +10:00
psychedelicious
7f0d73fe3d feat(ui): sort log namespaces 2024-09-05 22:40:43 +10:00
psychedelicious
51efa27514 fix(ui): do not merge arrays by index during rehydration 2024-09-05 22:40:43 +10:00
psychedelicious
25cf5239da fix(ui): clone parsed data during state rehydration
Without this, the objects and arrays in `parsed` could be mutated, and the log statment would show the mutated data.
2024-09-05 22:40:43 +10:00
psychedelicious
3f0ade8bff fix(ui): fix logger filter
was accidetnally replacing the filter instead of appending to it.
2024-09-05 22:40:43 +10:00
psychedelicious
8cfbb0083a fix(ui): race condition queue status
Sequence of events causing the race condition:
- Enqueue batch
- Invalidate `SessionQueueStatus` tag
- Request updated queue status via HTTP - batch still processing at this point
- Batch completes
- Event emitted saying so
- Optimistically update the queue status cache, it is correct
- HTTP request makes it back and overwrites the optimistic update, indicating the batch is still in progress

FIxed by not invalidating the cache.
2024-09-05 22:40:43 +10:00
psychedelicious
af840b85bd fix(ui): handle opacity for masks 2024-09-05 22:40:43 +10:00
psychedelicious
b8a316acf7 feat(ui): default background to checkerboard 2024-09-05 22:40:43 +10:00
psychedelicious
f2b60ddfc3 feat(ui): clean up logging namespaces, allow skipping namespaces 2024-09-05 22:40:43 +10:00
psychedelicious
8ba0293444 chore(ui): bump ui library 2024-09-05 22:40:43 +10:00
psychedelicious
99e81d88c4 fix(ui): do not allow drawing if layer disabled 2024-09-05 22:40:43 +10:00
psychedelicious
bb3812b4a3 fix(ui): stale state causing race conditions & extraneous renders 2024-09-05 22:40:43 +10:00
psychedelicious
1eee342b48 fix(ui): do not clear buffer when rendering "real" objects 2024-09-05 22:40:43 +10:00
psychedelicious
5c57c2af37 tidy(ui): remove "filter" from CanvasImageState 2024-09-05 22:40:43 +10:00
psychedelicious
48907cce32 feat(ui): better editable title 2024-09-05 22:40:43 +10:00
psychedelicious
15e4106cc0 fix(ui): stroke eraserline 2024-09-05 22:40:43 +10:00
psychedelicious
949ee5a758 feat(ui): restore transparency effect for control layers 2024-09-05 22:40:43 +10:00
psychedelicious
28fa9ca731 feat(ui): use text cursor for entity title 2024-09-05 22:40:43 +10:00
psychedelicious
8592e7bc77 tidy(ui): remove extraneous logging in CanvasStateApi 2024-09-05 22:40:43 +10:00
psychedelicious
82a8995c98 feat(ui): better buffer commit logic 2024-09-05 22:40:43 +10:00
psychedelicious
c8d1a894fc feat(ui): render buffer separately from "real" objects 2024-09-05 22:40:43 +10:00
psychedelicious
06f5b7980a fix(ui): pixelRect should always be integer 2024-09-05 22:40:43 +10:00
psychedelicious
f2d8c851c1 fix(ui): only update stage attrs when stage itself is dragged 2024-09-05 22:40:43 +10:00
psychedelicious
76b29e90b2 feat(ui): add line simplification
This fixes some awkward issues where line segments stack up.
2024-09-05 22:40:43 +10:00
psychedelicious
a87642950d fix(ui): various things listening when they need not listen 2024-09-05 22:40:43 +10:00
psychedelicious
b092817193 feat(ui): layer opacity via caching 2024-09-05 22:40:43 +10:00
psychedelicious
ecbf1712b0 feat(ui): reset view fits all visible objects 2024-09-05 22:40:43 +10:00
psychedelicious
f80c667f30 fix(ui): rerenders when changing canvas scale 2024-09-05 22:40:43 +10:00
psychedelicious
93f5e3c3a4 fix(ui): do not render rasterized layer unless renderObjects=true 2024-09-05 22:40:43 +10:00
psychedelicious
327bbcaa64 feat(ui): revise app layout strategy, add interaction scopes for hotkeys 2024-09-05 22:40:43 +10:00
psychedelicious
6e964e21ba feat(ui): tweak mask patterns 2024-09-05 22:40:43 +10:00
psychedelicious
355dd86994 fix(ui): dynamic prompts recalcs when presets are loaded 2024-09-05 22:40:43 +10:00
psychedelicious
15c0c4dc54 fix(ui): use style preset prompts correctly 2024-09-05 22:40:43 +10:00
psychedelicious
69219219e3 fix(ui): discard selected staging image not all other images 2024-09-05 22:40:43 +10:00
psychedelicious
d18682b230 fix(ui): respect image size in staging preview 2024-09-05 22:40:43 +10:00
psychedelicious
60a9d8a8a6 tidy(ui): cleanup after events change 2024-09-05 22:40:43 +10:00
psychedelicious
0d6a022730 feat(ui): move socket event handling out of redux
Download events and invocation status events (including progress images) are very frequent. There's no real need for these to pass through redux. Handling them outside redux is a significant performance win - far fewer store subscription calls, far fewer trips through middleware.

All event handling is moved outside middleware. Cleanup of unused actions and listeners to follow.
2024-09-05 22:40:43 +10:00
psychedelicious
af1df11bec fix(ui): rebase conflicts 2024-09-05 22:40:43 +10:00
psychedelicious
fe6538bf9e fix(ui): update compositing rect when fill changes 2024-09-05 22:40:43 +10:00
psychedelicious
2e4a2a77a3 feat(ui): add canvas background style 2024-09-05 22:40:43 +10:00
psychedelicious
456a6cdb8d feat(ui): mask layers choose own opacity 2024-09-05 22:40:43 +10:00
psychedelicious
62db00f5b2 feat(ui): mask fill patterns 2024-09-05 22:40:43 +10:00
psychedelicious
c6a15bfb1a build(ui): add vite types to tsconfig 2024-09-05 22:40:43 +10:00
psychedelicious
de9c72f7d5 fix(ui): do not smooth pixel data when using eyeDropper 2024-09-05 22:40:42 +10:00
psychedelicious
29cb2a30ad tidy(ui): tool components & translations 2024-09-05 22:40:42 +10:00
psychedelicious
9971ece2e5 feat(ui): rough out eyedropper tool
It's a bit slow bc we are converting the stage to canvas on every mouse move. Also need to improve the visual but it works.
2024-09-05 22:40:42 +10:00
psychedelicious
4e7ae3e120 fix(ui): ip adapters work 2024-09-05 22:40:42 +10:00
psychedelicious
7b799ee51c feat(ui): rename layers 2024-09-05 22:40:42 +10:00
psychedelicious
e948d8454a feat(ui): revise entity menus 2024-09-05 22:40:42 +10:00
psychedelicious
eaf6fe571d feat(ui): split control layers from raster layers for UI and internal state, same rendering as raster layers 2024-09-05 22:40:42 +10:00
psychedelicious
13c607470d feat(ui): implement cache for image rasterization, rip out some old controladapters code 2024-09-05 22:40:42 +10:00
psychedelicious
582e8be8b9 feat(ui, app): use layer as control (wip) 2024-09-05 22:40:42 +10:00
psychedelicious
3239ba1a1c feat(ui): add contextmenu for canvas entities 2024-09-05 22:40:42 +10:00
psychedelicious
ae5d1e035a feat(ui): more better logging & naming 2024-09-05 22:40:42 +10:00
psychedelicious
d3e245fd78 feat(ui): better logging w/ path 2024-09-05 22:40:42 +10:00
psychedelicious
aea7efb031 feat(ui): always show marks on canvas scale slider 2024-09-05 22:40:42 +10:00
psychedelicious
3e61f9b405 fix(ui): do not import button from chakra 2024-09-05 22:40:42 +10:00
psychedelicious
840707606f fix(ui): scaled bbox preview 2024-09-05 22:40:42 +10:00
psychedelicious
68b97193cb feat(ui): tidy up atoms 2024-09-05 22:40:42 +10:00
psychedelicious
00d73598d2 feat(ui): convert all my pubsubs to atoms
its the same but better
2024-09-05 22:40:42 +10:00
psychedelicious
f9726dc904 feat(ui): add trnalsation 2024-09-05 22:40:42 +10:00
psychedelicious
25e3fa5990 fix(ui): give up on thumbnail loading, causes flash during transformer 2024-09-05 22:40:42 +10:00
psychedelicious
b69d91f0ec fix(ui): depth anything v2 2024-09-05 22:40:42 +10:00
psychedelicious
6a1e34a030 tidy(ui): remove unused code, comments 2024-09-05 22:40:42 +10:00
psychedelicious
2dde7d8925 fix(ui): staging area works 2024-09-05 22:40:42 +10:00
psychedelicious
1d284609f9 feat(nodes): temp disable canvas output crop 2024-09-05 22:40:42 +10:00
psychedelicious
3f6873f0d3 fix(ui): max scale 1 when reset view 2024-09-05 22:40:42 +10:00
psychedelicious
ae78e90d53 feat(ui): better scale changer component, reset view functionality 2024-09-05 22:40:42 +10:00
psychedelicious
7cca0a239b fix(ui): img2img 2024-09-05 22:40:42 +10:00
psychedelicious
ffd6164f06 feat(ui): add manual scale controls 2024-09-05 22:40:42 +10:00
psychedelicious
a3a370625b fix(ui): do not await clearBuffer 2024-09-05 22:40:42 +10:00
psychedelicious
ae3064fc67 feat(ui): dnd image into layer 2024-09-05 22:40:42 +10:00
psychedelicious
71c03b3b8b fix(ui): do not await commitBuffer 2024-09-05 22:40:42 +10:00
psychedelicious
70b58197f3 fix(ui): properly destroy entities in manager cleanup 2024-09-05 22:40:42 +10:00
psychedelicious
6600b4790b tidy(ui): clearer component names for regional guidance 2024-09-05 22:40:42 +10:00
psychedelicious
b0854dcb13 tidy(ui): clearer component names for ip adapter 2024-09-05 22:40:42 +10:00
psychedelicious
7f613eaa91 tidy(ui): clearer component names for inpaint mask 2024-09-05 22:40:42 +10:00
psychedelicious
56f731dce3 tidy(ui): clearer component names for control adapters 2024-09-05 22:40:42 +10:00
psychedelicious
4dea5d0cb0 feat(ui): simplify canvas list item headers 2024-09-05 22:40:42 +10:00
psychedelicious
421c82b534 fix(ui): ip adapter list item 2024-09-05 22:40:42 +10:00
psychedelicious
b5c86bf0dd tidy(ui): clean up unused logic 2024-09-05 22:40:42 +10:00
psychedelicious
ec01b1be31 feat(ui): clean up state, add mutex for image loading, add thumbnail loading 2024-09-05 22:40:42 +10:00
psychedelicious
1405fe8e2a chore(ui): add async-mutex dep 2024-09-05 22:40:42 +10:00
psychedelicious
51c40edf0a feat(ui): txt2img, img2img, inpaint & outpaint working 2024-09-05 22:40:42 +10:00
psychedelicious
3a61f3992a feat(ui): no padding on transformer outlines 2024-09-05 22:40:42 +10:00
psychedelicious
c31f36ab17 feat(ui): restore object count to layer titles 2024-09-05 22:40:42 +10:00
psychedelicious
270bb3c95a tidy(ui): "useIsEntitySelected" -> "useEntityIsSelected" 2024-09-05 22:40:42 +10:00
psychedelicious
18e5e62466 tidy(ui): move transformer statics into class 2024-09-05 22:40:42 +10:00
psychedelicious
b808df2aa0 tidy(ui): massive cleanup
- create a context for entity identifiers, massively simplifying UI for each entity int he list
- consolidate common redux actions
- remove now-unused code
2024-09-05 22:40:42 +10:00
psychedelicious
63d0ea6757 perf(ui): do not add duplicate points to lines 2024-09-05 22:40:42 +10:00
psychedelicious
dd49b6fa81 feat(ui): up line tension to 0.3 2024-09-05 22:40:42 +10:00
psychedelicious
0d3764a44b perf(ui): disable stroke, perfect draw on compositing rect 2024-09-05 22:40:42 +10:00
psychedelicious
626a404c44 tidy(ui): remove unused code, initial image 2024-09-05 22:40:42 +10:00
psychedelicious
b4e0581d2d tidy(ui): remove unused state & actions 2024-09-05 22:40:42 +10:00
psychedelicious
3372887352 feat(ui): region mask rendering 2024-09-05 22:40:42 +10:00
psychedelicious
66f15a8629 feat(ui): esc cancels drawing buffer
maybe this is not wanted? we'll see
2024-09-05 22:40:42 +10:00
psychedelicious
be4e21068d fix(ui): render transformer over objects, fix issue w/ inpaint rect color 2024-09-05 22:40:42 +10:00
psychedelicious
41f200ef7d fix(ui): brush preview fill for inpaint/region 2024-09-05 22:40:42 +10:00
psychedelicious
53fa36d71e fix(ui): no objects rendered until vis toggled 2024-09-05 22:40:42 +10:00
psychedelicious
9f661dc093 feat(ui): inpaint mask transform 2024-09-05 22:40:42 +10:00
psychedelicious
9b51dfb13a fix(ui): layer accidental early set isFirstRender=false 2024-09-05 22:40:42 +10:00
psychedelicious
39171eed76 fix(ui): inpaint mask rendering 2024-09-05 22:40:42 +10:00
psychedelicious
bab8432119 feat(ui): wip inpaint mask uses new API 2024-09-05 22:40:42 +10:00
psychedelicious
731efe7290 feat(ui): move updatePosition to transformer 2024-09-05 22:40:42 +10:00
psychedelicious
bb8815e5b3 feat(ui): move resetScale to transformer 2024-09-05 22:40:42 +10:00
psychedelicious
300e2045b1 tidy(ui): more imperative naming 2024-09-05 22:40:42 +10:00
psychedelicious
4514334bfc tidy(ui): use imperative names for setters in stateapi 2024-09-05 22:40:42 +10:00
psychedelicious
0a9c033d75 fix(ui): commit drawing buffer on tool change, fixing bbox not calculating 2024-09-05 22:40:42 +10:00
psychedelicious
060c14964b fix(ui): sync transformer when requesting bbox calc 2024-09-05 22:40:42 +10:00
psychedelicious
345b06bf19 tidy(ui): rename union CanvasEntity -> CanvasEntityState 2024-09-05 22:40:42 +10:00
psychedelicious
0e7c03c0d0 fix(ui): request rect calc immediately on transform, hiding rect 2024-09-05 22:40:42 +10:00
psychedelicious
1226855fc5 feat(ui): move bbox calculation to transformer 2024-09-05 22:40:42 +10:00
psychedelicious
732cb629b6 feat(ui): use set for transformer subscriptions 2024-09-05 22:40:42 +10:00
psychedelicious
7dbad20416 tidy(ui): clean up worker tasks when complete 2024-09-05 22:40:42 +10:00
psychedelicious
dcd2f78f64 tidy(ui): remove unused code in CanvasTool 2024-09-05 22:40:42 +10:00
psychedelicious
ad1623c385 feat(ui): use pubsub for isTransforming on manager 2024-09-05 22:40:42 +10:00
psychedelicious
8a5a5816f7 docs(ui): update transformer docstrings 2024-09-05 22:40:42 +10:00
psychedelicious
8f5bb55471 feat(ui): revised event pubsub, transformer logic split out 2024-09-05 22:40:42 +10:00
psychedelicious
30624f63c1 feat(ui): add simple pubsub 2024-09-05 22:40:42 +10:00
psychedelicious
5a787faca8 feat(ui): document & clean up object renderer 2024-09-05 22:40:42 +10:00
psychedelicious
f42efc9b26 feat(ui): split out object renderer 2024-09-05 22:40:42 +10:00
psychedelicious
5c531dc920 fix(ui): unable to hold shit while transforming to retain ratio 2024-09-05 22:40:42 +10:00
psychedelicious
85b96e3802 tidy(ui): rename canvas stuff 2024-09-05 22:40:42 +10:00
psychedelicious
ada3ab14fb tidy(ui): consolidate getLoggingContext builders 2024-09-05 22:40:42 +10:00
psychedelicious
1cbd19b7cd fix(ui): align all tools to 1px grid
- Offset brush tool by 0.5px when width is odd, ensuring each stroke edge is exactly on a pixel boundary
- Round the rect tool also
2024-09-05 22:40:42 +10:00
psychedelicious
bbbb22898d feat(ui): disable image smoothing on layers 2024-09-05 22:40:42 +10:00
psychedelicious
e68a670c36 fix(ui): round position when rasterizing layer 2024-09-05 22:40:42 +10:00
psychedelicious
09554c18dd feat(ui): continue modularizing transform 2024-09-05 22:40:42 +10:00
psychedelicious
d5e0a5f3de feat(ui): fix a few things that didn't unsubscribe correctly, add helper to manage subscriptions 2024-09-05 22:40:42 +10:00
psychedelicious
7bdec13226 feat(ui): merge bbox outline into transformer 2024-09-05 22:40:42 +10:00
psychedelicious
53e0b9bd14 fix(ui): update parent's pos not transformers 2024-09-05 22:40:42 +10:00
psychedelicious
f92a926ab8 feat(ui): merge interaction rect into transformer class 2024-09-05 22:40:42 +10:00
psychedelicious
b472535527 feat(ui): prepare staging area 2024-09-05 22:40:42 +10:00
psychedelicious
e7a9648a91 feat(ui): typing for logging context 2024-09-05 22:40:42 +10:00
psychedelicious
418786f82f feat(ui): remove inheritance of CanvasObject
JS is terrible
2024-09-05 22:40:42 +10:00
psychedelicious
a1ada23930 feat(ui): split & document transformer logic, iterate on class structures 2024-09-05 22:40:42 +10:00
psychedelicious
5d367cc0e1 feat(ui): rotation snap to nearest 45deg when holding shift 2024-09-05 22:40:42 +10:00
psychedelicious
332dc8b13c feat(ui): expose subscribe method for nanostores 2024-09-05 22:40:42 +10:00
psychedelicious
a8fa2c5ec5 tidy(ui): remove layer scaling reducers 2024-09-05 22:40:42 +10:00
psychedelicious
237af4007a fix(ui): pixel-perfect transforms 2024-09-05 22:40:42 +10:00
psychedelicious
8df59769a8 fix(ui): layer visibility toggle 2024-09-05 22:40:42 +10:00
psychedelicious
7ffa0e4345 fix(nodes): fix canvas mask erode
it wasn't eroding enough and caused incorrect transparency in result images
2024-09-05 22:40:42 +10:00
psychedelicious
b4483fde8c fix(ui): do not reset layer on first render 2024-09-05 22:40:42 +10:00
psychedelicious
8bb984f13a feat(ui): revised logging and naming setup, fix staging area 2024-09-05 22:40:42 +10:00
psychedelicious
7d9a8908c5 feat(ui): add repr methods to layer and object classes 2024-09-05 22:40:42 +10:00
psychedelicious
d6ca58992d feat(ui): use nanoid(10) instead of uuidv4 for canvas
Shorter ids makes it much more readable
2024-09-05 22:40:42 +10:00
psychedelicious
6d9817742f build(ui): add nanoid as explicit dep 2024-09-05 22:40:42 +10:00
psychedelicious
a2b2d83841 fix(ui): move CanvasImage's konva image to correct object 2024-09-05 22:40:42 +10:00
psychedelicious
daaa2f8d8e fix(ui): prevent flash when applying transform 2024-09-05 22:40:42 +10:00
psychedelicious
1c4099a53c build(ui): add eslint rules for async stuff 2024-09-05 22:40:42 +10:00
psychedelicious
09ad29a765 feat(ui): trying to fix flicker after transform 2024-09-05 22:40:42 +10:00
psychedelicious
94a66b7850 feat(ui): transform cleanup 2024-09-05 22:40:42 +10:00
psychedelicious
5cb4bc0902 feat(ui): fix transform when rotated 2024-09-05 22:40:42 +10:00
psychedelicious
6752a47d2b fix(ui): use pixel bbox when image is in layer 2024-09-05 22:40:42 +10:00
psychedelicious
f883f80409 fix(ui): transforming when axes flipped 2024-09-05 22:40:42 +10:00
psychedelicious
b5b4c20b4e feat(ui): hallelujah (???) 2024-09-05 22:40:42 +10:00
psychedelicious
25c270931c feat(ui): add debug button 2024-09-05 22:40:42 +10:00
psychedelicious
5a93c4efcb fix(ui): transformer padding 2024-09-05 22:40:42 +10:00
psychedelicious
1fbf2fad16 feat(ui): wip transform mode 2 2024-09-05 22:40:42 +10:00
psychedelicious
f9aa925a06 feat(ui): wip transform mode 2024-09-05 22:40:42 +10:00
psychedelicious
7b7c1c5af8 feat(ui): wip transform mode 2024-09-05 22:40:42 +10:00
psychedelicious
4024f83f73 fix(ui): dnd to canvas broke 2024-09-05 22:40:42 +10:00
psychedelicious
aae6e62031 fix(ui): conflicts after rebasing 2024-09-05 22:40:42 +10:00
psychedelicious
bf355fa602 fix(ui): imageDropped listener 2024-09-05 22:40:42 +10:00
psychedelicious
cd1d576ff1 wip 2024-09-05 22:40:42 +10:00
psychedelicious
0bc72149fe fix(ui): transform tool seems to be working 2024-09-05 22:40:42 +10:00
psychedelicious
75c0f03582 fix(ui): move tool fixes, add transform tool 2024-09-05 22:40:42 +10:00
psychedelicious
1b7288f437 feat(ui): move tool now only moves 2024-09-05 22:40:42 +10:00
psychedelicious
65e51634e3 feat(ui): layer bbox calc in worker 2024-09-05 22:40:42 +10:00
psychedelicious
638835f6f0 feat(ui): tweaked entity & group selection styles 2024-09-05 22:40:42 +10:00
psychedelicious
27e6d8372a feat(ui): canvas entity list headers 2024-09-05 22:40:42 +10:00
psychedelicious
f3b3121edc tidy(ui): CanvasRegion 2024-09-05 22:40:42 +10:00
psychedelicious
da32803aef tidy(ui): CanvasRect 2024-09-05 22:40:42 +10:00
psychedelicious
ef69a12532 tidy(ui): CanvasLayer 2024-09-05 22:40:42 +10:00
psychedelicious
b3d82838c6 tidy(ui): CanvasInpaintMask 2024-09-05 22:40:42 +10:00
psychedelicious
b66eeafa9a tidy(ui): CanvasInitialImage 2024-09-05 22:40:42 +10:00
psychedelicious
ae8a0b7c04 tidy(ui): CanvasImage 2024-09-05 22:40:42 +10:00
psychedelicious
655c0981eb tidy(ui): CanvasEraserLine 2024-09-05 22:40:42 +10:00
psychedelicious
d2d747869f tidy(ui): CanvasControlAdapter 2024-09-05 22:40:42 +10:00
psychedelicious
998bdadc8d tidy(ui): CanvasBrushLine 2024-09-05 22:40:42 +10:00
psychedelicious
71dcc58e33 tidy(ui): CanvasBbox 2024-09-05 22:40:42 +10:00
psychedelicious
7485d30858 tidy(ui): CanvasBackground 2024-09-05 22:40:42 +10:00
psychedelicious
443d7b1176 tidy(ui): update canvas classes, organise location of konva nodes 2024-09-05 22:40:42 +10:00
psychedelicious
6b494161ee feat(ui): add names to all konva objects
Makes troubleshooting much simpler
2024-09-05 22:40:42 +10:00
psychedelicious
90d3c8b630 fix(ui): do not await creating new canvas image
If you await this, it causes a race condition where multiple images are created.
2024-09-05 22:40:42 +10:00
psychedelicious
7016a15566 feat(ui): use position and dimensions instead of separate x,y,width,height attrs 2024-09-05 22:40:42 +10:00
psychedelicious
2bbc3138c6 fix(ui): remove weird rtkq hook wrapper
I do not understand why I did that initially but it doesn't work with TS.
2024-09-05 22:40:42 +10:00
psychedelicious
b80ffd3f02 feat(ui): rename types size and position to dimensions and coordinate 2024-09-05 22:40:42 +10:00
psychedelicious
d26e7095c5 tidy(ui): hide layer settings by default 2024-09-05 22:40:42 +10:00
psychedelicious
82a496f6f4 fix(ui): layer rendering when starting as disabled 2024-09-05 22:40:42 +10:00
psychedelicious
2a2667a20d feat(invocation): reduce canvas v2 mask & crop mask dilation 2024-09-05 22:40:42 +10:00
psychedelicious
c018a031a2 feat(ui): de-jank staging area and progress images 2024-09-05 22:40:42 +10:00
psychedelicious
f193200a88 feat(ui): update staging handling to work w/ cropped mask 2024-09-05 22:40:42 +10:00
psychedelicious
11c3eeecdc chore(ui): typegen 2024-09-05 22:40:41 +10:00
psychedelicious
979132d404 feat(app): update CanvasV2MaskAndCropInvocation 2024-09-05 22:40:41 +10:00
psychedelicious
e55e866baf feat(ui): use new canvas output node 2024-09-05 22:40:41 +10:00
psychedelicious
77b1315641 chore(ui): typegen 2024-09-05 22:40:41 +10:00
psychedelicious
3e2902cb1b feat(app): add CanvasV2MaskAndCropInvocation & CanvasV2MaskAndCropOutput
This handles some masking and cropping that the canvas needs.
2024-09-05 22:40:11 +10:00
psychedelicious
a48984c969 fix(ui): restore nodes output tracking 2024-09-05 22:40:11 +10:00
psychedelicious
a640fa7d9b feat(ui): rip out document size
barely knew ye
2024-09-05 22:40:11 +10:00
psychedelicious
0ed1e28084 feat(ui): convert initial image to layer when starting canvas session 2024-09-05 22:40:11 +10:00
psychedelicious
79789bbd20 fix(ui): fix layer transparency calculation 2024-09-05 22:40:11 +10:00
psychedelicious
4554a425d3 fix(ui): reset initial image when resetting canvas 2024-09-05 22:40:11 +10:00
psychedelicious
d153e5958e fix(ui): reset node executions states when loading workflow 2024-09-05 22:40:11 +10:00
psychedelicious
b4a7865cbb fix(ui): entity display list 2024-09-05 22:40:11 +10:00
psychedelicious
89baf9aa49 feat(ui): img2img working 2024-09-05 22:40:11 +10:00
psychedelicious
1ee37908f2 feat(ui): rough out img2img on canvas 2024-09-05 22:40:11 +10:00
psychedelicious
7fecf74368 UNDO ME WIP 2024-09-05 22:40:11 +10:00
psychedelicious
770e9a92d6 feat(ui): log invocation source id on socket event 2024-09-05 22:40:11 +10:00
psychedelicious
37658c59b7 feat(ui): restore document size overlay renderer 2024-09-05 22:40:11 +10:00
psychedelicious
70eadc52f1 feat(ui): make documnet size a rect 2024-09-05 22:40:11 +10:00
psychedelicious
eacf30a55e refactor(ui): remove modular imagesize components
This is no longer necessary with canvas v2 and added a ton of extraneous redux actions when changing the image size. Also renamed to document size
2024-09-05 22:40:11 +10:00
psychedelicious
33cf40b7a4 feat(ui): initialState is for generation mode 2024-09-05 22:40:11 +10:00
psychedelicious
19f8f0677e feat(ui): split out canvas entity list component 2024-09-05 22:40:11 +10:00
psychedelicious
f906fca4fc feat(ui): hide bbox button when no canvas session active 2024-09-05 22:40:11 +10:00
psychedelicious
2417a97b56 tidy(ui): remove unused naming objects/utils
The canvas manager means we don't need to worry about konva node names as we never directly select konva nodes.
2024-09-05 22:40:11 +10:00
psychedelicious
3b0438cc69 feat(ui): split up tool chooser buttons
Prep for distinct toolbars for generation vs canvas modes
2024-09-05 22:40:11 +10:00
psychedelicious
aa4fe73b56 feat(ui): add useAssertSingleton util hook
This simple hook asserts that it is only ever called once. Particularly useful for things like hotkeys hooks.
2024-09-05 22:40:11 +10:00
psychedelicious
58064d835e feat(ui): "stagingArea" -> "session" 2024-09-05 22:40:11 +10:00
psychedelicious
f7ae63e758 feat(ui): add reset button to canvas 2024-09-05 22:40:11 +10:00
psychedelicious
6c8d6175aa feat(ui): add snapToRect util 2024-09-05 22:40:11 +10:00
psychedelicious
348e4b1d38 fix(ui): fiddle with control adapter filters
some jank still
2024-09-05 22:40:11 +10:00
psychedelicious
822543c202 feat(ui): temp disable doc size overlay 2024-09-05 22:40:11 +10:00
psychedelicious
c3de34e7dc feat(ui): no animation on layer selection
Felt sluggish
2024-09-05 22:40:11 +10:00
psychedelicious
3ae61f2758 feat(ui): use canvas as source for control images (wip) 2024-09-05 22:40:11 +10:00
psychedelicious
19e6cf3311 fix(ui): control adapter translate & scale 2024-09-05 22:40:11 +10:00
psychedelicious
6f400846b8 tidy(ui): removed unused state related to non-buffered drawing 2024-09-05 22:40:10 +10:00
psychedelicious
c9f9b699e9 feat(ui): control adapter image rendering 2024-09-05 22:40:10 +10:00
psychedelicious
63bf4bd963 fix(ui): do not floor bbox calc, it cuts off the last pixels 2024-09-05 22:40:10 +10:00
psychedelicious
d03b3d4eb2 feat(ui): fix issue where creating line needs 2 points 2024-09-05 22:40:10 +10:00
psychedelicious
6e6852a604 fix(ui): edge cases when holding shift and drawing lines 2024-09-05 22:40:10 +10:00
psychedelicious
bb2b526b82 fix(ui): set buffered rect color to full alpha 2024-09-05 22:40:10 +10:00
psychedelicious
d6b6dae63f fix(ui): handle mouseup correctly 2024-09-05 22:40:10 +10:00
psychedelicious
fb02e72462 feat(ui): buffered rect drawing 2024-09-05 22:40:10 +10:00
psychedelicious
bc3568035b fix(ui): buffered drawing edge cases 2024-09-05 22:40:10 +10:00
psychedelicious
ea13ab4c9c perf(ui): do not use stage.find 2024-09-05 22:40:10 +10:00
psychedelicious
f9b2f363c7 perf(ui): object groups do not listen 2024-09-05 22:40:10 +10:00
psychedelicious
dba206ea98 perf(ui): buffered drawing (wip) 2024-09-05 22:40:10 +10:00
psychedelicious
6ca5a71a51 tidy(ui): organise files 2024-09-05 22:40:10 +10:00
psychedelicious
6e7022d006 tidy(ui): organise files 2024-09-05 22:40:10 +10:00
psychedelicious
8e2ca3b1a4 tidy(ui): organise files 2024-09-05 22:40:10 +10:00
psychedelicious
9d32629d5d fix(ui): background rendering 2024-09-05 22:40:10 +10:00
psychedelicious
0755734347 pkg(ui): remove unused deps react-konva & use-image 2024-09-05 22:40:10 +10:00
psychedelicious
62ffefe9d1 feat(ui): organize konva state and files 2024-09-05 22:40:10 +10:00
psychedelicious
a4e570e4a7 fix(ui): merge conflicts in image deletion listener 2024-09-05 22:40:10 +10:00
psychedelicious
d569d10e46 fix(ui): region rendering 2024-09-05 22:40:10 +10:00
psychedelicious
cb622df45e fix(ui): inpaint mask rendering 2024-09-05 22:40:10 +10:00
psychedelicious
6299214325 fix(ui): staging area rendering 2024-09-05 22:40:10 +10:00
psychedelicious
220ae6bef8 fix(ui): stale selected entity 2024-09-05 22:40:10 +10:00
psychedelicious
fd923f7e30 fix(ui): staging area image offset 2024-09-05 22:40:10 +10:00
psychedelicious
d62d63acfc feat(ui): tweak layer ui component 2024-09-05 22:40:10 +10:00
psychedelicious
3a2af003fe fix(ui): resetting layer resets position 2024-09-05 22:40:10 +10:00
psychedelicious
00d68ac460 feat(ui): updated layer list component styling 2024-09-05 22:40:10 +10:00
psychedelicious
fd1df7e8d7 feat(ui): transformable layers 2024-09-05 22:40:10 +10:00
psychedelicious
8b4e2ce1b2 feat(ui): move tool icon is pointer like in other apps 2024-09-05 22:40:10 +10:00
psychedelicious
8a0936f3dc feat(ui): do not floor cursor position 2024-09-05 22:40:10 +10:00
psychedelicious
9b5962b4ed feat(ui): disable gallery hotkeys while staging 2024-09-05 22:40:10 +10:00
psychedelicious
6c83153076 feat(ui): revised canvas progress & staging image handling 2024-09-05 22:40:10 +10:00
psychedelicious
9fa65e59b4 feat(ui): show queue item origin in queue list 2024-09-05 22:40:10 +10:00
psychedelicious
491ae852af chore(ui): typegen 2024-09-05 22:40:10 +10:00
psychedelicious
0f698f25bd feat(app): add origin to session queue
The origin is an optional field indicating the queue item's origin. For example, "canvas" when the queue item originated from the canvas or "workflows" when the queue item originated from the workflows tab. If omitted, we assume the queue item originated from the API directly.

