Compare commits

..

75 Commits

Author SHA1 Message Date
psychedelicious
95f010b9b8 chore: ruff E721
Looks like in the latest version of ruff, E721 was added or changed and now catches something it didn't before.
2024-06-28 08:19:14 +10:00
psychedelicious
539124ab92 chore: bump version v4.2.5post1 2024-06-28 07:56:18 +10:00
Ryan Dick
18d905579d ruff format 2024-06-28 07:55:42 +10:00
psychedelicious
cdc174d5d2 fix(backend): mps should not use non_blocking
We can get black outputs when moving tensors from CPU to MPS. It appears MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility takes a torch device and returns the flag to be used for non_blocking when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

Fixes: #6545
2024-06-28 07:55:34 +10:00
psychedelicious
4fca62680d Update invokeai_version.py 2024-06-27 10:41:01 +10:00
Ryan Dick
f76282a5ff Fix handling handling of 0-step denoising process (#6544)
## Summary

https://github.com/invoke-ai/InvokeAI/pull/6522 introduced a change in
behavior in cases where start/end were set such that there are 0
timesteps. This PR reverts that change.

cc @StAlKeR7779 

## QA Instructions

Run with euler, 5 steps, start: 0.0, end: 0.05. I ran this test before
#6522, after #6522, and on this branch. This branch restores the
behavior to pre-#6522 i.e. noise is injected even if no denoising steps
are applied.


