Compare commits

...

1353 Commits

Author SHA1 Message Date
Brandon Rising
edae8a1617 Update to reflect an alpha release 2024-09-09 13:50:15 -04:00
Brandon Rising
9c1cf3e860 chore: 5.0.0.dev14 version bump 2024-09-09 13:50:15 -04:00
psychedelicious
b6cef9d440 fix(ui): do not clear buffer on escape if filtering/transforming 2024-09-09 23:40:38 +10:00
psychedelicious
ebb92bee26 fix(ui): use reactive entity adapter hooks, fix one-behind issue 2024-09-09 23:40:38 +10:00
psychedelicious
d6c553ca5e chore(ui): lint 2024-09-09 23:17:41 +10:00
psychedelicious
8b6512cc90 fix(ui): stale rect used in getVisibleRect (partial fix)
Need to figure out why the rect isn't reset when the entity is reset. Probably just needs some special handling.
2024-09-09 23:17:41 +10:00
psychedelicious
a6b998c125 feat(ui): move fit bbox to layers button to toolbar 2024-09-09 23:17:41 +10:00
psychedelicious
5275782533 feat(ui): move add layer menu to selected entity action bar 2024-09-09 23:17:41 +10:00
psychedelicious
ede3bd8e64 feat(ui): default canvas state includes bookmarked inpaint mask 2024-09-09 23:17:41 +10:00
psychedelicious
da2583b894 feat(ui): shift+c clears regional guidance 2024-09-09 23:17:41 +10:00
psychedelicious
9210970130 fix(ui): preview not updating after reset 2024-09-09 23:17:41 +10:00
psychedelicious
2a022a811c feat(ui): selected entity alert 2024-09-09 23:17:41 +10:00
psychedelicious
1a53e8dc5c feat(ui): swap gallery and layer tabs 2024-09-09 23:17:41 +10:00
psychedelicious
4e12e23b69 feat(ui): tweak left panel size 2024-09-09 23:17:41 +10:00
psychedelicious
fd56b35982 fix(ui): vae layout 2024-09-09 23:17:41 +10:00
psychedelicious
71e0abe653 fix(ui): preview image squished when editing layer title 2024-09-09 23:17:41 +10:00
psychedelicious
56956ccf78 tidy(ui): remove extraneous fallback in QueueCountBadge 2024-09-09 23:17:41 +10:00
psychedelicious
6d46d82028 feat(ui): do not render anything except current content
This makes it a bit slower to switch tabs but also eliminates a whole class of bugs related to rendered but hidden components.
2024-09-09 23:17:41 +10:00
psychedelicious
3ed29a16a8 feat(ui): reworked layout (wip) 2024-09-09 23:17:41 +10:00
psychedelicious
b67c369bdb chore(ui): bump react-resizable-panels 2024-09-09 23:17:41 +10:00
psychedelicious
e774b6879e feat(ui): auto-negative defaults to off 2024-09-09 23:17:41 +10:00
psychedelicious
e7d95c3724 fix(ui): error when creating control adapter 2024-09-09 23:17:41 +10:00
psychedelicious
1b65884dbe feat(ui): add selected entity status to HUD 2024-09-09 23:17:41 +10:00
psychedelicious
eff9ddc980 fix(ui): queue count badge showing on model/queue tab 2024-09-09 23:17:41 +10:00
psychedelicious
400ef8cdc3 feat(ui): grid size -> snap to grid
Similar behaviour to before. When on, snaps to 64. If ctrl/cmd held, snap to 8.
2024-09-09 23:17:41 +10:00
psychedelicious
b0ec3de40a fix(ui): do not change scaled size when manual & locked 2024-09-09 23:17:41 +10:00
psychedelicious
b38b8bc90c feat(ui): make filter process debounce internally configurable 2024-09-09 23:17:41 +10:00
psychedelicious
a5ab5e5146 feat(ui): disable filter apply button when no filter processed 2024-09-09 23:17:41 +10:00
psychedelicious
61fc30b345 feat(ui): filter behaviour
- Add `reset` functionality
- Rename badly named `autoPreviewFilter` to `autoProcessFilter`
- Do not process filter when starting, unless `autoProcessFilter` is enabled
2024-09-09 23:17:41 +10:00
psychedelicious
46d0ba8ce2 chore(ui): bump @invoke-ai/ui-library
This includes some fixes for the composite number input component's local value handling, resolving an infinite recursion problem when an invalid value is set.
2024-09-09 23:17:41 +10:00
psychedelicious
5a3e0d76d9 fix(ui): adapter konva objects drawn in wrong order
Add `syncZIndices` to `CanvasEntityAdapterBase` to arrange each layer's konva nodes appropriately.
2024-09-09 23:17:41 +10:00
psychedelicious
5eb919f602 feat(ui): use 64 as grid for auto-scaled bbox 2024-09-08 21:55:26 +10:00
psychedelicious
2301b388e8 feat(ui): rename snapToGrid -> gridSize 2024-09-08 21:55:26 +10:00
psychedelicious
dbf13999a0 fix(ui): staging area not rendering when images are staged 2024-09-08 21:55:26 +10:00
psychedelicious
a37592f9f3 chore(ui): lint 2024-09-08 21:55:26 +10:00
psychedelicious
60d4514fd8 tidy(ui): CanvasSettingsAutoSaveCheckbox 2024-09-08 21:55:26 +10:00
psychedelicious
9709da901c feat(ui): add snap & autosave to HUD 2024-09-08 21:55:26 +10:00
psychedelicious
44df59e9e9 feat(ui): snap to grid
Snap can be any of off, 8px or 64px.

The snap is used when moving and transforming entities.

When transforming and locking aspect ratio, the snap is ignored entirely, because we'd change the aspect ratio if we forced the snap.

Otherwise, if we are not locking aspect ratio (e.g. the user is holding shift), we snap the transform anchors to the grid.
2024-09-08 21:55:26 +10:00
psychedelicious
fbe80ceab2 fix(ui): bbox not updating when resizing from canvas 2024-09-08 21:55:26 +10:00
psychedelicious
a86822db4d fix(ui): flicker when rendering buffers 2024-09-08 21:55:26 +10:00
psychedelicious
f024cb1d05 chore(ui): lint 2024-09-08 21:55:26 +10:00
psychedelicious
6b2d900b54 tidy(ui): organise canvas tool classes 2024-09-08 21:55:26 +10:00
psychedelicious
3d6d5affb5 tidy(ui): organise canvas entity classes 2024-09-08 21:55:26 +10:00
psychedelicious
99b683fc1f tidy(ui): organise canvas object classes 2024-09-08 21:55:26 +10:00
psychedelicious
d5cd50c3ea feat(ui): split buffer renderer from object renderer 2024-09-08 21:55:26 +10:00
psychedelicious
d7cde0fc23 feat(ui): add spandrel filter 2024-09-08 21:55:26 +10:00
psychedelicious
541605edb4 fix(ui): ignore opacity when transforming 2024-09-08 21:55:26 +10:00
psychedelicious
0194344de2 feat(ui): reset $shouldShowStagedImage when start staging
Realized we can use listener middleware to respond to _actions_, as opposed to using the redux store subscription to respond to _state changes_... This might simplify some things.

Using this pattern here.

Only hiccup - there's a TS issue preventing this from being added to the state api module. The `addListener` method has an overloaded type signature and TS cannot extract the overloaded arg type using `Parameters<T>`. As a result, if we try to wrap this, we end up with a broken TS signature for the wrapper method.
2024-09-08 21:55:26 +10:00
psychedelicious
34f3cb3116 fix(ui): progress images shown during staging when show staged images is disabled 2024-09-08 21:55:26 +10:00
psychedelicious
5ab4818eb6 tidy(ui): rename canvas session slice to staging area slice 2024-09-08 21:55:26 +10:00
psychedelicious
60d2541934 chore(ui): lint 2024-09-08 06:16:53 +10:00
psychedelicious
8d87549ebe fix(ui): disabled global IP adapters used for generation 2024-09-08 06:16:53 +10:00
psychedelicious
4cb5854990 fix(ui): compositor does not respect layer order 2024-09-08 06:16:53 +10:00
psychedelicious
6f4d3d0395 fix(ui): do not merge disabled layers when merging visible 2024-09-08 06:16:53 +10:00
psychedelicious
93e9e64b3a fix(ui): queue status not invalidated on enqueue 2024-09-08 06:16:53 +10:00
psychedelicious
2bdfc340aa fix(ui): race conditions with progress events
There's a race condition where we sometimes get progress events from canceled queue items, depending on the timing of the cancellation request and last event or two from the queue item.

I can't imagine how to resolve this except by tracking all cancellations and ignoring events for cancelled items, which is implemented in this change.
2024-09-08 06:16:53 +10:00
psychedelicious
2a1bc3e044 fix(ui): do not allow transform when entity is "empty" 2024-09-08 06:16:53 +10:00
psychedelicious
b4d006d14b fix(ui): do not use crypto.randomUUID
This API is not available in all browsers. Also add an eslint rule to prevent usage in the future.
2024-09-08 06:16:53 +10:00
psychedelicious
464603e0ea feat(ui): rework control adapter/ip adapter creation handling
- Add selectors to get the default control adapter and ip adapter with model, preferring controlnet over t2i adapter for model
- Add hooks to add each entity type, using the defaults
- Add hooks to add prompts/ip adapters to a regional guidance layer
- Use the defaults in other places where we add control layers or ip adapters (e.g. dnd-triggered entity creation)
2024-09-08 06:16:53 +10:00
psychedelicious
864e471e5a fix(ui): prevent default browser behaviour on shortcut keys
Hopefully this resolves the issue w/ alt as a quick switch for color picker on windows.
2024-09-08 06:16:53 +10:00
psychedelicious
670e054fe0 feat(ui): refactor filter module
- Each entity gets its own `CanvasEntityFilterer`
- Add auto-preview feature to filter, debounced by 1000ms leading + trailing
- Fix flash when preview updates
2024-09-08 06:16:53 +10:00
psychedelicious
0abd81ac80 fix(ui): tool/cursor state when filtering or transforming 2024-09-08 06:16:53 +10:00
psychedelicious
1870daffa1 feat(ui): if uploading image directly to gallery, switch to destination board/assets view 2024-09-08 06:16:53 +10:00
psychedelicious
d6d27a82a6 fix(ui): aspect ratio preview not updating when changing bbox on canvas 2024-09-08 06:16:53 +10:00
psychedelicious
ff0d2fcc92 chore: release v5.0.0.dev13 2024-09-06 22:56:24 +10:00
psychedelicious
a2969816fa feat(ui): move seed out of advanced, hide HRF settings 2024-09-06 22:56:24 +10:00
psychedelicious
6b20d1564d chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
bf484bc90e feat(ui): tweak padding on entity group header 2024-09-06 22:56:24 +10:00
psychedelicious
fc58d34d25 feat(ui): use plurals for entity group header hidden tooltip 2024-09-06 22:56:24 +10:00
psychedelicious
c15793b794 feat(ui): move delete entity button down to entity list item 2024-09-06 22:56:24 +10:00
psychedelicious
1e32be827e feat(ui): add fit bbox to layers 2024-09-06 22:56:24 +10:00
psychedelicious
8422908b70 fix(ui): tidy incorrect component name 2024-09-06 22:56:24 +10:00
psychedelicious
d10ff59f9c feat(ui): do not allow invoke while transforming or filtering 2024-09-06 22:56:24 +10:00
psychedelicious
eab1f50a6f feat(ui): do not allow transform, filter or merge while staging 2024-09-06 22:56:24 +10:00
psychedelicious
6e346884e3 fix(ui): prevent stage scale/size from being invalid 2024-09-06 22:56:24 +10:00
psychedelicious
1c9fd1f19a fix(ui): do not save filtered previews to gallery 2024-09-06 22:56:24 +10:00
psychedelicious
28385d06d1 feat(ui): filter UI layout 2024-09-06 22:56:24 +10:00
psychedelicious
12e6f1be89 feat(ui): revised entity list action bars
- Global action bar on top
- Selected Entity action bar below
2024-09-06 22:56:24 +10:00
psychedelicious
e1a66e22e9 feat(ui): fit bbox to stage on canvas reset 2024-09-06 22:56:24 +10:00
psychedelicious
b3569e5c0d chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
c64693fffd feat(ui): reworked image context menu
- Add `Open in Viewer`
- Remove `Send to Image to Image`
- Fix `Send to Canvas`
- Split out logic for composability
2024-09-06 22:56:24 +10:00
psychedelicious
ce9f17726f feat(ui): restore aspect ratio preview component 2024-09-06 22:56:24 +10:00
psychedelicious
5f62dc6699 fix(ui): transformer rendered behind layer objects 2024-09-06 22:56:24 +10:00
psychedelicious
07cb12eef7 feat(ui): inverted shift behavior for transformer 2024-09-06 22:56:24 +10:00
psychedelicious
9e9f465552 fix(ui): ignore filters when calculating bbox 2024-09-06 22:56:24 +10:00
psychedelicious
e148cc810b feat(ui): cancel by destination, not origin 2024-09-06 22:56:24 +10:00
psychedelicious
160f54d1ea chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
480856a528 feat(app): cancel by destination, not origin
When resetting the canvas or staging area, we don't want to cancel generations that are going to the gallery - only those going to the canvas.

Thus the method should not cancel by origin, but instead cancel by destination.

