Compare commits

...

88 Commits

Author SHA1 Message Date
Ryan Dick
8d04ec3f95 Improve docs related to dynamic T5 sequence length selection. 2024-11-29 16:11:51 +00:00
Ryan Dick
4581a37a48 Dynamically select smaller t5 seq len to save inference time. 2024-11-29 16:02:25 +00:00
Ryan Dick
54b7f9a063 FLUX Regional Prompting (#7388)
## Summary

This PR adds support for regional prompting with FLUX.

### Example 1
Global prompt: `An architecture rendering of the reception area of a
corporate office with modern decor.`
<img width="1386" alt="image"
src="https://github.com/user-attachments/assets/c8169bdb-49a9-44bc-bd9e-58d98e09094b">

![image](https://github.com/user-attachments/assets/4a426be9-9d7a-4527-b27c-2d2514ee73fe)

## QA Instructions

- [x] Test that there is no slowdown in the base case with a single
global prompt.
- [x] Test image fully covered by regional masks.
- [x] Test image covered by region masks with small gaps.
- [x] Test region masks with large unmasked ‘background’ regions
- [x] Test region masks with significant overlap
- [x] Test multiple global prompts.
- [x] Test no global prompt.
- [x] Test regional negative prompts (It runs... but results are not
great. Needs more tuning to be useful.)
- Test compatibility with:
    - [x] ControlNet
    - [x] LoRA
    - [x] IP-Adapter

## Remaining TODO

- [x] Disable the following UI features for FLUX prompt regions:
negative prompts, reference images, auto-negative.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2024-11-29 08:56:42 -05:00
psychedelicious
7d488a5352 feat(ui): add delete button to regional ref image empty state 2024-11-29 15:51:24 +10:00
psychedelicious
4d7667f63d fix(ui): add missing translations 2024-11-29 15:43:49 +10:00
psychedelicious
08704ee8ec feat(ui): use canvas layer validators in control/ip adapter graph builders 2024-11-29 15:32:48 +10:00
psychedelicious
5910892c33 Merge remote-tracking branch 'origin/main' into ryan/flux-regional-prompting 2024-11-29 15:19:39 +10:00
psychedelicious
46a09d9e90 feat(ui): format warnings tooltip 2024-11-29 13:32:51 +10:00
psychedelicious
df0c7d73f3 feat(ui): use regional guidance validation utils in graph builders 2024-11-29 13:26:09 +10:00
psychedelicious
3905c97e32 feat(ui): return translation keys from validation utils instead of translated strings 2024-11-29 13:25:09 +10:00
psychedelicious
0be796a808 feat(ui): use layer validation utils in invoke readiness utils 2024-11-29 13:14:26 +10:00
psychedelicious
7dd33b0f39 feat(ui): add indicator to canvas layer headers, displaying validation warnings
If there are any issues with the layer, the icon is displayed. If the layer is disabled, the icon is greyed out but still visible.
2024-11-29 13:13:47 +10:00
psychedelicious
484aaf1595 feat(ui): add canvas layer validation utils
These helpers consolidate layer validation checks. For example, checking that the layer has content drawn, is compatible with the selected main model, has valid reference images, etc.
2024-11-29 13:12:32 +10:00
psychedelicious
c276b60af9 tidy(ui): use object for addRegions graph builder util arg 2024-11-29 08:49:41 +10:00
Ryan Dick
5d8dd6e26e Fix FLUX regional negative prompts. 2024-11-28 18:49:29 +00:00
Emmanuel Ferdman
5bca68d873 docs: update code of conduct reference
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-27 17:38:33 -08:00
Ryan Dick
64364e7911 Short-circuit if there are no region masks in FLUX and don't apply attention masking. 2024-11-27 22:40:10 +00:00
Ryan Dick
6565cea039 Comment unused _prepare_unrestricted_attn_mask(...) for future reference. 2024-11-27 22:16:44 +00:00
Ryan Dick
3ebd8d6c07 Delete outdated TODO comment. 2024-11-27 22:13:25 +00:00
Ryan Dick
e970185161 Tweak flux regional prompting attention scheme based on latest experimentation. 2024-11-27 22:13:07 +00:00
Ryan Dick
fa5653cdf7 Remove unused 'denoise' param to addRegions(). 2024-11-27 17:08:42 +00:00
Ryan Dick
9a7b000995 Update frontend to support regional prompts with FLUX in the canvas. 2024-11-27 17:04:43 +00:00
Ryan Dick
3a27242838 Bump transformers. The main motivation for this bump is to ingest a fix for DepthAnything postprocessing artifacts. 2024-11-27 07:46:16 -08:00
Ryan Dick
8cfb032051 Add utility ImagePanelLayoutInvocation for working with In-Context LoRA workflows. 2024-11-26 20:58:31 -08:00
Ryan Dick
06a9d4e2b2 Use a Textarea component for the FluxTextEncoderInvocation prompt field. 2024-11-26 20:58:31 -08:00
Brandon Rising
ed46acee79 fix: Fail scan on InvalidMagicError in picklescan, update default for read_checkpoint_meta to scan unless explicitly told not to 2024-11-26 16:17:12 -05:00
Ryan Dick
b54463d294 Allow regional prompting background regions to attend to themselves and to the entire txt embedding. 2024-11-26 17:57:31 +00:00
Ryan Dick
faee79dc95 Distinguish between restricted and unrestricted attn masks in FLUX regional prompting. 2024-11-26 16:55:52 +00:00
Mary Hipp
965cd76e33 lint fix 2024-11-26 11:25:53 -05:00
Mary Hipp
e5e8cbf34c shorten reference image mode descriptions; 2024-11-26 11:25:53 -05:00
Mary Hipp
3412a52594 (ui): updates various informational tooltips, adds descriptons to IP adapter method options 2024-11-26 11:25:53 -05:00
Ryan Dick
e01f66b026 Apply regional attention masks in the single stream blocks in addition to the double stream blocks. 2024-11-25 22:40:08 +00:00
Ryan Dick
53abdde242 Update Flux RegionalPromptingExtension to prepare both a mask with restricted image self-attention and a mask with unrestricted image self attention. 2024-11-25 22:04:23 +00:00
Ryan Dick
94c088300f Be smarter about selecting the global CLIP embedding for FLUX regional prompting. 2024-11-25 20:15:04 +00:00
Ryan Dick
3741a6f5e0 Fix device handling for regional masks and apply the attention mask in the FLUX double stream block. 2024-11-25 16:02:03 +00:00
Kent Keirsey
059336258f Create SECURITY.md 2024-11-25 04:10:03 -08:00
Ryan Dick
2c23b8414c Use a single global CLIP embedding for FLUX regional guidance. 2024-11-22 23:01:43 +00:00
Mary Hipp
271cc52c80 fix(ui): use token for download if its in store 2024-11-22 12:08:05 -05:00
Ryan Dick
20356c0746 Fixup the logic for preparing FLUX regional prompt attention masks. 2024-11-21 22:46:25 +00:00
psychedelicious
e44458609f chore: bump version to v5.4.3rc1 2024-11-21 10:32:43 -08:00
psychedelicious
69d86a7696 feat(ui): address feedback 2024-11-21 09:54:35 -08:00
Hippalectryon
56db1a9292 Use proxyrect and setEntityPosition to sync transformer position 2024-11-21 09:54:35 -08:00
Hippalectryon
cf50e5eeee Make sure the canvas is focused 2024-11-21 09:54:35 -08:00
Hippalectryon
c9c07968d2 lint 2024-11-21 09:54:35 -08:00
Hippalectryon
97d0757176 use $isInteractable instead of $isDisabled 2024-11-21 09:54:35 -08:00
Hippalectryon
0f51b677a9 refactor 2024-11-21 09:54:35 -08:00
Hippalectryon
56ca94c3a9 Don't move if the layer is disabled
Lint
2024-11-21 09:54:35 -08:00
Hippalectryon
28d169f859 Allow moving layers using the keyboard 2024-11-21 09:54:35 -08:00
psychedelicious
92f71d99ee tweak(ui): use X icon for rg ref image delete button 2024-11-21 08:50:39 -08:00
psychedelicious
0764c02b1d tweak(ui): code style 2024-11-21 08:50:39 -08:00
psychedelicious
081c7569fe feat(ui): add global ref image empty state 2024-11-21 08:50:39 -08:00
psychedelicious
20f6532ee8 feat(ui): add empty state for regional guidance ref image 2024-11-21 08:50:39 -08:00
Mary Hipp
b9e8910478 feat(ui): add actions for video modal clicks 2024-11-21 11:15:55 -05:00
Mary Hipp
ded8391e3c use nanostore for schema parsed instead 2024-11-20 20:13:31 -05:00
Mary Hipp
e9dd2c396a limit to one hook 2024-11-20 20:13:31 -05:00
Mary Hipp
0d86de0cb5 fix(ui): make sure schema has loaded before trying to load any workflows 2024-11-20 20:13:31 -05:00
Ryan Dick
bad1149504 WIP - add rough logic for preparing the FLUX regional prompting attention mask. 2024-11-20 22:29:36 +00:00
Ryan Dick
fda7aaa7ca Pass RegionalPromptingExtension down to the CustomDoubleStreamBlockProcessor in FLUX. 2024-11-20 19:48:04 +00:00
Ryan Dick
85c616fa34 WIP - Pass prompt masks to FLUX model during denoising. 2024-11-20 18:51:43 +00:00
psychedelicious
549f4e9794 feat(ui): set default infill method to lama 2024-11-20 11:19:17 -05:00
psychedelicious
ef8ededd2f fix(ui): disable width and height output on image batch output
There's a technical challenge with outputting these values directly. `ImageField` does not store them, so the batch's `ImageField` collection does not have width and height for each image.

In order to set up the batch and pass along width and height for each image, we'd need to make a network request for each image when the user clicks Invoke. It would often be cached, but this will eventually create a scaling issue and poor user experience.

As a very simple workaround, users can output the batch image output into an `Image Primitive` node to access the width and height.

This change is implemented by adding some simple special handling when parsing the output fields for the `image_batch` node.

I'll keep this situation in mind when extending the batching system to other field types.
2024-11-20 11:16:54 -05:00
Mary Hipp
1948ffe106 make sure Soft Edge Detection has preprocessor applied 2024-11-20 08:46:02 -05:00
psychedelicious
c70f4404c4 fix(ui): special node icon tooltip 2024-11-19 14:29:09 -08:00
psychedelicious
b157ae928c chore(ui): update what's new copy 2024-11-19 14:29:09 -08:00
psychedelicious
7a0871992d chore: bump version to v5.4.2 2024-11-19 14:29:09 -08:00
Hosted Weblate
b38e2e14f4 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-11-19 14:12:00 -08:00
psychedelicious
7c0e70ec84 tweak(ui): "Watch on YouTube" -> "Watch" 2024-11-19 14:02:11 -08:00
psychedelicious
a89ae9d2bf feat(ui): add links to studio sessions/discord 2024-11-19 14:02:11 -08:00
psychedelicious
ad1fcb3f07 chore(ui): bump @invoke-ai/ui-library
Brings in a fix for `ExternalLink`
2024-11-19 14:02:11 -08:00
psychedelicious
87d74b910b feat(ui): support videos modal 2024-11-19 14:02:11 -08:00
psychedelicious
7ad1c297a4 feat(ui): add actions for reset canvas layers / generation settings to session menus 2024-11-19 13:55:16 -08:00
psychedelicious
fbc629faa6 feat(ui): change reset canvas button to new session menu 2024-11-19 13:55:16 -08:00
psychedelicious
7baa6b3c09 feat(ui): split up new from image into submenus
- `New Canvas from Image` -> `As Raster Layer`, `As Raster Layer (Resize)`, `As Control Layer`, `As Control Layer (Resize)`
- `New Layer from Image` -> (each layer type)
2024-11-19 10:34:00 -08:00
psychedelicious
53d482bade feat(ui): add image ctx menu new canvas without resize option 2024-11-19 10:34:00 -08:00
psychedelicious
5aca04b51b feat(ui): change reset canvas icon to "empty" 2024-11-19 09:56:25 -08:00
psychedelicious
ea8787c8ff feat(ui): update invoke button tooltip for batching
- Split up logic to determine reason why the user cannot invoke for each tab.
- Fix issue where the workflows tab would show reasons related to canvas/upscale tab. The tooltip now only shows information relevant to the current tab.
- Add calculation for batch size to the queue count prediction.
- Use a constant for the enqueue mutation's fixed cache key, instead of a string. Just some typo protection.
2024-11-19 09:53:59 -08:00
psychedelicious
cead2c4445 feat(ui): split up selector utils for useIsReadyToEnqueue 2024-11-19 09:53:59 -08:00
Mary Hipp
f76ac1808c fix(ui): simplify logic for non-local invocation progress alerts 2024-11-19 12:40:40 -05:00
psychedelicious
f01210861b chore: ruff 2024-11-19 07:02:37 -08:00
psychedelicious
f757f23ef0 chore(ui): typegen 2024-11-19 07:02:37 -08:00
psychedelicious
872a6ef209 tidy(nodes): extract slerp from lblend to util fn 2024-11-19 07:02:37 -08:00
psychedelicious
4267e5ffc4 tidy(nodes): bring masked blend latents masking logic into invoke core 2024-11-19 07:02:37 -08:00
Brandon Rising
a69c5ff9ef Add copyright notice for CIELab_to_UPLab.icc 2024-11-19 07:02:37 -08:00
Brandon Rising
3ebd8d7d1b Fix .icc asset file in pyproject.toml 2024-11-19 07:02:37 -08:00
Brandon Rising
1fd80d54a4 Run Ruff 2024-11-19 07:02:37 -08:00
Brandon Rising
991f63e455 Store CIELab_to_UPLab.icc within the repo 2024-11-19 07:02:37 -08:00
Brandon Rising
6a1efd3527 Add validation to some of the node inputs 2024-11-19 07:02:37 -08:00
Brandon Rising
0eadc0dd9e feat: Support a subset of composition nodes within base invokeai 2024-11-19 07:02:37 -08:00
97 changed files with 6332 additions and 1186 deletions

14
SECURITY.md Normal file
View File

@@ -0,0 +1,14 @@
# Security Policy
## Supported Versions
Only the latest version of Invoke will receive security updates.
We do not currently maintain multiple versions of the application with updates.
## Reporting a Vulnerability
To report a vulnerability, contact the Invoke team directly at security@invoke.ai
At this time, we do not maintain a formal bug bounty program.
You can also share identified security issues with our team on huntr.com

View File

@@ -38,7 +38,7 @@ This project is a combined effort of dedicated people from across the world. [C
## Code of Conduct
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/docs/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:

View File

@@ -1,98 +1,120 @@
from typing import Any, Union
from typing import Optional, Union
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
def slerp(
t: Union[float, np.ndarray],
v0: Union[torch.Tensor, np.ndarray],
v1: Union[torch.Tensor, np.ndarray],
device: torch.device,
DOT_THRESHOLD: float = 0.9995,
):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
tags=["latents", "blend", "mask"],
category="latents",
version="1.0.3",
version="1.1.0",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
"""Blend two latents using a given alpha. If a mask is provided, the second latents will be masked before blending.
Latents must have same size. Masking functionality added by @dwringer."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
latents_a: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
latents_b: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
mask: Optional[ImageField] = InputField(default=None, description="Mask for blending in latents B")
alpha: float = InputField(ge=0, default=0.5, description=FieldDescriptions.blend_alpha)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
return mask_tensor
def replace_tensor_from_masked_tensor(
self, tensor: torch.Tensor, other_tensor: torch.Tensor, mask_tensor: torch.Tensor
):
output = tensor.clone()
mask_tensor = mask_tensor.expand(output.shape)
if output.dtype != torch.float16:
output = torch.add(output, mask_tensor * torch.sub(other_tensor, tensor))
else:
output = torch.add(output, mask_tensor.half() * torch.sub(other_tensor, tensor))
return output
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if self.mask is None:
mask_tensor = torch.zeros(latents_a.shape[-2:])
else:
mask_tensor = self.prep_mask_tensor(context.images.get_pil(self.mask.image_name))
mask_tensor = tv_resize(mask_tensor, latents_a.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
latents_b = self.replace_tensor_from_masked_tensor(latents_b, latents_a, mask_tensor)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
raise ValueError("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
blended_latents = slerp(self.alpha, latents_a, latents_b, device)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
TorchDevice.empty_cache()
torch.cuda.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
return LatentsOutput.build(latents_name=name, latents=blended_latents)

File diff suppressed because it is too large Load Diff

View File

@@ -250,6 +250,11 @@ class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
mask: Optional[TensorField] = Field(
default=None,
description="The mask associated with this conditioning tensor. Excluded regions should be set to False, "
"included regions should be set to True.",
)
class SD3ConditioningField(BaseModel):

View File

@@ -30,6 +30,7 @@ from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlN
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.ip_adapter.xlabs_ip_adapter_flux import XlabsIpAdapterFlux
@@ -42,6 +43,7 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
@@ -87,10 +89,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField = InputField(
positive_text_conditioning: FluxConditioningField | list[FluxConditioningField] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_text_conditioning: FluxConditioningField | None = InputField(
negative_text_conditioning: FluxConditioningField | list[FluxConditioningField] | None = InputField(
default=None,
description="Negative conditioning tensor. Can be None if cfg_scale is 1.0.",
input=Input.Connection,
@@ -139,36 +141,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _load_text_conditioning(
self, context: InvocationContext, conditioning_name: str, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
# Load the conditioning data.
cond_data = context.conditioning.load(conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
return t5_embeddings, clip_embeddings
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
pos_t5_embeddings, pos_clip_embeddings = self._load_text_conditioning(
context, self.positive_text_conditioning.conditioning_name, inference_dtype
)
neg_t5_embeddings: torch.Tensor | None = None
neg_clip_embeddings: torch.Tensor | None = None
if self.negative_text_conditioning is not None:
neg_t5_embeddings, neg_clip_embeddings = self._load_text_conditioning(
context, self.negative_text_conditioning.conditioning_name, inference_dtype
)
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
@@ -183,15 +161,45 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
seed=self.seed,
)
b, _c, latent_h, latent_w = noise.shape
packed_h = latent_h // 2
packed_w = latent_w // 2
# Load the conditioning data.
pos_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.positive_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
neg_text_conditionings: list[FluxTextConditioning] | None = None
if self.negative_text_conditioning is not None:
neg_text_conditionings = self._load_text_conditioning(
context=context,
cond_field=self.negative_text_conditioning,
packed_height=packed_h,
packed_width=packed_w,
dtype=inference_dtype,
device=TorchDevice.choose_torch_device(),
)
pos_regional_prompting_extension = RegionalPromptingExtension.from_text_conditioning(
pos_text_conditionings, img_seq_len=packed_h * packed_w
)
neg_regional_prompting_extension = (
RegionalPromptingExtension.from_text_conditioning(neg_text_conditionings, img_seq_len=packed_h * packed_w)
if neg_text_conditionings
else None
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=image_seq_len,
image_seq_len=packed_h * packed_w,
shift=not is_schnell,
)
@@ -228,28 +236,17 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, latent_h, latent_w = x.shape
img_ids = generate_img_ids(h=latent_h, w=latent_w, batch_size=b, device=x.device, dtype=x.dtype)
pos_bs, pos_t5_seq_len, _ = pos_t5_embeddings.shape
pos_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
neg_txt_ids: torch.Tensor | None = None
if neg_t5_embeddings is not None:
neg_bs, neg_t5_seq_len, _ = neg_t5_embeddings.shape
neg_txt_ids = torch.zeros(
neg_bs, neg_t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device()
)
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len, packed_h, and
# packed_w correctly.
assert packed_h * packed_w == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
@@ -338,12 +335,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
model=transformer,
img=x,
img_ids=img_ids,
txt=pos_t5_embeddings,
txt_ids=pos_txt_ids,
vec=pos_clip_embeddings,
neg_txt=neg_t5_embeddings,
neg_txt_ids=neg_txt_ids,
neg_vec=neg_clip_embeddings,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
@@ -357,6 +350,43 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
x = unpack(x.float(), self.height, self.width)
return x
def _load_text_conditioning(
self,
context: InvocationContext,
cond_field: FluxConditioningField | list[FluxConditioningField],
packed_height: int,
packed_width: int,
dtype: torch.dtype,
device: torch.device,
) -> list[FluxTextConditioning]:
"""Load text conditioning data from a FluxConditioningField or a list of FluxConditioningFields."""
# Normalize to a list of FluxConditioningFields.
cond_list = [cond_field] if isinstance(cond_field, FluxConditioningField) else cond_field
text_conditionings: list[FluxTextConditioning] = []
for cond_field in cond_list:
# Load the text embeddings.
cond_data = context.conditioning.load(cond_field.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=dtype, device=device)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the mask, if provided.
mask: Optional[torch.Tensor] = None
if cond_field.mask is not None:
mask = context.tensors.load(cond_field.mask.tensor_name)
mask = mask.to(device=device)
mask = RegionalPromptingExtension.preprocess_regional_prompt_mask(
mask, packed_height, packed_width, dtype, device
)
text_conditionings.append(FluxTextConditioning(t5_embeddings, clip_embeddings, mask))
return text_conditionings
@classmethod
def prep_cfg_scale(
cls, cfg_scale: float | list[float], timesteps: list[float], cfg_scale_start_step: int, cfg_scale_end_step: int

View File

@@ -1,11 +1,18 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Tuple
from typing import Iterator, Literal, Optional, Tuple
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
TensorField,
UIComponent,
)
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
@@ -22,7 +29,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Condit
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.1.0",
version="1.2.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
@@ -41,7 +48,15 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.")
use_short_t5_seq_len: bool = InputField(
description="Use a shorter sequence length for the T5 encoder if a short prompt is used. This can improve "
+ "performance and reduce peak memory, but may result in slightly different image outputs.",
default=True,
)
prompt: str = InputField(description="Text prompt to encode.", ui_component=UIComponent.Textarea)
mask: Optional[TensorField] = InputField(
default=None, description="A mask defining the region that this conditioning prompt applies to."
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
@@ -54,7 +69,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
return FluxConditioningOutput(
conditioning=FluxConditioningField(conditioning_name=conditioning_name, mask=self.mask)
)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
@@ -62,6 +79,12 @@ class FluxTextEncoderInvocation(BaseInvocation):
prompt = [self.prompt]
valid_seq_lens = [self.t5_max_seq_len]
if self.use_short_t5_seq_len:
# We allow a minimum sequence length of 128. Going too short results in more significant image chagnes.
valid_seq_lens = list(range(128, self.t5_max_seq_len, 128))
valid_seq_lens.append(self.t5_max_seq_len)
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
@@ -69,10 +92,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
prompt_embeds = t5_encoder(prompt, valid_seq_lens)
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
@@ -110,10 +133,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
# There are currently no supported CLIP quantized models. Add support here if needed.
raise ValueError(f"Unsupported model format: {clip_text_encoder_config.format}")
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
pooled_prompt_embeds = clip_encoder(prompt, [77])
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return pooled_prompt_embeds

View File

@@ -0,0 +1,59 @@
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("image_panel_coordinate_output")
class ImagePanelCoordinateOutput(BaseInvocationOutput):
x_left: int = OutputField(description="The left x-coordinate of the panel.")
y_top: int = OutputField(description="The top y-coordinate of the panel.")
width: int = OutputField(description="The width of the panel.")
height: int = OutputField(description="The height of the panel.")
@invocation(
"image_panel_layout",
title="Image Panel Layout",
tags=["image", "panel", "layout"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class ImagePanelLayoutInvocation(BaseInvocation):
"""Get the coordinates of a single panel in a grid. (If the full image shape cannot be divided evenly into panels,
then the grid may not cover the entire image.)
"""
width: int = InputField(description="The width of the entire grid.")
height: int = InputField(description="The height of the entire grid.")
num_cols: int = InputField(ge=1, default=1, description="The number of columns in the grid.")
num_rows: int = InputField(ge=1, default=1, description="The number of rows in the grid.")
panel_col_idx: int = InputField(ge=0, default=0, description="The column index of the panel to be processed.")
panel_row_idx: int = InputField(ge=0, default=0, description="The row index of the panel to be processed.")
@field_validator("panel_col_idx")
def validate_panel_col_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_cols"]:
raise ValueError(f"panel_col_idx must be between 0 and {info.data['num_cols'] - 1}")
return v
@field_validator("panel_row_idx")
def validate_panel_row_idx(cls, v: int, info: ValidationInfo) -> int:
if v < 0 or v >= info.data["num_rows"]:
raise ValueError(f"panel_row_idx must be between 0 and {info.data['num_rows'] - 1}")
return v
def invoke(self, context: InvocationContext) -> ImagePanelCoordinateOutput:
x_left = self.panel_col_idx * (self.width // self.num_cols)
y_top = self.panel_row_idx * (self.height // self.num_rows)
width = self.width // self.num_cols
height = self.height // self.num_rows
return ImagePanelCoordinateOutput(x_left=x_left, y_top=y_top, width=width, height=height)

View File

@@ -86,7 +86,7 @@ class ModelLoadService(ModelLoadServiceBase):
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result