- Add migration to add the nullable column to the `session_queue` table.
- Update relevant event payloads with the new field.
- Add `cancel_by_origin` method to `session_queue` service and corresponding route. This is required for the canvas to bail out early when staging images.
- Add `origin` to both `SessionQueueItem` and `Batch` - it needs to be provided initially via the batch and then passed onto the queue item.
-
2024-09-05 22:40:10 +10:00
psychedelicious
adde7138b3 fix(ui): denoise start on outpainting 2024-09-05 22:40:10 +10:00
psychedelicious
f808ff2830 feat(ui): add redux events for queue cleared & batch enqueued socket events 2024-09-05 22:40:10 +10:00
psychedelicious
0e1986e795 feat(ui): canvas staging area works 2024-09-05 22:40:10 +10:00
psychedelicious
d34a2e2160 feat(ui): switch to view tool when staging 2024-09-05 22:40:10 +10:00
psychedelicious
2752d45d2d tidy(ui): disable preview images on every enqueue 2024-09-05 22:40:10 +10:00
psychedelicious
f9b84555d2 feat(ui): rough out save staging image 2024-09-05 22:40:10 +10:00
psychedelicious
9a723b189f feat(ui): staging area image visibility toggle 2024-09-05 22:40:10 +10:00
psychedelicious
8c7ce9865a fix(ui): batch building after removing canvas files 2024-09-05 22:40:10 +10:00
psychedelicious
ee2f162a8e feat(ui): make Graph class's getMetadataNode public 2024-09-05 22:40:10 +10:00
psychedelicious
2770233592 tidy(ui): remove old canvas graphs 2024-09-05 22:40:10 +10:00
psychedelicious
46f31fdd32 fix(ui): do not select already-selected entity 2024-09-05 22:40:10 +10:00
psychedelicious
df1436cfac tidy(ui): naming things 2024-09-05 22:40:10 +10:00
psychedelicious
aced3754f3 tidy(ui): file organisation 2024-09-05 22:40:10 +10:00
psychedelicious
723a04029f fix(ui): reset cursor pos when fitting document 2024-09-05 22:40:10 +10:00
psychedelicious
6f9fe23a32 feat(ui): staging area works more better 2024-09-05 22:40:10 +10:00
psychedelicious
9dd3d18a7d feat(ui): staging area barely works 2024-09-05 22:40:10 +10:00
psychedelicious
99e7055469 feat(ui): consolidate konva API 2024-09-05 22:40:10 +10:00
psychedelicious
0c14bc5fed feat(ui): consolidate konva API 2024-09-05 22:40:10 +10:00
psychedelicious
aae98b675b feat(ui): staging area (rendering wip) 2024-09-05 22:40:10 +10:00
psychedelicious
e795026210 tidy(ui): type "Dimensions" -> "Size" 2024-09-05 22:40:10 +10:00
psychedelicious
120eaa5e82 feat(ui): add updateNode to Graph 2024-09-05 22:40:10 +10:00
psychedelicious
6561fffe30 feat(ui): sdxl graphs 2024-09-05 22:40:10 +10:00
psychedelicious
15e1046f99 feat(ui): sd1 outpaint graph 2024-09-05 22:40:10 +10:00
psychedelicious
930868466d tests(ui): add missing tests for Graph class 2024-09-05 22:40:10 +10:00
psychedelicious
813904d615 feat(ui): add Graph.getid() util 2024-09-05 22:40:10 +10:00
psychedelicious
1bb06ba90b feat(ui): outpaint graph, organize builder a bit 2024-09-05 22:40:10 +10:00
psychedelicious
9d1b0dfcda feat(ui): inpaint sd1 graph 2024-09-05 22:40:10 +10:00
psychedelicious
69b5637fcf feat(ui): temp disable image caching while testing 2024-09-05 22:40:10 +10:00
psychedelicious
eb0cc4fc9d feat(ui): txt2img & img2img graphs 2024-09-05 22:40:10 +10:00
psychedelicious
f9d9684237 feat(ui): minor change to canvas bbox state type 2024-09-05 22:40:10 +10:00
psychedelicious
7538a2b5ff feat(ui): simplified konva node to blob/imagedata utils 2024-09-05 22:40:10 +10:00
psychedelicious
c274d4bc43 feat(ui): node manager getter/setter 2024-09-05 22:40:10 +10:00
psychedelicious
8b0a06353a feat(ui): generation mode calculation, fudged graphs 2024-09-05 22:40:10 +10:00
psychedelicious
9d10ec763b feat(ui): add utils for getting images from canvas 2024-09-05 22:40:10 +10:00
psychedelicious
5c20b35bad feat(ui): even more simplified API - lean on the konva node manager to abstract imperative state API & rendering 2024-09-05 22:40:10 +10:00
psychedelicious
1df3197ded feat(ui): revised docstrings for renderers & simplified api 2024-09-05 22:40:10 +10:00
psychedelicious
5b6bae5113 feat(ui): inpaint mask UI components 2024-09-05 22:40:10 +10:00
psychedelicious
cdf5a61641 feat(ui): inpaint mask rendering (wip) 2024-09-05 22:40:10 +10:00
psychedelicious
95e73d8e1e fix(ui): models loaded handler 2024-09-05 22:40:10 +10:00
psychedelicious
6120de332e feat(ui): internal state for inpaint mask 2024-09-05 22:40:10 +10:00
psychedelicious
815b58d3c5 refactor(ui): divvy up canvas state a bit 2024-09-05 22:40:10 +10:00
psychedelicious
71befa4ce0 feat(ui): get region and base layer canvas to blob logic working 2024-09-05 22:40:10 +10:00
psychedelicious
10d3f3c2bf refactor(ui): node manager handles more tedious annoying stuff 2024-09-05 22:40:10 +10:00
psychedelicious
02c3c24f95 feat(ui): use node manager for addRegions 2024-09-05 22:40:10 +10:00
psychedelicious
47075acf39 feat(ui): persist bbox 2024-09-05 22:40:10 +10:00
psychedelicious
5c4438ed1b fix(ui): fix generation graphs 2024-09-05 22:40:10 +10:00
psychedelicious
78c08222f4 feat(ui): add toggle for clipToBbox 2024-09-05 22:40:10 +10:00
psychedelicious
edd2bd2184 feat(ui): rename konva node manager 2024-09-05 22:40:10 +10:00
psychedelicious
0fee32c5b3 refactor(ui): create classes to abstract mgmt of konva nodes 2024-09-05 22:40:10 +10:00
psychedelicious
1d5151839c tidy(ui): organise renderers 2024-09-05 22:40:10 +10:00
psychedelicious
a916cb7efb refactor(ui): create entity to konva node map abstraction (wip)
Instead of chaining konva `find` and `findOne` methods, all konva nodes are added to a mapping object. Finding and manipulating them is much simpler.

Done for regions and layers, wip for control adapters.
2024-09-05 22:40:10 +10:00
psychedelicious
88c95f6d8a perf(ui): fix lag w/ region rendering
Needed to memoize these selectors
2024-09-05 22:40:10 +10:00
psychedelicious
f7d71c3cd0 feat(ui): move canvas fill color picker to right 2024-09-05 22:40:10 +10:00
psychedelicious
20193028c3 refactor(ui): remove unused ellipse & polygon objects 2024-09-05 22:40:10 +10:00
psychedelicious
ae8ee6709c fix(ui): incorrect rect/brush/eraser positions 2024-09-05 22:40:10 +10:00
psychedelicious
4e298dae62 refactor(ui): enable global debugging flag 2024-09-05 22:40:10 +10:00
psychedelicious
cb72467d1f refactor(ui): disable the preview renderer for now 2024-09-05 22:40:10 +10:00
psychedelicious
d1596957c0 tweak(ui): canvas editor layout 2024-09-05 22:40:10 +10:00
psychedelicious
8bdec7cfba perf(ui): memoize layeractionsmenu valid actions 2024-09-05 22:40:10 +10:00
psychedelicious
66c4bf260f refactor(ui): decouple konva renderer from react
Subscribe to redux store directly, skipping all the react overhead.