Update the queue method and route.
2024-09-06 22:56:24 +10:00
psychedelicious
97aad2ab2f fix(ui): scaled size not correctly reset when canvas reset 2024-09-06 22:56:24 +10:00
psychedelicious
2b93dbd96a feat(ui): use black bg when rasterizing control images 2024-09-06 22:56:24 +10:00
psychedelicious
ce4c79a8d9 fix(ui): ignore Konva filters when previewing filter 2024-09-06 22:56:24 +10:00
psychedelicious
151b4efd3f fix(ui): filter preview accidentally committed to layer 2024-09-06 22:56:24 +10:00
psychedelicious
16806e5d8d feat(ui): improved transparency effect
Use the min of each pixel's alpha value and lightness for the output alpha. This prevents artifacts when using the transparency effect, especially with non-black pixels with low alpha.
2024-09-06 22:56:24 +10:00
psychedelicious
8e01d295db chore: release v4.2.9.dev12 2024-09-06 22:56:24 +10:00
psychedelicious
fd00e40ca7 fix(ui): missing translation 2024-09-06 22:56:24 +10:00
psychedelicious
029158ef3a fix(ui): save to gallery uses auto-add board 2024-09-06 22:56:24 +10:00
psychedelicious
96b74f4a79 fix(ui): cancel transform/filter when deleting entity 2024-09-06 22:56:24 +10:00
psychedelicious
b1e85f8b60 chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
aa418f0aba feat(ui): iterate on state flow and rendering 2
- Rely on redux + reselect more
- Remove all nanostores that simply "mirrored" redux state in favor of direct subscriptions to redux store
- Add abstractions for creating redux subs and running selectors
- Add `initialize` method to CanvasModuleBase, for post-instantiation tasks
- Reduce local caching of state in modules to a minimum
2024-09-06 22:56:24 +10:00
psychedelicious
8b747b022b feat(ui): iterate on state flow and rendering 2024-09-06 22:56:24 +10:00
psychedelicious
ed4b5dfac3 feat(ui): slight layout change for staging area toolbar 2024-09-06 22:56:24 +10:00
psychedelicious
b189937bc9 feat(ui): clean up adapter API 2024-09-06 22:56:24 +10:00
psychedelicious
e176e48fa3 feat(ui): streamlined state flow 2024-09-06 22:56:24 +10:00
psychedelicious
4931bdace5 fix(ui): handle optimal dimension when resetting canvas 2024-09-06 22:56:24 +10:00
psychedelicious
c3b52a1853 feat(ui): background and staging area modules have own store subscription and render themselves 2024-09-06 22:56:24 +10:00
psychedelicious
b201541cb0 feat(ui): make rendering methods not need args
They should pull from the entity's state directly. This allows more freedom with updating the canvas.
2024-09-06 22:56:24 +10:00
psychedelicious
ba54a05efd feat(ui): restore size of invoke button 2024-09-06 22:56:24 +10:00
psychedelicious
6746870591 tidy(ui): remove unnecessary awaits in rendering module 2024-09-06 22:56:24 +10:00
psychedelicious
542844c6a3 tidy(ui): rename some classes to better represent their responsibilities 2024-09-06 22:56:24 +10:00
psychedelicious
4e5f4dadf2 feat(ui): abstract out CanvasEntityAdapterBase
Things were getting to complex to reason about & classes a bit complicated. Trying to simplify...
2024-09-06 22:56:24 +10:00
psychedelicious
1c15c2cb03 feat(ui): revise entity rendering flow 2024-09-06 22:56:24 +10:00
psychedelicious
a041f1f388 tidy(ui): remove unused id on konva nodes 2024-09-06 22:56:24 +10:00
psychedelicious
d0b62c88c9 tidy(ui): remove commented code 2024-09-06 22:56:24 +10:00
psychedelicious
0fd4dd4513 tidy(ui): remove extraneous docstrings 2024-09-06 22:56:24 +10:00
psychedelicious
4d3ed34232 feat(ui): clean up unused tool module state 2024-09-06 22:56:24 +10:00
psychedelicious
74de22349d tidy(ui): disable isDebugging flag on root component 2024-09-06 22:56:24 +10:00
psychedelicious
18ad271225 fix(ui): unable to drag while transforming after switching tools 2024-09-06 22:56:24 +10:00
psychedelicious
f92730080c feat(ui): prevent layer interactions when transforming or filtering 2024-09-06 22:56:24 +10:00
psychedelicious
f83b500645 feat(ui): add compositeMaskedRegions setting 2024-09-06 22:56:24 +10:00
psychedelicious
1349e73a1a tidy(ui): merge tool slice, sendToCanvas into settings slice 2024-09-06 22:56:24 +10:00
psychedelicious
1fdb702557 build(ui): add csstype dev dependency 2024-09-06 22:56:24 +10:00
psychedelicious
4df531b7c0 feat(ui): clean up tool preview rendering 2024-09-06 22:56:24 +10:00
psychedelicious
a5a077964e feat(ui): tool buttons are only disabled when currently selected 2024-09-06 22:56:24 +10:00
psychedelicious
944719cb9c feat(ui): better types on CanvasStateApiModule.getEntity 2024-09-06 22:56:24 +10:00
psychedelicious
92ae679314 feat(ui): update default logging context path to be string 2024-09-06 22:56:24 +10:00
psychedelicious
771c3210b7 tidy(ui): mark canvas module attrs readonly 2024-09-06 22:56:24 +10:00
psychedelicious
517946f66e chore: release v4.2.9.dev11 2024-09-06 22:56:24 +10:00
psychedelicious
eb09253b4e feat(ui): tidy stateApi atoms & add docstrings 2024-09-06 22:56:24 +10:00
psychedelicious
d81cd050ef feat(ui): streamline manager -> react transform interface 2024-09-06 22:56:24 +10:00
psychedelicious
ae5ed18f12 tidy(ui): remove unused $isProcessingTransform atom 2024-09-06 22:56:24 +10:00
psychedelicious
9026180533 docs(ui): docstrings for $canvasCache 2024-09-06 22:56:24 +10:00
psychedelicious
437ea1109b feat(ui): tweak bookmark verbiage 2024-09-06 22:56:24 +10:00
psychedelicious
95177a7389 feat(ui): move transformer state to nanostores
This provides some free reactivity for this canvas-manager-managed state.
2024-09-06 22:56:24 +10:00
psychedelicious
d01af064f9 fix(ui): transform should ignore konva filters (e.g. transparency effect) 2024-09-06 22:56:24 +10:00
psychedelicious
d50ee14d0b feat(ui): add fit to bbox as transform helper 2024-09-06 22:56:24 +10:00
psychedelicious
096e8deac5 tidy(ui): transformer organisation 2024-09-06 22:56:24 +10:00
psychedelicious
e3b6ad7076 fix(ui): disable merge visible when 1 or fewer layers of type 2024-09-06 22:56:24 +10:00
psychedelicious
23c93509e0 feat(ui): brush preview opacity at 0.5 when drawing on mask 2024-09-06 22:56:24 +10:00
psychedelicious
f5eb6a06b5 chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
db99b773bc fix(ui): edge cases in quick switch, simpler logic 2024-09-06 22:56:24 +10:00
psychedelicious
daa0064947 chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
ea062ab01a feat(ui): add bookmark for quick switch 2024-09-06 22:56:24 +10:00
psychedelicious
0c81a435f4 fix(ui): force dims on scaled bbox when manual scaling + locked aspect ratio
Closes #5590
2024-09-06 22:56:24 +10:00
psychedelicious
be7254dbf8 feat(ui): "Control Layers" -> "Layers" 2024-09-06 22:56:24 +10:00
psychedelicious
f49cee976d feat(ui): "IP Adapter" -> "Global IP Adapter" 2024-09-06 22:56:24 +10:00
psychedelicious
c246fc98b3 tidy(ui): canvas hotkey hooks 2024-09-06 22:56:24 +10:00
psychedelicious
45e155d392 feat(ui): add alt+[ and alt+] hotkeys to cycle through layers 2024-09-06 22:56:24 +10:00
psychedelicious
c82e17916f feat(ui): add layer quick switch
Q toggles between the last-selected layers.
2024-09-06 22:56:24 +10:00
psychedelicious
d9359bac23 feat(ui): bbox hotkey is c 2024-09-06 22:56:24 +10:00
psychedelicious
ae65f89999 fix(ui): select nonexistent entity 2024-09-06 22:56:24 +10:00
psychedelicious
dd8b25260d feat(ui): brush & eraser width ui/ux
Use same pattern as canvas scale & opacity sliders w/ scaled slider values for precision at low values.
2024-09-06 22:56:24 +10:00
psychedelicious
4f76f5f848 tidy(ui): canvas scale & entity opacity sliders 2024-09-06 22:56:24 +10:00
psychedelicious
3cdc5d869f feat(ui): hotkeys for brush/eraser size 2024-09-06 22:56:24 +10:00
psychedelicious
19aa747b8f feat(ui): use default IP adapter when creating IP adapter 2024-09-06 22:56:24 +10:00
psychedelicious
e20ae31d96 tidy(ui): organise files 2024-09-06 22:56:24 +10:00
psychedelicious
09fd415527 feat(ui): remove object count from entity title
This was used for troubleshooting only.
2024-09-06 22:56:24 +10:00
psychedelicious
50768a957e tidy(ui): misc cleanup 2024-09-06 22:56:24 +10:00
psychedelicious
3942e2a501 docs(ui): docstrings for classes (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
1a51842277 feat(ui): revised canvas module base class
Big cleanup. Makes these classes easier to implement, lots of comments and docstrings to clarify how it all works.

- Add default implementations for `destroy`, `repr` and `getLoggingContext`
- Tidy individual module configs
- Update `CanvasManager.buildLogger` to accept a canvas module as the arg
- Add `CanvasManager.buildPath`
2024-09-06 22:56:24 +10:00
psychedelicious
d001a36e14 feat(ui): split canvas tool previews into modules 2024-09-06 22:56:24 +10:00
psychedelicious
8c65f60e7d fix(ui): reject on dataURLToImageData 2024-09-06 22:56:24 +10:00
psychedelicious
d48ce8168e fix(ui): correctly set last cursor pos to null 2024-09-06 22:56:24 +10:00
psychedelicious
a955ab6bee chore: release v4.2.9.dev10 2024-09-06 22:56:24 +10:00
psychedelicious
81bfd4cc08 feat(ui): remove entity list context menu (again)
stupid events
2024-09-06 22:56:24 +10:00
psychedelicious
65f1944a93 fix(ui): entity groups not collapsing 2024-09-06 22:56:24 +10:00
psychedelicious
b68845f43f chore: release v4.2.9.dev9 2024-09-06 22:56:24 +10:00
psychedelicious
bb994751ee fix(ui): entity opacity number input focus prevents slider from opening 2024-09-06 22:56:24 +10:00
psychedelicious
f3aad7a494 feat(ui): add merge visible for raster and inpaint mask layers
I don't think it makes sense to merge control layers or regional guidance layers because they have additional state.
2024-09-06 22:56:24 +10:00
psychedelicious
80a69e0867 fix(ui): save to gallery rect too large
Was including all layer types in the rect - only want the raster layers.
2024-09-06 22:56:24 +10:00
psychedelicious
e2f2bdbbc2 fix(ui): canvasToBlob not raising error correctly 2024-09-06 22:56:24 +10:00
psychedelicious
ecda2b1681 feat(ui): add save to gallery button 2024-09-06 22:56:24 +10:00
psychedelicious
d00e006784 fix(ui): fix getRectUnion util, add some tests 2024-09-06 22:56:24 +10:00
psychedelicious
9a6411f2c8 fix(ui): modals not staying open
TBH not sure exactly why this broke. Fixed by rollback back the use of a render prop in favor of global state. Also revised the API of `useBoolean` and `buildUseBoolean`.
2024-09-06 22:56:24 +10:00
psychedelicious
b05b0281af fix(ui): correct labels for generation tab origin 2024-09-06 22:56:24 +10:00
psychedelicious
fb9bce6636 fix(ui): context menu doesn't work for new entities
I do not understand why this fixes the issue, doesn't seem like it should. But it does.
2024-09-06 22:56:24 +10:00
psychedelicious
92eebd6aaf tidy(ui): organise tool module 2024-09-06 22:56:24 +10:00
psychedelicious
4484981c97 fix(ui): staging hotkeys enabled at wrong times 2024-09-06 22:56:24 +10:00
psychedelicious
8cff753c81 fix(ui): incorrect batch origin preventing progress/staging 2024-09-06 22:56:24 +10:00
psychedelicious
b5681f1657 feat(ui): restore minimal HUD 2024-09-06 22:56:24 +10:00
psychedelicious
abb74fa664 feat(ui): remove unused asPreview for StageComponent 2024-09-06 22:56:24 +10:00
psychedelicious
ff88536b4a chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
cb20c3b313 chore: release v4.2.9.dev8 2024-09-06 22:56:24 +10:00
psychedelicious
e8335fe7c4 feat(ui): revise generation mode logic
- Canvas generation mode is replace with a boolean `sendToCanvas` flag. When off, images generated on the canvas go to the gallery. When on, they get added to the staging area.
- When an image result is received, if its destination is the canvas, staging is automatically started.
- Updated queue list to show the destination column.
- Added `IconSwitch` component to represent binary choices, used for the new `sendToCanvas` flag and image viewer toggle.
- Remove the queue actions menu in `QueueControls`. Move the queue count badge to the cancel button.
- Redo layout of `QueueControls` to prevent duplicate queue count badges.
- Fix issue where gallery and options panels could show thru transparent regions of queue tab.
- Disable panel hotkeys when on mm/queue tabs.
2024-09-06 22:56:24 +10:00
psychedelicious
749ff3eb71 chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
6877db12c9 feat(app): add destination column to session_queue
The frontend needs to know where queue items came from (i.e. which tab), and where results are going to (i.e. send images to gallery or canvas). The `origin` column is not quite enough to represent this cleanly.

A `destination` column provides the frontend what it needs to handle incoming generations.
2024-09-06 22:56:24 +10:00
psychedelicious
bbdbe36ada tidy(ui): ViewerToggleMenu -> ViewerToggle 2024-09-06 22:56:24 +10:00
psychedelicious
fca09d79cc feat(ui): alt quick switches to color picker 2024-09-06 22:56:24 +10:00
psychedelicious
719cc12d82 feat(ui): tweak add entity button layout 2024-09-06 22:56:24 +10:00
psychedelicious
b8fed9a554 feat(ui): restore context menu for entity list 2024-09-06 22:56:24 +10:00
psychedelicious
e0ea8b72a6 feat(ui): add delete button to each layer 2024-09-06 22:56:24 +10:00
psychedelicious
df41564c4c feat(ui): add + buttons to entity categories 2024-09-06 22:56:24 +10:00
psychedelicious
42ec07daad feat(ui): tweak brush fill UI 2024-09-06 22:56:24 +10:00
psychedelicious
f33e3d63d5 feat(ui): do not select layer on staging accept 2024-09-06 22:56:24 +10:00
psychedelicious
451ee78f31 fix(ui): more fiddly queue count layout stuff 2024-09-06 22:56:24 +10:00
psychedelicious
65ea492a75 fix(ui): floating params panel invoke button loading state 2024-09-06 22:56:24 +10:00
psychedelicious
afb35d9717 feat(ui): move canvas undo/redo to hook 2024-09-06 22:56:24 +10:00
psychedelicious
f6624322d8 fix(ui): queue count badge positioning 2024-09-06 22:56:24 +10:00
psychedelicious
00a4504406 fix(ui): add node cmdk only enabled on workflows tab 2024-09-06 22:56:24 +10:00
psychedelicious
2d737f824c chore: release v4.2.9.dev7 2024-09-06 22:56:24 +10:00
psychedelicious
174c136abc fix(ui): pending node connection stuck 2024-09-06 22:56:24 +10:00
psychedelicious
eb4dcf4453 chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
df6ee189db chore: release v4.2.9.dev6 2024-09-06 22:56:24 +10:00
psychedelicious
d558aefcc7 feat(ui): migrate add node popover to cmdk
Put this together as a way to figure out the library before moving on to the full app cmdk. Works great.
2024-09-06 22:56:24 +10:00
psychedelicious
2adffc84d4 fix(ui): schema parsing now that node_pack is guaranteed to be present 2024-09-06 22:56:24 +10:00
psychedelicious
5b1035d64c chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
da48a5d533 fix(app): node_pack not added to openapi schema correctly 2024-09-06 22:56:24 +10:00
psychedelicious
f22366a427 fix(ui): unnecessary z-index on invoke button 2024-09-06 22:56:24 +10:00
psychedelicious
7def35b1c0 feat(ui): split settings modal 2024-09-06 22:56:24 +10:00
psychedelicious
ace87948dd perf(ui): disable useInert on modals
This hook forcibly updates _all_ portals with `data-hidden=true` when the modal opens - then reverts it when the modal closes. It's intended to help screen readers. Unfortunately, this absolutely tanks performance because we have many portals. React needs to do alot of layout calculations (not re-renders).

IMO this behaviour is a bug in chakra. The modals which generated the portals are hidden by default, so this data attr should really be set by default. Dunno why it isn't.
2024-09-06 22:56:24 +10:00
psychedelicious
04555f3916 feat(ui): fix queue item count badge positioning
Previously this badge, floating over the queue menu button next to the invoke button, was rendered within the existing layout. When I initially positioned it, the app layout interfered - it would extend into an area reserved for a flex gap, which cut off the badge.

As a (bad) workaround, I had shifted the whole app down a few pixels to make room for it. What I should have done is what I've done in this commit - render the badge in a portal to take it out of the layout so we don't need that extra vertical padding.

Sleekified some styling a bit too.
2024-09-06 22:56:24 +10:00
psychedelicious
dce1fb0d02 fix(ui): transparency effect not updating 2024-09-06 22:56:24 +10:00
psychedelicious
1617ee0e6f feat(ui): tidy canvas toolbar buttons 2024-09-06 22:56:24 +10:00
psychedelicious
ee94ac3d32 feat(ui): revised viewer toggle @joshistoast 2024-09-06 22:56:24 +10:00
psychedelicious
10066b349b fix(ui): opacity reset value incorrect 2024-09-06 22:56:24 +10:00
psychedelicious
db8084fda1 revert(ui): roll back flip, doesn't work with rotate yet 2024-09-06 22:56:24 +10:00
psychedelicious
f85536de22 fix(ui): disable opacity slider fully when no valid entity selected 2024-09-06 22:56:24 +10:00
psychedelicious
7c47e7cfc3 fix(ui): layer preview image sometimes not rendering
The canvas size was dynamic based on the container div's size. When the div was hidden (e.g. when selecting another tab), the container's effective size is 0. This resulted in the preview image canvas being drawn at a scale of 0.