View File

@@ -1,9 +1,10 @@
import einops
import torch
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.math import attention
from invokeai.backend.flux.modules.layers import DoubleStreamBlock
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, SingleStreamBlock
class CustomDoubleStreamBlockProcessor:
@@ -13,7 +14,12 @@ class CustomDoubleStreamBlockProcessor:
@staticmethod
def _double_stream_block_forward(
block: DoubleStreamBlock, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor
block: DoubleStreamBlock,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""This function is a direct copy of DoubleStreamBlock.forward(), but it returns some of the intermediate
values.
@@ -40,7 +46,7 @@ class CustomDoubleStreamBlockProcessor:
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
@@ -63,11 +69,15 @@ class CustomDoubleStreamBlockProcessor:
vec: torch.Tensor,
pe: torch.Tensor,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> tuple[torch.Tensor, torch.Tensor]:
"""A custom implementation of DoubleStreamBlock.forward() with additional features:
- IP-Adapter support
"""
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(block, img, txt, vec, pe)
attn_mask = regional_prompting_extension.get_double_stream_attn_mask(block_index)
img, txt, img_q = CustomDoubleStreamBlockProcessor._double_stream_block_forward(
block, img, txt, vec, pe, attn_mask=attn_mask
)
# Apply IP-Adapter conditioning.
for ip_adapter_extension in ip_adapter_extensions:
@@ -81,3 +91,48 @@ class CustomDoubleStreamBlockProcessor:
)
return img, txt
class CustomSingleStreamBlockProcessor:
"""A class containing a custom implementation of SingleStreamBlock.forward() with additional features (masking,
etc.)
"""
@staticmethod
def _single_stream_block_forward(
block: SingleStreamBlock,
x: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
"""This function is a direct copy of SingleStreamBlock.forward()."""
mod, _ = block.modulation(vec)
x_mod = (1 + mod.scale) * block.pre_norm(x) + mod.shift
qkv, mlp = torch.split(block.linear1(x_mod), [3 * block.hidden_size, block.mlp_hidden_dim], dim=-1)
q, k, v = einops.rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=block.num_heads)
q, k = block.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = block.linear2(torch.cat((attn, block.mlp_act(mlp)), 2))
return x + mod.gate * output
@staticmethod
def custom_single_block_forward(
timestep_index: int,
total_num_timesteps: int,
block_index: int,
block: SingleStreamBlock,
img: torch.Tensor,
vec: torch.Tensor,
pe: torch.Tensor,
regional_prompting_extension: RegionalPromptingExtension,
) -> torch.Tensor:
"""A custom implementation of SingleStreamBlock.forward() with additional features:
- Masking
"""
attn_mask = regional_prompting_extension.get_single_stream_attn_mask(block_index)
return CustomSingleStreamBlockProcessor._single_stream_block_forward(block, img, vec, pe, attn_mask=attn_mask)

View File

@@ -7,6 +7,7 @@ from tqdm import tqdm
from invokeai.backend.flux.controlnet.controlnet_flux_output import ControlNetFluxOutput, sum_controlnet_flux_outputs
from invokeai.backend.flux.extensions.inpaint_extension import InpaintExtension
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.model import Flux
@@ -18,14 +19,8 @@ def denoise(
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
# positive text conditioning
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# negative text conditioning
neg_txt: torch.Tensor | None,
neg_txt_ids: torch.Tensor | None,
neg_vec: torch.Tensor | None,
pos_regional_prompting_extension: RegionalPromptingExtension,
neg_regional_prompting_extension: RegionalPromptingExtension | None,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
@@ -61,9 +56,9 @@ def denoise(
total_num_timesteps=total_steps,
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
)
@@ -78,9 +73,9 @@ def denoise(
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -88,6 +83,7 @@ def denoise(
controlnet_double_block_residuals=merged_controlnet_residuals.double_block_residuals,
controlnet_single_block_residuals=merged_controlnet_residuals.single_block_residuals,
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
step_cfg_scale = cfg_scale[step_index]
@@ -97,15 +93,15 @@ def denoise(
# TODO(ryand): Add option to run positive and negative predictions in a single batch for better performance
# on systems with sufficient VRAM.
if neg_txt is None or neg_txt_ids is None or neg_vec is None:
if neg_regional_prompting_extension is None:
raise ValueError("Negative text conditioning is required when cfg_scale is not 1.0.")
neg_pred = model(
img=img,
img_ids=img_ids,
txt=neg_txt,
txt_ids=neg_txt_ids,
y=neg_vec,
txt=neg_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=neg_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=neg_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
timesteps=t_vec,
guidance=guidance_vec,
timestep_index=step_index,
@@ -113,6 +109,7 @@ def denoise(
controlnet_double_block_residuals=None,
controlnet_single_block_residuals=None,
ip_adapter_extensions=neg_ip_adapter_extensions,
regional_prompting_extension=neg_regional_prompting_extension,
)
pred = neg_pred + step_cfg_scale * (pred - neg_pred)

View File

@@ -0,0 +1,276 @@
from typing import Optional
import torch
import torchvision
from invokeai.backend.flux.text_conditioning import FluxRegionalTextConditioning, FluxTextConditioning
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.mask import to_standard_float_mask
class RegionalPromptingExtension:
"""A class for managing regional prompting with FLUX.
This implementation is inspired by https://arxiv.org/pdf/2411.02395 (though there are significant differences).
"""
def __init__(
self,
regional_text_conditioning: FluxRegionalTextConditioning,
restricted_attn_mask: torch.Tensor | None = None,
):
self.regional_text_conditioning = regional_text_conditioning
self.restricted_attn_mask = restricted_attn_mask
def get_double_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
def get_single_stream_attn_mask(self, block_index: int) -> torch.Tensor | None:
order = [self.restricted_attn_mask, None]
return order[block_index % len(order)]
@classmethod
def from_text_conditioning(cls, text_conditioning: list[FluxTextConditioning], img_seq_len: int):
"""Create a RegionalPromptingExtension from a list of text conditionings.
Args:
text_conditioning (list[FluxTextConditioning]): The text conditionings to use for regional prompting.
img_seq_len (int): The image sequence length (i.e. packed_height * packed_width).
"""
regional_text_conditioning = cls._concat_regional_text_conditioning(text_conditioning)
attn_mask_with_restricted_img_self_attn = cls._prepare_restricted_attn_mask(
regional_text_conditioning, img_seq_len
)
return cls(
regional_text_conditioning=regional_text_conditioning,
restricted_attn_mask=attn_mask_with_restricted_img_self_attn,
)
# Keeping _prepare_unrestricted_attn_mask for reference as an alternative masking strategy:
#
# @classmethod
# def _prepare_unrestricted_attn_mask(
# cls,
# regional_text_conditioning: FluxRegionalTextConditioning,
# img_seq_len: int,
# ) -> torch.Tensor:
# """Prepare an 'unrestricted' attention mask. In this context, 'unrestricted' means that:
# - img self-attention is not masked.
# - img regions attend to both txt within their own region and to global prompts.
# """
# device = TorchDevice.choose_torch_device()
# # Infer txt_seq_len from the t5_embeddings tensor.
# txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# # In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# # Concatenation happens in the following order: [txt_seq, img_seq].
# # There are 4 portions of the attention mask to consider as we prepare it:
# # 1. txt attends to itself
# # 2. txt attends to corresponding regional img
# # 3. regional img attends to corresponding txt
# # 4. regional img attends to itself
# # Initialize empty attention mask.
# regional_attention_mask = torch.zeros(
# (txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
# )
# for image_mask, t5_embedding_range in zip(
# regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
# ):
# # 1. txt attends to itself
# regional_attention_mask[
# t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
# ] = 1.0
# # 2. txt attends to corresponding regional img
# # Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
# fill_value = image_mask.view(1, img_seq_len) if image_mask is not None else 1.0
# regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = fill_value
# # 3. regional img attends to corresponding txt
# # Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
# fill_value = image_mask.view(img_seq_len, 1) if image_mask is not None else 1.0
# regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = fill_value
# # 4. regional img attends to itself
# # Allow unrestricted img self attention.
# regional_attention_mask[txt_seq_len:, txt_seq_len:] = 1.0
# # Convert attention mask to boolean.
# regional_attention_mask = regional_attention_mask > 0.5
# return regional_attention_mask
@classmethod
def _prepare_restricted_attn_mask(
cls,
regional_text_conditioning: FluxRegionalTextConditioning,
img_seq_len: int,
) -> torch.Tensor | None:
"""Prepare a 'restricted' attention mask. In this context, 'restricted' means that:
- img self-attention is only allowed within regions.
- img regions only attend to txt within their own region, not to global prompts.
"""
# Identify background region. I.e. the region that is not covered by any region masks.
background_region_mask: None | torch.Tensor = None
for image_mask in regional_text_conditioning.image_masks:
if image_mask is not None:
if background_region_mask is None:
background_region_mask = torch.ones_like(image_mask)
background_region_mask *= 1 - image_mask
if background_region_mask is None:
# There are no region masks, short-circuit and return None.
# TODO(ryand): We could restrict txt-txt attention across multiple global prompts, but this would
# is a rare use case and would make the logic here significantly more complicated.
return None
device = TorchDevice.choose_torch_device()
# Infer txt_seq_len from the t5_embeddings tensor.
txt_seq_len = regional_text_conditioning.t5_embeddings.shape[1]
# In the attention blocks, the txt seq and img seq are concatenated and then attention is applied.
# Concatenation happens in the following order: [txt_seq, img_seq].
# There are 4 portions of the attention mask to consider as we prepare it:
# 1. txt attends to itself
# 2. txt attends to corresponding regional img
# 3. regional img attends to corresponding txt
# 4. regional img attends to itself
# Initialize empty attention mask.
regional_attention_mask = torch.zeros(
(txt_seq_len + img_seq_len, txt_seq_len + img_seq_len), device=device, dtype=torch.float16
)
for image_mask, t5_embedding_range in zip(
regional_text_conditioning.image_masks, regional_text_conditioning.t5_embedding_ranges, strict=True
):
# 1. txt attends to itself
regional_attention_mask[
t5_embedding_range.start : t5_embedding_range.end, t5_embedding_range.start : t5_embedding_range.end
] = 1.0
if image_mask is not None:
# 2. txt attends to corresponding regional img
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
image_mask.view(1, img_seq_len)
)
# 3. regional img attends to corresponding txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
image_mask.view(img_seq_len, 1)
)
# 4. regional img attends to itself
image_mask = image_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += image_mask @ image_mask.T
else:
# We don't allow attention between non-background image regions and global prompts. This helps to ensure
# that regions focus on their local prompts. We do, however, allow attention between background regions
# and global prompts. If we didn't do this, then the background regions would not attend to any txt
# embeddings, which we found experimentally to cause artifacts.
# 2. global txt attends to background region
# Note that we reshape to (1, img_seq_len) to ensure broadcasting works as desired.
regional_attention_mask[t5_embedding_range.start : t5_embedding_range.end, txt_seq_len:] = (
background_region_mask.view(1, img_seq_len)
)
# 3. background region attends to global txt
# Note that we reshape to (img_seq_len, 1) to ensure broadcasting works as desired.
regional_attention_mask[txt_seq_len:, t5_embedding_range.start : t5_embedding_range.end] = (
background_region_mask.view(img_seq_len, 1)
)
# Allow background regions to attend to themselves.
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(img_seq_len, 1)
regional_attention_mask[txt_seq_len:, txt_seq_len:] += background_region_mask.view(1, img_seq_len)
# Convert attention mask to boolean.
regional_attention_mask = regional_attention_mask > 0.5
return regional_attention_mask
@classmethod
def _concat_regional_text_conditioning(
cls,
text_conditionings: list[FluxTextConditioning],
) -> FluxRegionalTextConditioning:
"""Concatenate regional text conditioning data into a single conditioning tensor (with associated masks)."""
concat_t5_embeddings: list[torch.Tensor] = []
concat_t5_embedding_ranges: list[Range] = []
image_masks: list[torch.Tensor | None] = []
# Choose global CLIP embedding.
# Use the first global prompt's CLIP embedding as the global CLIP embedding. If there is no global prompt, use
# the first prompt's CLIP embedding.
global_clip_embedding: torch.Tensor = text_conditionings[0].clip_embeddings
for text_conditioning in text_conditionings:
if text_conditioning.mask is None:
global_clip_embedding = text_conditioning.clip_embeddings
break
cur_t5_embedding_len = 0
for text_conditioning in text_conditionings:
concat_t5_embeddings.append(text_conditioning.t5_embeddings)
concat_t5_embedding_ranges.append(
Range(start=cur_t5_embedding_len, end=cur_t5_embedding_len + text_conditioning.t5_embeddings.shape[1])
)
image_masks.append(text_conditioning.mask)
cur_t5_embedding_len += text_conditioning.t5_embeddings.shape[1]
t5_embeddings = torch.cat(concat_t5_embeddings, dim=1)
# Initialize the txt_ids tensor.
pos_bs, pos_t5_seq_len, _ = t5_embeddings.shape
t5_txt_ids = torch.zeros(
pos_bs, pos_t5_seq_len, 3, dtype=t5_embeddings.dtype, device=TorchDevice.choose_torch_device()
)
return FluxRegionalTextConditioning(
t5_embeddings=t5_embeddings,
clip_embeddings=global_clip_embedding,
t5_txt_ids=t5_txt_ids,
image_masks=image_masks,
t5_embedding_ranges=concat_t5_embedding_ranges,
)
@staticmethod
def preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], packed_height: int, packed_width: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
packed_height and packed_width are the target height and width of the mask in the 'packed' latent space.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, packed_height * packed_width).
"""
if mask is None:
return torch.ones((1, 1, packed_height * packed_width), dtype=dtype, device=device)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(packed_height, packed_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
# Flatten the height and width dimensions into a single image_seq_len dimension.
return resized_mask.flatten(start_dim=2)

View File

@@ -5,10 +5,10 @@ from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Tensor | None = None) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = rearrange(x, "B H L D -> B L (H D)")
return x

View File

@@ -5,7 +5,11 @@ from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.custom_block_processor import CustomDoubleStreamBlockProcessor
from invokeai.backend.flux.custom_block_processor import (
CustomDoubleStreamBlockProcessor,
CustomSingleStreamBlockProcessor,
)
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
@@ -95,6 +99,7 @@ class Flux(nn.Module):
controlnet_double_block_residuals: list[Tensor] | None,
controlnet_single_block_residuals: list[Tensor] | None,
ip_adapter_extensions: list[XLabsIPAdapterExtension],
regional_prompting_extension: RegionalPromptingExtension,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -117,7 +122,6 @@ class Flux(nn.Module):
assert len(controlnet_double_block_residuals) == len(self.double_blocks)
for block_index, block in enumerate(self.double_blocks):
assert isinstance(block, DoubleStreamBlock)
img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
@@ -128,6 +132,7 @@ class Flux(nn.Module):
vec=vec,
pe=pe,
ip_adapter_extensions=ip_adapter_extensions,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_double_block_residuals is not None:
@@ -140,7 +145,17 @@ class Flux(nn.Module):
assert len(controlnet_single_block_residuals) == len(self.single_blocks)
for block_index, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
assert isinstance(block, SingleStreamBlock)
img = CustomSingleStreamBlockProcessor.custom_single_block_forward(
timestep_index=timestep_index,
total_num_timesteps=total_num_timesteps,
block_index=block_index,
block=block,
img=img,
vec=vec,
pe=pe,
regional_prompting_extension=regional_prompting_extension,
)
if controlnet_single_block_residuals is not None:
img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index]

View File

@@ -1,32 +1,53 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool):
super().__init__()
self.max_length = max_length
self.is_clip = is_clip
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
self.tokenizer = tokenizer
self.hf_module = encoder
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
def forward(self, text: list[str], valid_seq_lens: list[int]) -> Tensor:
"""Encode text into a tensor.
Args:
text: A list of text prompts to encode.
valid_seq_lens: A list of valid sequence lengths. The shortest valid sequence length that can contain the
text will be used. If the largest valid sequence length cannot contain the text, the encoding will be
truncated.
"""
valid_seq_lens = sorted(valid_seq_lens)
# Perform initial encoding with the maximum valid sequence length.
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
max_length=max(valid_seq_lens),
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
# Find selected_seq_len, the minimum valid sequence length that can contain all of the input tokens.
seq_len: int = batch_encoding["length"][0].item()
selected_seq_len = valid_seq_lens[-1]
for len in valid_seq_lens:
if len >= seq_len:
selected_seq_len = len
break
input_ids = batch_encoding["input_ids"][..., :selected_seq_len]
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
input_ids=input_ids.to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)

View File

@@ -0,0 +1,36 @@
from dataclasses import dataclass
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import Range
@dataclass
class FluxTextConditioning:
t5_embeddings: torch.Tensor
clip_embeddings: torch.Tensor
# If mask is None, the prompt is a global prompt.
mask: torch.Tensor | None
@dataclass
class FluxRegionalTextConditioning:
# Concatenated text embeddings.
# Shape: (1, concatenated_txt_seq_len, 4096)
t5_embeddings: torch.Tensor
# Shape: (1, concatenated_txt_seq_len, 3)
t5_txt_ids: torch.Tensor
# Global CLIP embeddings.
# Shape: (1, 768)
clip_embeddings: torch.Tensor
# A binary mask indicating the regions of the image that the prompt should be applied to. If None, the prompt is a
# global prompt.
# image_masks[i] is the mask for the ith prompt.
# image_masks[i] has shape (1, image_seq_len) and dtype torch.bool.
image_masks: list[torch.Tensor | None]
# List of ranges that represent the embedding ranges for each mask.
# t5_embedding_ranges[i] contains the range of the t5 embeddings that correspond to image_masks[i].
t5_embedding_ranges: list[Range]

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -469,7 +469,7 @@ class ModelProbe(object):
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
@@ -485,6 +485,7 @@ MODEL_NAME_TO_PREPROCESSOR = {
"lineart anime": "lineart_anime_image_processor",
"lineart_anime": "lineart_anime_image_processor",
"lineart": "lineart_image_processor",
"soft": "hed_image_processor",
"softedge": "hed_image_processor",
"hed": "hed_image_processor",
"shuffle": "content_shuffle_image_processor",

View File

@@ -44,7 +44,7 @@ def _fast_safetensors_reader(path: str) -> Dict[str, torch.Tensor]:
return checkpoint
def read_checkpoint_meta(path: Union[str, Path], scan: bool = False) -> Dict[str, torch.Tensor]:
def read_checkpoint_meta(path: Union[str, Path], scan: bool = True) -> Dict[str, torch.Tensor]:
if str(path).endswith(".safetensors"):
try:
path_str = path.as_posix() if isinstance(path, Path) else path
@@ -55,7 +55,7 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = False) -> Dict[str
else:
if scan:
scan_result = scan_file_path(path)
if scan_result.infected_files != 0:
if scan_result.infected_files != 0 or scan_result.scan_err:
raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.')
if str(path).endswith(".gguf"):
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function

View File

@@ -58,7 +58,7 @@
"@dagrejs/dagre": "^1.1.4",
"@dagrejs/graphlib": "^2.2.4",
"@fontsource-variable/inter": "^5.1.0",
"@invoke-ai/ui-library": "^0.0.43",
"@invoke-ai/ui-library": "^0.0.44",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",

View File

@@ -24,8 +24,8 @@ dependencies:
specifier: ^5.1.0
version: 5.1.0
'@invoke-ai/ui-library':
specifier: ^0.0.43
version: 0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
specifier: ^0.0.44
version: 0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1)
'@nanostores/react':
specifier: ^0.7.3
version: 0.7.3(nanostores@0.11.3)(react@18.3.1)
@@ -515,8 +515,8 @@ packages:
resolution: {integrity: sha512-MV6D4VLRIHr4PkW4zMyqfrNS1mPlCTiCXwvYGtDFQYr+xHFfonhAuf9WjsSc0nyp2m0OdkSLnzmVKkZFLo25Tg==}
dev: false
/@chakra-ui/anatomy@2.3.4:
resolution: {integrity: sha512-fFIYN7L276gw0Q7/ikMMlZxP7mvnjRaWJ7f3Jsf9VtDOi6eAYIBRrhQe6+SZ0PGmoOkRaBc7gSE5oeIbgFFyrw==}
/@chakra-ui/anatomy@2.3.5:
resolution: {integrity: sha512-3im33cUOxCbISjaBlINE2u8BOwJSCdzpjCX0H+0JxK2xz26UaVA5xeI3NYHUoxDnr/QIrgfrllGxS0szYwOcyg==}
dev: false
/@chakra-ui/breakpoint-utils@2.0.8:
@@ -573,12 +573,12 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/hooks@2.4.2(react@18.3.1):
resolution: {integrity: sha512-LRKiVE1oA7afT5tbbSKAy7Uas2xFHE6IkrQdbhWCHmkHBUtPvjQQDgwtnd4IRZPmoEfNGwoJ/MQpwOM/NRTTwA==}
/@chakra-ui/hooks@2.4.3(react@18.3.1):
resolution: {integrity: sha512-Sr2zsoTZw3p7HbrUy4aLpTIkE2XXUelAUgg3NGwMzrmx75bE0qVyiuuTFOuyEzGxYVV2Fe8QtcKKilm6RwzTGg==}
peerDependencies:
react: '>=18'
dependencies:
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@zag-js/element-size': 0.31.1
copy-to-clipboard: 3.3.3
framesync: 6.1.2
@@ -596,13 +596,13 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1):
/@chakra-ui/icons@2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1):
resolution: {integrity: sha512-l5QdBgwrAg3Sc2BRqtNkJpfuLw/pWRDwwT58J6c4PqQT6wzXxyNa8Q0PForu1ltB5qEiFb1kxr/F/HO1EwNa6g==}
peerDependencies:
'@chakra-ui/react': '>=2.0.0'
react: '>=18'
dependencies:
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
react: 18.3.1
dev: false
@@ -825,8 +825,8 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/react@2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-TfIHTqTlxTHYJZBtpiR5EZasPUrLYKJxdbHkdOJb5G1OQ+2c5kKl5XA7c2pMtsEptzb7KxAAIB62t3hxdfWp1w==}
/@chakra-ui/react@2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-XyRWnuZ1Uw7Mlj5pKUGO5/WhnIHP/EOrpy6lGZC1yWlkd0eIfIpYMZ1ALTZx4KPEdbBaes48dgiMT2ROCqLhkA==}
peerDependencies:
'@emotion/react': '>=11'
'@emotion/styled': '>=11'
@@ -834,10 +834,10 @@ packages:
react: '>=18'
react-dom: '>=18'
dependencies:
'@chakra-ui/hooks': 2.4.2(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme': 3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/hooks': 2.4.3(react@18.3.1)
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme': 3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@popperjs/core': 2.11.8
@@ -868,10 +868,10 @@ packages:
react: 18.3.1
dev: false
/@chakra-ui/styled-system@2.11.2(react@18.3.1):
resolution: {integrity: sha512-y++z2Uop+hjfZX9mbH88F1ikazPv32asD2er56zMJBemUAzweXnHTpiCQbluEDSUDhqmghVZAdb+5L4XLbsRxA==}
/@chakra-ui/styled-system@2.12.1(react@18.3.1):
resolution: {integrity: sha512-DQph1nDiCPtgze7nDe0a36530ByXb5VpPosKGyWMvKocVeZJcDtYG6XM0+V5a0wKuFBXsViBBRIFUTiUesJAcg==}
dependencies:
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
csstype: 3.1.3
transitivePeerDependencies:
- react
@@ -915,14 +915,14 @@ packages:
color2k: 2.0.3
dev: false
/@chakra-ui/theme-tools@2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-3UhKPyzKbV3l/bg1iQN9PBvffYp+EBOoYMUaeTUdieQRPFzo2jbYR0lNCxqv8h5aGM/k54nCHU2M/GStyi9F2A==}
/@chakra-ui/theme-tools@2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-K/VJd0QcnKik7m+qZTkggqNLep6+MPUu8IP5TUpHsnSM5R/RVjsJIR7gO8IZVAIMIGLLTIhGshHxeMekqv6LcQ==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.0.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
color2k: 2.0.3
transitivePeerDependencies:
- react
@@ -948,15 +948,15 @@ packages:
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
dev: false
/@chakra-ui/theme@3.4.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1):
resolution: {integrity: sha512-ZwFBLfiMC3URwaO31ONXoKH9k0TX0OW3UjdPF3EQkQpYyrk/fm36GkkzajjtdpWEd7rzDLRsQjPmvwNaSoNDtg==}
/@chakra-ui/theme@3.4.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1):
resolution: {integrity: sha512-pfewthgZTFNUYeUwGvhPQO/FTIyf375cFV1AT8N1y0aJiw4KDe7YTGm7p0aFy4AwAjH2ydMgeEx/lua4tx8qyQ==}
peerDependencies:
'@chakra-ui/styled-system': '>=2.8.0'
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/utils': 2.2.2(react@18.3.1)
'@chakra-ui/anatomy': 2.3.5
'@chakra-ui/styled-system': 2.12.1(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.7(@chakra-ui/styled-system@2.12.1)(react@18.3.1)
'@chakra-ui/utils': 2.2.3(react@18.3.1)
transitivePeerDependencies:
- react
dev: false
@@ -981,8 +981,8 @@ packages:
lodash.mergewith: 4.6.2
dev: false
/@chakra-ui/utils@2.2.2(react@18.3.1):
resolution: {integrity: sha512-jUPLT0JzRMWxpdzH6c+t0YMJYrvc5CLericgITV3zDSXblkfx3DsYXqU11DJTSGZI9dUKzM1Wd0Wswn4eJwvFQ==}
/@chakra-ui/utils@2.2.3(react@18.3.1):
resolution: {integrity: sha512-cldoCQuexZ6e07/9hWHKD4l1QXXlM1Nax9tuQOBvVf/EgwNZt3nZu8zZRDFlhAOKCTQDkmpLTTu+eXXjChNQOw==}
peerDependencies:
react: '>=16.8.0'
dependencies:
@@ -1675,20 +1675,20 @@ packages:
prettier: 3.3.3
dev: true
/@invoke-ai/ui-library@0.0.43(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-t3fPYyks07ue3dEBPJuTHbeDLnDckDCOrtvc07mMDbLOnlPEZ0StaeiNGH+oO8qLzAuMAlSTdswgHfzTc2MmPw==}
/@invoke-ai/ui-library@0.0.44(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.1.0)(@types/react@18.3.11)(i18next@23.15.1)(react-dom@18.3.1)(react@18.3.1):
resolution: {integrity: sha512-PDseHmdr8oi8cmrpx3UwIYHn4NduAJX2R0pM0pyM54xrCMPMgYiCbC/eOs8Gt4fBc2ziiPZ9UGoW4evnE3YJsg==}
peerDependencies:
'@fontsource-variable/inter': ^5.0.16
react: ^18.2.0
react-dom: ^18.2.0
dependencies:
'@chakra-ui/anatomy': 2.3.4
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.2)(react@18.3.1)
'@chakra-ui/anatomy': 2.2.2
'@chakra-ui/icons': 2.2.4(@chakra-ui/react@2.10.4)(react@18.3.1)
'@chakra-ui/layout': 2.3.1(@chakra-ui/system@2.6.2)(react@18.3.1)
'@chakra-ui/portal': 2.1.0(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/react': 2.10.2(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.11.2(react@18.3.1)
'@chakra-ui/theme-tools': 2.2.6(@chakra-ui/styled-system@2.11.2)(react@18.3.1)
'@chakra-ui/react': 2.10.4(@emotion/react@11.13.3)(@emotion/styled@11.13.0)(@types/react@18.3.11)(framer-motion@11.10.0)(react-dom@18.3.1)(react@18.3.1)
'@chakra-ui/styled-system': 2.9.2
'@chakra-ui/theme-tools': 2.1.2(@chakra-ui/styled-system@2.9.2)
'@emotion/react': 11.13.3(@types/react@18.3.11)(react@18.3.1)
'@emotion/styled': 11.13.0(@emotion/react@11.13.3)(@types/react@18.3.11)(react@18.3.1)
'@fontsource-variable/inter': 5.1.0

