mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-16 00:17:56 -05:00
Compare commits
39 Commits
ryan/model
...
ryan/lora-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ed6e65a6e | ||
|
|
52c9646f84 | ||
|
|
7662f0522b | ||
|
|
e50fe69839 | ||
|
|
5a9f884620 | ||
|
|
edc72d1739 | ||
|
|
23f521dc7c | ||
|
|
3d6b93efdd | ||
|
|
3f28d3afad | ||
|
|
9353bfbdd6 | ||
|
|
93f2bc6118 | ||
|
|
9019026d6d | ||
|
|
c195b326ec | ||
|
|
2f460d2a45 | ||
|
|
4473cba512 | ||
|
|
4c94d41fa9 | ||
|
|
4036244ee9 | ||
|
|
d06232d9ba | ||
|
|
bacbdfb8fc | ||
|
|
59f42f4682 | ||
|
|
a636ac2899 | ||
|
|
bd478360d9 | ||
|
|
ac0db07649 | ||
|
|
b7132ce9e7 | ||
|
|
90f30e7748 | ||
|
|
6b86a66bc7 | ||
|
|
aa97e626e9 | ||
|
|
c90736093f | ||
|
|
0bff4ace1b | ||
|
|
5eb382074e | ||
|
|
46aa930526 | ||
|
|
3305bad0c2 | ||
|
|
13703d8f55 | ||
|
|
60d838d0a5 | ||
|
|
2a157a44bf | ||
|
|
d61b5833c2 | ||
|
|
c094838c6a | ||
|
|
2d334c8dd8 | ||
|
|
a6be26e174 |
@@ -2,29 +2,42 @@
|
||||
|
||||
## Builder stage
|
||||
|
||||
FROM library/ubuntu:23.04 AS builder
|
||||
FROM library/ubuntu:24.04 AS builder
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt update && apt-get install -y \
|
||||
git \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
build-essential
|
||||
build-essential \
|
||||
git
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
# Install `uv` for package management
|
||||
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
|
||||
|
||||
ENV VIRTUAL_ENV=/opt/venv
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV PYTHON_VERSION=3.11
|
||||
ENV UV_COMPILE_BYTECODE=1
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
ARG BUILDPLATFORM
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
# Switch to the `ubuntu` user to work around dependency issues with uv-installed python
|
||||
RUN mkdir -p ${VIRTUAL_ENV} && \
|
||||
mkdir -p ${INVOKEAI_SRC} && \
|
||||
chmod -R a+w /opt
|
||||
USER ubuntu
|
||||
|
||||
# Install python and create the venv
|
||||
RUN uv python install ${PYTHON_VERSION} && \
|
||||
uv venv --relocatable --prompt "invoke" --python ${PYTHON_VERSION} ${VIRTUAL_ENV}
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
COPY invokeai ./invokeai
|
||||
COPY pyproject.toml ./
|
||||
|
||||
@@ -32,25 +45,18 @@ COPY pyproject.toml ./
|
||||
# the local working copy can be bind-mounted into the image
|
||||
# at path defined by ${INVOKEAI_SRC}
|
||||
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
|
||||
# x86_64/CUDA is default
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m venv ${VIRTUAL_ENV} &&\
|
||||
# x86_64/CUDA is the default
|
||||
RUN --mount=type=cache,target=/home/ubuntu/.cache/uv,uid=1000,gid=1000 \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm6.1"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu124"; \
|
||||
fi &&\
|
||||
fi && \
|
||||
uv pip install --python ${PYTHON_VERSION} $extra_index_url_arg -e "."
|
||||
|
||||
# xformers + triton fails to install on arm64
|
||||
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
|
||||
pip install $extra_index_url_arg -e ".[xformers]"; \
|
||||
else \
|
||||
pip install $extra_index_url_arg -e "."; \
|
||||
fi
|
||||
|
||||
# #### Build the Web UI ------------------------------------
|
||||
#### Build the Web UI ------------------------------------
|
||||
|
||||
FROM node:20-slim AS web-builder
|
||||
ENV PNPM_HOME="/pnpm"
|
||||
@@ -66,7 +72,7 @@ RUN npx vite build
|
||||
|
||||
#### Runtime stage ---------------------------------------
|
||||
|
||||
FROM library/ubuntu:23.04 AS runtime
|
||||
FROM library/ubuntu:24.04 AS runtime
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
@@ -83,17 +89,16 @@ RUN apt update && apt install -y --no-install-recommends \
|
||||
gosu \
|
||||
magic-wormhole \
|
||||
libglib2.0-0 \
|
||||
libgl1-mesa-glx \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
libgl1 \
|
||||
libglx-mesa0 \
|
||||
build-essential \
|
||||
libopencv-dev \
|
||||
libstdc++-10-dev &&\
|
||||
apt-get clean && apt-get autoclean
|
||||
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv
|
||||
ENV PYTHON_VERSION=3.11
|
||||
ENV INVOKEAI_ROOT=/invokeai
|
||||
ENV INVOKEAI_HOST=0.0.0.0
|
||||
ENV INVOKEAI_PORT=9090
|
||||
@@ -101,6 +106,14 @@ ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
||||
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
|
||||
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
|
||||
|
||||
# Install `uv` for package management
|
||||
# and install python for the ubuntu user (expected to exist on ubuntu >=24.x)
|
||||
# this is too tiny to optimize with multi-stage builds, but maybe we'll come back to it
|
||||
COPY --from=ghcr.io/astral-sh/uv:0.5.5 /uv /uvx /bin/
|
||||
USER ubuntu
|
||||
RUN uv python install ${PYTHON_VERSION}
|
||||
USER root
|
||||
|
||||
# --link requires buldkit w/ dockerfile syntax 1.4
|
||||
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
||||
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
|
||||
@@ -115,7 +128,7 @@ WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# build patchmatch
|
||||
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
||||
RUN python3 -c "from patchmatch import patch_match"
|
||||
RUN python -c "from patchmatch import patch_match"
|
||||
|
||||
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
|
||||
|
||||
|
||||
@@ -16,6 +16,9 @@ set -e -o pipefail
|
||||
|
||||
USER_ID=${CONTAINER_UID:-1000}
|
||||
USER=ubuntu
|
||||
# if the user does not exist, create it. It is expected to be present on ubuntu >=24.x
|
||||
_=$(id ${USER} 2>&1) || useradd -u ${USER_ID} ${USER}
|
||||
# ensure the UID is correct
|
||||
usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
|
||||
### Set the $PUBLIC_KEY env var to enable SSH access.
|
||||
@@ -36,6 +39,8 @@ fi
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
export HF_HOME=${HF_HOME:-$INVOKEAI_ROOT/.cache/huggingface}
|
||||
export MPLCONFIGDIR=${MPLCONFIGDIR:-$INVOKEAI_ROOT/.matplotlib}
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
exec gosu ${USER} "$@"
|
||||
|
||||
@@ -50,7 +50,7 @@ Applications are built on top of the invoke framework. They should construct `in
|
||||
|
||||
### Web UI
|
||||
|
||||
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/frontend` and the backend code is found in `/ldm/invoke/app/api_app.py` and `/ldm/invoke/app/api/`. The code is further organized as such:
|
||||
The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.tiangolo.com/) and [Socket.IO](https://socket.io/). The frontend code is found in `/invokeai/frontend` and the backend code is found in `/invokeai/app/api_app.py` and `/invokeai/app/api/`. The code is further organized as such:
|
||||
|
||||
| Component | Description |
|
||||
| --- | --- |
|
||||
@@ -62,7 +62,7 @@ The Web UI is built on top of an HTTP API built with [FastAPI](https://fastapi.t
|
||||
|
||||
### CLI
|
||||
|
||||
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/ldm/invoke/app/cli_app.py`.
|
||||
The CLI is built automatically from invocation metadata, and also supports invocation piping and auto-linking. Code is available in `/invokeai/frontend/cli`.
|
||||
|
||||
## Invoke
|
||||
|
||||
@@ -70,7 +70,7 @@ The Invoke framework provides the interface to the underlying AI systems and is
|
||||
|
||||
### Invoker
|
||||
|
||||
The invoker (`/ldm/invoke/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
|
||||
The invoker (`/invokeai/app/services/invoker.py`) is the primary interface through which applications interact with the framework. Its primary purpose is to create, manage, and invoke sessions. It also maintains two sets of services:
|
||||
- **invocation services**, which are used by invocations to interact with core functionality.
|
||||
- **invoker services**, which are used by the invoker to manage sessions and manage the invocation queue.
|
||||
|
||||
@@ -82,12 +82,12 @@ The session graph does not support looping. This is left as an application probl
|
||||
|
||||
### Invocations
|
||||
|
||||
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/ldm/invoke/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
|
||||
Invocations represent individual units of execution, with inputs and outputs. All invocations are located in `/invokeai/app/invocations`, and are all automatically discovered and made available in the applications. These are the primary way to expose new functionality in Invoke.AI, and the [implementation guide](INVOCATIONS.md) explains how to add new invocations.
|
||||
|
||||
### Services
|
||||
|
||||
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/ldm/invoke/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
|
||||
Services provide invocations access AI Core functionality and other necessary functionality (e.g. image storage). These are available in `/invokeai/app/services`. As a general rule, new services should provide an interface as an abstract base class, and may provide a lightweight local implementation by default in their module. The goal for all services should be to enable the usage of different implementations (e.g. using cloud storage for image storage), but should not load any module dependencies unless that implementation has been used (i.e. don't import anything that won't be used, especially if it's expensive to import).
|
||||
|
||||
## AI Core
|
||||
|
||||
The AI Core is represented by the rest of the code base (i.e. the code outside of `/ldm/invoke/app/`).
|
||||
The AI Core is represented by the rest of the code base (i.e. the code outside of `/invokeai/app/`).
|
||||
|
||||
@@ -287,8 +287,8 @@ new Invocation ready to be used.
|
||||
|
||||
Once you've created a Node, the next step is to share it with the community! The
|
||||
best way to do this is to submit a Pull Request to add the Node to the
|
||||
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
|
||||
take a look a at our [contributing nodes overview](contributingNodes).
|
||||
[Community Nodes](../nodes/communityNodes.md) list. If you're not sure how to do that,
|
||||
take a look a at our [contributing nodes overview](../nodes/contributingNodes.md).
|
||||
|
||||
## Advanced
|
||||
|
||||
|
||||
@@ -9,20 +9,20 @@ model. These are the:
|
||||
configuration information. Among other things, the record service
|
||||
tracks the type of the model, its provenance, and where it can be
|
||||
found on disk.
|
||||
|
||||
|
||||
* _ModelInstallServiceBase_ A service for installing models to
|
||||
disk. It uses `DownloadQueueServiceBase` to download models and
|
||||
their metadata, and `ModelRecordServiceBase` to store that
|
||||
information. It is also responsible for managing the InvokeAI
|
||||
`models` directory and its contents.
|
||||
|
||||
|
||||
* _DownloadQueueServiceBase_
|
||||
A multithreaded downloader responsible
|
||||
for downloading models from a remote source to disk. The download
|
||||
queue has special methods for downloading repo_id folders from
|
||||
Hugging Face, as well as discriminating among model versions in
|
||||
Civitai, but can be used for arbitrary content.
|
||||
|
||||
|
||||
* _ModelLoadServiceBase_
|
||||
Responsible for loading a model from disk
|
||||
into RAM and VRAM and getting it ready for inference.
|
||||
@@ -207,9 +207,9 @@ for use in the InvokeAI web server. Its signature is:
|
||||
|
||||
```
|
||||
def open(
|
||||
cls,
|
||||
config: InvokeAIAppConfig,
|
||||
conn: Optional[sqlite3.Connection] = None,
|
||||
cls,
|
||||
config: InvokeAIAppConfig,
|
||||
conn: Optional[sqlite3.Connection] = None,
|
||||
lock: Optional[threading.Lock] = None
|
||||
) -> Union[ModelRecordServiceSQL, ModelRecordServiceFile]:
|
||||
```
|
||||
@@ -363,7 +363,7 @@ functionality:
|
||||
|
||||
* Registering a model config record for a model already located on the
|
||||
local filesystem, without moving it or changing its path.
|
||||
|
||||
|
||||
* Installing a model alreadiy located on the local filesystem, by
|
||||
moving it into the InvokeAI root directory under the
|
||||
`models` folder (or wherever config parameter `models_dir`
|
||||
@@ -371,21 +371,21 @@ functionality:
|
||||
|
||||
* Probing of models to determine their type, base type and other key
|
||||
information.
|
||||
|
||||
|
||||
* Interface with the InvokeAI event bus to provide status updates on
|
||||
the download, installation and registration process.
|
||||
|
||||
|
||||
* Downloading a model from an arbitrary URL and installing it in
|
||||
`models_dir`.
|
||||
|
||||
* Special handling for HuggingFace repo_ids to recursively download
|
||||
the contents of the repository, paying attention to alternative
|
||||
variants such as fp16.
|
||||
|
||||
|
||||
* Saving tags and other metadata about the model into the invokeai database
|
||||
when fetching from a repo that provides that type of information,
|
||||
(currently only HuggingFace).
|
||||
|
||||
|
||||
### Initializing the installer
|
||||
|
||||
A default installer is created at InvokeAI api startup time and stored
|
||||
@@ -461,7 +461,7 @@ revision.
|
||||
`config` is an optional dict of values that will override the
|
||||
autoprobed values for model type, base, scheduler prediction type, and
|
||||
so forth. See [Model configuration and
|
||||
probing](#Model-configuration-and-probing) for details.
|
||||
probing](#model-configuration-and-probing) for details.
|
||||
|
||||
`access_token` is an optional access token for accessing resources
|
||||
that need authentication.
|
||||
@@ -494,7 +494,7 @@ source8 = URLModelSource(url='https://civitai.com/api/download/models/63006', ac
|
||||
|
||||
for source in [source1, source2, source3, source4, source5, source6, source7]:
|
||||
install_job = installer.install_model(source)
|
||||
|
||||
|
||||
source2job = installer.wait_for_installs(timeout=120)
|
||||
for source in sources:
|
||||
job = source2job[source]
|
||||
@@ -504,7 +504,7 @@ for source in sources:
|
||||
print(f"{source} installed as {model_key}")
|
||||
elif job.errored:
|
||||
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
|
||||
|
||||
|
||||
```
|
||||
|
||||
As shown here, the `import_model()` method accepts a variety of
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# InvokeAI Backend Tests
|
||||
|
||||
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
|
||||
We use `pytest` to run the backend python tests. (See [pyproject.toml](https://github.com/invoke-ai/InvokeAI/blob/main/pyproject.toml) for the default `pytest` options.)
|
||||
|
||||
## Fast vs. Slow
|
||||
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
|
||||
@@ -33,7 +33,7 @@ pytest tests -m ""
|
||||
|
||||
## Test Organization
|
||||
|
||||
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
|
||||
All backend tests are in the [`tests/`](https://github.com/invoke-ai/InvokeAI/tree/main/tests) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
|
||||
|
||||
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
## **What do I need to know to help?**
|
||||
|
||||
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
|
||||
If you are looking to help with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
|
||||
|
||||
|
||||
## **Get Started**
|
||||
@@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
|
||||
Once you're setup, for more information, you can review the documentation specific to your area of interest:
|
||||
|
||||
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
|
||||
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
|
||||
* #### [Frontend Documentation](../frontend/index.md)
|
||||
* #### [Node Documentation](../INVOCATIONS.md)
|
||||
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
|
||||
|
||||
@@ -20,15 +20,15 @@ Once you're setup, for more information, you can review the documentation specif
|
||||
|
||||
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
|
||||
|
||||
There are two paths to making a development contribution:
|
||||
There are two paths to making a development contribution:
|
||||
|
||||
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
|
||||
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item you’d like to help with, reach out to the contributor assigned to the item to see how you can help.
|
||||
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item you’d like to help with, reach out to the contributor assigned to the item to see how you can help.
|
||||
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
|
||||
|
||||
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no one’s time is being misspent.*
|
||||
|
||||
## Best Practices:
|
||||
## Best Practices:
|
||||
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
|
||||
* Comments! Commenting your code helps reviewers easily understand your contribution
|
||||
* Use Python and Typescript’s typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
|
||||
@@ -38,7 +38,7 @@ There are two paths to making a development contribution:
|
||||
|
||||
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
|
||||
|
||||
For frontend related work, **@psychedelicious** is the best person to reach out to.
|
||||
For frontend related work, **@psychedelicious** is the best person to reach out to.
|
||||
|
||||
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.
|
||||
|
||||
|
||||
@@ -22,15 +22,15 @@ Before starting these steps, ensure you have your local environment [configured
|
||||
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
|
||||
3. Clone the repository to your local machine using:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/your-GitHub-username/InvokeAI.git
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/your-GitHub-username/InvokeAI.git
|
||||
```
|
||||
|
||||
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface. 4. Create a new branch for your fix using:
|
||||
|
||||
```bash
|
||||
git checkout -b branch-name-here
|
||||
```
|
||||
```bash
|
||||
git checkout -b branch-name-here
|
||||
```
|
||||
|
||||
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
|
||||
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:
|
||||
|
||||
@@ -27,9 +27,9 @@ If you just want to use Invoke, you should use the [installer][installer link].