Fixed by using an absolute size for the canvas container.
2024-09-06 22:56:24 +10:00
psychedelicious
37ee1ab35b feat(ui): tweak regional prompt box styles 2024-09-06 22:56:24 +10:00
psychedelicious
488b682489 feat(ui): tweak enabled/locked toggle styles 2024-09-06 22:56:24 +10:00
psychedelicious
9601d99c01 feat(ui): tweak filter styling 2024-09-06 22:56:24 +10:00
psychedelicious
56aa6a3114 feat(ui): add flip & reset to transform 2024-09-06 22:56:24 +10:00
psychedelicious
4f60cec997 tidy(ui): use helper to sync scaled bbox size on model change 2024-09-06 22:56:24 +10:00
psychedelicious
e012832386 fix(ui): randomize seed toggle linked to prompt concat 2024-09-06 22:56:24 +10:00
psychedelicious
b9ce1cfc16 chore: release v4.2.9.dev5 2024-09-06 22:56:24 +10:00
psychedelicious
17dd8bb37b chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
459d59aac4 feat(ui): generalize mask fill, add to action bar 2024-09-06 22:56:24 +10:00
psychedelicious
5cb26fac9f feat(ui): implement interaction locking on layers 2024-09-06 22:56:24 +10:00
psychedelicious
3b8c9bb34b feat(ui): iterate on layer actions
- Add lock toggle
- Tweak lock and enabled styles
- Update entity list action bar w/ delete & delete all
- Move add layer menu to action bar
- Adjust opacity slider style
2024-09-06 22:56:24 +10:00
psychedelicious
f9d380107c feat(ui): collapsible entity groups 2024-09-06 22:56:24 +10:00
psychedelicious
f8b60da938 tidy(ui): rename some classes to be consistent 2024-09-06 22:56:24 +10:00
psychedelicious
f5fd25d235 feat(ui): tuned canvas undo/redo
- Throttle pushing to history for actions of the same type, starting with 1000ms throttle.
- History has a limit of 64 items, same as workflow editor
- Add clear history button
- Fix an issue where entity transformers would reset the entity state when the entity is fully transparent, resetting the redo stack. This could happen when you undo to the starting state of a layer
2024-09-06 22:56:24 +10:00
psychedelicious
0097958f62 tidy(ui): move all undoable reducers back to canvas slice 2024-09-06 22:56:24 +10:00
psychedelicious
7f8e0c00d9 fix(ui): dnd image count 2024-09-06 22:56:24 +10:00
psychedelicious
1ef5db035d fix(ui): canvas entity opacity scale 2024-09-06 22:56:24 +10:00
psychedelicious
89ff9b8b88 perf(ui): optimize all selectors 2
Mostly selector optimization. Still a few places to tidy up but I'll get to that later.
2024-09-06 22:56:24 +10:00
psychedelicious
bac0ce1e69 perf(ui): optimize all selectors 1
I learned that the inline selector syntax recreates the selector function on every render:

```ts
const val = useAppSelector((s) => s.slice.val)
```

Not good! Better is to create a selector outside the function and use it. Doing that for all selectors now, most of the way through now. Feels snappier.
2024-09-06 22:56:24 +10:00
psychedelicious
04f78a99ad feat(ui): rough out undo/redo on canvas 2024-09-06 22:56:24 +10:00
psychedelicious
f4d8809758 chore: release v4.2.9.dev4
Canvas dev build.
2024-09-06 22:56:24 +10:00
psychedelicious
06dd144c92 fix(ui): handle error from internal konva method
We are dipping into konva's private API for preview images and it appears to be unsafe (got an error once). Wrapped in a try/catch.
2024-09-06 22:56:24 +10:00
psychedelicious
9b3ec12a3e feat(ui): split out loras state from canvas rendering state 2024-09-06 22:56:24 +10:00
psychedelicious
82d50bfcc9 feat(ui): split out session state from canvas rendering state 2024-09-06 22:56:24 +10:00
psychedelicious
7563214a6d feat(ui): split out settings state from canvas rendering state 2024-09-06 22:56:24 +10:00
psychedelicious
d99dbdfe7c feat(ui): split out tool state from canvas rendering state 2024-09-06 22:56:24 +10:00
psychedelicious
d9fe16bab4 feat(ui): split out params/compositing state from canvas rendering state
First step to restoring undo/redo - the undoable state must be in its own slice. So params and settings must be isolated.
2024-09-06 22:56:24 +10:00
psychedelicious
db50525442 feat(ui): add CanvasModuleBase class to standardize canvas APIs
I did this ages ago but undid it for some reason, not sure why. Caught a few issues related to subscriptions.
2024-09-06 22:56:24 +10:00
psychedelicious
e8190f4389 feat(ui): move selected tool and tool buffer out of redux
This ephemeral state can live in the canvas classes.
2024-09-06 22:56:24 +10:00
psychedelicious
e5e59bf801 feat(ui): move ephemeral state into canvas classes
Things like `$lastCursorPos` are now created within the canvas drawing classes. Consumers in react access them via `useCanvasManager`.

For example:
```tsx
const canvasManager = useCanvasManager();
const lastCursorPos = useStore(canvasManager.stateApi.$lastCursorPos);
```
2024-09-06 22:56:24 +10:00
psychedelicious
dd7d4da5e3 feat(ui): normalize all actions to accept an entityIdentifier
Previously, canvas actions specific to an entity type only needed the id of that entity type. This allowed you to pass in the id of an entity of the wrong type.

All actions for a specific entity now take a full entity identifier, and the entity identifier type can be narrowed.

`selectEntity` and `selectEntityOrThrow` now need a full entity identifier, and narrow their return values to a specific entity type _if_ the entity identifier is narrowed.

The types for canvas entities are updated with optional type parameters for this purpose.

All reducers, actions and components have been updated.
2024-09-06 22:56:24 +10:00
psychedelicious
f394584dff feat(ui): move events into modules who care about them 2024-09-06 22:56:24 +10:00
psychedelicious
1a06b5f1c6 fix(ui): color picker resets brush opacity 2024-09-06 22:56:24 +10:00
psychedelicious
9a089495a1 fix(ui): scaled bbox loses sync 2024-09-06 22:56:24 +10:00
psychedelicious
c5c8859463 feat(ui): add context menu to entity list 2024-09-06 22:56:24 +10:00
psychedelicious
6a6efc4574 chore(ui): bump @invoke-ai/ui-library 2024-09-06 22:56:24 +10:00
psychedelicious
e6bc861ebf fix(ui): missing vae precision in graph builders 2024-09-06 22:56:24 +10:00
psychedelicious
1499cea82e chore: release v4.2.9.dev3
Instead of using dates, just going to increment.
2024-09-06 22:56:24 +10:00
psychedelicious
f55282f9bf feat(ui): use new Result utils for enqueueing 2024-09-06 22:56:24 +10:00
psychedelicious
452784068b fix(ui): graph building issue w/ controlnet 2024-09-06 22:56:24 +10:00
psychedelicious
e6b841126b feat(ui): add Result type & helpers
Wrappers to capture errors and turn into results:
- `withResult` wraps a sync function
- `withResultAsync` wraps an async function

Comments, tests.
2024-09-06 22:56:24 +10:00
psychedelicious
31ce4f9283 chore: release v4.2.9.dev20240824 2024-09-06 22:56:24 +10:00
psychedelicious
60b3dc846e fix(ui): lint & fix issues with adding regional ip adapters 2024-09-06 22:56:24 +10:00
psychedelicious
7bb2dc0075 feat(ui): add knipignore tag
I'm not ready to delete some things but still want to build the app.
2024-09-06 22:56:24 +10:00
psychedelicious
7f437adaba feat(ui): duplicate entity 2024-09-06 22:56:24 +10:00
psychedelicious
5a1309cf6e feat(ui): autocomplete on getPrefixeId 2024-09-06 22:56:24 +10:00
psychedelicious
f56648be3c feat(ui): paste canvas gens back on source in generate mode 2024-09-06 22:56:24 +10:00
psychedelicious
15735dda6e chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
1f1777f7a6 feat(nodes): CanvasV2MaskAndCropInvocation can paste generated image back on source
This is needed for `Generate` mode.
2024-09-06 22:56:24 +10:00
psychedelicious
167c8ba4ec fix(ui): extraneous entity preview updates 2024-09-06 22:56:24 +10:00
psychedelicious
cc7ae42baa fix(ui): newly-added entities are selected 2024-09-06 22:56:24 +10:00
psychedelicious
5fe844c5d9 feat(ui): add crosshair to color picker 2024-09-06 22:56:24 +10:00
psychedelicious
23248dad90 fix(ui): color picker ignores alpha 2024-09-06 22:56:24 +10:00
psychedelicious
caeefdf2ed fix(ui): calculate renderable entities correctly in tool module 2024-09-06 22:56:24 +10:00
psychedelicious
d40d6291a0 feat(ui): better color picker 2024-09-06 22:56:24 +10:00
psychedelicious
fd38668f55 feat(ui): colored mask preview image 2024-09-06 22:56:24 +10:00
psychedelicious
583654d176 fix(ui): new rectangles don't trigger rerender 2024-09-06 22:56:24 +10:00
psychedelicious
59cba2f860 chore: bump version v4.2.9.dev20240823 2024-09-06 22:56:24 +10:00
psychedelicious
772f0b80a1 feat(ui): disable most interaction while filtering 2024-09-06 22:56:24 +10:00
psychedelicious
8d8272ee53 fix(ui): filter preview offset 2024-09-06 22:56:24 +10:00
psychedelicious
fef1dddd50 feat(ui): tweak layout of staging area toolbar 2024-09-06 22:56:24 +10:00
psychedelicious
725da6e875 chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
257b18230a tidy(app): clean up app changes for canvas v2 2024-09-06 22:56:24 +10:00
psychedelicious
a8de6406c5 feat(ui): use singleton for clear q confirm dialog 2024-09-06 22:56:24 +10:00
psychedelicious
dd2e68bf00 fix(ui): rip out broken recall logic, NO TS ERRORS 2024-09-06 22:56:24 +10:00
psychedelicious
7825e325df chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
33b3268f83 fix(ui): staging area interaction scopes 2024-09-06 22:56:24 +10:00
psychedelicious
3dbd8212aa fix(ui): staging area actions 2024-09-06 22:56:24 +10:00
psychedelicious
3694f337bc tidy(ui): more cleanup 2024-09-06 22:56:24 +10:00
psychedelicious
ab77997746 fix(ui): upscale tab graph 2024-09-06 22:56:24 +10:00
psychedelicious
5fa7910664 fix(ui): sdxl graph builder 2024-09-06 22:56:24 +10:00
psychedelicious
8dbb473fde fix(ui): select next entity in the list when deleting 2024-09-06 22:56:24 +10:00
psychedelicious
4a1240a709 feat(ui): fix delete layer hotkey 2024-09-06 22:56:24 +10:00
psychedelicious
664987f2aa tidy(ui): "eye dropper" -> "color picker" 2024-09-06 22:56:24 +10:00
psychedelicious
9e391ec431 tidy(ui): regional guidance buttons 2024-09-06 22:56:24 +10:00
psychedelicious
06944b3ea7 feat(ui): update entity list menu 2024-09-06 22:56:24 +10:00
psychedelicious
f48b949aa8 feat(ui): add log debug button 2024-09-06 22:56:24 +10:00
psychedelicious
b4166083c5 chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
56d53b18f0 chore(ui): prettier 2024-09-06 22:56:24 +10:00
psychedelicious
20961215e7 chore(ui): eslint 2024-09-06 22:56:24 +10:00
psychedelicious
49c75ca381 tidy(ui): remove unused stuff 4 2024-09-06 22:56:24 +10:00
psychedelicious
cf6751cc06 tidy(ui): remove unused stuff 3 2024-09-06 22:56:24 +10:00
psychedelicious
6cc828b628 tidy(ui): remove unused pkg @chakra-ui/react-use-size 2024-09-06 22:56:24 +10:00
psychedelicious
ddeffb3ef1 feat(ui): revise graph building for control layers, fix issues w/ invocation complete events 2024-09-06 22:56:24 +10:00
psychedelicious
95b606683f feat(ui): use unique id for metadata in Graph class 2024-09-06 22:56:24 +10:00
psychedelicious
0598b89738 tidy(ui): remove unused stuff 2 2024-09-06 22:56:24 +10:00
psychedelicious
c2be63a811 tidy(ui): remove unused stuff 2024-09-06 22:56:24 +10:00
psychedelicious
639304197b tidy(ui): reduce use of parseify util 2024-09-06 22:56:24 +10:00
psychedelicious
c4a85cf1bf feat(ui): refine canvas entity list items & menus 2024-09-06 22:56:24 +10:00
psychedelicious
cff80524a8 feat(ui): canvas layer preview, revised reactivity for adapters 2024-09-06 22:56:24 +10:00
psychedelicious
2d1b13bde7 feat(ui): add SyncableMap
Can be used with useSyncExternal store to make a `Map` reactive.
2024-09-06 22:56:24 +10:00
psychedelicious
220b78d0e7 tidy(ui): removed unused transform methods from canvasmanager 2024-09-06 22:56:24 +10:00
psychedelicious
efb97c301e feat(ui): transform tool ux 2024-09-06 22:56:24 +10:00
psychedelicious
cd865347eb feat(ui): rough out canvas mode 2024-09-06 22:56:24 +10:00
psychedelicious
54ccb9846d feat(ui): add canvas autosave checkbox 2024-09-06 22:56:24 +10:00
psychedelicious
22a2849683 fix(ui): memory leak when getting image DTO
must unsubscribe!
2024-09-06 22:56:24 +10:00
psychedelicious
2bae67cfe9 feat(ui): rework settings menu 2024-09-06 22:56:24 +10:00
psychedelicious
de8e8d9f68 feat(ui): no entities fallback buttons 2024-09-06 22:56:24 +10:00
psychedelicious
eced34a72a perf(ui): optimize gallery image delete button rendering 2024-09-06 22:56:24 +10:00
psychedelicious
591e8162c1 feat(ui): remove "solid" background option 2024-09-06 22:56:24 +10:00
psychedelicious
f4998bc308 tidy(ui): organise files and classes 2024-09-06 22:56:24 +10:00
psychedelicious
39a49fb585 tidy(ui): abstract compositing logic to module 2024-09-06 22:56:24 +10:00
psychedelicious
2b9073da36 fix(ui): fix canvas cache property access 2024-09-06 22:56:24 +10:00
psychedelicious
d3aa54f7bd tidy(ui): clean up CanvasFilter class 2024-09-06 22:56:24 +10:00
psychedelicious
f0a959f6fe tidy(ui): clean up a few bits and bobs 2024-09-06 22:56:24 +10:00
psychedelicious
9a5b702013 tidy(ui): abstract canvas rendering logic to module 2024-09-06 22:56:24 +10:00
psychedelicious
018807d678 tidy(ui): abstract caching logic to module 2024-09-06 22:56:24 +10:00
psychedelicious
cf5e8bf4ea tidy(ui): abstract worker logic to module 2024-09-06 22:56:24 +10:00
psychedelicious
03ae65863c tidy(ui): abstract stage logic into module 2024-09-06 22:56:24 +10:00
psychedelicious
3b7b6d6404 feat(ui): add entity group hiding 2024-09-06 22:56:24 +10:00
psychedelicious
e9171c80f6 feat(ui): move all caching out of redux
While we lose the benefit of the caches persisting across reloads, this is a much simpler way to handle things. If we need a persistent cache, we can explore it in the future.
2024-09-06 22:56:24 +10:00
psychedelicious
0fd3881b3a feat(ui): revised rasterization caching
- use `stable-hash` to generate stable, non-crypto hashes for cache entries, instead of using deep object comparisons
- use an object to store image name caches
2024-09-06 22:56:24 +10:00
psychedelicious
01ac4c3b3e feat(ui): revise filter implementation 2024-09-06 22:56:24 +10:00
psychedelicious
f1fcc98a09 fix(ui): add button to delete inpaint mask 2024-09-06 22:56:24 +10:00
psychedelicious
b2823569f0 feat(ui): add contexts/hooks to access entity adapters directly 2024-09-06 22:56:24 +10:00
psychedelicious
3bd98e62de feat(ui): add CanvasManagerProviderGate
This context waits to render its children its until the canvas manager is available. Then its children have access to the manager directly via hook.
2024-09-06 22:56:24 +10:00
psychedelicious
318672be53 feat(ui) do not set $canvasManager until ready 2024-09-06 22:56:24 +10:00
psychedelicious
c5a05691fe fix(ui): inpaint mask naming 2024-09-06 22:56:24 +10:00
psychedelicious
04fcb9e8e6 feat(ui): efficient canvas compositing
Also solves issue of exporting layers at different opacities than what is visible
2024-09-06 22:56:24 +10:00
psychedelicious
a1534b6503 feat(ui): allow multiple inpaint masks
This is easier than making it a nullable singleton
2024-09-06 22:56:24 +10:00
psychedelicious
0aa4b1575d fix(ui): missing rasterization cache invalidations 2024-09-06 22:56:24 +10:00
psychedelicious
85eb6ad616 feat(ui): iterate on filter UI, flow 2024-09-06 22:56:24 +10:00
psychedelicious
9fd2841df0 fix(ui): rehydration data loss 2024-09-06 22:56:24 +10:00
psychedelicious
bd23dcd751 feat(ui): sort log namespaces 2024-09-06 22:56:24 +10:00
psychedelicious
4d480093d9 fix(ui): do not merge arrays by index during rehydration 2024-09-06 22:56:24 +10:00
psychedelicious
bb0d2b6ce2 fix(ui): clone parsed data during state rehydration
Without this, the objects and arrays in `parsed` could be mutated, and the log statment would show the mutated data.
2024-09-06 22:56:24 +10:00
psychedelicious
0d863a876b fix(ui): fix logger filter
was accidetnally replacing the filter instead of appending to it.
2024-09-06 22:56:24 +10:00
psychedelicious
3fadfd3bbb fix(ui): race condition queue status
Sequence of events causing the race condition:
- Enqueue batch
- Invalidate `SessionQueueStatus` tag
- Request updated queue status via HTTP - batch still processing at this point
- Batch completes
- Event emitted saying so
- Optimistically update the queue status cache, it is correct
- HTTP request makes it back and overwrites the optimistic update, indicating the batch is still in progress