View File

@@ -1443,7 +1443,6 @@
"deleteReferenceImage": "Referenzbild löschen",
"referenceImage": "Referenzbild",
"opacity": "Opazität",
"resetCanvas": "Leinwand zurücksetzen",
"removeBookmark": "Lesezeichen entfernen",
"rasterLayer": "Raster-Ebene",
"rasterLayers_withCount_visible": "Raster-Ebenen ({{count}})",

View File

@@ -176,7 +176,8 @@
"reset": "Reset",
"none": "None",
"new": "New",
"generating": "Generating"
"generating": "Generating",
"warnings": "Warnings"
},
"hrf": {
"hrf": "High Resolution Fix",
@@ -263,7 +264,8 @@
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations"
"generations_other": "Generations",
"batchSize": "Batch Size"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@@ -977,6 +979,8 @@
"zoomOutNodes": "Zoom Out",
"betaDesc": "This invocation is in beta. Until it is stable, it may have breaking changes during app updates. We plan to support this invocation long-term.",
"prototypeDesc": "This invocation is a prototype. It may have breaking changes during app updates and may be removed at any time.",
"internalDesc": "This invocation is used internally by Invoke. It may have breaking changes during app updates and may be removed at any time.",
"specialDesc": "This invocation some special handling in the app. For example, Batch nodes are used to queue multiple graphs from a single workflow.",
"imageAccessError": "Unable to find image {{image_name}}, resetting to default",
"boardAccessError": "Unable to find board {{board_id}}, resetting to default",
"modelAccessError": "Unable to find model {{key}}, resetting to default",
@@ -1037,6 +1041,7 @@
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected",
"layer": {
"unsupportedModel": "layer not supported for selected base model",
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, bbox width is {{width}}",
@@ -1047,7 +1052,10 @@
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
"rgNegativePromptNotSupported": "negative prompt not supported for selected base model",
"rgReferenceImagesNotSupported": "regional reference images not supported for selected base model",
"rgAutoNegativeNotSupported": "auto-negative not supported for selected base model",
"emptyLayer": "empty layer"
}
},
"maskBlur": "Mask Blur",
@@ -1316,8 +1324,9 @@
"controlNetBeginEnd": {
"heading": "Begin / End Step Percentage",
"paragraphs": [
"The part of the of the denoising process that will have the Control Adapter applied.",
"Generally, Control Adapters applied at the start of the process guide composition, and Control Adapters applied at the end guide details."
"This setting determines which portion of the denoising (generation) process incorporates the guidance from this layer.",
"• Start Step (%): Specifies when to begin applying the guidance from this layer during the generation process.",
"• End Step (%): Specifies when to stop applying this layer's guidance and revert general guidance from the model and other settings."
]
},
"controlNetControlMode": {
@@ -1335,13 +1344,15 @@
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
},
"ipAdapterMethod": {
"heading": "Method",
"paragraphs": ["Method by which to apply the current IP Adapter."]
"heading": "Mode",
"paragraphs": ["The mode defines how the reference image will guide the generation process."]
},
"controlNetWeight": {
"heading": "Weight",
"paragraphs": [
"Weight of the Control Adapter. Higher weight will lead to larger impacts on the final image."
"Adjusts how strongly the layer influences the generation process",
"• Higher Weight (.75-2): Creates a more significant impact on the final result.",
"• Lower Weight (0-.75): Creates a smaller impact on the final result."
]
},
"dynamicPrompts": {
@@ -1663,7 +1674,6 @@
"newControlLayerError": "Problem Creating Control Layer",
"newRasterLayerOk": "Created Raster Layer",
"newRasterLayerError": "Problem Creating Raster Layer",
"newFromImage": "New from Image",
"pullBboxIntoLayerOk": "Bbox Pulled Into Layer",
"pullBboxIntoLayerError": "Problem Pulling BBox Into Layer",
"pullBboxIntoReferenceImageOk": "Bbox Pulled Into ReferenceImage",
@@ -1676,7 +1686,7 @@
"mergingLayers": "Merging layers",
"clearHistory": "Clear History",
"bboxOverlay": "Show Bbox Overlay",
"resetCanvas": "Reset Canvas",
"newSession": "New Session",
"clearCaches": "Clear Caches",
"recalculateRects": "Recalculate Rects",
"clipToBbox": "Clip Strokes to Bbox",
@@ -1708,8 +1718,10 @@
"controlLayer": "Control Layer",
"inpaintMask": "Inpaint Mask",
"regionalGuidance": "Regional Guidance",
"canvasAsRasterLayer": "$t(controlLayers.canvas) as $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) as $t(controlLayers.controlLayer)",
"asRasterLayer": "As $t(controlLayers.rasterLayer)",
"asRasterLayerResize": "As $t(controlLayers.rasterLayer) (Resize)",
"asControlLayer": "As $t(controlLayers.controlLayer)",
"asControlLayerResize": "As $t(controlLayers.controlLayer) (Resize)",
"referenceImage": "Reference Image",
"regionalReferenceImage": "Regional Reference Image",
"globalReferenceImage": "Global Reference Image",
@@ -1777,6 +1789,7 @@
"pullBboxIntoLayer": "Pull Bbox into Layer",
"pullBboxIntoReferenceImage": "Pull Bbox into Reference Image",
"showProgressOnCanvas": "Show Progress on Canvas",
"useImage": "Use Image",
"prompt": "Prompt",
"negativePrompt": "Negative Prompt",
"beginEndStepPercentShort": "Begin/End %",
@@ -1785,8 +1798,11 @@
"newGallerySessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be sent to the gallery.",
"newCanvasSession": "New Canvas Session",
"newCanvasSessionDesc": "This will clear the canvas and all settings except for your model selection. Generations will be staged on the canvas.",
"resetCanvasLayers": "Reset Canvas Layers",
"resetGenerationSettings": "Reset Generation Settings",
"replaceCurrent": "Replace Current",
"controlLayerEmptyState": "<UploadButton>Upload an image</UploadButton>, drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer, or draw on the canvas to get started.",
"referenceImageEmptyState": "<UploadButton>Upload an image</UploadButton> or drag an image from the <GalleryButton>gallery</GalleryButton> onto this layer to get started.",
"controlMode": {
"controlMode": "Control Mode",
"balanced": "Balanced (recommended)",
@@ -1795,10 +1811,13 @@
"megaControl": "Mega Control"
},
"ipAdapterMethod": {
"ipAdapterMethod": "IP Adapter Method",
"ipAdapterMethod": "Mode",
"full": "Style and Composition",
"fullDesc": "Applies visual style (colors, textures) & composition (layout, structure).",
"style": "Style Only",
"composition": "Composition Only"
"styleDesc": "Applies visual style (colors, textures) without considering its layout.",
"composition": "Composition Only",
"compositionDesc": "Replicates layout & structure while ignoring the reference's style."
},
"fill": {
"fillColor": "Fill Color",
@@ -2114,11 +2133,73 @@
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"items": [
"<StrongComponent>SD 3.5</StrongComponent>: Support for SD 3.5 Medium and Large.",
"<StrongComponent>Canvas</StrongComponent>: Streamlined Control Layer processing and improved default Control settings."
"<StrongComponent>Workflows</StrongComponent>: Run a workflow for a collection of images using the new <StrongComponent>Image Batch</StrongComponent> node.",
"<StrongComponent>FLUX</StrongComponent>: Support for XLabs IP Adapter v2."
],
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",
"watchUiUpdatesOverview": "Watch UI Updates Overview"
},
"supportVideos": {
"supportVideos": "Support Videos",
"gettingStarted": "Getting Started",
"controlCanvas": "Control Canvas",
"watch": "Watch",
"studioSessionsDesc1": "Check out the <StudioSessionsPlaylistLink /> for Invoke deep dives.",
"studioSessionsDesc2": "Join our <DiscordLink /> to participate in the live sessions and ask questions. Sessions are uploaded to the playlist the following week.",
"videos": {
"creatingYourFirstImage": {
"title": "Creating Your First Image",
"description": "Introduction to creating an image from scratch using Invoke's tools."
},
"usingControlLayersAndReferenceGuides": {
"title": "Using Control Layers and Reference Guides",
"description": "Learn how to guide your image creation with control layers and reference images."
},
"understandingImageToImageAndDenoising": {
"title": "Understanding Image-to-Image and Denoising",
"description": "Overview of image-to-image transformations and denoising in Invoke."
},
"exploringAIModelsAndConceptAdapters": {
"title": "Exploring AI Models and Concept Adapters",
"description": "Dive into AI models and how to use concept adapters for creative control."
},
"creatingAndComposingOnInvokesControlCanvas": {
"title": "Creating and Composing on Invoke's Control Canvas",
"description": "Learn to compose images using Invoke's control canvas."
},
"upscaling": {
"title": "Upscaling",
"description": "How to upscale images with Invoke's tools to enhance resolution."
},
"howDoIGenerateAndSaveToTheGallery": {
"title": "How Do I Generate and Save to the Gallery?",
"description": "Steps to generate and save images to the gallery."
},
"howDoIEditOnTheCanvas": {
"title": "How Do I Edit on the Canvas?",
"description": "Guide to editing images directly on the canvas."
},
"howDoIDoImageToImageTransformation": {
"title": "How Do I Do Image-to-Image Transformation?",
"description": "Tutorial on performing image-to-image transformations in Invoke."
},
"howDoIUseControlNetsAndControlLayers": {
"title": "How Do I Use Control Nets and Control Layers?",
"description": "Learn to apply control layers and controlnets to your images."
},
"howDoIUseGlobalIPAdaptersAndReferenceImages": {
"title": "How Do I Use Global IP Adapters and Reference Images?",
"description": "Introduction to adding reference images and global IP adapters."
},
"howDoIUseInpaintMasks": {
"title": "How Do I Use Inpaint Masks?",
"description": "How to apply inpaint masks for image correction and variation."
},
"howDoIOutpaint": {
"title": "How Do I Outpaint?",
"description": "Guide to outpainting beyond the original image borders."
}
}
}
}

View File

@@ -1985,7 +1985,6 @@
"inpaintMask_withCount_many": "Remplir les masques",
"inpaintMask_withCount_other": "Remplir les masques",
"newImg2ImgCanvasFromImage": "Nouvelle Img2Img à partir de l'image",
"resetCanvas": "Réinitialiser la Toile",
"bboxOverlay": "Afficher la superposition des Bounding Box",
"moveToFront": "Déplacer vers le permier plan",
"moveToBack": "Déplacer vers l'arrière plan",
@@ -2034,7 +2033,6 @@
"help2": "Commencez par un point <Bold>Inclure</Bold> au sein de l'objet cible. Ajoutez d'autres points pour affiner la sélection. Moins de points produisent généralement de meilleurs résultats.",
"help3": "Inversez la sélection pour sélectionner tout sauf l'objet cible."
},
"canvasAsControlLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.controlLayer)",
"convertRegionalGuidanceTo": "Convertir $t(controlLayers.regionalGuidance) vers",
"copyRasterLayerTo": "Copier $t(controlLayers.rasterLayer) vers",
"newControlLayer": "Nouveau $t(controlLayers.controlLayer)",
@@ -2044,8 +2042,7 @@
"convertInpaintMaskTo": "Convertir $t(controlLayers.inpaintMask) vers",
"copyControlLayerTo": "Copier $t(controlLayers.controlLayer) vers",
"newInpaintMask": "Nouveau $t(controlLayers.inpaintMask)",
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) en tant que $t(controlLayers.rasterLayer)"
"newRasterLayer": "Nouveau $t(controlLayers.rasterLayer)"
},
"upscaling": {
"exceedsMaxSizeDetails": "La limite maximale d'agrandissement est de {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Veuillez essayer une image plus petite ou réduire votre sélection d'échelle.",

View File

@@ -1750,7 +1750,6 @@
"newRegionalReferenceImageError": "Problema nella creazione dell'immagine di riferimento regionale",
"newControlLayerOk": "Livello di controllo creato",
"bboxOverlay": "Mostra sovrapposizione riquadro",
"resetCanvas": "Reimposta la tela",
"outputOnlyMaskedRegions": "In uscita solo le regioni generate",
"enableAutoNegative": "Abilita Auto Negativo",
"disableAutoNegative": "Disabilita Auto Negativo",
@@ -2036,8 +2035,6 @@
"convertControlLayerTo": "Converti $t(controlLayers.controlLayer) in",
"newRasterLayer": "Nuovo $t(controlLayers.rasterLayer)",
"newRegionalGuidance": "Nuova $t(controlLayers.regionalGuidance)",
"canvasAsRasterLayer": "$t(controlLayers.canvas) come $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "$t(controlLayers.canvas) come $t(controlLayers.controlLayer)",
"convertInpaintMaskTo": "Converti $t(controlLayers.inpaintMask) in",
"copyRegionalGuidanceTo": "Copia $t(controlLayers.regionalGuidance) in",
"convertRasterLayerTo": "Converti $t(controlLayers.rasterLayer) in",
@@ -2046,7 +2043,6 @@
"newInpaintMask": "Nuova $t(controlLayers.inpaintMask)",
"replaceCurrent": "Sostituisci corrente",
"mergeDown": "Unire in basso",
"newFromImage": "Nuovo da Immagine",
"mergingLayers": "Unione dei livelli",
"controlLayerEmptyState": "<UploadButton>Carica un'immagine</UploadButton>, trascina un'immagine dalla <GalleryButton>galleria</GalleryButton> su questo livello oppure disegna sulla tela per iniziare."
},

View File

@@ -637,7 +637,6 @@
"cancel": "キャンセル",
"reset": "リセット"
},
"resetCanvas": "キャンバスをリセット",
"cropLayerToBbox": "レイヤーをバウンディングボックスでクロップ",
"convertInpaintMaskTo": "$t(controlLayers.inpaintMask)を変換",
"regionalGuidance_withCount_other": "領域ガイダンス",

View File

@@ -1660,7 +1660,6 @@
"clearCaches": "Очистить кэши",
"recalculateRects": "Пересчитать прямоугольники",
"saveBboxToGallery": "Сохранить рамку в галерею",
"resetCanvas": "Сбросить холст",
"canvas": "Холст",
"global": "Глобальный",
"newGlobalReferenceImageError": "Проблема с созданием глобального эталонного изображения",

View File

@@ -1601,11 +1601,9 @@
"bookmark": "Đánh Dấu Để Đổi Nhanh",
"saveCanvasToGallery": "Lưu Canvas Vào Thư Viện",
"cropLayerToBbox": "Xén Layer Vào Hộp Giới Hạn",
"newFromImage": "Mới Từ Ảnh",
"mergeDown": "Gộp Xuống",
"mergeVisibleError": "Lỗi khi gộp layer",
"bboxOverlay": "Hiển Thị Lớp Phủ Trên Hộp Giới Hạn",
"resetCanvas": "Khởi Động Lại Canvas",
"duplicate": "Nhân Bản",
"moveForward": "Chuyển Lên Đầu",
"fitBboxToLayers": "Xếp Vừa Hộp Giới Hạn Vào Layer",
@@ -1643,7 +1641,6 @@
"replaceCurrent": "Thay Đổi Cái Hiện Tại",
"controlLayers_withCount_visible": "Layer Điều Khiển Được ({{count}})",
"hidingType": "Ẩn {{type}}",
"canvasAsRasterLayer": "Biến $t(controlLayers.canvas) Thành $t(controlLayers.rasterLayer)",
"newImg2ImgCanvasFromImage": "Chuyển Đổi Ảnh Sang Ảnh Mới Từ Ảnh",
"copyToClipboard": "Sao Chép Vào Clipboard",
"logDebugInfo": "Thông Tin Log Gỡ Lỗi",
@@ -1670,7 +1667,6 @@
"sendToGallery": "Chuyển Tới Thư Viện",
"unlocked": "Mở Khoá",
"addReferenceImage": "Thêm $t(controlLayers.referenceImage)",
"canvasAsControlLayer": "Biến $t(controlLayers.canvas) Thành $t(controlLayers.controlLayer)",
"sendingToCanvas": "Chuyển Ảnh Tạo Sinh Vào Canvas",
"sendingToGallery": "Chuyển Ảnh Tạo Sinh Vào Thư Viện",
"viewProgressOnCanvas": "Xem quá trình xử lý và ảnh đầu ra trong <Btn>Canvas</Btn>.",

View File

@@ -1720,8 +1720,6 @@
"sendToCanvas": "发送到画布",
"controlLayers_withCount_visible": "控制图层({{count}} 个)",
"rasterLayers_withCount_visible": "栅格图层({{count}} 个)",
"canvasAsRasterLayer": "将 $t(controlLayers.canvas) 转换为 $t(controlLayers.rasterLayer)",
"canvasAsControlLayer": "将 $t(controlLayers.canvas) 转换为 $t(controlLayers.controlLayer)",
"convertRegionalGuidanceTo": "将 $t(controlLayers.regionalGuidance) 转换为",
"newInpaintMask": "新建 $t(controlLayers.inpaintMask)",
"regionIsEmpty": "选定区域为空",
@@ -1760,11 +1758,9 @@
"pullBboxIntoLayerError": "将边界框导入图层时出现问题",
"pullBboxIntoLayerOk": "边界框已导入到图层",
"sendToCanvasDesc": "按下“Invoke”按钮会将您的工作进度暂存到画布上。",
"resetCanvas": "重置画布",
"sendToGallery": "发送到图库",
"sendToGalleryDesc": "按下“Invoke”键会生成并保存一张唯一的图像到您的图库中。",
"rasterLayer_withCount_other": "栅格图层",
"newFromImage": "从图像创建新内容",
"mergeDown": "向下合并",
"clearCaches": "清除缓存",
"recalculateRects": "重新计算矩形",

View File

@@ -27,6 +27,7 @@ import { ClearQueueConfirmationsAlertDialog } from 'features/queue/components/Cl
import { DeleteStylePresetDialog } from 'features/stylePresets/components/DeleteStylePresetDialog';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import RefreshAfterResetModal from 'features/system/components/SettingsModal/RefreshAfterResetModal';
import { VideosModal } from 'features/system/components/VideosModal/VideosModal';
import { configChanged } from 'features/system/store/configSlice';
import { selectLanguage } from 'features/system/store/systemSelectors';
import { AppContent } from 'features/ui/components/AppContent';
@@ -108,6 +109,7 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
<NewCanvasSessionDialog />
<ImageContextMenu />
<FullscreenDropzone />
<VideosModal />
</ErrorBoundary>
);
};

View File

@@ -1,3 +1,4 @@
import { useStore } from '@nanostores/react';
import { useAppStore } from 'app/store/storeHooks';
import { useAssertSingleton } from 'common/hooks/useAssertSingleton';
import { withResultAsync } from 'common/util/result';
@@ -9,6 +10,7 @@ import { imageDTOToImageObject } from 'features/controlLayers/store/util';
import { $imageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { sentImageToCanvas } from 'features/gallery/store/actions';
import { parseAndRecallAllMetadata } from 'features/metadata/util/handlers';
import { $hasTemplates } from 'features/nodes/store/nodesSlice';
import { $isWorkflowListMenuIsOpen } from 'features/nodes/store/workflowListMenu';
import { $isStylePresetsMenuOpen, activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { toast } from 'features/toast/toast';
@@ -51,6 +53,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
const { t } = useTranslation();
// Use a ref to ensure that we only perform the action once
const didInit = useRef(false);
const didParseOpenAPISchema = useStore($hasTemplates);
const store = useAppStore();
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
@@ -174,7 +177,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
);
useEffect(() => {
if (didInit.current || !action) {
if (didInit.current || !action || !didParseOpenAPISchema) {
return;
}
@@ -187,22 +190,29 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
case 'selectStylePreset':
handleSelectStylePreset(action.data.stylePresetId);
break;
case 'sendToCanvas':
handleSendToCanvas(action.data.imageName);
break;
case 'useAllParameters':
handleUseAllMetadata(action.data.imageName);
break;
case 'goToDestination':
handleGoToDestination(action.data.destination);
break;
default:
break;
}
}, [
handleSendToCanvas,
handleUseAllMetadata,
action,
handleLoadWorkflow,
handleSelectStylePreset,
handleGoToDestination,
handleLoadWorkflow,
didParseOpenAPISchema,
]);
};

View File

@@ -4,7 +4,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
import { buildAdHocPostProcessingGraph } from 'features/nodes/util/graph/buildAdHocPostProcessingGraph';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO } from 'services/api/types';
import type { JsonObject } from 'type-fest';
@@ -32,9 +32,7 @@ export const addAdHocPostProcessingRequestedListener = (startAppListening: AppSt
try {
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, enqueueMutationFixedCacheKeyOptions)
);
const enqueueResult = await req.unwrap();

View File

@@ -13,7 +13,7 @@ import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGr
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { toast } from 'features/toast/toast';
import { serializeError } from 'serialize-error';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { Invocation } from 'services/api/types';
import { assert, AssertionError } from 'tsafe';
import type { JsonObject } from 'type-fest';
@@ -91,9 +91,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
}
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, {
fixedCacheKey: 'enqueueBatch',
})
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, enqueueMutationFixedCacheKeyOptions)
);
req.reset();

View File

@@ -6,7 +6,7 @@ import { isImageFieldCollectionInputInstance } from 'features/nodes/types/field'
import { isInvocationNode } from 'features/nodes/types/invocation';
import { buildNodesGraph } from 'features/nodes/util/graph/buildNodesGraph';
import { buildWorkflowWithValidation } from 'features/nodes/util/workflow/buildWorkflow';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { Batch, BatchConfig } from 'services/api/types';
const log = logger('workflows');
@@ -70,11 +70,7 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
prepend: action.payload.prepend,
};
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
try {
await req.unwrap();
} finally {

View File

@@ -2,7 +2,7 @@ import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildMultidiffusionUpscaleGraph } from 'features/nodes/util/graph/buildMultidiffusionUpscaleGraph';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening) => {
startAppListening({
@@ -16,11 +16,7 @@ export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening)
const batchConfig = prepareLinearUIBatch(state, g, prepend, noise, posCond, 'upscaling', 'gallery');
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
fixedCacheKey: 'enqueueBatch',
})
);
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
try {
await req.unwrap();
} finally {

View File

@@ -25,9 +25,7 @@ export type AppFeature =
| 'invocationCache'
| 'bulkDownload'
| 'starterModels'
| 'hfToken'
| 'invocationProgressAlert';
| 'hfToken';
/**
* A disable-able Stable Diffusion feature
*/

View File

@@ -0,0 +1,42 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import {
useNewCanvasSession,
useNewGallerySession,
} from 'features/controlLayers/components/NewSessionConfirmationAlertDialog';
import { canvasReset } from 'features/controlLayers/store/actions';
import { paramsReset } from 'features/controlLayers/store/paramsSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowsCounterClockwiseBold, PiFilePlusBold } from 'react-icons/pi';
export const SessionMenuItems = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { newGallerySessionWithDialog } = useNewGallerySession();
const { newCanvasSessionWithDialog } = useNewCanvasSession();
const resetCanvasLayers = useCallback(() => {
dispatch(canvasReset());
}, [dispatch]);
const resetGenerationSettings = useCallback(() => {
dispatch(paramsReset());
}, [dispatch]);
return (
<>
<MenuItem icon={<PiFilePlusBold />} onClick={newGallerySessionWithDialog}>
{t('controlLayers.newGallerySession')}
</MenuItem>
<MenuItem icon={<PiFilePlusBold />} onClick={newCanvasSessionWithDialog}>
{t('controlLayers.newCanvasSession')}
</MenuItem>
<MenuItem icon={<PiArrowsCounterClockwiseBold />} onClick={resetCanvasLayers}>
{t('controlLayers.resetCanvasLayers')}
</MenuItem>
<MenuItem icon={<PiArrowsCounterClockwiseBold />} onClick={resetGenerationSettings}>
{t('controlLayers.resetGenerationSettings')}
</MenuItem>
</>
);
});
SessionMenuItems.displayName = 'SessionMenuItems';

View File

@@ -46,7 +46,7 @@ const REGION_TARGETS: Record<FocusRegionName, Set<HTMLElement>> = {
/**
* The currently-focused region or `null` if no region is focused.
*/
const $focusedRegion = atom<FocusRegionName | null>(null);
export const $focusedRegion = atom<FocusRegionName | null>(null);
/**
* A map of focus regions to atoms that indicate if that region is focused.