|
||||
|
||||
5. Activate the venv (you'll need to do this every time you want to run the app):
|
||||
|
||||
```sh
|
||||
source .venv/bin/activate
|
||||
```
|
||||
```sh
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
6. Install the repo as an [editable install][editable install link]:
|
||||
|
||||
@@ -37,7 +37,7 @@ If you just want to use Invoke, you should use the [installer][installer link].
|
||||
pip install -e ".[dev,test,xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
||||
```
|
||||
|
||||
Refer to the [manual installation][manual install link]] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
|
||||
Refer to the [manual installation][manual install link] instructions for more determining the correct install options. `xformers` is optional, but `dev` and `test` are not.
|
||||
|
||||
7. Install the frontend dev toolchain:
|
||||
|
||||
|
||||
@@ -34,11 +34,11 @@ Please reach out to @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy)
|
||||
|
||||
## Contributors
|
||||
|
||||
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
|
||||
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](contributors.md). We thank them for their time, hard work and effort.
|
||||
|
||||
## Code of Conduct
|
||||
|
||||
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/docs/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
|
||||
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](../CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
|
||||
|
||||
By making a contribution to this project, you certify that:
|
||||
|
||||
|
||||
@@ -15,6 +15,11 @@ custom_nodes_readme_path = str(custom_nodes_path / "README.md")
|
||||
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
|
||||
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
|
||||
|
||||
# set the same permissions as the destination directory, in case our source is read-only,
|
||||
# so that the files are user-writable
|
||||
for p in custom_nodes_path.glob("**/*"):
|
||||
p.chmod(custom_nodes_path.stat().st_mode)
|
||||
|
||||
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
|
||||
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
|
||||
if spec is None or spec.loader is None:
|
||||
|
||||
@@ -82,10 +82,11 @@ class CompelInvocation(BaseInvocation):
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=text_encoder,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_te_",
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
@@ -179,10 +180,11 @@ class SDXLPromptInvocationBase:
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
text_encoder,
|
||||
patches=_lora_loader(),
|
||||
prefix=lora_prefix,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
|
||||
@@ -1003,10 +1003,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
||||
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=unet,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_unet_",
|
||||
dtype=unet.dtype,
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
):
|
||||
|
||||
@@ -56,6 +56,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
CLIPLEmbedModel = "CLIPLEmbedModelField"
|
||||
CLIPGEmbedModel = "CLIPGEmbedModelField"
|
||||
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
|
||||
StructuralLoRAModel = "StructuralLoRAModelField"
|
||||
# endregion
|
||||
|
||||
# region Misc Field Types
|
||||
@@ -143,6 +144,7 @@ class FieldDescriptions:
|
||||
controlnet_model = "ControlNet model to load"
|
||||
vae_model = "VAE model to load"
|
||||
lora_model = "LoRA model to load"
|
||||
structural_lora_model = "Structural LoRA model to load"
|
||||
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||
flux_model = "Flux model (Transformer) to load"
|
||||
sd3_model = "SD3 model (MMDiTX) to load"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from contextlib import ExitStack
|
||||
from typing import Callable, Iterator, Optional, Tuple
|
||||
from typing import Callable, Iterator, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
@@ -8,6 +8,8 @@ import torchvision.transforms as tv_transforms
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
@@ -22,7 +24,7 @@ from invokeai.app.invocations.fields import (
|
||||
)
|
||||
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
|
||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||
from invokeai.app.invocations.model import TransformerField, VAEField
|
||||
from invokeai.app.invocations.model import TransformerField, VAEField, StructuralLoRAField, LoRAField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
|
||||
@@ -43,6 +45,8 @@ from invokeai.backend.flux.sampling_utils import (
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.flux.flux_tools_sampling_utils import prepare_control
|
||||
from invokeai.backend.flux.modules.conditioner import HFEncoder
|
||||
from invokeai.backend.flux.text_conditioning import FluxTextConditioning
|
||||
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
@@ -284,6 +288,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
dtype=inference_dtype,
|
||||
device=x.device,
|
||||
)
|
||||
img_cond = None
|
||||
if struct_lora := self.transformer.structural_lora:
|
||||
# What should we do when we have multiple of these?
|
||||
if not self.controlnet_vae:
|
||||
raise ValueError("controlnet_vae must be set when using a strutural lora")
|
||||
ae_info = context.models.load(self.controlnet_vae.vae)
|
||||
img = context.images.get_pil(struct_lora.img.image_name)
|
||||
with ae_info as ae:
|
||||
assert isinstance(ae, AutoEncoder)
|
||||
img_cond = prepare_control(self.height, self.width, self.seed, ae, img)
|
||||
|
||||
# Load the transformer model.
|
||||
(cached_weights, transformer) = exit_stack.enter_context(transformer_info.model_on_device())
|
||||
@@ -296,10 +310,11 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
if config.format in [ModelFormat.Checkpoint]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
|
||||
dtype=inference_dtype,
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
@@ -311,7 +326,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# The model is quantized, so apply the LoRA weights as sidecar layers. This results in slower inference,
|
||||
# than directly patching the weights, but is agnostic to the quantization format.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_sidecar_patches(
|
||||
LoRAPatcher.apply_lora_wrapper_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix=FLUX_LORA_TRANSFORMER_PREFIX,
|
||||
@@ -345,6 +360,7 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
controlnet_extensions=controlnet_extensions,
|
||||
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
|
||||
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
|
||||
img_cond=img_cond
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
@@ -682,7 +698,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
return pos_ip_adapter_extensions, neg_ip_adapter_extensions
|
||||
|
||||
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.transformer.loras:
|
||||
loras: list[Union[LoRAField, StructuralLoRAField]] = [*self.transformer.loras]
|
||||
if self.transformer.structural_lora:
|
||||
loras.append(self.transformer.structural_lora)
|
||||
for lora in loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
|
||||
@@ -81,8 +81,8 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
transformer=TransformerField(transformer=transformer, loras=[], structural_loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], structural_loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
|
||||
70
invokeai/app/invocations/flux_structural_lora_loader.py
Normal file
70
invokeai/app/invocations/flux_structural_lora_loader.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from typing import Optional, Literal
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType, ImageField
|
||||
from invokeai.app.invocations.model import VAEField, StructuralLoRAField, ModelIdentifierField, TransformerField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("flux_structural_lora_loader_output")
|
||||
class FluxStructuralLoRALoaderOutput(BaseInvocationOutput):
|
||||
"""Flux Structural LoRA Loader Output"""
|
||||
|
||||
transformer: Optional[TransformerField] = OutputField(
|
||||
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_structural_lora_loader",
|
||||
title="Flux Structural LoRA",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.1.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxStructuralLoRALoaderInvocation(BaseInvocation):
|
||||
"""Apply a LoRA model to a FLUX transformer and/or text encoder."""
|
||||
|
||||
lora: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.structural_lora_model, title="Structural LoRA", ui_type=UIType.StructuralLoRAModel
|
||||
)
|
||||
transformer: TransformerField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.transformer,
|
||||
input=Input.Connection,
|
||||
title="FLUX Transformer",
|
||||
)
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode.",
|
||||
)
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxStructuralLoRALoaderOutput:
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(lora_key):
|
||||
raise ValueError(f"Unknown lora: {lora_key}!")
|
||||
|
||||
# Check for existing LoRAs with the same key.
|
||||
if self.transformer and self.transformer.structural_lora and self.transformer.structural_lora.lora.key == lora_key:
|
||||
raise ValueError(f'Structural LoRA "{lora_key}" already applied to transformer.')
|
||||
|
||||
output = FluxStructuralLoRALoaderOutput()
|
||||
|
||||
# Attach LoRA layers to the models.
|
||||
if self.transformer is not None:
|
||||
output.transformer = self.transformer.model_copy(deep=True)
|
||||
output.transformer.structural_lora = StructuralLoRAField(
|
||||
lora=self.lora,
|
||||
img=self.image,
|
||||
weight=self.weight,
|
||||
)
|
||||
|
||||
return output
|
||||
@@ -22,6 +22,7 @@ from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoRAPatcher
|
||||
from invokeai.backend.model_manager.config import ModelFormat
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -111,10 +112,11 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=clip_text_encoder,
|
||||
patches=self._clip_lora_iterator(context),
|
||||
prefix=FLUX_LORA_CLIP_PREFIX,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import copy
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -10,7 +10,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType, ImageField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -65,11 +65,6 @@ class CLIPField(BaseModel):
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class T5EncoderField(BaseModel):
|
||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||
@@ -79,6 +74,13 @@ class VAEField(BaseModel):
|
||||
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
|
||||
class StructuralLoRAField(LoRAField):
|
||||
img: ImageField = Field(description="Image to use in structural conditioning")
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
structural_lora: Optional[StructuralLoRAField] = Field(description="Structural LoRAs to apply on model loading", default=None)
|
||||
|
||||
@invocation_output("unet_output")
|
||||
class UNetOutput(BaseInvocationOutput):
|
||||
|
||||
@@ -21,6 +21,7 @@ from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoRAPatcher
|
||||
from invokeai.backend.model_manager.config import ModelFormat
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, SD3ConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
# The SD3 T5 Max Sequence Length set based on the default in diffusers.
|
||||
SD3_T5_MAX_SEQ_LEN = 256
|
||||
@@ -150,10 +151,11 @@ class Sd3TextEncoderInvocation(BaseInvocation):
|
||||
if clip_text_encoder_config.format in [ModelFormat.Diffusers]:
|
||||
# The model is non-quantized, so we can apply the LoRA weights directly into the model.
|
||||
exit_stack.enter_context(
|
||||
LoRAPatcher.apply_lora_patches(
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=clip_text_encoder,
|
||||
patches=self._clip_lora_iterator(context, clip_model),
|
||||
prefix=FLUX_LORA_CLIP_PREFIX,
|
||||
dtype=TorchDevice.choose_torch_dtype(),
|
||||
cached_weights=cached_weights,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -207,7 +207,9 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
unet_info as unet,
|
||||
LoRAPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
|
||||
LoRAPatcher.apply_smart_lora_patches(
|
||||
model=unet, patches=_lora_loader(), prefix="lora_unet_", dtype=unet.dtype
|
||||
),
|
||||
):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import filecmp
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
@@ -525,9 +526,35 @@ def get_config() -> InvokeAIAppConfig:
|
||||
]
|
||||
example_config.write_file(config.config_file_path.with_suffix(".example.yaml"), as_example=True)
|
||||
|
||||
# Copy all legacy configs - We know `__path__[0]` is correct here
|
||||
# Copy all legacy configs only if needed
|
||||
# We know `__path__[0]` is correct here
|
||||
configs_src = Path(model_configs.__path__[0]) # pyright: ignore [reportUnknownMemberType, reportUnknownArgumentType, reportAttributeAccessIssue]
|
||||
shutil.copytree(configs_src, config.legacy_conf_path, dirs_exist_ok=True)
|
||||
dest_path = config.legacy_conf_path
|
||||
|
||||
# Create destination (we don't need to check for existence)
|
||||
dest_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Compare directories recursively
|
||||
comparison = filecmp.dircmp(configs_src, dest_path)
|
||||
need_copy = any(
|
||||
[
|
||||
comparison.left_only, # Files exist only in source
|
||||
comparison.diff_files, # Files that differ
|
||||
comparison.common_funny, # Files that couldn't be compared
|
||||
]
|
||||
)
|
||||
|
||||
if need_copy:
|
||||
# Get permissions from destination directory
|
||||
dest_mode = dest_path.stat().st_mode
|
||||
|
||||
# Copy directory tree
|
||||
shutil.copytree(configs_src, dest_path, dirs_exist_ok=True)
|
||||
|
||||
# Set permissions on copied files to match destination directory
|
||||
dest_path.chmod(dest_mode)
|
||||
for p in dest_path.glob("**/*"):
|
||||
p.chmod(dest_mode)
|
||||
|
||||
if config.config_file_path.exists():
|
||||
config_from_file = load_and_migrate_config(config.config_file_path)
|
||||
|
||||
@@ -378,6 +378,9 @@ class DefaultSessionProcessor(SessionProcessorBase):
|
||||
self._poll_now()
|
||||
|
||||
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
|
||||
# Make sure the cancel event is for the currently processing queue item
|
||||
if self._queue_item and self._queue_item.item_id != event[1].item_id:
|
||||
return
|
||||
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
|
||||
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
|
||||
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel
|
||||
|
||||
@@ -35,7 +35,7 @@ class Migration11Callback:
|
||||
|
||||
def _remove_convert_cache(self) -> None:
|
||||
"""Rename models/.cache to models/.convert_cache."""
|
||||
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
|
||||
self._logger.info("Removing models/.cache directory. Converted models will now be cached in .convert_cache.")
|
||||
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
|
||||
shutil.rmtree(legacy_convert_path, ignore_errors=True)
|
||||
|
||||
|
||||
@@ -30,6 +30,8 @@ def denoise(
|
||||
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
|
||||
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
# extra img tokens
|
||||
img_cond: torch.Tensor | None = None,
|
||||
):
|
||||
# step 0 is the initial state
|
||||
total_steps = len(timesteps) - 1
|
||||
@@ -69,9 +71,9 @@ def denoise(
|
||||
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
|
||||
# tensors. Calculating the sum materializes each tensor into its own instance.
|
||||
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
|
||||
|
||||
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
|
||||
pred = model(
|
||||
img=img,
|
||||
img=pred_img,
|
||||
img_ids=img_ids,
|
||||
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
|
||||
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
|
||||
|
||||
27
invokeai/backend/flux/flux_tools_sampling_utils.py
Normal file
27
invokeai/backend/flux/flux_tools_sampling_utils.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from einops import rearrange
|
||||
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
|
||||
def prepare_control(
|
||||
height: int,
|
||||
width: int,
|
||||
seed: int,
|
||||
ae: AutoEncoder,
|
||||
cond_image: Image.Image,
|
||||
) -> torch.Tensor:
|
||||
# load and encode the conditioning image
|
||||
img_cond = cond_image.convert("RGB")
|
||||
img_cond = img_cond.resize((width, height), Image.Resampling.LANCZOS)
|
||||
img_cond = np.array(img_cond)
|
||||
img_cond = torch.from_numpy(img_cond).float()
|
||||
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
|
||||
ae_dtype = next(iter(ae.parameters())).dtype
|
||||
ae_device = next(iter(ae.parameters())).device
|
||||
img_cond = img_cond.to(device=ae_device, dtype=ae_dtype)
|
||||
generator = torch.Generator(device=ae_device).manual_seed(seed)
|
||||
img_cond = ae.encode(img_cond, sample=True, generator=generator)
|
||||
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
return img_cond
|
||||
@@ -32,4 +32,4 @@ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tenso
|
||||
xk_ = xk.view(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.view(*xq.shape), xk_out.view(*xk.shape)
|
||||
return xq_out.view(*xq.shape).type_as(xq), xk_out.view(*xk.shape).type_as(xk)
|
||||
|
||||
@@ -4,6 +4,7 @@ from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.backend.flux.custom_block_processor import (
|
||||
CustomDoubleStreamBlockProcessor,
|
||||
@@ -35,6 +36,7 @@ class FluxParams:
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
out_channels: Optional[int] = None
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
@@ -47,7 +49,7 @@ class Flux(nn.Module):
|
||||
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = self.in_channels
|
||||
self.out_channels = params.out_channels or self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
|
||||
50
invokeai/backend/flux/modules/image_embedders.py
Normal file
50
invokeai/backend/flux/modules/image_embedders.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from PIL import Image
|
||||
from safetensors.torch import load_file as load_sft
|
||||
from torch import nn
|
||||
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
|
||||
|
||||
class DepthImageEncoder:
|
||||
depth_model_name = "LiheYoung/depth-anything-large-hf"
|
||||
def __init__(self, device):
|
||||
self.device = device
|
||||
self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device)
|
||||
self.processor = AutoProcessor.from_pretrained(self.depth_model_name)
|
||||
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
||||
hw = img.shape[-2:]
|
||||
img = torch.clamp(img, -1.0, 1.0)
|
||||
img_byte = ((img + 1.0) * 127.5).byte()
|
||||
img = self.processor(img_byte, return_tensors="pt")["pixel_values"]
|
||||
depth = self.depth_model(img.to(self.device)).predicted_depth
|
||||
depth = repeat(depth, "b h w -> b 3 h w")
|
||||
depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True)
|
||||
depth = depth / 127.5 - 1.0
|
||||
return depth
|
||||
|
||||
class CannyImageEncoder:
|
||||
def __init__(
|
||||
self,
|
||||
device,
|
||||
min_t: int = 50,
|
||||
max_t: int = 200,
|
||||
):
|
||||
self.device = device
|
||||
self.min_t = min_t
|
||||
self.max_t = max_t
|
||||
def __call__(self, img: torch.Tensor) -> torch.Tensor:
|
||||
assert img.shape[0] == 1, "Only batch size 1 is supported"
|
||||
img = rearrange(img[0], "c h w -> h w c")
|
||||
img = torch.clamp(img, -1.0, 1.0)
|
||||
img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8)
|
||||
# Apply Canny edge detection
|
||||
canny = cv2.Canny(img_np, self.min_t, self.max_t)
|
||||
# Convert back to torch tensor and reshape
|
||||
canny = torch.from_numpy(canny).float() / 127.5 - 1.0
|
||||
canny = rearrange(canny, "h w -> 1 1 h w")
|
||||
canny = repeat(canny, "b 1 ... -> b 3 ...")