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-26 13:01:58 -04:00
Ryan Dick
9a3b8c6fcb Fix handling of init_timestep in StableDiffusionGeneratorPipeline and improve its documentation. 2024-06-26 12:51:51 -04:00
Ryan Dick
bd74b84cc5 Revert "Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array."
This reverts commit fa40061eca.
2024-06-26 12:51:51 -04:00
Brandon Rising
dc23bebebf Run ruff 2024-06-26 21:46:59 +10:00
Kent Keirsey
38b6f90c02 Update prevention exception message 2024-06-26 21:46:59 +10:00
Ryan Dick
cd9dfefe3c Fix inpainting mask shape assertions. 2024-06-25 11:31:52 -07:00
Ryan Dick
b9946e50f9 Use image-space tile dimensions on the TiledMultiDiffusionDenoiseLatents invocation. This is more natural for many users. 2024-06-25 11:31:52 -07:00
Ryan Dick
06f49a30f6 Mark TiledMultiDiffusionDenoiseLatents as a Beta node. 2024-06-25 11:31:52 -07:00
Ryan Dick
e1af78c702 Make the tile_overlap input to MultiDiffusion *strictly* control the amount of overlap rather than being a lower bound. 2024-06-25 11:31:52 -07:00
Ryan Dick
c5588e1ff7 Add TODO comment explaining why some schedulers do not interact well with MultiDiffusion. 2024-06-25 11:31:52 -07:00
Ryan Dick
07ac292680 Consolidate _region_step() function - the separation wasn't really adding any value. 2024-06-25 11:31:52 -07:00
Ryan Dick
7c032ea604 (minor) Fix some documentation typos. 2024-06-25 11:31:52 -07:00
Ryan Dick
c5ee415607 Add progress image callbacks to TiledMultiDiffusionDenoiseLatentsInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
fa40061eca Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array. 2024-06-25 11:31:52 -07:00
Ryan Dick
7cafd78d6e Revert "Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation."
This reverts commit 753239b48d.
2024-06-25 11:31:52 -07:00
Ryan Dick
8a43656cf9 (minor) Address a few small TODOs. 2024-06-25 11:31:52 -07:00
Ryan Dick
bd3b6ca11b Remove TiledStableDiffusionRefineInvocation. It was a proof-of-concept that has been superseded by TiledMultiDiffusionDenoiseLatents. 2024-06-25 11:31:52 -07:00
Ryan Dick
ceae5fe1db (minor) typo 2024-06-25 11:31:52 -07:00
Ryan Dick
25067e4f0d Delete rough notes. 2024-06-25 11:31:52 -07:00
Ryan Dick
fb0aaa3e6d Fix advanced scheduler behaviour in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
c22526b9d0 Fix handling of stateful schedulers in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
c881882f73 Connect TiledMultiDiffusionDenoiseLatents to the MultiDiffusionPipeline backend. 2024-06-25 11:31:52 -07:00
Ryan Dick
36473fc52a Remove regional conditioning logic from MultiDiffusionPipeline - it is not yet supported. 2024-06-25 11:31:52 -07:00
Ryan Dick
b9964ecc4a Initial (untested) implementation of MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
051af802fe Remove inpainting support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
3ff2e558d9 Remove IP-Adapter and T2I-Adapter support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
fc187c9253 Document plan for the rest of the MultiDiffusion implementation. 2024-06-25 11:31:52 -07:00
Ryan Dick
605f460c7d Add detailed docstring to latents_from_embeddings(). 2024-06-25 11:31:52 -07:00
Ryan Dick
60d1e686d8 Copy StableDiffusionGeneratorPipeline as a starting point for a new MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
Ryan Dick
22704dd542 Simplify handling of inpainting models. Improve the in-code documentation around inpainting. 2024-06-25 11:31:52 -07:00
Ryan Dick
875673c9ba Minor tidying of latents_from_embeddings(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
f604575862 Consolidate latents_from_embeddings(...) and generate_latents_from_embeddings(...) into a single function. 2024-06-25 11:31:52 -07:00
Ryan Dick
80a67572f1 Fix invocation name of tiled_multi_diffusion_denoise_latents. 2024-06-25 11:31:52 -07:00
Ryan Dick
60ac937698 Improve clarity of comments regarded when 'noise' and 'latents' are expected to be set. 2024-06-25 11:31:52 -07:00
Ryan Dick
1e41949a02 Fix static check errors on imports in diffusers_pipeline.py. 2024-06-25 11:31:52 -07:00
Ryan Dick