With react in dev mode, a typical frame while using the brush tool on almost-empty canvas is reduced from ~7.5ms to ~3.5ms. All things considered, this still feels slow, but it's a massive improvement.
2024-09-05 22:40:10 +10:00
psychedelicious
1764df7446 feat(ui): clip lines to bbox 2024-09-05 22:40:10 +10:00
psychedelicious
ebf83518e3 fix(ui): document fit positioning 2024-09-05 22:40:10 +10:00
psychedelicious
4e6ff6033f feat(ui): document bounds overlay 2024-09-05 22:40:10 +10:00
psychedelicious
fa0b8f34f0 tidy(ui): background layer 2024-09-05 22:40:10 +10:00
psychedelicious
d7ad0e082e refactor(ui): use "entity" instead of "data" for canvas 2024-09-05 22:40:10 +10:00
psychedelicious
b5df668753 feat(ui): brush size border radius = 1 2024-09-05 22:40:10 +10:00
psychedelicious
2ff9803db0 fix(ui): canvas HUD doesn't interrupt tool 2024-09-05 22:40:10 +10:00
psychedelicious
5f6c155e4a refactor(ui): split up canvas entity renderers, temp disable preview 2024-09-05 22:40:10 +10:00
psychedelicious
8531f1b759 fix(ui): delete all layers button 2024-09-05 22:40:10 +10:00
psychedelicious
e9b1f9a87b fix(ui): ignore keyboard shortcuts in input/textarea elements 2024-09-05 22:40:10 +10:00
psychedelicious
5146150509 fix(ui): canvas entity ids getting clobbered 2024-09-05 22:40:10 +10:00
psychedelicious
e221c30249 fix(ui): move lora followup fixes 2024-09-05 22:40:10 +10:00
psychedelicious
9890efdb2e chore(ui): lint 2024-09-05 22:40:10 +10:00
psychedelicious
ac32d4ca8a refactor(ui): move loras to canvas slice 2024-09-05 22:40:10 +10:00
psychedelicious
88f0c0bf23 fix(ui): layer is selected when added 2024-09-05 22:40:10 +10:00
psychedelicious
198be69a7f feat(ui): r to center & fit stage on document 2024-09-05 22:40:10 +10:00
psychedelicious
ec1bb0e389 feat(ui): better HUD 2024-09-05 22:40:10 +10:00
psychedelicious
49aa7325cb fix(ui): always use current brush width when making straight lines 2024-09-05 22:40:10 +10:00
psychedelicious
5e292a7423 feat(ui): hold shift w/ brush to draw straight line 2024-09-05 22:40:10 +10:00
psychedelicious
73593a88bb fix(ui): update bg on canvas resize 2024-09-05 22:40:10 +10:00
psychedelicious
84e6b197a1 refactor(ui): better hud 2024-09-05 22:40:10 +10:00
psychedelicious
8aae372446 refactor(ui): scaled tool preview border 2024-09-05 22:40:10 +10:00
psychedelicious
6657d501db refactor(ui): port remaining canvasV1 rendering logic to V2, remove old code 2024-09-05 22:40:10 +10:00
psychedelicious
354830144a refactor(ui): fix more types 2024-09-05 22:40:10 +10:00
psychedelicious
2aa105379b refactor(ui): metadata recall (wip)
just enough let the app run
2024-09-05 22:40:10 +10:00
psychedelicious
ce1d6a1ede refactor(ui): undo/redo button temp fix 2024-09-05 22:40:10 +10:00
psychedelicious
a20bf91f5d refactor(ui): fix renderer stuff 2024-09-05 22:40:10 +10:00
psychedelicious
01215bbb99 refactor(ui): fix misc types 2024-09-05 22:40:10 +10:00
psychedelicious
75b40b95df refactor(ui): fix gallery stuff 2024-09-05 22:40:10 +10:00
psychedelicious
19bbbf49d9 refactor(ui): fix delete image stuff 2024-09-05 22:40:10 +10:00
psychedelicious
2688d83bd0 refactor(ui): fix useIsReadyToEnqueue for new adapterType field 2024-09-05 22:40:10 +10:00
psychedelicious
6e30f65a16 refactor(ui): update generation tab graphs 2024-09-05 22:40:10 +10:00
psychedelicious
fcd3773804 refactor(ui): add adapterType to ControlAdapterData 2024-09-05 22:40:10 +10:00
psychedelicious
3a3a1e076f refactor(ui): update components & logic to use new unified slice (again) 2024-09-05 22:40:10 +10:00
psychedelicious
566d9f99dd refactor(ui): update components & logic to use new unified slice 2024-09-05 22:40:10 +10:00
psychedelicious
21090dee48 refactor(ui): merge compositing, params into canvasV2 slice 2024-09-05 22:40:10 +10:00
psychedelicious
29c9e8f4b6 refactor(ui): add scaled bbox state 2024-09-05 22:40:10 +10:00
psychedelicious
5156b82ca1 refactor(ui): update dnd/image upload 2024-09-05 22:40:10 +10:00
psychedelicious
ff2371ce82 refactor(ui): update size/prompts state 2024-09-05 22:40:10 +10:00
psychedelicious
0cafbd7ba5 refactor(ui): rip out old control adapter implementation 2024-09-05 22:40:10 +10:00
psychedelicious
747a7d16c7 refactor(ui): canvas v2 (wip)
fix entity count select
2024-09-05 22:40:10 +10:00
psychedelicious
cf271700bf refactor(ui): canvas v2 (wip)
delete unused file
2024-09-05 22:40:10 +10:00
psychedelicious
43a40d88be refactor(ui): canvas v2 (wip)
merge all canvas state reducers into one big slice (but with the logic split across files so it's not hell)
2024-09-05 22:40:10 +10:00
psychedelicious
c761340871 refactor(ui): canvas v2 (wip)
Fix a few more components
2024-09-05 22:40:09 +10:00
psychedelicious
6271d1c34d refactor(ui): canvas v2 (wip)
missed a spot
2024-09-05 22:40:09 +10:00
psychedelicious
a7a09feaf0 refactor(ui): canvas v2 (wip)
Redo all UI components for different canvas entity types
2024-09-05 22:40:09 +10:00
psychedelicious
4f0aea2592 refactor(ui): canvas v2 (wip) 2024-09-05 22:40:09 +10:00
psychedelicious
e00ba3f6cd refactor(ui): canvas v2 (wip) 2024-09-05 22:40:09 +10:00
psychedelicious
920873e009 refactor(ui): canvas v2 (wip) 2024-09-05 22:40:09 +10:00
psychedelicious
e126ec9703 refactor(ui): canvas v2 (wip) 2024-09-05 22:40:09 +10:00
psychedelicious
ceb81d6fed feat(ui): bbox tool 2024-09-05 22:40:09 +10:00
psychedelicious
5088c9eae1 fix(ui): rect tool preview 2024-09-05 22:40:09 +10:00
psychedelicious
d41ad5115e fix(ui): multiple stages 2024-09-05 22:40:09 +10:00
psychedelicious
4caab2d2e3 feat(ui): decouple konva logic from nanostores 2024-09-05 22:40:09 +10:00
psychedelicious
528254fdd4 feat(ui): store all stage attrs in nanostores 2024-09-05 22:40:09 +10:00
psychedelicious
939ae5a7c6 feat(ui): round stage scale 2024-09-05 22:40:09 +10:00
psychedelicious
b75830086b chore(ui): bump konva 2024-09-05 22:40:09 +10:00
psychedelicious
0fea74a58a feat(ui): generation bbox transformation working
whew
2024-09-05 22:40:09 +10:00
psychedelicious
89e0fdadc5 feat(ui): wip generation bbox 2024-09-05 22:40:09 +10:00
psychedelicious
a5a5e45a59 feat(ui): wip generation bbox 2024-09-05 22:40:09 +10:00
psychedelicious
61bd9aac0f feat(ui): CL zoom and pan, some rendering optimizations 2024-09-05 22:40:09 +10:00
psychedelicious
aba28f04f8 Revert "feat(ui): add x,y,scaleX,scaleY,rotation to objects"
This reverts commit 53318b396c967c72326a7e4dea09667b2ab20bdd.
2024-09-05 22:40:09 +10:00
psychedelicious
bc7b4c5d8e feat(ui): layers manage their own bbox 2024-09-05 22:40:09 +10:00
psychedelicious
98359237c6 docs(ui): konva image object docstrings 2024-09-05 22:40:09 +10:00
psychedelicious
6982a9f41d feat(ui): add x,y,scaleX,scaleY,rotation to objects 2024-09-05 22:40:09 +10:00
psychedelicious
5665f1db7b fix(ui): show color picker when using rect tool 2024-09-05 22:40:09 +10:00
psychedelicious
7a6c9a60b3 feat(ui): image loading fallback for raster layers 2024-09-05 22:40:09 +10:00
psychedelicious
2e7ef452d5 feat(ui): bbox calc for raster layers 2024-09-05 22:40:09 +10:00
psychedelicious
5468b25c65 feat(ui): do not fill brush preview when drawing 2024-09-05 22:40:09 +10:00
psychedelicious
e4a1ef0c19 fix(ui): brush spacing handling 2024-09-05 22:40:09 +10:00
psychedelicious
fcb31d3cd2 fix(ui): jank when starting a shape when not already focused on stage 2024-09-05 22:40:09 +10:00
psychedelicious
cb32ce6a41 feat(ui): wip raster layers
I meant to split this up into smaller commits and undo some of it, but I committed afterwards and it's tedious to undo.
2024-09-05 22:40:09 +10:00
psychedelicious
a6c7f0d282 feat(ui): support image objects on raster layers
Just the UI and internal state, not rendering yet.
2024-09-05 22:40:09 +10:00
psychedelicious
45f296a35e tidy(ui): clean up event handlers
Separate logic for each tool in preparation for ellipse and polygon tools.
2024-09-05 22:40:09 +10:00
psychedelicious
8e6469d9d7 feat(ui): raster layer reset, object group util 2024-09-05 22:40:09 +10:00
psychedelicious
3298875cda feat(ui): rect shape preview now has fill 2024-09-05 22:40:09 +10:00
psychedelicious
d1c6a37b76 feat(ui): cancel shape drawing on esc 2024-09-05 22:40:09 +10:00
psychedelicious
31db9a178d feat(ui): temp disable history on CL 2024-09-05 22:40:09 +10:00
psychedelicious
1c766a43ee feat(ui): raster layer logic
- Deduplicate shared logic
- Split up giant renderers file into separate cohesive files
- Tons of cleanup
- Progress on raster layer functionality
2024-09-05 22:40:09 +10:00
psychedelicious
7b7a3fbd57 feat(ui): add raster layer rendering and interaction (WIP) 2024-09-05 22:40:09 +10:00
psychedelicious
d12474d93d feat(ui): scaffold out raster layers
Raster layers may have images, lines and shapes. These will replace initial image layers and provide sketching functionality like we have on canvas.
2024-09-05 22:40:09 +10:00
psychedelicious
12ac78a490 refactor(ui): revise types for line and rect objects
- Create separate object types for brush and eraser lines, instead of a single type that has a `tool` field.
- Create new object type for rect shapes.
- Add logic to schemas to migrate old object types to new.
- Update renderers & reducers.
2024-09-05 22:40:09 +10:00
Brandon Rising
125b459e56 chore: 4.2.9rc2 version bump 2024-09-04 10:42:16 -04:00
Brandon Rising
33edee1ba6 Delete all flux bundle state dict keys when extracting the transformer state dict 2024-09-04 09:36:23 -04:00
Brandon Rising
d20335dabc convert_bundle_to_flux_transformer_checkpoint now removes processed keys to decrease memory usage 2024-09-04 09:36:23 -04:00
Brandon Rising
d10d258213 Add a comment for why we're converting scale tensors in flux models to bfloat16 2024-09-04 09:36:23 -04:00
Brandon
d57ba1ed8b Update invokeai/backend/model_manager/probe.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-09-04 09:36:23 -04:00
Brandon Rising
2d0e34e57b Support non-quantized bundles 2024-09-04 09:36:23 -04:00
Brandon Rising
a005d06255 feat: support checkpoint bundles containing more than just the transformer 2024-09-04 09:36:23 -04:00
Eugene Brodsky
a301ef5a5a chore(ci): update github action version pins in container build workflow 2024-09-03 16:01:58 -04:00
Eugene Brodsky
9422df2737 feat(ci): enable a checkbox to push the container image when manually building via workflow dispatch 2024-09-03 16:01:58 -04:00
Lincoln Stein
6dabe4d3ca assign T5 encoder to base type "Any" 2024-09-03 15:55:51 -04:00
Lincoln Stein
00e4652d30 add more reliable fallback method for determining BnbQuantizedLlmInt8b 2024-09-03 15:55:51 -04:00
Lincoln Stein
b6434c5318 correct modelformat probe for t5 encoders 2024-09-03 15:55:51 -04:00
Lincoln Stein
3f7f9f8d61 add probes for T5_encoder and ClipTextModel 2024-09-03 15:55:51 -04:00
Brandon Rising
f3bb592544 Update latents used for preview images in flux 2024-09-03 14:04:16 -04:00
Brandon Rising
69f080fb75 Move flux step callback code into the step_callback util scripts, use other services within the invocation context 2024-09-03 14:04:16 -04:00
Brandon Rising
04272a7cc8 Initial attempt at preview images 2024-09-03 14:04:16 -04:00
Lincoln Stein
8d35af946e [MM] add API routes for getting & setting MM cache sizes (#6523)
* [MM] add API routes for getting & setting MM cache sizes, and retrieving MM stats

* Update invokeai/app/api/routers/model_manager.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* code cleanup after @ryand review

* Update invokeai/app/api/routers/model_manager.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* fix merge conflicts; tested and working

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-09-02 12:18:21 -04:00
Ryan Dick
24065ec6b6 Add FLUX image-to-image and inpainting (#6798)
## Summary

This PR adds support for Image-to-Image and inpainting workflows with
the FLUX model.

Full changelog:
- Split out `FLUX VAE Encode` and `FLUX VAE Decode` nodes
- Renamed `FLUX Text-to-Image` node to `FLUX Denoise` (since it now
supports image-to-image too). This is a workflow-breaking change.
- Added support for FLUX image-to-image via the `Latents` param on the
FLUX denoising node.
- Added support for FLUX masked inpainting via the `Denoise Mask` param
on the FLUX denoising node.
- Added "Denoise Start" and "Denoise End" params to the "FLUX Denoise"
node.
- Updated the "FLUX Text to Image" default workflow.
- Added a "FLUX Image to Image" default workflow.

### Example

FLUX inpainting workflow
<img width="1282" alt="image"
src="https://github.com/user-attachments/assets/86fc1170-e620-4412-8fd8-e119f875fc2e">

Input image

![image](https://github.com/user-attachments/assets/9c381b86-9f87-4257-bd2e-da22c56ca26c)

Mask

![image](https://github.com/user-attachments/assets/8f774c5c-2a25-45fe-9d4b-b233e3d58d2c)

Output image

![image](https://github.com/user-attachments/assets/8576a630-24ce-4a00-8052-e86bab59c855)


### Callouts for reviewers:
- I renamed FLUXTextToImageInvocation -> FLUXDenoisingInvocation. This
is, of course, a breaking change. It feels like the right move and now
is the right time to do it. Any objection?
- I added new `FLUX VAE Encode` and `FLUX VAE Decode` nodes.
Alternatively, I could have tried to match these names to the
corresponding SD nodes (e.g. `FLUX Image to Latents`, `FLUX Latents to
Image`). Personally, I prefer the current names, but want to hear other
opinions.

### Usage notes:
- With the default dev timestep scheduler, the image structure is
largely determined in the first ~3 steps. A consequence of this is that
the denoise_start parameter provides limited 'granularity' of control.
This will likely be improved in the future as we add more scheduler
options. In the meantime, you will likely want to use small values for
`denoise_start` (e.g. 0.03) to start denoising on step ~1-4 out of ~30.
- Currently, there is no 'noise' parameter on the `FLUX Denoise` node,
so the `denoise_end` parameter has limited utility. This will be added
in the future.

## QA Instructions

Test the following workflows:
- [x] Vanilla FLUX text-to-image behaviour is unchanged
- [x] Image-to-image with FLUX dev, no mask
- [x] Image-to-image with FLUX dev, with mask
- [x] Image-to-image with FLUX schnell, no mask (smoke test, not
expected to work well)

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-09-02 09:50:31 -04:00
Ryan Dick
627b0bf644 Expose all FLUX model params in the default FLUX models. 2024-09-02 09:38:17 -04:00
Ryan Dick
b43da46b82 Rename 'FLUX VAE Encode'/'FLUX VAE Decode' to 'FLUX Image to Latents'/'FLUX Latents to Image' 2024-09-02 09:38:17 -04:00
Ryan Dick
4255a01c64 Restore line that was accidentally removed during development. 2024-09-02 09:38:17 -04:00
Ryan Dick
23adbd4002 Update schema.ts. 2024-09-02 09:38:17 -04:00
Ryan Dick
fb5a24fcc6 Update default workflows for FLUX. 2024-09-02 09:38:17 -04:00
Ryan Dick
cfdd5a1900 Rename flux_text_to_image.py -> flex_denoise.py 2024-09-02 09:38:17 -04:00
Ryan Dick
2313f326df Add denoise_end param to FluxDenoiseInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
2e092a2313 Rename FluxTextToImageInvocation -> FluxDenoiseInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
763ef06c18 Use the existence of initial latents to decide whether we are doing image-to-image in the FLUX denoising node. Previously we were using the denoising_start value, but in some cases with an inpaintin mask you may want to run image-to-image from densoising_start=0. 2024-09-02 09:38:17 -04:00
Ryan Dick
8292f6cd42 Code cleanup and documentation around FLUX inpainting. 2024-09-02 09:38:17 -04:00
Ryan Dick
278bba499e Split FLUX VAE decoding out into its own node from LatentsToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
dd99ed28e0 Split FLUX VAE encoding out into its own node from ImageToLatentsInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
9a8aca69bf Get a rough version of FLUX inpainting working. 2024-09-02 09:38:17 -04:00
Ryan Dick
7ad62512eb Update MaskTensorToImageInvocation to support input mask tensors with or without a channel dimension. 2024-09-02 09:38:17 -04:00
Ryan Dick
bd466661ec Remove unused vae field from FLUXTextToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
7ebb509d05 Bump FLUX node versions after splitting out VAE encode/decode. 2024-09-02 09:38:17 -04:00
Ryan Dick
0aa13c046c Split VAE decoding out from the FLUXTextToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
a7a33d73f5 Get FLUX non-masked image-to-image working - still rough. 2024-09-02 09:38:17 -04:00
Ryan Dick
ffa39857d3 Add FLUX VAE decoding support to LatentsToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
e85c3bc465 Add FLUX VAE support to ImageToLatentsInvocation. 2024-09-02 09:38:17 -04:00
psychedelicious
8185ba7054 scripts: add allocate_vram script
Allocates the specified amount of VRAM, or allocates enough VRAM such that you have the specified amount of VRAM free.

Useful to simulate an environment with a specific amount of VRAM.
2024-09-02 18:18:26 +10:00
Lincoln Stein
d501865bec add a new FAQ for converting safetensors (#6736)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-08-31 18:56:08 +00:00
Brandon Rising
d62310bb5f Support HF repos with subfolders in source on windows OS 2024-08-30 19:31:42 -04:00
Brandon Rising
1835bff196 Fix source string in hugging face installs with subfolders 2024-08-30 19:31:42 -04:00
Ryan Dick
87261bdbc9 FLUX memory management improvements (#6791)
## Summary

This PR contains several improvements to memory management for FLUX
workflows.

It is now possible to achieve better FLUX model caching performance, but
this still requires users to manually configure their `ram`/`vram`
settings. E.g. a `vram` setting of 16.0 should allow for all quantized
FLUX models to be kept in memory on the GPU.

Changes:
- Check the size of a model on disk and free the requisite space in the
model cache before loading it. (This behaviour existed previously, but
was removed in https://github.com/invoke-ai/InvokeAI/pull/6072/files.
The removal did not seem to be intentional).
- Removed the hack to free 24GB of space in the cache before loading the
FLUX model.
- Split the T5 embedding and CLIP embedding steps into separate
functions so that the two models don't both have to be held in RAM at
the same time.
- Fix a bug in `InvokeLinear8bitLt` that was causing some tensors to be
left on the GPU when the model was offloaded to the CPU. (This class is
getting very messy due to the non-standard state_dict handling in
`bnb.nn.Linear8bitLt`. )
- Tidy up some dtype handling in FluxTextToImageInvocation to avoid
situations where we hold references to two copies of the same tensor
unnecessarily.
- (minor) Misc cleanup of ModelCache: improve docs and remove unused
vars.

Future:
We should revisit our default ram/vram configs. The current defaults are
very conservative, and users could see major performance improvements
from tuning these values.

## QA Instructions

I tested the FLUX workflow with the following configurations and
verified that the cache hit rates and memory usage matched the expected
behaviour:
- `ram = 16` and `vram = 16`
- `ram = 16` and `vram = 1`
- `ram = 1` and `vram = 1`

Note that the changes in this PR are not isolated to FLUX. Since we now
check the size of models on disk, we may see slight changes in model
cache offload patterns for other models as well.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-08-29 15:17:45 -04:00
Ryan Dick
4e4b6c6dbc Tidy variable management and dtype handling in FluxTextToImageInvocation. 2024-08-29 19:08:18 +00:00
Ryan Dick
5e8cf9fb6a Remove hack to clear cache from the FluxTextToImageInvocation. We now clear the cache based on the on-disk model size. 2024-08-29 19:08:18 +00:00
Ryan Dick
c738fe051f Split T5 encoding and CLIP encoding into separate functions to ensure that all model references are locally-scoped so that the two models don't have to be help in memory at the same time. 2024-08-29 19:08:18 +00:00
Ryan Dick
29fe1533f2 Fix bug in InvokeLinear8bitLt that was causing old state information to persist after loading from a state dict. This manifested as state tensors being left on the GPU even when a model had been offloaded to the CPU cache. 2024-08-29 19:08:18 +00:00
Ryan Dick
77090070bd Check the size of a model on disk and make room for it in the cache before loading it. 2024-08-29 19:08:18 +00:00
Ryan Dick
6ba9b1b6b0 Tidy up GIG -> GB and remove unused GIG constant. 2024-08-29 19:08:18 +00:00
Ryan Dick
c578b8df1e Improve ModelCache docs. 2024-08-29 19:08:18 +00:00
Ryan Dick
cad9a41433 Remove unused MOdelCache.exists(...) function. 2024-08-29 19:08:18 +00:00
Ryan Dick
5fefb3b0f4 Remove unused param from ModelCache. 2024-08-29 19:08:18 +00:00
Ryan Dick
5284a870b0 Remove unused constructor params from ModelCache. 2024-08-29 19:08:18 +00:00
Ryan Dick
e064377c05 Remove default model cache sizes from model_cache_default.py. These defaults were misleading, because the config defaults take precedence over them. 2024-08-29 19:08:18 +00:00
Mary Hipp
3e569c8312 feat(ui): add fields for CLIP embed models and Flux VAE models in workflows 2024-08-29 11:52:51 -04:00
maryhipp
16825ee6e9 feat(nodes): bump version of flux model node, update default workflow 2024-08-29 11:52:51 -04:00
Mary Hipp
3f5340fa53 feat(nodes): add submodels as inputs to FLUX main model node instead of hardcoded names 2024-08-29 11:52:51 -04:00
chainchompa
f2a1a39b33 Add selectedStylePreset to app parameters (#6787)
## Summary
- Add selectedStylePreset to app parameters
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-28 10:53:07 -04:00
chainchompa
326de55d3e remove api changes and only preselect style preset 2024-08-28 09:53:29 -04:00
chainchompa
b2df909570 added selectedStylePreset to preload presets when app loads 2024-08-28 09:50:44 -04:00
chainchompa
026ac36b06 Revert "added selectedStylePreset to preload presets when app loads"
This reverts commit e97fd85904.
2024-08-28 09:44:08 -04:00
chainchompa
92125e5fd2 bug fixes 2024-08-27 16:13:38 -04:00
chainchompa
c0c139da88 formatting ruff 2024-08-27 15:46:51 -04:00
chainchompa
404ad6a7fd cleanup 2024-08-27 15:42:42 -04:00
chainchompa
fc39086fb4 call stylePresetSelected 2024-08-27 15:34:31 -04:00
chainchompa
cd215700fe added route for selecting style preset 2024-08-27 15:34:07 -04:00
chainchompa
e97fd85904 added selectedStylePreset to preload presets when app loads 2024-08-27 15:33:24 -04:00
Brandon Rising
0a263fa5b1 chore: bump version to v4.2.9rc1 2024-08-27 12:09:27 -04:00
Mary Hipp
fae3836a8d fix CLIP 2024-08-27 10:29:10 -04:00
Mary Hipp
b3d2eb4178 add translations for new model types in MM, remove clip vision from filter since its not displayed in list 2024-08-27 10:29:10 -04:00
psychedelicious
576f1cbb75 build: remove broken scripts
These two scripts are broken and can cause data loss. Remove them.

They are not in the launcher script, but _are_ available to users in the terminal/file browser.