|
||||
return canny.to(self.device)
|
||||
65
invokeai/backend/lora/conversions/flux_control_lora_utils.py
Normal file
65
invokeai/backend/lora/conversions/flux_control_lora_utils.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import re
|
||||
import torch
|
||||
|
||||
from typing import Any, Dict
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
|
||||
# A regex pattern that matches all of the keys in the Flux Dev/Canny LoRA format.
|
||||
# Example keys:
|
||||
# guidance_in.in_layer.lora_B.bias
|
||||
# single_blocks.0.linear1.lora_A.weight
|
||||
# double_blocks.0.img_attn.norm.key_norm.scale
|
||||
FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX = r"(final_layer|vector_in|txt_in|time_in|img_in|guidance_in|\w+_blocks)(\.(\d+))?\.(lora_(A|B)|(in|out)_layer|adaLN_modulation|img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear|linear1|linear2|modulation|norm)\.?(.*)"
|
||||
|
||||
def is_state_dict_likely_flux_control(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the FLUX Control LoRA format.
|
||||
|
||||
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
return all(
|
||||
re.match(FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX, k) or re.match(FLUX_STRUCTURAL_TRANSFORMER_KEY_REGEX, k)
|
||||
for k in state_dict.keys()
|
||||
)
|
||||
|
||||
def lora_model_from_flux_control_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
# converted_state_dict = _convert_lora_bfl_control(state_dict=state_dict)
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key, value in state_dict.items():
|
||||
key_props = key.split(".")
|
||||
# Got it loading using lora_down and lora_up but it didn't seem to match this lora's structure
|
||||
# Leaving this in since it doesn't hurt anything and may be better
|
||||
layer_prop_size = -2 if any(prop in key for prop in ["lora_B", "lora_A"]) else -1
|
||||
layer_name = ".".join(key_props[:layer_prop_size])
|
||||
param_name = ".".join(key_props[layer_prop_size:])
|
||||
if layer_name not in grouped_state_dict:
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, layer_state_dict in grouped_state_dict.items():
|
||||
# Convert to a full layer diff
|
||||
prefixed_key = f"{FLUX_LORA_TRANSFORMER_PREFIX}{layer_key}"
|
||||
if all(k in layer_state_dict for k in ["lora_A.weight", "lora_B.bias", "lora_B.weight"]):
|
||||
layers[prefixed_key] = LoRALayer(
|
||||
layer_state_dict["lora_B.weight"],
|
||||
None,
|
||||
layer_state_dict["lora_A.weight"],
|
||||
None,
|
||||
layer_state_dict["lora_B.bias"]
|
||||
)
|
||||
elif "scale" in layer_state_dict:
|
||||
layers[prefixed_key] = SetParameterLayer("scale", layer_state_dict["scale"])
|
||||
else:
|
||||
raise AssertionError(f"{layer_key} not expected")
|
||||
# Create and return the LoRAModelRaw.
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
@@ -7,5 +7,6 @@ from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer]
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer, SetParameterLayer]
|
||||
|
||||
34
invokeai/backend/lora/layers/reshape_weight_layer.py
Normal file
34
invokeai/backend/lora/layers/reshape_weight_layer.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||
|
||||
|
||||
class ReshapeWeightLayer(LoRALayerBase):
|
||||
# TODO: Just everything in this class
|
||||
def __init__(self, weight: Optional[torch.Tensor], bias: Optional[torch.Tensor], scale: Optional[torch.Tensor]):
|
||||
super().__init__(alpha=None, bias=bias)
|
||||
self.weight = torch.nn.Parameter(weight) if weight is not None else None
|
||||
self.bias = torch.nn.Parameter(bias) if bias is not None else None
|
||||
self.manual_scale = scale
|
||||
|
||||
def scale(self):
|
||||
return self.manual_scale.float() if self.manual_scale is not None else super().scale()
|
||||
|
||||
def rank(self) -> int | None:
|
||||
return None
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return orig_weight
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
if self.weight is not None:
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
if self.manual_scale is not None:
|
||||
self.manual_scale = self.manual_scale.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + calc_tensor_size(self.manual_scale)
|
||||
29
invokeai/backend/lora/layers/set_parameter_layer.py
Normal file
29
invokeai/backend/lora/layers/set_parameter_layer.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.util.calc_tensor_size import calc_tensor_size
|
||||
|
||||
|
||||
class SetParameterLayer(LoRALayerBase):
|
||||
def __init__(self, param_name: str, weight: torch.Tensor):
|
||||
super().__init__(None, None)
|
||||
self.weight = weight
|
||||
self.param_name = param_name
|
||||
|
||||
def rank(self) -> int | None:
|
||||
return None
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight - orig_weight
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
return {self.param_name: self.get_weight(orig_module.get_parameter(self.param_name))}
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return super().calc_size() + calc_tensor_size(self.weight)
|
||||
@@ -9,6 +9,7 @@ from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
from invokeai.backend.lora.layers.set_parameter_layer import SetParameterLayer
|
||||
|
||||
|
||||
def any_lora_layer_from_state_dict(state_dict: Dict[str, torch.Tensor]) -> AnyLoRALayer:
|
||||
|
||||
133
invokeai/backend/lora/lora_layer_wrappers.py
Normal file
133
invokeai/backend/lora/lora_layer_wrappers.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
|
||||
|
||||
class LoRASidecarWrapper(torch.nn.Module):
|
||||
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[AnyLoRALayer], lora_weights: list[float]):
|
||||
super().__init__()
|
||||
self._orig_module = orig_module
|
||||
self._lora_layers = lora_layers
|
||||
self._lora_weights = lora_weights
|
||||
|
||||
@property
|
||||
def orig_module(self) -> torch.nn.Module:
|
||||
return self._orig_module
|
||||
|
||||
def add_lora_layer(self, lora_layer: AnyLoRALayer, lora_weight: float):
|
||||
self._lora_layers.append(lora_layer)
|
||||
self._lora_weights.append(lora_weight)
|
||||
|
||||
@torch.no_grad()
|
||||
def _get_lora_patched_parameters(
|
||||
self, orig_params: dict[str, torch.Tensor], lora_layers: list[AnyLoRALayer], lora_weights: list[float]
|
||||
) -> dict[str, torch.Tensor]:
|
||||
params: dict[str, torch.Tensor] = {}
|
||||
for lora_layer, lora_weight in zip(lora_layers, lora_weights, strict=True):
|
||||
layer_params = lora_layer.get_parameters(self._orig_module)
|
||||
for param_name, param_weight in layer_params.items():
|
||||
if orig_params[param_name].shape != param_weight.shape:
|
||||
param_weight = param_weight.reshape(orig_params[param_name].shape)
|
||||
|
||||
if param_name not in params:
|
||||
params[param_name] = param_weight * (lora_layer.scale() * lora_weight)
|
||||
else:
|
||||
params[param_name] += param_weight * (lora_layer.scale() * lora_weight)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
class LoRALinearWrapper(LoRASidecarWrapper):
|
||||
def _lora_linear_forward(self, input: torch.Tensor, lora_layer: LoRALayer, lora_weight: float) -> torch.Tensor:
|
||||
"""An optimized implementation of the residual calculation for a Linear LoRALayer."""
|
||||
x = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x = torch.nn.functional.linear(x, lora_layer.mid)
|
||||
x = torch.nn.functional.linear(x, lora_layer.up, bias=lora_layer.bias)
|
||||
x *= lora_weight * lora_layer.scale()
|
||||
return x
|
||||
|
||||
def _concatenated_lora_forward(
|
||||
self, input: torch.Tensor, concatenated_lora_layer: ConcatenatedLoRALayer, lora_weight: float
|
||||
) -> torch.Tensor:
|
||||
"""An optimized implementation of the residual calculation for a Linear ConcatenatedLoRALayer."""
|
||||
x_chunks: list[torch.Tensor] = []
|
||||
for lora_layer in concatenated_lora_layer.lora_layers:
|
||||
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
|
||||
x_chunk *= lora_weight * lora_layer.scale()
|
||||
x_chunks.append(x_chunk)
|
||||
|
||||
# TODO(ryand): Generalize to support concat_axis != 0.
|
||||
assert concatenated_lora_layer.concat_axis == 0
|
||||
x = torch.cat(x_chunks, dim=-1)
|
||||
return x
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# Split the LoRA layers into those that have optimized implementations and those that don't.
|
||||
optimized_layer_types = (LoRALayer, ConcatenatedLoRALayer)
|
||||
optimized_layers = [
|
||||
(layer, weight)
|
||||
for layer, weight in zip(self._lora_layers, self._lora_weights, strict=True)
|
||||
if isinstance(layer, optimized_layer_types)
|
||||
]
|
||||
non_optimized_layers = [
|
||||
(layer, weight)
|
||||
for layer, weight in zip(self._lora_layers, self._lora_weights, strict=True)
|
||||
if not isinstance(layer, optimized_layer_types)
|
||||
]
|
||||
|
||||
# First, calculate the residual for LoRA layers for which there is an optimized implementation.
|
||||
residual = None
|
||||
for lora_layer, lora_weight in optimized_layers:
|
||||
if isinstance(lora_layer, LoRALayer):
|
||||
added_residual = self._lora_linear_forward(input, lora_layer, lora_weight)
|
||||
elif isinstance(lora_layer, ConcatenatedLoRALayer):
|
||||
added_residual = self._concatenated_lora_forward(input, lora_layer, lora_weight)
|
||||
else:
|
||||
raise ValueError(f"Unsupported LoRA layer type: {type(lora_layer)}")
|
||||
|
||||
if residual is None:
|
||||
residual = added_residual
|
||||
else:
|
||||
residual += added_residual
|
||||
|
||||
# Next, calculate the residuals for the LoRA layers for which there is no optimized implementation.
|
||||
if non_optimized_layers:
|
||||
unoptimized_layers, unoptimized_weights = zip(*non_optimized_layers, strict=True)
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=unoptimized_layers,
|
||||
lora_weights=unoptimized_weights,
|
||||
)
|
||||
added_residual = torch.nn.functional.linear(input, params["weight"], params.get("bias", None))
|
||||
if residual is None:
|
||||
residual = added_residual
|
||||
else:
|
||||
residual += added_residual
|
||||
|
||||
return self.orig_module(input) + residual
|
||||
|
||||
|
||||
class LoRAConv1dWrapper(LoRASidecarWrapper):
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=self._lora_layers,
|
||||
lora_weights=self._lora_weights,
|
||||
)
|
||||
return self.orig_module(input) + torch.nn.functional.conv1d(input, params["weight"], params.get("bias", None))
|
||||
|
||||
|
||||
class LoRAConv2dWrapper(LoRASidecarWrapper):
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
params = self._get_lora_patched_parameters(
|
||||
orig_params={"weight": self._orig_module.weight, "bias": self._orig_module.bias},
|
||||
lora_layers=self._lora_layers,
|
||||
lora_weights=self._lora_weights,
|
||||
)
|
||||
return self.orig_module(input) + torch.nn.functional.conv2d(input, params["weight"], params.get("bias", None))
|
||||
@@ -4,19 +4,126 @@ from typing import Dict, Iterable, Optional, Tuple
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.sidecar_layers.concatenated_lora.concatenated_lora_linear_sidecar_layer import (
|
||||
ConcatenatedLoRALinearSidecarLayer,
|
||||
from invokeai.backend.lora.lora_layer_wrappers import (
|
||||
LoRAConv1dWrapper,
|
||||
LoRAConv2dWrapper,
|
||||
LoRALinearWrapper,
|
||||
LoRASidecarWrapper,
|
||||
)
|
||||
from invokeai.backend.lora.sidecar_layers.lora.lora_linear_sidecar_layer import LoRALinearSidecarLayer
|
||||
from invokeai.backend.lora.sidecar_layers.lora_sidecar_module import LoRASidecarModule
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
class LoRAPatcher:
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_smart_lora_patches(
|
||||
model: torch.nn.Module,
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
dtype: torch.dtype,
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
):
|
||||
"""Apply 'smart' LoRA patching that chooses whether to use direct patching or a sidecar wrapper for each module."""
|
||||
|
||||
# original_weights are stored for unpatching layers that are directly patched.
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
# original_modules are stored for unpatching layers that are wrapped in a LoRASidecarWrapper.
|
||||
original_modules: dict[str, torch.nn.Module] = {}
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher._apply_smart_lora_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
yield
|
||||
finally:
|
||||
# Restore directly patched layers.
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
|
||||
# Restore LoRASidecarWrapper modules.
|
||||
# Note: This logic assumes no nested modules in original_modules.
|
||||
for module_key, orig_module in original_modules.items():
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
|
||||
parent_module = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(parent_module, module_name, orig_module)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_smart_lora_patch(
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA patch to a model using the 'smart' patching strategy that chooses whether to use direct
|
||||
patching or a sidecar wrapper for each module.
|
||||
"""
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
|
||||
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
|
||||
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
|
||||
# without searching, but some legacy code still uses flattened keys.
|
||||
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
|
||||
|
||||
prefix_len = len(prefix)
|
||||
|
||||
for layer_key, layer in patch.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
module_key, module = LoRAPatcher._get_submodule(
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# Decide whether to use direct patching or a sidecar wrapper.
|
||||
# Direct patching is preferred, because it results in better runtime speed.
|
||||
# Reasons to use sidecar patching:
|
||||
# - The module is already wrapped in a LoRASidecarWrapper.
|
||||
# - The module is quantized.
|
||||
# - The module is on the CPU (and we don't want to store a second full copy of the original weights on the
|
||||
# CPU, since this would double the RAM usage)
|
||||
# NOTE: For now, we don't check if the layer is quantized here. We assume that this is checked in the caller
|
||||
# and that the caller will use the 'apply_lora_wrapper_patches' method if the layer is quantized.
|
||||
# TODO(ryand): Handle the case where we are running without a GPU. Should we set a config flag that allows
|
||||
# forcing full patching even on the CPU?
|
||||
if isinstance(module, LoRASidecarWrapper) or LoRAPatcher._is_any_part_of_layer_on_cpu(module):
|
||||
LoRAPatcher._apply_lora_layer_wrapper_patch(
|
||||
model=model,
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
else:
|
||||
LoRAPatcher._apply_lora_layer_patch(
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _is_any_part_of_layer_on_cpu(layer: torch.nn.Module) -> bool:
|
||||
return any(p.device.type == "cpu" for p in layer.parameters())
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
@@ -40,7 +147,7 @@ class LoRAPatcher:
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher.apply_lora_patch(
|
||||
LoRAPatcher._apply_lora_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
@@ -52,11 +159,12 @@ class LoRAPatcher:
|
||||
yield
|
||||
finally:
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
cur_param = model.get_parameter(param_key)
|
||||
cur_param.data = weight.to(dtype=cur_param.dtype, device=cur_param.device, copy=True)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def apply_lora_patch(
|
||||
def _apply_lora_patch(
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
@@ -91,48 +199,84 @@ class LoRAPatcher:
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
LoRAPatcher._apply_lora_layer_patch(
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
|
||||
layer_scale = layer.scale()
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_lora_layer_patch(
|
||||
module_to_patch: torch.nn.Module,
|
||||
module_to_patch_key: str,
|
||||
patch: AnyLoRALayer,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
first_param = next(module_to_patch.parameters())
|
||||
device = first_param.device
|
||||
dtype = first_param.dtype
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
layer_scale = patch.scale()
|
||||
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in layer.get_parameters(module).items():
|
||||
param_key = module_key + "." + param_name
|
||||
module_param = module.get_parameter(param_name)
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
patch.to(device=device)
|
||||
patch.to(dtype=torch.float32)
|
||||
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in patch.get_parameters(module_to_patch).items():
|
||||
param_key = module_to_patch_key + "." + param_name
|
||||
module_param = module_to_patch.get_parameter(param_name)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
if module_param.nelement() == lora_param_weight.nelement():
|
||||
lora_param_weight = lora_param_weight.reshape(module_param.shape)
|
||||
else:
|
||||
# This condition was added to handle layers in FLUX control LoRAs.
|
||||
# TODO(ryand): Move the weight update into the LoRA layer so that the LoRAPatcher doesn't need
|
||||
# to worry about this?
|
||||
expanded_weight = torch.zeros_like(
|
||||
lora_param_weight, dtype=module_param.dtype, device=module_param.device
|
||||
)
|
||||
slices = tuple(slice(0, dim) for dim in module_param.shape)
|
||||
expanded_weight[slices] = module_param
|
||||
setattr(
|
||||
module,
|
||||
param_name,
|
||||
torch.nn.Parameter(expanded_weight, requires_grad=module_param.requires_grad),
|
||||
)
|
||||
module_param = expanded_weight
|
||||
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
|
||||
layer.to(device=TorchDevice.CPU_DEVICE)
|
||||
patch.to(device=TorchDevice.CPU_DEVICE)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_lora_sidecar_patches(
|
||||
def apply_lora_wrapper_patches(
|
||||
model: torch.nn.Module,
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply one or more LoRA sidecar patches to a model within a context manager. Sidecar patches incur some
|
||||
overhead compared to normal LoRA patching, but they allow for LoRA layers to applied to base layers in any
|
||||
quantization format.
|
||||
"""Apply one or more LoRA wrapper patches to a model within a context manager. Wrapper patches incur some
|
||||
runtime overhead compared to normal LoRA patching, but they enable:
|
||||
- LoRA layers to be applied to quantized models
|
||||
- LoRA layers to be applied to CPU layers without needing to store a full copy of the original weights (i.e.
|
||||
avoid doubling the memory requirements).