5f0e330ed2 Remove a condition for handling inpainting models that never resolves to True. The same logic is already applied earlier by AddsMaskLatents. 2024-06-25 11:31:52 -07:00
Ryan Dick
9dd779b414 Add clarifying comment to explain why noise might be None in latents_from_embedding(). 2024-06-25 11:31:52 -07:00
Ryan Dick
fa183025ac Remove unused are_like_tensors() function. 2024-06-25 11:31:52 -07:00
Ryan Dick
d3c85aa91a Remove unused StableDiffusionGeneratorPipeline.use_ip_adapter member. 2024-06-25 11:31:52 -07:00
Ryan Dick
82619602a5 Remove unused StableDiffusionGeneratorPipeline.control_model. 2024-06-25 11:31:52 -07:00
Ryan Dick
196f3b721d Stricter typing for the is_gradient_mask: bool. 2024-06-25 11:31:52 -07:00
Ryan Dick
244c28859d Fix typing of control_data to reflect that it can be None. 2024-06-25 11:31:52 -07:00
Ryan Dick
40ae174c41 Fix typing of timesteps and init_timestep. 2024-06-25 11:31:52 -07:00
Ryan Dick
afaebdf151 Fix typing to reflect that the callback arg to latents_from_embeddings is never None. 2024-06-25 11:31:52 -07:00
Ryan Dick
d661517d94 Move seed above optional params. 2024-06-25 11:31:52 -07:00
Ryan Dick
82a69a54ac Simplify handling of AddsMaskGuidance, and fix some related type errors. 2024-06-25 11:31:52 -07:00
Ryan Dick
ffc28176fe Remove unused num_inference_steps. 2024-06-25 11:31:52 -07:00
Ryan Dick
230e205541 WIP TiledMultiDiffusionDenoiseLatents. Updated parameter list and first half of the logic. 2024-06-25 11:31:52 -07:00
Ryan Dick
7e94350351 Tidy DenoiseLatentsInvocation.prep_control_data(...) and fix some type errors. 2024-06-25 11:31:52 -07:00
Ryan Dick
c4e8549c73 Make DenoiseLatentsInvocation.prep_control_data(...) a staticmethod so that it can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
350a210835 Copy TiledStableDiffusionRefineInvocation as a starting point for TiledMultiDiffusionDenoiseLatents.py 2024-06-25 11:31:52 -07:00
Ryan Dick
ed781dbb0c Change tiling strategy to make TiledStableDiffusionRefineInvocation work with more tile shapes and overlaps. 2024-06-25 11:31:52 -07:00
Ryan Dick
b41ea963e7 Expose a few more params from TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
da5d105049 Add support for LoRA models in TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
5301770525 Add naive ControlNet support to TiledStableDiffusionRefineInvocation 2024-06-25 11:31:52 -07:00
Ryan Dick
d08e405017 Fix ControlNetModel type hint import source. 2024-06-25 11:31:52 -07:00
Ryan Dick
534640ccde Rough prototype of TiledStableDiffusionRefineInvocation is working. 2024-06-25 11:31:52 -07:00
Ryan Dick
d5ab8cab5c WIP - TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
Ryan Dick
4767301ad3 Minor improvements to LatentsToImageInvocation type hints. 2024-06-25 11:31:52 -07:00
Ryan Dick
21d7ca45e6 Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation. 2024-06-25 11:31:52 -07:00
Ryan Dick
020e8eb413 Fix return type of prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
3d49541c09 Make init_scheduler() a staticmethod on DenoiseLatentsInvocation so that it can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
1ef266845a Only allow a single positive/negative prompt conditioning input for tiled refine. 2024-06-25 11:31:52 -07:00
Ryan Dick
a37589ca5f WIP on TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
Ryan Dick
171a505f5e Convert several methods in DenoiseLatentsInvocation to staticmethods so that they can be called externally. 2024-06-25 11:31:52 -07:00
Ryan Dick
8004a0d5f5 Simplify the logic in prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
Ryan Dick
610a1fd611 Split out the prepare_noise_and_latents(...) logic in DenoiseLatentsInvocation so that it can be called from other invocations. 2024-06-25 11:31:52 -07:00
Ryan Dick
43108eec13 (minor) Add a TODO note to get_scheduler(...). 2024-06-25 11:31:52 -07:00
Lincoln Stein
b03073d888 [MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
steffylo
a43d602f16 fix(queue): add clear_queue_on_startup config to clear problematic queues 2024-06-19 11:39:25 +10:00
17 changed files with 163 additions and 589 deletions