FIxed by not invalidating the cache.
2024-09-06 22:56:24 +10:00
psychedelicious
401152f16f fix(ui): handle opacity for masks 2024-09-06 22:56:24 +10:00
psychedelicious
b69350e9ee feat(ui): default background to checkerboard 2024-09-06 22:56:24 +10:00
psychedelicious
7b429e0a54 feat(ui): clean up logging namespaces, allow skipping namespaces 2024-09-06 22:56:24 +10:00
psychedelicious
3d23fe1fe0 chore(ui): bump ui library 2024-09-06 22:56:24 +10:00
psychedelicious
d4117f5595 fix(ui): do not allow drawing if layer disabled 2024-09-06 22:56:24 +10:00
psychedelicious
2686210887 fix(ui): stale state causing race conditions & extraneous renders 2024-09-06 22:56:24 +10:00
psychedelicious
9a804b7986 fix(ui): do not clear buffer when rendering "real" objects 2024-09-06 22:56:24 +10:00
psychedelicious
ef0699310d tidy(ui): remove "filter" from CanvasImageState 2024-09-06 22:56:24 +10:00
psychedelicious
afa2da3d2d feat(ui): better editable title 2024-09-06 22:56:24 +10:00
psychedelicious
ac1132b5bc fix(ui): stroke eraserline 2024-09-06 22:56:24 +10:00
psychedelicious
0276dac38f feat(ui): restore transparency effect for control layers 2024-09-06 22:56:24 +10:00
psychedelicious
5a3dd83167 feat(ui): use text cursor for entity title 2024-09-06 22:56:24 +10:00
psychedelicious
9f587009cd tidy(ui): remove extraneous logging in CanvasStateApi 2024-09-06 22:56:24 +10:00
psychedelicious
c5ed5e866e feat(ui): better buffer commit logic 2024-09-06 22:56:24 +10:00
psychedelicious
1f10bc1d63 feat(ui): render buffer separately from "real" objects 2024-09-06 22:56:24 +10:00
psychedelicious
311451b3c9 fix(ui): pixelRect should always be integer 2024-09-06 22:56:24 +10:00
psychedelicious
a48e5d9cb0 fix(ui): only update stage attrs when stage itself is dragged 2024-09-06 22:56:24 +10:00
psychedelicious
ad92010778 feat(ui): add line simplification
This fixes some awkward issues where line segments stack up.
2024-09-06 22:56:24 +10:00
psychedelicious
01e8988fcc fix(ui): various things listening when they need not listen 2024-09-06 22:56:24 +10:00
psychedelicious
d6fec0a0df feat(ui): layer opacity via caching 2024-09-06 22:56:24 +10:00
psychedelicious
37dc7ee595 feat(ui): reset view fits all visible objects 2024-09-06 22:56:24 +10:00
psychedelicious
6d79dc61d2 fix(ui): rerenders when changing canvas scale 2024-09-06 22:56:24 +10:00
psychedelicious
966bc67001 fix(ui): do not render rasterized layer unless renderObjects=true 2024-09-06 22:56:24 +10:00
psychedelicious
4c66a0dcd0 feat(ui): revise app layout strategy, add interaction scopes for hotkeys 2024-09-06 22:56:24 +10:00
psychedelicious
50051ee147 feat(ui): tweak mask patterns 2024-09-06 22:56:24 +10:00
psychedelicious
621f12a1bc fix(ui): dynamic prompts recalcs when presets are loaded 2024-09-06 22:56:24 +10:00
psychedelicious
741b22041d fix(ui): use style preset prompts correctly 2024-09-06 22:56:24 +10:00
psychedelicious
f358bb9364 fix(ui): discard selected staging image not all other images 2024-09-06 22:56:24 +10:00
psychedelicious
65bbc0f00f fix(ui): respect image size in staging preview 2024-09-06 22:56:24 +10:00
psychedelicious
7bf0e554ea tidy(ui): cleanup after events change 2024-09-06 22:56:24 +10:00
psychedelicious
82b1d8dab8 feat(ui): move socket event handling out of redux
Download events and invocation status events (including progress images) are very frequent. There's no real need for these to pass through redux. Handling them outside redux is a significant performance win - far fewer store subscription calls, far fewer trips through middleware.