Hopefully, when we removing them here, `pip` will delete them on next installation of the package...
2024-08-27 22:01:45 +10:00
Ryan Dick
50085b40bb Update starter model size estimates. 2024-08-26 20:17:50 -04:00
Mary Hipp
cff382715a default workflow: add steps to exposed fields, add more notes 2024-08-26 20:17:50 -04:00
Brandon Rising
54d54d1bf2 Run ruff 2024-08-26 20:17:50 -04:00
Mary Hipp
e84ea68282 remove prompt 2024-08-26 20:17:50 -04:00
Mary Hipp
160dd36782 update default workflow for flux 2024-08-26 20:17:50 -04:00
Brandon Rising
65bb46bcca Rename params for flux and flux vae, add comments explaining use of the config_path in model config 2024-08-26 20:17:50 -04:00
Brandon Rising
2d185fb766 Run ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
2ba9b02932 Fix type error in tsc 2024-08-26 20:17:50 -04:00
Brandon Rising
849da67cc7 Remove no longer used code in the flux denoise function 2024-08-26 20:17:50 -04:00
Brandon Rising
3ea6c9666e Remove in progress images until we're able to make the valuable 2024-08-26 20:17:50 -04:00
Brandon Rising
cf633e4ef2 Only install starter models if not already installed 2024-08-26 20:17:50 -04:00
Ryan Dick
bbf934d980 Remove outdated TODO. 2024-08-26 20:17:50 -04:00
Ryan Dick
620f733110 ruff format 2024-08-26 20:17:50 -04:00
Ryan Dick
67928609a3 Downgrade accelerate and huggingface-hub deps to original versions. 2024-08-26 20:17:50 -04:00
Ryan Dick
5f15afb7db Remove flux repo dependency 2024-08-26 20:17:50 -04:00
Ryan Dick
635d2f480d ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
70c278c810 Remove dependency on flux config files 2024-08-26 20:17:50 -04:00
Brandon Rising
56b9906e2e Setup scaffolding for in progress images and add ability to cancel the flux node 2024-08-26 20:17:50 -04:00
Ryan Dick
a808ce81fd Replace swish() with torch.nn.functional.silu(h). They are functionally equivalent, but in my test VAE deconding was ~8% faster after the change. 2024-08-26 20:17:50 -04:00
Ryan Dick
83f82c5ddf Switch the CLIP-L start model to use our hosted version - which is much smaller. 2024-08-26 20:17:50 -04:00
Brandon Rising
101de8c25d Update t5 encoder formats to accurately reflect the quantization strategy and data type 2024-08-26 20:17:50 -04:00
Ryan Dick
3339a4baf0 Downgrade revert torch version after removing optimum-qanto, and other minor version-related fixes. 2024-08-26 20:17:50 -04:00
Ryan Dick
dff4a88baa Move quantization scripts to a scripts/ subdir. 2024-08-26 20:17:50 -04:00
Ryan Dick
a21f6c4964 Update docs for T5 quantization script. 2024-08-26 20:17:50 -04:00
Ryan Dick
97562504b7 Remove all references to optimum-quanto and downgrade diffusers. 2024-08-26 20:17:50 -04:00
Ryan Dick
75d8ac378c Update the T5 8-bit quantized starter model to use the BnB LLM.int8() variant. 2024-08-26 20:17:50 -04:00
Ryan Dick
b9dd354e2b Fixes to the T5XXL quantization script. 2024-08-26 20:17:50 -04:00
Ryan Dick
33c2fbd201 Add script for quantizing a T5 model. 2024-08-26 20:17:50 -04:00
Brandon Rising
5063be92bf Switch flux to using its own conditioning field 2024-08-26 20:17:50 -04:00
Brandon Rising
1047584b3e Only import bnb quantize file if bitsandbytes is installed 2024-08-26 20:17:50 -04:00
Brandon Rising
6764dcfdaa Load and unload clip/t5 encoders and run inference separately in text encoding 2024-08-26 20:17:50 -04:00
Brandon Rising
012864ceb1 Update macos test vm to macOS-14 2024-08-26 20:17:50 -04:00
Ryan Dick
a0bf20bcee Run FLUX VAE decoding in the user's preferred dtype rather than float32. Tested, and seems to work well at float16. 2024-08-26 20:17:50 -04:00
Ryan Dick
14ab339b33 Move prepare_latent_image_patches(...) to sampling.py with all of the related FLUX inference code. 2024-08-26 20:17:50 -04:00
Ryan Dick
25c91efbb6 Rename field positive_prompt -> prompt. 2024-08-26 20:17:50 -04:00
Ryan Dick
1c1f2c6664 Add comment about incorrect T5 Tokenizer size calculation. 2024-08-26 20:17:50 -04:00
Ryan Dick
d7c22b3bf7 Tidy is_schnell detection logic. 2024-08-26 20:17:50 -04:00
Ryan Dick
185f2a395f Make FLUX get_noise(...) consistent across devices/dtypes. 2024-08-26 20:17:50 -04:00
Ryan Dick
0c5649491e Mark FLUX nodes as prototypes. 2024-08-26 20:17:50 -04:00
Brandon Rising
94aba5892a Attribute black-forest-labs/flux for much of the flux code 2024-08-26 20:17:50 -04:00
Brandon Rising
ef093dde29 Don't install bitsandbytes on macOS 2024-08-26 20:17:50 -04:00
maryhipp
34451e5f27 added FLUX dev to starter models 2024-08-26 20:17:50 -04:00
Brandon Rising
1f9bdd1a9a Undo changes to the v2 dir of frontend types 2024-08-26 20:17:50 -04:00
Brandon Rising
c27d59baf7 Run ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
f130ddec7c Remove automatic install of models during flux model loader, remove no longer used import function on context 2024-08-26 20:17:50 -04:00
Ryan Dick
a0a259eef1 Fix max_seq_len field description. 2024-08-26 20:17:50 -04:00
Ryan Dick
b66f19d4d1 Add docs to the quantization scripts. 2024-08-26 20:17:50 -04:00
Ryan Dick
4105a78b83 Update load_flux_model_bnb_llm_int8.py to work with a single-file FLUX transformer checkpoint. 2024-08-26 20:17:50 -04:00
Ryan Dick
19a68afb3a Fix bug in InvokeInt8Params that was causing it to use double the necessary VRAM. 2024-08-26 20:17:50 -04:00
maryhipp
fd68a2475b add better workflow name 2024-08-26 20:17:50 -04:00
maryhipp
28ff7ba830 add better workflow description 2024-08-26 20:17:50 -04:00
maryhipp
5d0b248fdb fix(worker) fix T5 type 2024-08-26 20:17:50 -04:00
maryhipp
01a4e0f6ef update default workflow 2024-08-26 20:17:50 -04:00
Mary Hipp
91e0731506 fix schema 2024-08-26 20:17:50 -04:00
Mary Hipp
d1f904d41f tsc and lint fix 2024-08-26 20:17:50 -04:00
Mary Hipp
269388c9f4 feat(ui): create new field for t5 encoder models in nodes 2024-08-26 20:17:50 -04:00
Mary Hipp
b8486379ce fix(ui): pass base/type when installing models, add flux formats to MM badges 2024-08-26 20:17:50 -04:00
Mary Hipp
400eb94d3b fix(ui): only exclude flux main models from linear UI dropdown, not model manager list 2024-08-26 20:17:50 -04:00
maryhipp
e210c96485 add FLUX schnell starter models and submodels as dependenices or adhoc download options 2024-08-26 20:17:50 -04:00
maryhipp
5f567f41f4 add case for clip embed models in probe 2024-08-26 20:17:50 -04:00
maryhipp
5fed573a29 update flux_model_loader node to take a T5 encoder from node field instead of hardcoded list, assume all models have been downloaded 2024-08-26 20:17:50 -04:00
Ryan Dick
cfac7c8189 Move requantize.py to the quatnization/ dir. 2024-08-26 20:17:50 -04:00
Ryan Dick
1787de6836 Add docs to the requantize(...) function explaining why it was copied from optimum-quanto. 2024-08-26 20:17:50 -04:00
Ryan Dick
ac96f187bd Remove duplicate log_time(...) function. 2024-08-26 20:17:50 -04:00
Brandon Rising
72398350b4 More flux loader cleanup 2024-08-26 20:17:50 -04:00
Brandon Rising
df9445c351 Various styling and exception type updates 2024-08-26 20:17:50 -04:00
Brandon Rising
87b7a2e39b Switch inheritance class of flux model loaders 2024-08-26 20:17:50 -04:00
Brandon Rising
f7e46622a1 Update doc string for import_local_model and remove access_token since it's only usable for local file paths 2024-08-26 20:17:50 -04:00
Ryan Dick
71f18353a9 Address minor review comments. 2024-08-26 20:17:50 -04:00
Ryan Dick
4228de707b Rename t5Encoder -> t5_encoder. 2024-08-26 20:17:50 -04:00
Mary Hipp
b6a05629ef add default workflow for flux t2i 2024-08-26 20:17:50 -04:00
Mary Hipp
fbaa820643 exclude flux models from main model dropdown 2024-08-26 20:17:50 -04:00
Brandon Rising
db2a2d5e38 Some cleanup of the tags and description of flux nodes 2024-08-26 20:17:50 -04:00
Brandon Rising
8ba6e6b1f8 Add t5 encoders and clip embeds to the model manager 2024-08-26 20:17:50 -04:00
Brandon Rising
57168d719b Fix styling/lint 2024-08-26 20:17:50 -04:00
Brandon Rising
dee6d2c98e Fix support for 8b quantized t5 encoders, update exception messages in flux loaders 2024-08-26 20:17:50 -04:00
Ryan Dick
e49105ece5 Add tqdm progress bar to FLUX denoising. 2024-08-26 20:17:50 -04:00
Ryan Dick
0c5e11f521 Fix FLUX output image clamping. And a few other minor fixes to make inference work with the full bfloat16 FLUX transformer model. 2024-08-26 20:17:50 -04:00
Brandon Rising
a63f842a13 Select dev/schnell based on state dict, use correct max seq len based on dev/schnell, and shift in inference, separate vae flux params into separate config 2024-08-26 20:17:50 -04:00
Brandon Rising
4bd7fda694 Install sub directories with folders correctly, ensure consistent dtype of tensors in flux pipeline and vae 2024-08-26 20:17:50 -04:00
Brandon Rising
81f0886d6f Working inference node with quantized bnb nf4 checkpoint 2024-08-26 20:17:50 -04:00
Brandon Rising
2eb87f3306 Remove unused param on _run_vae_decoding in flux text to image 2024-08-26 20:17:50 -04:00
Brandon Rising
723f3ab0a9 Add nf4 bnb quantized format 2024-08-26 20:17:50 -04:00
Brandon Rising
1bd90e0fd4 Run ruff, setup initial text to image node 2024-08-26 20:17:50 -04:00
Brandon Rising
436f18ff55 Add backend functions and classes for Flux implementation, Update the way flux encoders/tokenizers are loaded for prompt encoding, Update way flux vae is loaded 2024-08-26 20:17:50 -04:00
Brandon Rising
cde9696214 Some UI cleanup, regenerate schema 2024-08-26 20:17:50 -04:00
Brandon Rising
2d9042fb93 Run Ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
9ed53af520 Run Ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
56fda669fd Manage quantization of models within the loader 2024-08-26 20:17:50 -04:00
Brandon Rising
1d8545a76c Remove changes to v1 workflow 2024-08-26 20:17:50 -04:00
Brandon Rising
5f59a828f9 Setup flux model loading in the UI 2024-08-26 20:17:50 -04:00
Ryan Dick
1fa6bddc89 WIP on moving from diffusers to FLUX 2024-08-26 20:17:50 -04:00
Ryan Dick
d3a5ca5247 More improvements for LLM.int8() - not fully tested. 2024-08-26 20:17:50 -04:00
Ryan Dick
f01f56a98e LLM.int8() quantization is working, but still some rough edges to solve. 2024-08-26 20:17:50 -04:00
Ryan Dick
99b0f79784 Clean up NF4 implementation. 2024-08-26 20:17:50 -04:00
Ryan Dick
e1eb104345 NF4 inference working 2024-08-26 20:17:50 -04:00
Ryan Dick
5c2f95ef50 NF4 loading working... I think. 2024-08-26 20:17:50 -04:00
Ryan Dick
b63df9bab9 wip 2024-08-26 20:17:50 -04:00
Ryan Dick
a52c899c6d Split a FluxTextEncoderInvocation out from the FluxTextToImageInvocation. This has the advantage that we benfit from automatic caching when the prompt isn't changed. 2024-08-26 20:17:50 -04:00
Ryan Dick
eeabb7ebe5 Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-26 20:17:50 -04:00
Ryan Dick
8b1cef978c Make quantized loading fast. 2024-08-26 20:17:50 -04:00
Ryan Dick
152da482cd WIP - experimentation 2024-08-26 20:17:50 -04:00
Ryan Dick
3cf0365a35 Make float16 inference work with FLUX on 24GB GPU. 2024-08-26 20:17:50 -04:00
Ryan Dick
5870742bb9 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-26 20:17:50 -04:00
Ryan Dick
01d8c62c57 Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-26 20:17:50 -04:00
Ryan Dick
55a242b2d6 Minor improvements to FLUX workflow. 2024-08-26 20:17:50 -04:00
Ryan Dick
45263b339f Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-26 20:17:50 -04:00
Ryan Dick
3319491861 Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-26 20:17:50 -04:00
Ryan Dick
e687afac90 Add sentencepiece dependency for the T5 tokenizer. 2024-08-26 20:17:50 -04:00
Ryan Dick
b39031ea53 First draft of FluxTextToImageInvocation. 2024-08-26 20:17:50 -04:00
Ryan Dick
0b77511271 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-26 20:17:50 -04:00
Ryan Dick
c99cd989c1 Update imports for compatibility with bumped diffusers version. 2024-08-26 20:17:50 -04:00
Ryan Dick
317fdadb21 Bump diffusers version to include FLUX support. 2024-08-26 20:17:50 -04:00
Mary Hipp
4e294f9e3e disable export button if no non-default presets 2024-08-26 09:23:15 -04:00
Jonathan
526e0f30a0 Added support for bounding boxes in the Invocation API
Adding built-in bounding boxes as a core type would help developers of nodes that include bounding box support.
2024-08-26 08:03:30 +10:00
psychedelicious
231e5ec94a chore: bump version v4.2.8post1 2024-08-23 06:55:30 +10:00
Mary Hipp
e5bb6f9693 lint fix 2024-08-23 06:46:19 +10:00
Mary Hipp
da7dee44c6 fix(ui): use empty string fallback if unable to parse prompts when creating style preset from existing image 2024-08-23 06:46:19 +10:00
Eugene Brodsky
83144f4fe3 fix(docs): follow-up docker readme fixes 2024-08-22 11:19:07 -04:00
psychedelicious
c451f52ea3 chore(ui): lint 2024-08-22 21:00:09 +10:00
psychedelicious
8a2c78f2e1 fix(ui): dynamic prompts not recalculating when deleting or updating a style preset
The root cause was the active style preset not being reset when it was deleted, or no longer present in the list of style presets.

- Add extra reducer to `stylePresetSlice` to reset the active preset if it is deleted or otherwise unavailable
- Update the dynamic prompts listener to trigger on delete/update/list of style presets
2024-08-22 21:00:09 +10:00
psychedelicious
bcc78bde9b chore: bump version to v4.2.8 2024-08-22 21:00:09 +10:00
Васянатор
054bb6fe0a translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1367 of 1367 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
Riccardo Giovanetti
4f4aa6d92e translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1346 of 1367 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1346 of 1367 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
Hosted Weblate
eac51ac6f5 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
psychedelicious
9f349a7c0a fix(ui): do not constrain width of hide/show boards button
lets translations display fully
2024-08-22 11:36:07 +10:00
psychedelicious
918afa5b15 fix(ui): show more of current board name 2024-08-22 11:36:07 +10:00
psychedelicious
eb1113f95c feat(ui): add translation string for "Upscale" 2024-08-22 11:36:07 +10:00
psychedelicious
4f4ba7b462 tidy(ui): clean up ActiveStylePreset markup 2024-08-21 09:06:41 +10:00
Mary Hipp
2298be0e6b fix(ui): error handling if unable to convert image URL to blob 2024-08-21 09:06:41 +10:00
Mary Hipp
63494dfca7 remove extra slash in exports path 2024-08-21 09:06:41 +10:00
Mary Hipp
36a1d39454 fix(ui): handle badge styling when template name is long 2024-08-21 09:06:41 +10:00
Mary Hipp
a6f6d5c400 fix(ui): add loading state to button when creating or updating a style preset 2024-08-21 09:06:41 +10:00
Mary Hipp
e85f221aca fix(ui): clear prompt template when prompts are recalled 2024-08-21 09:04:35 +10:00
Mary Hipp
d4797e37dc fix(ui): properly unwrap delete style preset API request so that error is caught 2024-08-19 16:12:39 -04:00
Mary Hipp
3e7923d072 fix(api): allow updating of type for style preset 2024-08-19 16:12:39 -04:00
psychedelicious
a85d69ce3d tidy(ui): getViewModeChunks.tsx -> .ts 2024-08-19 08:25:39 +10:00
psychedelicious
96db006c99 fix(ui): edge case with getViewModeChunks 2024-08-19 08:25:39 +10:00
psychedelicious
8ca57d03d8 tests(ui): add tests for getViewModeChunks 2024-08-19 08:25:39 +10:00
psychedelicious
6c404ce5f8 fix(ui): prompt template preset preview out of order 2024-08-19 08:25:39 +10:00
psychedelicious
584e07182b fix(ui): use translations for style preset strings 2024-08-17 21:27:53 +10:00
psychedelicious
f787e9acf6 chore: bump version v4.2.8rc2 2024-08-16 21:47:06 +10:00
psychedelicious
5a24b89e54 fix(app): include style preset defaults in build 2024-08-16 21:47:06 +10:00
psychedelicious
9b482e2a4f chore: bump version to v4.2.8rc1 2024-08-16 10:53:19 +10:00
Max
df4dbe2d57 Fix invoke.sh not detecting symlinks
When invoke.sh is executed using a symlink with a working directory outside of InvokeAI's root directory, it will fail.

invoke.sh attempts to cd into the correct directory at the start of the script, but will cd into the directory of the symlink instead. This commit fixes that.
2024-08-16 10:40:59 +10:00
psychedelicious
713bd11177 feat(ui, api): prompt template export (#6745)
## Summary

Adds option to download all prompt templates to a CSV

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-16 10:38:50 +10:00
psychedelicious
182571df4b Merge branch 'main' into maryhipp/export-presets 2024-08-16 10:17:07 +10:00
psychedelicious
29bfe492b6 ui: translations update from weblate (#6746)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widget/invokeai/web-ui/horizontal-auto.svg)
2024-08-16 10:16:51 +10:00
psychedelicious
3fb4e3050c feat(ui): focus in textarea after inserting placeholder 2024-08-16 10:14:25 +10:00
psychedelicious
39c7ec3cd9 feat(ui): per type fallbacks for templates 2024-08-16 10:11:43 +10:00
psychedelicious
26bfbdec7f feat(ui): use buttons instead of menu for preset import/export 2024-08-16 09:58:19 +10:00
psychedelicious
7a3eaa8da9 feat(api): save file as prompt_templates.csv 2024-08-16 09:51:46 +10:00
Mary Hipp
599db7296f export only user style presets 2024-08-15 16:07:32 -04:00
Riccardo Giovanetti
042aab4295 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1340 of 1359 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-15 20:44:02 +02:00
Mary Hipp
24f298283f clean up, add context menu to import/download templates 2024-08-15 12:39:55 -04:00
Mary Hipp
68dac6349d Merge remote-tracking branch 'origin/main' into maryhipp/export-presets 2024-08-15 11:21:56 -04:00
chainchompa
b675fc19e8 feat: add base prop for selectedWorkflow to allow loading a workflow on launch (#6742)
## Summary
added a base prop for selectedWorkflow to allow loading a workflow on
launch

<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
can test by loading InvokeAIUI with a selectedWorkflow prop of the
workflow ID
<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-15 10:52:23 -04:00
chainchompa
659019cfd6 Merge branch 'main' into chainchompa/preselect-workflows 2024-08-15 10:40:44 -04:00
Mary Hipp
dcd61e1f82 pin ruff version in python check gha 2024-08-15 09:47:49 -04:00
Mary Hipp
f5c99b1488 exclude jupyter notebooks from ruff 2024-08-15 09:47:49 -04:00
Mary Hipp
810be3e1d4 update import directions to include JSON 2024-08-15 09:47:49 -04:00
psychedelicious
60d754d1df feat(api): tidy style presets import logic
- Extract parsing into utility function
- Log import errors
- Forbid extra properties on the imported data
2024-08-15 09:47:49 -04:00
psychedelicious
bd07c86db9 feat(ui): make style preset menu trigger look like button 2024-08-15 09:47:49 -04:00
psychedelicious
bcbf8b6bd8 feat(ui): revert to using {prompt} for prompt template placeholder 2024-08-15 09:47:49 -04:00
psychedelicious
356661459b feat(api): support JSON for preset imports
This allows us to support Fooocus format presets.
2024-08-15 09:47:49 -04:00
psychedelicious
deb917825e feat(api): use pydantic validation during style preset import
- Enforce name is present and not an empty string
- Provide empty string as default for positive and negative prompt
- Add `positive_prompt` as validation alias for `prompt` field
- Strip whitespace automatically
- Create `TypeAdapter` to validate the whole list in one go
2024-08-15 09:47:49 -04:00
psychedelicious
15415c6d85 feat(ui): use dropzone for style preset upload
Easier to accept multiple file types and supper drag and drop in the future.
2024-08-15 09:47:49 -04:00
Mary Hipp
76b0380b5f feat(ui): create component to upload CSV of style presets to import 2024-08-15 09:47:49 -04:00
Mary Hipp
2d58754789 feat(api): add endpoint to take a CSV, parse it, validate it, and create many style preset entries 2024-08-15 09:47:49 -04:00
chainchompa
9cdf1f599c Merge branch 'main' into chainchompa/preselect-workflows 2024-08-15 09:25:19 -04:00
chainchompa
268be97ba0 remove ref, make options optional for useGetLoadWorkflow 2024-08-15 09:18:41 -04:00
Mary Hipp
a9014673a0 wip export 2024-08-15 09:00:11 -04:00
psychedelicious
d36c43a10f ui: translations update from weblate (#6727)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widget/invokeai/web-ui/horizontal-auto.svg)
2024-08-15 08:48:03 +10:00
Phrixus2023
54a5c4e482 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1320 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-15 00:46:01 +02:00
Riccardo Giovanetti
5e09a244e3 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1336 of 1355 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1302 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-15 00:46:01 +02:00
chainchompa
88648dca1a change selectedWorkflow to selectedWorkflowId 2024-08-14 11:22:37 -04:00
chainchompa
8840df2b00 Merge branch 'main' into chainchompa/preselect-workflows 2024-08-14 09:02:12 -04:00
chainchompa
af159acbdf cleanup 2024-08-14 08:58:38 -04:00
chainchompa
471719bbbe add base prop for selectedWorkflow to allow loading a workflow on launch 2024-08-14 08:47:02 -04:00
psychedelicious
b126f2ffd5 feat(ui, api): prompt templates (#6729)
## Summary

Adds prompt templates to the UI. Demo video is attached.
* added default prompt templates to seed database on startup (these
cannot be edited or deleted by users via the UI)
* can create fresh prompt template, create from an image in gallery that
has prompt metadata, or copy an existing prompt template and modify
* if a template is active, can view what your prompt will be invoked as
by switching to "view mode"



https://github.com/user-attachments/assets/32d84e0c-b04c-48da-bae5-aa6eb685d209



## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-14 12:49:31 +10:00
psychedelicious
9938f12ef0 Merge branch 'main' into maryhipp/style-presets 2024-08-14 12:33:30 +10:00
psychedelicious
982c266073 tidy: remove extra characters in prompt templates 2024-08-14 12:31:57 +10:00
psychedelicious
5c37391883 fix(ui): do not show [prompt] in preset preview 2024-08-14 12:29:05 +10:00
psychedelicious
ddeafc6833 fix(ui): minimize layout shift when overlaying preset prompt preview 2024-08-14 12:24:57 +10:00
psychedelicious
41b2d5d013 fix(ui): prompt preview not working preset starts with [prompt] 2024-08-14 12:21:38 +10:00
psychedelicious
29d6f48901 fix(ui): prompt shows thru prompt label text 2024-08-14 12:01:49 +10:00
psychedelicious
d5c9f4e47f chore(ui): revert framer-motion upgrade
`framer-motion` 11 breaks a lot of stuff in profoundly unintuitive ways, holy crap. UI lib rolled back its dep, pulling in latest version of that
2024-08-14 06:12:00 +10:00
psychedelicious
24d73387d8 build(ui): fix chakra deps
We had multiple versions of @emotion/react, stemming from an extraneous dependency on @chakra-ui/react. Removed the extraneosu dep
2024-08-14 06:12:00 +10:00
Mary Hipp
e0d3927265 feat: add flag for allowPrivateStylePresets that shows a type field when creating a style preset 2024-08-13 14:08:54 -04:00
Mary Hipp
e5f7c2a9b7 add type safety / validation to form data payloads and allow type to be passed through api 2024-08-13 13:00:31 -04:00
Mary Hipp
b0760710d5 add the rest of default style presets, update image service to return default images correctly by name, add tooltip popover to images in UI 2024-08-13 11:33:15 -04:00
Mary Hipp
764accc921 update config docstring 2024-08-12 15:17:40 -04:00
Mary Hipp
6a01fce9c1 fix payloads for stringified data 2024-08-12 15:16:22 -04:00
Mary Hipp
9c732ac3b1 Merge remote-tracking branch 'origin/main' into maryhipp/style-presets 2024-08-12 14:53:45 -04:00
Mary Hipp
b70891c661 update descriptoin of placeholder in modal 2024-08-12 13:37:04 -04:00
Mary Hipp
4dbf851741 ui: add labels to prompt boxes 2024-08-12 13:33:39 -04:00
Mary Hipp
6c927a9fd4 move mdoal state into nanostore 2024-08-12 12:46:02 -04:00
Mary Hipp
096f001634 ui: add ability to copy template 2024-08-12 12:32:31 -04:00
Mary Hipp
4837e578b2 api: update dir path for style preset images, update payload for create/update formdata 2024-08-12 12:00:14 -04:00
Mary Hipp
1e547ef912 UI more pr feedback 2024-08-12 11:59:25 -04:00
psychedelicious
f6b8970bd1 fix(app): create reference to events task to prevent accidental GC
This wasn't a problem, but it's advised in the official docs so I've done it.
2024-08-12 07:49:58 +10:00
psychedelicious
29325a7214 fix(app): use asyncio queue and existing event loop for events
Around the time we (I) implemented pydantic events, I noticed a short pause between progress images every 4 or 5 steps when generating with SDXL. It didn't happen with SD1.5, but I did notice that with SD1.5, we'd get 4 or 5 progress events simultaneously. I'd expect one event every ~25ms, matching my it/s with SD1.5. Mysterious!