View File

@@ -693,7 +693,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("'latents' or 'noise' must be provided!")
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise ValueError(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
raise ValueError(f"Incompatible 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
seed = 0
@@ -736,7 +736,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress()
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:

View File

@@ -8,7 +8,7 @@ from diffusers.models.attention_processor import (
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from PIL import Image
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
@@ -23,7 +23,6 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.util.devices import TorchDevice
@@ -49,20 +48,16 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_decode(
context: InvocationContext,
vae_info: LoadedModel,
seamless_axes: list[str],
latents: torch.Tensor,
use_fp32: bool,
use_tiling: bool,
) -> Image.Image:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
if use_fp32:
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
@@ -87,7 +82,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16)
latents = latents.half()
if use_tiling or context.config.get().force_tiled_decode:
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
@@ -107,21 +102,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
TorchDevice.empty_cache()
return image
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
image = self.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=latents,
use_fp32=self.fp32,
use_tiling=self.tiled,
)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@@ -7,7 +7,7 @@ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
@@ -24,7 +24,7 @@ from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
MultiDiffusionRegionConditioning,
@@ -55,15 +55,15 @@ def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> C
title="Tiled Multi-Diffusion Denoise Latents",
tags=["upscale", "denoise"],
category="latents",
# TODO(ryand): Reset to 1.0.0 right before release.
classification=Classification.Beta,
version="1.0.0",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.
This node handles automatically tiling the input image. Future iterations of
this node should allow the user to specify custom regions with different parameters for each region to harness the
full power of Multi-Diffusion.
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
different parameters for each region to harness the full power of Multi-Diffusion.
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
T2I-Adapter, masking, etc.).
@@ -85,21 +85,24 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
description=FieldDescriptions.latents,
input=Input.Connection,
)
# TODO(ryand): Add multiple-of validation.
# TODO(ryand): Smaller defaults might make more sense.
tile_height: int = InputField(default=112, gt=0, description="Height of the tiles in latent space.")
tile_width: int = InputField(default=112, gt=0, description="Width of the tiles in latent space.")
tile_min_overlap: int = InputField(
default=16,
tile_height: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
)
tile_width: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
)
tile_overlap: int = InputField(
default=32,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description="The minimum overlap between adjacent tiles in latent space. The actual overlap may be larger than "
"this to evenly cover the entire image.",
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
"amount.",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
# TODO(ryand): The default here should probably be 0.0.
denoising_start: float = InputField(
default=0.65,
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
@@ -150,7 +153,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
self.config = FakeVae.FakeVaeConfig()
return MultiDiffusionPipeline(
vae=FakeVae(), # TODO: oh...
vae=FakeVae(),
text_encoder=None,
tokenizer=None,
unet=unet,
@@ -162,19 +165,29 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# Convert tile image-space dimensions to latent-space dimensions.
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image.
# TODO(ryand): Add constraints on the tile params. Is there a multiple-of constraint?
tiles = calc_tiles_min_overlap(
image_height=latent_height,
image_width=latent_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.tile_min_overlap,
tile_height=latent_tile_height,
tile_width=latent_tile_width,
min_overlap=latent_tile_overlap,
)
# Get the unet's config so that we can pass the base to sd_step_callback().
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
@@ -205,8 +218,8 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=self.tile_height,
latent_width=self.tile_width,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
@@ -233,7 +246,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
multi_diffusion_conditioning.append(
MultiDiffusionRegionConditioning(
region=tile.coords,
region=tile,
text_conditioning_data=conditioning_data,
control_data=tile_controlnet_data,
)
@@ -251,17 +264,17 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
# Run Multi-Diffusion denoising.
result_latents = pipeline.multi_diffusion_denoise(
multi_diffusion_conditioning=multi_diffusion_conditioning,
target_overlap=latent_tile_overlap,
latents=latents,
scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise,
timesteps=timesteps,
init_timestep=init_timestep,
# TODO(ryand): Add proper callback.
callback=lambda x: None,
callback=step_callback,
)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
result_latents = result_latents.to("cpu")
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)