All event handling is moved outside middleware. Cleanup of unused actions and listeners to follow.
2024-09-06 22:56:24 +10:00
psychedelicious
5dda364b2c fix(ui): rebase conflicts 2024-09-06 22:56:24 +10:00
psychedelicious
c4e95684b5 fix(ui): update compositing rect when fill changes 2024-09-06 22:56:24 +10:00
psychedelicious
a0d644ac42 feat(ui): add canvas background style 2024-09-06 22:56:24 +10:00
psychedelicious
37198159c9 feat(ui): mask layers choose own opacity 2024-09-06 22:56:24 +10:00
psychedelicious
7170adf3a2 feat(ui): mask fill patterns 2024-09-06 22:56:24 +10:00
psychedelicious
cc50578faf build(ui): add vite types to tsconfig 2024-09-06 22:56:24 +10:00
psychedelicious
e80d8b4365 fix(ui): do not smooth pixel data when using eyeDropper 2024-09-06 22:56:24 +10:00
psychedelicious
30050a23b9 tidy(ui): tool components & translations 2024-09-06 22:56:24 +10:00
psychedelicious
706a3c8f2b feat(ui): rough out eyedropper tool
It's a bit slow bc we are converting the stage to canvas on every mouse move. Also need to improve the visual but it works.
2024-09-06 22:56:24 +10:00
psychedelicious
384601898a fix(ui): ip adapters work 2024-09-06 22:56:24 +10:00
psychedelicious
94eb5e638f feat(ui): rename layers 2024-09-06 22:56:24 +10:00
psychedelicious
5629c54d55 feat(ui): revise entity menus 2024-09-06 22:56:24 +10:00
psychedelicious
1303396d0e feat(ui): split control layers from raster layers for UI and internal state, same rendering as raster layers 2024-09-06 22:56:24 +10:00
psychedelicious
bcd5bcf8d7 feat(ui): implement cache for image rasterization, rip out some old controladapters code 2024-09-06 22:56:24 +10:00
psychedelicious
787a4422cb feat(ui, app): use layer as control (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
5d52633c78 feat(ui): add contextmenu for canvas entities 2024-09-06 22:56:24 +10:00
psychedelicious
1d45444104 feat(ui): more better logging & naming 2024-09-06 22:56:24 +10:00
psychedelicious
dd84f2ca64 feat(ui): better logging w/ path 2024-09-06 22:56:24 +10:00
psychedelicious
b1c4a91de0 feat(ui): always show marks on canvas scale slider 2024-09-06 22:56:24 +10:00
psychedelicious
187ef3548e fix(ui): do not import button from chakra 2024-09-06 22:56:24 +10:00
psychedelicious
4abf24a2f6 fix(ui): scaled bbox preview 2024-09-06 22:56:24 +10:00
psychedelicious
2435ce34be feat(ui): tidy up atoms 2024-09-06 22:56:24 +10:00
psychedelicious
e7841824ef feat(ui): convert all my pubsubs to atoms
its the same but better
2024-09-06 22:56:24 +10:00
psychedelicious
10596073ac feat(ui): add trnalsation 2024-09-06 22:56:24 +10:00
psychedelicious
405994ee7a fix(ui): give up on thumbnail loading, causes flash during transformer 2024-09-06 22:56:24 +10:00
psychedelicious
534d4fa495 fix(ui): depth anything v2 2024-09-06 22:56:24 +10:00
psychedelicious
2aa413d44f tidy(ui): remove unused code, comments 2024-09-06 22:56:24 +10:00
psychedelicious
e6ebb0390e fix(ui): staging area works 2024-09-06 22:56:24 +10:00
psychedelicious
5fb9ffca6f feat(nodes): temp disable canvas output crop 2024-09-06 22:56:24 +10:00
psychedelicious
bd62bab91f fix(ui): max scale 1 when reset view 2024-09-06 22:56:24 +10:00
psychedelicious
54edd3f101 feat(ui): better scale changer component, reset view functionality 2024-09-06 22:56:24 +10:00
psychedelicious
a889a762b8 fix(ui): img2img 2024-09-06 22:56:24 +10:00
psychedelicious
2163f65be7 feat(ui): add manual scale controls 2024-09-06 22:56:24 +10:00
psychedelicious
78471b4bc3 fix(ui): do not await clearBuffer 2024-09-06 22:56:24 +10:00
psychedelicious
af99238a96 feat(ui): dnd image into layer 2024-09-06 22:56:24 +10:00
psychedelicious
4e5937036d fix(ui): do not await commitBuffer 2024-09-06 22:56:24 +10:00
psychedelicious
6edc7bbd1d fix(ui): properly destroy entities in manager cleanup 2024-09-06 22:56:24 +10:00
psychedelicious
db437da726 tidy(ui): clearer component names for regional guidance 2024-09-06 22:56:24 +10:00
psychedelicious
95a9bacd01 tidy(ui): clearer component names for ip adapter 2024-09-06 22:56:24 +10:00
psychedelicious
e95e776733 tidy(ui): clearer component names for inpaint mask 2024-09-06 22:56:24 +10:00
psychedelicious
760c7a3076 tidy(ui): clearer component names for control adapters 2024-09-06 22:56:24 +10:00
psychedelicious
7dd1aec767 feat(ui): simplify canvas list item headers 2024-09-06 22:56:24 +10:00
psychedelicious
976b1a5fee fix(ui): ip adapter list item 2024-09-06 22:56:24 +10:00
psychedelicious
b79a5e46e2 tidy(ui): clean up unused logic 2024-09-06 22:56:24 +10:00
psychedelicious
02ddfc5aac feat(ui): clean up state, add mutex for image loading, add thumbnail loading 2024-09-06 22:56:24 +10:00
psychedelicious
57f3107dba chore(ui): add async-mutex dep 2024-09-06 22:56:24 +10:00
psychedelicious
acde3d8952 feat(ui): txt2img, img2img, inpaint & outpaint working 2024-09-06 22:56:24 +10:00
psychedelicious
be4983fcbb feat(ui): no padding on transformer outlines 2024-09-06 22:56:24 +10:00
psychedelicious
39c8bded65 feat(ui): restore object count to layer titles 2024-09-06 22:56:24 +10:00
psychedelicious
e8f678adde tidy(ui): "useIsEntitySelected" -> "useEntityIsSelected" 2024-09-06 22:56:24 +10:00
psychedelicious
e1666c85b7 tidy(ui): move transformer statics into class 2024-09-06 22:56:24 +10:00
psychedelicious
6469cd6e24 tidy(ui): massive cleanup
- create a context for entity identifiers, massively simplifying UI for each entity int he list
- consolidate common redux actions
- remove now-unused code
2024-09-06 22:56:24 +10:00
psychedelicious
b6032fd186 perf(ui): do not add duplicate points to lines 2024-09-06 22:56:24 +10:00
psychedelicious
7a546349e4 feat(ui): up line tension to 0.3 2024-09-06 22:56:24 +10:00
psychedelicious
375c7494b6 perf(ui): disable stroke, perfect draw on compositing rect 2024-09-06 22:56:24 +10:00
psychedelicious
ac0cc91046 tidy(ui): remove unused code, initial image 2024-09-06 22:56:24 +10:00
psychedelicious
918254b600 tidy(ui): remove unused state & actions 2024-09-06 22:56:24 +10:00
psychedelicious
814c3bed09 feat(ui): region mask rendering 2024-09-06 22:56:24 +10:00
psychedelicious
d94ceb25b0 feat(ui): esc cancels drawing buffer
maybe this is not wanted? we'll see
2024-09-06 22:56:24 +10:00
psychedelicious
619d469fa5 fix(ui): render transformer over objects, fix issue w/ inpaint rect color 2024-09-06 22:56:24 +10:00
psychedelicious
02c2308938 fix(ui): brush preview fill for inpaint/region 2024-09-06 22:56:24 +10:00
psychedelicious
cf66e6d4ce fix(ui): no objects rendered until vis toggled 2024-09-06 22:56:24 +10:00
psychedelicious
8df40d2d94 feat(ui): inpaint mask transform 2024-09-06 22:56:24 +10:00
psychedelicious
9942d9a1dc fix(ui): layer accidental early set isFirstRender=false 2024-09-06 22:56:24 +10:00
psychedelicious
835431ad9a fix(ui): inpaint mask rendering 2024-09-06 22:56:24 +10:00
psychedelicious
b5c2b8fdec feat(ui): wip inpaint mask uses new API 2024-09-06 22:56:24 +10:00
psychedelicious
bbcc242280 feat(ui): move updatePosition to transformer 2024-09-06 22:56:24 +10:00
psychedelicious
e4ff850ca8 feat(ui): move resetScale to transformer 2024-09-06 22:56:24 +10:00
psychedelicious
9117753a70 tidy(ui): more imperative naming 2024-09-06 22:56:24 +10:00
psychedelicious
8095a17f0c tidy(ui): use imperative names for setters in stateapi 2024-09-06 22:56:24 +10:00
psychedelicious
0d1af8e26e fix(ui): commit drawing buffer on tool change, fixing bbox not calculating 2024-09-06 22:56:24 +10:00
psychedelicious
b5834002a5 fix(ui): sync transformer when requesting bbox calc 2024-09-06 22:56:24 +10:00
psychedelicious
f2ba9c5d20 tidy(ui): rename union CanvasEntity -> CanvasEntityState 2024-09-06 22:56:24 +10:00
psychedelicious
2fac67d8a5 fix(ui): request rect calc immediately on transform, hiding rect 2024-09-06 22:56:24 +10:00
psychedelicious
36e07269e8 feat(ui): move bbox calculation to transformer 2024-09-06 22:56:24 +10:00
psychedelicious
a35a2a6c8f feat(ui): use set for transformer subscriptions 2024-09-06 22:56:24 +10:00
psychedelicious
050f258c8e tidy(ui): clean up worker tasks when complete 2024-09-06 22:56:24 +10:00
psychedelicious
4bad6d005a tidy(ui): remove unused code in CanvasTool 2024-09-06 22:56:24 +10:00
psychedelicious
22287c9362 feat(ui): use pubsub for isTransforming on manager 2024-09-06 22:56:24 +10:00
psychedelicious
ee4b27c051 docs(ui): update transformer docstrings 2024-09-06 22:56:24 +10:00
psychedelicious
93c4454b8d feat(ui): revised event pubsub, transformer logic split out 2024-09-06 22:56:24 +10:00
psychedelicious
5fc2a6a4ad feat(ui): add simple pubsub 2024-09-06 22:56:24 +10:00
psychedelicious
c7d2766f2e feat(ui): document & clean up object renderer 2024-09-06 22:56:24 +10:00
psychedelicious
06d76ed362 feat(ui): split out object renderer 2024-09-06 22:56:24 +10:00
psychedelicious
4a1fc2a91f fix(ui): unable to hold shit while transforming to retain ratio 2024-09-06 22:56:24 +10:00
psychedelicious
0578bf0890 tidy(ui): rename canvas stuff 2024-09-06 22:56:24 +10:00
psychedelicious
e3984cd006 tidy(ui): consolidate getLoggingContext builders 2024-09-06 22:56:24 +10:00
psychedelicious
f2e197f4e7 fix(ui): align all tools to 1px grid
- Offset brush tool by 0.5px when width is odd, ensuring each stroke edge is exactly on a pixel boundary
- Round the rect tool also
2024-09-06 22:56:24 +10:00
psychedelicious
3cf9a53f88 feat(ui): disable image smoothing on layers 2024-09-06 22:56:24 +10:00
psychedelicious
c8d42e64c5 fix(ui): round position when rasterizing layer 2024-09-06 22:56:24 +10:00
psychedelicious
82e91afed2 feat(ui): continue modularizing transform 2024-09-06 22:56:24 +10:00
psychedelicious
13e3fc5e7a feat(ui): fix a few things that didn't unsubscribe correctly, add helper to manage subscriptions 2024-09-06 22:56:24 +10:00
psychedelicious
a32a2c3782 feat(ui): merge bbox outline into transformer 2024-09-06 22:56:24 +10:00
psychedelicious
73611a7d83 fix(ui): update parent's pos not transformers 2024-09-06 22:56:24 +10:00
psychedelicious
7a012e4487 feat(ui): merge interaction rect into transformer class 2024-09-06 22:56:24 +10:00
psychedelicious
8935e6e7c2 feat(ui): prepare staging area 2024-09-06 22:56:24 +10:00
psychedelicious
8af572d502 feat(ui): typing for logging context 2024-09-06 22:56:24 +10:00
psychedelicious
8a0e2d9475 feat(ui): remove inheritance of CanvasObject
JS is terrible
2024-09-06 22:56:24 +10:00
psychedelicious
6d39a86dbd feat(ui): split & document transformer logic, iterate on class structures 2024-09-06 22:56:24 +10:00
psychedelicious
25d16bc779 feat(ui): rotation snap to nearest 45deg when holding shift 2024-09-06 22:56:24 +10:00
psychedelicious
805343f525 feat(ui): expose subscribe method for nanostores 2024-09-06 22:56:24 +10:00
psychedelicious
054c3becc0 tidy(ui): remove layer scaling reducers 2024-09-06 22:56:24 +10:00
psychedelicious
e317f0ce29 fix(ui): pixel-perfect transforms 2024-09-06 22:56:24 +10:00
psychedelicious
a98d92a6c7 fix(ui): layer visibility toggle 2024-09-06 22:56:24 +10:00
psychedelicious
919f8b1386 fix(nodes): fix canvas mask erode
it wasn't eroding enough and caused incorrect transparency in result images
2024-09-06 22:56:24 +10:00
psychedelicious
7cd510a501 fix(ui): do not reset layer on first render 2024-09-06 22:56:24 +10:00
psychedelicious
1b9aeaaea0 feat(ui): revised logging and naming setup, fix staging area 2024-09-06 22:56:24 +10:00
psychedelicious
9b176de649 feat(ui): add repr methods to layer and object classes 2024-09-06 22:56:24 +10:00
psychedelicious
bd63cc0562 feat(ui): use nanoid(10) instead of uuidv4 for canvas
Shorter ids makes it much more readable
2024-09-06 22:56:24 +10:00
psychedelicious
5580131017 build(ui): add nanoid as explicit dep 2024-09-06 22:56:24 +10:00
psychedelicious
5ae4bff91c fix(ui): move CanvasImage's konva image to correct object 2024-09-06 22:56:24 +10:00
psychedelicious
67f06b2f6e fix(ui): prevent flash when applying transform 2024-09-06 22:56:24 +10:00
psychedelicious
5be89533f2 build(ui): add eslint rules for async stuff 2024-09-06 22:56:24 +10:00
psychedelicious
e54cc241cd feat(ui): trying to fix flicker after transform 2024-09-06 22:56:24 +10:00
psychedelicious
a17d1f2186 feat(ui): transform cleanup 2024-09-06 22:56:24 +10:00
psychedelicious
23952baaff feat(ui): fix transform when rotated 2024-09-06 22:56:24 +10:00
psychedelicious
3d286ab8c3 fix(ui): use pixel bbox when image is in layer 2024-09-06 22:56:24 +10:00
psychedelicious
2bb64b99e6 fix(ui): transforming when axes flipped 2024-09-06 22:56:24 +10:00
psychedelicious
e26fb33ca7 feat(ui): hallelujah (???) 2024-09-06 22:56:24 +10:00
psychedelicious
6ab3e9048b feat(ui): add debug button 2024-09-06 22:56:24 +10:00
psychedelicious
7a1170f96c fix(ui): transformer padding 2024-09-06 22:56:24 +10:00
psychedelicious
436ee920bb feat(ui): wip transform mode 2 2024-09-06 22:56:24 +10:00
psychedelicious
cd09b49e77 feat(ui): wip transform mode 2024-09-06 22:56:24 +10:00
psychedelicious
8a4b4ec4fe feat(ui): wip transform mode 2024-09-06 22:56:24 +10:00
psychedelicious
2b7e6b44ec fix(ui): dnd to canvas broke 2024-09-06 22:56:24 +10:00
psychedelicious
989330af83 fix(ui): conflicts after rebasing 2024-09-06 22:56:24 +10:00
psychedelicious
6c8971748f fix(ui): imageDropped listener 2024-09-06 22:56:24 +10:00
psychedelicious
906d70b495 wip 2024-09-06 22:56:24 +10:00
psychedelicious
a036413f6a fix(ui): transform tool seems to be working 2024-09-06 22:56:24 +10:00
psychedelicious
bb52dccc7a fix(ui): move tool fixes, add transform tool 2024-09-06 22:56:24 +10:00
psychedelicious
d19479941d feat(ui): move tool now only moves 2024-09-06 22:56:24 +10:00
psychedelicious
820adec14a feat(ui): layer bbox calc in worker 2024-09-06 22:56:24 +10:00
psychedelicious
64efb6b486 feat(ui): tweaked entity & group selection styles 2024-09-06 22:56:24 +10:00
psychedelicious
479063564d feat(ui): canvas entity list headers 2024-09-06 22:56:24 +10:00
psychedelicious
ba0e4bdc62 tidy(ui): CanvasRegion 2024-09-06 22:56:24 +10:00
psychedelicious
fc34fec30a tidy(ui): CanvasRect 2024-09-06 22:56:24 +10:00
psychedelicious
d69ab7fc86 tidy(ui): CanvasLayer 2024-09-06 22:56:24 +10:00
psychedelicious
eee0ffd6db tidy(ui): CanvasInpaintMask 2024-09-06 22:56:24 +10:00
psychedelicious
dcf9e8f2a7 tidy(ui): CanvasInitialImage 2024-09-06 22:56:24 +10:00
psychedelicious
8adb0d8fa9 tidy(ui): CanvasImage 2024-09-06 22:56:24 +10:00
psychedelicious
3d4c18abf6 tidy(ui): CanvasEraserLine 2024-09-06 22:56:24 +10:00
psychedelicious
eba1d054ef tidy(ui): CanvasControlAdapter 2024-09-06 22:56:24 +10:00
psychedelicious
58b6923bc7 tidy(ui): CanvasBrushLine 2024-09-06 22:56:24 +10:00
psychedelicious
ad5c815ade tidy(ui): CanvasBbox 2024-09-06 22:56:24 +10:00
psychedelicious
d0c0b5e7c4 tidy(ui): CanvasBackground 2024-09-06 22:56:24 +10:00
psychedelicious
758badb05a tidy(ui): update canvas classes, organise location of konva nodes 2024-09-06 22:56:24 +10:00
psychedelicious
6bad5bf2d7 feat(ui): add names to all konva objects
Makes troubleshooting much simpler
2024-09-06 22:56:24 +10:00
psychedelicious
fbae3fca60 fix(ui): do not await creating new canvas image
If you await this, it causes a race condition where multiple images are created.
2024-09-06 22:56:24 +10:00
psychedelicious
fd42c82c83 feat(ui): use position and dimensions instead of separate x,y,width,height attrs 2024-09-06 22:56:24 +10:00
psychedelicious
35f9bd57fd fix(ui): remove weird rtkq hook wrapper
I do not understand why I did that initially but it doesn't work with TS.
2024-09-06 22:56:24 +10:00
psychedelicious
90f7e4851e feat(ui): rename types size and position to dimensions and coordinate 2024-09-06 22:56:24 +10:00
psychedelicious
4ec45a22c7 tidy(ui): hide layer settings by default 2024-09-06 22:56:24 +10:00
psychedelicious
c2b746a3e3 fix(ui): layer rendering when starting as disabled 2024-09-06 22:56:24 +10:00
psychedelicious
2c5e76aa8b feat(invocation): reduce canvas v2 mask & crop mask dilation 2024-09-06 22:56:24 +10:00
psychedelicious
7ea21370b2 feat(ui): de-jank staging area and progress images 2024-09-06 22:56:24 +10:00
psychedelicious
ae5e7845bb feat(ui): update staging handling to work w/ cropped mask 2024-09-06 22:56:24 +10:00
psychedelicious
f96a83eecf chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
9ce74d8eff feat(app): update CanvasV2MaskAndCropInvocation 2024-09-06 22:56:24 +10:00
psychedelicious
59ff96a085 feat(ui): use new canvas output node 2024-09-06 22:56:24 +10:00
psychedelicious
b82c8d87a3 chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
513f95e221 feat(app): add CanvasV2MaskAndCropInvocation & CanvasV2MaskAndCropOutput
This handles some masking and cropping that the canvas needs.
2024-09-06 22:56:24 +10:00
psychedelicious
34729f7703 fix(ui): restore nodes output tracking 2024-09-06 22:56:24 +10:00
psychedelicious
433b9d6380 feat(ui): rip out document size
barely knew ye
2024-09-06 22:56:24 +10:00
psychedelicious
0cbc684cb8 feat(ui): convert initial image to layer when starting canvas session 2024-09-06 22:56:24 +10:00
psychedelicious
56f5698fc6 fix(ui): fix layer transparency calculation 2024-09-06 22:56:24 +10:00
psychedelicious
6e4dc2a69a fix(ui): reset initial image when resetting canvas 2024-09-06 22:56:24 +10:00
psychedelicious
137e9aa820 fix(ui): reset node executions states when loading workflow 2024-09-06 22:56:24 +10:00
psychedelicious
13e8710de9 fix(ui): entity display list 2024-09-06 22:56:24 +10:00
psychedelicious
767337fb8e feat(ui): img2img working 2024-09-06 22:56:24 +10:00
psychedelicious
d4a0e7899b feat(ui): rough out img2img on canvas 2024-09-06 22:56:24 +10:00
psychedelicious
181f54afd3 UNDO ME WIP 2024-09-06 22:56:24 +10:00
psychedelicious
7900a7e2c0 feat(ui): log invocation source id on socket event 2024-09-06 22:56:24 +10:00
psychedelicious
ffb9b94719 feat(ui): restore document size overlay renderer 2024-09-06 22:56:24 +10:00
psychedelicious
115d938e8e feat(ui): make documnet size a rect 2024-09-06 22:56:24 +10:00
psychedelicious
53b6959bd5 refactor(ui): remove modular imagesize components
This is no longer necessary with canvas v2 and added a ton of extraneous redux actions when changing the image size. Also renamed to document size
2024-09-06 22:56:24 +10:00
psychedelicious
184baaf579 feat(ui): initialState is for generation mode 2024-09-06 22:56:24 +10:00
psychedelicious
eeaa17fbee feat(ui): split out canvas entity list component 2024-09-06 22:56:24 +10:00
psychedelicious
beb4d73f04 feat(ui): hide bbox button when no canvas session active 2024-09-06 22:56:24 +10:00
psychedelicious
8c9472cf4e tidy(ui): remove unused naming objects/utils
The canvas manager means we don't need to worry about konva node names as we never directly select konva nodes.
2024-09-06 22:56:24 +10:00
psychedelicious
ebaa6769b0 feat(ui): split up tool chooser buttons
Prep for distinct toolbars for generation vs canvas modes
2024-09-06 22:56:24 +10:00
psychedelicious
74de066363 feat(ui): "stagingArea" -> "session" 2024-09-06 22:56:24 +10:00
psychedelicious
148ca3b7d8 feat(ui): add reset button to canvas 2024-09-06 22:56:24 +10:00
psychedelicious
05ca8951a6 feat(ui): add snapToRect util 2024-09-06 22:56:24 +10:00
psychedelicious
95b94a2aa7 fix(ui): fiddle with control adapter filters
some jank still
2024-09-06 22:56:24 +10:00
psychedelicious
8661152a73 feat(ui): temp disable doc size overlay 2024-09-06 22:56:24 +10:00
psychedelicious
145775021d feat(ui): no animation on layer selection
Felt sluggish
2024-09-06 22:56:24 +10:00
psychedelicious
2fd9575cd3 feat(ui): use canvas as source for control images (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
749cdcc39e fix(ui): control adapter translate & scale 2024-09-06 22:56:24 +10:00
psychedelicious
9fc4008bfc tidy(ui): removed unused state related to non-buffered drawing 2024-09-06 22:56:24 +10:00
psychedelicious
f80127772e feat(ui): control adapter image rendering 2024-09-06 22:56:24 +10:00
psychedelicious
37b02ba467 fix(ui): do not floor bbox calc, it cuts off the last pixels 2024-09-06 22:56:24 +10:00
psychedelicious
971da20198 feat(ui): fix issue where creating line needs 2 points 2024-09-06 22:56:24 +10:00
psychedelicious
f55711c14b fix(ui): edge cases when holding shift and drawing lines 2024-09-06 22:56:24 +10:00
psychedelicious
2f6e4c4a4a fix(ui): set buffered rect color to full alpha 2024-09-06 22:56:24 +10:00
psychedelicious
a0fc840835 fix(ui): handle mouseup correctly 2024-09-06 22:56:24 +10:00
psychedelicious
b65866cb2e feat(ui): buffered rect drawing 2024-09-06 22:56:24 +10:00
psychedelicious
dffa0bb2fe fix(ui): buffered drawing edge cases 2024-09-06 22:56:24 +10:00
psychedelicious
8e56452df8 perf(ui): do not use stage.find 2024-09-06 22:56:24 +10:00
psychedelicious
839e24e597 perf(ui): object groups do not listen 2024-09-06 22:56:24 +10:00
psychedelicious
44c68f8551 perf(ui): buffered drawing (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
5b17bbaac2 tidy(ui): organise files 2024-09-06 22:56:24 +10:00
psychedelicious
a9ec37ea79 tidy(ui): organise files 2024-09-06 22:56:24 +10:00
psychedelicious
8ed4351a9a tidy(ui): organise files 2024-09-06 22:56:24 +10:00
psychedelicious
c7b88219d3 fix(ui): background rendering 2024-09-06 22:56:24 +10:00
psychedelicious
8189af0f41 pkg(ui): remove unused deps react-konva & use-image 2024-09-06 22:56:24 +10:00
psychedelicious
083b7d99c8 feat(ui): organize konva state and files 2024-09-06 22:56:24 +10:00
psychedelicious
682c2f5c75 fix(ui): merge conflicts in image deletion listener 2024-09-06 22:56:24 +10:00
psychedelicious
e56b5e6966 fix(ui): region rendering 2024-09-06 22:56:24 +10:00
psychedelicious
5a8fb2af90 fix(ui): inpaint mask rendering 2024-09-06 22:56:24 +10:00
psychedelicious
8d08d456b6 fix(ui): staging area rendering 2024-09-06 22:56:24 +10:00
psychedelicious
a6c2497b35 fix(ui): stale selected entity 2024-09-06 22:56:24 +10:00
psychedelicious
0fcd203b6c fix(ui): staging area image offset 2024-09-06 22:56:24 +10:00
psychedelicious
e91562c245 feat(ui): tweak layer ui component 2024-09-06 22:56:24 +10:00
psychedelicious
9a0a48a939 fix(ui): resetting layer resets position 2024-09-06 22:56:24 +10:00
psychedelicious
c28224d574 feat(ui): updated layer list component styling 2024-09-06 22:56:24 +10:00
psychedelicious
a2840d31bd feat(ui): transformable layers 2024-09-06 22:56:24 +10:00
psychedelicious
847d1c534c feat(ui): move tool icon is pointer like in other apps 2024-09-06 22:56:24 +10:00
psychedelicious
dc51374601 feat(ui): do not floor cursor position 2024-09-06 22:56:24 +10:00
psychedelicious
9680bd61fe feat(ui): disable gallery hotkeys while staging 2024-09-06 22:56:24 +10:00
psychedelicious
fdb27d836d feat(ui): revised canvas progress & staging image handling 2024-09-06 22:56:24 +10:00
psychedelicious
4d0567823a feat(ui): show queue item origin in queue list 2024-09-06 22:56:24 +10:00
psychedelicious
d0cfe632c9 chore(ui): typegen 2024-09-06 22:56:24 +10:00
psychedelicious
03809763a6 feat(app): add origin to session queue
The origin is an optional field indicating the queue item's origin. For example, "canvas" when the queue item originated from the canvas or "workflows" when the queue item originated from the workflows tab. If omitted, we assume the queue item originated from the API directly.