Digging in, I found an issue is related to our use of a synchronous queue for events. When the event queue is empty, we must call `asyncio.sleep` before checking again. We were sleeping for 100ms.

Said another way, every time we clear the event queue, we have to wait 100ms before another event can be dispatched, even if it is put on the queue immediately after we start waiting. In practice, this means our events get buffered into batches, dispatched once every 100ms.

This explains why I was getting batches of 4 or 5 SD1.5 progress events at once, but not the intermittent SDXL delay.

But this 100ms wait has another effect when the events are put on the queue in intervals that don't perfectly line up with the 100ms wait. This is most noticeable when the time between events is >100ms, and can add up to 100ms delay before the event is dispatched.

For example, say the queue is empty and we start a 100ms wait. Then, immediately after - like 0.01ms later - we push an event on to the queue. We still need to wait another 99.9ms before that event will be dispatched. That's the SDXL delay.

The easy fix is to reduce the sleep to something like 0.01 seconds, but this feels kinda dirty. Can't we just wait on the queue and dispatch every event immediately? Not with the normal synchronous queue - but we can with `asyncio.Queue`.

I switched the events queue to use `asyncio.Queue` (as seen in this commit), which lets us asynchronous wait on the queue in a loop.

Unfortunately, I ran into another issue - events now felt like their timing was inconsistent, but in a different way than with the 100ms sleep. The time between pushing events on the queue and dispatching them was not consistently ~0ms as I'd expect - it was highly variable from ~0ms up to ~100ms.

This is resolved by passing the asyncio loop directly into the events service and using its methods to create the task and interact with the queue. I don't fully understand why this resolved the issue, because either way we are interacting with the same event loop (as shown by `asyncio.get_running_loop()`). I suppose there's some scheduling magic happening.
2024-08-12 07:49:58 +10:00
psychedelicious
8ecf72838d fix(api): image downloads with correct filename
Closes #6730
2024-08-10 09:53:56 -04:00
psychedelicious
c3ab8a6aa8 chore(ui): bump rest of deps 2024-08-10 07:45:23 -04:00
psychedelicious
1931aa3e70 chore(ui): typegen 2024-08-10 07:45:23 -04:00
psychedelicious
d3d8055055 feat(ui): update typegen script 2024-08-10 07:45:23 -04:00
psychedelicious
476b0a0403 chore(ui): bump openapi-typescript 2024-08-10 07:45:23 -04:00
psychedelicious
f66584713c fix(api): sort OpenAPI schema properties for InvocationOutputMap
This makes the schema output deterministic!
2024-08-10 07:45:23 -04:00
psychedelicious
33624fc2fa fix(api): duplicate operation id for get_image_full
There's a FastAPI bug that results in the OpenAPI spec outputting the same operation id for each operation when specifying multiple HTTP methods.

- Discussion: https://github.com/tiangolo/fastapi/discussions/8449
- Pending PR to fix: https://github.com/tiangolo/fastapi/pull/10694

In our case, we have a `get_image_full` endpoint that handles GET and HEAD.

This results in an invalid OpenAPI schema. A workaround is to use two route decorators for the operation handler. This works as expected - HEAD requests get the header, and GET requests get the resource. And the OpenAPI schema is valid.
2024-08-10 07:45:23 -04:00
Mary Hipp
41c3e73a3c fix tests 2024-08-09 16:31:42 -04:00
Mary Hipp
97553a7de2 API/DB updates per PR feedback 2024-08-09 16:27:37 -04:00
Mary Hipp
12ba15bfa9 UI updates per PR feedback 2024-08-09 16:00:13 -04:00
Mary Hipp
09d1e190e7 show warning for maxUpscaleDimension if model tab is disabled 2024-08-09 14:07:55 -04:00
Mary Hipp
8eb5d08499 missed translation 2024-08-08 16:01:16 -04:00
Mary Hipp
9be6acde7d require name to submit style preset 2024-08-08 15:53:21 -04:00
Mary Hipp
5f83bb0069 update config docstring 2024-08-08 15:20:43 -04:00
Mary Hipp
b138882abc fix tests? 2024-08-08 15:18:32 -04:00
Mary Hipp
0cd7cdb52e remove send2trash 2024-08-08 15:13:36 -04:00
Mary Hipp
1d8b7e2bcf ruff 2024-08-08 15:08:45 -04:00
Mary Hipp
6461f4758d lint fix 2024-08-08 15:07:58 -04:00
Mary Hipp
3189ab6863 get dynamic prompts working 2024-08-08 15:07:23 -04:00
Mary Hipp
3f9a674d4b seed default presets and handle them in UI 2024-08-08 15:02:41 -04:00
Mary Hipp
587f59b25b focus on prompt textarea when exiting view mode by clicking 2024-08-08 14:38:50 -04:00
Mary Hipp
4952eada87 ruff format 2024-08-08 14:22:40 -04:00
Mary Hipp
581029ebaa ruff 2024-08-08 14:21:37 -04:00
Mary Hipp
42d68780de lint 2024-08-08 14:19:33 -04:00
Mary Hipp
28032a2f80 more cleanup 2024-08-08 14:18:05 -04:00
Mary Hipp
e381e021e9 knip lint 2024-08-08 14:00:17 -04:00
Mary Hipp
641af64f93 regnerate schema 2024-08-08 13:58:25 -04:00
Mary Hipp
a7b83c8b5b Merge remote-tracking branch 'origin/main' into maryhipp/style-presets 2024-08-08 13:56:59 -04:00
Mary Hipp
4cc41e0188 translations and lint fix 2024-08-08 13:56:37 -04:00
Mary Hipp
442fc02429 resize images to 100x100 for style preset images 2024-08-08 12:56:55 -04:00
Mary Hipp
9a4d075074 fix path for style_preset_images, fix png type when converting blobs to files, built view mode components 2024-08-08 12:31:20 -04:00
Sergey Borisov
17ff8196cb Remove tmp code 2024-08-07 22:06:05 -04:00
Sergey Borisov
68f993998a Add support for norm layer 2024-08-07 22:06:05 -04:00
Sergey Borisov
7da6120b39 Fix LoKR refactor bug 2024-08-07 22:06:05 -04:00
blessedcoolant
6cd40965c4 Depth Anything V2 (#6674)
- Updated the previous DepthAnything manual implementation to use the
`transformers` implementation instead. So we can get upstream features.
- Plugged in the DepthAnything models to be handled by Invoke's Model
Manager.
- `small_v2` model will use DepthAnythingV2. This has been added as a
new model option and is now also the default in the Linear UI.


![opera_TxRhmbFole](https://github.com/user-attachments/assets/2a25abe3-ba0b-4f97-b75a-2ce5fd6246e6)


# Merge

Review and merge.
2024-08-07 20:26:58 +05:30
Kent Keirsey
408a1d6dbb Merge branch 'main' into depth_anything_v2 2024-08-07 10:45:56 -04:00
Mary Hipp
0b0abfbe8f clean up image implementation 2024-08-07 10:36:38 -04:00
Mary Hipp
cc96dcf0ed style preset images 2024-08-07 09:58:27 -04:00
Mary Hipp
2604fd9fde a whole bunch of stuff 2024-08-06 15:31:13 -04:00
Hosted Weblate
140670d00e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Phrixus2023
70233fae5d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1321 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Alexander Eichhorn
6f457a6c4c translationBot(ui): update translation (German)
Currently translated at 65.1% (860 of 1321 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
B N
5c319f5356 translationBot(ui): update translation (German)
Currently translated at 64.8% (857 of 1321 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Riccardo Giovanetti
991a04f090 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1303 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1294 of 1312 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
psychedelicious
c39fa75113 docs(ui): add comment in useIsTooLargeToUpscale 2024-08-06 11:49:35 +10:00
psychedelicious
f7863e17ce docs(ui): add docstring for maxUpscaleDimension 2024-08-06 11:49:35 +10:00
psychedelicious
7c526390ed fix(ui): compare upscaledPixels vs square of max dimension 2024-08-06 11:49:35 +10:00
Mary Hipp
2cff20f87a update translations, change config value to be dimension instead of total pixels 2024-08-06 11:49:35 +10:00
Mary Hipp
90ec757802 lint 2024-08-06 11:49:35 +10:00
Mary Hipp
4b85dfcefe (ui): restore optioanl limit on upcsale output resolution 2024-08-06 11:49:35 +10:00
Mary Hipp
21deefdc41 (ui): add image resolution badge to initial upscale image 2024-08-06 11:49:35 +10:00
Mary Hipp
857d74bbfe wip apply and calculate prompt with interpolation 2024-08-05 19:11:48 -04:00
Mary Hipp
fd7a635777 (ui) the most basic crud ui: view list of presets, create a new preset, edit/delete existing presets 2024-08-05 15:48:23 -04:00
Mary Hipp
af9110e964 fix prompt concat logic 2024-08-05 13:42:28 -04:00
Mary Hipp
a61209206b remove custom SDXL prompts component 2024-08-05 13:40:46 -04:00
Mary Hipp
e05cc62e5f add style presets API layer to UI 2024-08-05 13:37:07 -04:00
psychedelicious
4d4f921a4e build: exclude matplotlib 3.9.1
There was a problem w/ this release on windows and the builds were pulled from pypi. When installing invoke on windows, pip attempts to build from source, but most (all?) systems won't have the prerequisites for this and installs fail.

This also affects GH actions.

The simple fix is to exclude version 3.9.1 from our deps.

For more information, see https://github.com/matplotlib/matplotlib/issues/28551
2024-08-05 08:38:44 +10:00
psychedelicious
98db8f395b feat(app): clean up DiskImageStorage types 2024-08-04 09:43:20 +10:00
psychedelicious
f465a956a3 feat(ui): remove "images can be restored" messages 2024-08-04 09:43:20 +10:00
psychedelicious
9edb02d7ef build: remove send2trash dependency 2024-08-04 09:43:20 +10:00
psychedelicious
6c4cf58a31 feat(app): delete model_images instead of using send2trash 2024-08-04 09:43:20 +10:00
psychedelicious
08993c0d29 feat(app): delete images instead of using send2trash
Closes #6709
2024-08-04 09:43:20 +10:00
blessedcoolant
4f8a4b0f22 Merge branch 'main' into depth_anything_v2 2024-08-03 00:38:57 +05:30
blessedcoolant
a743f3c9b5 fix: implement model to func for depth anything 2024-08-03 00:37:17 +05:30
Mary Hipp
217fe40d99 feat(api): add style_presets router, make sure all CRUD is working, add is_default 2024-08-02 12:29:54 -04:00
Mary Hipp
b76bf50b93 feat(db,api): create new table for style presets, build out record storage service for style presets 2024-08-01 22:20:11 -04:00
Mary Hipp
571ba87e13 fix(ui): include upscale metadata for SDXL multidiffusion 2024-08-01 21:30:42 -04:00
Ryan Dick
f27b6e2b44 Add Grounded SAM support (text prompt image segmentation) (#6701)
## Summary

This PR enables Grounded SAM workflows
(https://arxiv.org/pdf/2401.14159) via the following:
- `GroundingDinoInvocation` for running a Grounding DINO model.
- `SegmentAnythingModelInvocation` for running a SAM model.
- `MaskTensorToImageInvocation` for convenient visualization.

Other notes:
- Uses the transformers implementation of Grounding DINO and SAM.
- The new models are treated as 'utility models' meaning that they are
not visible in the Models tab, and are downloaded automatically the
first time that they are used.

<img width="874" alt="image"
src="https://github.com/user-attachments/assets/1cbaa97d-0e27-4943-86b1-dc7327ba8675">

## Example

Input image

![be10ec0c-20a8-4ac7-840e-d1a05fffdb6a](https://github.com/user-attachments/assets/bf21572c-635d-4703-b4ab-7aba658a9671)

Prompt: "wheels", all other configs default
Result:

![2221c44e-64e6-4b18-b4cb-610514b7a554](https://github.com/user-attachments/assets/344b91f4-7f4a-4b70-8e2e-3b4a0e55176d)

## Related Issues / Discussions

Thanks to @blessedcoolant for the initial draft here:
https://github.com/invoke-ai/InvokeAI/pull/6678

## QA Instructions

Manual tests:
- [ ] Test that default settings work well.
- [ ] Test with / without apply_polygon_refinement
- [ ] Test mask_filter options
- [ ] Test detection_threshold values
- [ ] Test RGB input image
- [ ] Test RGBA input image
- [ ] Test grayscale input image
- [ ] Smoke test that an empty mask is returned when 0 objects are
detected
- [ ] Test on CPU
- [ ] Test on MPS (Works on Mac OS, but had to force both models to run
on CPU instead of MPS)

Performance:
- Peak GPU memory utilization with both Grounding DINO and SAM models
loaded is ~4.5GB. (The models do not need to be loaded at the same time,
so could be offloaded by the MM if needed.)
- On an RTX4090, with the models already cached, node execution takes
~0.6 secs.
- On my CPU, with the models cached, node execution takes ~10secs.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-08-01 20:40:18 +02:00
Ryan Dick
981475a624 Merge branch 'main' into ryan/grounded-sam 2024-08-01 20:30:35 +02:00
Ryan Dick
27ac61a4fb Expose all model options in the GroundingDinoInvocation and the SegmentAnythingInvocation. 2024-08-01 14:23:32 -04:00
Ryan Dick
675ffc2757 Remove BoundingBoxInvocation field name overrides. 2024-08-01 14:05:44 -04:00
Ryan Dick
44b21f10f1 Add a pydantic model_validator to BoundingBoxField to check the validity of the coords. 2024-08-01 14:00:57 -04:00
Ryan Dick
c6d49e8b1f Shorten SegmentAnythingInvocation and GroundingDinoInvocatino docstrings, since they are used as the invocation descriptions in the UI. 2024-08-01 10:17:42 -04:00
Ryan Dick
e6a512aa86 (minor) Tweak order of mask operations. 2024-08-01 10:12:24 -04:00
Ryan Dick
c3a6a6fb22 Rename SegmentAnythingModelInvocation -> SegmentAnythingInvocation. 2024-08-01 10:00:36 -04:00
Ryan Dick
b9dc3460ba Rename SegmentAnythingModel -> SegmentAnythingPipeline. 2024-08-01 09:57:47 -04:00
Ryan Dick
63581ec980 (minor) Add None check to fix static type checking error. 2024-08-01 09:51:53 -04:00
chainchompa
08b1feeed7 add base prop for destination to direct users to different tabs on initial load (#6706)
## Summary
- we want a way to load the studio while being directed to a specific
tab, introduced a destination prop to achieve that
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 19:25:36 -04:00
blessedcoolant
f5cfdcf32d feat: Add BoundingBox Primitive Node 2024-08-01 04:09:08 +05:30
chainchompa
e78fb428f0 simplify destination prop handling 2024-07-31 18:06:22 -04:00
chainchompa
31e270e32c add base prop for destination to direct users to different tabs 2024-07-31 17:20:51 -04:00
Ryan Dick
4ce64b69cb Modular backend - LoRA/LyCORIS (#6667)
## Summary

Code for lora patching from #6577.
Additionally made it the way, that lora can patch not only `weight`, but
also `bias`, because saw some loras which doing it.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Replace old lora patcher with new after review done.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 21:31:31 +02:00
Ryan Dick
5a9173f766 Merge branch 'main' into stalker-modular_lora 2024-07-31 15:13:22 -04:00
Ryan Dick
0bb7ed44f6 Add some docs to OriginalWeightsStorage and fix type hints. 2024-07-31 15:08:24 -04:00
blessedcoolant
332bc9da5b fix: Update depth anything node default to v2 2024-07-31 23:52:29 +05:30
blessedcoolant
08def3da95 fix: Update canvas depth anything processor default to v2 2024-07-31 23:50:13 +05:30
blessedcoolant
daf899f9c4 fix: Move the manual image resizing out of the depth anything pipeline 2024-07-31 23:38:12 +05:30
blessedcoolant
13fb2d1f49 fix: Add Depth Anything V2 as a new option
It is also now the default in the UI replacing Depth Anything V1 small
2024-07-31 23:29:43 +05:30
blessedcoolant
95dde802ea fix: assert the return depth map to be a PIL image 2024-07-31 23:22:01 +05:30
blessedcoolant
b4cf78a95d fix: make DA Pipeline a subclass of RawModel 2024-07-31 21:14:49 +05:30
blessedcoolant
94d64b8a78 Fix gradient mask values range (#6688)
## Summary

Gradient mask node outputs mask tensor with values in range [-1, 1],
which unexpected range for mask.
It handled in denoise node the way it translates to [0, 2] mask, which
looks even more wrongly)
From discussion with @dunkeroni I understand him as he thought that
negative values will be treated same as 0, so clamping values not change
intended node logic.

## Related Issues / Discussions

#6643 

## QA Instructions

\-

## Merge Plan

\-

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:37:32 +05:30
blessedcoolant
fa3c0c81b3 Merge branch 'main' into stalker7779/fix_gradient_mask 2024-07-31 06:30:44 +05:30
blessedcoolant
66547b99c1 Add more karras schedulers (#6695)
## Summary

Add karras variants of `deis`, `unipc`, `kdpm2` and `kdpm_2_a`
schedulers.
Also added `dpmpp_3` schedulers, but `dpmpp_3s` currently bugged, so
added only 3m:
https://github.com/huggingface/diffusers/issues/9007

## Related Issues / Discussions

\-

## QA Instructions

\-

## Merge Plan

~@psychedelicious We need to decide what to do with schedulers order, as
it looks a bit broken:~

![image](https://github.com/user-attachments/assets/e41674af-d87c-4432-8014-c90bd86965a6)

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:09:26 +05:30
blessedcoolant
328e58be4c Merge branch 'main' into stalker7779/new_karras_schedulers 2024-07-31 05:56:13 +05:30
blessedcoolant
18f89ed5ed fix: Make DepthAnything work with Invoke's Model Management 2024-07-31 03:57:54 +05:30
blessedcoolant
f170697ebe Merge branch 'main' into depth_anything_v2 2024-07-31 00:53:32 +05:30
blessedcoolant
556c6a1d84 fix: Update DepthAnything to use the transformers implementation 2024-07-31 00:51:55 +05:30
Sergey Borisov
cf996472b9 Suggested changes
Co-Authored-By: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-07-30 04:50:56 +03:00
Sergey Borisov
156d14c349 Run api regen 2024-07-30 04:05:21 +03:00
Sergey Borisov
86f705bf48 Optimize weights handling 2024-07-30 03:39:01 +03:00
Sergey Borisov
1fd9631f2d Comments fix
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:39:50 +03:00
Sergey Borisov
2227a2357f Suggested changes + simplify weights logic in patching
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:34:37 +03:00
Sergey Borisov
58e7ab157d Ruff format 2024-07-29 22:59:17 +03:00
Sergey Borisov
8d16fa6a49 Remove dpmpp_3s schedulers as it bugged now 2024-07-29 22:55:45 +03:00
Sergey Borisov
55e810efa3 Add dpmpp_3 schedulers 2024-07-29 22:52:15 +03:00
chainchompa
2755316021 update delete board modal to be more descriptive (#6690)
## Summary

<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-29 13:43:17 -04:00
chainchompa
6525f18610 Merge branch 'main' into chainchompa/board-delete-info 2024-07-29 12:52:36 -04:00
chainchompa
ffca792d5b edited copy for deleted boards message 2024-07-29 09:46:08 -04:00
Sergey Borisov
86a92bb6b5 Add more karras schedulers 2024-07-29 15:14:34 +03:00
Sergey Borisov
8500bac3ca Use logger for warning 2024-07-28 22:51:52 +03:00
Sergey Borisov
9e582563eb Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-27 04:25:15 +03:00
Sergey Borisov
faa88f72bf Make lora as separate extensions 2024-07-27 02:39:53 +03:00
chainchompa
0d69a31df0 Merge branch 'main' into chainchompa/board-delete-info 2024-07-26 14:03:18 -04:00
chainchompa
eb257d2d28 update delete board modal to be more descriptive 2024-07-26 13:34:25 -04:00
Sergey Borisov
eef88d1f83 Update gradient mask node version 2024-07-26 19:33:41 +03:00
Sergey Borisov
78f6850fc0 Fix gradient mask values range 2024-07-26 19:28:00 +03:00
blessedcoolant
e5d9ca013e fix: use v1 models for large and base versions 2024-07-25 17:24:12 +05:30
blessedcoolant
4166c756ce wip: depth_anything_v2 init lint fixes 2024-07-25 14:41:22 +05:30
blessedcoolant
4f0dfbd34d wip: depth_anything_v2 initial implementation 2024-07-25 13:53:06 +05:30
Sergey Borisov
46c632e7cc Change layer detection keys according to LyCORIS repository 2024-07-25 02:10:47 +03:00
Sergey Borisov
653f63ae71 Add layer keys check 2024-07-25 02:03:08 +03:00
Sergey Borisov
8a9e2f57a4 Handle bias in full/diff lora layer 2024-07-25 02:02:37 +03:00
Sergey Borisov
31949ed2f2 Refactor code a bit 2024-07-25 02:00:30 +03:00
Sergey Borisov
0ccb304b8b Ruff format 2024-07-24 16:01:29 +03:00
Sergey Borisov
ab0bfa709a Handle loras in modular denoise 2024-07-24 05:07:29 +03:00
1027 changed files with 55569 additions and 51312 deletions

View File

@@ -13,6 +13,12 @@ on:
tags:
- 'v*.*.*'
workflow_dispatch:
inputs:
push-to-registry:
description: Push the built image to the container registry
required: false
type: boolean
default: false
permissions:
contents: write
@@ -50,16 +56,15 @@ jobs:
df -h
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v4
uses: docker/metadata-action@v5
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
images: |
ghcr.io/${{ github.repository }}
${{ env.DOCKERHUB_REPOSITORY }}
tags: |
type=ref,event=branch
type=ref,event=tag
@@ -72,49 +77,33 @@ jobs:
suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
uses: docker/setup-buildx-action@v3
with:
platforms: ${{ env.PLATFORMS }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# - name: Login to Docker Hub
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
# uses: docker/login-action@v2
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v4
uses: docker/build-push-action@v6
with:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# - name: Docker Hub Description
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
# uses: peter-evans/dockerhub-description@v3
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
# short-description: ${{ github.event.repository.description }}

View File

@@ -62,7 +62,7 @@ jobs:
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff
run: pip install ruff==0.6.0
shell: bash
- name: ruff check

View File

@@ -60,7 +60,7 @@ jobs:
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
os: macOS-14
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022