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The model to patch.
|
||||
@@ -140,14 +284,11 @@ class LoRAPatcher:
|
||||
associated weights. An iterator is used so that the LoRA patches do not need to be loaded into memory
|
||||
all at once.
|
||||
prefix (str): The keys in the patches will be filtered to only include weights with this prefix.
|
||||
dtype (torch.dtype): The compute dtype of the sidecar layers. This cannot easily be inferred from the model,
|
||||
since the sidecar layers are typically applied on top of quantized layers whose weight dtype is
|
||||
different from their compute dtype.
|
||||
"""
|
||||
original_modules: dict[str, torch.nn.Module] = {}
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoRAPatcher._apply_lora_sidecar_patch(
|
||||
LoRAPatcher._apply_lora_wrapper_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
@@ -165,7 +306,7 @@ class LoRAPatcher:
|
||||
LoRAPatcher._set_submodule(parent_module, module_name, orig_module)
|
||||
|
||||
@staticmethod
|
||||
def _apply_lora_sidecar_patch(
|
||||
def _apply_lora_wrapper_patch(
|
||||
model: torch.nn.Module,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
@@ -173,7 +314,7 @@ class LoRAPatcher:
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA sidecar patch to a model."""
|
||||
"""Apply a single LoRA wrapper patch to a model."""
|
||||
|
||||
if patch_weight == 0:
|
||||
return
|
||||
@@ -194,28 +335,47 @@ class LoRAPatcher:
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# Initialize the LoRA sidecar layer.
|
||||
lora_sidecar_layer = LoRAPatcher._initialize_lora_sidecar_layer(module, layer, patch_weight)
|
||||
LoRAPatcher._apply_lora_layer_wrapper_patch(
|
||||
model=model,
|
||||
module_to_patch=module,
|
||||
module_to_patch_key=module_key,
|
||||
patch=layer,
|
||||
patch_weight=patch_weight,
|
||||
original_modules=original_modules,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Replace the original module with a LoRASidecarModule if it has not already been done.
|
||||
if module_key in original_modules:
|
||||
# The module has already been patched with a LoRASidecarModule. Append to it.
|
||||
assert isinstance(module, LoRASidecarModule)
|
||||
lora_sidecar_module = module
|
||||
else:
|
||||
# The module has not yet been patched with a LoRASidecarModule. Create one.
|
||||
lora_sidecar_module = LoRASidecarModule(module, [])
|
||||
original_modules[module_key] = module
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_key)
|
||||
module_parent = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(module_parent, module_name, lora_sidecar_module)
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def _apply_lora_layer_wrapper_patch(
|
||||
model: torch.nn.Module,
|
||||
module_to_patch: torch.nn.Module,
|
||||
module_to_patch_key: str,
|
||||
patch: AnyLoRALayer,
|
||||
patch_weight: float,
|
||||
original_modules: dict[str, torch.nn.Module],
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""Apply a single LoRA wrapper patch to a model."""
|
||||
|
||||
# Move the LoRA sidecar layer to the same device/dtype as the orig module.
|
||||
# TODO(ryand): Experiment with moving to the device first, then casting. This could be faster.
|
||||
lora_sidecar_layer.to(device=lora_sidecar_module.orig_module.weight.device, dtype=dtype)
|
||||
# Replace the original module with a LoRASidecarWrapper if it has not already been done.
|
||||
if not isinstance(module_to_patch, LoRASidecarWrapper):
|
||||
lora_wrapper_layer = LoRAPatcher._initialize_lora_wrapper_layer(module_to_patch)
|
||||
original_modules[module_to_patch_key] = module_to_patch
|
||||
module_parent_key, module_name = LoRAPatcher._split_parent_key(module_to_patch_key)
|
||||
module_parent = model.get_submodule(module_parent_key)
|
||||
LoRAPatcher._set_submodule(module_parent, module_name, lora_wrapper_layer)
|
||||
orig_module = module_to_patch
|
||||
else:
|
||||
assert module_to_patch_key in original_modules
|
||||
lora_wrapper_layer = module_to_patch
|
||||
orig_module = module_to_patch.orig_module
|
||||
|
||||
# Add the LoRA sidecar layer to the LoRASidecarModule.
|
||||
lora_sidecar_module.add_lora_layer(lora_sidecar_layer)
|
||||
# Move the LoRA layer to the same device/dtype as the orig module.
|
||||
patch.to(device=orig_module.weight.device, dtype=dtype)
|
||||
|
||||
# Add the LoRA wrapper layer to the LoRASidecarWrapper.
|
||||
lora_wrapper_layer.add_lora_layer(patch, patch_weight)
|
||||
|
||||
@staticmethod
|
||||
def _split_parent_key(module_key: str) -> tuple[str, str]:
|
||||
@@ -236,17 +396,13 @@ class LoRAPatcher:
|
||||
raise ValueError(f"Invalid module key: {module_key}")
|
||||
|
||||
@staticmethod
|
||||
def _initialize_lora_sidecar_layer(orig_layer: torch.nn.Module, lora_layer: AnyLoRALayer, patch_weight: float):
|
||||
# TODO(ryand): Add support for more original layer types and LoRA layer types.
|
||||
if isinstance(orig_layer, torch.nn.Linear) or (
|
||||
isinstance(orig_layer, LoRASidecarModule) and isinstance(orig_layer.orig_module, torch.nn.Linear)
|
||||
):
|
||||
if isinstance(lora_layer, LoRALayer):
|
||||
return LoRALinearSidecarLayer(lora_layer=lora_layer, weight=patch_weight)
|
||||
elif isinstance(lora_layer, ConcatenatedLoRALayer):
|
||||
return ConcatenatedLoRALinearSidecarLayer(concatenated_lora_layer=lora_layer, weight=patch_weight)
|
||||
else:
|
||||
raise ValueError(f"Unsupported Linear LoRA layer type: {type(lora_layer)}")
|
||||
def _initialize_lora_wrapper_layer(orig_layer: torch.nn.Module):
|
||||
if isinstance(orig_layer, torch.nn.Linear):
|
||||
return LoRALinearWrapper(orig_layer, [], [])
|
||||
elif isinstance(orig_layer, torch.nn.Conv1d):
|
||||
return LoRAConv1dWrapper(orig_layer, [], [])
|
||||
elif isinstance(orig_layer, torch.nn.Conv2d):
|
||||
return LoRAConv2dWrapper(orig_layer, [], [])
|
||||
else:
|
||||
raise ValueError(f"Unsupported layer type: {type(orig_layer)}")
|
||||
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
|
||||
|
||||
class ConcatenatedLoRALinearSidecarLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
concatenated_lora_layer: ConcatenatedLoRALayer,
|
||||
weight: float,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self._concatenated_lora_layer = concatenated_lora_layer
|
||||
self._weight = weight
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x_chunks: list[torch.Tensor] = []
|
||||
for lora_layer in self._concatenated_lora_layer.lora_layers:
|
||||
x_chunk = torch.nn.functional.linear(input, lora_layer.down)
|
||||
if lora_layer.mid is not None:
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.mid)
|
||||
x_chunk = torch.nn.functional.linear(x_chunk, lora_layer.up, bias=lora_layer.bias)
|
||||
x_chunk *= self._weight * lora_layer.scale()
|
||||
x_chunks.append(x_chunk)
|
||||
|
||||
# TODO(ryand): Generalize to support concat_axis != 0.
|
||||
assert self._concatenated_lora_layer.concat_axis == 0
|
||||
x = torch.cat(x_chunks, dim=-1)
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._concatenated_lora_layer.to(device=device, dtype=dtype)
|
||||
return self
|
||||
@@ -1,27 +0,0 @@
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
|
||||
|
||||
class LoRALinearSidecarLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
lora_layer: LoRALayer,
|
||||
weight: float,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self._lora_layer = lora_layer
|
||||
self._weight = weight
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.down)
|
||||
if self._lora_layer.mid is not None:
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.mid)
|
||||
x = torch.nn.functional.linear(x, self._lora_layer.up, bias=self._lora_layer.bias)
|
||||
x *= self._weight * self._lora_layer.scale()
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._lora_layer.to(device=device, dtype=dtype)
|
||||
return self
|
||||
@@ -1,24 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
class LoRASidecarModule(torch.nn.Module):
|
||||
"""A LoRA sidecar module that wraps an original module and adds LoRA layers to it."""
|
||||
|
||||
def __init__(self, orig_module: torch.nn.Module, lora_layers: list[torch.nn.Module]):
|
||||
super().__init__()
|
||||
self.orig_module = orig_module
|
||||
self._lora_layers = lora_layers
|
||||
|
||||
def add_lora_layer(self, lora_layer: torch.nn.Module):
|
||||
self._lora_layers.append(lora_layer)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = self.orig_module(input)
|
||||
for lora_layer in self._lora_layers:
|
||||
x += lora_layer(input)
|
||||
return x
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self._orig_module.to(device=device, dtype=dtype)
|
||||
for lora_layer in self._lora_layers:
|
||||
lora_layer.to(device=device, dtype=dtype)
|
||||
@@ -67,6 +67,7 @@ class ModelType(str, Enum):
|
||||
Main = "main"
|
||||
VAE = "vae"
|
||||
LoRA = "lora"
|
||||
StructuralLoRa = "structural_lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ip_adapter"
|
||||
@@ -273,6 +274,18 @@ class LoRALyCORISConfig(LoRAConfigBase):
|
||||
return Tag(f"{ModelType.LoRA.value}.{ModelFormat.LyCORIS.value}")
|
||||
|
||||
|
||||
class StructuralLoRALyCORISConfig(ModelConfigBase):
|
||||
"""Model config for Structural LoRA/Lycoris models."""
|
||||
|
||||
type: Literal[ModelType.StructuralLoRa] = ModelType.StructuralLoRa
|
||||
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
|
||||
format: Literal[ModelFormat.LyCORIS] = ModelFormat.LyCORIS
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.StructuralLoRa.value}.{ModelFormat.LyCORIS.value}")
|
||||
|
||||
|
||||
class LoRADiffusersConfig(LoRAConfigBase):
|
||||
"""Model config for LoRA/Diffusers models."""
|
||||
|
||||
@@ -535,6 +548,7 @@ AnyModelConfig = Annotated[
|
||||
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
|
||||
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
|
||||
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
|
||||
Annotated[StructuralLoRALyCORISConfig, StructuralLoRALyCORISConfig.get_tag()],
|
||||
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
|
||||
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
|
||||
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
|
||||
|
||||
@@ -13,8 +13,9 @@ from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils impo
|
||||
lora_model_from_flux_diffusers_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
is_state_dict_likely_in_flux_kohya_format, lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_control_lora_utils import is_state_dict_likely_flux_control, lora_model_from_flux_control_state_dict
|
||||
from invokeai.backend.lora.conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
|
||||
from invokeai.backend.lora.conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
from invokeai.backend.model_manager import (
|
||||
@@ -32,6 +33,7 @@ from invokeai.backend.model_manager.load.model_loader_registry import ModelLoade
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.StructuralLoRa, format=ModelFormat.LyCORIS)
|
||||
class LoRALoader(ModelLoader):
|
||||
"""Class to load LoRA models."""
|
||||
|
||||
@@ -75,7 +77,10 @@ class LoRALoader(ModelLoader):
|
||||
# https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_flux.py#L1194
|
||||
model = lora_model_from_flux_diffusers_state_dict(state_dict=state_dict, alpha=None)
|
||||
elif config.format == ModelFormat.LyCORIS:
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
if is_state_dict_likely_in_flux_kohya_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_flux_control(state_dict=state_dict):
|
||||
model = lora_model_from_flux_control_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
|
||||
@@ -18,6 +18,7 @@ from invokeai.backend.flux.ip_adapter.state_dict_utils import is_state_dict_xlab
|
||||
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_diffusers_format,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_control_lora_utils import is_state_dict_likely_flux_control
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import is_state_dict_likely_in_flux_kohya_format
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@@ -258,6 +259,18 @@ class ModelProbe(object):
|
||||
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
if isinstance(ckpt, dict) and "img_in.lora_A.weight" in ckpt and "img_in.lora_B.weight" in ckpt:
|
||||
tensor_a, tensor_b = ckpt["img_in.lora_A.weight"], ckpt["img_in.lora_B.weight"]
|
||||
if (
|
||||
tensor_a is not None
|
||||
and isinstance(tensor_a, torch.Tensor)
|
||||
and tensor_a.shape[1] == 128
|
||||
and tensor_b is not None
|
||||
and isinstance(tensor_b, torch.Tensor)
|
||||
and tensor_b.shape[0] == 3072
|
||||
):
|
||||
return ModelType.StructuralLoRa
|
||||
|
||||
for key in [str(k) for k in ckpt.keys()]:
|
||||
if key.startswith(
|
||||
(
|
||||
@@ -624,8 +637,10 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return ModelFormat.LyCORIS
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
if is_state_dict_likely_in_flux_kohya_format(self.checkpoint) or is_state_dict_likely_in_flux_diffusers_format(
|
||||
self.checkpoint
|
||||
if (
|
||||
is_state_dict_likely_in_flux_kohya_format(self.checkpoint)
|
||||
or is_state_dict_likely_in_flux_diffusers_format(self.checkpoint)
|
||||
or is_state_dict_likely_flux_control(self.checkpoint)
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
|
||||
@@ -1046,6 +1061,7 @@ ModelProbe.register_probe("diffusers", ModelType.SpandrelImageToImage, SpandrelI
|
||||
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.VAE, VaeCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.LoRA, LoRACheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.StructuralLoRa, LoRACheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
|
||||
|
||||
@@ -52,16 +52,15 @@ def read_checkpoint_meta(path: Union[str, Path], scan: bool = True) -> Dict[str,
|
||||
except Exception:
|
||||
# TODO: create issue for support "meta"?
|
||||
checkpoint = safetensors.torch.load_file(path, device="cpu")
|
||||
elif str(path).endswith(".gguf"):
|
||||
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
|
||||
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
|
||||
else:
|
||||
if scan:
|
||||
scan_result = scan_file_path(path)
|
||||
if scan_result.infected_files != 0 or scan_result.scan_err:
|
||||
raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.')
|
||||
if str(path).endswith(".gguf"):
|
||||
# The GGUF reader used here uses numpy memmap, so these tensors are not loaded into memory during this function
|
||||
checkpoint = gguf_sd_loader(Path(path), compute_dtype=torch.float32)
|
||||
else:
|
||||
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
||||
checkpoint = torch.load(path, map_location=torch.device("meta"))
|
||||
return checkpoint
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
# Invoke UI
|
||||
|
||||
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/OVERVIEW/>
|
||||
<https://invoke-ai.github.io/InvokeAI/contributing/frontend/>
|
||||
|
||||
@@ -642,12 +642,6 @@
|
||||
"remixImage": "Remix des Bilds erstellen",
|
||||
"imageActions": "Weitere Bildaktionen",
|
||||
"invoke": {
|
||||
"layer": {
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Breite ist {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Breite ist {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Skalierte Bbox-Höhe ist {{height}}",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, Bbox-Höhe ist {{height}}"
|
||||
},
|
||||
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Breite ist {{width}}",
|
||||
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Skalierte Bbox-Höhe ist {{height}}",
|
||||
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), Bbox-Breite ist {{width}}",
|
||||
|
||||
@@ -809,6 +809,7 @@
|
||||
"starterBundleHelpText": "Easily install all models needed to get started with a base model, including a main model, controlnets, IP adapters, and more. Selecting a bundle will skip any models that you already have installed.",
|
||||
"starterModels": "Starter Models",
|
||||
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
|
||||
"structuralLora": "Structural LoRA",
|
||||
"syncModels": "Sync Models",
|
||||
"textualInversions": "Textual Inversions",
|
||||
"triggerPhrases": "Trigger Phrases",
|
||||
@@ -2133,8 +2134,8 @@
|
||||
"whatsNew": {
|
||||
"whatsNewInInvoke": "What's New in Invoke",
|
||||
"items": [
|
||||
"<StrongComponent>Workflows</StrongComponent>: Run a workflow for a collection of images using the new <StrongComponent>Image Batch</StrongComponent> node.",
|
||||
"<StrongComponent>FLUX</StrongComponent>: Support for XLabs IP Adapter v2."