- Add migration to add the nullable column to the `session_queue` table.
- Update relevant event payloads with the new field.
- Add `cancel_by_origin` method to `session_queue` service and corresponding route. This is required for the canvas to bail out early when staging images.
- Add `origin` to both `SessionQueueItem` and `Batch` - it needs to be provided initially via the batch and then passed onto the queue item.
-
2024-09-06 22:56:24 +10:00
psychedelicious
41ff92592c fix(ui): denoise start on outpainting 2024-09-06 22:56:24 +10:00
psychedelicious
3c754032c9 feat(ui): add redux events for queue cleared & batch enqueued socket events 2024-09-06 22:56:24 +10:00
psychedelicious
92a1d41eac feat(ui): canvas staging area works 2024-09-06 22:56:24 +10:00
psychedelicious
8a0f723b28 feat(ui): switch to view tool when staging 2024-09-06 22:56:24 +10:00
psychedelicious
f5474f18d6 tidy(ui): disable preview images on every enqueue 2024-09-06 22:56:24 +10:00
psychedelicious
2c729946a2 feat(ui): rough out save staging image 2024-09-06 22:56:24 +10:00
psychedelicious
e7933cdae1 feat(ui): staging area image visibility toggle 2024-09-06 22:56:24 +10:00
psychedelicious
a012cc7041 fix(ui): batch building after removing canvas files 2024-09-06 22:56:24 +10:00
psychedelicious
fc2bb5014c feat(ui): make Graph class's getMetadataNode public 2024-09-06 22:56:24 +10:00
psychedelicious
002fddbf6e tidy(ui): remove old canvas graphs 2024-09-06 22:56:24 +10:00
psychedelicious
5d1b6452b0 fix(ui): do not select already-selected entity 2024-09-06 22:56:24 +10:00
psychedelicious
1ea31f6952 tidy(ui): naming things 2024-09-06 22:56:24 +10:00
psychedelicious
b19bbc9212 tidy(ui): file organisation 2024-09-06 22:56:24 +10:00
psychedelicious
16ce3da31f fix(ui): reset cursor pos when fitting document 2024-09-06 22:56:24 +10:00
psychedelicious
91bf5ac9a2 feat(ui): staging area works more better 2024-09-06 22:56:24 +10:00
psychedelicious
9d51882192 feat(ui): staging area barely works 2024-09-06 22:56:24 +10:00
psychedelicious
ac99d61e17 feat(ui): consolidate konva API 2024-09-06 22:56:24 +10:00
psychedelicious
b21c28e8fe feat(ui): consolidate konva API 2024-09-06 22:56:24 +10:00
psychedelicious
361d3383fc feat(ui): staging area (rendering wip) 2024-09-06 22:56:24 +10:00
psychedelicious
54ff94ec38 tidy(ui): type "Dimensions" -> "Size" 2024-09-06 22:56:24 +10:00
psychedelicious
07beb170be feat(ui): add updateNode to Graph 2024-09-06 22:56:24 +10:00
psychedelicious
eafa536c56 feat(ui): sdxl graphs 2024-09-06 22:56:24 +10:00
psychedelicious
abdb5abbc1 feat(ui): sd1 outpaint graph 2024-09-06 22:56:24 +10:00
psychedelicious
a1dbf426ec tests(ui): add missing tests for Graph class 2024-09-06 22:56:24 +10:00
psychedelicious
30ba131704 feat(ui): add Graph.getid() util 2024-09-06 22:56:24 +10:00
psychedelicious
e3f0fb539e feat(ui): outpaint graph, organize builder a bit 2024-09-06 22:56:24 +10:00
psychedelicious
d6667c773b feat(ui): inpaint sd1 graph 2024-09-06 22:56:24 +10:00
psychedelicious
3bd180882c feat(ui): temp disable image caching while testing 2024-09-06 22:56:24 +10:00
psychedelicious
1bb7f40b0a feat(ui): txt2img & img2img graphs 2024-09-06 22:56:24 +10:00
psychedelicious
93d1140a31 feat(ui): minor change to canvas bbox state type 2024-09-06 22:56:24 +10:00
psychedelicious
4235885d47 feat(ui): simplified konva node to blob/imagedata utils 2024-09-06 22:56:24 +10:00
psychedelicious
6dc8f5b42e feat(ui): node manager getter/setter 2024-09-06 22:56:24 +10:00
psychedelicious
bf8d2250ca feat(ui): generation mode calculation, fudged graphs 2024-09-06 22:56:24 +10:00
psychedelicious
1b2d045be1 feat(ui): add utils for getting images from canvas 2024-09-06 22:56:24 +10:00
psychedelicious
04df9f5873 feat(ui): even more simplified API - lean on the konva node manager to abstract imperative state API & rendering 2024-09-06 22:56:24 +10:00
psychedelicious
849b775e55 feat(ui): revised docstrings for renderers & simplified api 2024-09-06 22:56:24 +10:00
psychedelicious
728e21b5ae feat(ui): inpaint mask UI components 2024-09-06 22:56:24 +10:00
psychedelicious
d3a183fe1d feat(ui): inpaint mask rendering (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
9ab9d0948f fix(ui): models loaded handler 2024-09-06 22:56:24 +10:00
psychedelicious
7bb6f18175 feat(ui): internal state for inpaint mask 2024-09-06 22:56:24 +10:00
psychedelicious
ac0f93f2c2 refactor(ui): divvy up canvas state a bit 2024-09-06 22:56:24 +10:00
psychedelicious
8a75b1411a feat(ui): get region and base layer canvas to blob logic working 2024-09-06 22:56:24 +10:00
psychedelicious
0d552d0ba6 refactor(ui): node manager handles more tedious annoying stuff 2024-09-06 22:56:24 +10:00
psychedelicious
6ee0064ce0 feat(ui): use node manager for addRegions 2024-09-06 22:56:24 +10:00
psychedelicious
5c6cd1e897 feat(ui): persist bbox 2024-09-06 22:56:24 +10:00
psychedelicious
5fcaae39df fix(ui): fix generation graphs 2024-09-06 22:56:24 +10:00
psychedelicious
7899c0ef78 feat(ui): add toggle for clipToBbox 2024-09-06 22:56:24 +10:00
psychedelicious
543af856de feat(ui): rename konva node manager 2024-09-06 22:56:24 +10:00
psychedelicious
3e21106336 refactor(ui): create classes to abstract mgmt of konva nodes 2024-09-06 22:56:24 +10:00
psychedelicious
9295985082 tidy(ui): organise renderers 2024-09-06 22:56:24 +10:00
psychedelicious
3ccd58af50 refactor(ui): create entity to konva node map abstraction (wip)
Instead of chaining konva `find` and `findOne` methods, all konva nodes are added to a mapping object. Finding and manipulating them is much simpler.

Done for regions and layers, wip for control adapters.
2024-09-06 22:56:24 +10:00
psychedelicious
3f56c93b8c perf(ui): fix lag w/ region rendering
Needed to memoize these selectors
2024-09-06 22:56:24 +10:00
psychedelicious
1311276a27 feat(ui): move canvas fill color picker to right 2024-09-06 22:56:24 +10:00
psychedelicious
327788b1d6 refactor(ui): remove unused ellipse & polygon objects 2024-09-06 22:56:24 +10:00
psychedelicious
1c6015ca73 fix(ui): incorrect rect/brush/eraser positions 2024-09-06 22:56:24 +10:00
psychedelicious
4eaedbb981 refactor(ui): enable global debugging flag 2024-09-06 22:56:24 +10:00
psychedelicious
2c52b77187 refactor(ui): disable the preview renderer for now 2024-09-06 22:56:24 +10:00
psychedelicious
70527bf931 tweak(ui): canvas editor layout 2024-09-06 22:56:24 +10:00
psychedelicious
2911de8d7b perf(ui): memoize layeractionsmenu valid actions 2024-09-06 22:56:24 +10:00
psychedelicious
62037ce577 refactor(ui): decouple konva renderer from react
Subscribe to redux store directly, skipping all the react overhead.