View File

@@ -1,20 +1,22 @@
# Invoke in Docker
- Ensure that Docker can use the GPU on your system
- This documentation assumes Linux, but should work similarly under Windows with WSL2
First things first:
- Ensure that Docker can use your [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] GPU.
- This document assumes a Linux system, but should work similarly under Windows with WSL2.
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
## Quickstart :lightning:
## Quickstart
No `docker compose`, no persistence, just a simple one-liner using the official images:
No `docker compose`, no persistence, single command, using the official images:
**CUDA:**
**CUDA (NVIDIA GPU):**
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm:**
**ROCm (AMD GPU):**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
@@ -22,12 +24,20 @@ docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invok
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
> [!TIP]
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
### Data persistence
To persist your generated images and downloaded models outside of the container, add a `--volume/-v` flag to the above command, e.g.:
```bash
docker run --volume /some/local/path:/invokeai {...etc...}
```
`/some/local/path/invokeai` will contain all your data.
It can *usually* be reused between different installs of Invoke. Tread with caution and read the release notes!
## Customize the container
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
The included `run.sh` script is a convenience wrapper around `docker compose`. It can be helpful for passing additional build arguments to `docker compose`. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
@@ -38,11 +48,14 @@ cp .env.sample .env
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
>[!TIP]
>When using the `run.sh` script, the container will continue running after Ctrl+C. To shut it down, use the `docker compose down` command.
## Docker setup in detail
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
1. Ensure buildkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
3. Ensure docker daemon is able to access the GPU.
@@ -98,25 +111,7 @@ GPU_DRIVER=cuda
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even More Customizing!
---
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```yaml
command:
- invokeai-configure
- --yes
```
Or install models:
```yaml
command:
- invokeai-model-install
```
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html

View File

@@ -196,6 +196,22 @@ tips to reduce the problem:
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Checkpoint Models Load Slowly or Use Too Much RAM
The difference between diffusers models (a folder containing multiple
subfolders) and checkpoint models (a file ending with .safetensors or
.ckpt) is that InvokeAI is able to load diffusers models into memory
incrementally, while checkpoint models must be loaded all at
once. With very large models, or systems with limited RAM, you may
experience slowdowns and other memory-related issues when loading
checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.
## Memory Leak (Linux)

View File

@@ -17,7 +17,7 @@
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
scriptdir=$(dirname $(readlink -f "$0"))
cd "$scriptdir"
. .venv/bin/activate

View File

@@ -1,5 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from logging import Logger
import torch
@@ -31,6 +32,8 @@ from invokeai.app.services.session_processor.session_processor_default import (
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -63,7 +66,12 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
def initialize(
config: InvokeAIAppConfig,
event_handler_id: int,
loop: asyncio.AbstractEventLoop,
logger: Logger = logger,
) -> None:
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
@@ -74,6 +82,7 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -84,7 +93,7 @@ class ApiDependencies:
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
events = FastAPIEventService(event_handler_id, loop=loop)
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
@@ -109,6 +118,8 @@ class ApiDependencies:
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
services = InvocationServices(
board_image_records=board_image_records,
@@ -134,6 +145,8 @@ class ApiDependencies:
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -218,9 +218,8 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.api_route(
@images_router.get(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@@ -231,6 +230,18 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@@ -242,6 +253,7 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@@ -3,8 +3,10 @@
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from enum import Enum
from tempfile import TemporaryDirectory
from typing import List, Optional, Type
@@ -17,6 +19,7 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.config import get_config
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -31,6 +34,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
@@ -50,6 +54,13 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
class CacheType(str, Enum):
"""Cache type - one of vram or ram."""
RAM = "RAM"
VRAM = "VRAM"
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
"""Add a cover image URL to a model configuration."""
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
@@ -797,3 +808,83 @@ async def get_starter_models() -> list[StarterModel]:
model.dependencies = missing_deps
return starter_models
@model_manager_router.get(
"/model_cache",
operation_id="get_cache_size",
response_model=float,
summary="Get maximum size of model manager RAM or VRAM cache.",
)
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
"""Return the current RAM or VRAM cache size setting (in GB)."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
value = 0.0
if cache_type == CacheType.RAM:
value = cache.max_cache_size
elif cache_type == CacheType.VRAM:
value = cache.max_vram_cache_size
return value
@model_manager_router.put(
"/model_cache",
operation_id="set_cache_size",
response_model=float,
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
)
async def set_cache_size(
value: float = Query(description="The new value for the maximum cache size"),
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
) -> float:
"""Set the current RAM or VRAM cache size setting (in GB). ."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
app_config = get_config()
# Record initial state.
vram_old = app_config.vram
ram_old = app_config.ram
# Prepare target state.
vram_new = vram_old
ram_new = ram_old
if cache_type == CacheType.RAM:
ram_new = value
elif cache_type == CacheType.VRAM:
vram_new = value
else:
raise ValueError(f"Unexpected {cache_type=}.")
config_path = app_config.config_file_path
new_config_path = config_path.with_suffix(".yaml.new")
try:
# Try to apply the target state.
cache.max_vram_cache_size = vram_new
cache.max_cache_size = ram_new
app_config.ram = ram_new
app_config.vram = vram_new
if persist:
app_config.write_file(new_config_path)
shutil.move(new_config_path, config_path)
except Exception as e:
# If there was a failure, restore the initial state.
cache.max_cache_size = ram_old
cache.max_vram_cache_size = vram_old
app_config.ram = ram_old
app_config.vram = vram_old
raise RuntimeError("Failed to update cache size") from e
return value
@model_manager_router.get(
"/stats",
operation_id="get_stats",
response_model=Optional[CacheStats],
summary="Get model manager RAM cache performance statistics.",
)
async def get_stats() -> Optional[CacheStats]:
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats

View File

@@ -11,6 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
ClearResult,
EnqueueBatchResult,
PruneResult,
@@ -105,6 +106,19 @@ async def cancel_by_batch_ids(
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
@session_queue_router.put(
"/{queue_id}/cancel_by_origin",
operation_id="cancel_by_origin",
responses={200: {"model": CancelByBatchIDsResult}},
)
async def cancel_by_origin(
queue_id: str = Path(description="The queue id to perform this operation on"),
origin: str = Query(description="The origin to cancel all queue items for"),
) -> CancelByOriginResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.cancel_by_origin(queue_id=queue_id, origin=origin)
@session_queue_router.put(
"/{queue_id}/clear",
operation_id="clear",

View File

@@ -0,0 +1,274 @@
import csv
import io
import json
import traceback
from typing import Optional
import pydantic
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
from invokeai.app.services.style_preset_records.style_preset_records_common import (
InvalidPresetImportDataError,
PresetData,
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordWithImage,
StylePresetWithoutId,
UnsupportedFileTypeError,
parse_presets_from_file,
)
class StylePresetFormData(BaseModel):
name: str = Field(description="Preset name")
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
type: PresetType = Field(description="Preset type")
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
@style_presets_router.get(
"/i/{style_preset_id}",
operation_id="get_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def get_style_preset(
style_preset_id: str = Path(description="The style preset to get"),
) -> StylePresetRecordWithImage:
"""Gets a style preset"""
try:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
except StylePresetNotFoundError:
raise HTTPException(status_code=404, detail="Style preset not found")
@style_presets_router.patch(
"/i/{style_preset_id}",
operation_id="update_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def update_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
style_preset_id: str = Path(description="The id of the style preset to update"),
data: str = Form(description="The data of the style preset to update"),
) -> StylePresetRecordWithImage:
"""Updates a style preset"""
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
else:
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
changes = StylePresetChanges(name=name, preset_data=preset_data, type=type)
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
style_preset_id=style_preset_id, changes=changes
)
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
@style_presets_router.delete(
"/i/{style_preset_id}",
operation_id="delete_style_preset",
)
async def delete_style_preset(
style_preset_id: str = Path(description="The style preset to delete"),
) -> None:
"""Deletes a style preset"""
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
@style_presets_router.post(
"/",
operation_id="create_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def create_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
data: str = Form(description="The data of the style preset to create"),
) -> StylePresetRecordWithImage:
"""Creates a style preset"""
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
@style_presets_router.get(
"/",
operation_id="list_style_presets",
responses={
200: {"model": list[StylePresetRecordWithImage]},
},
)
async def list_style_presets() -> list[StylePresetRecordWithImage]:
"""Gets a page of style presets"""
style_presets_with_image: list[StylePresetRecordWithImage] = []
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
for preset in style_presets:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
style_presets_with_image.append(style_preset_with_image)
return style_presets_with_image
@style_presets_router.get(
"/i/{style_preset_id}/image",
operation_id="get_style_preset_image",
responses={
200: {
"description": "The style preset image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The style preset image could not be found"},
},
status_code=200,
)
async def get_style_preset_image(
style_preset_id: str = Path(description="The id of the style preset image to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
response = FileResponse(
path,
media_type="image/png",
filename=style_preset_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@style_presets_router.get(
"/export",
operation_id="export_style_presets",
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
status_code=200,
)
async def export_style_presets():
# Create an in-memory stream to store the CSV data
output = io.StringIO()
writer = csv.writer(output)
# Write the header
writer.writerow(["name", "prompt", "negative_prompt"])
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
for preset in style_presets:
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
csv_data = output.getvalue()
output.close()
return Response(
content=csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
)
@style_presets_router.post(
"/import",
operation_id="import_style_presets",
)
async def import_style_presets(file: UploadFile = File(description="The file to import")):
try:
style_presets = await parse_presets_from_file(file)
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
except InvalidPresetImportDataError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=400, detail=str(e))
except UnsupportedFileTypeError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail=str(e))

View File

@@ -30,6 +30,7 @@ from invokeai.app.api.routers import (
images,
model_manager,
session_queue,
style_presets,
utilities,
workflows,
)
@@ -55,11 +56,13 @@ mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -106,6 +109,7 @@ app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -184,8 +188,6 @@ def invoke_api() -> None:
check_cudnn(logger)
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app=app,
host=app_config.host,

View File

@@ -20,7 +20,6 @@ from typing import (
Type,
TypeVar,
Union,
cast,
)
import semver
@@ -80,7 +79,7 @@ class UIConfigBase(BaseModel):
version: str = Field(
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
node_pack: str = Field(description="The node pack that this node belongs to, will be 'invokeai' for built-in nodes")
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
model_config = ConfigDict(
@@ -230,18 +229,16 @@ class BaseInvocation(ABC, BaseModel):
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
if uiconfig is not None:
if uiconfig.title is not None:
schema["title"] = uiconfig.title
if uiconfig.tags is not None:
schema["tags"] = uiconfig.tags
if uiconfig.category is not None:
schema["category"] = uiconfig.category
if uiconfig.node_pack is not None:
schema["node_pack"] = uiconfig.node_pack
schema["classification"] = uiconfig.classification
schema["version"] = uiconfig.version
if title := model_class.UIConfig.title:
schema["title"] = title
if tags := model_class.UIConfig.tags:
schema["tags"] = tags
if category := model_class.UIConfig.category:
schema["category"] = category
if node_pack := model_class.UIConfig.node_pack:
schema["node_pack"] = node_pack
schema["classification"] = model_class.UIConfig.classification
schema["version"] = model_class.UIConfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
schema["class"] = "invocation"
@@ -312,7 +309,7 @@ class BaseInvocation(ABC, BaseModel):
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
UIConfig: ClassVar[Type[UIConfigBase]]
UIConfig: ClassVar[UIConfigBase]
model_config = ConfigDict(
protected_namespaces=(),
@@ -441,30 +438,25 @@ def invocation(
validate_fields(cls.model_fields, invocation_type)
# Add OpenAPI schema extras
uiconfig_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconfig_name:
cls.UIConfig = type(uiconfig_name, (UIConfigBase,), {})
cls.UIConfig.title = title
cls.UIConfig.tags = tags
cls.UIConfig.category = category
cls.UIConfig.classification = classification
# Grab the node pack's name from the module name, if it's a custom node
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
if is_custom_node:
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
else:
cls.UIConfig.node_pack = None
uiconfig: dict[str, Any] = {}
uiconfig["title"] = title
uiconfig["tags"] = tags
uiconfig["category"] = category
uiconfig["classification"] = classification
# The node pack is the module name - will be "invokeai" for built-in nodes
uiconfig["node_pack"] = cls.__module__.split(".")[0]
if version is not None:
try:
semver.Version.parse(version)
except ValueError as e:
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
cls.UIConfig.version = version
uiconfig["version"] = version
else:
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
cls.UIConfig.version = "1.0.0"
uiconfig["version"] = "1.0.0"
cls.UIConfig = UIConfigBase(**uiconfig)
if use_cache is not None:
cls.model_fields["use_cache"].default = use_cache

View File

@@ -80,12 +80,12 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
@@ -175,13 +175,13 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),

View File

@@ -21,6 +21,8 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -44,13 +46,12 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@@ -592,7 +593,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
@@ -600,28 +608,33 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.2",
version="1.1.3",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
default="small_v2", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
@invocation(

View File

@@ -39,7 +39,7 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
version="1.2.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@@ -93,6 +93,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
blur_tensor[blur_tensor < 0] = 0.0
threshold = 1 - self.minimum_denoise

View File

@@ -62,6 +62,7 @@ from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetEx
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
@@ -184,7 +185,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
ui_order=8,
)
@@ -845,6 +846,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
if self.unet.freeu_config:
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
### lora
if self.unet.loras:
for lora_field in self.unet.loras:
ext_manager.add_extension(
LoRAExt(
node_context=context,
model_id=lora_field.lora,
weight=lora_field.weight,
)
)
### seamless
if self.unet.seamless_axes:
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
@@ -964,14 +975,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet),
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
@@ -40,14 +40,18 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
FluxVAEModel = "FluxVAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
@@ -125,13 +129,17 @@ class FieldDescriptions:
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
@@ -173,7 +181,7 @@ class FieldDescriptions:
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
denoise_mask = "A mask of the region to apply the denoising process to."
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
@@ -231,6 +239,12 @@ class ColorField(BaseModel):
return (self.r, self.g, self.b, self.a)
class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
@@ -258,6 +272,14 @@ class BoundingBoxField(BaseModel):
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
class MetadataField(RootModel[dict[str, Any]]):
"""

View File

@@ -0,0 +1,249 @@
from typing import Callable, Optional
import torch
import torchvision.transforms as tv_transforms
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling_utils import (
clip_timestep_schedule,
generate_img_ids,
get_noise,
get_schedule,
pack,
unpack,
)
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_denoise",
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a FLUX transformer model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
# Prepare input noise.
noise = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=image_seq_len,
shift=not is_schnell,
)
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule(timesteps, self.denoising_start, self.denoising_end)
# Prepare input latent image.
if init_latents is not None:
# If init_latents is provided, we are doing image-to-image.
if is_schnell:
context.logger.warning(
"Running image-to-image with a FLUX schnell model. This is not recommended. The results are likely "
"to be poor. Consider using a FLUX dev model instead."
)
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
x = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return x
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, h, w = x.shape
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
with transformer_info as transformer:
assert isinstance(transformer, Flux)
x = denoise(
model=transformer,
img=x,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
inpaint_extension=inpaint_extension,
)
x = unpack(x.float(), self.height, self.width)
return x
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
- Expands mask to the same shape as latents so that they line up after 'packing'
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. In 'unpacked' format. Used to determine the target shape,
device, and dtype for the inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
# Expand the inpaint mask to the same shape as `latents` so that when we 'pack' `mask` it lines up with
# `latents`.
return mask.expand_as(latents)
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback

View File

@@ -0,0 +1,92 @@
from typing import Literal
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@invocation(
"flux_text_encoder",
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a flux image."""
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
# Note: The T5 and CLIP encoding are done in separate functions to ensure that all model references are locally
# scoped. This ensures that the T5 model can be freed and gc'd before loading the CLIP model (if necessary).
t5_embeddings = self._t5_encode(context)
clip_embeddings = self._clip_encode(context)
conditioning_data = ConditioningFieldData(
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
prompt_embeds = t5_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
prompt = [self.prompt]
with (
clip_text_encoder_info as clip_text_encoder,
clip_tokenizer_info as clip_tokenizer,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return pooled_prompt_embeds

View File

@@ -0,0 +1,60 @@
import torch
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_decode",
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.0",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
image = self._vae_decode(vae_info=vae_info, latents=latents)
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,67 @@
import einops
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_encode",
title="FLUX Image to Latents",
tags=["latents", "image", "vae", "i2l", "flux"],
category="latents",
version="1.0.0",
)
class FluxVaeEncodeInvocation(BaseInvocation):
"""Encodes an image into latents."""
image: ImageField = InputField(
description="The image to encode.",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
# TODO(ryand): Expose seed parameter at the invocation level.
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
# should be used for VAE encode sampling.
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
image_tensor = image_tensor.to(
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
latents = vae.encode(image_tensor, sample=True, generator=generator)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -1,4 +1,5 @@
from pathlib import Path
from typing import Literal
import torch
from PIL import Image
@@ -12,7 +13,11 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
GROUNDING_DINO_MODEL_ID = "IDEA-Research/grounding-dino-tiny"
GroundingDinoModelKey = Literal["grounding-dino-tiny", "grounding-dino-base"]
GROUNDING_DINO_MODEL_IDS: dict[GroundingDinoModelKey, str] = {
"grounding-dino-tiny": "IDEA-Research/grounding-dino-tiny",
"grounding-dino-base": "IDEA-Research/grounding-dino-base",
}
@invocation(
@@ -23,14 +28,14 @@ GROUNDING_DINO_MODEL_ID = "IDEA-Research/grounding-dino-tiny"
version="1.0.0",
)
class GroundingDinoInvocation(BaseInvocation):
"""Runs a Grounding DINO model (https://arxiv.org/pdf/2303.05499). Performs zero-shot bounding-box object detection
from a text prompt.
"""Runs a Grounding DINO model. Performs zero-shot bounding-box object detection from a text prompt."""
Reference:
- https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
- https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
"""
# Reference:
# - https://arxiv.org/pdf/2303.05499
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: GroundingDinoModelKey = InputField(description="The Grounding DINO model to use.")
prompt: str = InputField(description="The prompt describing the object to segment.")
image: ImageField = InputField(description="The image to segment.")
detection_threshold: float = InputField(
@@ -89,7 +94,7 @@ class GroundingDinoInvocation(BaseInvocation):
labels = [label if label.endswith(".") else label + "." for label in labels]
with context.models.load_remote_model(
source=GROUNDING_DINO_MODEL_ID, loader=GroundingDinoInvocation._load_grounding_dino
source=GROUNDING_DINO_MODEL_IDS[self.model], loader=GroundingDinoInvocation._load_grounding_dino
) as detector:
assert isinstance(detector, GroundingDinoPipeline)
return detector.detect(image=image, candidate_labels=labels, threshold=threshold)

View File

@@ -6,13 +6,19 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
ColorField,
FieldDescriptions,
ImageField,
InputField,
OutputField,
WithBoard,
WithMetadata,
)
@@ -1007,3 +1013,62 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@invocation_output("canvas_v2_mask_and_crop_output")
class CanvasV2MaskAndCropOutput(ImageOutput):
offset_x: int = OutputField(description="The x offset of the image, after cropping")
offset_y: int = OutputField(description="The y offset of the image, after cropping")
@invocation(
"canvas_v2_mask_and_crop",
title="Canvas V2 Mask and Crop",
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Handles Canvas V2 image output masking and cropping"""
source_image: ImageField | None = InputField(
default=None,
description="The source image onto which the masked generated image is pasted. If omitted, the masked generated image is returned with transparency.",
)
generated_image: ImageField = InputField(description="The image to apply the mask to")
mask: ImageField = InputField(description="The mask to apply")
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
mask_array = numpy.array(mask)
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
dilated_mask = Image.fromarray(dilated_mask_array)
if self.mask_blur > 0:
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
return ImageOps.invert(mask.convert("L"))
def invoke(self, context: InvocationContext) -> CanvasV2MaskAndCropOutput:
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
if self.source_image:
generated_image = context.images.get_pil(self.generated_image.image_name)
source_image = context.images.get_pil(self.source_image.image_name)
source_image.paste(generated_image, (0, 0), mask)
image_dto = context.images.save(image=source_image)
else:
generated_image = context.images.get_pil(self.generated_image.image_name)
generated_image.putalpha(mask)
image_dto = context.images.save(image=generated_image)
# bbox = image.getbbox()
# image = image.crop(bbox)
return CanvasV2MaskAndCropOutput(
image=ImageField(image_name=image_dto.image_name),
offset_x=0,
offset_y=0,
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -126,7 +126,7 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
title="Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.0.0",
version="1.1.0",
)
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Convert a mask tensor to an image."""
@@ -135,11 +135,15 @@ class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Squeeze the channel dimension if it exists.
if mask.dim() == 3:
mask = mask.squeeze(0)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = mask.float().cpu().detach().numpy() * 255
mask_np = mask_np.astype(np.uint8)
mask_np = (mask.float() * 255).byte().cpu().numpy()
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)

View File

@@ -1,5 +1,5 @@
import copy
from typing import List, Optional
from typing import List, Literal, Optional
from pydantic import BaseModel, Field
@@ -13,7 +13,14 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
ModelType,
SubModelType,
)
class ModelIdentifierField(BaseModel):
@@ -60,6 +67,15 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@@ -122,6 +138,78 @@ class ModelIdentifierInvocation(BaseInvocation):
return ModelIdentifierOutput(model=self.model)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)
@invocation(
"main_model_loader",
title="Main Model",

View File

@@ -12,6 +12,7 @@ from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
ImageField,
Input,
InputField,
@@ -414,6 +415,17 @@ class MaskOutput(BaseInvocationOutput):
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("flux_conditioning_output")
class FluxConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
conditioning: FluxConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "FluxConditioningOutput":
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
@@ -485,9 +497,27 @@ class BoundingBoxOutput(BaseInvocationOutput):
class BoundingBoxCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of bounding boxes"""
collection: list[BoundingBoxField] = OutputField(
description="The output bounding boxes.",
)
collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes")
@invocation(
"bounding_box",
title="Bounding Box",
tags=["primitives", "segmentation", "collection", "bounding box"],
category="primitives",
version="1.0.0",
)
class BoundingBoxInvocation(BaseInvocation):
"""Create a bounding box manually by supplying box coordinates"""
x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex")
y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex")
x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex")
y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max)
return BoundingBoxOutput(bounding_box=bounding_box)
# endregion

View File

@@ -13,26 +13,32 @@ from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputF
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_model import SegmentAnythingModel
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
SEGMENT_ANYTHING_MODEL_ID = "facebook/sam-vit-base"
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
}
@invocation(
"segment_anything_model",
title="Segment Anything Model",
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.0.0",
)
class SegmentAnythingModelInvocation(BaseInvocation):
"""Runs a Segment Anything Model (https://arxiv.org/pdf/2304.02643).
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
Reference:
- https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
- https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
"""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
apply_polygon_refinement: bool = InputField(
@@ -75,7 +81,7 @@ class SegmentAnythingModelInvocation(BaseInvocation):
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
return SegmentAnythingModel(sam_model=sam_model, sam_processor=sam_processor)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(
self,
@@ -88,10 +94,10 @@ class SegmentAnythingModelInvocation(BaseInvocation):
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_ID, loader=SegmentAnythingModelInvocation._load_sam_model
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingModel)
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
masks = self._process_masks(masks)

View File

@@ -91,6 +91,7 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -153,6 +154,7 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -300,6 +302,11 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the models directory, resolved to an absolute path.."""
return self._resolve(self.models_dir)
@property
def style_presets_path(self) -> Path:
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""

View File

@@ -88,6 +88,8 @@ class QueueItemEventBase(QueueEventBase):
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