|
||||
"<StrongComponent>FLUX Regional Guidance (beta)</StrongComponent>: Our beta release of FLUX Regional Guidance is live for regional prompt control.",
|
||||
"<StrongComponent>Various UX Improvements</StrongComponent>: A number of small UX and Quality of Life improvements throughout the app."
|
||||
],
|
||||
"readReleaseNotes": "Read Release Notes",
|
||||
"watchRecentReleaseVideos": "Watch Recent Release Videos",
|
||||
|
||||
@@ -317,18 +317,6 @@
|
||||
"info": "Info",
|
||||
"showOptionsPanel": "Afficher le panneau latéral (O ou T)",
|
||||
"invoke": {
|
||||
"layer": {
|
||||
"rgNoPromptsOrIPAdapters": "aucun prompts ou IP Adapters",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box mise à l'échelle est {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box mise à l'échelle est {{height}}",
|
||||
"ipAdapterNoModelSelected": "aucun IP adapter sélectionné",
|
||||
"ipAdapterNoImageSelected": "aucune image d'IP adapter sélectionnée",
|
||||
"controlAdapterIncompatibleBaseModel": "modèle de base de Control Adapter incompatible",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la hauteur de la bounding box est {{height}}",
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, la largeur de la bounding box est {{width}}",
|
||||
"ipAdapterIncompatibleBaseModel": "modèle de base d'IP adapter incompatible",
|
||||
"controlAdapterNoModelSelected": "aucun modèle de Control Adapter sélectionné"
|
||||
},
|
||||
"noPrompts": "Aucun prompts généré",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} entrée manquante",
|
||||
"missingFieldTemplate": "Modèle de champ manquant",
|
||||
|
||||
@@ -663,25 +663,8 @@
|
||||
"addingImagesTo": "Aggiungi immagini a",
|
||||
"systemDisconnected": "Sistema disconnesso",
|
||||
"missingNodeTemplate": "Modello di nodo mancante",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
|
||||
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}}: ingresso mancante",
|
||||
"missingFieldTemplate": "Modello di campo mancante",
|
||||
"layer": {
|
||||
"controlAdapterNoModelSelected": "Nessun modello di adattatore di controllo selezionato",
|
||||
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
|
||||
"ipAdapterNoModelSelected": "Nessun adattatore IP selezionato",
|
||||
"ipAdapterIncompatibleBaseModel": "Il modello base dell'adattatore IP non è compatibile",
|
||||
"ipAdapterNoImageSelected": "Nessuna immagine dell'adattatore IP selezionata",
|
||||
"rgNoPromptsOrIPAdapters": "Nessun prompt o adattatore IP",
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza riquadro è {{width}}",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza riquadro è {{height}}",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, larghezza del riquadro scalato {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, altezza del riquadro scalato {{height}}",
|
||||
"rgNegativePromptNotSupported": "prompt negativo non supportato per il modello base selezionato",
|
||||
"rgAutoNegativeNotSupported": "auto-negativo non supportato per il modello base selezionato",
|
||||
"emptyLayer": "livello vuoto",
|
||||
"unsupportedModel": "livello non supportato per il modello base selezionato",
|
||||
"rgReferenceImagesNotSupported": "immagini di riferimento regionali non supportate per il modello base selezionato"
|
||||
},
|
||||
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), altezza riquadro è {{height}}",
|
||||
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza riquadro è {{width}}",
|
||||
"fluxModelIncompatibleScaledBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), larghezza del riquadro scalato è {{width}}",
|
||||
@@ -689,10 +672,10 @@
|
||||
"noT5EncoderModelSelected": "Nessun modello di encoder T5 selezionato per la generazione con FLUX",
|
||||
"noCLIPEmbedModelSelected": "Nessun modello CLIP Embed selezionato per la generazione con FLUX",
|
||||
"noFLUXVAEModelSelected": "Nessun modello VAE selezionato per la generazione con FLUX",
|
||||
"canvasIsTransforming": "La tela sta trasformando",
|
||||
"canvasIsRasterizing": "La tela sta rasterizzando",
|
||||
"canvasIsCompositing": "La tela è in fase di composizione",
|
||||
"canvasIsFiltering": "La tela sta filtrando",
|
||||
"canvasIsTransforming": "La tela è occupata (sta trasformando)",
|
||||
"canvasIsRasterizing": "La tela è occupata (sta rasterizzando)",
|
||||
"canvasIsCompositing": "La tela è occupata (in composizione)",
|
||||
"canvasIsFiltering": "La tela è occupata (sta filtrando)",
|
||||
"collectionTooManyItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi elementi, massimo {{maxItems}}",
|
||||
"canvasIsSelectingObject": "La tela è occupata (selezione dell'oggetto)",
|
||||
"collectionTooFewItems": "{{nodeLabel}} -> {{fieldLabel}}: troppi pochi elementi, minimo {{minItems}}",
|
||||
@@ -1207,8 +1190,8 @@
|
||||
"controlNetBeginEnd": {
|
||||
"heading": "Percentuale passi Inizio / Fine",
|
||||
"paragraphs": [
|
||||
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
|
||||
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli.",
|
||||
"Questa impostazione determina quale parte del processo di rimozione del rumore (generazione) incorpora la guida da questo livello.",
|
||||
"• Passo iniziale (%): specifica quando iniziare ad applicare la guida da questo livello durante il processo di generazione.",
|
||||
"• Passo finale (%): specifica quando interrompere l'applicazione della guida di questo livello e ripristinare la guida generale dal modello e altre impostazioni."
|
||||
]
|
||||
},
|
||||
@@ -1492,9 +1475,9 @@
|
||||
]
|
||||
},
|
||||
"ipAdapterMethod": {
|
||||
"heading": "Metodo",
|
||||
"heading": "Modalità",
|
||||
"paragraphs": [
|
||||
"Metodo con cui applicare l'adattatore IP corrente."
|
||||
"La modalità definisce il modo in cui l'immagine di riferimento guiderà il processo di generazione."
|
||||
]
|
||||
},
|
||||
"scale": {
|
||||
@@ -1816,7 +1799,7 @@
|
||||
"full": "Stile e Composizione",
|
||||
"style": "Solo Stile",
|
||||
"composition": "Solo Composizione",
|
||||
"ipAdapterMethod": "Metodo Adattatore IP",
|
||||
"ipAdapterMethod": "Modalità",
|
||||
"fullDesc": "Applica lo stile visivo (colori, texture) e la composizione (disposizione, struttura).",
|
||||
"styleDesc": "Applica lo stile visivo (colori, texture) senza considerare la disposizione.",
|
||||
"compositionDesc": "Replica disposizione e struttura ignorando lo stile di riferimento."
|
||||
@@ -2071,7 +2054,24 @@
|
||||
"asControlLayer": "Come $t(controlLayers.controlLayer)",
|
||||
"asControlLayerResize": "Come $t(controlLayers.controlLayer) (Ridimensiona)",
|
||||
"newSession": "Nuova sessione",
|
||||
"resetCanvasLayers": "Ripristina livelli Tela"
|
||||
"resetCanvasLayers": "Ripristina livelli Tela",
|
||||
"referenceImageRegional": "Immagine di riferimento (regionale)",
|
||||
"referenceImageGlobal": "Immagine di riferimento (globale)",
|
||||
"warnings": {
|
||||
"controlAdapterNoModelSelected": "nessun modello selezionato per il livello di controllo",
|
||||
"controlAdapterNoControl": "nessun controllo selezionato/disegnato",
|
||||
"ipAdapterNoModelSelected": "nessun modello di immagine di riferimento selezionato",
|
||||
"rgNoPromptsOrIPAdapters": "nessun prompt testuale o immagini di riferimento",
|
||||
"rgReferenceImagesNotSupported": "Immagini di riferimento regionali non supportate per il modello base selezionato",
|
||||
"rgNoRegion": "nessuna regione disegnata",
|
||||
"problemsFound": "Problemi riscontrati",
|
||||
"unsupportedModel": "livello non supportato per il modello base selezionato",
|
||||
"controlAdapterIncompatibleBaseModel": "modello di base del livello di controllo incompatibile",
|
||||
"rgNegativePromptNotSupported": "Prompt negativo non supportato per il modello base selezionato",
|
||||
"ipAdapterIncompatibleBaseModel": "modello base dell'immagine di riferimento incompatibile",
|
||||
"ipAdapterNoImageSelected": "nessuna immagine di riferimento selezionata",
|
||||
"rgAutoNegativeNotSupported": "Auto-Negativo non supportato per il modello base selezionato"
|
||||
}
|
||||
},
|
||||
"ui": {
|
||||
"tabs": {
|
||||
@@ -2171,8 +2171,8 @@
|
||||
"watchRecentReleaseVideos": "Guarda i video su questa versione",
|
||||
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
|
||||
"items": [
|
||||
"<StrongComponent>Flussi di lavoro</StrongComponent>: esegui un flusso di lavoro per una raccolta di immagini utilizzando il nuovo nodo <StrongComponent>Lotto di immagini</StrongComponent>.",
|
||||
"<StrongComponent>Tela</StrongComponent>: elaborazione semplificata del livello di controllo e impostazioni di controllo predefinite migliorate."
|
||||
"<StrongComponent>FLUX Regional Guidance (beta)</StrongComponent>: la nostra versione beta di FLUX Regional Guidance è attiva per il controllo dei prompt regionali.",
|
||||
"<StrongComponent>Vari miglioramenti dell'esperienza utente</StrongComponent>: numerosi piccoli miglioramenti dell'esperienza utente e della qualità della vita in tutta l'app."
|
||||
]
|
||||
},
|
||||
"system": {
|
||||
|
||||
@@ -230,15 +230,7 @@
|
||||
"systemDisconnected": "Systeem is niet verbonden",
|
||||
"missingNodeTemplate": "Knooppuntsjabloon ontbreekt",
|
||||
"missingFieldTemplate": "Veldsjabloon ontbreekt",
|
||||
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan",
|
||||
"layer": {
|
||||
"controlAdapterNoModelSelected": "geen controle-adaptermodel geselecteerd",
|
||||
"controlAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor controle-adapter",
|
||||
"ipAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor IP-adapter",
|
||||
"ipAdapterNoImageSelected": "geen afbeelding voor IP-adapter geselecteerd",
|
||||
"rgNoPromptsOrIPAdapters": "geen tekstprompts of IP-adapters",
|
||||
"ipAdapterNoModelSelected": "geen IP-adapter geselecteerd"
|
||||
}
|
||||
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan"
|
||||
},
|
||||
"patchmatchDownScaleSize": "Verklein",
|
||||
"useCpuNoise": "Gebruik CPU-ruis",
|
||||
|
||||
@@ -648,18 +648,6 @@
|
||||
"missingFieldTemplate": "Отсутствует шаблон поля",
|
||||
"addingImagesTo": "Добавление изображений в",
|
||||
"invoke": "Создать",
|
||||
"layer": {
|
||||
"ipAdapterNoModelSelected": "IP адаптер не выбран",
|
||||
"controlAdapterNoModelSelected": "не выбрана модель адаптера контроля",
|
||||
"controlAdapterIncompatibleBaseModel": "несовместимая базовая модель адаптера контроля",
|
||||
"rgNoPromptsOrIPAdapters": "нет текстовых запросов или IP-адаптеров",
|
||||
"ipAdapterIncompatibleBaseModel": "несовместимая базовая модель IP-адаптера",
|
||||
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная ширина рамки {{width}}",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, высота рамки {{height}}",
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, ширина рамки {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, масштабированная высота рамки {{height}}"
|
||||
},
|
||||
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), ширина рамки {{width}}",
|
||||
"fluxModelIncompatibleBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), высота рамки {{height}}",
|
||||
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), масштабированная высота рамки {{height}}",
|
||||
|
||||
@@ -1410,23 +1410,6 @@
|
||||
"processImage": "Xử Lý Hình Ảnh",
|
||||
"useSize": "Dùng Kích Thước",
|
||||
"invoke": {
|
||||
"layer": {
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, tỉ lệ chiều dài hộp giới hạn là {{height}}",
|
||||
"ipAdapterNoModelSelected": "không có IP Adapter được lựa chọn",
|
||||
"ipAdapterNoImageSelected": "không có ảnh IP Adapter được lựa chọn",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, chiều dài hộp giới hạn là {{height}}",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, tỉ lệ chiều rộng hộp giới hạn là {{width}}",
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}}, chiều rộng hộp giới hạn là {{width}}",
|
||||
"rgNoPromptsOrIPAdapters": "không có lệnh chữ hoặc IP Adapter",
|
||||
"controlAdapterIncompatibleBaseModel": "model cơ sở của Control Adapter không tương thích",
|
||||
"ipAdapterIncompatibleBaseModel": "dạng model cơ sở của IP Adapter không tương thích",
|
||||
"controlAdapterNoModelSelected": "không có model Control Adapter được chọn",
|
||||
"emptyLayer": "layer trống",
|
||||
"rgAutoNegativeNotSupported": "trình tự động đảo chiều không được hỗ trợ cho model cơ sở đang dùng",
|
||||
"rgNegativePromptNotSupported": "lệnh tiêu cực không được hỗ trợ cho model cơ sở đang dùng",
|
||||
"unsupportedModel": "layer không được hỗ trợ cho model cơ sở đang dùng",
|
||||
"rgReferenceImagesNotSupported": "ảnh mẫu khu vực không được hỗ trợ cho model cơ sở đang dùng"
|
||||
},
|
||||
"fluxModelIncompatibleBboxWidth": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), chiều rộng hộp giới hạn là {{width}}",
|
||||
"noModelSelected": "Không có model được lựa chọn",
|
||||
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16), tỉ lệ chiều dài hộp giới hạn là {{height}}",
|
||||
@@ -1931,7 +1914,24 @@
|
||||
"asControlLayer": "Như $t(controlLayers.controlLayer)",
|
||||
"asControlLayerResize": "Như $t(controlLayers.controlLayer) (Thay Đổi Kích Thước)",
|
||||
"newSession": "Phiên Làm Việc Mới",
|
||||
"resetGenerationSettings": "Khởi Động Lại Cài Đặt Tạo Sinh"
|
||||
"resetGenerationSettings": "Khởi Động Lại Cài Đặt Tạo Sinh",
|
||||
"referenceImageRegional": "Ảnh Mẫu (Khu Vực)",
|
||||
"referenceImageGlobal": "Ảnh Mẫu (Toàn Vùng)",
|
||||
"warnings": {
|
||||
"problemsFound": "Phát hiện vấn đề",
|
||||
"unsupportedModel": "layer không được hỗ trợ cho model cơ sở này",
|
||||
"controlAdapterNoModelSelected": "không có model được chọn cho Layer Chỉnh Sửa Được",
|
||||
"controlAdapterNoControl": "chưa chọn/vẽ điều khiển",
|
||||
"ipAdapterIncompatibleBaseModel": "model cơ sở cho Ảnh Mẫu không tương thích",
|
||||
"ipAdapterNoImageSelected": "chưa chọn Ảnh Mẫu",
|
||||
"controlAdapterIncompatibleBaseModel": "model cơ sở cho Layer Chỉnh Sửa Được không tương thích",
|
||||
"ipAdapterNoModelSelected": "không có model được chọn cho Ảnh Mẫu",
|
||||
"rgNoPromptsOrIPAdapters": "không có lệnh hoặc Ảnh Mẫu",
|
||||
"rgNegativePromptNotSupported": "Lệnh Tiêu Cực không được hỗ trợ cho model cơ sở được chọn",
|
||||
"rgReferenceImagesNotSupported": "Ảnh Mẫu Khu Vực không được hỗ trợ cho model cơ sở được chọn",
|
||||
"rgAutoNegativeNotSupported": "Tự Động Đảo Chiều không được hỗ trợ cho model cơ sở được chọn",
|
||||
"rgNoRegion": "không có khu vực được vẽ"
|
||||
}
|
||||
},
|
||||
"stylePresets": {
|
||||
"negativePrompt": "Lệnh Tiêu Cực",
|
||||
@@ -2156,8 +2156,8 @@
|
||||
"watchRecentReleaseVideos": "Xem Video Phát Hành Mới Nhất",
|
||||
"watchUiUpdatesOverview": "Xem Tổng Quan Về Những Cập Nhật Cho Giao Diện Người Dùng",
|
||||
"items": [
|
||||
"<StrongComponent>Workflows</StrongComponent>: Chạy một workflow cho nhiều ảnh bằng node <StrongComponent>Ảnh Hàng Loạt</StrongComponent> mới.",
|
||||
"<StrongComponent>FLUX</StrongComponent>: Hỗ trợ cho XLabs IP Adapter v2."
|
||||
"<StrongComponent>Hướng Dẫn Khu Vực FLUX (beta)</StrongComponent>: Bản beta của Hướng Dẫn Khu Vực FLUX của chúng ta đã có mắt tại bảng điều khiển lệnh khu vực.",
|
||||
"<StrongComponent>Nhiều Cải Tiến Ở UX</StrongComponent>: Một số nâng cấp nhỏ ở trải nghiệm và chất lượng người dùng trên toàn bộ ứng dụng."