View File

@@ -1,387 +0,0 @@
import { useStore } from '@nanostores/react';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { $true } from 'app/store/nanostores/util';
import { useAppSelector } from 'app/store/storeHooks';
import { useCanvasManagerSafe } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { $templates } from 'features/nodes/store/nodesSlice';
import { selectNodesSlice } from 'features/nodes/store/selectors';
import type { Templates } from 'features/nodes/store/types';
import { selectWorkflowSettingsSlice } from 'features/nodes/store/workflowSettingsSlice';
import { isImageFieldCollectionInputInstance, isImageFieldCollectionInputTemplate } from 'features/nodes/types/field';
import { isInvocationNode } from 'features/nodes/types/invocation';
import { selectUpscaleSlice } from 'features/parameters/store/upscaleSlice';
import { selectConfigSlice } from 'features/system/store/configSlice';
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import i18n from 'i18next';
import { forEach, upperFirst } from 'lodash-es';
import { useMemo } from 'react';
import { getConnectedEdges } from 'reactflow';
import { $isConnected } from 'services/events/stores';
const LAYER_TYPE_TO_TKEY = {
reference_image: 'controlLayers.referenceImage',
inpaint_mask: 'controlLayers.inpaintMask',
regional_guidance: 'controlLayers.regionalGuidance',
raster_layer: 'controlLayers.rasterLayer',
control_layer: 'controlLayers.controlLayer',
} as const;
const createSelector = (arg: {
templates: Templates;
isConnected: boolean;
canvasIsFiltering: boolean;
canvasIsTransforming: boolean;
canvasIsRasterizing: boolean;
canvasIsCompositing: boolean;
canvasIsSelectingObject: boolean;
}) => {
const {
templates,
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
} = arg;
return createMemoizedSelector(
[
selectSystemSlice,
selectNodesSlice,
selectWorkflowSettingsSlice,
selectDynamicPromptsSlice,
selectCanvasSlice,
selectParamsSlice,
selectUpscaleSlice,
selectConfigSlice,
selectActiveTab,
],
(system, nodes, workflowSettings, dynamicPrompts, canvas, params, upscale, config, activeTabName) => {
const { bbox } = canvas;
const { model, positivePrompt } = params;
const reasons: { prefix?: string; content: string }[] = [];
// Cannot generate if not connected
if (!isConnected) {
reasons.push({ content: i18n.t('parameters.invoke.systemDisconnected') });
}
if (activeTabName === 'workflows') {
if (workflowSettings.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push({ content: i18n.t('parameters.invoke.noNodesInGraph') });
}
nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
const nodeTemplate = templates[node.data.type];
if (!nodeTemplate) {
// Node type not found
reasons.push({ content: i18n.t('parameters.invoke.missingNodeTemplate') });
return;
}
const connectedEdges = getConnectedEdges([node], nodes.edges);
forEach(node.data.inputs, (field) => {
const fieldTemplate = nodeTemplate.inputs[field.name];
const hasConnection = connectedEdges.some(
(edge) => edge.target === node.id && edge.targetHandle === field.name
);
if (!fieldTemplate) {
reasons.push({ content: i18n.t('parameters.invoke.missingFieldTemplate') });
return;
}
const baseTKeyOptions = {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
};
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push({ content: i18n.t('parameters.invoke.missingInputForField', baseTKeyOptions) });
return;
} else if (
field.value &&
isImageFieldCollectionInputInstance(field) &&
isImageFieldCollectionInputTemplate(fieldTemplate)
) {
// Image collections may have min or max items to validate
// TODO(psyche): generalize this to other collection types
if (fieldTemplate.minItems !== undefined && fieldTemplate.minItems > 0 && field.value.length === 0) {
reasons.push({ content: i18n.t('parameters.invoke.collectionEmpty', baseTKeyOptions) });
return;
}
if (fieldTemplate.minItems !== undefined && field.value.length < fieldTemplate.minItems) {
reasons.push({
content: i18n.t('parameters.invoke.collectionTooFewItems', {
...baseTKeyOptions,
size: field.value.length,
minItems: fieldTemplate.minItems,
}),
});
return;
}
if (fieldTemplate.maxItems !== undefined && field.value.length > fieldTemplate.maxItems) {
reasons.push({
content: i18n.t('parameters.invoke.collectionTooManyItems', {
...baseTKeyOptions,
size: field.value.length,
maxItems: fieldTemplate.maxItems,
}),
});
return;
}
}
});
});
}
} else if (activeTabName === 'upscaling') {
if (!upscale.upscaleInitialImage) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleInitialImage') });
} else if (config.maxUpscaleDimension) {
const { width, height } = upscale.upscaleInitialImage;
const { scale } = upscale;
const maxPixels = config.maxUpscaleDimension ** 2;
const upscaledPixels = width * scale * height * scale;
if (upscaledPixels > maxPixels) {
reasons.push({ content: i18n.t('upscaling.exceedsMaxSize') });
}
}
if (model && !['sd-1', 'sdxl'].includes(model.base)) {
// When we are using an upsupported model, do not add the other warnings
reasons.push({ content: i18n.t('upscaling.incompatibleBaseModel') });
} else {
// Using a compatible model, add all warnings
if (!model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
if (!upscale.upscaleModel) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleModel') });
}
if (!upscale.tileControlnetModel) {
reasons.push({ content: i18n.t('upscaling.missingTileControlNetModel') });
}
}
} else {
if (canvasIsFiltering) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsFiltering') });
}
if (canvasIsTransforming) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsTransforming') });
}
if (canvasIsRasterizing) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsRasterizing') });
}
if (canvasIsCompositing) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsCompositing') });
}
if (canvasIsSelectingObject) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsSelectingObject') });
}
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push({ content: i18n.t('parameters.invoke.noPrompts') });
}
if (!model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
if (model?.base === 'flux') {
if (!params.t5EncoderModel) {
reasons.push({ content: i18n.t('parameters.invoke.noT5EncoderModelSelected') });
}
if (!params.clipEmbedModel) {
reasons.push({ content: i18n.t('parameters.invoke.noCLIPEmbedModelSelected') });
}
if (!params.fluxVAE) {
reasons.push({ content: i18n.t('parameters.invoke.noFLUXVAEModelSelected') });
}
if (bbox.scaleMethod === 'none') {
if (bbox.rect.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleBboxWidth', { width: bbox.rect.width }),
});
}
if (bbox.rect.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleBboxHeight', { height: bbox.rect.height }),
});
}
} else {
if (bbox.scaledSize.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleScaledBboxWidth', {
width: bbox.scaledSize.width,
}),
});
}
if (bbox.scaledSize.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleScaledBboxHeight', {
height: bbox.scaledSize.height,
}),
});
}
}
}
canvas.controlLayers.entities
.filter((controlLayer) => controlLayer.isEnabled)
.forEach((controlLayer, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY['control_layer']);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have model
if (!controlLayer.controlAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoModelSelected'));
}
// Model base must match
if (controlLayer.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
canvas.referenceImages.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have model
if (!entity.ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (entity.ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!entity.ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
canvas.regionalGuidance.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
// Must have a region
if (entity.objects.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoRegion'));
}
// Must have at least 1 prompt or IP Adapter
if (
entity.positivePrompt === null &&
entity.negativePrompt === null &&
entity.referenceImages.length === 0
) {
problems.push(i18n.t('parameters.invoke.layer.rgNoPromptsOrIPAdapters'));
}
entity.referenceImages.forEach(({ ipAdapter }) => {
// Must have model
if (!ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
});
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
canvas.rasterLayers.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
}
return { isReady: !reasons.length, reasons };
}
);
};
export const useIsReadyToEnqueue = () => {
const templates = useStore($templates);
const isConnected = useStore($isConnected);
const canvasManager = useCanvasManagerSafe();
const canvasIsFiltering = useStore(canvasManager?.stateApi.$isFiltering ?? $true);
const canvasIsTransforming = useStore(canvasManager?.stateApi.$isTransforming ?? $true);
const canvasIsRasterizing = useStore(canvasManager?.stateApi.$isRasterizing ?? $true);
const canvasIsSelectingObject = useStore(canvasManager?.stateApi.$isSegmenting ?? $true);
const canvasIsCompositing = useStore(canvasManager?.compositor.$isBusy ?? $true);
const selector = useMemo(
() =>
createSelector({
templates,
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
}),
[
templates,
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
]
);
const value = useAppSelector(selector);
return value;
};

View File

@@ -63,7 +63,7 @@ export const CanvasAddEntityButtons = memo(() => {
justifyContent="flex-start"
leftIcon={<PiPlusBold />}
onClick={addRegionalGuidance}
isDisabled={isFLUX || isSD3}
isDisabled={isSD3}
>
{t('controlLayers.regionalGuidance')}
</Button>

View File

@@ -2,7 +2,6 @@ import { Alert, AlertDescription, AlertIcon, AlertTitle } from '@invoke-ai/ui-li
import { useStore } from '@nanostores/react';
import { useAppSelector } from 'app/store/storeHooks';
import { useDeferredModelLoadingInvocationProgressMessage } from 'features/controlLayers/hooks/useDeferredModelLoadingInvocationProgressMessage';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { selectIsLocal } from 'features/system/store/configSlice';
import { selectSystemShouldShowInvocationProgressDetail } from 'features/system/store/systemSlice';
import { memo } from 'react';
@@ -44,20 +43,14 @@ const CanvasAlertsInvocationProgressContentCommercial = memo(() => {
CanvasAlertsInvocationProgressContentCommercial.displayName = 'CanvasAlertsInvocationProgressContentCommercial';
export const CanvasAlertsInvocationProgress = memo(() => {
const isProgressMessageAlertEnabled = useFeatureStatus('invocationProgressAlert');
const shouldShowInvocationProgressDetail = useAppSelector(selectSystemShouldShowInvocationProgressDetail);
const isLocal = useAppSelector(selectIsLocal);
// The alert is disabled at the system level
if (!isProgressMessageAlertEnabled) {
return null;
}
if (!isLocal) {
return <CanvasAlertsInvocationProgressContentCommercial />;
}
// The alert is disabled at the user level
// OSS user setting
if (!shouldShowInvocationProgressDetail) {
return null;
}

View File

@@ -49,7 +49,7 @@ export const EntityListGlobalActionBarAddLayerMenu = memo(() => {
<MenuItem icon={<PiPlusBold />} onClick={addInpaintMask}>
{t('controlLayers.inpaintMask')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance} isDisabled={isFLUX || isSD3}>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalGuidance} isDisabled={isSD3}>
{t('controlLayers.regionalGuidance')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addRegionalReferenceImage} isDisabled={isFLUX || isSD3}>

View File

@@ -1,8 +1,10 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import type { IPMethodV2 } from 'features/controlLayers/store/types';
import { isIPMethodV2 } from 'features/controlLayers/store/types';
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
@@ -14,13 +16,27 @@ type Props = {
export const IPAdapterMethod = memo(({ method, onChange }: Props) => {
const { t } = useTranslation();
const shouldShowModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const options: { label: string; value: IPMethodV2 }[] = useMemo(
() => [
{ label: t('controlLayers.ipAdapterMethod.full'), value: 'full' },
{ label: t('controlLayers.ipAdapterMethod.style'), value: 'style' },
{ label: t('controlLayers.ipAdapterMethod.composition'), value: 'composition' },
{
label: t('controlLayers.ipAdapterMethod.full'),
value: 'full',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.fullDesc') : undefined,
},
{
label: t('controlLayers.ipAdapterMethod.style'),
value: 'style',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.styleDesc') : undefined,
},
{
label: t('controlLayers.ipAdapterMethod.composition'),
value: 'composition',
description: shouldShowModelDescriptions ? t('controlLayers.ipAdapterMethod.compositionDesc') : undefined,
},
],
[t]
[t, shouldShowModelDescriptions]
);
const _onChange = useCallback<ComboboxOnChange>(
(v) => {

View File

@@ -5,6 +5,7 @@ import { BeginEndStepPct } from 'features/controlLayers/components/common/BeginE
import { CanvasEntitySettingsWrapper } from 'features/controlLayers/components/common/CanvasEntitySettingsWrapper';
import { Weight } from 'features/controlLayers/components/common/Weight';
import { IPAdapterMethod } from 'features/controlLayers/components/IPAdapter/IPAdapterMethod';
import { IPAdapterSettingsEmptyState } from 'features/controlLayers/components/IPAdapter/IPAdapterSettingsEmptyState';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoGlobalReferenceImage } from 'features/controlLayers/hooks/saveCanvasHooks';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
@@ -17,7 +18,7 @@ import {
referenceImageIPAdapterWeightChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectIsFLUX } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import { selectCanvasSlice, selectEntity, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier, CLIPVisionModelV2, IPMethodV2 } from 'features/controlLayers/store/types';
import type { SetGlobalReferenceImageDndTargetData } from 'features/dnd/dnd';
import { setGlobalReferenceImageDndTarget } from 'features/dnd/dnd';
@@ -35,7 +36,7 @@ const buildSelectIPAdapter = (entityIdentifier: CanvasEntityIdentifier<'referenc
(canvas) => selectEntityOrThrow(canvas, entityIdentifier, 'IPAdapterSettings').ipAdapter
);
export const IPAdapterSettings = memo(() => {
const IPAdapterSettingsContent = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext('reference_image');
@@ -134,4 +135,25 @@ export const IPAdapterSettings = memo(() => {
);
});
IPAdapterSettingsContent.displayName = 'IPAdapterSettingsContent';
const buildSelectIPAdapterHasImage = (entityIdentifier: CanvasEntityIdentifier<'reference_image'>) =>
createSelector(selectCanvasSlice, (canvas) => {
const referenceImage = selectEntity(canvas, entityIdentifier);
return !!referenceImage && referenceImage.ipAdapter.image !== null;
});
export const IPAdapterSettings = memo(() => {
const entityIdentifier = useEntityIdentifierContext('reference_image');
const selectIPAdapterHasImage = useMemo(() => buildSelectIPAdapterHasImage(entityIdentifier), [entityIdentifier]);
const hasImage = useAppSelector(selectIPAdapterHasImage);
if (!hasImage) {
return <IPAdapterSettingsEmptyState />;
}
return <IPAdapterSettingsContent />;
});
IPAdapterSettings.displayName = 'IPAdapterSettings';

View File

@@ -0,0 +1,64 @@
import { Button, Flex, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import type { SetGlobalReferenceImageDndTargetData } from 'features/dnd/dnd';
import { setGlobalReferenceImageDndTarget } from 'features/dnd/dnd';
import { DndDropTarget } from 'features/dnd/DndDropTarget';
import { setGlobalReferenceImage } from 'features/imageActions/actions';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo } from 'react';
import { Trans, useTranslation } from 'react-i18next';
import type { ImageDTO } from 'services/api/types';
export const IPAdapterSettingsEmptyState = memo(() => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext('reference_image');
const dispatch = useAppDispatch();
const isBusy = useCanvasIsBusy();
const onUpload = useCallback(
(imageDTO: ImageDTO) => {
setGlobalReferenceImage({ imageDTO, entityIdentifier, dispatch });
},
[dispatch, entityIdentifier]
);
const uploadApi = useImageUploadButton({ onUpload, allowMultiple: false });
const onClickGalleryButton = useCallback(() => {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [dispatch]);
const dndTargetData = useMemo<SetGlobalReferenceImageDndTargetData>(
() => setGlobalReferenceImageDndTarget.getData({ entityIdentifier }),
[entityIdentifier]
);
const components = useMemo(
() => ({
UploadButton: (
<Button isDisabled={isBusy} size="sm" variant="link" color="base.300" {...uploadApi.getUploadButtonProps()} />
),
GalleryButton: (
<Button onClick={onClickGalleryButton} isDisabled={isBusy} size="sm" variant="link" color="base.300" />
),
}),
[isBusy, onClickGalleryButton, uploadApi]
);
return (
<Flex flexDir="column" gap={3} position="relative" w="full" p={4}>
<Text textAlign="center" color="base.300">
<Trans i18nKey="controlLayers.referenceImageEmptyState" components={components} />
</Text>
<input {...uploadApi.getUploadInputProps()} />
<DndDropTarget
dndTarget={setGlobalReferenceImageDndTarget}
dndTargetData={dndTargetData}
label={t('controlLayers.useImage')}
isDisabled={isBusy}
/>
</Flex>
);
});
IPAdapterSettingsEmptyState.displayName = 'IPAdapterSettingsEmptyState';

View File

@@ -1,27 +1,28 @@
import { IconButton, Tooltip } from '@invoke-ai/ui-library';
import type { IconButtonProps } from '@invoke-ai/ui-library';
import { IconButton } from '@invoke-ai/ui-library';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleFill } from 'react-icons/pi';
import { PiXBold } from 'react-icons/pi';
type Props = {
type Props = Omit<IconButtonProps, 'aria-label'> & {
onDelete: () => void;
};
export const RegionalGuidanceDeletePromptButton = memo(({ onDelete }: Props) => {
export const RegionalGuidanceDeletePromptButton = memo(({ onDelete, ...rest }: Props) => {
const { t } = useTranslation();
return (
<Tooltip label={t('controlLayers.deletePrompt')}>
<IconButton
variant="link"
aria-label={t('controlLayers.deletePrompt')}
icon={<PiTrashSimpleFill />}
onClick={onDelete}
flexGrow={0}
size="sm"
p={0}
colorScheme="error"
/>
</Tooltip>
<IconButton
tooltip={t('common.delete')}
variant="link"
aria-label={t('common.delete')}
icon={<PiXBold />}
onClick={onDelete}
flexGrow={0}
size="sm"
p={0}
colorScheme="error"
{...rest}
/>
);
});

View File

@@ -6,6 +6,7 @@ import { Weight } from 'features/controlLayers/components/common/Weight';
import { IPAdapterImagePreview } from 'features/controlLayers/components/IPAdapter/IPAdapterImagePreview';
import { IPAdapterMethod } from 'features/controlLayers/components/IPAdapter/IPAdapterMethod';
import { IPAdapterModel } from 'features/controlLayers/components/IPAdapter/IPAdapterModel';
import { RegionalGuidanceIPAdapterSettingsEmptyState } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceIPAdapterSettingsEmptyState';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { usePullBboxIntoRegionalGuidanceReferenceImage } from 'features/controlLayers/hooks/saveCanvasHooks';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
@@ -19,12 +20,12 @@ import {
rgIPAdapterWeightChanged,
} from 'features/controlLayers/store/canvasSlice';
import { selectCanvasSlice, selectRegionalGuidanceReferenceImage } from 'features/controlLayers/store/selectors';
import type { CLIPVisionModelV2, IPMethodV2 } from 'features/controlLayers/store/types';
import type { CanvasEntityIdentifier, CLIPVisionModelV2, IPMethodV2 } from 'features/controlLayers/store/types';
import type { SetRegionalGuidanceReferenceImageDndTargetData } from 'features/dnd/dnd';
import { setRegionalGuidanceReferenceImageDndTarget } from 'features/dnd/dnd';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiBoundingBoxBold, PiTrashSimpleFill } from 'react-icons/pi';
import { PiBoundingBoxBold, PiXBold } from 'react-icons/pi';
import type { ImageDTO, IPAdapterModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
@@ -32,7 +33,7 @@ type Props = {
referenceImageId: string;
};
export const RegionalGuidanceIPAdapterSettings = memo(({ referenceImageId }: Props) => {
const RegionalGuidanceIPAdapterSettingsContent = memo(({ referenceImageId }: Props) => {
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const { t } = useTranslation();
const dispatch = useAppDispatch();
@@ -115,7 +116,7 @@ export const RegionalGuidanceIPAdapterSettings = memo(({ referenceImageId }: Pro
size="sm"
variant="link"
alignSelf="stretch"
icon={<PiTrashSimpleFill />}
icon={<PiXBold />}
tooltip={t('controlLayers.deleteReferenceImage')}
aria-label={t('controlLayers.deleteReferenceImage')}
onClick={onDeleteIPAdapter}
@@ -161,4 +162,31 @@ export const RegionalGuidanceIPAdapterSettings = memo(({ referenceImageId }: Pro
);
});
RegionalGuidanceIPAdapterSettingsContent.displayName = 'RegionalGuidanceIPAdapterSettingsContent';
const buildSelectIPAdapterHasImage = (
entityIdentifier: CanvasEntityIdentifier<'regional_guidance'>,
referenceImageId: string
) =>
createSelector(selectCanvasSlice, (canvas) => {
const referenceImage = selectRegionalGuidanceReferenceImage(canvas, entityIdentifier, referenceImageId);
return !!referenceImage && referenceImage.ipAdapter.image !== null;
});
export const RegionalGuidanceIPAdapterSettings = memo(({ referenceImageId }: Props) => {
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const selectIPAdapterHasImage = useMemo(
() => buildSelectIPAdapterHasImage(entityIdentifier, referenceImageId),
[entityIdentifier, referenceImageId]
);
const hasImage = useAppSelector(selectIPAdapterHasImage);
if (!hasImage) {
return <RegionalGuidanceIPAdapterSettingsEmptyState referenceImageId={referenceImageId} />;
}
return <RegionalGuidanceIPAdapterSettingsContent referenceImageId={referenceImageId} />;
});
RegionalGuidanceIPAdapterSettings.displayName = 'RegionalGuidanceIPAdapterSettings';

View File

@@ -0,0 +1,82 @@
import { Button, Flex, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useImageUploadButton } from 'common/hooks/useImageUploadButton';
import { RegionalGuidanceDeletePromptButton } from 'features/controlLayers/components/RegionalGuidance/RegionalGuidanceDeletePromptButton';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { rgIPAdapterDeleted } from 'features/controlLayers/store/canvasSlice';
import type { SetRegionalGuidanceReferenceImageDndTargetData } from 'features/dnd/dnd';
import { setRegionalGuidanceReferenceImageDndTarget } from 'features/dnd/dnd';
import { DndDropTarget } from 'features/dnd/DndDropTarget';
import { setRegionalGuidanceReferenceImage } from 'features/imageActions/actions';
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
import { memo, useCallback, useMemo } from 'react';
import { Trans, useTranslation } from 'react-i18next';
import type { ImageDTO } from 'services/api/types';
type Props = {
referenceImageId: string;
};
export const RegionalGuidanceIPAdapterSettingsEmptyState = memo(({ referenceImageId }: Props) => {
const { t } = useTranslation();
const entityIdentifier = useEntityIdentifierContext('regional_guidance');
const dispatch = useAppDispatch();
const isBusy = useCanvasIsBusy();
const onUpload = useCallback(
(imageDTO: ImageDTO) => {
setRegionalGuidanceReferenceImage({ imageDTO, entityIdentifier, referenceImageId, dispatch });
},
[dispatch, entityIdentifier, referenceImageId]
);
const uploadApi = useImageUploadButton({ onUpload, allowMultiple: false });
const onClickGalleryButton = useCallback(() => {
dispatch(activeTabCanvasRightPanelChanged('gallery'));
}, [dispatch]);
const onDeleteIPAdapter = useCallback(() => {
dispatch(rgIPAdapterDeleted({ entityIdentifier, referenceImageId }));
}, [dispatch, entityIdentifier, referenceImageId]);
const dndTargetData = useMemo<SetRegionalGuidanceReferenceImageDndTargetData>(
() =>
setRegionalGuidanceReferenceImageDndTarget.getData({
entityIdentifier,
referenceImageId,
}),
[entityIdentifier, referenceImageId]
);
return (
<Flex flexDir="column" gap={3} position="relative" w="full" p={4}>
<RegionalGuidanceDeletePromptButton onDelete={onDeleteIPAdapter} position="absolute" top={0} insetInlineEnd={0} />
<Text textAlign="center" color="base.300">
<Trans
i18nKey="controlLayers.referenceImageEmptyState"
components={{
UploadButton: (
<Button
isDisabled={isBusy}
size="sm"
variant="link"
color="base.300"
{...uploadApi.getUploadButtonProps()}
/>
),
GalleryButton: (
<Button onClick={onClickGalleryButton} isDisabled={isBusy} size="sm" variant="link" color="base.300" />
),
}}
/>
</Text>
<input {...uploadApi.getUploadInputProps()} />
<DndDropTarget
dndTarget={setRegionalGuidanceReferenceImageDndTarget}
dndTargetData={dndTargetData}
label={t('controlLayers.useImage')}
isDisabled={isBusy}
/>
</Flex>
);
});
RegionalGuidanceIPAdapterSettingsEmptyState.displayName = 'RegionalGuidanceIPAdapterSettingsEmptyState';