origin: str | None = Field(default=None, description="The origin of the queue item")
destination: str | None = Field(default=None, description="The destination of the queue item")
class InvocationEventBase(QueueItemEventBase):
@@ -95,8 +97,6 @@ class InvocationEventBase(QueueItemEventBase):
session_id: str = Field(description="The ID of the session (aka graph execution state)")
queue_id: str = Field(description="The ID of the queue")
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
invocation: AnyInvocation = Field(description="The ID of the invocation")
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
@@ -114,6 +114,8 @@ class InvocationStartedEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -147,6 +149,8 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -184,6 +188,8 @@ class InvocationCompleteEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -216,6 +222,8 @@ class InvocationErrorEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -253,6 +261,8 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
status=queue_item.status,
error_type=queue_item.error_type,
@@ -279,12 +289,14 @@ class BatchEnqueuedEvent(QueueEventBase):
description="The number of invocations initially requested to be enqueued (may be less than enqueued if queue was full)"
)
priority: int = Field(description="The priority of the batch")
origin: str | None = Field(default=None, description="The origin of the batch")
@classmethod
def build(cls, enqueue_result: EnqueueBatchResult) -> "BatchEnqueuedEvent":
return cls(
queue_id=enqueue_result.queue_id,
batch_id=enqueue_result.batch.batch_id,
origin=enqueue_result.batch.origin,
enqueued=enqueue_result.enqueued,
requested=enqueue_result.requested,
priority=enqueue_result.priority,

View File

@@ -1,46 +1,44 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import (
EventBase,
)
from invokeai.app.services.events.events_common import EventBase
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int) -> None:
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
self.event_handler_id = event_handler_id
self._queue = Queue[EventBase | None]()
self._queue = asyncio.Queue[EventBase | None]()
self._stop_event = threading.Event()
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._loop = loop
# We need to store a reference to the task so it doesn't get GC'd
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
self._background_tasks: set[asyncio.Task[None]] = set()
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._background_tasks.add(task)
task.add_done_callback(self._background_tasks.remove)
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._queue.put(None)
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
def dispatch(self, event: EventBase) -> None:
self._queue.put(event)
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = self._queue.get(block=False)
event = await self._queue.get()
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from typing import Optional, Union
from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
@@ -20,18 +19,12 @@ from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = {}
self.__cache_ids = Queue()
self.__cache: dict[Path, PILImageType] = {}
self.__cache_ids = Queue[Path]()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -103,7 +96,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
image_path.unlink()
if image_path in self.__cache:
del self.__cache[image_path]
@@ -111,7 +104,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
thumbnail_path.unlink()
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:

View File

@@ -4,6 +4,8 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
if TYPE_CHECKING:
from logging import Logger
@@ -61,6 +63,8 @@ class InvocationServices:
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -85,3 +89,5 @@ class InvocationServices:
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files

View File

@@ -2,7 +2,6 @@ from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
@@ -70,7 +69,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
path.unlink()
except Exception as e:
raise ModelImageFileDeleteException from e

View File

@@ -103,7 +103,7 @@ class HFModelSource(StringLikeSource):
if self.variant:
base += f":{self.variant or ''}"
if self.subfolder:
base += f":{self.subfolder}"
base += f"::{self.subfolder.as_posix()}"
return base

View File

@@ -783,8 +783,9 @@ class ModelInstallService(ModelInstallServiceBase):
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
path_to_remove = top / subfolder # sdxl-turbo/vae/
subfolder_rename = subfolder.name.replace("/", "_").replace("\\", "_")
path_to_add = Path(f"{top}_{subfolder_rename}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")

View File

@@ -77,6 +77,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
type: Optional[ModelType] = Field(description="Type of model", default=None)
key: Optional[str] = Field(description="Database ID for this model", default=None)
hash: Optional[str] = Field(description="hash of model file", default=None)
format: Optional[str] = Field(description="format of model file", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None

View File

@@ -6,6 +6,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -95,6 +96,11 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with matching batch IDs"""
pass
@abstractmethod
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
"""Cancels all queue items with the given batch origin"""
pass
@abstractmethod
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
"""Cancels all queue items with matching queue ID"""

View File

@@ -77,6 +77,14 @@ BatchDataCollection: TypeAlias = list[list[BatchDatum]]
class Batch(BaseModel):
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
origin: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
)
destination: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
)
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
graph: Graph = Field(description="The graph to initialize the session with")
workflow: Optional[WorkflowWithoutID] = Field(
@@ -195,6 +203,14 @@ class SessionQueueItemWithoutGraph(BaseModel):
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
priority: int = Field(default=0, description="The priority of this queue item")
batch_id: str = Field(description="The ID of the batch associated with this queue item")
origin: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
)
destination: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
)
session_id: str = Field(
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
)
@@ -294,6 +310,8 @@ class SessionQueueStatus(BaseModel):
class BatchStatus(BaseModel):
queue_id: str = Field(..., description="The ID of the queue")
batch_id: str = Field(..., description="The ID of the batch")
origin: str | None = Field(..., description="The origin of the batch")
destination: str | None = Field(..., description="The destination of the batch")
pending: int = Field(..., description="Number of queue items with status 'pending'")
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
completed: int = Field(..., description="Number of queue items with status 'complete'")
@@ -328,6 +346,12 @@ class CancelByBatchIDsResult(BaseModel):
canceled: int = Field(..., description="Number of queue items canceled")
class CancelByOriginResult(BaseModel):
"""Result of canceling by list of batch ids"""
canceled: int = Field(..., description="Number of queue items canceled")
class CancelByQueueIDResult(CancelByBatchIDsResult):
"""Result of canceling by queue id"""
@@ -433,6 +457,8 @@ class SessionQueueValueToInsert(NamedTuple):
field_values: Optional[str] # field_values json
priority: int # priority
workflow: Optional[str] # workflow json
origin: str | None
destination: str | None
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
@@ -453,6 +479,8 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
batch.origin, # origin
batch.destination, # destination
)
)
return values_to_insert

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByOriginResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -127,8 +128,8 @@ class SqliteSessionQueue(SessionQueueBase):
self.__cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow)
VALUES (?, ?, ?, ?, ?, ?, ?)
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
@@ -417,11 +418,7 @@ class SqliteSessionQueue(SessionQueueBase):
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
current_queue_item, batch_status, queue_status
)
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self.__conn.rollback()
raise
@@ -429,6 +426,46 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return CancelByBatchIDsResult(canceled=count)
def cancel_by_origin(self, queue_id: str, origin: str) -> CancelByOriginResult:
try:
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
where = """--sql
WHERE
queue_id == ?
AND origin == ?
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
"""
params = (queue_id, origin)
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
params,
)
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
{where};
""",
params,
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.origin == origin:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByOriginResult(canceled=count)
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
try:
current_queue_item = self.get_current(queue_id)
@@ -541,7 +578,9 @@ class SqliteSessionQueue(SessionQueueBase):
started_at,
session_id,
batch_id,
queue_id
queue_id,
origin,
destination
FROM session_queue
WHERE queue_id = ?
"""
@@ -621,7 +660,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*)
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
@@ -633,6 +672,8 @@ class SqliteSessionQueue(SessionQueueBase):
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
total = sum(row[1] for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
destination = result[0]["destination"] if result else None
except Exception:
self.__conn.rollback()
raise
@@ -641,6 +682,8 @@ class SqliteSessionQueue(SessionQueueBase):
return BatchStatus(
batch_id=batch_id,
origin=origin,
destination=destination,
queue_id=queue_id,
pending=counts.get("pending", 0),
in_progress=counts.get("in_progress", 0),

View File

@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.app.util.step_callback import flux_step_callback, stable_diffusion_step_callback
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
@@ -557,6 +557,24 @@ class UtilInterface(InvocationContextInterface):
is_canceled=self.is_canceled,
)
def flux_step_callback(self, intermediate_state: PipelineIntermediateState) -> None:
"""
The step callback emits a progress event with the current step, the total number of
steps, a preview image, and some other internal metadata.
This should be called after each denoising step.
Args:
intermediate_state: The intermediate state of the diffusion pipeline.
"""
flux_step_callback(
context_data=self._data,
intermediate_state=intermediate_state,
events=self._services.events,
is_canceled=self.is_canceled,
)
class InvocationContext:
"""Provides access to various services and data for the current invocation.

View File

@@ -16,6 +16,8 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_15 import build_migration_15
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -49,6 +51,8 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.register_migration(build_migration_14())
migrator.register_migration(build_migration_15())
migrator.run_migrations()
return db

View File

@@ -0,0 +1,61 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration14Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_style_presets(cursor)
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
"""Create the table used to store style presets."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS style_presets (
id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
preset_data TEXT NOT NULL,
type TEXT NOT NULL DEFAULT "user",
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS style_presets
AFTER UPDATE
ON style_presets FOR EACH ROW
BEGIN
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_14() -> Migration:
"""
Build the migration from database version 13 to 14..
This migration does the following:
- Create the table used to store style presets.
"""
migration_14 = Migration(
from_version=13,
to_version=14,
callback=Migration14Callback(),
)
return migration_14

View File

@@ -0,0 +1,34 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration15Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._add_origin_col(cursor)
def _add_origin_col(self, cursor: sqlite3.Cursor) -> None:
"""
- Adds `origin` column to the session queue table.
- Adds `destination` column to the session queue table.
"""
cursor.execute("ALTER TABLE session_queue ADD COLUMN origin TEXT;")
cursor.execute("ALTER TABLE session_queue ADD COLUMN destination TEXT;")
def build_migration_15() -> Migration:
"""
Build the migration from database version 14 to 15.
This migration does the following:
- Adds `origin` column to the session queue table.
- Adds `destination` column to the session queue table.
"""
migration_15 = Migration(
from_version=14,
to_version=15,
callback=Migration15Callback(),
)
return migration_15

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -0,0 +1,33 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class StylePresetImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, style_preset_id: str) -> PILImageType:
"""Retrieves a style preset image as PIL Image."""
pass
@abstractmethod
def get_path(self, style_preset_id: str) -> Path:
"""Gets the internal path to a style preset image."""
pass
@abstractmethod
def get_url(self, style_preset_id: str) -> str | None:
"""Gets the URL to fetch a style preset image."""
pass
@abstractmethod
def save(self, style_preset_id: str, image: PILImageType) -> None:
"""Saves a style preset image."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset image."""
pass

View File

@@ -0,0 +1,19 @@
class StylePresetImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message: str = "Style preset image file not found"):
super().__init__(message)
class StylePresetImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message: str = "Style preset image file not saved"):
super().__init__(message)
class StylePresetImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message: str = "Style preset image file not deleted"):
super().__init__(message)

View File

@@ -0,0 +1,88 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_images.style_preset_images_common import (
StylePresetImageFileDeleteException,
StylePresetImageFileNotFoundException,
StylePresetImageFileSaveException,
)
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, style_preset_images_folder: Path):
self._style_preset_images_folder = style_preset_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, style_preset_id: str) -> PILImageType:
try:
path = self.get_path(style_preset_id)
return Image.open(path)
except FileNotFoundError as e:
raise StylePresetImageFileNotFoundException from e
def save(self, style_preset_id: str, image: PILImageType) -> None:
try:
self._validate_storage_folders()
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise StylePresetImageFileSaveException from e
def get_path(self, style_preset_id: str) -> Path:
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
if style_preset.type is PresetType.Default:
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
path = default_images_dir / (style_preset.name + ".png")
else:
path = self._style_preset_images_folder / (style_preset_id + ".webp")
return path
def get_url(self, style_preset_id: str) -> str | None:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, style_preset_id: str) -> None:
try:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
raise StylePresetImageFileNotFoundException
path.unlink()
except StylePresetImageFileNotFoundException as e:
raise StylePresetImageFileNotFoundException from e
except Exception as e:
raise StylePresetImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -0,0 +1,146 @@
[
{
"name": "Photography (General)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Studio Lighting)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Landscape)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Portrait)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Black and White)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
"negative_prompt": "painting, digital art. sketch, colour+"
}
},
{
"name": "Architectural Visualization",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Concept Art (Fantasy)",
"type": "default",
"preset_data": {
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Sci-Fi)",
"type": "default",
"preset_data": {
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Character)",
"type": "default",
"preset_data": {
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Painterly)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
"negative_prompt": "photo. smooth. border. frame"
}
},
{
"name": "Environment Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
}
},
{
"name": "Interior Design (Visualization)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
"negative_prompt": "photo, distorted. sketch."
}
},
{
"name": "Product Rendering",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
}
},
{
"name": "Sketch",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
}
},
{
"name": "Line Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
}
},
{
"name": "Anime",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
}
},
{
"name": "Illustration",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
}
},
{
"name": "Vehicles",
"type": "default",
"preset_data": {
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
"negative_prompt": "sketch. digital art. greyscale. painting"
}
}
]

View File

@@ -0,0 +1,42 @@
from abc import ABC, abstractmethod
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetRecordDTO,
StylePresetWithoutId,
)
class StylePresetRecordsStorageBase(ABC):
"""Base class for style preset storage services."""
@abstractmethod
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Get style preset by id."""
pass
@abstractmethod
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
"""Creates a style preset."""
pass
@abstractmethod
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
"""Creates many style presets."""
pass
@abstractmethod
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
"""Updates a style preset."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset."""
pass
@abstractmethod
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
"""Gets many workflows."""
pass

View File

@@ -0,0 +1,139 @@
import codecs
import csv
import json
from enum import Enum
from typing import Any, Optional
import pydantic
from fastapi import UploadFile
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
from invokeai.app.util.metaenum import MetaEnum
class StylePresetNotFoundError(Exception):
"""Raised when a style preset is not found"""
class PresetData(BaseModel, extra="forbid"):
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
PresetDataValidator = TypeAdapter(PresetData)
class PresetType(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class StylePresetChanges(BaseModel, extra="forbid"):
name: Optional[str] = Field(default=None, description="The style preset's new name.")
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
type: Optional[PresetType] = Field(description="The updated type of the style preset")
class StylePresetWithoutId(BaseModel):
name: str = Field(description="The name of the style preset.")
preset_data: PresetData = Field(description="The preset data")
type: PresetType = Field(description="The type of style preset")
class StylePresetRecordDTO(StylePresetWithoutId):
id: str = Field(description="The style preset ID.")
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
return StylePresetRecordDTOValidator.validate_python(data)
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
class StylePresetRecordWithImage(StylePresetRecordDTO):
image: Optional[str] = Field(description="The path for image")
class StylePresetImportRow(BaseModel):
name: str = Field(min_length=1, description="The name of the preset.")
positive_prompt: str = Field(
default="",
description="The positive prompt for the preset.",
validation_alias=AliasChoices("positive_prompt", "prompt"),
)
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
StylePresetImportList = list[StylePresetImportRow]
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
class UnsupportedFileTypeError(ValueError):
"""Raised when an unsupported file type is encountered"""
pass
class InvalidPresetImportDataError(ValueError):
"""Raised when invalid preset import data is encountered"""
pass
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
"""Parses style presets from a file. The file must be a CSV or JSON file.
If CSV, the file must have the following columns:
- name
- prompt (or positive_prompt)
- negative_prompt
If JSON, the file must be a list of objects with the following keys:
- name
- prompt (or positive_prompt)
- negative_prompt
Args:
file (UploadFile): The file to parse.
Returns:
list[StylePresetWithoutId]: The parsed style presets.
Raises:
UnsupportedFileTypeError: If the file type is not supported.
InvalidPresetImportDataError: If the data in the file is invalid.
"""
if file.content_type not in ["text/csv", "application/json"]:
raise UnsupportedFileTypeError()
if file.content_type == "text/csv":
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
data = list(csv_reader)
else: # file.content_type == "application/json":
json_data = await file.read()
data = json.loads(json_data)
try:
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
style_presets: list[StylePresetWithoutId] = []
for imported in imported_presets:
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
style_presets.append(style_preset)
except pydantic.ValidationError as e:
if file.content_type == "text/csv":
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
else: # file.content_type == "application/json":
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
raise InvalidPresetImportDataError(msg) from e
finally:
file.file.close()
return style_presets

View File

@@ -0,0 +1,215 @@
import json
from pathlib import Path
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordDTO,
StylePresetWithoutId,
)
from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._sync_default_style_presets()
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = self._cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
self._lock.acquire()
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
self._lock.acquire()
# Change the name of a style preset
if changes.name is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET name = ?
WHERE id = ?;
""",
(changes.name, style_preset_id),
)
# Change the preset data for a style preset
if changes.preset_data is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET preset_data = ?
WHERE id = ?;
""",
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE from style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
try:
self._lock.acquire()
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
if type is not None:
self._cursor.execute(main_query, (type,))
else:
self._cursor.execute(main_query)
rows = self._cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
# Next, parse and create the default style presets
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)
for preset in presets:
style_preset = StylePresetWithoutId.model_validate(preset)
self.create(style_preset)

View File

@@ -13,3 +13,8 @@ class UrlServiceBase(ABC):
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass
@abstractmethod
def get_style_preset_image_url(self, style_preset_id: str) -> str:
"""Gets the URL for a style preset image"""
pass

View File

@@ -19,3 +19,6 @@ class LocalUrlService(UrlServiceBase):
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"
def get_style_preset_image_url(self, style_preset_id: str) -> str:
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"

View File

@@ -0,0 +1,407 @@
{
"name": "FLUX Image to Image",
"author": "InvokeAI",
"description": "A simple image-to-image workflow using a FLUX dev model. ",
"version": "1.0.4",
"contact": "",
"tags": "image2image, flux, image-to-image",
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend using FLUX dev models for image-to-image workflows. The image-to-image performance with FLUX schnell models is poor.",
"exposedFields": [
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "t5_encoder_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "clip_embed_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "vae_model"
},
{
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
"fieldName": "denoising_start"
},
{
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"fieldName": "prompt"
},
{
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
"fieldName": "num_steps"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"nodes": [
{
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
"type": "invocation",
"data": {
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
"type": "flux_vae_encode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"image": {
"name": "image",
"label": "",
"value": {
"image_name": "8a5c62aa-9335-45d2-9c71-89af9fc1f8d4.png"
}
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 732.7680166609682,
"y": -24.37398171806909
}
},
{
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
"type": "invocation",
"data": {
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
"type": "flux_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"denoise_mask": {
"name": "denoise_mask",
"label": ""
},
"denoising_start": {
"name": "denoising_start",
"label": "",
"value": 0.04
},
"denoising_end": {
"name": "denoising_end",
"label": "",
"value": 1
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_text_conditioning": {
"name": "positive_text_conditioning",
"label": ""
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"num_steps": {
"name": "num_steps",
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
"value": 30
},
"guidance": {
"name": "guidance",
"label": "",
"value": 4
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 1182.8836633018684,
"y": -251.38882958913183
}
},
{
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "invocation",
"data": {
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "flux_vae_decode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1575.5797431839133,
"y": -209.00150975507415
}
},
{
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "invocation",
"data": {
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "flux_model_loader",
"version": "1.0.4",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"model": {
"name": "model",
"label": "Model (dev variant recommended for Image-to-Image)"
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_embed_model": {
"name": "clip_embed_model",
"label": "",
"value": {
"key": "fa23a584-b623-415d-832a-21b5098ff1a1",
"hash": "blake3:17c19f0ef941c3b7609a9c94a659ca5364de0be364a91d4179f0e39ba17c3b70",
"name": "clip-vit-large-patch14",
"base": "any",
"type": "clip_embed"
}
},
"vae_model": {
"name": "vae_model",
"label": "",
"value": {
"key": "74fc82ba-c0a8-479d-a890-2126f82da758",
"hash": "blake3:ce21cb76364aa6e2421311cf4a4b5eb052a76c4f1cd207b50703d8978198a068",
"name": "FLUX.1-schnell_ae",
"base": "flux",
"type": "vae"
}
}
}
},
"position": {
"x": 328.1809894659957,
"y": -90.2241133566946
}
},
{
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "invocation",
"data": {
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "flux_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"clip": {
"name": "clip",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"t5_max_seq_len": {
"name": "t5_max_seq_len",
"label": "T5 Max Seq Len",
"value": 256
},
"prompt": {
"name": "prompt",
"label": "",
"value": "a cat wearing a birthday hat"
}
}
},
"position": {
"x": 745.8823365057267,
"y": -299.60249175851914
}
},
{
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "invocation",
"data": {
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 725.834098928012,
"y": 496.2710031089931
}
}
],
"edges": [
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bheight-ace0258f-67d7-4eee-a218-6fff27065214height",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "height",
"targetHandle": "height"
},
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bwidth-ace0258f-67d7-4eee-a218-6fff27065214width",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "width",
"targetHandle": "width"
},
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912blatents-ace0258f-67d7-4eee-a218-6fff27065214latents",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-2981a67c-480f-4237-9384-26b68dbf912bvae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "2981a67c-480f-4237-9384-26b68dbf912b",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-ace0258f-67d7-4eee-a218-6fff27065214latents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
"type": "default",
"source": "ace0258f-67d7-4eee-a218-6fff27065214",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-ace0258f-67d7-4eee-a218-6fff27065214seed",
"type": "default",
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-ace0258f-67d7-4eee-a218-6fff27065214transformer",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-ace0258f-67d7-4eee-a218-6fff27065214positive_text_conditioning",
"type": "default",
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "conditioning",
"targetHandle": "positive_text_conditioning"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "max_seq_len",
"targetHandle": "t5_max_seq_len"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "clip",
"targetHandle": "clip"
}
]
}

View File

@@ -0,0 +1,326 @@
{
"name": "FLUX Text to Image",
"author": "InvokeAI",
"description": "A simple text-to-image workflow using FLUX dev or schnell models.",
"version": "1.0.4",
"contact": "",
"tags": "text2image, flux",
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend 4 steps for FLUX schnell models and 30 steps for FLUX dev models.",
"exposedFields": [
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "t5_encoder_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "clip_embed_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "vae_model"
},
{
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"fieldName": "prompt"
},
{
"nodeId": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"fieldName": "num_steps"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"nodes": [
{
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"type": "invocation",
"data": {
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"type": "flux_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"denoise_mask": {
"name": "denoise_mask",
"label": ""
},
"denoising_start": {
"name": "denoising_start",
"label": "",
"value": 0
},
"denoising_end": {
"name": "denoising_end",
"label": "",
"value": 1
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_text_conditioning": {
"name": "positive_text_conditioning",
"label": ""
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"num_steps": {
"name": "num_steps",
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
"value": 30
},
"guidance": {
"name": "guidance",
"label": "",
"value": 4
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 1186.1868226120378,
"y": -214.9459927686657
}
},
{
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "invocation",
"data": {
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "flux_vae_decode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1575.5797431839133,
"y": -209.00150975507415
}
},
{
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "invocation",
"data": {
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "flux_model_loader",