|
||||
]
|
||||
},
|
||||
"upsell": {
|
||||
|
||||
@@ -661,18 +661,6 @@
|
||||
"missingFieldTemplate": "缺失模板",
|
||||
"addingImagesTo": "添加图像到",
|
||||
"noPrompts": "没有已生成的提示词",
|
||||
"layer": {
|
||||
"ipAdapterNoModelSelected": "未选择IP adapter",
|
||||
"controlAdapterNoModelSelected": "未选择Control Adapter模型",
|
||||
"rgNoPromptsOrIPAdapters": "无文本提示或IP Adapters",
|
||||
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
|
||||
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
|
||||
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
|
||||
"t2iAdapterIncompatibleBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},边界框宽度为 {{width}}",
|
||||
"t2iAdapterIncompatibleScaledBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},缩放后的边界框高度为 {{height}}",
|
||||
"t2iAdapterIncompatibleBboxHeight": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},边界框高度为 {{height}}",
|
||||
"t2iAdapterIncompatibleScaledBboxWidth": "$t(parameters.invoke.layer.t2iAdapterRequiresDimensionsToBeMultipleOf) {{multiple}},缩放后的边界框宽度为 {{width}}"
|
||||
},
|
||||
"canvasIsFiltering": "画布正在过滤",
|
||||
"fluxModelIncompatibleScaledBboxHeight": "$t(parameters.invoke.fluxRequiresDimensionsToBeMultipleOf16),缩放后的边界框高度为 {{height}}",
|
||||
"noCLIPEmbedModelSelected": "未为FLUX生成选择CLIP嵌入模型",
|
||||
|
||||
@@ -24,6 +24,7 @@ import type {
|
||||
ParameterSeed,
|
||||
ParameterSteps,
|
||||
ParameterStrength,
|
||||
ParameterStructuralLoRAModel,
|
||||
ParameterT5EncoderModel,
|
||||
ParameterVAEModel,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
@@ -75,6 +76,7 @@ export type ParamsState = {
|
||||
clipEmbedModel: ParameterCLIPEmbedModel | null;
|
||||
clipLEmbedModel: ParameterCLIPLEmbedModel | null;
|
||||
clipGEmbedModel: ParameterCLIPGEmbedModel | null;
|
||||
structuralLora: ParameterStructuralLoRAModel | null;
|
||||
};
|
||||
|
||||
const initialState: ParamsState = {
|
||||
@@ -121,6 +123,7 @@ const initialState: ParamsState = {
|
||||
clipEmbedModel: null,
|
||||
clipLEmbedModel: null,
|
||||
clipGEmbedModel: null,
|
||||
structuralLora: null,
|
||||
};
|
||||
|
||||
export const paramsSlice = createSlice({
|
||||
@@ -195,6 +198,9 @@ export const paramsSlice = createSlice({
|
||||
t5EncoderModelSelected: (state, action: PayloadAction<ParameterT5EncoderModel | null>) => {
|
||||
state.t5EncoderModel = action.payload;
|
||||
},
|
||||
structuralLoRAModelSelected: (state, action: PayloadAction<ParameterStructuralLoRAModel | null>) => {
|
||||
state.structuralLora = action.payload;
|
||||
},
|
||||
clipEmbedModelSelected: (state, action: PayloadAction<ParameterCLIPEmbedModel | null>) => {
|
||||
state.clipEmbedModel = action.payload;
|
||||
},
|
||||
|
||||
@@ -46,6 +46,7 @@ import type {
|
||||
ParameterSeed,
|
||||
ParameterSteps,
|
||||
ParameterStrength,
|
||||
ParameterStructuralLoRAModel,
|
||||
ParameterVAEModel,
|
||||
ParameterWidth,
|
||||
} from 'features/parameters/types/parameterSchemas';
|
||||
@@ -80,6 +81,7 @@ import {
|
||||
isLoRAModelConfig,
|
||||
isNonRefinerMainModelConfig,
|
||||
isRefinerMainModelModelConfig,
|
||||
isStructuralLoRAModelConfig,
|
||||
isT2IAdapterModelConfig,
|
||||
isVAEModelConfig,
|
||||
} from 'services/api/types';
|
||||
@@ -226,6 +228,14 @@ const parseVAEModel: MetadataParseFunc<ParameterVAEModel> = async (metadata) =>
|
||||
return modelIdentifier;
|
||||
};
|
||||
|
||||
const parseStructuralLoRAModel: MetadataParseFunc<ParameterStructuralLoRAModel> = async (metadata) => {
|
||||
const slora = await getProperty(metadata, 'structural_lora', undefined);
|
||||
const key = await getModelKey(slora, 'structural_lora');
|
||||
const sloraModelConfig = await fetchModelConfigWithTypeGuard(key, isStructuralLoRAModelConfig);
|
||||
const modelIdentifier = zModelIdentifierField.parse(sloraModelConfig);
|
||||
return modelIdentifier;
|
||||
};
|
||||
|
||||
const parseLoRA: MetadataParseFunc<LoRA> = async (metadataItem) => {
|
||||
// Previously, the LoRA model identifier parts were stored in the LoRA metadata: `{key: ..., weight: 0.75}`
|
||||
const modelV1 = await getProperty(metadataItem, 'lora', undefined);
|
||||
@@ -671,6 +681,7 @@ export const parsers = {
|
||||
mainModel: parseMainModel,
|
||||
refinerModel: parseRefinerModel,
|
||||
vaeModel: parseVAEModel,
|
||||
structuralLora: parseStructuralLoRAModel,
|
||||
lora: parseLoRA,
|
||||
loras: parseAllLoRAs,
|
||||
controlNet: parseControlNet,
|
||||
|
||||
@@ -18,6 +18,7 @@ import {
|
||||
useMainModels,
|
||||
useRefinerModels,
|
||||
useSpandrelImageToImageModels,
|
||||
useStructuralLoRAModel,
|
||||
useT2IAdapterModels,
|
||||
useT5EncoderModels,
|
||||
useVAEModels,
|
||||
@@ -92,6 +93,12 @@ const ModelList = () => {
|
||||
[t5EncoderModels, searchTerm, filteredModelType]
|
||||
);
|
||||
|
||||
const [structuralLoRAModels, { isLoading: isLoadingStructuralLoRAModels }] = useStructuralLoRAModel();
|
||||
const filteredStructuralLoRAModels = useMemo(
|
||||
() => modelsFilter(structuralLoRAModels, searchTerm, filteredModelType),
|
||||
[structuralLoRAModels, searchTerm, filteredModelType]
|
||||
);
|
||||
|
||||
const [clipEmbedModels, { isLoading: isLoadingClipEmbedModels }] = useCLIPEmbedModels({ excludeSubmodels: true });
|
||||
const filteredClipEmbedModels = useMemo(
|
||||
() => modelsFilter(clipEmbedModels, searchTerm, filteredModelType),
|
||||
@@ -118,7 +125,8 @@ const ModelList = () => {
|
||||
filteredVAEModels.length +
|
||||
filteredSpandrelImageToImageModels.length +
|
||||
t5EncoderModels.length +
|
||||
clipEmbedModels.length
|
||||
clipEmbedModels.length +
|
||||
structuralLoRAModels.length
|
||||
);
|
||||
}, [
|
||||
filteredControlNetModels.length,
|
||||
@@ -133,6 +141,7 @@ const ModelList = () => {
|
||||
filteredSpandrelImageToImageModels.length,
|
||||
t5EncoderModels.length,
|
||||
clipEmbedModels.length,
|
||||
structuralLoRAModels.length,
|
||||
]);
|
||||
|
||||
return (
|
||||
@@ -195,6 +204,15 @@ const ModelList = () => {
|
||||
{!isLoadingT5EncoderModels && filteredT5EncoderModels.length > 0 && (
|
||||
<ModelListWrapper title={t('modelManager.t5Encoder')} modelList={filteredT5EncoderModels} key="t5-encoder" />
|
||||
)}
|
||||
{/* Structural Lora List */}
|
||||
{isLoadingStructuralLoRAModels && <FetchingModelsLoader loadingMessage="Loading Structural Loras..." />}
|
||||
{!isLoadingStructuralLoRAModels && filteredStructuralLoRAModels.length > 0 && (
|
||||
<ModelListWrapper
|
||||
title={t('modelManager.structuralLora')}
|
||||
modelList={filteredStructuralLoRAModels}
|
||||
key="structural-lora"
|
||||
/>
|
||||
)}
|
||||
{/* Clip Embed List */}
|
||||
{isLoadingClipEmbedModels && <FetchingModelsLoader loadingMessage="Loading Clip Embed Models..." />}
|
||||
{!isLoadingClipEmbedModels && filteredClipEmbedModels.length > 0 && (
|
||||
|
||||
@@ -24,6 +24,7 @@ export const ModelTypeFilter = memo(() => {
|
||||
ip_adapter: t('common.ipAdapter'),
|
||||
clip_vision: 'CLIP Vision',
|
||||
spandrel_image_to_image: t('modelManager.spandrelImageToImage'),
|
||||
structural_lora: t('modelManager.structuralLora'),
|
||||
}),
|
||||
[t]
|
||||
);
|
||||
|
||||
@@ -51,6 +51,8 @@ import {
|
||||
isSpandrelImageToImageModelFieldInputTemplate,
|
||||
isStringFieldInputInstance,
|
||||
isStringFieldInputTemplate,
|
||||
isStructuralLoRAModelFieldInputInstance,
|
||||
isStructuralLoRAModelFieldInputTemplate,
|
||||
isT2IAdapterModelFieldInputInstance,
|
||||
isT2IAdapterModelFieldInputTemplate,
|
||||
isT5EncoderModelFieldInputInstance,
|
||||
@@ -81,6 +83,7 @@ import SD3MainModelFieldInputComponent from './inputs/SD3MainModelFieldInputComp
|
||||
import SDXLMainModelFieldInputComponent from './inputs/SDXLMainModelFieldInputComponent';
|
||||
import SpandrelImageToImageModelFieldInputComponent from './inputs/SpandrelImageToImageModelFieldInputComponent';
|
||||
import StringFieldInputComponent from './inputs/StringFieldInputComponent';
|
||||
import StructuralLoRAModelFieldInputComponent from './inputs/StructuralLoraModelFieldInputComponent';
|
||||
import T2IAdapterModelFieldInputComponent from './inputs/T2IAdapterModelFieldInputComponent';
|
||||
import T5EncoderModelFieldInputComponent from './inputs/T5EncoderModelFieldInputComponent';
|
||||
import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
|
||||
@@ -156,6 +159,15 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
return <CLIPGEmbedModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (
|
||||
isStructuralLoRAModelFieldInputInstance(fieldInstance) &&
|
||||
isStructuralLoRAModelFieldInputTemplate(fieldTemplate)
|
||||
) {
|
||||
return (
|
||||
<StructuralLoRAModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />
|
||||
);
|
||||
}
|
||||
|
||||
if (isFluxVAEModelFieldInputInstance(fieldInstance) && isFluxVAEModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <FluxVAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,65 @@
|
||||
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { fieldStructuralLoRAModelValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type {
|
||||
StructuralLoRAModelFieldInputInstance,
|
||||
StructuralLoRAModelFieldInputTemplate,
|
||||
} from 'features/nodes/types/field';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useStructuralLoRAModel } from 'services/api/hooks/modelsByType';
|
||||
import { isStructuralLoRAModelConfig, type StructuralLoRAModelConfig } from 'services/api/types';
|
||||
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
type Props = FieldComponentProps<StructuralLoRAModelFieldInputInstance, StructuralLoRAModelFieldInputTemplate>;
|
||||
|
||||
const StructuralLoRAModelFieldInputComponent = (props: Props) => {
|
||||
const { nodeId, field } = props;
|
||||
const { t } = useTranslation();
|
||||
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
|
||||
const dispatch = useAppDispatch();
|
||||
const [modelConfigs, { isLoading }] = useStructuralLoRAModel();
|
||||
|
||||
const _onChange = useCallback(
|
||||
(value: StructuralLoRAModelConfig | null) => {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
fieldStructuralLoRAModelValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs: modelConfigs.filter((config) => isStructuralLoRAModelConfig(config)),
|
||||
onChange: _onChange,
|
||||
isLoading,
|
||||
selectedModel: field.value,
|
||||
});
|
||||
const required = props.fieldTemplate.required;
|
||||
|
||||
return (
|
||||
<Flex w="full" alignItems="center" gap={2}>
|
||||
<Tooltip label={!disabledTabs.includes('models') && t('modelManager.starterModelsInModelManager')}>
|
||||
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value && required}>
|
||||
<Combobox
|
||||
value={value}
|
||||
placeholder={required ? placeholder : `(Optional) ${placeholder}`}
|
||||
options={options}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(StructuralLoRAModelFieldInputComponent);
|
||||
@@ -28,6 +28,7 @@ import type {
|
||||
SpandrelImageToImageModelFieldValue,
|
||||
StatefulFieldValue,
|
||||
StringFieldValue,
|
||||
StructuralLoRAModelFieldValue,
|
||||
T2IAdapterModelFieldValue,
|
||||
T5EncoderModelFieldValue,
|
||||
VAEModelFieldValue,
|
||||
@@ -55,6 +56,7 @@ import {
|
||||
zSpandrelImageToImageModelFieldValue,
|
||||
zStatefulFieldValue,
|
||||
zStringFieldValue,
|
||||
zStructuralLoRAModelFieldValue,
|
||||
zT2IAdapterModelFieldValue,
|
||||
zT5EncoderModelFieldValue,
|
||||
zVAEModelFieldValue,
|
||||
@@ -369,6 +371,9 @@ export const nodesSlice = createSlice({
|
||||
fieldCLIPGEmbedValueChanged: (state, action: FieldValueAction<CLIPGEmbedModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zCLIPGEmbedModelFieldValue);
|
||||
},
|
||||
fieldStructuralLoRAModelValueChanged: (state, action: FieldValueAction<StructuralLoRAModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zStructuralLoRAModelFieldValue);
|
||||
},
|
||||
fieldFluxVAEModelValueChanged: (state, action: FieldValueAction<FluxVAEModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zFluxVAEModelFieldValue);
|
||||
},
|
||||
@@ -438,6 +443,7 @@ export const {
|
||||
fieldCLIPEmbedValueChanged,
|
||||
fieldCLIPLEmbedValueChanged,
|
||||
fieldCLIPGEmbedValueChanged,
|
||||
fieldStructuralLoRAModelValueChanged,
|
||||
fieldFluxVAEModelValueChanged,
|
||||
nodeEditorReset,
|
||||
nodeIsIntermediateChanged,
|
||||
|
||||
@@ -69,6 +69,7 @@ const zModelType = z.enum([
|
||||
'main',
|
||||
'vae',
|
||||
'lora',
|
||||
'structural_lora',
|
||||
'controlnet',
|
||||
't2i_adapter',
|
||||
'ip_adapter',
|
||||
|
||||
@@ -178,6 +178,10 @@ const zCLIPGEmbedModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('CLIPGEmbedModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zStructuralLoRAModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('StructuralLoRAModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zFluxVAEModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('FluxVAEModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
@@ -210,6 +214,7 @@ const zStatefulFieldType = z.union([
|
||||
zCLIPEmbedModelFieldType,
|
||||
zCLIPLEmbedModelFieldType,
|
||||
zCLIPGEmbedModelFieldType,
|
||||
zStructuralLoRAModelFieldType,
|
||||
zFluxVAEModelFieldType,
|
||||
zColorFieldType,
|
||||
zSchedulerFieldType,
|
||||
@@ -864,6 +869,29 @@ export const isCLIPGEmbedModelFieldInputTemplate = (val: unknown): val is CLIPGE
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region StructuralLoRAModelField
|
||||
|
||||
export const zStructuralLoRAModelFieldValue = zModelIdentifierField.optional();
|
||||
const zStructuralLoRAModelFieldInputInstance = zFieldInputInstanceBase.extend({
|
||||
value: zStructuralLoRAModelFieldValue,
|
||||
});
|
||||
const zStructuralLoRAModelFieldInputTemplate = zFieldInputTemplateBase.extend({
|
||||
type: zStructuralLoRAModelFieldType,
|
||||
originalType: zFieldType.optional(),
|
||||
default: zStructuralLoRAModelFieldValue,
|
||||
});
|
||||
|
||||
export type StructuralLoRAModelFieldValue = z.infer<typeof zCLIPLEmbedModelFieldValue>;