View File

@@ -1,4 +1,6 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { $authToken } from 'app/store/nanostores/authToken';
import { useAppSelector } from 'app/store/storeHooks';
import { withResultAsync } from 'common/util/result';
import { selectSelectedImage } from 'features/controlLayers/store/canvasStagingAreaSlice';
@@ -14,6 +16,7 @@ const TOAST_ID = 'SAVE_STAGING_AREA_IMAGE_TO_GALLERY';
export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const selectedImage = useAppSelector(selectSelectedImage);
const authToken = useStore($authToken);
const { t } = useTranslation();
@@ -26,7 +29,14 @@ export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
// the gallery without borking the canvas, which may need this image to exist.
const result = await withResultAsync(async () => {
// Download the image
const res = await fetch(selectedImage.imageDTO.image_url);
const requestOpts = authToken
? {
headers: {
Authorization: `Bearer ${authToken}`,
},
}
: {};
const res = await fetch(selectedImage.imageDTO.image_url, requestOpts);
const blob = await res.blob();
// Create a new file with the same name, which we will upload
const file = new File([blob], `copy_of_${selectedImage.imageDTO.image_name}`, { type: 'image/png' });
@@ -56,7 +66,7 @@ export const StagingAreaToolbarSaveSelectedToGalleryButton = memo(() => {
status: 'error',
});
}
}, [autoAddBoardId, selectedImage, t]);
}, [autoAddBoardId, selectedImage, t, authToken]);
return (
<IconButton

View File

@@ -4,8 +4,8 @@ import { CanvasSettingsPopover } from 'features/controlLayers/components/Setting
import { ToolColorPicker } from 'features/controlLayers/components/Tool/ToolFillColorPicker';
import { ToolSettings } from 'features/controlLayers/components/Tool/ToolSettings';
import { CanvasToolbarFitBboxToLayersButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarFitBboxToLayersButton';
import { CanvasToolbarNewSessionMenuButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarNewSessionMenuButton';
import { CanvasToolbarRedoButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarRedoButton';
import { CanvasToolbarResetCanvasButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarResetCanvasButton';
import { CanvasToolbarResetViewButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarResetViewButton';
import { CanvasToolbarSaveToGalleryButton } from 'features/controlLayers/components/Toolbar/CanvasToolbarSaveToGalleryButton';
import { CanvasToolbarScale } from 'features/controlLayers/components/Toolbar/CanvasToolbarScale';
@@ -43,7 +43,7 @@ export const CanvasToolbar = memo(() => {
<CanvasToolbarSaveToGalleryButton />
<CanvasToolbarUndoButton />
<CanvasToolbarRedoButton />
<CanvasToolbarResetCanvasButton />
<CanvasToolbarNewSessionMenuButton />
<CanvasSettingsPopover />
</Flex>
</Flex>

View File

@@ -0,0 +1,25 @@
import { IconButton, Menu, MenuButton, MenuList } from '@invoke-ai/ui-library';
import { SessionMenuItems } from 'common/components/SessionMenuItems';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFilePlusBold } from 'react-icons/pi';
export const CanvasToolbarNewSessionMenuButton = memo(() => {
const { t } = useTranslation();
return (
<Menu placement="bottom-end">
<MenuButton
as={IconButton}
aria-label={t('controlLayers.newSession')}
icon={<PiFilePlusBold />}
variant="link"
alignSelf="stretch"
/>
<MenuList>
<SessionMenuItems />
</MenuList>
</Menu>
);
});
CanvasToolbarNewSessionMenuButton.displayName = 'CanvasToolbarNewSessionMenuButton';

View File

@@ -1,30 +0,0 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { canvasReset } from 'features/controlLayers/store/actions';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashBold } from 'react-icons/pi';
export const CanvasToolbarResetCanvasButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const canvasManager = useCanvasManager();
const onClick = useCallback(() => {
dispatch(canvasReset());
canvasManager.stage.fitLayersToStage();
}, [canvasManager.stage, dispatch]);
return (
<IconButton
aria-label={t('controlLayers.resetCanvas')}
tooltip={t('controlLayers.resetCanvas')}
onClick={onClick}
colorScheme="error"
icon={<PiTrashBold />}
variant="link"
alignSelf="stretch"
/>
);
});
CanvasToolbarResetCanvasButton.displayName = 'CanvasToolbarResetCanvasButton';

View File

@@ -1,6 +1,7 @@
import { Flex } from '@invoke-ai/ui-library';
import { CanvasEntityDeleteButton } from 'features/controlLayers/components/common/CanvasEntityDeleteButton';
import { CanvasEntityEnabledToggle } from 'features/controlLayers/components/common/CanvasEntityEnabledToggle';
import { CanvasEntityHeaderWarnings } from 'features/controlLayers/components/common/CanvasEntityHeaderWarnings';
import { CanvasEntityIsBookmarkedForQuickSwitchToggle } from 'features/controlLayers/components/common/CanvasEntityIsBookmarkedForQuickSwitchToggle';
import { CanvasEntityIsLockedToggle } from 'features/controlLayers/components/common/CanvasEntityIsLockedToggle';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
@@ -11,6 +12,7 @@ export const CanvasEntityHeaderCommonActions = memo(() => {
return (
<Flex alignSelf="stretch">
<CanvasEntityHeaderWarnings />
<CanvasEntityIsBookmarkedForQuickSwitchToggle />
{entityIdentifier.type !== 'reference_image' && <CanvasEntityIsLockedToggle />}
<CanvasEntityEnabledToggle />

View File

@@ -0,0 +1,101 @@
import { Flex, IconButton, ListItem, Text, UnorderedList } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { EMPTY_ARRAY } from 'app/store/constants';
import { useAppSelector } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { useEntityIsEnabled } from 'features/controlLayers/hooks/useEntityIsEnabled';
import { selectModel } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice, selectEntityOrThrow } from 'features/controlLayers/store/selectors';
import type { CanvasEntityIdentifier } from 'features/controlLayers/store/types';
import {
getControlLayerWarnings,
getGlobalReferenceImageWarnings,
getInpaintMaskWarnings,
getRasterLayerWarnings,
getRegionalGuidanceWarnings,
} from 'features/controlLayers/store/validators';
import type { TFunction } from 'i18next';
import { upperFirst } from 'lodash-es';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiWarningBold } from 'react-icons/pi';
import type { Equals } from 'tsafe';
import { assert } from 'tsafe';
const buildSelectWarnings = (entityIdentifier: CanvasEntityIdentifier, t: TFunction) => {
return createSelector(selectCanvasSlice, selectModel, (canvas, model) => {
// This component is used within a <CanvasEntityStateGate /> so we can safely assume that the entity exists.
// Should never throw.
const entity = selectEntityOrThrow(canvas, entityIdentifier, 'CanvasEntityHeaderWarnings');
let warnings: string[] = [];
const entityType = entity.type;
if (entityType === 'control_layer') {
warnings = getControlLayerWarnings(entity, model);
} else if (entityType === 'regional_guidance') {
warnings = getRegionalGuidanceWarnings(entity, model);
} else if (entityType === 'inpaint_mask') {
warnings = getInpaintMaskWarnings(entity, model);
} else if (entityType === 'raster_layer') {
warnings = getRasterLayerWarnings(entity, model);
} else if (entityType === 'reference_image') {
warnings = getGlobalReferenceImageWarnings(entity, model);
} else {
assert<Equals<typeof entityType, never>>(false, 'Unexpected entity type');
}
// Return a stable reference if there are no warnings
if (warnings.length === 0) {
return EMPTY_ARRAY;
}
return warnings.map((w) => t(w)).map(upperFirst);
});
};
export const CanvasEntityHeaderWarnings = memo(() => {
const entityIdentifier = useEntityIdentifierContext();
const { t } = useTranslation();
const isEnabled = useEntityIsEnabled(entityIdentifier);
const selectWarnings = useMemo(() => buildSelectWarnings(entityIdentifier, t), [entityIdentifier, t]);
const warnings = useAppSelector(selectWarnings);
if (warnings.length === 0) {
return null;
}
return (
// Using IconButton here bc it matches the styling of the actual buttons in the header without any fanagling, but
// it's not a button
<IconButton
as="span"
size="sm"
variant="link"
alignSelf="stretch"
aria-label="warnings"
tooltip={<TooltipContent warnings={warnings} />}
icon={<PiWarningBold />}
colorScheme="warning"
isDisabled={!isEnabled}
/>
);
});
CanvasEntityHeaderWarnings.displayName = 'CanvasEntityHeaderWarnings';
const TooltipContent = memo((props: { warnings: string[] }) => {
const { t } = useTranslation();
return (
<Flex flexDir="column">
<Text>{t('common.warnings')}:</Text>
<UnorderedList>
{props.warnings.map((warning, index) => (
<ListItem key={index}>{warning}</ListItem>
))}
</UnorderedList>
</Flex>
);
});
TooltipContent.displayName = 'TooltipContent';

View File

@@ -9,6 +9,7 @@ import {
getEmptyRect,
getKonvaNodeDebugAttrs,
getPrefixedId,
offsetCoord,
} from 'features/controlLayers/konva/util';
import { selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
import type { Coordinate, Rect, RectWithRotation } from 'features/controlLayers/store/types';
@@ -558,6 +559,25 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
this.manager.stateApi.setEntityPosition({ entityIdentifier: this.parent.entityIdentifier, position });
};
nudgeBy = (offset: Coordinate) => {
// We can immediately move both the proxy rect and layer objects so we don't have to wait for a redux round-trip,
// which can take up to 2ms in my testing. This is optional, but can make the interaction feel more responsive,
// especially on lower-end devices.
// Get the relative position of the layer's objects, according to konva
const position = this.konva.proxyRect.position();
// Offset the position by the nudge amount
const newPosition = offsetCoord(position, offset);
// Set the new position of the proxy rect - this doesn't move the layer objects - only the outline rect
this.konva.proxyRect.setAttrs(newPosition);
// Sync the layer objects with the proxy rect - moves them to the new position
this.syncObjectGroupWithProxyRect();
// Push to redux. The state change will do a round-trip, and eventually make it back to the canvas classes, at
// which point the layer will be moved to the new position.
this.manager.stateApi.moveEntityBy({ entityIdentifier: this.parent.entityIdentifier, offset });
this.log.trace({ offset }, 'Nudged');
};
syncObjectGroupWithProxyRect = () => {
this.parent.renderer.konva.objectGroup.setAttrs({
x: this.konva.proxyRect.x(),

View File

@@ -20,7 +20,8 @@ import {
controlLayerAdded,
entityBrushLineAdded,
entityEraserLineAdded,
entityMoved,
entityMovedBy,
entityMovedTo,
entityRasterized,
entityRectAdded,
entityReset,
@@ -40,7 +41,8 @@ import type {
EntityBrushLineAddedPayload,
EntityEraserLineAddedPayload,
EntityIdentifierPayload,
EntityMovedPayload,
EntityMovedByPayload,
EntityMovedToPayload,
EntityRasterizedPayload,
EntityRectAddedPayload,
Rect,
@@ -51,7 +53,7 @@ import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { atom, computed } from 'nanostores';
import type { Logger } from 'roarr';
import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig, ImageDTO, S } from 'services/api/types';
import { QueueError } from 'services/events/errors';
import type { Param0 } from 'tsafe';
@@ -139,8 +141,15 @@ export class CanvasStateApiModule extends CanvasModuleBase {
/**
* Updates an entity's position, pushing state to redux.
*/
setEntityPosition = (arg: EntityMovedPayload) => {
this.store.dispatch(entityMoved(arg));
setEntityPosition = (arg: EntityMovedToPayload) => {
this.store.dispatch(entityMovedTo(arg));
};
/**
* Moves an entity by the give offset, pushing state to redux.
*/
moveEntityBy = (arg: EntityMovedByPayload) => {
this.store.dispatch(entityMovedBy(arg));
};
/**
@@ -402,7 +411,7 @@ export class CanvasStateApiModule extends CanvasModuleBase {
queueApi.endpoints.enqueueBatch.initiate(batch, {
// Use the same cache key for all enqueueBatch requests, so that all consumers of this query get the same status
// updates.
fixedCacheKey: 'enqueueBatch',
...enqueueMutationFixedCacheKeyOptions,
// We do not need RTK to track this request in the store
track: false,
})

View File

@@ -1,9 +1,24 @@
import { $focusedRegion } from 'common/hooks/focus';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase';
import type { CanvasToolModule } from 'features/controlLayers/konva/CanvasTool/CanvasToolModule';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import type { Coordinate } from 'features/controlLayers/store/types';
import type { Logger } from 'roarr';
type CanvasMoveToolModuleConfig = {
/**
* The number of pixels to nudge the entity by when moving with the arrow keys.
*/
NUDGE_PX: number;
};
const DEFAULT_CONFIG: CanvasMoveToolModuleConfig = {
NUDGE_PX: 1,
};
type NudgeKey = 'ArrowLeft' | 'ArrowRight' | 'ArrowUp' | 'ArrowDown';
export class CanvasMoveToolModule extends CanvasModuleBase {
readonly type = 'move_tool';
readonly id: string;
@@ -12,6 +27,9 @@ export class CanvasMoveToolModule extends CanvasModuleBase {
readonly manager: CanvasManager;
readonly log: Logger;
config: CanvasMoveToolModuleConfig = DEFAULT_CONFIG;
nudgeOffsets: Record<NudgeKey, Coordinate>;
constructor(parent: CanvasToolModule) {
super();
this.id = getPrefixedId(this.type);
@@ -19,8 +37,18 @@ export class CanvasMoveToolModule extends CanvasModuleBase {
this.manager = this.parent.manager;
this.path = this.manager.buildPath(this);
this.log = this.manager.buildLogger(this);
this.log.debug('Creating module');
this.nudgeOffsets = {
ArrowLeft: { x: -this.config.NUDGE_PX, y: 0 },
ArrowRight: { x: this.config.NUDGE_PX, y: 0 },
ArrowUp: { x: 0, y: -this.config.NUDGE_PX },
ArrowDown: { x: 0, y: this.config.NUDGE_PX },
};
}
isNudgeKey(key: string): key is NudgeKey {
return this.nudgeOffsets[key as NudgeKey] !== undefined;
}
syncCursorStyle = () => {
@@ -32,4 +60,45 @@ export class CanvasMoveToolModule extends CanvasModuleBase {
selectedEntity.transformer.syncCursorStyle();
}
};
nudge = (nudgeKey: NudgeKey) => {
if ($focusedRegion.get() !== 'canvas') {
return;
}
const selectedEntity = this.manager.stateApi.getSelectedEntityAdapter();
if (!selectedEntity) {
return;
}
if (
selectedEntity.$isDisabled.get() ||
selectedEntity.$isEmpty.get() ||
selectedEntity.$isLocked.get() ||
selectedEntity.$isEntityTypeHidden.get()
) {
return;
}
const isBusy = this.manager.$isBusy.get();
const isMoveToolSelected = this.parent.$tool.get() === 'move';
const isThisEntityTransforming = this.manager.stateApi.$transformingAdapter.get() === selectedEntity;
if (isBusy) {
// When the canvas is busy, we shouldn't allow nudging - except when the canvas is busy transforming the selected
// entity. Nudging is allowed during transformation, regardless of the selected tool.
if (!isThisEntityTransforming) {
return;
}
} else {
// Otherwise, the canvas is not busy, and we should only allow nudging when the move tool is selected.
if (!isMoveToolSelected) {
return;
}
}
const offset = this.nudgeOffsets[nudgeKey];
selectedEntity.transformer.nudgeBy(offset);
};
}

View File

@@ -528,11 +528,16 @@ export class CanvasToolModule extends CanvasModuleBase {
};
onKeyDown = (e: KeyboardEvent) => {
if (e.repeat) {
if (e.target instanceof HTMLInputElement || e.target instanceof HTMLTextAreaElement) {
return;
}
if (e.target instanceof HTMLInputElement || e.target instanceof HTMLTextAreaElement) {
// Handle nudging - must be before repeat, as we may want to catch repeating keys
if (this.tools.move.isNudgeKey(e.key)) {
this.tools.move.nudge(e.key);
}
if (e.repeat) {
return;
}

View File

@@ -18,6 +18,7 @@ import type {
CanvasEntityType,
CanvasInpaintMaskState,
CanvasMetadata,
EntityMovedByPayload,
FillStyle,
RegionalGuidanceReferenceImageState,
RgbColor,
@@ -51,7 +52,7 @@ import type {
EntityBrushLineAddedPayload,
EntityEraserLineAddedPayload,
EntityIdentifierPayload,
EntityMovedPayload,
EntityMovedToPayload,
EntityRasterizedPayload,
EntityRectAddedPayload,
IPMethodV2,
@@ -1201,7 +1202,7 @@ export const canvasSlice = createSlice({
}
entity.fill.style = style;
},
entityMoved: (state, action: PayloadAction<EntityMovedPayload>) => {
entityMovedTo: (state, action: PayloadAction<EntityMovedToPayload>) => {
const { entityIdentifier, position } = action.payload;
const entity = selectEntity(state, entityIdentifier);
if (!entity) {
@@ -1212,6 +1213,20 @@ export const canvasSlice = createSlice({
entity.position = position;
}
},
entityMovedBy: (state, action: PayloadAction<EntityMovedByPayload>) => {
const { entityIdentifier, offset } = action.payload;
const entity = selectEntity(state, entityIdentifier);
if (!entity) {
return;
}
if (!isRenderableEntity(entity)) {
return;
}
entity.position.x += offset.x;
entity.position.y += offset.y;
},
entityRasterized: (state, action: PayloadAction<EntityRasterizedPayload>) => {
const { entityIdentifier, imageObject, position, replaceObjects, isSelected } = action.payload;
const entity = selectEntity(state, entityIdentifier);
@@ -1505,7 +1520,8 @@ export const {
entityIsLockedToggled,
entityFillColorChanged,
entityFillStyleChanged,
entityMoved,
entityMovedTo,
entityMovedBy,
entityDuplicated,
entityRasterized,
entityBrushLineAdded,

View File

@@ -83,7 +83,7 @@ const initialState: ParamsState = {
canvasCoherenceMode: 'Gaussian Blur',
canvasCoherenceMinDenoise: 0,
canvasCoherenceEdgeSize: 16,
infillMethod: 'patchmatch',
infillMethod: 'lama',
infillTileSize: 32,
infillPatchmatchDownscaleSize: 1,
infillColorValue: { r: 0, g: 0, b: 0, a: 1 },
@@ -273,24 +273,27 @@ export const paramsSlice = createSlice({
setCanvasCoherenceMinDenoise: (state, action: PayloadAction<number>) => {
state.canvasCoherenceMinDenoise = action.payload;
},
paramsReset: (state) => resetState(state),
},
extraReducers(builder) {
builder.addMatcher(newSessionRequested, (state) => {
// When a new session is requested, we need to keep the current model selections, plus dependent state
// like VAE precision. Everything else gets reset to default.
const newState = deepClone(initialState);
newState.model = state.model;
newState.vae = state.vae;
newState.fluxVAE = state.fluxVAE;
newState.vaePrecision = state.vaePrecision;
newState.t5EncoderModel = state.t5EncoderModel;
newState.clipEmbedModel = state.clipEmbedModel;
newState.refinerModel = state.refinerModel;
return newState;
});
builder.addMatcher(newSessionRequested, (state) => resetState(state));
},
});
const resetState = (state: ParamsState): ParamsState => {
// When a new session is requested, we need to keep the current model selections, plus dependent state
// like VAE precision. Everything else gets reset to default.
const newState = deepClone(initialState);
newState.model = state.model;
newState.vae = state.vae;
newState.fluxVAE = state.fluxVAE;
newState.vaePrecision = state.vaePrecision;
newState.t5EncoderModel = state.t5EncoderModel;
newState.clipEmbedModel = state.clipEmbedModel;
newState.refinerModel = state.refinerModel;
return newState;
};
export const {
setInfillMethod,
setInfillTileSize,
@@ -334,6 +337,7 @@ export const {
setRefinerNegativeAestheticScore,
setRefinerStart,
modelChanged,
paramsReset,
} = paramsSlice.actions;
/* eslint-disable-next-line @typescript-eslint/no-explicit-any */

View File

@@ -439,7 +439,8 @@ export type EntityIdentifierPayload<
entityIdentifier: CanvasEntityIdentifier<U>;
} & T;
export type EntityMovedPayload = EntityIdentifierPayload<{ position: Coordinate }>;
export type EntityMovedToPayload = EntityIdentifierPayload<{ position: Coordinate }>;
export type EntityMovedByPayload = EntityIdentifierPayload<{ offset: Coordinate }>;
export type EntityBrushLineAddedPayload = EntityIdentifierPayload<{
brushLine: CanvasBrushLineState | CanvasBrushLineWithPressureState;
}>;

View File

@@ -0,0 +1,133 @@
import type {
CanvasControlLayerState,
CanvasInpaintMaskState,
CanvasRasterLayerState,
CanvasReferenceImageState,
CanvasRegionalGuidanceState,
} from 'features/controlLayers/store/types';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
export const getRegionalGuidanceWarnings = (
entity: CanvasRegionalGuidanceState,
model: ParameterModel | null
): string[] => {
const warnings: string[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state - skip other checks
warnings.push('parameters.invoke.layer.emptyLayer');
} else {
if (entity.positivePrompt === null && entity.negativePrompt === null && entity.referenceImages.length === 0) {
// Must have at least 1 prompt or IP Adapter
warnings.push('parameters.invoke.layer.rgNoPromptsOrIPAdapters');
}
if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push('parameters.invoke.layer.unsupportedModel');
} else if (model.base === 'flux') {
// Some features are not supported for flux models
if (entity.negativePrompt !== null) {
warnings.push('parameters.invoke.layer.rgNegativePromptNotSupported');
}
if (entity.referenceImages.length > 0) {
warnings.push('parameters.invoke.layer.rgReferenceImagesNotSupported');
}
if (entity.autoNegative) {
warnings.push('parameters.invoke.layer.rgAutoNegativeNotSupported');
}
} else {
entity.referenceImages.forEach(({ ipAdapter }) => {
if (!ipAdapter.model) {
// No model selected
warnings.push('parameters.invoke.layer.ipAdapterNoModelSelected');
} else if (ipAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push('parameters.invoke.layer.ipAdapterIncompatibleBaseModel');
}
if (!ipAdapter.image) {
// No image selected
warnings.push('parameters.invoke.layer.ipAdapterNoImageSelected');
}
});
}
}
}
return warnings;
};
export const getGlobalReferenceImageWarnings = (
entity: CanvasReferenceImageState,
model: ParameterModel | null
): string[] => {
const warnings: string[] = [];
if (!entity.ipAdapter.model) {
// No model selected
warnings.push('parameters.invoke.layer.ipAdapterNoModelSelected');
} else if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push('parameters.invoke.layer.unsupportedModel');
} else if (entity.ipAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push('parameters.invoke.layer.ipAdapterIncompatibleBaseModel');
}
}
if (!entity.ipAdapter.image) {
// No image selected
warnings.push('parameters.invoke.layer.ipAdapterNoImageSelected');
}
return warnings;
};
export const getControlLayerWarnings = (entity: CanvasControlLayerState, model: ParameterModel | null): string[] => {
const warnings: string[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state - skip other checks
warnings.push('parameters.invoke.layer.emptyLayer');
} else {
if (!entity.controlAdapter.model) {
// No model selected
warnings.push('parameters.invoke.layer.controlAdapterNoModelSelected');
} else if (model) {
if (model.base === 'sd-3' || model.base === 'sd-2') {
// Unsupported model architecture
warnings.push('parameters.invoke.layer.unsupportedModel');
} else if (entity.controlAdapter.model.base !== model.base) {
// Supported model architecture but doesn't match
warnings.push('parameters.invoke.layer.controlAdapterIncompatibleBaseModel');
}
}
}
return warnings;
};
export const getRasterLayerWarnings = (entity: CanvasRasterLayerState, _model: ParameterModel | null): string[] => {
const warnings: string[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state - skip other checks
warnings.push('parameters.invoke.layer.emptyLayer');
}
return warnings;
};
export const getInpaintMaskWarnings = (entity: CanvasInpaintMaskState, _model: ParameterModel | null): string[] => {
const warnings: string[] = [];
if (entity.objects.length === 0) {
// Layer is in empty state - skip other checks
warnings.push('parameters.invoke.layer.emptyLayer');
}
return warnings;
};

View File

@@ -7,7 +7,7 @@ const zSeedBehaviour = z.enum(['PER_ITERATION', 'PER_PROMPT']);
type SeedBehaviour = z.infer<typeof zSeedBehaviour>;
export const isSeedBehaviour = (v: unknown): v is SeedBehaviour => zSeedBehaviour.safeParse(v).success;
interface DynamicPromptsState {
export interface DynamicPromptsState {
_version: 1;
maxPrompts: number;
combinatorial: boolean;