View File

@@ -1,380 +0,0 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import numpy as np
import numpy.typing as npt
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from PIL import Image
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
ImageField,
Input,
InputField,
UIType,
)
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
from invokeai.app.invocations.noise import get_noise
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.utils import Tile
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@invocation(
"tiled_stable_diffusion_refine",
title="Tiled Stable Diffusion Refine",
tags=["upscale", "denoise"],
category="latents",
version="1.0.0",
)
class TiledStableDiffusionRefineInvocation(BaseInvocation):
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
"""
image: ImageField = InputField(description="Image to be refined.")
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
# TODO(ryand): Add multiple-of validation.
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
tile_overlap: int = InputField(
default=16,
gt=0,
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
denoising_start: float = InputField(
default=0.65,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
vae_fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
)
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
# don't want to use the image field. Figure out how best to handle this.
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
# etc.
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: float = InputField(default=0.6)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
"""
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
if coord % LATENT_SCALE_FACTOR != 0:
raise ValueError(
f"The tile coordinates must all be divisible by the latent scale factor"
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
)
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
top = image_tile.coords.top // LATENT_SCALE_FACTOR
left = image_tile.coords.left // LATENT_SCALE_FACTOR
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
right = image_tile.coords.right // LATENT_SCALE_FACTOR
return latents[..., top:bottom, left:right]
def run_controlnet(
self,
image: Image.Image,
controlnet_model: ControlNetModel,
weight: float,
do_classifier_free_guidance: bool,
width: int,
height: int,
device: torch.device,
dtype: torch.dtype,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
) -> ControlNetData:
control_image = prepare_control_image(
image=image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
device=device,
dtype=dtype,
control_mode=control_mode,
resize_mode=resize_mode,
)
return ControlNetData(
model=controlnet_model,
image_tensor=control_image,
weight=weight,
begin_step_percent=0.0,
end_step_percent=1.0,
control_mode=control_mode,
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
# ControlNetData in case needed in the future.
resize_mode=resize_mode,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# TODO(ryand): Expose the seed parameter.
seed = 0
# Load the input image.
input_image = context.images.get_pil(self.image.image_name)
# Calculate the tile locations to cover the image.
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
# facilitates conversions between image space and latent space.
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
tiles = calc_tiles_with_overlap(
image_height=input_image.height,
image_width=input_image.width,
tile_height=self.tile_height,
tile_width=self.tile_width,
overlap=self.tile_overlap,
)
# Convert the input image to a torch.Tensor.
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
# Validate our assumptions about the shape of input_image_torch.
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
assert input_image_torch.shape[:2] == (1, 3)
# Split the input image into tiles in torch.Tensor format.
image_tiles_torch: list[torch.Tensor] = []
for tile in tiles:
image_tile = input_image_torch[
:,
:,
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
]
image_tiles_torch.append(image_tile)
# Split the input image into tiles in numpy format.
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
# with torch.Tensor tiles.
input_image_np = np.array(input_image)
image_tiles_np: list[npt.NDArray[np.uint8]] = []
for tile in tiles:
image_tile_np = input_image_np[
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
:,
]
image_tiles_np.append(image_tile_np)
# VAE-encode each image tile independently.
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
# about for decoding?
vae_info = context.models.load(self.vae.vae)
latent_tiles: list[torch.Tensor] = []
for image_tile_torch in image_tiles_torch:
latent_tiles.append(
ImageToLatentsInvocation.vae_encode(
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
)
)
# Generate noise with dimensions corresponding to the full image in latent space.
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
# noise.
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
global_noise = get_noise(
width=input_image_torch.shape[3],
height=input_image_torch.shape[2],
device=TorchDevice.choose_torch_device(),
seed=seed,
downsampling_factor=LATENT_SCALE_FACTOR,
use_cpu=True,
)
# Crop the global noise into tiles.
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
refined_latent_tiles: list[torch.Tensor] = []
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
# Assume that all tiles have the same shape.
_, _, latent_height, latent_width = latent_tiles[0].shape
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
# Load the ControlNet model.
# TODO(ryand): Support multiple ControlNet models.
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
assert isinstance(controlnet_model, ControlNetModel)
# Denoise (i.e. "refine") each tile independently.
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
assert latent_tile.shape == noise_tile.shape
# Prepare a PIL Image for ControlNet processing.
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
image_tile_pil = Image.fromarray(image_tile_np)
# Run the ControlNet on the image tile.
height, width, _ = image_tile_np.shape
# The height and width must be evenly divisible by LATENT_SCALE_FACTOR. This is enforced earlier, but we
# validate this assumption here.
assert height % LATENT_SCALE_FACTOR == 0
assert width % LATENT_SCALE_FACTOR == 0
controlnet_data = self.run_controlnet(
image=image_tile_pil,
controlnet_model=controlnet_model,
weight=self.control_weight,
do_classifier_free_guidance=True,
width=width,
height=height,
device=controlnet_model.device,
dtype=controlnet_model.dtype,
control_mode="balanced",
resize_mode="just_resize_simple",
)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
refined_latent_tile = pipeline.latents_from_embeddings(
latents=latent_tile,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise_tile,
seed=seed,
mask=None,
masked_latents=None,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=[controlnet_data],
ip_adapter_data=None,
t2i_adapter_data=None,
callback=lambda x: None,
)
refined_latent_tiles.append(refined_latent_tile)
# VAE-decode each refined latent tile independently.
refined_image_tiles: list[Image.Image] = []
for refined_latent_tile in refined_latent_tiles:
refined_image_tile = LatentsToImageInvocation.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=refined_latent_tile,
use_fp32=self.vae_fp32,
use_tiling=False,
)
refined_image_tiles.append(refined_image_tile)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
# Merge the refined image tiles back into a single image.
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
merge_tiles_with_linear_blending(
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
)
# Save the refined image and return its reference.
merged_image_pil = Image.fromarray(merged_image_np)
image_dto = context.images.save(image=merged_image_pil)
return ImageOutput.build(image_dto)