"version": "1.0.4",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"model": {
"name": "model",
"label": ""
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_embed_model": {
"name": "clip_embed_model",
"label": ""
},
"vae_model": {
"name": "vae_model",
"label": ""
}
}
},
"position": {
"x": 381.1882713063478,
"y": -95.89663532854017
}
},
{
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "invocation",
"data": {
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "flux_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"clip": {
"name": "clip",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"t5_max_seq_len": {
"name": "t5_max_seq_len",
"label": "T5 Max Seq Len",
"value": 256
},
"prompt": {
"name": "prompt",
"label": "",
"value": "a cat"
}
}
},
"position": {
"x": 778.4899149328337,
"y": -100.36469216659502
}
},
{
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "invocation",
"data": {
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 800.9667463219505,
"y": 285.8297267547506
}
}
],
"edges": [
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-4fe24f07-f906-4f55-ab2c-9beee56ef5bdtransformer",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-4fe24f07-f906-4f55-ab2c-9beee56ef5bdpositive_text_conditioning",
"type": "default",
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "conditioning",
"targetHandle": "positive_text_conditioning"
},
{
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-4fe24f07-f906-4f55-ab2c-9beee56ef5bdseed",
"type": "default",
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-4fe24f07-f906-4f55-ab2c-9beee56ef5bdlatents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
"type": "default",
"source": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "max_seq_len",
"targetHandle": "t5_max_seq_len"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "clip",
"targetHandle": "clip"
}
]
}

View File

@@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": invocation_output_map_properties,
"properties": dict(sorted(invocation_output_map_properties.items())),
"required": invocation_output_map_required,
}

View File

@@ -38,6 +38,25 @@ SD1_5_LATENT_RGB_FACTORS = [
[-0.1307, -0.1874, -0.7445], # L4
]
FLUX_LATENT_RGB_FACTORS = [
[-0.0412, 0.0149, 0.0521],
[0.0056, 0.0291, 0.0768],
[0.0342, -0.0681, -0.0427],
[-0.0258, 0.0092, 0.0463],
[0.0863, 0.0784, 0.0547],
[-0.0017, 0.0402, 0.0158],
[0.0501, 0.1058, 0.1152],
[-0.0209, -0.0218, -0.0329],
[-0.0314, 0.0083, 0.0896],
[0.0851, 0.0665, -0.0472],
[-0.0534, 0.0238, -0.0024],
[0.0452, -0.0026, 0.0048],
[0.0892, 0.0831, 0.0881],
[-0.1117, -0.0304, -0.0789],
[0.0027, -0.0479, -0.0043],
[-0.1146, -0.0827, -0.0598],
]
def sample_to_lowres_estimated_image(
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
@@ -94,3 +113,32 @@ def stable_diffusion_step_callback(
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)
def flux_step_callback(
context_data: "InvocationContextData",
intermediate_state: PipelineIntermediateState,
events: "EventServiceBase",
is_canceled: Callable[[], bool],
) -> None:
if is_canceled():
raise CanceledException
sample = intermediate_state.latents
latent_rgb_factors = torch.tensor(FLUX_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
latent_image_perm = sample.permute(1, 2, 0).to(dtype=sample.dtype, device=sample.device)
latent_image = latent_image_perm @ latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF) # change scale from -1..1 to 0..1 # to 0..255
).to(device="cpu", dtype=torch.uint8)
image = Image.fromarray(latents_ubyte.cpu().numpy())
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
events.emit_invocation_denoise_progress(
context_data.queue_item,
context_data.invocation,
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)

View File

@@ -0,0 +1,56 @@
from typing import Callable
import torch
from tqdm import tqdm
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
def denoise(
model: Flux,
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
guidance: float,
inpaint_extension: InpaintExtension | None,
):
step = 0
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
preview_img = img - t_curr * pred
img = img + (t_prev - t_curr) * pred
if inpaint_extension is not None:
img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev)
step_callback(
PipelineIntermediateState(
step=step,
order=1,
total_steps=len(timesteps),
timestep=int(t_curr),
latents=preview_img,
),
)
step += 1
return img

View File

@@ -0,0 +1,35 @@
import torch
class InpaintExtension:
"""A class for managing inpainting with FLUX."""
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
"""Initialize InpaintExtension.
Args:
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0). In 'packed' format.
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
inpainted region with the background. In 'packed' format.
noise (torch.Tensor): The noise tensor used to noise the init_latents. In 'packed' format.
"""
assert init_latents.shape == inpaint_mask.shape == noise.shape
self._init_latents = init_latents
self._inpaint_mask = inpaint_mask
self._noise = noise
def merge_intermediate_latents_with_init_latents(
self, intermediate_latents: torch.Tensor, timestep: float
) -> torch.Tensor:
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
trajectory.
This function should be called after each denoising step.
"""
# Noise the init latents for the current timestep.
noised_init_latents = self._noise * timestep + (1.0 - timestep) * self._init_latents
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
return intermediate_latents * self._inpaint_mask + noised_init_latents * (1.0 - self._inpaint_mask)

View File

@@ -0,0 +1,32 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import torch
from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -0,0 +1,117 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img

View File

@@ -0,0 +1,324 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: list[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = torch.nn.functional.silu(h)
h = self.conv1(h)
h = self.norm2(h)
h = torch.nn.functional.silu(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = torch.nn.functional.silu(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = torch.nn.functional.silu(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __init__(self, chunk_dim: int = 1):
super().__init__()
self.chunk_dim = chunk_dim
def forward(self, z: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if sample:
std = torch.exp(0.5 * logvar)
# Unfortunately, torch.randn_like(...) does not accept a generator argument at the time of writing, so we
# have to use torch.randn(...) instead.
return mean + std * torch.randn(size=mean.size(), generator=generator, dtype=mean.dtype, device=mean.device)
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian()
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
def encode(self, x: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
"""Run VAE encoding on input tensor x.
Args:
x (Tensor): Input image tensor. Shape: (batch_size, in_channels, height, width).
sample (bool, optional): If True, sample from the encoded distribution, else, return the distribution mean.
Defaults to True.
generator (torch.Generator | None, optional): Optional random number generator for reproducibility.
Defaults to None.
Returns:
Tensor: Encoded latent tensor. Shape: (batch_size, z_channels, latent_height, latent_width).
"""
z = self.reg(self.encoder(x), sample=sample, generator=generator)
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: Tensor) -> Tensor:
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def forward(self, x: Tensor) -> Tensor:
return self.decode(self.encode(x))

View File

@@ -0,0 +1,33 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
super().__init__()
self.max_length = max_length
self.is_clip = is_clip
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
self.tokenizer = tokenizer
self.hf_module = encoder
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key]

View File

@@ -0,0 +1,253 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from invokeai.backend.flux.math import attention, rope
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

View File

@@ -0,0 +1,135 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from typing import Callable
import torch
from einops import rearrange, repeat
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def time_shift(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def _find_last_index_ge_val(timesteps: list[float], val: float, eps: float = 1e-6) -> int:
"""Find the last index in timesteps that is >= val.
We use epsilon-close equality to avoid potential floating point errors.
"""
idx = len(list(filter(lambda t: t >= (val - eps), timesteps))) - 1
assert idx >= 0
return idx
def clip_timestep_schedule(timesteps: list[float], denoising_start: float, denoising_end: float) -> list[float]:
"""Clip the timestep schedule to the denoising range.
Args:
timesteps (list[float]): The original timestep schedule: [1.0, ..., 0.0].
denoising_start (float): A value in [0, 1] specifying the start of the denoising process. E.g. a value of 0.2
would mean that the denoising process start at the last timestep in the schedule >= 0.8.
denoising_end (float): A value in [0, 1] specifying the end of the denoising process. E.g. a value of 0.8 would
mean that the denoising process end at the last timestep in the schedule >= 0.2.
Returns:
list[float]: The clipped timestep schedule.
"""
assert 0.0 <= denoising_start <= 1.0
assert 0.0 <= denoising_end <= 1.0
assert denoising_start <= denoising_end
t_start_val = 1.0 - denoising_start
t_end_val = 1.0 - denoising_end
t_start_idx = _find_last_index_ge_val(timesteps, t_start_val)
t_end_idx = _find_last_index_ge_val(timesteps, t_end_val)
clipped_timesteps = timesteps[t_start_idx : t_end_idx + 1]
return clipped_timesteps
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""Unpack flat array of patch embeddings to latent image."""
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
def pack(x: torch.Tensor) -> torch.Tensor:
"""Pack latent image to flattented array of patch embeddings."""
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
return rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""Generate tensor of image position ids.
Args:
h (int): Height of image in latent space.
w (int): Width of image in latent space.
batch_size (int): Batch size.
device (torch.device): Device.
dtype (torch.dtype): dtype.
Returns:
torch.Tensor: Image position ids.
"""
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
return img_ids

View File

@@ -0,0 +1,71 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
from typing import Dict, Literal
from invokeai.backend.flux.model import FluxParams
from invokeai.backend.flux.modules.autoencoder import AutoEncoderParams
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
max_seq_lengths: Dict[str, Literal[256, 512]] = {
"flux-dev": 512,
"flux-schnell": 256,
}
ae_params = {
"flux": AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
)
}
params = {
"flux-dev": FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
"flux-schnell": FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
}

View File

@@ -1,90 +0,0 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@@ -0,0 +1,31 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -1,145 +0,0 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -1,183 +0,0 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -1,227 +0,0 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -18,6 +18,7 @@ class GroundingDinoPipeline(RawModel):
def detect(self, image: Image.Image, candidate_labels: list[str], threshold: float = 0.1) -> list[DetectionResult]:
results = self._pipeline(image=image, candidate_labels=candidate_labels, threshold=threshold)
assert results is not None
results = [DetectionResult.model_validate(result) for result in results]
return results

View File

@@ -8,7 +8,7 @@ from transformers.models.sam.processing_sam import SamProcessor
from invokeai.backend.raw_model import RawModel
class SegmentAnythingModel(RawModel):
class SegmentAnythingPipeline(RawModel):
"""A wrapper class for the transformers SAM model and processor that makes it compatible with the model manager."""
def __init__(self, sam_model: SamModel, sam_processor: SamProcessor):

View File

@@ -3,12 +3,13 @@
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
@@ -46,9 +47,19 @@ class LoRALayerBase:
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
@@ -60,6 +71,17 @@ class LoRALayerBase:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
"""Log a warning if values contains unhandled keys."""
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
unknown_keys = set(values.keys()) - all_known_keys
if unknown_keys:
logger.warning(
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
@@ -76,14 +98,19 @@ class LoRALayer(LoRALayerBase):
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
else:
self.mid = None
self.mid = values.get("lora_mid.weight", None)
self.rank = self.down.shape[0]
self.check_keys(
values,
{
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight",
},
)
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
@@ -125,20 +152,23 @@ class LoHALayer(LoRALayerBase):
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.t1 = values.get("hada_t1", None)
self.t2 = values.get("hada_t2", None)
self.rank = self.w1_b.shape[0]
self.check_keys(
values,
{
"hada_w1_a",
"hada_w1_b",
"hada_w2_a",
"hada_w2_b",
"hada_t1",
"hada_t2",
},
)
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
@@ -186,37 +216,45 @@ class LoKRLayer(LoRALayerBase):
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1 = values.get("lokr_w1", None)
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
self.w2_a = None
self.w2_b = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
self.t2 = values.get("lokr_t2", None)
if self.w1_b is not None:
self.rank = self.w1_b.shape[0]
elif self.w2_b is not None:
self.rank = self.w2_b.shape[0]
else:
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
self.check_keys(
values,
{
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
@@ -272,7 +310,9 @@ class LoKRLayer(LoRALayerBase):
class FullLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
@@ -282,15 +322,12 @@ class FullLayer(LoRALayerBase):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.bias = values.get("diff_b", None)
self.rank = None # unscaled
self.check_keys(values, {"diff", "diff_b"})
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
@@ -319,8 +356,9 @@ class IA3Layer(LoRALayerBase):
self.on_input = values["on_input"]
self.rank = None # unscaled
self.check_keys(values, {"weight", "on_input"})
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
@@ -340,7 +378,39 @@ class IA3Layer(LoRALayerBase):
self.on_input = self.on_input.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
@@ -458,16 +528,19 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_down.weight" in values:
if "lora_up.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
elif "hada_w1_a" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
elif "lokr_w1" in values or "lokr_w1_a" in values:
layer = LoKRLayer(layer_key, values)
# diff
@@ -475,9 +548,13 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
layer = FullLayer(layer_key, values)
# ia3
elif "weight" in values and "on_input" in values:
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")

View File

@@ -52,6 +52,7 @@ class BaseModelType(str, Enum):
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
Flux = "flux"
# Kandinsky2_1 = "kandinsky-2.1"
@@ -66,7 +67,9 @@ class ModelType(str, Enum):
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
CLIPEmbed = "clip_embed"
T2IAdapter = "t2i_adapter"
T5Encoder = "t5_encoder"
SpandrelImageToImage = "spandrel_image_to_image"
@@ -74,6 +77,7 @@ class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
Transformer = "transformer"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
@@ -104,6 +108,9 @@ class ModelFormat(str, Enum):
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
T5Encoder = "t5_encoder"
BnbQuantizedLlmInt8b = "bnb_quantized_int8b"
BnbQuantizednf4b = "bnb_quantized_nf4b"
class SchedulerPredictionType(str, Enum):
@@ -186,7 +193,9 @@ class ModelConfigBase(BaseModel):
class CheckpointConfigBase(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
format: Literal[ModelFormat.Checkpoint, ModelFormat.BnbQuantizednf4b] = Field(
description="Format of the provided checkpoint model", default=ModelFormat.Checkpoint
)
config_path: str = Field(description="path to the checkpoint model config file")
converted_at: Optional[float] = Field(
description="When this model was last converted to diffusers", default_factory=time.time
@@ -205,6 +214,26 @@ class LoRAConfigBase(ModelConfigBase):
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
class T5EncoderConfigBase(ModelConfigBase):
type: Literal[ModelType.T5Encoder] = ModelType.T5Encoder
class T5EncoderConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.T5Encoder] = ModelFormat.T5Encoder
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.T5Encoder.value}")
class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase):
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.BnbQuantizedLlmInt8b.value}")
class LoRALyCORISConfig(LoRAConfigBase):
"""Model config for LoRA/Lycoris models."""
@@ -229,7 +258,6 @@ class VAECheckpointConfig(CheckpointConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.VAE] = ModelType.VAE
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
@@ -268,7 +296,6 @@ class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase)
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
@@ -317,6 +344,21 @@ class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
class MainBnbQuantized4bCheckpointConfig(CheckpointConfigBase, MainConfigBase):
"""Model config for main checkpoint models."""
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.format = ModelFormat.BnbQuantizednf4b
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.Main.value}.{ModelFormat.BnbQuantizednf4b.value}")
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
"""Model config for main diffusers models."""
@@ -350,6 +392,17 @@ class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
"""Model config for Clip Embeddings."""
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
@@ -408,12 +461,15 @@ AnyModelConfig = Annotated[
Union[
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
Annotated[MainBnbQuantized4bCheckpointConfig, MainBnbQuantized4bCheckpointConfig.get_tag()],
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
@@ -421,6 +477,7 @@ AnyModelConfig = Annotated[
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),
]

View File

@@ -66,12 +66,14 @@ class ModelLoader(ModelLoaderBase):
return (model_base / config.path).resolve()
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
try:
return self._ram_cache.get(config.key, submodel_type)
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
except IndexError:
pass
config.path = str(self._get_model_path(config))
self._ram_cache.make_room(self.get_size_fs(config, Path(config.path), submodel_type))
loaded_model = self._load_model(config, submodel_type)
self._ram_cache.put(
@@ -83,7 +85,7 @@ class ModelLoader(ModelLoaderBase):
return self._ram_cache.get(
key=config.key,
submodel_type=submodel_type,
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
stats_name=stats_name,
)
def get_size_fs(

View File

@@ -128,7 +128,24 @@ class ModelCacheBase(ABC, Generic[T]):
@property
@abstractmethod
def max_cache_size(self) -> float:
"""Return true if the cache is configured to lazily offload models in VRAM."""
"""Return the maximum size the RAM cache can grow to."""
pass
@max_cache_size.setter
@abstractmethod
def max_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
@property
@abstractmethod
def max_vram_cache_size(self) -> float:
"""Return the maximum size the VRAM cache can grow to."""
pass
@max_vram_cache_size.setter
@abstractmethod
def max_vram_cache_size(self, value: float) -> float:
"""Set the maximum size the VRAM cache can grow to."""
pass
@abstractmethod
@@ -193,15 +210,6 @@ class ModelCacheBase(ABC, Generic[T]):
"""
pass
@abstractmethod
def exists(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
) -> bool:
"""Return true if the model identified by key and submodel_type is in the cache."""
pass
@abstractmethod
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""

View File

@@ -1,22 +1,6 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
# TODO: Add Stalker's proper name to copyright
"""
Manage a RAM cache of diffusion/transformer models for fast switching.
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
grows larger than a preset maximum, then the least recently used
model will be cleared and (re)loaded from disk when next needed.
The cache returns context manager generators designed to load the
model into the GPU within the context, and unload outside the
context. Use like this:
cache = ModelCache(max_cache_size=7.5)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1,
cache.get_model('stabilityai/stable-diffusion-2') as SD2:
do_something_in_GPU(SD1,SD2)
"""
""" """
import gc
import math
@@ -40,53 +24,74 @@ from invokeai.backend.model_manager.load.model_util import calc_model_size_by_da
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
# Maximum size of the cache, in gigs
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
# amount of GPU memory to hold in reserve for use by generations (GB)
DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
# actual size of a gig
GIG = 1073741824
# Size of a GB in bytes.
GB = 2**30
# Size of a MB in bytes.
MB = 2**20
class ModelCache(ModelCacheBase[AnyModel]):
"""Implementation of ModelCacheBase."""
"""A cache for managing models in memory.
The cache is based on two levels of model storage:
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
The model cache is based on the following assumptions:
- storage_device_mem_size > execution_device_mem_size
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
the execution_device.
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
configuration.
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
the context, and unload outside the context.
Example usage:
```
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
do_something_on_gpu(SD1)
```
"""
def __init__(
self,
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
max_cache_size: float,
max_vram_cache_size: float,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
sequential_offload: bool = False,
lazy_offloading: bool = True,
sha_chunksize: int = 16777216,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
"""
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param max_cache_size: Maximum size of the storage_device cache in GBs.
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
:param logger: InvokeAILogger to use (otherwise creates one)
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._precision: torch.dtype = precision
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
@@ -128,6 +133,16 @@ class ModelCache(ModelCacheBase[AnyModel]):
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def max_vram_cache_size(self) -> float:
"""Return the cap on vram cache size."""
return self._max_vram_cache_size
@max_vram_cache_size.setter
def max_vram_cache_size(self, value: float) -> None:
"""Set the cap on vram cache size."""
self._max_vram_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
@@ -145,15 +160,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
total += cache_record.size
return total
def exists(
self,
key: str,
submodel_type: Optional[SubModelType] = None,
) -> bool:
"""Return true if the model identified by key and submodel_type is in the cache."""
key = self._make_cache_key(key, submodel_type)
return key in self._cached_models
def put(
self,
key: str,
@@ -203,7 +209,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GIG)
self.stats.cache_size = int(self._max_cache_size * GB)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
@@ -231,10 +237,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Move any unused models from VRAM."""
reserved = self._max_vram_cache_size * GIG
"""Offload models from the execution_device to make room for size_required.
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
"""
reserved = self._max_vram_cache_size * GB
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
@@ -245,7 +254,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
)
TorchDevice.empty_cache()
@@ -303,7 +312,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB."
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
@@ -326,14 +335,14 @@ class ModelCache(ModelCacheBase[AnyModel]):
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GIG):.3f} GB.\n"
f" {(cache_entry.size/GB):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
ram = "%4.2fG" % (self.cache_size() / GIG)
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
ram = "%4.2fG" % (self.cache_size() / GB)
in_ram_models = 0
in_vram_models = 0
@@ -353,17 +362,20 @@ class ModelCache(ModelCacheBase[AnyModel]):
)
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
"""Make enough room in the cache to accommodate a new model of indicated size.
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
external references to the model, there's nothing that the cache can do about it, and those models will not be
garbage-collected.
"""
bytes_needed = size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
current_size = self.cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GIG):.2f} GB"
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
f" {(bytes_needed/GB):.2f} GB"
)
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
@@ -380,7 +392,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
if not cache_entry.locked:
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
)
current_size -= cache_entry.size
models_cleared += 1

View File

@@ -0,0 +1,239 @@
# Copyright (c) 2024, Brandon W. Rising and the InvokeAI Development Team
"""Class for Flux model loading in InvokeAI."""
from pathlib import Path
from typing import Optional
import accelerate
import torch
from safetensors.torch import load_file
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.util import ae_params, params
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
CLIPEmbedDiffusersConfig,
MainBnbQuantized4bCheckpointConfig,
MainCheckpointConfig,
T5EncoderBnbQuantizedLlmInt8bConfig,
T5EncoderConfig,
VAECheckpointConfig,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.util.model_util import convert_bundle_to_flux_transformer_checkpoint
from invokeai.backend.util.silence_warnings import SilenceWarnings
try:
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
bnb_available = True
except ImportError:
bnb_available = False
app_config = get_config()
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class FluxVAELoader(ModelLoader):
"""Class to load VAE models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, VAECheckpointConfig):
raise ValueError("Only VAECheckpointConfig models are currently supported here.")
model_path = Path(config.path)
with SilenceWarnings():
model = AutoEncoder(ae_params[config.config_path])
sd = load_file(model_path)
model.load_state_dict(sd, assign=True)
model.to(dtype=self._torch_dtype)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.CLIPEmbed, format=ModelFormat.Diffusers)
class ClipCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CLIPEmbedDiffusersConfig):
raise ValueError("Only CLIPEmbedDiffusersConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer:
return CLIPTokenizer.from_pretrained(Path(config.path) / "tokenizer")
case SubModelType.TextEncoder:
return CLIPTextModel.from_pretrained(Path(config.path) / "text_encoder")
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.BnbQuantizedLlmInt8b)
class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, T5EncoderBnbQuantizedLlmInt8bConfig):
raise ValueError("Only T5EncoderBnbQuantizedLlmInt8bConfig models are currently supported here.")
if not bnb_available:
raise ImportError(
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
)
match submodel_type:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2:
te2_model_path = Path(config.path) / "text_encoder_2"
model_config = AutoConfig.from_pretrained(te2_model_path)
with accelerate.init_empty_weights():
model = AutoModelForTextEncoding.from_config(model_config)
model = quantize_model_llm_int8(model, modules_to_not_convert=set())
state_dict_path = te2_model_path / "bnb_llm_int8_model.safetensors"
state_dict = load_file(state_dict_path)
self._load_state_dict_into_t5(model, state_dict)
return model
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@classmethod
def _load_state_dict_into_t5(cls, model: T5EncoderModel, state_dict: dict[str, torch.Tensor]):
# There is a shared reference to a single weight tensor in the model.
# Both "encoder.embed_tokens.weight" and "shared.weight" refer to the same tensor, so only the latter should
# be present in the state_dict.
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False, assign=True)
assert len(unexpected_keys) == 0
assert set(missing_keys) == {"encoder.embed_tokens.weight"}
# Assert that the layers we expect to be shared are actually shared.
assert model.encoder.embed_tokens.weight is model.shared.weight
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.T5Encoder)
class T5EncoderCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, T5EncoderConfig):
raise ValueError("Only T5EncoderConfig models are currently supported here.")
match submodel_type:
case SubModelType.Tokenizer2:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2:
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2")
raise ValueError(
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.Checkpoint)
class FluxCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
) -> AnyModel:
assert isinstance(config, MainCheckpointConfig)
model_path = Path(config.path)
with SilenceWarnings():
model = Flux(params[config.config_path])
sd = load_file(model_path)
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
model.load_state_dict(sd, assign=True)
return model
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.BnbQuantizednf4b)
class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
"""Class to load main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not isinstance(config, CheckpointConfigBase):
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
match submodel_type:
case SubModelType.Transformer:
return self._load_from_singlefile(config)
raise ValueError(
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
)
def _load_from_singlefile(
self,
config: AnyModelConfig,
) -> AnyModel:
assert isinstance(config, MainBnbQuantized4bCheckpointConfig)
if not bnb_available:
raise ImportError(
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
)
model_path = Path(config.path)
with SilenceWarnings():
with accelerate.init_empty_weights():
model = Flux(params[config.config_path])
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
sd = load_file(model_path)
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
model.load_state_dict(sd, assign=True)
return model

View File

@@ -78,7 +78,12 @@ class GenericDiffusersLoader(ModelLoader):
# TO DO: Add exception handling
def _hf_definition_to_type(self, module: str, class_name: str) -> ModelMixin: # fix with correct type
if module in ["diffusers", "transformers"]:
if module in [
"diffusers",
"transformers",
"invokeai.backend.quantization.fast_quantized_transformers_model",
"invokeai.backend.quantization.fast_quantized_diffusion_model",
]:
res_type = sys.modules[module]
else:
res_type = sys.modules["diffusers"].pipelines

Some files were not shown because too many files have changed in this diff Show More