View File

@@ -0,0 +1,110 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppStore } from 'app/store/nanostores/store';
import { useAppSelector } from 'app/store/storeHooks';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useCanvasIsBusy } from 'features/controlLayers/hooks/useCanvasIsBusy';
import { selectIsSD3 } from 'features/controlLayers/store/paramsSlice';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
import { newCanvasFromImage } from 'features/imageActions/actions';
import { toast } from 'features/toast/toast';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFileBold, PiPlusBold } from 'react-icons/pi';
export const ImageMenuItemNewCanvasFromImageSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const store = useAppStore();
const imageDTO = useImageDTOContext();
const imageViewer = useImageViewer();
const isBusy = useCanvasIsBusy();
const isSD3 = useAppSelector(selectIsSD3);
const onClickNewCanvasWithRasterLayerFromImage = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, withResize: false, type: 'raster_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewCanvasWithControlLayerFromImage = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, withResize: false, type: 'control_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewCanvasWithRasterLayerFromImageWithResize = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, withResize: true, type: 'raster_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewCanvasWithControlLayerFromImageWithResize = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, withResize: true, type: 'control_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiPlusBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.newCanvasFromImage')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem icon={<PiFileBold />} onClickCapture={onClickNewCanvasWithRasterLayerFromImage} isDisabled={isBusy}>
{t('controlLayers.asRasterLayer')}
</MenuItem>
<MenuItem
icon={<PiFileBold />}
onClickCapture={onClickNewCanvasWithRasterLayerFromImageWithResize}
isDisabled={isBusy}
>
{t('controlLayers.asRasterLayerResize')}
</MenuItem>
<MenuItem
icon={<PiFileBold />}
onClickCapture={onClickNewCanvasWithControlLayerFromImage}
isDisabled={isBusy || isSD3}
>
{t('controlLayers.asControlLayer')}
</MenuItem>
<MenuItem
icon={<PiFileBold />}
onClickCapture={onClickNewCanvasWithControlLayerFromImageWithResize}
isDisabled={isBusy || isSD3}
>
{t('controlLayers.asControlLayerResize')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ImageMenuItemNewCanvasFromImageSubMenu.displayName = 'ImageMenuItemNewCanvasFromImageSubMenu';

View File

@@ -8,14 +8,14 @@ import { selectIsFLUX, selectIsSD3 } from 'features/controlLayers/store/paramsSl
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
import { sentImageToCanvas } from 'features/gallery/store/actions';
import { createNewCanvasEntityFromImage, newCanvasFromImage } from 'features/imageActions/actions';
import { createNewCanvasEntityFromImage } from 'features/imageActions/actions';
import { toast } from 'features/toast/toast';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiFileBold, PiPlusBold } from 'react-icons/pi';
import { PiPlusBold } from 'react-icons/pi';
export const ImageMenuItemNewFromImageSubMenu = memo(() => {
export const ImageMenuItemNewLayerFromImageSubMenu = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const store = useAppStore();
@@ -25,30 +25,6 @@ export const ImageMenuItemNewFromImageSubMenu = memo(() => {
const isFLUX = useAppSelector(selectIsFLUX);
const isSD3 = useAppSelector(selectIsSD3);
const onClickNewCanvasWithRasterLayerFromImage = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, type: 'raster_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewCanvasWithControlLayerFromImage = useCallback(() => {
const { dispatch, getState } = store;
newCanvasFromImage({ imageDTO, type: 'control_layer', dispatch, getState });
dispatch(setActiveTab('canvas'));
imageViewer.close();
toast({
id: 'SENT_TO_CANVAS',
title: t('toast.sentToCanvas'),
status: 'success',
});
}, [imageDTO, imageViewer, store, t]);
const onClickNewRasterLayerFromImage = useCallback(() => {
const { dispatch, getState } = store;
createNewCanvasEntityFromImage({ imageDTO, type: 'raster_layer', dispatch, getState });
@@ -105,19 +81,9 @@ export const ImageMenuItemNewFromImageSubMenu = memo(() => {
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiPlusBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('controlLayers.newFromImage')} />
<SubMenuButtonContent label={t('controlLayers.newLayerFromImage')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem icon={<PiFileBold />} onClickCapture={onClickNewCanvasWithRasterLayerFromImage} isDisabled={isBusy}>
{t('controlLayers.canvasAsRasterLayer')}
</MenuItem>
<MenuItem
icon={<PiFileBold />}
onClickCapture={onClickNewCanvasWithControlLayerFromImage}
isDisabled={isBusy || isSD3}
>
{t('controlLayers.canvasAsControlLayer')}
</MenuItem>
<MenuItem icon={<NewLayerIcon />} onClickCapture={onClickNewInpaintMaskFromImage} isDisabled={isBusy}>
{t('controlLayers.inpaintMask')}
</MenuItem>
@@ -144,4 +110,4 @@ export const ImageMenuItemNewFromImageSubMenu = memo(() => {
);
});
ImageMenuItemNewFromImageSubMenu.displayName = 'ImageMenuItemNewFromImageSubMenu';
ImageMenuItemNewLayerFromImageSubMenu.displayName = 'ImageMenuItemNewLayerFromImageSubMenu';

View File

@@ -7,7 +7,8 @@ import { ImageMenuItemDelete } from 'features/gallery/components/ImageContextMen
import { ImageMenuItemDownload } from 'features/gallery/components/ImageContextMenu/ImageMenuItemDownload';
import { ImageMenuItemLoadWorkflow } from 'features/gallery/components/ImageContextMenu/ImageMenuItemLoadWorkflow';
import { ImageMenuItemMetadataRecallActions } from 'features/gallery/components/ImageContextMenu/ImageMenuItemMetadataRecallActions';
import { ImageMenuItemNewFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewFromImageSubMenu';
import { ImageMenuItemNewCanvasFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewCanvasFromImageSubMenu';
import { ImageMenuItemNewLayerFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewLayerFromImageSubMenu';
import { ImageMenuItemOpenInNewTab } from 'features/gallery/components/ImageContextMenu/ImageMenuItemOpenInNewTab';
import { ImageMenuItemOpenInViewer } from 'features/gallery/components/ImageContextMenu/ImageMenuItemOpenInViewer';
import { ImageMenuItemSelectForCompare } from 'features/gallery/components/ImageContextMenu/ImageMenuItemSelectForCompare';
@@ -38,7 +39,8 @@ const SingleSelectionMenuItems = ({ imageDTO }: SingleSelectionMenuItemsProps) =
<MenuDivider />
<ImageMenuItemSendToUpscale />
<CanvasManagerProviderGate>
<ImageMenuItemNewFromImageSubMenu />
<ImageMenuItemNewCanvasFromImageSubMenu />
<ImageMenuItemNewLayerFromImageSubMenu />
</CanvasManagerProviderGate>
<MenuDivider />
<ImageMenuItemChangeBoard />

View File

@@ -182,21 +182,24 @@ export const createNewCanvasEntityFromImage = (arg: {
};
/**
* Creates a new canvas with the given image as the initial image, replicating the img2img flow:
* Creates a new canvas with the given image as the only layer:
* - Reset the canvas
* - Resize the bbox to the image's aspect ratio at the optimal size for the selected model
* - Add the image as a raster layer
* - Resizes the layer to fit the bbox using the 'fill' strategy
* - Add the image as a layer of the given type
* - If `withResize`: Resizes the layer to fit the bbox using the 'fill' strategy
*
* This allows the user to immediately generate a new image from the given image without any additional steps.
*
* Using 'raster_layer' for the type and enabling `withResize` replicates the common img2img flow.
*/
export const newCanvasFromImage = (arg: {
imageDTO: ImageDTO;
type: CanvasEntityType | 'regional_guidance_with_reference_image';
withResize: boolean;
dispatch: AppDispatch;
getState: () => RootState;
}) => {
const { type, imageDTO, dispatch, getState } = arg;
const { type, imageDTO, withResize, dispatch, getState } = arg;
const state = getState();
const base = selectBboxModelBase(state);
@@ -229,7 +232,9 @@ export const newCanvasFromImage = (arg: {
objects: [imageObject],
position: { x, y },
} satisfies Partial<CanvasRasterLayerState>;
addInitCallback(overrides.id);
if (withResize) {
addInitCallback(overrides.id);
}
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));
@@ -243,7 +248,9 @@ export const newCanvasFromImage = (arg: {
position: { x, y },
controlAdapter: deepClone(initialControlNet),
} satisfies Partial<CanvasControlLayerState>;
addInitCallback(overrides.id);
if (withResize) {
addInitCallback(overrides.id);
}
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));
@@ -256,7 +263,9 @@ export const newCanvasFromImage = (arg: {
objects: [imageObject],
position: { x, y },
} satisfies Partial<CanvasInpaintMaskState>;
addInitCallback(overrides.id);
if (withResize) {
addInitCallback(overrides.id);
}
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));
@@ -269,7 +278,9 @@ export const newCanvasFromImage = (arg: {
objects: [imageObject],
position: { x, y },
} satisfies Partial<CanvasRegionalGuidanceState>;
addInitCallback(overrides.id);
if (withResize) {
addInitCallback(overrides.id);
}
dispatch(canvasReset());
// The `bboxChangedFromCanvas` reducer does no validation! Careful!
dispatch(bboxChangedFromCanvas({ x: 0, y: 0, width, height }));

View File

@@ -41,7 +41,11 @@ const ClassificationTooltipContent = memo(({ classification }: { classification:
}
if (classification === 'internal') {
return t('nodes.prototypeDesc');
return t('nodes.internalDesc');
}
if (classification === 'special') {
return t('nodes.specialDesc');
}
return null;

View File

@@ -4,7 +4,7 @@ import type { PersistConfig, RootState } from 'app/store/store';
import type { Selector } from 'react-redux';
import { SelectionMode } from 'reactflow';
type WorkflowSettingsState = {
export type WorkflowSettingsState = {
_version: 1;
shouldShowMinimapPanel: boolean;
shouldValidateGraph: boolean;

View File

@@ -1,35 +1,41 @@
import { logger } from 'app/logging/logger';
import { withResultAsync } from 'common/util/result';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import type {
CanvasControlLayerState,
ControlNetConfig,
Rect,
T2IAdapterConfig,
} from 'features/controlLayers/store/types';
import type { CanvasControlLayerState, Rect } from 'features/controlLayers/store/types';
import { getControlLayerWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import { serializeError } from 'serialize-error';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import type { ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
const log = logger('system');
type AddControlNetsArg = {
manager: CanvasManager;
entities: CanvasControlLayerState[];
g: Graph;
rect: Rect;
collector: Invocation<'collect'>;
model: ParameterModel;
};
type AddControlNetsResult = {
addedControlNets: number;
};
export const addControlNets = async (
manager: CanvasManager,
layers: CanvasControlLayerState[],
g: Graph,
rect: Rect,
collector: Invocation<'collect'>,
base: BaseModelType
): Promise<AddControlNetsResult> => {
const validControlLayers = layers
.filter((layer) => layer.isEnabled)
.filter((layer) => isValidControlAdapter(layer.controlAdapter, base))
.filter((layer) => layer.controlAdapter.type === 'controlnet');
export const addControlNets = async ({
manager,
entities,
g,
rect,
collector,
model,
}: AddControlNetsArg): Promise<AddControlNetsResult> => {
const validControlLayers = entities
.filter((entity) => entity.isEnabled)
.filter((entity) => entity.controlAdapter.type === 'controlnet')
.filter((entity) => getControlLayerWarnings(entity, model).length === 0);
const result: AddControlNetsResult = {
addedControlNets: 0,
@@ -54,22 +60,31 @@ export const addControlNets = async (
return result;
};
type AddT2IAdaptersArg = {
manager: CanvasManager;
entities: CanvasControlLayerState[];
g: Graph;
rect: Rect;
collector: Invocation<'collect'>;
model: ParameterModel;
};
type AddT2IAdaptersResult = {
addedT2IAdapters: number;
};
export const addT2IAdapters = async (
manager: CanvasManager,
layers: CanvasControlLayerState[],
g: Graph,
rect: Rect,
collector: Invocation<'collect'>,
base: BaseModelType
): Promise<AddT2IAdaptersResult> => {
const validControlLayers = layers
.filter((layer) => layer.isEnabled)
.filter((layer) => isValidControlAdapter(layer.controlAdapter, base))
.filter((layer) => layer.controlAdapter.type === 't2i_adapter');
export const addT2IAdapters = async ({
manager,
entities,
g,
rect,
collector,
model,
}: AddT2IAdaptersArg): Promise<AddT2IAdaptersResult> => {
const validControlLayers = entities
.filter((entity) => entity.isEnabled)
.filter((entity) => entity.controlAdapter.type === 't2i_adapter')
.filter((entity) => getControlLayerWarnings(entity, model).length === 0);
const result: AddT2IAdaptersResult = {
addedT2IAdapters: 0,
@@ -145,11 +160,3 @@ const addT2IAdapterToGraph = (
g.addEdge(t2iAdapter, 't2i_adapter', collector, 'item');
};
const isValidControlAdapter = (controlAdapter: ControlNetConfig | T2IAdapterConfig, base: BaseModelType): boolean => {
// Must be have a model
const hasModel = Boolean(controlAdapter.model);
// Model must match the current base model
const modelMatchesBase = controlAdapter.model?.base === base;
return hasModel && modelMatchesBase;
};

View File

@@ -1,19 +1,23 @@
import type { CanvasReferenceImageState } from 'features/controlLayers/store/types';
import { getGlobalReferenceImageWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { BaseModelType, Invocation } from 'services/api/types';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import type { Invocation } from 'services/api/types';
import { assert } from 'tsafe';
type AddIPAdaptersResult = {
addedIPAdapters: number;
};
export const addIPAdapters = (
ipAdapters: CanvasReferenceImageState[],
g: Graph,
collector: Invocation<'collect'>,
base: BaseModelType
): AddIPAdaptersResult => {
const validIPAdapters = ipAdapters.filter((entity) => isValidIPAdapter(entity, base));
type AddIPAdaptersArg = {
entities: CanvasReferenceImageState[];
g: Graph;
collector: Invocation<'collect'>;
model: ParameterModel;
};
export const addIPAdapters = ({ entities, g, collector, model }: AddIPAdaptersArg): AddIPAdaptersResult => {
const validIPAdapters = entities.filter((entity) => getGlobalReferenceImageWarnings(entity, model).length === 0);
const result: AddIPAdaptersResult = {
addedIPAdapters: 0,
@@ -76,11 +80,3 @@ const addIPAdapter = (entity: CanvasReferenceImageState, g: Graph, collector: In
g.addEdge(ipAdapterNode, 'ip_adapter', collector, 'item');
};
const isValidIPAdapter = ({ isEnabled, ipAdapter }: CanvasReferenceImageState, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipAdapter.model);
const modelMatchesBase = ipAdapter.model?.base === base;
const hasImage = Boolean(ipAdapter.image);
return isEnabled && hasModel && modelMatchesBase && hasImage;
};

View File

@@ -3,15 +3,12 @@ import { deepClone } from 'common/util/deepClone';
import { withResultAsync } from 'common/util/result';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import type {
CanvasRegionalGuidanceState,
IPAdapterConfig,
Rect,
RegionalGuidanceReferenceImageState,
} from 'features/controlLayers/store/types';
import type { CanvasRegionalGuidanceState, Rect } from 'features/controlLayers/store/types';
import { getRegionalGuidanceWarnings } from 'features/controlLayers/store/validators';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import type { ParameterModel } from 'features/parameters/types/parameterSchemas';
import { serializeError } from 'serialize-error';
import type { BaseModelType, Invocation } from 'services/api/types';
import type { Invocation } from 'services/api/types';
import { assert } from 'tsafe';
const log = logger('system');
@@ -23,19 +20,26 @@ type AddedRegionResult = {
addedIPAdapters: number;
};
const isValidRegion = (rg: CanvasRegionalGuidanceState, base: BaseModelType) => {
const isEnabled = rg.isEnabled;
const hasTextPrompt = Boolean(rg.positivePrompt || rg.negativePrompt);
const hasIPAdapter = rg.referenceImages.filter(({ ipAdapter }) => isValidIPAdapter(ipAdapter, base)).length > 0;
return isEnabled && (hasTextPrompt || hasIPAdapter);
type AddRegionsArg = {
manager: CanvasManager;
regions: CanvasRegionalGuidanceState[];
g: Graph;
bbox: Rect;
model: ParameterModel;
posCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
negCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'> | null;
posCondCollect: Invocation<'collect'>;
negCondCollect: Invocation<'collect'> | null;
ipAdapterCollect: Invocation<'collect'>;
};
/**
* Adds regional guidance to the graph
* @param manager The canvas manager
* @param regions Array of regions to add
* @param g The graph to add the layers to
* @param base The base model type
* @param denoise The main denoise node
* @param bbox The bounding box
* @param model The main model
* @param posCond The positive conditioning node
* @param negCond The negative conditioning node
* @param posCondCollect The positive conditioning collector
@@ -44,22 +48,28 @@ const isValidRegion = (rg: CanvasRegionalGuidanceState, base: BaseModelType) =>
* @returns A promise that resolves to the regions that were successfully added to the graph
*/
export const addRegions = async (
manager: CanvasManager,
regions: CanvasRegionalGuidanceState[],
g: Graph,
bbox: Rect,
base: BaseModelType,
denoise: Invocation<'denoise_latents'>,
posCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
negCond: Invocation<'compel'> | Invocation<'sdxl_compel_prompt'>,
posCondCollect: Invocation<'collect'>,
negCondCollect: Invocation<'collect'>,
ipAdapterCollect: Invocation<'collect'>
): Promise<AddedRegionResult[]> => {
const isSDXL = base === 'sdxl';
export const addRegions = async ({
manager,
regions,
g,
bbox,
model,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollect,
}: AddRegionsArg): Promise<AddedRegionResult[]> => {
const isSDXL = model.base === 'sdxl';
const isFLUX = model.base === 'flux';
const validRegions = regions.filter((rg) => {
if (!rg.isEnabled) {
return false;
}
return getRegionalGuidanceWarnings(rg, model).length === 0;
});
const validRegions = regions.filter((rg) => isValidRegion(rg, base));
const results: AddedRegionResult[] = [];
for (const region of validRegions) {
@@ -94,20 +104,27 @@ export const addRegions = async (
if (region.positivePrompt) {
// The main positive conditioning node
result.addedPositivePrompt = true;
const regionalPosCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
style: region.positivePrompt, // TODO: Should we put the positive prompt in both fields?
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
}
);
let regionalPosCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalPosCond = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
style: region.positivePrompt, // TODO: Should we put the positive prompt in both fields?
});
} else if (isFLUX) {
regionalPosCond = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
});
} else {
regionalPosCond = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond'),
prompt: region.positivePrompt,
});
}
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalPosCond, 'mask');
// Connect the conditioning to the collector
@@ -115,38 +132,55 @@ export const addRegions = async (
// Copy the connections to the "global" positive conditioning node to the regional cond
if (posCond.type === 'compel') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(posCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
} else {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
// Clone the edge, but change the destination node to the regional conditioning node
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCond.id;
g.addEdgeFromObj(clone);
}
assert(false, 'Unsupported positive conditioning node type.');
}
}
if (region.negativePrompt) {
result.addedNegativePrompt = true;
assert(negCond, 'Negative conditioning node is required if there is a negative prompt');
assert(negCondCollect, 'Negative conditioning collector is required if there is a negative prompt');
// The main negative conditioning node
const regionalNegCond = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
style: region.negativePrompt,
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
}
);
result.addedNegativePrompt = true;
let regionalNegCond: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalNegCond = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
style: region.negativePrompt,
});
} else if (isFLUX) {
regionalNegCond = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
});
} else {
regionalNegCond = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_negative_cond'),
prompt: region.negativePrompt,
});
}
// Connect the mask to the conditioning
g.addEdge(maskToTensor, 'mask', regionalNegCond, 'mask');
// Connect the conditioning to the collector
@@ -158,17 +192,27 @@ export const addRegions = async (
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
} else if (negCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(negCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else if (negCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(negCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalNegCond.id;
g.addEdgeFromObj(clone);
}
} else {
assert(false, 'Unsupported negative conditioning node type.');
}
}
// If we are using the "invert" auto-negative setting, we need to add an additional negative conditioning node
if (region.autoNegative && region.positivePrompt) {
assert(negCondCollect, 'Negative conditioning collector is required if there is an auto-negative setting');
result.addedAutoNegativePositivePrompt = true;
// We re-use the mask image, but invert it when converting to tensor
const invertTensorMask = g.addNode({
@@ -178,20 +222,27 @@ export const addRegions = async (
// Connect the OG mask image to the inverted mask-to-tensor node
g.addEdge(maskToTensor, 'mask', invertTensorMask, 'mask');
// Create the conditioning node. It's going to be connected to the negative cond collector, but it uses the positive prompt
const regionalPosCondInverted = g.addNode(
isSDXL
? {
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
style: region.positivePrompt,
}
: {
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
}
);
let regionalPosCondInverted: Invocation<'compel' | 'sdxl_compel_prompt' | 'flux_text_encoder'>;
if (isSDXL) {
regionalPosCondInverted = g.addNode({
type: 'sdxl_compel_prompt',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
style: region.positivePrompt,
});
} else if (isFLUX) {
regionalPosCondInverted = g.addNode({
type: 'flux_text_encoder',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
});
} else {
regionalPosCondInverted = g.addNode({
type: 'compel',
id: getPrefixedId('prompt_region_positive_cond_inverted'),
prompt: region.positivePrompt,
});
}
// Connect the inverted mask to the conditioning
g.addEdge(invertTensorMask, 'mask', regionalPosCondInverted, 'mask');
// Connect the conditioning to the negative collector
@@ -203,20 +254,26 @@ export const addRegions = async (
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
} else if (posCond.type === 'sdxl_compel_prompt') {
for (const edge of g.getEdgesTo(posCond, ['clip', 'clip2', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else if (posCond.type === 'flux_text_encoder') {
for (const edge of g.getEdgesTo(posCond, ['clip', 't5_encoder', 't5_max_seq_len', 'mask'])) {
const clone = deepClone(edge);
clone.destination.node_id = regionalPosCondInverted.id;
g.addEdgeFromObj(clone);
}
} else {
assert(false, 'Unsupported positive conditioning node type.');
}
}
const validRGIPAdapters: RegionalGuidanceReferenceImageState[] = region.referenceImages.filter(({ ipAdapter }) =>
isValidIPAdapter(ipAdapter, base)
);
for (const { id, ipAdapter } of region.referenceImages) {
assert(!isFLUX, 'Regional IP adapters are not supported for FLUX.');
for (const { id, ipAdapter } of validRGIPAdapters) {
result.addedIPAdapters++;
const { weight, model, clipVisionModel, method, beginEndStepPct, image } = ipAdapter;
assert(model, 'IP Adapter model is required');
@@ -248,11 +305,3 @@ export const addRegions = async (
return results;
};
const isValidIPAdapter = (ipAdapter: IPAdapterConfig, base: BaseModelType): boolean => {
// Must be have a model that matches the current base and must have a control image
const hasModel = Boolean(ipAdapter.model);
const modelMatchesBase = ipAdapter.model?.base === base;
const hasImage = Boolean(ipAdapter.image);
return hasModel && modelMatchesBase && hasImage;
};

View File

@@ -11,6 +11,7 @@ import { addImageToImage } from 'features/nodes/util/graph/generation/addImageTo
import { addInpaint } from 'features/nodes/util/graph/generation/addInpaint';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addOutpaint } from 'features/nodes/util/graph/generation/addOutpaint';
import { addRegions } from 'features/nodes/util/graph/generation/addRegions';
import { addTextToImage } from 'features/nodes/util/graph/generation/addTextToImage';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
@@ -79,7 +80,10 @@ export const buildFLUXGraph = async (
id: getPrefixedId('flux_text_encoder'),
prompt: positivePrompt,
});
const posCondCollect = g.addNode({
type: 'collect',
id: getPrefixedId('pos_cond_collect'),
});
const denoise = g.addNode({
type: 'flux_denoise',
id: getPrefixedId('flux_denoise'),
@@ -104,13 +108,12 @@ export const buildFLUXGraph = async (
g.addEdge(modelLoader, 'clip', posCond, 'clip');
g.addEdge(modelLoader, 't5_encoder', posCond, 't5_encoder');
g.addEdge(modelLoader, 'max_seq_len', posCond, 't5_max_seq_len');
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
g.addEdge(posCondCollect, 'collection', denoise, 'positive_text_conditioning');
g.addEdge(denoise, 'latents', l2i, 'latents');
addFLUXLoRAs(state, g, denoise, modelLoader, posCond);
g.addEdge(posCond, 'conditioning', denoise, 'positive_text_conditioning');
g.addEdge(denoise, 'latents', l2i, 'latents');
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
assert(modelConfig.base === 'flux');
@@ -196,31 +199,50 @@ export const buildFLUXGraph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
g.deleteNode(controlNetCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
collector: ipAdapterCollect,
model: modelConfig,
});
const totalIPAdaptersAdded = ipAdapterResult.addedIPAdapters;
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond: null,
posCondCollect,
negCondCollect: null,
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -227,14 +227,14 @@ export const buildSD1Graph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
@@ -245,46 +245,50 @@ export const buildSD1Graph = async (
type: 'collect',
id: getPrefixedId('t2i_adapter_collector'),
});
const t2iAdapterResult = await addT2IAdapters(
const t2iAdapterResult = await addT2IAdapters({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
t2iAdapterCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: t2iAdapterCollector,
model: modelConfig,
});
if (t2iAdapterResult.addedT2IAdapters > 0) {
g.addEdge(t2iAdapterCollector, 'collection', denoise, 't2i_adapter');
} else {
g.deleteNode(t2iAdapterCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const regionsResult = await addRegions(
manager,
canvas.regionalGuidance.entities,
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
canvas.bbox.rect,
modelConfig.base,
denoise,
collector: ipAdapterCollect,
model: modelConfig,
});
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollector
);
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -232,14 +232,14 @@ export const buildSDXLGraph = async (
type: 'collect',
id: getPrefixedId('control_net_collector'),
});
const controlNetResult = await addControlNets(
const controlNetResult = await addControlNets({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
controlNetCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: controlNetCollector,
model: modelConfig,
});
if (controlNetResult.addedControlNets > 0) {
g.addEdge(controlNetCollector, 'collection', denoise, 'control');
} else {
@@ -250,46 +250,50 @@ export const buildSDXLGraph = async (
type: 'collect',
id: getPrefixedId('t2i_adapter_collector'),
});
const t2iAdapterResult = await addT2IAdapters(
const t2iAdapterResult = await addT2IAdapters({
manager,
canvas.controlLayers.entities,
entities: canvas.controlLayers.entities,
g,
canvas.bbox.rect,
t2iAdapterCollector,
modelConfig.base
);
rect: canvas.bbox.rect,
collector: t2iAdapterCollector,
model: modelConfig,
});
if (t2iAdapterResult.addedT2IAdapters > 0) {
g.addEdge(t2iAdapterCollector, 'collection', denoise, 't2i_adapter');
} else {
g.deleteNode(t2iAdapterCollector.id);
}
const ipAdapterCollector = g.addNode({
const ipAdapterCollect = g.addNode({
type: 'collect',
id: getPrefixedId('ip_adapter_collector'),
});
const ipAdapterResult = addIPAdapters(canvas.referenceImages.entities, g, ipAdapterCollector, modelConfig.base);
const regionsResult = await addRegions(
manager,
canvas.regionalGuidance.entities,
const ipAdapterResult = addIPAdapters({
entities: canvas.referenceImages.entities,
g,
canvas.bbox.rect,
modelConfig.base,
denoise,
collector: ipAdapterCollect,
model: modelConfig,
});
const regionsResult = await addRegions({
manager,
regions: canvas.regionalGuidance.entities,
g,
bbox: canvas.bbox.rect,
model: modelConfig,
posCond,
negCond,
posCondCollect,
negCondCollect,
ipAdapterCollector
);
ipAdapterCollect,
});
const totalIPAdaptersAdded =
ipAdapterResult.addedIPAdapters + regionsResult.reduce((acc, r) => acc + r.addedIPAdapters, 0);
if (totalIPAdaptersAdded > 0) {
g.addEdge(ipAdapterCollector, 'collection', denoise, 'ip_adapter');
g.addEdge(ipAdapterCollect, 'collection', denoise, 'ip_adapter');
} else {
g.deleteNode(ipAdapterCollector.id);
g.deleteNode(ipAdapterCollect.id);
}
if (state.system.shouldUseNSFWChecker) {