|
||||
|
||||
export type StructuralLoRAModelFieldInputInstance = z.infer<typeof zStructuralLoRAModelFieldInputInstance>;
|
||||
export type StructuralLoRAModelFieldInputTemplate = z.infer<typeof zStructuralLoRAModelFieldInputTemplate>;
|
||||
export const isStructuralLoRAModelFieldInputInstance = (val: unknown): val is StructuralLoRAModelFieldInputInstance =>
|
||||
zStructuralLoRAModelFieldInputInstance.safeParse(val).success;
|
||||
export const isStructuralLoRAModelFieldInputTemplate = (val: unknown): val is StructuralLoRAModelFieldInputTemplate =>
|
||||
zStructuralLoRAModelFieldInputTemplate.safeParse(val).success;
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region SchedulerField
|
||||
|
||||
export const zSchedulerFieldValue = zSchedulerField.optional();
|
||||
@@ -959,6 +987,7 @@ export const zStatefulFieldValue = z.union([
|
||||
zCLIPEmbedModelFieldValue,
|
||||
zCLIPLEmbedModelFieldValue,
|
||||
zCLIPGEmbedModelFieldValue,
|
||||
zStructuralLoRAModelFieldValue,
|
||||
zColorFieldValue,
|
||||
zSchedulerFieldValue,
|
||||
]);
|
||||
@@ -1030,6 +1059,7 @@ const zStatefulFieldInputTemplate = z.union([
|
||||
zCLIPEmbedModelFieldInputTemplate,
|
||||
zCLIPLEmbedModelFieldInputTemplate,
|
||||
zCLIPGEmbedModelFieldInputTemplate,
|
||||
zStructuralLoRAModelFieldInputTemplate,
|
||||
zColorFieldInputTemplate,
|
||||
zSchedulerFieldInputTemplate,
|
||||
zStatelessFieldInputTemplate,
|
||||
|
||||
@@ -17,7 +17,9 @@ type AddIPAdaptersArg = {
|
||||
};
|
||||
|
||||
export const addIPAdapters = ({ entities, g, collector, model }: AddIPAdaptersArg): AddIPAdaptersResult => {
|
||||
const validIPAdapters = entities.filter((entity) => getGlobalReferenceImageWarnings(entity, model).length === 0);
|
||||
const validIPAdapters = entities
|
||||
.filter((entity) => entity.isEnabled)
|
||||
.filter((entity) => getGlobalReferenceImageWarnings(entity, model).length === 0);
|
||||
|
||||
const result: AddIPAdaptersResult = {
|
||||
addedIPAdapters: 0,
|
||||
|
||||
@@ -63,12 +63,9 @@ export const addRegions = async ({
|
||||
const isSDXL = model.base === 'sdxl';
|
||||
const isFLUX = model.base === 'flux';
|
||||
|
||||
const validRegions = regions.filter((rg) => {
|
||||
if (!rg.isEnabled) {
|
||||
return false;
|
||||
}
|
||||
return getRegionalGuidanceWarnings(rg, model).length === 0;
|
||||
});
|
||||
const validRegions = regions
|
||||
.filter((entity) => entity.isEnabled)
|
||||
.filter((entity) => getRegionalGuidanceWarnings(entity, model).length === 0);
|
||||
|
||||
const results: AddedRegionResult[] = [];
|
||||
|
||||
|
||||
@@ -28,6 +28,7 @@ const FIELD_VALUE_FALLBACK_MAP: Record<StatefulFieldType['name'], FieldValue> =
|
||||
CLIPEmbedModelField: undefined,
|
||||
CLIPLEmbedModelField: undefined,
|
||||
CLIPGEmbedModelField: undefined,
|
||||
StructuralLoRAModelField: undefined,
|
||||
};
|
||||
|
||||
export const buildFieldInputInstance = (id: string, template: FieldInputTemplate): FieldInputInstance => {
|
||||
|
||||
@@ -28,6 +28,7 @@ import type {
|
||||
StatefulFieldType,
|
||||
StatelessFieldInputTemplate,
|
||||
StringFieldInputTemplate,
|
||||
StructuralLoRAModelFieldInputTemplate,
|
||||
T2IAdapterModelFieldInputTemplate,
|
||||
T5EncoderModelFieldInputTemplate,
|
||||
VAEModelFieldInputTemplate,
|
||||
@@ -300,6 +301,20 @@ const buildCLIPGEmbedModelFieldInputTemplate: FieldInputTemplateBuilder<CLIPGEmb
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildStructuralLoRAModelFieldInputTemplate: FieldInputTemplateBuilder<StructuralLoRAModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
fieldType,
|
||||
}) => {
|
||||
const template: StructuralLoRAModelFieldInputTemplate = {
|
||||
...baseField,
|
||||
type: fieldType,
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildFluxVAEModelFieldInputTemplate: FieldInputTemplateBuilder<FluxVAEModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
@@ -526,6 +541,7 @@ export const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputT
|
||||
CLIPLEmbedModelField: buildCLIPLEmbedModelFieldInputTemplate,
|
||||
CLIPGEmbedModelField: buildCLIPGEmbedModelFieldInputTemplate,
|
||||
FluxVAEModelField: buildFluxVAEModelFieldInputTemplate,
|
||||
StructuralLoRAModelField: buildStructuralLoRAModelFieldInputTemplate,
|
||||
} as const;
|
||||
|
||||
export const buildFieldInputTemplate = (
|
||||
|
||||
@@ -113,6 +113,11 @@ export const zParameterVAEModel = zModelIdentifierField;
|
||||
export type ParameterVAEModel = z.infer<typeof zParameterVAEModel>;
|
||||
// #endregion
|
||||
|
||||
// #region Structural Lora Model
|
||||
export const zParameterStructuralLoRAModel = zModelIdentifierField;
|
||||
export type ParameterStructuralLoRAModel = z.infer<typeof zParameterStructuralLoRAModel>;
|
||||
// #endregion
|
||||
|
||||
// #region T5Encoder Model
|
||||
export const zParameterT5EncoderModel = zModelIdentifierField;
|
||||
export type ParameterT5EncoderModel = z.infer<typeof zParameterT5EncoderModel>;
|
||||
|
||||
@@ -31,7 +31,7 @@ const optionsObject: Record<Language, string> = {
|
||||
sv: 'Svenska',
|
||||
tr: 'Türkçe',
|
||||
ua: 'Украї́нська',
|
||||
vi: 'tiếng Việt',
|
||||
vi: 'Tiếng Việt',
|
||||
zh_CN: '简体中文',
|
||||
zh_Hant: '漢語',
|
||||
};
|
||||
|
||||
@@ -23,6 +23,7 @@ import {
|
||||
isSD3MainModelModelConfig,
|
||||
isSDXLMainModelModelConfig,
|
||||
isSpandrelImageToImageModelConfig,
|
||||
isStructuralLoRAModelConfig,
|
||||
isT2IAdapterModelConfig,
|
||||
isT5EncoderModelConfig,
|
||||
isTIModelConfig,
|
||||
@@ -58,6 +59,7 @@ export const useFluxModels = buildModelsHook(isFluxMainModelModelConfig);
|
||||
export const useSD3Models = buildModelsHook(isSD3MainModelModelConfig);
|
||||
export const useSDXLModels = buildModelsHook(isSDXLMainModelModelConfig);
|
||||
export const useLoRAModels = buildModelsHook(isLoRAModelConfig);
|
||||
export const useStructuralLoRAModel = buildModelsHook(isStructuralLoRAModelConfig);
|
||||
export const useControlNetAndT2IAdapterModels = buildModelsHook(isControlNetOrT2IAdapterModelConfig);
|
||||
export const useControlNetModels = buildModelsHook(isControlNetModelConfig);
|
||||
export const useT2IAdapterModels = buildModelsHook(isT2IAdapterModelConfig);
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -44,6 +44,7 @@ export type BaseModelType = S['BaseModelType'];
|
||||
|
||||
// Model Configs
|
||||
|
||||
export type StructuralLoRAModelConfig = S['StructuralLoRALyCORISConfig'];
|
||||
// TODO(MM2): Can we make key required in the pydantic model?
|
||||
export type LoRAModelConfig = S['LoRADiffusersConfig'] | S['LoRALyCORISConfig'];
|
||||
// TODO(MM2): Can we rename this from Vae -> VAE
|
||||
@@ -63,6 +64,7 @@ export type CheckpointModelConfig = S['MainCheckpointConfig'];
|
||||
type CLIPVisionDiffusersConfig = S['CLIPVisionDiffusersConfig'];
|
||||
export type MainModelConfig = DiffusersModelConfig | CheckpointModelConfig;
|
||||
export type AnyModelConfig =
|
||||
| StructuralLoRAModelConfig
|
||||
| LoRAModelConfig
|
||||
| VAEModelConfig
|
||||
| ControlNetModelConfig
|
||||
@@ -114,6 +116,10 @@ export const isLoRAModelConfig = (config: AnyModelConfig): config is LoRAModelCo
|
||||
return config.type === 'lora';
|
||||
};
|
||||
|
||||
export const isStructuralLoRAModelConfig = (config: AnyModelConfig): config is StructuralLoRAModelConfig => {
|
||||
return config.type === 'structural_lora';
|
||||
};
|
||||
|
||||
export const isVAEModelConfig = (config: AnyModelConfig, excludeSubmodels?: boolean): config is VAEModelConfig => {
|
||||
return config.type === 'vae' || (!excludeSubmodels && config.type === 'main' && checkSubmodels(['vae'], config));
|
||||
};
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "5.4.3rc1"
|
||||
__version__ = "5.4.3"
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,70 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.conversions.flux_control_lora_utils import (
|
||||
is_state_dict_likely_flux_control,
|
||||
lora_model_from_flux_control_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_control_lora_format import (
|
||||
state_dict_keys as flux_control_lora_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_diffusers_format import (
|
||||
state_dict_keys as flux_diffusers_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.utils import keys_to_mock_state_dict
|
||||
|
||||
|
||||
@pytest.mark.parametrize("sd_keys", [flux_control_lora_state_dict_keys])
|
||||
def test_is_state_dict_likely_in_flux_control_format_true(sd_keys: dict[str, list[int]]):
|
||||
"""Test that is_state_dict_likely_flux_control() can identify a state dict in the FLUX Control LoRA format."""
|
||||
# Construct a state dict that is in the Diffusers FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(sd_keys)
|
||||
|
||||
assert is_state_dict_likely_flux_control(state_dict)
|
||||
|
||||
@pytest.mark.parametrize("sd_keys", [flux_diffusers_state_dict_keys])
|
||||
def test_is_state_dict_likely_in_flux_control_format_false(sd_keys: dict[str, list[int]]):
|
||||
"""Test that is_state_dict_likely_flux_control() returns False for a state dict that is in the Diffusers
|
||||
FLUX LoRA format.
|
||||
"""
|
||||
# Construct a state dict that is not in the FLUX Control LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(sd_keys)
|
||||
|
||||
assert not is_state_dict_likely_flux_control(state_dict)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("sd_keys", [flux_control_lora_state_dict_keys])
|
||||
def test_lora_model_from_flux_control_state_dict(sd_keys: dict[str, list[int]]):
|
||||
"""Test that lora_model_from_flux_control_state_dict() can load a state dict in the FLUX Control LoRA format."""
|
||||
# Construct a state dict that is in the FLUX Control LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(sd_keys)
|
||||
# Load the state dict into a LoRAModelRaw object.
|
||||
model = lora_model_from_flux_control_state_dict(state_dict)
|
||||
|
||||
# Check that the model has the correct number of LoRA layers.
|
||||
expected_lora_layers: set[str] = set()
|
||||
for k in sd_keys:
|
||||
k = k.replace("lora_A.weight", "")
|
||||
k = k.replace("lora_B.weight", "")
|
||||
k = k.replace("lora_B.bias", "")
|
||||
k = k.replace(".scale", "")
|
||||
expected_lora_layers.add(k)
|
||||
# Drop the K/V/proj_mlp weights because these are all concatenated into a single layer in the BFL format (we keep
|
||||
# the Q weights so that we count these layers once).
|
||||
assert len(model.layers) == len(expected_lora_layers)
|
||||
assert all(k.startswith(FLUX_LORA_TRANSFORMER_PREFIX) for k in model.layers.keys())
|
||||
|
||||
|
||||
def test_lora_model_from_flux_control_state_dict_extra_keys_error():
|
||||
"""Test that lora_model_from_flux_control_state_dict() raises an error if the input state_dict contains unexpected
|
||||
keys that we don't handle.
|
||||
"""
|
||||
# Construct a state dict that is in the FLUX Control LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_control_lora_state_dict_keys)
|
||||
# Add an unexpected key.
|
||||
state_dict["transformer.single_transformer_blocks.0.unexpected_key.lora_A.weight"] = torch.empty(1)
|
||||
|
||||
# Check that an error is raised.
|
||||
with pytest.raises(AssertionError):
|
||||
lora_model_from_flux_control_state_dict(state_dict)
|
||||
@@ -1,49 +0,0 @@
|
||||
import copy
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.sidecar_layers.concatenated_lora.concatenated_lora_linear_sidecar_layer import (
|
||||
ConcatenatedLoRALinearSidecarLayer,
|
||||
)
|
||||
from invokeai.backend.lora.sidecar_layers.lora_sidecar_module import LoRASidecarModule
|
||||
|
||||
|
||||
def test_concatenated_lora_linear_sidecar_layer():
|
||||
"""Test that a ConcatenatedLoRALinearSidecarLayer is equivalent to patching a linear layer with the ConcatenatedLoRA
|
||||
layer.
|
||||
"""
|
||||
|
||||
# Create a linear layer.
|
||||
in_features = 5
|
||||
sub_layer_out_features = [5, 10, 15]
|
||||
linear = torch.nn.Linear(in_features, sum(sub_layer_out_features))
|
||||
|
||||
# Create a ConcatenatedLoRA layer.
|
||||
rank = 4
|
||||
sub_layers: list[LoRALayer] = []
|
||||
for out_features in sub_layer_out_features:
|
||||
down = torch.randn(rank, in_features)
|
||||
up = torch.randn(out_features, rank)
|
||||
bias = torch.randn(out_features)
|
||||
sub_layers.append(LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias))
|
||||
concatenated_lora_layer = ConcatenatedLoRALayer(sub_layers, concat_axis=0)
|
||||
|
||||
# Patch the ConcatenatedLoRA layer into the linear layer.
|
||||
linear_patched = copy.deepcopy(linear)
|
||||
linear_patched.weight.data += (
|
||||
concatenated_lora_layer.get_weight(linear_patched.weight) * concatenated_lora_layer.scale()
|
||||
)
|
||||
linear_patched.bias.data += concatenated_lora_layer.get_bias(linear_patched.bias) * concatenated_lora_layer.scale()
|
||||
|
||||
# Create a ConcatenatedLoRALinearSidecarLayer.
|
||||
concatenated_lora_linear_sidecar_layer = ConcatenatedLoRALinearSidecarLayer(concatenated_lora_layer, weight=1.0)
|
||||
linear_with_sidecar = LoRASidecarModule(linear, [concatenated_lora_linear_sidecar_layer])
|
||||
|
||||
# Run the ConcatenatedLoRA-patched linear layer and the ConcatenatedLoRALinearSidecarLayer and assert they are
|
||||
# equal.
|
||||
input = torch.randn(1, in_features)
|
||||
output_patched = linear_patched(input)
|
||||
output_sidecar = linear_with_sidecar(input)
|
||||
assert torch.allclose(output_patched, output_sidecar, atol=1e-6)
|
||||
@@ -1,38 +0,0 @@
|
||||
import copy
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.sidecar_layers.lora.lora_linear_sidecar_layer import LoRALinearSidecarLayer
|
||||
from invokeai.backend.lora.sidecar_layers.lora_sidecar_module import LoRASidecarModule
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def test_lora_linear_sidecar_layer():
|
||||
"""Test that a LoRALinearSidecarLayer is equivalent to patching a linear layer with the LoRA layer."""