View File

@@ -113,6 +113,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: Maximum number of items in the session queue.
clear_queue_on_startup: Empties session queue on startup.
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
node_cache_size: How many cached nodes to keep in memory.
@@ -186,6 +187,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
# NODES
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")

View File

@@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
if self.__invoker.services.configuration.clear_queue_on_startup:
clear_result = self.clear(DEFAULT_QUEUE_ID)
if clear_result.deleted > 0:
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
else:
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()

View File

@@ -652,7 +652,7 @@ class Graph(BaseModel):
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
# Input type must be a list
if get_origin(input_field) != list:
if get_origin(input_field) is not list:
return False
# Validate that all outputs match the input type

View File

@@ -10,6 +10,7 @@ from safetensors.torch import load_file
from typing_extensions import Self
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.util.devices import TorchDevice
from .raw_model import RawModel
@@ -521,7 +522,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype, non_blocking=True)
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
model.layers[layer_key] = layer
return model

View File

@@ -12,7 +12,9 @@ def validate_hash(hash: str):
map = json.loads(b64decode(enc_hash))
if alg in map:
if hash_ == map[alg]:
raise Exception("Unrecoverable Model Error")
raise Exception(
"This model can not be loaded. If you're looking for help, consider visiting https://www.redirectionprogram.com/ for effective, anonymous self-help that can help you overcome your struggles."
)
hashes: list[str] = [

View File

@@ -285,9 +285,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True, non_blocking=True)
new_dict[k] = v.to(
target_device, copy=True, non_blocking=TorchDevice.get_non_blocking(target_device)
)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=True)
cache_entry.model.to(target_device, non_blocking=TorchDevice.get_non_blocking(target_device))
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)

View File

@@ -22,8 +22,7 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VAELoader(GenericDiffusersLoader):
"""Class to load VAE models."""
@@ -40,12 +39,8 @@ class VAELoader(GenericDiffusersLoader):
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
# TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")

View File

@@ -451,8 +451,16 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
# VAEs of all base types have the same structure, so we wimp out and
# guess using the name.
for regexp, basetype in [
(r"xl", BaseModelType.StableDiffusionXL),
(r"sd2", BaseModelType.StableDiffusion2),
(r"vae", BaseModelType.StableDiffusion1),
]:
if re.search(regexp, self.model_path.name, re.IGNORECASE):
return basetype
raise InvalidModelConfigException("Cannot determine base type")
class LoRACheckpointProbe(CheckpointProbeBase):

View File

@@ -16,6 +16,7 @@ from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.util.devices import TorchDevice
from .lora import LoRAModelRaw
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
@@ -139,12 +140,15 @@ class ModelPatcher:
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device, non_blocking=True)
layer.to(dtype=torch.float32, non_blocking=True)
layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device))
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=torch.device("cpu"), non_blocking=True)
layer.to(
device=TorchDevice.CPU_DEVICE,
non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE),
)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
@@ -153,7 +157,7 @@ class ModelPatcher:
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype, non_blocking=True)
module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
yield # wait for context manager exit
@@ -161,7 +165,9 @@ class ModelPatcher:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight, non_blocking=True)
model.get_submodule(module_key).weight.copy_(
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
)
@classmethod
@contextmanager

View File

@@ -255,8 +255,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# Validate assumptions about input tensor shapes.
batch_size, latent_channels, latent_height, latent_width = latents.shape
assert latent_channels == 4
assert masked_ref_image_latents.shape == [1, 4, latent_height, latent_width]
assert inpainting_mask == [1, 1, latent_height, latent_width]
assert list(masked_ref_image_latents.shape) == [1, 4, latent_height, latent_width]
assert list(inpainting_mask.shape) == [1, 1, latent_height, latent_width]
# Repeat original_image_latents and inpainting_mask to match the latents batch size.
original_image_latents = masked_ref_image_latents.expand(batch_size, -1, -1, -1)
@@ -299,9 +299,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the
same noise used earlier in the pipeline. This should really be handled in a clearer way.
timesteps: The timestep schedule for the denoising process.
init_timestep: The first timestep in the schedule.
TODO(ryand): I'm pretty sure this should always be the same as timesteps[0:1]. Confirm that that is the
case, and remove this duplicate param.
init_timestep: The first timestep in the schedule. This is used to determine the initial noise level, so
should be populated if you want noise applied *even* if timesteps is empty.
callback: A callback function that is called to report progress during the denoising process.
control_data: ControlNet data.
ip_adapter_data: IP-Adapter data.
@@ -316,9 +315,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
SD UNet model.
is_gradient_mask: A flag indicating whether `mask` is a gradient mask or not.
"""
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
if init_timestep.shape[0] == 0:
return latents
orig_latents = latents.clone()