View File

@@ -58,6 +58,9 @@ const isAllowedOutputField = (nodeType: string, fieldName: string) => {
if (RESERVED_OUTPUT_FIELD_NAMES.includes(fieldName)) {
return false;
}
if (nodeType === 'image_batch' && fieldName !== 'image') {
return false;
}
return true;
};

View File

@@ -0,0 +1,310 @@
import type { TooltipProps } from '@invoke-ai/ui-library';
import { Divider, Flex, ListItem, Text, Tooltip, UnorderedList } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { $true } from 'app/store/nanostores/util';
import { useAppSelector } from 'app/store/storeHooks';
import { useCanvasManagerSafe } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { selectSendToCanvas } from 'features/controlLayers/store/canvasSettingsSlice';
import { selectIterations } from 'features/controlLayers/store/paramsSlice';
import { selectDynamicPromptsIsLoading } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import { $templates } from 'features/nodes/store/nodesSlice';
import type { Reason } from 'features/queue/store/readiness';
import {
buildSelectIsReadyToEnqueueCanvasTab,
buildSelectIsReadyToEnqueueUpscaleTab,
buildSelectIsReadyToEnqueueWorkflowsTab,
buildSelectReasonsWhyCannotEnqueueCanvasTab,
buildSelectReasonsWhyCannotEnqueueUpscaleTab,
buildSelectReasonsWhyCannotEnqueueWorkflowsTab,
selectPromptsCount,
selectWorkflowsBatchSize,
} from 'features/queue/store/readiness';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import type { PropsWithChildren } from 'react';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { enqueueMutationFixedCacheKeyOptions, useEnqueueBatchMutation } from 'services/api/endpoints/queue';
import { useBoardName } from 'services/api/hooks/useBoardName';
import { $isConnected } from 'services/events/stores';
type Props = TooltipProps & {
prepend?: boolean;
};
export const InvokeButtonTooltip = ({ prepend, children, ...rest }: PropsWithChildren<Props>) => {
return (
<Tooltip label={<TooltipContent prepend={prepend} />} maxW={512} {...rest}>
{children}
</Tooltip>
);
};
const TooltipContent = memo(({ prepend = false }: { prepend?: boolean }) => {
const activeTab = useAppSelector(selectActiveTab);
if (activeTab === 'canvas') {
return <CanvasTabTooltipContent prepend={prepend} />;
}
if (activeTab === 'workflows') {
return <WorkflowsTabTooltipContent prepend={prepend} />;
}
if (activeTab === 'upscaling') {
return <UpscaleTabTooltipContent prepend={prepend} />;
}
return null;
});
TooltipContent.displayName = 'TooltipContent';
const CanvasTabTooltipContent = memo(({ prepend = false }: { prepend?: boolean }) => {
const isConnected = useStore($isConnected);
const canvasManager = useCanvasManagerSafe();
const canvasIsFiltering = useStore(canvasManager?.stateApi.$isFiltering ?? $true);
const canvasIsTransforming = useStore(canvasManager?.stateApi.$isTransforming ?? $true);
const canvasIsRasterizing = useStore(canvasManager?.stateApi.$isRasterizing ?? $true);
const canvasIsSelectingObject = useStore(canvasManager?.stateApi.$isSegmenting ?? $true);
const canvasIsCompositing = useStore(canvasManager?.compositor.$isBusy ?? $true);
const selectIsReady = useMemo(
() =>
buildSelectIsReadyToEnqueueCanvasTab({
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsCompositing,
}),
[
isConnected,
canvasIsCompositing,
canvasIsFiltering,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsTransforming,
]
);
const selectReasons = useMemo(
() =>
buildSelectReasonsWhyCannotEnqueueCanvasTab({
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsCompositing,
}),
[
isConnected,
canvasIsCompositing,
canvasIsFiltering,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsTransforming,
]
);
const isReady = useAppSelector(selectIsReady);
const reasons = useAppSelector(selectReasons);
return (
<Flex flexDir="column" gap={1}>
<IsReadyText isReady={isReady} prepend={prepend} />
<QueueCountPredictionCanvasOrUpscaleTab />
{reasons.length > 0 && (
<>
<StyledDivider />
<ReasonsList reasons={reasons} />
</>
)}
<StyledDivider />
<AddingToText />
</Flex>
);
});
CanvasTabTooltipContent.displayName = 'CanvasTabTooltipContent';
const UpscaleTabTooltipContent = memo(({ prepend = false }: { prepend?: boolean }) => {
const isConnected = useStore($isConnected);
const selectIsReady = useMemo(() => buildSelectIsReadyToEnqueueUpscaleTab({ isConnected }), [isConnected]);
const selectReasons = useMemo(() => buildSelectReasonsWhyCannotEnqueueUpscaleTab({ isConnected }), [isConnected]);
const isReady = useAppSelector(selectIsReady);
const reasons = useAppSelector(selectReasons);
return (
<Flex flexDir="column" gap={1}>
<IsReadyText isReady={isReady} prepend={prepend} />
<QueueCountPredictionCanvasOrUpscaleTab />
{reasons.length > 0 && (
<>
<StyledDivider />
<ReasonsList reasons={reasons} />
</>
)}
<StyledDivider />
<AddingToText />
</Flex>
);
});
UpscaleTabTooltipContent.displayName = 'UpscaleTabTooltipContent';
const WorkflowsTabTooltipContent = memo(({ prepend = false }: { prepend?: boolean }) => {
const isConnected = useStore($isConnected);
const templates = useStore($templates);
const selectIsReady = useMemo(
() => buildSelectIsReadyToEnqueueWorkflowsTab({ isConnected, templates }),
[isConnected, templates]
);
const selectReasons = useMemo(
() => buildSelectReasonsWhyCannotEnqueueWorkflowsTab({ isConnected, templates }),
[isConnected, templates]
);
const isReady = useAppSelector(selectIsReady);
const reasons = useAppSelector(selectReasons);
return (
<Flex flexDir="column" gap={1}>
<IsReadyText isReady={isReady} prepend={prepend} />
<QueueCountPredictionWorkflowsTab />
{reasons.length > 0 && (
<>
<StyledDivider />
<ReasonsList reasons={reasons} />
</>
)}
<StyledDivider />
<AddingToText />
</Flex>
);
});
WorkflowsTabTooltipContent.displayName = 'WorkflowsTabTooltipContent';
const QueueCountPredictionCanvasOrUpscaleTab = memo(() => {
const { t } = useTranslation();
const promptsCount = useAppSelector(selectPromptsCount);
const iterationsCount = useAppSelector(selectIterations);
const text = useMemo(() => {
const generationCount = Math.min(promptsCount * iterationsCount, 10000);
const prompts = t('queue.prompts', { count: promptsCount });
const iterations = t('queue.iterations', { count: iterationsCount });
const generations = t('queue.generations', { count: generationCount });
return `${promptsCount} ${prompts} \u00d7 ${iterationsCount} ${iterations} -> ${generationCount} ${generations}`.toLowerCase();
}, [iterationsCount, promptsCount, t]);
return <Text>{text}</Text>;
});
QueueCountPredictionCanvasOrUpscaleTab.displayName = 'QueueCountPredictionCanvasOrUpscaleTab';
const QueueCountPredictionWorkflowsTab = memo(() => {
const { t } = useTranslation();
const batchSize = useAppSelector(selectWorkflowsBatchSize);
const iterationsCount = useAppSelector(selectIterations);
const text = useMemo(() => {
const generationCount = Math.min(batchSize * iterationsCount, 10000);
const iterations = t('queue.iterations', { count: iterationsCount });
const generations = t('queue.generations', { count: generationCount });
return `${batchSize} ${t('queue.batchSize')} \u00d7 ${iterationsCount} ${iterations} -> ${generationCount} ${generations}`.toLowerCase();
}, [batchSize, iterationsCount, t]);
return <Text>{text}</Text>;
});
QueueCountPredictionWorkflowsTab.displayName = 'QueueCountPredictionWorkflowsTab';
const IsReadyText = memo(({ isReady, prepend }: { isReady: boolean; prepend: boolean }) => {
const { t } = useTranslation();
const isLoadingDynamicPrompts = useAppSelector(selectDynamicPromptsIsLoading);
const [_, enqueueMutation] = useEnqueueBatchMutation(enqueueMutationFixedCacheKeyOptions);
const text = useMemo(() => {
if (enqueueMutation.isLoading) {
return t('queue.enqueueing');
}
if (isLoadingDynamicPrompts) {
return t('dynamicPrompts.loading');
}
if (isReady) {
if (prepend) {
return t('queue.queueFront');
}
return t('queue.queueBack');
}
return t('queue.notReady');
}, [enqueueMutation.isLoading, isLoadingDynamicPrompts, isReady, prepend, t]);
return <Text fontWeight="semibold">{text}</Text>;
});
IsReadyText.displayName = 'IsReadyText';
const ReasonsList = memo(({ reasons }: { reasons: Reason[] }) => {
return (
<UnorderedList>
{reasons.map((reason, i) => (
<ReasonListItem key={`${reason.content}.${i}`} reason={reason} />
))}
</UnorderedList>
);
});
ReasonsList.displayName = 'ReasonsList';
const ReasonListItem = memo(({ reason }: { reason: Reason }) => {
return (
<ListItem>
<span>
{reason.prefix && (
<Text as="span" fontWeight="semibold">
{reason.prefix}:{' '}
</Text>
)}
<Text as="span">{reason.content}</Text>
</span>
</ListItem>
);
});
ReasonListItem.displayName = 'ReasonListItem';
const StyledDivider = memo(() => <Divider opacity={0.2} borderColor="base.900" />);
StyledDivider.displayName = 'StyledDivider';
const AddingToText = memo(() => {
const { t } = useTranslation();
const sendToCanvas = useAppSelector(selectSendToCanvas);
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const autoAddBoardName = useBoardName(autoAddBoardId);
const addingTo = useMemo(() => {
if (sendToCanvas) {
return t('controlLayers.stagingOnCanvas');
}
return t('parameters.invoke.addingImagesTo');
}, [sendToCanvas, t]);
const destination = useMemo(() => {
if (sendToCanvas) {
return t('queue.canvas');
}
if (autoAddBoardName) {
return autoAddBoardName;
}
return t('boards.uncategorized');
}, [autoAddBoardName, sendToCanvas, t]);
return (
<Text fontStyle="oblique 10deg">
{addingTo}{' '}
<Text as="span" fontWeight="semibold">
{destination}
</Text>
</Text>
);
});
AddingToText.displayName = 'AddingToText';

View File

@@ -6,7 +6,7 @@ import { useInvoke } from 'features/queue/hooks/useInvoke';
import { memo } from 'react';
import { PiLightningFill, PiSparkleFill } from 'react-icons/pi';
import { QueueButtonTooltip } from './QueueButtonTooltip';
import { InvokeButtonTooltip } from './InvokeButtonTooltip/InvokeButtonTooltip';
const invoke = 'Invoke';
@@ -18,7 +18,7 @@ export const InvokeButton = memo(() => {
return (
<Flex pos="relative" w="200px">
<QueueIterationsNumberInput />
<QueueButtonTooltip prepend={shift}>
<InvokeButtonTooltip prepend={shift}>
<Button
onClick={shift ? queue.queueFront : queue.queueBack}
isLoading={queue.isLoading || isLoadingDynamicPrompts}
@@ -36,7 +36,7 @@ export const InvokeButton = memo(() => {
<span>{invoke}</span>
<Spacer />
</Button>
</QueueButtonTooltip>
</InvokeButtonTooltip>
</Flex>
);
});

View File

@@ -1,9 +1,6 @@
import { IconButton, Menu, MenuButton, MenuGroup, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import {
useNewCanvasSession,
useNewGallerySession,
} from 'features/controlLayers/components/NewSessionConfirmationAlertDialog';
import { SessionMenuItems } from 'common/components/SessionMenuItems';
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { QueueCountBadge } from 'features/queue/components/QueueCountBadge';
import { usePauseProcessor } from 'features/queue/hooks/usePauseProcessor';
@@ -12,16 +9,7 @@ import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import {
PiImageBold,
PiListBold,
PiPaintBrushBold,
PiPauseFill,
PiPlayFill,
PiQueueBold,
PiTrashSimpleBold,
PiXBold,
} from 'react-icons/pi';
import { PiListBold, PiPauseFill, PiPlayFill, PiQueueBold, PiTrashSimpleBold, PiXBold } from 'react-icons/pi';
export const QueueActionsMenuButton = memo(() => {
const ref = useRef<HTMLDivElement>(null);
@@ -29,8 +17,6 @@ export const QueueActionsMenuButton = memo(() => {
const { t } = useTranslation();
const isPauseEnabled = useFeatureStatus('pauseQueue');
const isResumeEnabled = useFeatureStatus('resumeQueue');
const { newGallerySessionWithDialog } = useNewGallerySession();
const { newCanvasSessionWithDialog } = useNewCanvasSession();
const clearQueue = useClearQueue();
const {
resumeProcessor,
@@ -52,12 +38,7 @@ export const QueueActionsMenuButton = memo(() => {
<MenuButton ref={ref} as={IconButton} size="lg" aria-label="Queue Actions Menu" icon={<PiListBold />} />
<MenuList>
<MenuGroup title={t('common.new')}>
<MenuItem icon={<PiImageBold />} onClick={newGallerySessionWithDialog}>
{t('controlLayers.newGallerySession')}
</MenuItem>
<MenuItem icon={<PiPaintBrushBold />} onClick={newCanvasSessionWithDialog}>
{t('controlLayers.newCanvasSession')}
</MenuItem>
<SessionMenuItems />
</MenuGroup>
<MenuGroup title={t('queue.queue')}>
<MenuItem

View File

@@ -1,123 +0,0 @@
import type { TooltipProps } from '@invoke-ai/ui-library';
import { Divider, Flex, ListItem, Text, Tooltip, UnorderedList } from '@invoke-ai/ui-library';
import { createSelector } from '@reduxjs/toolkit';
import { useAppSelector } from 'app/store/storeHooks';
import { useIsReadyToEnqueue } from 'common/hooks/useIsReadyToEnqueue';
import { selectSendToCanvas } from 'features/controlLayers/store/canvasSettingsSlice';
import { selectIterations, selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import {
selectDynamicPromptsIsLoading,
selectDynamicPromptsSlice,
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { selectAutoAddBoardId } from 'features/gallery/store/gallerySelectors';
import type { PropsWithChildren } from 'react';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useEnqueueBatchMutation } from 'services/api/endpoints/queue';
import { useBoardName } from 'services/api/hooks/useBoardName';
const selectPromptsCount = createSelector(selectParamsSlice, selectDynamicPromptsSlice, (params, dynamicPrompts) =>
getShouldProcessPrompt(params.positivePrompt) ? dynamicPrompts.prompts.length : 1
);
type Props = TooltipProps & {
prepend?: boolean;
};
export const QueueButtonTooltip = ({ prepend, children, ...rest }: PropsWithChildren<Props>) => {
return (
<Tooltip label={<TooltipContent prepend={prepend} />} maxW={512} {...rest}>
{children}
</Tooltip>
);
};
const TooltipContent = memo(({ prepend = false }: { prepend?: boolean }) => {
const { t } = useTranslation();
const { isReady, reasons } = useIsReadyToEnqueue();
const sendToCanvas = useAppSelector(selectSendToCanvas);
const isLoadingDynamicPrompts = useAppSelector(selectDynamicPromptsIsLoading);
const promptsCount = useAppSelector(selectPromptsCount);
const iterationsCount = useAppSelector(selectIterations);
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
const autoAddBoardName = useBoardName(autoAddBoardId);
const [_, { isLoading }] = useEnqueueBatchMutation({
fixedCacheKey: 'enqueueBatch',
});
const queueCountPredictionLabel = useMemo(() => {
const generationCount = Math.min(promptsCount * iterationsCount, 10000);
const prompts = t('queue.prompts', { count: promptsCount });
const iterations = t('queue.iterations', { count: iterationsCount });
const generations = t('queue.generations', { count: generationCount });
return `${promptsCount} ${prompts} \u00d7 ${iterationsCount} ${iterations} -> ${generationCount} ${generations}`.toLowerCase();
}, [iterationsCount, promptsCount, t]);
const label = useMemo(() => {
if (isLoading) {
return t('queue.enqueueing');
}
if (isLoadingDynamicPrompts) {
return t('dynamicPrompts.loading');
}
if (isReady) {
if (prepend) {
return t('queue.queueFront');
}
return t('queue.queueBack');
}
return t('queue.notReady');
}, [isLoading, isLoadingDynamicPrompts, isReady, prepend, t]);
const addingTo = useMemo(() => {
if (sendToCanvas) {
return t('controlLayers.stagingOnCanvas');
}
return t('parameters.invoke.addingImagesTo');
}, [sendToCanvas, t]);
const destination = useMemo(() => {
if (sendToCanvas) {
return t('queue.canvas');
}
if (autoAddBoardName) {
return autoAddBoardName;
}
return t('boards.uncategorized');
}, [autoAddBoardName, sendToCanvas, t]);
return (
<Flex flexDir="column" gap={1}>
<Text fontWeight="semibold">{label}</Text>
<Text>{queueCountPredictionLabel}</Text>
{reasons.length > 0 && (
<>
<Divider opacity={0.2} borderColor="base.900" />
<UnorderedList>
{reasons.map((reason, i) => (
<ListItem key={`${reason.content}.${i}`}>
<span>
{reason.prefix && (
<Text as="span" fontWeight="semibold">
{reason.prefix}:{' '}
</Text>
)}
<Text as="span">{reason.content}</Text>
</span>
</ListItem>
))}
</UnorderedList>
</>
)}
<Divider opacity={0.2} borderColor="base.900" />
<Text fontStyle="oblique 10deg">
{addingTo}{' '}
<Text as="span" fontWeight="semibold">
{destination}
</Text>
</Text>
</Flex>
);
});
TooltipContent.displayName = 'QueueButtonTooltipContent';

View File

@@ -1,17 +1,63 @@
import { useStore } from '@nanostores/react';
import { enqueueRequested } from 'app/store/actions';
import { $true } from 'app/store/nanostores/util';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useIsReadyToEnqueue } from 'common/hooks/useIsReadyToEnqueue';
import { useCanvasManagerSafe } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { $templates } from 'features/nodes/store/nodesSlice';
import {
buildSelectIsReadyToEnqueueCanvasTab,
buildSelectIsReadyToEnqueueUpscaleTab,
buildSelectIsReadyToEnqueueWorkflowsTab,
} from 'features/queue/store/readiness';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { useCallback } from 'react';
import { useEnqueueBatchMutation } from 'services/api/endpoints/queue';
import { useCallback, useMemo } from 'react';
import { enqueueMutationFixedCacheKeyOptions, useEnqueueBatchMutation } from 'services/api/endpoints/queue';
import { $isConnected } from 'services/events/stores';
export const useInvoke = () => {
const dispatch = useAppDispatch();
const tabName = useAppSelector(selectActiveTab);
const { isReady } = useIsReadyToEnqueue();
const [_, { isLoading }] = useEnqueueBatchMutation({
fixedCacheKey: 'enqueueBatch',
});
const isConnected = useStore($isConnected);
const canvasManager = useCanvasManagerSafe();
const canvasIsFiltering = useStore(canvasManager?.stateApi.$isFiltering ?? $true);
const canvasIsTransforming = useStore(canvasManager?.stateApi.$isTransforming ?? $true);
const canvasIsRasterizing = useStore(canvasManager?.stateApi.$isRasterizing ?? $true);
const canvasIsSelectingObject = useStore(canvasManager?.stateApi.$isSegmenting ?? $true);
const canvasIsCompositing = useStore(canvasManager?.compositor.$isBusy ?? $true);
const templates = useStore($templates);
const selectIsReady = useMemo(() => {
if (tabName === 'canvas') {
return buildSelectIsReadyToEnqueueCanvasTab({
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsCompositing,
});
}
if (tabName === 'upscaling') {
return buildSelectIsReadyToEnqueueUpscaleTab({ isConnected });
}
if (tabName === 'workflows') {
return buildSelectIsReadyToEnqueueWorkflowsTab({ isConnected, templates });
}
return () => false;
}, [
tabName,
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsSelectingObject,
canvasIsCompositing,
templates,
]);
const isReady = useAppSelector(selectIsReady);
const [_, { isLoading }] = useEnqueueBatchMutation(enqueueMutationFixedCacheKeyOptions);
const queueBack = useCallback(() => {
if (!isReady) {
return;

View File

@@ -1,4 +1,5 @@
import {
enqueueMutationFixedCacheKeyOptions,
useCancelQueueItemMutation,
// useCancelByBatchIdsMutation,
useClearQueueMutation,
@@ -9,9 +10,9 @@ import {
} from 'services/api/endpoints/queue';
export const useIsQueueMutationInProgress = () => {
const [_triggerEnqueueBatch, { isLoading: isLoadingEnqueueBatch }] = useEnqueueBatchMutation({
fixedCacheKey: 'enqueueBatch',
});
const [_triggerEnqueueBatch, { isLoading: isLoadingEnqueueBatch }] = useEnqueueBatchMutation(
enqueueMutationFixedCacheKeyOptions
);
const [_triggerResumeProcessor, { isLoading: isLoadingResumeProcessor }] = useResumeProcessorMutation({
fixedCacheKey: 'resumeProcessor',
});