With react in dev mode, a typical frame while using the brush tool on almost-empty canvas is reduced from ~7.5ms to ~3.5ms. All things considered, this still feels slow, but it's a massive improvement.
2024-09-06 22:56:24 +10:00
psychedelicious
e5bff7646a feat(ui): clip lines to bbox 2024-09-06 22:56:24 +10:00
psychedelicious
ce4b1f7f8d fix(ui): document fit positioning 2024-09-06 22:56:24 +10:00
psychedelicious
09bf3e7d29 feat(ui): document bounds overlay 2024-09-06 22:56:24 +10:00
psychedelicious
18d61c2408 tidy(ui): background layer 2024-09-06 22:56:24 +10:00
psychedelicious
efac5c8f06 refactor(ui): use "entity" instead of "data" for canvas 2024-09-06 22:56:24 +10:00
psychedelicious
dd9f71203d feat(ui): brush size border radius = 1 2024-09-06 22:56:24 +10:00
psychedelicious
3b51509f18 fix(ui): canvas HUD doesn't interrupt tool 2024-09-06 22:56:24 +10:00
psychedelicious
324033bdf8 refactor(ui): split up canvas entity renderers, temp disable preview 2024-09-06 22:56:24 +10:00
psychedelicious
d5c32dc2e7 fix(ui): delete all layers button 2024-09-06 22:56:24 +10:00
psychedelicious
b8c8276645 fix(ui): ignore keyboard shortcuts in input/textarea elements 2024-09-06 22:56:24 +10:00
psychedelicious
c6bf9193e2 fix(ui): canvas entity ids getting clobbered 2024-09-06 22:56:24 +10:00
psychedelicious
17911ecf64 fix(ui): move lora followup fixes 2024-09-06 22:56:24 +10:00
psychedelicious
13bb45934c chore(ui): lint 2024-09-06 22:56:24 +10:00
psychedelicious
54ba852e71 refactor(ui): move loras to canvas slice 2024-09-06 22:56:24 +10:00
psychedelicious
bc85ef6e65 fix(ui): layer is selected when added 2024-09-06 22:56:24 +10:00
psychedelicious
856b0f81d5 feat(ui): r to center & fit stage on document 2024-09-06 22:56:24 +10:00
psychedelicious
060fe11663 feat(ui): better HUD 2024-09-06 22:56:24 +10:00
psychedelicious
9dab54c1ed fix(ui): always use current brush width when making straight lines 2024-09-06 22:56:24 +10:00
psychedelicious
0f7a422153 feat(ui): hold shift w/ brush to draw straight line 2024-09-06 22:56:24 +10:00
psychedelicious
058bf94c93 fix(ui): update bg on canvas resize 2024-09-06 22:56:24 +10:00
psychedelicious
1a0600772f refactor(ui): better hud 2024-09-06 22:56:24 +10:00
psychedelicious
d54c18f8c3 refactor(ui): scaled tool preview border 2024-09-06 22:56:24 +10:00
psychedelicious
5fc0bc5136 refactor(ui): port remaining canvasV1 rendering logic to V2, remove old code 2024-09-06 22:56:24 +10:00
psychedelicious
6f0a2d1104 refactor(ui): fix more types 2024-09-06 22:56:24 +10:00
psychedelicious
9be3e0050d refactor(ui): metadata recall (wip)
just enough let the app run
2024-09-06 22:56:24 +10:00
psychedelicious
11596e45d1 refactor(ui): undo/redo button temp fix 2024-09-06 22:56:24 +10:00
psychedelicious
ca3913a3c8 refactor(ui): fix renderer stuff 2024-09-06 22:56:24 +10:00
psychedelicious
a6c900ef83 refactor(ui): fix misc types 2024-09-06 22:56:24 +10:00
psychedelicious
209f9e26a0 refactor(ui): fix gallery stuff 2024-09-06 22:56:24 +10:00
psychedelicious
f9eb25b861 refactor(ui): fix delete image stuff 2024-09-06 22:56:24 +10:00
psychedelicious
a3a5e81fdb refactor(ui): fix useIsReadyToEnqueue for new adapterType field 2024-09-06 22:56:24 +10:00
psychedelicious
0d73d9dfd3 refactor(ui): update generation tab graphs 2024-09-06 22:56:24 +10:00
psychedelicious
7cdea43a37 refactor(ui): add adapterType to ControlAdapterData 2024-09-06 22:56:24 +10:00
psychedelicious
638d16ce6e refactor(ui): update components & logic to use new unified slice (again) 2024-09-06 22:56:24 +10:00
psychedelicious
9a860dbab5 refactor(ui): update components & logic to use new unified slice 2024-09-06 22:56:24 +10:00
psychedelicious
5c2a48bba8 refactor(ui): merge compositing, params into canvasV2 slice 2024-09-06 22:56:24 +10:00
psychedelicious
05338bdba3 refactor(ui): add scaled bbox state 2024-09-06 22:56:24 +10:00
psychedelicious
b32eeada1b refactor(ui): update dnd/image upload 2024-09-06 22:56:24 +10:00
psychedelicious
acc1fefa77 refactor(ui): update size/prompts state 2024-09-06 22:56:24 +10:00
psychedelicious
a850ffa537 refactor(ui): rip out old control adapter implementation 2024-09-06 22:56:24 +10:00
psychedelicious
2bcb53fe03 refactor(ui): canvas v2 (wip)
fix entity count select
2024-09-06 22:56:24 +10:00
psychedelicious
94fc73ed95 refactor(ui): canvas v2 (wip)
delete unused file
2024-09-06 22:56:24 +10:00
psychedelicious
df9f998671 refactor(ui): canvas v2 (wip)
merge all canvas state reducers into one big slice (but with the logic split across files so it's not hell)
2024-09-06 22:56:24 +10:00
psychedelicious
be3ad43a07 refactor(ui): canvas v2 (wip)
Fix a few more components
2024-09-06 22:56:24 +10:00
psychedelicious
5aa155c39f refactor(ui): canvas v2 (wip)
missed a spot
2024-09-06 22:56:24 +10:00
psychedelicious
c21a21c2aa refactor(ui): canvas v2 (wip)
Redo all UI components for different canvas entity types
2024-09-06 22:56:24 +10:00
psychedelicious
91bcdc10eb refactor(ui): canvas v2 (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
f18c8e2239 refactor(ui): canvas v2 (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
2db7608401 refactor(ui): canvas v2 (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
506632206c refactor(ui): canvas v2 (wip) 2024-09-06 22:56:24 +10:00
psychedelicious
234a1b6571 feat(ui): bbox tool 2024-09-06 22:56:24 +10:00
psychedelicious
c9d45d864f fix(ui): rect tool preview 2024-09-06 22:56:24 +10:00
psychedelicious
c0177516f2 fix(ui): multiple stages 2024-09-06 22:56:24 +10:00
psychedelicious
accf2b5831 feat(ui): decouple konva logic from nanostores 2024-09-06 22:56:24 +10:00
psychedelicious
2f14f83a9a feat(ui): store all stage attrs in nanostores 2024-09-06 22:56:24 +10:00
psychedelicious
262968d0c9 feat(ui): round stage scale 2024-09-06 22:56:24 +10:00
psychedelicious
244ac735af chore(ui): bump konva 2024-09-06 22:56:24 +10:00
psychedelicious
b919bcfc8c feat(ui): generation bbox transformation working
whew
2024-09-06 22:56:24 +10:00
psychedelicious
c21e44cf6b feat(ui): wip generation bbox 2024-09-06 22:56:24 +10:00
psychedelicious
593ff0be75 feat(ui): wip generation bbox 2024-09-06 22:56:24 +10:00
psychedelicious
6fd042df96 feat(ui): CL zoom and pan, some rendering optimizations 2024-09-06 22:56:24 +10:00
psychedelicious
c3e1cf7230 Revert "feat(ui): add x,y,scaleX,scaleY,rotation to objects"
This reverts commit 53318b396c967c72326a7e4dea09667b2ab20bdd.
2024-09-06 22:56:24 +10:00
psychedelicious
5b3d86ab14 feat(ui): layers manage their own bbox 2024-09-06 22:56:24 +10:00
psychedelicious
5d4bbbd806 docs(ui): konva image object docstrings 2024-09-06 22:56:24 +10:00
psychedelicious
cfc6d9e439 feat(ui): add x,y,scaleX,scaleY,rotation to objects 2024-09-06 22:56:24 +10:00
psychedelicious
d10954f47a fix(ui): show color picker when using rect tool 2024-09-06 22:56:24 +10:00
psychedelicious
c3e1198448 feat(ui): image loading fallback for raster layers 2024-09-06 22:56:24 +10:00
psychedelicious
fe9f042111 feat(ui): bbox calc for raster layers 2024-09-06 22:56:24 +10:00
psychedelicious
32e86ba72d feat(ui): do not fill brush preview when drawing 2024-09-06 22:56:24 +10:00
psychedelicious
28cd39d152 fix(ui): brush spacing handling 2024-09-06 22:56:24 +10:00
psychedelicious
25f3e25555 fix(ui): jank when starting a shape when not already focused on stage 2024-09-06 22:56:24 +10:00
psychedelicious
699fbb4e55 feat(ui): wip raster layers
I meant to split this up into smaller commits and undo some of it, but I committed afterwards and it's tedious to undo.
2024-09-06 22:56:24 +10:00
psychedelicious
5fa93de8c4 feat(ui): support image objects on raster layers
Just the UI and internal state, not rendering yet.
2024-09-06 22:56:24 +10:00
psychedelicious
74e976aae4 tidy(ui): clean up event handlers
Separate logic for each tool in preparation for ellipse and polygon tools.
2024-09-06 22:56:24 +10:00
psychedelicious
dd829e9d6a feat(ui): raster layer reset, object group util 2024-09-06 22:56:24 +10:00
psychedelicious
56bca03fbe feat(ui): rect shape preview now has fill 2024-09-06 22:56:24 +10:00
psychedelicious
d0572730a8 feat(ui): cancel shape drawing on esc 2024-09-06 22:56:24 +10:00
psychedelicious
eb816936ed feat(ui): temp disable history on CL 2024-09-06 22:56:24 +10:00
psychedelicious
e1b9cac1df feat(ui): raster layer logic
- Deduplicate shared logic
- Split up giant renderers file into separate cohesive files
- Tons of cleanup
- Progress on raster layer functionality
2024-09-06 22:56:24 +10:00
psychedelicious
d927b631c5 feat(ui): add raster layer rendering and interaction (WIP) 2024-09-06 22:56:24 +10:00
psychedelicious
17dc5d98d1 feat(ui): scaffold out raster layers
Raster layers may have images, lines and shapes. These will replace initial image layers and provide sketching functionality like we have on canvas.
2024-09-06 22:56:24 +10:00
psychedelicious
cda086093d refactor(ui): revise types for line and rect objects
- Create separate object types for brush and eraser lines, instead of a single type that has a `tool` field.
- Create new object type for rect shapes.
- Add logic to schemas to migrate old object types to new.
- Update renderers & reducers.
2024-09-06 22:56:24 +10:00
Brandon Rising
bda579577c chore: 4.2.9 version bump 2024-09-05 16:17:48 -04:00
Brandon Rising
a16b555d47 Simplify flux model dtype conversion in model loader 2024-09-05 15:47:14 -04:00
Brandon Rising
6667c39c73 Remove dependency of asizeof 2024-09-05 15:47:14 -04:00
Brandon Rising
5219ac12a6 Add comment explaining the cache make room call 2024-09-05 15:47:14 -04:00
Brandon Rising
445f813fb9 Update flux transformer loader to more efficiently use and release memory during upcasting 2024-09-05 15:47:14 -04:00
Brandon Rising
87f9e59cfb Cast tensors in unquantized flux models to bfloat16 during loading 2024-09-05 15:47:14 -04:00
Phrixus2023
8b03b39aa8 translationBot(ui): update translation (Chinese (Simplified Han script))
Currently translated at 97.6% (1342 of 1374 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-09-05 15:34:13 -04:00
Tobias Lechner
e59b6bb971 translationBot(ui): update translation (German)
Currently translated at 63.3% (870 of 1374 strings)

Co-authored-by: Tobias Lechner <me@tobias-lechner.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-09-05 15:34:13 -04:00
Riccardo Giovanetti
24a7ed467c translationBot(ui): update translation (Italian)
Currently translated at 98.2% (1350 of 1374 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.2% (1350 of 1374 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.2% (1350 of 1374 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1349 of 1370 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1348 of 1369 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-09-05 15:34:13 -04:00
Васянатор
f01f1033ac translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1370 of 1370 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1369 of 1369 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-09-05 15:34:13 -04:00
smk-e
d35f515413 translationBot(ui): update translation (Spanish)
Currently translated at 33.0% (452 of 1369 strings)

Co-authored-by: smk-e <jit-r8@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-09-05 15:34:13 -04:00
Brandon Rising
125b459e56 chore: 4.2.9rc2 version bump 2024-09-04 10:42:16 -04:00
Brandon Rising
33edee1ba6 Delete all flux bundle state dict keys when extracting the transformer state dict 2024-09-04 09:36:23 -04:00
Brandon Rising
d20335dabc convert_bundle_to_flux_transformer_checkpoint now removes processed keys to decrease memory usage 2024-09-04 09:36:23 -04:00
Brandon Rising
d10d258213 Add a comment for why we're converting scale tensors in flux models to bfloat16 2024-09-04 09:36:23 -04:00
Brandon
d57ba1ed8b Update invokeai/backend/model_manager/probe.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-09-04 09:36:23 -04:00
Brandon Rising
2d0e34e57b Support non-quantized bundles 2024-09-04 09:36:23 -04:00
Brandon Rising
a005d06255 feat: support checkpoint bundles containing more than just the transformer 2024-09-04 09:36:23 -04:00
Eugene Brodsky
a301ef5a5a chore(ci): update github action version pins in container build workflow 2024-09-03 16:01:58 -04:00
Eugene Brodsky
9422df2737 feat(ci): enable a checkbox to push the container image when manually building via workflow dispatch 2024-09-03 16:01:58 -04:00
Lincoln Stein
6dabe4d3ca assign T5 encoder to base type "Any" 2024-09-03 15:55:51 -04:00
Lincoln Stein
00e4652d30 add more reliable fallback method for determining BnbQuantizedLlmInt8b 2024-09-03 15:55:51 -04:00
Lincoln Stein
b6434c5318 correct modelformat probe for t5 encoders 2024-09-03 15:55:51 -04:00
Lincoln Stein
3f7f9f8d61 add probes for T5_encoder and ClipTextModel 2024-09-03 15:55:51 -04:00
Brandon Rising
f3bb592544 Update latents used for preview images in flux 2024-09-03 14:04:16 -04:00
Brandon Rising
69f080fb75 Move flux step callback code into the step_callback util scripts, use other services within the invocation context 2024-09-03 14:04:16 -04:00
Brandon Rising
04272a7cc8 Initial attempt at preview images 2024-09-03 14:04:16 -04:00
Lincoln Stein
8d35af946e [MM] add API routes for getting & setting MM cache sizes (#6523)
* [MM] add API routes for getting & setting MM cache sizes, and retrieving MM stats

* Update invokeai/app/api/routers/model_manager.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* code cleanup after @ryand review

* Update invokeai/app/api/routers/model_manager.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* fix merge conflicts; tested and working

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-09-02 12:18:21 -04:00
Ryan Dick
24065ec6b6 Add FLUX image-to-image and inpainting (#6798)
## Summary

This PR adds support for Image-to-Image and inpainting workflows with
the FLUX model.

Full changelog:
- Split out `FLUX VAE Encode` and `FLUX VAE Decode` nodes
- Renamed `FLUX Text-to-Image` node to `FLUX Denoise` (since it now
supports image-to-image too). This is a workflow-breaking change.
- Added support for FLUX image-to-image via the `Latents` param on the
FLUX denoising node.
- Added support for FLUX masked inpainting via the `Denoise Mask` param
on the FLUX denoising node.
- Added "Denoise Start" and "Denoise End" params to the "FLUX Denoise"
node.
- Updated the "FLUX Text to Image" default workflow.
- Added a "FLUX Image to Image" default workflow.

### Example

FLUX inpainting workflow
<img width="1282" alt="image"
src="https://github.com/user-attachments/assets/86fc1170-e620-4412-8fd8-e119f875fc2e">

Input image

![image](https://github.com/user-attachments/assets/9c381b86-9f87-4257-bd2e-da22c56ca26c)

Mask

![image](https://github.com/user-attachments/assets/8f774c5c-2a25-45fe-9d4b-b233e3d58d2c)

Output image

![image](https://github.com/user-attachments/assets/8576a630-24ce-4a00-8052-e86bab59c855)


### Callouts for reviewers:
- I renamed FLUXTextToImageInvocation -> FLUXDenoisingInvocation. This
is, of course, a breaking change. It feels like the right move and now
is the right time to do it. Any objection?
- I added new `FLUX VAE Encode` and `FLUX VAE Decode` nodes.
Alternatively, I could have tried to match these names to the
corresponding SD nodes (e.g. `FLUX Image to Latents`, `FLUX Latents to
Image`). Personally, I prefer the current names, but want to hear other
opinions.

### Usage notes:
- With the default dev timestep scheduler, the image structure is
largely determined in the first ~3 steps. A consequence of this is that
the denoise_start parameter provides limited 'granularity' of control.
This will likely be improved in the future as we add more scheduler
options. In the meantime, you will likely want to use small values for
`denoise_start` (e.g. 0.03) to start denoising on step ~1-4 out of ~30.
- Currently, there is no 'noise' parameter on the `FLUX Denoise` node,
so the `denoise_end` parameter has limited utility. This will be added
in the future.

## QA Instructions

Test the following workflows:
- [x] Vanilla FLUX text-to-image behaviour is unchanged
- [x] Image-to-image with FLUX dev, no mask
- [x] Image-to-image with FLUX dev, with mask
- [x] Image-to-image with FLUX schnell, no mask (smoke test, not
expected to work well)

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-09-02 09:50:31 -04:00
Ryan Dick
627b0bf644 Expose all FLUX model params in the default FLUX models. 2024-09-02 09:38:17 -04:00
Ryan Dick
b43da46b82 Rename 'FLUX VAE Encode'/'FLUX VAE Decode' to 'FLUX Image to Latents'/'FLUX Latents to Image' 2024-09-02 09:38:17 -04:00
Ryan Dick
4255a01c64 Restore line that was accidentally removed during development. 2024-09-02 09:38:17 -04:00
Ryan Dick
23adbd4002 Update schema.ts. 2024-09-02 09:38:17 -04:00
Ryan Dick
fb5a24fcc6 Update default workflows for FLUX. 2024-09-02 09:38:17 -04:00
Ryan Dick
cfdd5a1900 Rename flux_text_to_image.py -> flex_denoise.py 2024-09-02 09:38:17 -04:00
Ryan Dick
2313f326df Add denoise_end param to FluxDenoiseInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
2e092a2313 Rename FluxTextToImageInvocation -> FluxDenoiseInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
763ef06c18 Use the existence of initial latents to decide whether we are doing image-to-image in the FLUX denoising node. Previously we were using the denoising_start value, but in some cases with an inpaintin mask you may want to run image-to-image from densoising_start=0. 2024-09-02 09:38:17 -04:00
Ryan Dick
8292f6cd42 Code cleanup and documentation around FLUX inpainting. 2024-09-02 09:38:17 -04:00
Ryan Dick
278bba499e Split FLUX VAE decoding out into its own node from LatentsToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
dd99ed28e0 Split FLUX VAE encoding out into its own node from ImageToLatentsInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
9a8aca69bf Get a rough version of FLUX inpainting working. 2024-09-02 09:38:17 -04:00
Ryan Dick
7ad62512eb Update MaskTensorToImageInvocation to support input mask tensors with or without a channel dimension. 2024-09-02 09:38:17 -04:00
Ryan Dick
bd466661ec Remove unused vae field from FLUXTextToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
7ebb509d05 Bump FLUX node versions after splitting out VAE encode/decode. 2024-09-02 09:38:17 -04:00
Ryan Dick
0aa13c046c Split VAE decoding out from the FLUXTextToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
a7a33d73f5 Get FLUX non-masked image-to-image working - still rough. 2024-09-02 09:38:17 -04:00
Ryan Dick
ffa39857d3 Add FLUX VAE decoding support to LatentsToImageInvocation. 2024-09-02 09:38:17 -04:00
Ryan Dick
e85c3bc465 Add FLUX VAE support to ImageToLatentsInvocation. 2024-09-02 09:38:17 -04:00
psychedelicious
8185ba7054 scripts: add allocate_vram script
Allocates the specified amount of VRAM, or allocates enough VRAM such that you have the specified amount of VRAM free.