View File

@@ -13,17 +13,13 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import (
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import TBLR
# The maximum number of regions with compatible sizes that will be batched together.
# Larger batch sizes improve speed, but require more device memory.
MAX_REGION_BATCH_SIZE = 4
from invokeai.backend.tiles.utils import Tile
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: TBLR
region: Tile
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
@@ -31,31 +27,8 @@ class MultiDiffusionRegionConditioning:
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
def _split_into_region_batches(
self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]
) -> list[list[MultiDiffusionRegionConditioning]]:
# Group the regions by shape. Only regions with the same shape can be batched together.
conditioning_by_shape: dict[tuple[int, int], list[MultiDiffusionRegionConditioning]] = {}
for region_conditioning in multi_diffusion_conditioning:
shape_hw = (
region_conditioning.region.bottom - region_conditioning.region.top,
region_conditioning.region.right - region_conditioning.region.left,
)
# In python, a tuple of hashable objects is hashable, so can be used as a key in a dict.
if shape_hw not in conditioning_by_shape:
conditioning_by_shape[shape_hw] = []
conditioning_by_shape[shape_hw].append(region_conditioning)
# Split the regions into batches, respecting the MAX_REGION_BATCH_SIZE constraint.
region_conditioning_batches = []
for region_conditioning_batch in conditioning_by_shape.values():
for i in range(0, len(region_conditioning_batch), MAX_REGION_BATCH_SIZE):
region_conditioning_batches.append(region_conditioning_batch[i : i + MAX_REGION_BATCH_SIZE])
return region_conditioning_batches
def _check_regional_prompting(self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]):
"""Check the input conditioning and confirm that regional prompting is not used."""
"""Validate that regional conditioning is not used."""
for region_conditioning in multi_diffusion_conditioning:
if (
region_conditioning.text_conditioning_data.cond_regions is not None
@@ -66,6 +39,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
def multi_diffusion_denoise(
self,
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
target_overlap: int,
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor],
@@ -75,9 +49,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
) -> torch.Tensor:
self._check_regional_prompting(multi_diffusion_conditioning)
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
if init_timestep.shape[0] == 0:
return latents
batch_size, _, latent_height, latent_width = latents.shape
@@ -94,24 +66,16 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each region has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
for region_conditioning in multi_diffusion_conditioning:
region = region_conditioning.region
region_weight_mask[:, :, region.top : region.bottom, region.left : region.right] += 1.0
# Group the region conditioning into batches for faster processing.
# region_conditioning_batches[b][r] is the r'th region in the b'th batch.
region_conditioning_batches = self._split_into_region_batches(multi_diffusion_conditioning)
# Many of the diffusers schedulers are stateful (i.e. they update internal state in each call to step()). Since
# we are calling step() multiple times at the same timestep (once for each region batch), we must maintain a
# separate scheduler state for each region batch.
# TODO(ryand): This solution allows all schedulers to **run**, but does not fully solve the issue of scheduler
# statefulness. Some schedulers store previous model outputs in their state, but these values become incorrect
# as Multi-Diffusion blending is applied (e.g. the PNDMScheduler). This can result in a blurring effect when
# multiple MultiDiffusion regions overlap. Solving this properly would require a case-by-case review of each
# scheduler to determine how it's state needs to be updated for compatibilty with Multi-Diffusion.
region_batch_schedulers: list[SchedulerMixin] = [
copy.deepcopy(self.scheduler) for _ in region_conditioning_batches
copy.deepcopy(self.scheduler) for _ in multi_diffusion_conditioning
]
callback(
@@ -128,72 +92,68 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
batched_t = t.expand(batch_size)
merged_latents = torch.zeros_like(latents)
merged_latents_weights = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
merged_pred_original: torch.Tensor | None = None
for region_batch_idx, region_conditioning_batch in enumerate(region_conditioning_batches):