View File

@@ -0,0 +1,498 @@
import { createSelector } from '@reduxjs/toolkit';
import type { AppConfig } from 'app/types/invokeai';
import type { ParamsState } from 'features/controlLayers/store/paramsSlice';
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
import { selectCanvasSlice } from 'features/controlLayers/store/selectors';
import type { CanvasState } from 'features/controlLayers/store/types';
import {
getControlLayerWarnings,
getGlobalReferenceImageWarnings,
getInpaintMaskWarnings,
getRasterLayerWarnings,
getRegionalGuidanceWarnings,
} from 'features/controlLayers/store/validators';
import type { DynamicPromptsState } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { selectNodesSlice } from 'features/nodes/store/selectors';
import type { NodesState, Templates } from 'features/nodes/store/types';
import type { WorkflowSettingsState } from 'features/nodes/store/workflowSettingsSlice';
import { selectWorkflowSettingsSlice } from 'features/nodes/store/workflowSettingsSlice';
import { isImageFieldCollectionInputInstance, isImageFieldCollectionInputTemplate } from 'features/nodes/types/field';
import { isInvocationNode } from 'features/nodes/types/invocation';
import type { UpscaleState } from 'features/parameters/store/upscaleSlice';
import { selectUpscaleSlice } from 'features/parameters/store/upscaleSlice';
import { selectConfigSlice } from 'features/system/store/configSlice';
import i18n from 'i18next';
import { forEach, upperFirst } from 'lodash-es';
import { getConnectedEdges } from 'reactflow';
/**
* This file contains selectors and utilities for determining the app is ready to enqueue generations. The handling
* differs for each tab (canvas, upscaling, workflows).
*
* For example, the canvas tab needs to check the status of the canvas manager before enqueuing, while the workflows
* tab needs to check the status of the nodes and their connections.
*/
const LAYER_TYPE_TO_TKEY = {
reference_image: 'controlLayers.referenceImage',
inpaint_mask: 'controlLayers.inpaintMask',
regional_guidance: 'controlLayers.regionalGuidance',
raster_layer: 'controlLayers.rasterLayer',
control_layer: 'controlLayers.controlLayer',
} as const;
export type Reason = { prefix?: string; content: string };
const disconnectedReason = (t: typeof i18n.t) => ({ content: t('parameters.invoke.systemDisconnected') });
const getReasonsWhyCannotEnqueueWorkflowsTab = (arg: {
isConnected: boolean;
nodes: NodesState;
workflowSettings: WorkflowSettingsState;
templates: Templates;
}): Reason[] => {
const { isConnected, nodes, workflowSettings, templates } = arg;
const reasons: Reason[] = [];
if (!isConnected) {
reasons.push(disconnectedReason(i18n.t));
}
if (workflowSettings.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push({ content: i18n.t('parameters.invoke.noNodesInGraph') });
}
nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
const nodeTemplate = templates[node.data.type];
if (!nodeTemplate) {
// Node type not found
reasons.push({ content: i18n.t('parameters.invoke.missingNodeTemplate') });
return;
}
const connectedEdges = getConnectedEdges([node], nodes.edges);
forEach(node.data.inputs, (field) => {
const fieldTemplate = nodeTemplate.inputs[field.name];
const hasConnection = connectedEdges.some(
(edge) => edge.target === node.id && edge.targetHandle === field.name
);
if (!fieldTemplate) {
reasons.push({ content: i18n.t('parameters.invoke.missingFieldTemplate') });
return;
}
const baseTKeyOptions = {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
};
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push({ content: i18n.t('parameters.invoke.missingInputForField', baseTKeyOptions) });
return;
} else if (
field.value &&
isImageFieldCollectionInputInstance(field) &&
isImageFieldCollectionInputTemplate(fieldTemplate)
) {
// Image collections may have min or max items to validate
// TODO(psyche): generalize this to other collection types
if (fieldTemplate.minItems !== undefined && fieldTemplate.minItems > 0 && field.value.length === 0) {
reasons.push({ content: i18n.t('parameters.invoke.collectionEmpty', baseTKeyOptions) });
return;
}
if (fieldTemplate.minItems !== undefined && field.value.length < fieldTemplate.minItems) {
reasons.push({
content: i18n.t('parameters.invoke.collectionTooFewItems', {
...baseTKeyOptions,
size: field.value.length,
minItems: fieldTemplate.minItems,
}),
});
return;
}
if (fieldTemplate.maxItems !== undefined && field.value.length > fieldTemplate.maxItems) {
reasons.push({
content: i18n.t('parameters.invoke.collectionTooManyItems', {
...baseTKeyOptions,
size: field.value.length,
maxItems: fieldTemplate.maxItems,
}),
});
return;
}
}
});
});
}
return reasons;
};
const getReasonsWhyCannotEnqueueUpscaleTab = (arg: {
isConnected: boolean;
upscale: UpscaleState;
config: AppConfig;
params: ParamsState;
}) => {
const { isConnected, upscale, config, params } = arg;
const reasons: Reason[] = [];
if (!isConnected) {
reasons.push(disconnectedReason(i18n.t));
}
if (!upscale.upscaleInitialImage) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleInitialImage') });
} else if (config.maxUpscaleDimension) {
const { width, height } = upscale.upscaleInitialImage;
const { scale } = upscale;
const maxPixels = config.maxUpscaleDimension ** 2;
const upscaledPixels = width * scale * height * scale;
if (upscaledPixels > maxPixels) {
reasons.push({ content: i18n.t('upscaling.exceedsMaxSize') });
}
}
const model = params.model;
if (model && !['sd-1', 'sdxl'].includes(model.base)) {
// When we are using an upsupported model, do not add the other warnings
reasons.push({ content: i18n.t('upscaling.incompatibleBaseModel') });
} else {
// Using a compatible model, add all warnings
if (!model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
if (!upscale.upscaleModel) {
reasons.push({ content: i18n.t('upscaling.missingUpscaleModel') });
}
if (!upscale.tileControlnetModel) {
reasons.push({ content: i18n.t('upscaling.missingTileControlNetModel') });
}
}
return reasons;
};
const getReasonsWhyCannotEnqueueCanvasTab = (arg: {
isConnected: boolean;
canvas: CanvasState;
params: ParamsState;
dynamicPrompts: DynamicPromptsState;
canvasIsFiltering: boolean;
canvasIsTransforming: boolean;
canvasIsRasterizing: boolean;
canvasIsCompositing: boolean;
canvasIsSelectingObject: boolean;
}) => {
const {
isConnected,
canvas,
params,
dynamicPrompts,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
} = arg;
const { model, positivePrompt } = params;
const reasons: Reason[] = [];
if (!isConnected) {
reasons.push(disconnectedReason(i18n.t));
}
if (canvasIsFiltering) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsFiltering') });
}
if (canvasIsTransforming) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsTransforming') });
}
if (canvasIsRasterizing) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsRasterizing') });
}
if (canvasIsCompositing) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsCompositing') });
}
if (canvasIsSelectingObject) {
reasons.push({ content: i18n.t('parameters.invoke.canvasIsSelectingObject') });
}
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push({ content: i18n.t('parameters.invoke.noPrompts') });
}
if (!model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
if (model?.base === 'flux') {
const { bbox } = canvas;
if (!params.t5EncoderModel) {
reasons.push({ content: i18n.t('parameters.invoke.noT5EncoderModelSelected') });
}
if (!params.clipEmbedModel) {
reasons.push({ content: i18n.t('parameters.invoke.noCLIPEmbedModelSelected') });
}
if (!params.fluxVAE) {
reasons.push({ content: i18n.t('parameters.invoke.noFLUXVAEModelSelected') });
}
if (bbox.scaleMethod === 'none') {
if (bbox.rect.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleBboxWidth', { width: bbox.rect.width }),
});
}
if (bbox.rect.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleBboxHeight', { height: bbox.rect.height }),
});
}
} else {
if (bbox.scaledSize.width % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleScaledBboxWidth', {
width: bbox.scaledSize.width,
}),
});
}
if (bbox.scaledSize.height % 16 !== 0) {
reasons.push({
content: i18n.t('parameters.invoke.fluxModelIncompatibleScaledBboxHeight', {
height: bbox.scaledSize.height,
}),
});
}
}
}
canvas.controlLayers.entities
.filter((controlLayer) => controlLayer.isEnabled)
.forEach((controlLayer, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY['control_layer']);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getControlLayerWarnings(controlLayer, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
canvas.referenceImages.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getGlobalReferenceImageWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
canvas.regionalGuidance.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getRegionalGuidanceWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
canvas.rasterLayers.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getRasterLayerWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
canvas.inpaintMasks.entities
.filter((entity) => entity.isEnabled)
.forEach((entity, i) => {
const layerLiteral = i18n.t('controlLayers.layer_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[entity.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems = getInpaintMaskWarnings(entity, model);
if (problems.length) {
const content = upperFirst(problems.map((p) => i18n.t(p)).join(', '));
reasons.push({ prefix, content });
}
});
return reasons;
};
export const buildSelectReasonsWhyCannotEnqueueCanvasTab = (arg: {
isConnected: boolean;
canvasIsFiltering: boolean;
canvasIsTransforming: boolean;
canvasIsRasterizing: boolean;
canvasIsCompositing: boolean;
canvasIsSelectingObject: boolean;
}) => {
const {
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
} = arg;
return createSelector(
selectCanvasSlice,
selectParamsSlice,
selectDynamicPromptsSlice,
(canvas, params, dynamicPrompts) =>
getReasonsWhyCannotEnqueueCanvasTab({
isConnected,
canvas,
params,
dynamicPrompts,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
})
);
};
export const buildSelectIsReadyToEnqueueCanvasTab = (arg: {
isConnected: boolean;
canvasIsFiltering: boolean;
canvasIsTransforming: boolean;
canvasIsRasterizing: boolean;
canvasIsCompositing: boolean;
canvasIsSelectingObject: boolean;
}) => {
const {
isConnected,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
} = arg;
return createSelector(
selectCanvasSlice,
selectParamsSlice,
selectDynamicPromptsSlice,
(canvas, params, dynamicPrompts) =>
getReasonsWhyCannotEnqueueCanvasTab({
isConnected,
canvas,
params,
dynamicPrompts,
canvasIsFiltering,
canvasIsTransforming,
canvasIsRasterizing,
canvasIsCompositing,
canvasIsSelectingObject,
}).length === 0
);
};
export const buildSelectReasonsWhyCannotEnqueueUpscaleTab = (arg: { isConnected: boolean }) => {
const { isConnected } = arg;
return createSelector(selectUpscaleSlice, selectConfigSlice, selectParamsSlice, (upscale, config, params) =>
getReasonsWhyCannotEnqueueUpscaleTab({ isConnected, upscale, config, params })
);
};
export const buildSelectIsReadyToEnqueueUpscaleTab = (arg: { isConnected: boolean }) => {
const { isConnected } = arg;
return createSelector(
selectUpscaleSlice,
selectConfigSlice,
selectParamsSlice,
(upscale, config, params) =>
getReasonsWhyCannotEnqueueUpscaleTab({ isConnected, upscale, config, params }).length === 0
);
};
export const buildSelectReasonsWhyCannotEnqueueWorkflowsTab = (arg: { isConnected: boolean; templates: Templates }) => {
const { isConnected, templates } = arg;
return createSelector(selectNodesSlice, selectWorkflowSettingsSlice, (nodes, workflowSettings) =>
getReasonsWhyCannotEnqueueWorkflowsTab({
isConnected,
nodes,
workflowSettings,
templates,
})
);
};
export const buildSelectIsReadyToEnqueueWorkflowsTab = (arg: { isConnected: boolean; templates: Templates }) => {
const { isConnected, templates } = arg;
return createSelector(
selectNodesSlice,
selectWorkflowSettingsSlice,
(nodes, workflowSettings) =>
getReasonsWhyCannotEnqueueWorkflowsTab({
isConnected,
nodes,
workflowSettings,
templates,
}).length === 0
);
};
export const selectPromptsCount = createSelector(
selectParamsSlice,
selectDynamicPromptsSlice,
(params, dynamicPrompts) => (getShouldProcessPrompt(params.positivePrompt) ? dynamicPrompts.prompts.length : 1)
);
export const selectWorkflowsBatchSize = createSelector(selectNodesSlice, ({ nodes }) =>
// The batch size is the product of all batch nodes' collection sizes
nodes.filter(isInvocationNode).reduce((batchSize, node) => {
if (!isImageFieldCollectionInputInstance(node.data.inputs.images)) {
return batchSize;
}
// If the batch size is not set, default to 1
batchSize = batchSize || 1;
// Multiply the batch size by the number of images in the batch
batchSize = batchSize * (node.data.inputs.images.value?.length ?? 0);
return batchSize;
}, 0)
);

View File

@@ -26,7 +26,6 @@ import { SettingsDeveloperLogLevel } from 'features/system/components/SettingsMo
import { SettingsDeveloperLogNamespaces } from 'features/system/components/SettingsModal/SettingsDeveloperLogNamespaces';
import { useClearIntermediates } from 'features/system/components/SettingsModal/useClearIntermediates';
import { StickyScrollable } from 'features/system/components/StickyScrollable';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import {
selectSystemShouldAntialiasProgressImage,
selectSystemShouldConfirmOnDelete,
@@ -59,6 +58,7 @@ type ConfigOptions = {
shouldShowResetWebUiText?: boolean;
shouldShowClearIntermediates?: boolean;
shouldShowLocalizationToggle?: boolean;
shouldShowInvocationProgressDetailSetting?: boolean;
};
const defaultConfig: ConfigOptions = {
@@ -66,6 +66,7 @@ const defaultConfig: ConfigOptions = {
shouldShowResetWebUiText: true,
shouldShowClearIntermediates: true,
shouldShowLocalizationToggle: true,
shouldShowInvocationProgressDetailSetting: true,
};
type SettingsModalProps = {
@@ -107,7 +108,6 @@ const SettingsModal = ({ config = defaultConfig, children }: SettingsModalProps)
const shouldEnableModelDescriptions = useAppSelector(selectSystemShouldEnableModelDescriptions);
const shouldConfirmOnNewSession = useAppSelector(selectSystemShouldConfirmOnNewSession);
const shouldShowInvocationProgressDetail = useAppSelector(selectSystemShouldShowInvocationProgressDetail);
const isInvocationProgressAlertEnabled = useFeatureStatus('invocationProgressAlert');
const onToggleConfirmOnNewSession = useCallback(() => {
dispatch(shouldConfirmOnNewSessionToggled());
}, [dispatch]);
@@ -233,7 +233,7 @@ const SettingsModal = ({ config = defaultConfig, children }: SettingsModalProps)
onChange={handleChangeShouldAntialiasProgressImage}
/>
</FormControl>
{isInvocationProgressAlertEnabled && (
{Boolean(config?.shouldShowInvocationProgressDetailSetting) && (
<FormControl>
<FormLabel>{t('settings.showDetailedInvocationProgress')}</FormLabel>
<Switch

View File

@@ -0,0 +1,37 @@
import { ExternalLink, Flex, Spacer, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import type { VideoData } from 'features/system/components/VideosModal/data';
import { videoModalLinkClicked } from 'features/system/store/actions';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const formatTime = ({ minutes, seconds }: { minutes: number; seconds: number }) => {
return `${minutes}:${seconds.toString().padStart(2, '0')}`;
};
export const VideoCard = memo(({ video }: { video: VideoData }) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { tKey, link, length } = video;
const handleLinkClick = useCallback(() => {
dispatch(videoModalLinkClicked(t(`supportVideos.videos.${tKey}.title`)));
}, [dispatch, t, tKey]);
return (
<Flex flexDir="column" gap={1}>
<Flex alignItems="center" gap={2}>
<Text fontSize="md" fontWeight="semibold">
{t(`supportVideos.videos.${tKey}.title`)}
</Text>
<Spacer />
<Text variant="subtext">{formatTime(length)}</Text>
<ExternalLink fontSize="sm" href={link} label={t('supportVideos.watch')} onClick={handleLinkClick} />
</Flex>
<Text fontSize="md" variant="subtext">
{t(`supportVideos.videos.${tKey}.description`)}
</Text>
</Flex>
);
});
VideoCard.displayName = 'VideoCard';

View File

@@ -0,0 +1,20 @@
import { Divider } from '@invoke-ai/ui-library';
import { StickyScrollable } from 'features/system/components/StickyScrollable';
import { gettingStartedVideos, type VideoData } from 'features/system/components/VideosModal/data';
import { VideoCard } from 'features/system/components/VideosModal/VideoCard';
import { Fragment, memo } from 'react';
export const VideoCardList = memo(({ category, videos }: { category: string; videos: VideoData[] }) => {
return (
<StickyScrollable title={category}>
{videos.map((video, i) => (
<Fragment key={`${video.tKey}-${i}`}>
<VideoCard video={video} />
{i < gettingStartedVideos.length - 1 && <Divider />}
</Fragment>
))}
</StickyScrollable>
);
});
VideoCardList.displayName = 'VideoCardList';

View File

@@ -0,0 +1,100 @@
import {
ExternalLink,
Flex,
Modal,
ModalBody,
ModalCloseButton,
ModalContent,
ModalFooter,
ModalHeader,
ModalOverlay,
Text,
} from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { buildUseDisclosure } from 'common/hooks/useBoolean';
import {
controlCanvasVideos,
gettingStartedVideos,
studioSessionsPlaylistLink,
} from 'features/system/components/VideosModal/data';
import { VideoCardList } from 'features/system/components/VideosModal/VideoCardList';
import { videoModalLinkClicked } from 'features/system/store/actions';
import { discordLink } from 'features/system/store/constants';
import { memo, useCallback } from 'react';
import { Trans, useTranslation } from 'react-i18next';
export const [useVideosModal] = buildUseDisclosure(false);
const StudioSessionsPlaylistLink = () => {
const dispatch = useAppDispatch();
const handleLinkClick = useCallback(() => {
dispatch(videoModalLinkClicked('Studio session playlist'));
}, [dispatch]);
return (
<ExternalLink
fontWeight="semibold"
href={studioSessionsPlaylistLink}
display="inline-flex"
label="Studio Sessions playlist"
onClick={handleLinkClick}
/>
);
};
const DiscordLink = () => {
const dispatch = useAppDispatch();
const handleLinkClick = useCallback(() => {
dispatch(videoModalLinkClicked('Discord'));
}, [dispatch]);
return (
<ExternalLink
fontWeight="semibold"
href={discordLink}
display="inline-flex"
label="Discord"
onClick={handleLinkClick}
/>
);
};
const components = {
StudioSessionsPlaylistLink: <StudioSessionsPlaylistLink />,
DiscordLink: <DiscordLink />,
};
export const VideosModal = memo(() => {
const { t } = useTranslation();
const videosModal = useVideosModal();
return (
<Modal isOpen={videosModal.isOpen} onClose={videosModal.close} size="2xl" isCentered useInert={false}>
<ModalOverlay />
<ModalContent maxH="80vh" h="80vh">
<ModalHeader bg="none">{t('supportVideos.supportVideos')}</ModalHeader>
<ModalCloseButton />
<ModalBody>
<ScrollableContent>
<Flex flexDir="column" gap={4}>
<Flex flexDir="column" gap={2} pb={2}>
<Text fontSize="md">
<Trans i18nKey="supportVideos.studioSessionsDesc1" components={components} />
</Text>
<Text fontSize="md">
<Trans i18nKey="supportVideos.studioSessionsDesc2" components={components} />
</Text>
</Flex>
<VideoCardList category={t('supportVideos.gettingStarted')} videos={gettingStartedVideos} />
<VideoCardList category={t('supportVideos.controlCanvas')} videos={controlCanvasVideos} />
</Flex>
</ScrollableContent>
</ModalBody>
<ModalFooter />
</ModalContent>
</Modal>
);
});
VideosModal.displayName = 'VideosModal';

View File

@@ -0,0 +1,30 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useVideosModal } from 'features/system/components/VideosModal/VideosModal';
import { videoModalOpened } from 'features/system/store/actions';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiYoutubeLogoFill } from 'react-icons/pi';
export const VideosModalButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const videosModal = useVideosModal();
const onClickOpen = useCallback(() => {
dispatch(videoModalOpened());
videosModal.open();
}, [videosModal, dispatch]);
return (
<IconButton
aria-label={t('supportVideos.supportVideos')}
variant="link"
icon={<PiYoutubeLogoFill fontSize={20} />}
boxSize={8}
onClick={onClickOpen}
/>
);
});
VideosModalButton.displayName = 'VideosModalButton';

View File

@@ -0,0 +1,88 @@
/**
* To add a support video, you'll need to add the video to the list below.
*
* The `tKey` is a sub-key in the translation file `invokeai/frontend/web/public/locales/en.json`.
* Add the title and description under `supportVideos.videos`, following the existing format.
*/
export type VideoData = {
tKey: string;
link: string;
length: {
minutes: number;
seconds: number;
};
};
export const gettingStartedVideos: VideoData[] = [
{
tKey: 'creatingYourFirstImage',
link: 'https://www.youtube.com/watch?v=jVi2XgSGrfY&list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO&index=1&t=29s&pp=iAQB',
length: { minutes: 6, seconds: 0 },
},
{
tKey: 'usingControlLayersAndReferenceGuides',
link: 'https://www.youtube.com/watch?v=crgw6bEgyrw&list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO&index=2&t=70s&pp=iAQB',
length: { minutes: 5, seconds: 30 },
},
{
tKey: 'understandingImageToImageAndDenoising',
link: 'https://www.youtube.com/watch?v=tvj8-0s6S2U&list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO&index=3&t=1s&pp=iAQB',
length: { minutes: 2, seconds: 37 },
},
{
tKey: 'exploringAIModelsAndConceptAdapters',
link: 'https://www.youtube.com/watch?v=iwBmBQMZ0UA&list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO&index=4&pp=iAQB',
length: { minutes: 8, seconds: 52 },
},
{
tKey: 'creatingAndComposingOnInvokesControlCanvas',
link: 'https://www.youtube.com/watch?v=O4LaFcYFxlA',
length: { minutes: 2, seconds: 52 },
},
{
tKey: 'upscaling',
link: 'https://www.youtube.com/watch?v=OCb19_P0nro&list=PLvWK1Kc8iXGrQy8r9TYg6QdUuJ5MMx-ZO&index=6&t=2s&pp=iAQB',
length: { minutes: 4, seconds: 0 },
},
];
export const controlCanvasVideos: VideoData[] = [
{
tKey: 'howDoIGenerateAndSaveToTheGallery',
link: 'https://youtu.be/Tl-69JvwJ2s?si=dbjmBc1iDAUpE1k5&t=26',
length: { minutes: 0, seconds: 49 },
},
{
tKey: 'howDoIEditOnTheCanvas',
link: 'https://youtu.be/Tl-69JvwJ2s?si=U_bFl9HsvSuejbxp&t=76',
length: { minutes: 0, seconds: 58 },
},
{
tKey: 'howDoIDoImageToImageTransformation',
link: 'https://youtu.be/Tl-69JvwJ2s?si=fjhTeY-yZ3qsEzEM&t=138',
length: { minutes: 0, seconds: 51 },
},
{
tKey: 'howDoIUseControlNetsAndControlLayers',
link: 'https://youtu.be/Tl-69JvwJ2s?si=x5KcYvkHbvR9ifsX&t=192',
length: { minutes: 1, seconds: 41 },
},
{
tKey: 'howDoIUseGlobalIPAdaptersAndReferenceImages',
link: 'https://youtu.be/Tl-69JvwJ2s?si=O940rNHiHGKXknK2&t=297',
length: { minutes: 0, seconds: 43 },
},
{
tKey: 'howDoIUseInpaintMasks',
link: 'https://youtu.be/Tl-69JvwJ2s?si=3DZhmerkzUmvJJSn&t=345',
length: { minutes: 1, seconds: 9 },
},
{
tKey: 'howDoIOutpaint',
link: 'https://youtu.be/Tl-69JvwJ2s?si=IIwkGZLq1PfLf80Q&t=420',
length: { minutes: 0, seconds: 48 },
},
];
export const studioSessionsPlaylistLink = 'https://www.youtube.com/playlist?list=PLvWK1Kc8iXGq_8tWZqnwDVaf9uhlDC09U';

View File

@@ -0,0 +1,4 @@
import { createAction } from '@reduxjs/toolkit';
export const videoModalLinkClicked = createAction<string>('system/videoModalLinkClicked');
export const videoModalOpened = createAction('system/videoModalOpened');

View File

@@ -4,7 +4,7 @@ import { ToolChooser } from 'features/controlLayers/components/Tool/ToolChooser'
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useImageViewer } from 'features/gallery/components/ImageViewer/useImageViewer';
import { useClearQueue } from 'features/queue/components/ClearQueueConfirmationAlertDialog';
import { QueueButtonTooltip } from 'features/queue/components/QueueButtonTooltip';
import { InvokeButtonTooltip } from 'features/queue/components/InvokeButtonTooltip/InvokeButtonTooltip';
import { useCancelCurrentQueueItem } from 'features/queue/hooks/useCancelCurrentQueueItem';
import { useInvoke } from 'features/queue/hooks/useInvoke';
import type { UsePanelReturn } from 'features/ui/hooks/usePanel';
@@ -62,7 +62,7 @@ const FloatingSidePanelButtons = (props: Props) => {
flexGrow={1}
/>
</Tooltip>
<QueueButtonTooltip prepend={shift} placement="end">
<InvokeButtonTooltip prepend={shift} placement="end">
<IconButton
aria-label={t('queue.queueBack')}
onClick={shift ? queue.queueFront : queue.queueBack}
@@ -72,7 +72,7 @@ const FloatingSidePanelButtons = (props: Props) => {
colorScheme="invokeYellow"
flexGrow={1}
/>
</QueueButtonTooltip>
</InvokeButtonTooltip>
<Tooltip label={t('queue.cancelTooltip')} placement="end">
<IconButton
isDisabled={cancelCurrent.isDisabled}

View File

@@ -4,6 +4,7 @@ import { $customNavComponent } from 'app/store/nanostores/customNavComponent';
import InvokeAILogoComponent from 'features/system/components/InvokeAILogoComponent';
import SettingsMenu from 'features/system/components/SettingsModal/SettingsMenu';
import StatusIndicator from 'features/system/components/StatusIndicator';
import { VideosModalButton } from 'features/system/components/VideosModal/VideosModalButton';
import { TabMountGate } from 'features/ui/components/TabMountGate';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
@@ -39,6 +40,7 @@ export const VerticalNavBar = memo(() => {
<Spacer />
<StatusIndicator />
<Notifications />
<VideosModalButton />
{customNavComponent ? customNavComponent : <SettingsMenu />}
</Flex>
);

View File

@@ -425,3 +425,7 @@ const resetListQueryData = (
// we have to manually kick off another query to get the first page and re-initialize the list
dispatch(queueApi.endpoints.listQueueItems.initiate(undefined));
};
export const enqueueMutationFixedCacheKeyOptions = {
fixedCacheKey: 'enqueueBatch',
} as const;

File diff suppressed because one or more lines are too long

View File

@@ -1 +1 @@
__version__ = "5.4.2rc1"
__version__ = "5.4.3rc1"

View File

@@ -56,7 +56,7 @@ dependencies = [
"torchmetrics",
"torchsde",
"torchvision",
"transformers==4.41.1",
"transformers==4.46.3",
# Core application dependencies, pinned for reproducible builds.
"fastapi-events==0.11.1",
@@ -164,7 +164,7 @@ version = { attr = "invokeai.version.__version__" }
"*.png",
]
"invokeai.assets.fonts" = ["**/*.ttf"]
"invokeai.backend" = ["**.png"]
"invokeai.backend" = ["**.png", "**/*.icc"]
"invokeai.configs" = ["*.example", "**/*.yaml", "*.txt"]
"invokeai.frontend.web.dist" = ["**"]
"invokeai.frontend.web.static" = ["**"]