|
||||
|
||||
# Create a linear layer.
|
||||
in_features = 10
|
||||
out_features = 20
|
||||
linear = torch.nn.Linear(in_features, out_features)
|
||||
|
||||
# Create a LoRA layer.
|
||||
rank = 4
|
||||
down = torch.randn(rank, in_features)
|
||||
up = torch.randn(out_features, rank)
|
||||
bias = torch.randn(out_features)
|
||||
lora_layer = LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias)
|
||||
|
||||
# Patch the LoRA layer into the linear layer.
|
||||
linear_patched = copy.deepcopy(linear)
|
||||
linear_patched.weight.data += lora_layer.get_weight(linear_patched.weight) * lora_layer.scale()
|
||||
linear_patched.bias.data += lora_layer.get_bias(linear_patched.bias) * lora_layer.scale()
|
||||
# Create a LoRALinearSidecarLayer.
|
||||
lora_linear_sidecar_layer = LoRALinearSidecarLayer(lora_layer, weight=1.0)
|
||||
linear_with_sidecar = LoRASidecarModule(linear, [lora_linear_sidecar_layer])
|
||||
|
||||
# Run the LoRA-patched linear layer and the LoRALinearSidecarLayer and assert they are equal.
|
||||
input = torch.randn(1, in_features)
|
||||
output_patched = linear_patched(input)
|
||||
output_sidecar = linear_with_sidecar(input)
|
||||
assert torch.allclose(output_patched, output_sidecar, atol=1e-6)
|
||||
69
tests/backend/lora/test_lora_layer_wrappers.py
Normal file
69
tests/backend/lora/test_lora_layer_wrappers.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import copy
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.lora_layer_wrappers import LoRALinearWrapper
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def test_lora_linear_wrapper():
|
||||
# Create a linear layer.
|
||||
in_features = 10
|
||||
out_features = 20
|
||||
linear = torch.nn.Linear(in_features, out_features)
|
||||
|
||||
# Create a LoRA layer.
|
||||
rank = 4
|
||||
down = torch.randn(rank, in_features)
|
||||
up = torch.randn(out_features, rank)
|
||||
bias = torch.randn(out_features)
|
||||
lora_layer = LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias)
|
||||
|
||||
# Patch the LoRA layer into the linear layer.
|
||||
linear_patched = copy.deepcopy(linear)
|
||||
linear_patched.weight.data += lora_layer.get_weight(linear_patched.weight) * lora_layer.scale()
|
||||
linear_patched.bias.data += lora_layer.get_bias(linear_patched.bias) * lora_layer.scale()
|
||||
|
||||
# Create a LoRALinearWrapper.
|
||||
lora_wrapped = LoRALinearWrapper(linear, [lora_layer], [1.0])
|
||||
|
||||
# Run the LoRA-patched linear layer and the LoRALinearWrapper and assert they are equal.
|
||||
input = torch.randn(1, in_features)
|
||||
output_patched = linear_patched(input)
|
||||
output_wrapped = lora_wrapped(input)
|
||||
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
|
||||
|
||||
|
||||
def test_concatenated_lora_linear_wrapper():
|
||||
# Create a linear layer.
|
||||
in_features = 5
|
||||
sub_layer_out_features = [5, 10, 15]
|
||||
linear = torch.nn.Linear(in_features, sum(sub_layer_out_features))
|
||||
|
||||
# Create a ConcatenatedLoRA layer.
|
||||
rank = 4
|
||||
sub_layers: list[LoRALayer] = []
|
||||
for out_features in sub_layer_out_features:
|
||||
down = torch.randn(rank, in_features)
|
||||
up = torch.randn(out_features, rank)
|
||||
bias = torch.randn(out_features)
|
||||
sub_layers.append(LoRALayer(up=up, mid=None, down=down, alpha=1.0, bias=bias))
|
||||
concatenated_lora_layer = ConcatenatedLoRALayer(sub_layers, concat_axis=0)
|
||||
|
||||
# Patch the ConcatenatedLoRA layer into the linear layer.
|
||||
linear_patched = copy.deepcopy(linear)
|
||||
linear_patched.weight.data += (
|
||||
concatenated_lora_layer.get_weight(linear_patched.weight) * concatenated_lora_layer.scale()
|
||||
)
|
||||
linear_patched.bias.data += concatenated_lora_layer.get_bias(linear_patched.bias) * concatenated_lora_layer.scale()
|
||||
|
||||
# Create a LoRALinearWrapper.
|
||||
lora_wrapped = LoRALinearWrapper(linear, [concatenated_lora_layer], [1.0])
|
||||
|
||||
# Run the ConcatenatedLoRA-patched linear layer and the LoRALinearWrapper and assert they are equal.
|
||||
input = torch.randn(1, in_features)
|
||||
output_patched = linear_patched(input)
|
||||
output_wrapped = lora_wrapped(input)
|
||||
assert torch.allclose(output_patched, output_wrapped, atol=1e-6)
|
||||
@@ -2,11 +2,15 @@ import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.lora_layer_wrappers import LoRASidecarWrapper
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoRAPatcher
|
||||
from invokeai.backend.model_manager.load.model_cache.cached_model.cached_model_with_partial_load import (
|
||||
CachedModelWithPartialLoad,
|
||||
)
|
||||
|
||||
|
||||
class DummyModule(torch.nn.Module):
|
||||
class DummyModuleWithOneLayer(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, device: str, dtype: torch.dtype):
|
||||
super().__init__()
|
||||
self.linear_layer_1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
|
||||
@@ -15,8 +19,18 @@ class DummyModule(torch.nn.Module):
|
||||
return self.linear_layer_1(x)
|
||||
|
||||
|
||||
class DummyModuleWithTwoLayers(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, device: str, dtype: torch.dtype):
|
||||
super().__init__()
|
||||
self.linear_layer_1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
|
||||
self.linear_layer_2 = torch.nn.Linear(out_features, out_features, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.linear_layer_2(self.linear_layer_1(x))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["device", "num_layers"],
|
||||
["device", "num_loras"],
|
||||
[
|
||||
("cpu", 1),
|
||||
pytest.param("cuda", 1, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
|
||||
@@ -25,7 +39,7 @@ class DummyModule(torch.nn.Module):
|
||||
],
|
||||
)
|
||||
@torch.no_grad()
|
||||
def test_apply_lora_patches(device: str, num_layers: int):
|
||||
def test_apply_lora_patches(device: str, num_loras: int):
|
||||
"""Test the basic behavior of ModelPatcher.apply_lora_patches(...). Check that patching and unpatching produce the
|
||||
correct result, and that model/LoRA tensors are moved between devices as expected.
|
||||
"""
|
||||
@@ -33,12 +47,12 @@ def test_apply_lora_patches(device: str, num_layers: int):
|
||||
linear_in_features = 4
|
||||
linear_out_features = 8
|
||||
lora_rank = 2
|
||||
model = DummyModule(linear_in_features, linear_out_features, device=device, dtype=torch.float16)
|
||||
model = DummyModuleWithOneLayer(linear_in_features, linear_out_features, device=device, dtype=torch.float16)
|
||||
|
||||
# Initialize num_layers LoRA models with weights of 0.5.
|
||||
# Initialize num_loras LoRA models with weights of 0.5.
|
||||
lora_weight = 0.5
|
||||
lora_models: list[tuple[LoRAModelRaw, float]] = []
|
||||
for _ in range(num_layers):
|
||||
for _ in range(num_loras):
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
@@ -51,7 +65,7 @@ def test_apply_lora_patches(device: str, num_layers: int):
|
||||
lora_models.append((lora, lora_weight))
|
||||
|
||||
orig_linear_weight = model.linear_layer_1.weight.data.detach().clone()
|
||||
expected_patched_linear_weight = orig_linear_weight + (lora_rank * lora_weight * num_layers)
|
||||
expected_patched_linear_weight = orig_linear_weight + (lora_rank * lora_weight * num_loras)
|
||||
|
||||
with LoRAPatcher.apply_lora_patches(model=model, patches=lora_models, prefix=""):
|
||||
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
||||
@@ -79,7 +93,7 @@ def test_apply_lora_patches_change_device():
|
||||
linear_out_features = 8
|
||||
lora_dim = 2
|
||||
# Initialize the model on the CPU.
|
||||
model = DummyModule(linear_in_features, linear_out_features, device="cpu", dtype=torch.float16)
|
||||
model = DummyModuleWithOneLayer(linear_in_features, linear_out_features, device="cpu", dtype=torch.float16)
|
||||
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
@@ -110,7 +124,7 @@ def test_apply_lora_patches_change_device():
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["device", "num_layers"],
|
||||
["device", "num_loras"],
|
||||
[
|
||||
("cpu", 1),
|
||||
pytest.param("cuda", 1, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
|
||||
@@ -118,18 +132,18 @@ def test_apply_lora_patches_change_device():
|
||||
pytest.param("cuda", 2, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
|
||||
],
|
||||
)
|
||||
def test_apply_lora_sidecar_patches(device: str, num_layers: int):
|
||||
"""Test the basic behavior of ModelPatcher.apply_lora_sidecar_patches(...). Check that unpatching works correctly."""
|
||||
def test_apply_lora_wrapper_patches(device: str, num_loras: int):
|
||||
"""Test the basic behavior of ModelPatcher.apply_lora_wrapper_patches(...). Check that unpatching works correctly."""
|
||||
dtype = torch.float16
|
||||
linear_in_features = 4
|
||||
linear_out_features = 8
|
||||
lora_rank = 2
|
||||
model = DummyModule(linear_in_features, linear_out_features, device=device, dtype=dtype)
|
||||
model = DummyModuleWithOneLayer(linear_in_features, linear_out_features, device=device, dtype=dtype)
|
||||
|
||||
# Initialize num_layers LoRA models with weights of 0.5.
|
||||
# Initialize num_loras LoRA models with weights of 0.5.
|
||||
lora_weight = 0.5
|
||||
lora_models: list[tuple[LoRAModelRaw, float]] = []
|
||||
for _ in range(num_layers):
|
||||
for _ in range(num_loras):
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
@@ -146,7 +160,7 @@ def test_apply_lora_sidecar_patches(device: str, num_layers: int):
|
||||
output_before_patch = model(input)
|
||||
|
||||
# Patch the model and run inference during the patch.
|
||||
with LoRAPatcher.apply_lora_sidecar_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
with LoRAPatcher.apply_lora_wrapper_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
output_during_patch = model(input)
|
||||
|
||||
# Run inference after unpatching.
|
||||
@@ -159,20 +173,140 @@ def test_apply_lora_sidecar_patches(device: str, num_layers: int):
|
||||
assert torch.allclose(output_before_patch, output_after_patch)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["device", "num_loras"],
|
||||
[
|
||||
("cpu", 1),
|
||||
pytest.param("cuda", 1, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
|
||||
("cpu", 2),
|
||||
pytest.param("cuda", 2, marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")),
|
||||
],
|
||||
)
|
||||
@torch.no_grad()
|
||||
@pytest.mark.parametrize(["num_layers"], [(1,), (2,)])
|
||||
def test_apply_lora_sidecar_patches_matches_apply_lora_patches(num_layers: int):
|
||||
"""Test that apply_lora_sidecar_patches(...) produces the same model outputs as apply_lora_patches(...)."""
|
||||
def test_apply_smart_lora_patches(device: str, num_loras: int):
|
||||
"""Test the basic behavior of ModelPatcher.apply_smart_lora_patches(...). Check that unpatching works correctly."""
|
||||
dtype = torch.float16
|
||||
linear_in_features = 4
|
||||
linear_out_features = 8
|
||||
lora_rank = 2
|
||||
model = DummyModuleWithOneLayer(linear_in_features, linear_out_features, device=device, dtype=dtype)
|
||||
|
||||
# Initialize num_loras LoRA models with weights of 0.5.
|
||||
lora_weight = 0.5
|
||||
lora_models: list[tuple[LoRAModelRaw, float]] = []
|
||||
for _ in range(num_loras):
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
"lora_down.weight": torch.ones((lora_rank, linear_in_features), device="cpu", dtype=torch.float16),
|
||||
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
|
||||
},
|
||||
)
|
||||
}
|
||||
lora = LoRAModelRaw(lora_layers)
|
||||
lora_models.append((lora, lora_weight))
|
||||
|
||||
# Run inference before patching the model.
|
||||
input = torch.randn(1, linear_in_features, device=device, dtype=dtype)
|
||||
output_before_patch = model(input)
|
||||
|
||||
# Patch the model and run inference during the patch.
|
||||
with LoRAPatcher.apply_smart_lora_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
output_during_patch = model(input)
|
||||
|
||||
# Run inference after unpatching.
|
||||
output_after_patch = model(input)
|
||||
|
||||
# Check that the output before patching is different from the output during patching.
|
||||
assert not torch.allclose(output_before_patch, output_during_patch)
|
||||
|
||||
# Check that the output before patching is the same as the output after patching.
|
||||
assert torch.allclose(output_before_patch, output_after_patch)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(["num_loras"], [(1,), (2,)])
|
||||
@torch.no_grad()
|
||||
def test_apply_smart_lora_patches_to_partially_loaded_model(num_loras: int):
|
||||
"""Test the behavior of ModelPatcher.apply_smart_lora_patches(...) when it is applied to a
|
||||
CachedModelWithPartialLoad that is partially loaded into VRAM.
|
||||
"""
|
||||
|
||||
if not torch.cuda.is_available():
|
||||
pytest.skip("requires CUDA device")
|
||||
|
||||
# Initialize the model on the CPU.
|
||||
dtype = torch.float16
|
||||
linear_in_features = 4
|
||||
linear_out_features = 8
|
||||
lora_rank = 2
|
||||
model = DummyModuleWithTwoLayers(linear_in_features, linear_out_features, device="cpu", dtype=dtype)
|
||||
cached_model = CachedModelWithPartialLoad(model=model, compute_device=torch.device("cuda"))
|
||||
model_total_bytes = cached_model.total_bytes()
|
||||
assert cached_model.cur_vram_bytes() == 0
|
||||
|
||||
# Partially load the model into VRAM.
|
||||
target_vram_bytes = int(model_total_bytes * 0.6)
|
||||
_ = cached_model.partial_load_to_vram(target_vram_bytes)
|
||||
assert cached_model.model.linear_layer_1.weight.device.type == "cuda"
|
||||
assert cached_model.model.linear_layer_2.weight.device.type == "cpu"
|
||||
|
||||
# Initialize num_loras LoRA models with weights of 0.5.
|
||||
lora_weight = 0.5
|
||||
lora_models: list[tuple[LoRAModelRaw, float]] = []
|
||||
for _ in range(num_loras):
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
"lora_down.weight": torch.ones((lora_rank, linear_in_features), device="cpu", dtype=torch.float16),
|
||||
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
|
||||
},
|
||||
),
|
||||
"linear_layer_2": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
"lora_down.weight": torch.ones((lora_rank, linear_out_features), device="cpu", dtype=torch.float16),
|
||||
"lora_up.weight": torch.ones((linear_out_features, lora_rank), device="cpu", dtype=torch.float16),
|
||||
},
|
||||
),
|
||||
}
|
||||
lora = LoRAModelRaw(lora_layers)
|
||||
lora_models.append((lora, lora_weight))
|
||||
|
||||
# Run inference before patching the model.
|
||||
input = torch.randn(1, linear_in_features, device="cuda", dtype=dtype)
|
||||
output_before_patch = cached_model.model(input)
|
||||
|
||||
# Patch the model and run inference during the patch.
|
||||
with LoRAPatcher.apply_smart_lora_patches(model=cached_model.model, patches=lora_models, prefix="", dtype=dtype):
|
||||
# Check that the second layer is wrapped in a LoRASidecarWrapper, but the first layer is not.
|
||||
assert not isinstance(cached_model.model.linear_layer_1, LoRASidecarWrapper)
|
||||
assert isinstance(cached_model.model.linear_layer_2, LoRASidecarWrapper)
|
||||
|
||||
output_during_patch = cached_model.model(input)
|
||||
|
||||
# Run inference after unpatching.
|
||||
output_after_patch = cached_model.model(input)
|
||||
|
||||
# Check that the output before patching is different from the output during patching.
|
||||
assert not torch.allclose(output_before_patch, output_during_patch)
|
||||
|
||||
# Check that the output before patching is the same as the output after patching.
|
||||
assert torch.allclose(output_before_patch, output_after_patch)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@pytest.mark.parametrize(["num_loras"], [(1,), (2,)])
|
||||
def test_all_patching_methods_produce_same_output(num_loras: int):
|
||||
"""Test that apply_lora_wrapper_patches(...) produces the same model outputs as apply_lora_patches(...)."""
|
||||
dtype = torch.float32
|
||||
linear_in_features = 4
|
||||
linear_out_features = 8
|
||||
lora_rank = 2
|
||||
model = DummyModule(linear_in_features, linear_out_features, device="cpu", dtype=dtype)
|
||||
model = DummyModuleWithOneLayer(linear_in_features, linear_out_features, device="cpu", dtype=dtype)
|
||||
|
||||
# Initialize num_layers LoRA models with weights of 0.5.
|
||||
# Initialize num_loras LoRA models with weights of 0.5.
|
||||
lora_weight = 0.5
|
||||
lora_models: list[tuple[LoRAModelRaw, float]] = []
|
||||
for _ in range(num_layers):
|
||||
for _ in range(num_loras):
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer.from_state_dict_values(
|
||||
values={
|
||||
@@ -189,9 +323,13 @@ def test_apply_lora_sidecar_patches_matches_apply_lora_patches(num_layers: int):
|
||||
with LoRAPatcher.apply_lora_patches(model=model, patches=lora_models, prefix=""):
|
||||
output_lora_patches = model(input)
|
||||
|
||||
with LoRAPatcher.apply_lora_sidecar_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
output_lora_sidecar_patches = model(input)
|
||||
with LoRAPatcher.apply_lora_wrapper_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
output_lora_wrapper_patches = model(input)
|
||||
|
||||
with LoRAPatcher.apply_smart_lora_patches(model=model, patches=lora_models, prefix="", dtype=dtype):
|
||||
output_smart_lora_patches = model(input)
|
||||
|
||||
# Note: We set atol=1e-5 because the test failed occasionally with the default atol=1e-8. Slight numerical
|
||||
# differences are tolerable and expected due to the difference between sidecar vs. patching.
|
||||
assert torch.allclose(output_lora_patches, output_lora_sidecar_patches, atol=1e-5)
|
||||
assert torch.allclose(output_lora_patches, output_lora_wrapper_patches, atol=1e-5)
|
||||
assert torch.allclose(output_lora_patches, output_smart_lora_patches, atol=1e-5)
|
||||
|
||||
Reference in New Issue
Block a user