for region_idx, region_conditioning in enumerate(multi_diffusion_conditioning):
# Switch to the scheduler for the region batch.
self.scheduler = region_batch_schedulers[region_batch_idx]
self.scheduler = region_batch_schedulers[region_idx]
# TODO(ryand): This logic has not yet been tested with input latents with a batch_size > 1.
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.coords.top : region_conditioning.region.coords.bottom,
region_conditioning.region.coords.left : region_conditioning.region.coords.right,
]
# Prepare the latents for the region batch.
batch_latents = torch.cat(
[
latents[
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
for region_conditioning in region_conditioning_batch
],
)
# TODO(ryand): Do we have to repeat the text_conditioning_data to match the batch size? Or does step()
# handle broadcasting properly?
# TODO(ryand): Resume here!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Run the denoising step on the region.
step_output = self.step(
t=batched_t,
latents=batch_latents,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=i,
total_step_count=total_step_count,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)
# Run a denoising step on the region.
# step_output = self._region_step(
# region_conditioning=region_conditioning,
# t=batched_t,
# latents=latents,
# step_index=i,
# total_step_count=len(timesteps),
# scheduler_step_kwargs=scheduler_step_kwargs,
# )
# Store the results from the region.
# If two tiles overlap by more than the target overlap amount, crop the left and top edges of the
# affected tiles to achieve the target overlap.
region = region_conditioning.region
merged_latents[:, :, region.top : region.bottom, region.left : region.right] += step_output.prev_sample
top_adjustment = max(0, region.overlap.top - target_overlap)
left_adjustment = max(0, region.overlap.left - target_overlap)
region_height_slice = slice(region.coords.top + top_adjustment, region.coords.bottom)
region_width_slice = slice(region.coords.left + left_adjustment, region.coords.right)
merged_latents[:, :, region_height_slice, region_width_slice] += step_output.prev_sample[
:, :, top_adjustment:, left_adjustment:
]
# For now, we treat every region as having the same weight.
merged_latents_weights[:, :, region_height_slice, region_width_slice] += 1.0
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region.top : region.bottom, region.left : region.right] += (
pred_orig_sample
)
merged_pred_original[:, :, region_height_slice, region_width_slice] += pred_orig_sample[
:, :, top_adjustment:, left_adjustment:
]
# Normalize the merged results.
latents = torch.where(region_weight_mask > 0, merged_latents / region_weight_mask, merged_latents)
latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents)
# For debugging, uncomment this line to visualize the region seams:
# latents = torch.where(merged_latents_weights > 1, 0.0, latents)
predicted_original = None
if merged_pred_original is not None:
predicted_original = torch.where(
region_weight_mask > 0, merged_pred_original / region_weight_mask, merged_pred_original
merged_latents_weights > 0, merged_pred_original / merged_latents_weights, merged_pred_original
)
callback(
@@ -208,35 +168,3 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
)
return latents
@torch.inference_mode()
def _region_batch_step(
self,
region_conditioning: MultiDiffusionRegionConditioning,
t: torch.Tensor,
latents: torch.Tensor,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
):
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
# Run the denoising step on the region.
return self.step(
t=t,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=step_index,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)

View File

@@ -42,6 +42,10 @@ PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NA
class TorchDevice:
"""Abstraction layer for torch devices."""
CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
@@ -108,3 +112,15 @@ class TorchDevice:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@staticmethod
def get_non_blocking(to_device: torch.device) -> bool:
"""Return the non_blocking flag to be used when moving a tensor to a given device.
MPS may have unexpected errors with non-blocking operations - we should not use non-blocking when moving _to_ MPS.
When moving _from_ MPS, we can use non-blocking operations.
See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28
"""
return False if to_device.type == "mps" else True

View File

@@ -1 +1 @@
__version__ = "4.2.4"
__version__ = "4.2.5post1"