Useful to simulate an environment with a specific amount of VRAM.
2024-09-02 18:18:26 +10:00
Lincoln Stein
d501865bec add a new FAQ for converting safetensors (#6736)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-08-31 18:56:08 +00:00
Brandon Rising
d62310bb5f Support HF repos with subfolders in source on windows OS 2024-08-30 19:31:42 -04:00
Brandon Rising
1835bff196 Fix source string in hugging face installs with subfolders 2024-08-30 19:31:42 -04:00
Ryan Dick
87261bdbc9 FLUX memory management improvements (#6791)
## Summary

This PR contains several improvements to memory management for FLUX
workflows.

It is now possible to achieve better FLUX model caching performance, but
this still requires users to manually configure their `ram`/`vram`
settings. E.g. a `vram` setting of 16.0 should allow for all quantized
FLUX models to be kept in memory on the GPU.

Changes:
- Check the size of a model on disk and free the requisite space in the
model cache before loading it. (This behaviour existed previously, but
was removed in https://github.com/invoke-ai/InvokeAI/pull/6072/files.
The removal did not seem to be intentional).
- Removed the hack to free 24GB of space in the cache before loading the
FLUX model.
- Split the T5 embedding and CLIP embedding steps into separate
functions so that the two models don't both have to be held in RAM at
the same time.
- Fix a bug in `InvokeLinear8bitLt` that was causing some tensors to be
left on the GPU when the model was offloaded to the CPU. (This class is
getting very messy due to the non-standard state_dict handling in
`bnb.nn.Linear8bitLt`. )
- Tidy up some dtype handling in FluxTextToImageInvocation to avoid
situations where we hold references to two copies of the same tensor
unnecessarily.
- (minor) Misc cleanup of ModelCache: improve docs and remove unused
vars.

Future:
We should revisit our default ram/vram configs. The current defaults are
very conservative, and users could see major performance improvements
from tuning these values.

## QA Instructions

I tested the FLUX workflow with the following configurations and
verified that the cache hit rates and memory usage matched the expected
behaviour:
- `ram = 16` and `vram = 16`
- `ram = 16` and `vram = 1`
- `ram = 1` and `vram = 1`

Note that the changes in this PR are not isolated to FLUX. Since we now
check the size of models on disk, we may see slight changes in model
cache offload patterns for other models as well.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-08-29 15:17:45 -04:00
Ryan Dick
4e4b6c6dbc Tidy variable management and dtype handling in FluxTextToImageInvocation. 2024-08-29 19:08:18 +00:00
Ryan Dick
5e8cf9fb6a Remove hack to clear cache from the FluxTextToImageInvocation. We now clear the cache based on the on-disk model size. 2024-08-29 19:08:18 +00:00
Ryan Dick
c738fe051f Split T5 encoding and CLIP encoding into separate functions to ensure that all model references are locally-scoped so that the two models don't have to be help in memory at the same time. 2024-08-29 19:08:18 +00:00
Ryan Dick
29fe1533f2 Fix bug in InvokeLinear8bitLt that was causing old state information to persist after loading from a state dict. This manifested as state tensors being left on the GPU even when a model had been offloaded to the CPU cache. 2024-08-29 19:08:18 +00:00
Ryan Dick
77090070bd Check the size of a model on disk and make room for it in the cache before loading it. 2024-08-29 19:08:18 +00:00
Ryan Dick
6ba9b1b6b0 Tidy up GIG -> GB and remove unused GIG constant. 2024-08-29 19:08:18 +00:00
Ryan Dick
c578b8df1e Improve ModelCache docs. 2024-08-29 19:08:18 +00:00
Ryan Dick
cad9a41433 Remove unused MOdelCache.exists(...) function. 2024-08-29 19:08:18 +00:00
Ryan Dick
5fefb3b0f4 Remove unused param from ModelCache. 2024-08-29 19:08:18 +00:00
Ryan Dick
5284a870b0 Remove unused constructor params from ModelCache. 2024-08-29 19:08:18 +00:00
Ryan Dick
e064377c05 Remove default model cache sizes from model_cache_default.py. These defaults were misleading, because the config defaults take precedence over them. 2024-08-29 19:08:18 +00:00
Mary Hipp
3e569c8312 feat(ui): add fields for CLIP embed models and Flux VAE models in workflows 2024-08-29 11:52:51 -04:00
maryhipp
16825ee6e9 feat(nodes): bump version of flux model node, update default workflow 2024-08-29 11:52:51 -04:00
Mary Hipp
3f5340fa53 feat(nodes): add submodels as inputs to FLUX main model node instead of hardcoded names 2024-08-29 11:52:51 -04:00
chainchompa
f2a1a39b33 Add selectedStylePreset to app parameters (#6787)
## Summary
- Add selectedStylePreset to app parameters
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-28 10:53:07 -04:00
chainchompa
326de55d3e remove api changes and only preselect style preset 2024-08-28 09:53:29 -04:00
chainchompa
b2df909570 added selectedStylePreset to preload presets when app loads 2024-08-28 09:50:44 -04:00
chainchompa
026ac36b06 Revert "added selectedStylePreset to preload presets when app loads"
This reverts commit e97fd85904.
2024-08-28 09:44:08 -04:00
chainchompa
92125e5fd2 bug fixes 2024-08-27 16:13:38 -04:00
chainchompa
c0c139da88 formatting ruff 2024-08-27 15:46:51 -04:00
chainchompa
404ad6a7fd cleanup 2024-08-27 15:42:42 -04:00
chainchompa
fc39086fb4 call stylePresetSelected 2024-08-27 15:34:31 -04:00
chainchompa
cd215700fe added route for selecting style preset 2024-08-27 15:34:07 -04:00
chainchompa
e97fd85904 added selectedStylePreset to preload presets when app loads 2024-08-27 15:33:24 -04:00
Brandon Rising
0a263fa5b1 chore: bump version to v4.2.9rc1 2024-08-27 12:09:27 -04:00
Mary Hipp
fae3836a8d fix CLIP 2024-08-27 10:29:10 -04:00
Mary Hipp
b3d2eb4178 add translations for new model types in MM, remove clip vision from filter since its not displayed in list 2024-08-27 10:29:10 -04:00
psychedelicious
576f1cbb75 build: remove broken scripts
These two scripts are broken and can cause data loss. Remove them.

They are not in the launcher script, but _are_ available to users in the terminal/file browser.

Hopefully, when we removing them here, `pip` will delete them on next installation of the package...
2024-08-27 22:01:45 +10:00
Ryan Dick
50085b40bb Update starter model size estimates. 2024-08-26 20:17:50 -04:00
Mary Hipp
cff382715a default workflow: add steps to exposed fields, add more notes 2024-08-26 20:17:50 -04:00
Brandon Rising
54d54d1bf2 Run ruff 2024-08-26 20:17:50 -04:00
Mary Hipp
e84ea68282 remove prompt 2024-08-26 20:17:50 -04:00
Mary Hipp
160dd36782 update default workflow for flux 2024-08-26 20:17:50 -04:00
Brandon Rising
65bb46bcca Rename params for flux and flux vae, add comments explaining use of the config_path in model config 2024-08-26 20:17:50 -04:00
Brandon Rising
2d185fb766 Run ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
2ba9b02932 Fix type error in tsc 2024-08-26 20:17:50 -04:00
Brandon Rising
849da67cc7 Remove no longer used code in the flux denoise function 2024-08-26 20:17:50 -04:00
Brandon Rising
3ea6c9666e Remove in progress images until we're able to make the valuable 2024-08-26 20:17:50 -04:00
Brandon Rising
cf633e4ef2 Only install starter models if not already installed 2024-08-26 20:17:50 -04:00
Ryan Dick
bbf934d980 Remove outdated TODO. 2024-08-26 20:17:50 -04:00
Ryan Dick
620f733110 ruff format 2024-08-26 20:17:50 -04:00
Ryan Dick
67928609a3 Downgrade accelerate and huggingface-hub deps to original versions. 2024-08-26 20:17:50 -04:00
Ryan Dick
5f15afb7db Remove flux repo dependency 2024-08-26 20:17:50 -04:00
Ryan Dick
635d2f480d ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
70c278c810 Remove dependency on flux config files 2024-08-26 20:17:50 -04:00
Brandon Rising
56b9906e2e Setup scaffolding for in progress images and add ability to cancel the flux node 2024-08-26 20:17:50 -04:00
Ryan Dick
a808ce81fd Replace swish() with torch.nn.functional.silu(h). They are functionally equivalent, but in my test VAE deconding was ~8% faster after the change. 2024-08-26 20:17:50 -04:00
Ryan Dick
83f82c5ddf Switch the CLIP-L start model to use our hosted version - which is much smaller. 2024-08-26 20:17:50 -04:00
Brandon Rising
101de8c25d Update t5 encoder formats to accurately reflect the quantization strategy and data type 2024-08-26 20:17:50 -04:00
Ryan Dick
3339a4baf0 Downgrade revert torch version after removing optimum-qanto, and other minor version-related fixes. 2024-08-26 20:17:50 -04:00
Ryan Dick
dff4a88baa Move quantization scripts to a scripts/ subdir. 2024-08-26 20:17:50 -04:00
Ryan Dick
a21f6c4964 Update docs for T5 quantization script. 2024-08-26 20:17:50 -04:00
Ryan Dick
97562504b7 Remove all references to optimum-quanto and downgrade diffusers. 2024-08-26 20:17:50 -04:00
Ryan Dick
75d8ac378c Update the T5 8-bit quantized starter model to use the BnB LLM.int8() variant. 2024-08-26 20:17:50 -04:00
Ryan Dick
b9dd354e2b Fixes to the T5XXL quantization script. 2024-08-26 20:17:50 -04:00
Ryan Dick
33c2fbd201 Add script for quantizing a T5 model. 2024-08-26 20:17:50 -04:00
Brandon Rising
5063be92bf Switch flux to using its own conditioning field 2024-08-26 20:17:50 -04:00
Brandon Rising
1047584b3e Only import bnb quantize file if bitsandbytes is installed 2024-08-26 20:17:50 -04:00
Brandon Rising
6764dcfdaa Load and unload clip/t5 encoders and run inference separately in text encoding 2024-08-26 20:17:50 -04:00
Brandon Rising
012864ceb1 Update macos test vm to macOS-14 2024-08-26 20:17:50 -04:00
Ryan Dick
a0bf20bcee Run FLUX VAE decoding in the user's preferred dtype rather than float32. Tested, and seems to work well at float16. 2024-08-26 20:17:50 -04:00
Ryan Dick
14ab339b33 Move prepare_latent_image_patches(...) to sampling.py with all of the related FLUX inference code. 2024-08-26 20:17:50 -04:00
Ryan Dick
25c91efbb6 Rename field positive_prompt -> prompt. 2024-08-26 20:17:50 -04:00
Ryan Dick
1c1f2c6664 Add comment about incorrect T5 Tokenizer size calculation. 2024-08-26 20:17:50 -04:00
Ryan Dick
d7c22b3bf7 Tidy is_schnell detection logic. 2024-08-26 20:17:50 -04:00
Ryan Dick
185f2a395f Make FLUX get_noise(...) consistent across devices/dtypes. 2024-08-26 20:17:50 -04:00
Ryan Dick
0c5649491e Mark FLUX nodes as prototypes. 2024-08-26 20:17:50 -04:00
Brandon Rising
94aba5892a Attribute black-forest-labs/flux for much of the flux code 2024-08-26 20:17:50 -04:00
Brandon Rising
ef093dde29 Don't install bitsandbytes on macOS 2024-08-26 20:17:50 -04:00
maryhipp
34451e5f27 added FLUX dev to starter models 2024-08-26 20:17:50 -04:00
Brandon Rising
1f9bdd1a9a Undo changes to the v2 dir of frontend types 2024-08-26 20:17:50 -04:00
Brandon Rising
c27d59baf7 Run ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
f130ddec7c Remove automatic install of models during flux model loader, remove no longer used import function on context 2024-08-26 20:17:50 -04:00
Ryan Dick
a0a259eef1 Fix max_seq_len field description. 2024-08-26 20:17:50 -04:00
Ryan Dick
b66f19d4d1 Add docs to the quantization scripts. 2024-08-26 20:17:50 -04:00
Ryan Dick
4105a78b83 Update load_flux_model_bnb_llm_int8.py to work with a single-file FLUX transformer checkpoint. 2024-08-26 20:17:50 -04:00
Ryan Dick
19a68afb3a Fix bug in InvokeInt8Params that was causing it to use double the necessary VRAM. 2024-08-26 20:17:50 -04:00
maryhipp
fd68a2475b add better workflow name 2024-08-26 20:17:50 -04:00
maryhipp
28ff7ba830 add better workflow description 2024-08-26 20:17:50 -04:00
maryhipp
5d0b248fdb fix(worker) fix T5 type 2024-08-26 20:17:50 -04:00
maryhipp
01a4e0f6ef update default workflow 2024-08-26 20:17:50 -04:00
Mary Hipp
91e0731506 fix schema 2024-08-26 20:17:50 -04:00
Mary Hipp
d1f904d41f tsc and lint fix 2024-08-26 20:17:50 -04:00
Mary Hipp
269388c9f4 feat(ui): create new field for t5 encoder models in nodes 2024-08-26 20:17:50 -04:00
Mary Hipp
b8486379ce fix(ui): pass base/type when installing models, add flux formats to MM badges 2024-08-26 20:17:50 -04:00
Mary Hipp
400eb94d3b fix(ui): only exclude flux main models from linear UI dropdown, not model manager list 2024-08-26 20:17:50 -04:00
maryhipp
e210c96485 add FLUX schnell starter models and submodels as dependenices or adhoc download options 2024-08-26 20:17:50 -04:00
maryhipp
5f567f41f4 add case for clip embed models in probe 2024-08-26 20:17:50 -04:00
maryhipp
5fed573a29 update flux_model_loader node to take a T5 encoder from node field instead of hardcoded list, assume all models have been downloaded 2024-08-26 20:17:50 -04:00
Ryan Dick
cfac7c8189 Move requantize.py to the quatnization/ dir. 2024-08-26 20:17:50 -04:00
Ryan Dick
1787de6836 Add docs to the requantize(...) function explaining why it was copied from optimum-quanto. 2024-08-26 20:17:50 -04:00
Ryan Dick
ac96f187bd Remove duplicate log_time(...) function. 2024-08-26 20:17:50 -04:00
Brandon Rising
72398350b4 More flux loader cleanup 2024-08-26 20:17:50 -04:00
Brandon Rising
df9445c351 Various styling and exception type updates 2024-08-26 20:17:50 -04:00
Brandon Rising
87b7a2e39b Switch inheritance class of flux model loaders 2024-08-26 20:17:50 -04:00
Brandon Rising
f7e46622a1 Update doc string for import_local_model and remove access_token since it's only usable for local file paths 2024-08-26 20:17:50 -04:00
Ryan Dick
71f18353a9 Address minor review comments. 2024-08-26 20:17:50 -04:00
Ryan Dick
4228de707b Rename t5Encoder -> t5_encoder. 2024-08-26 20:17:50 -04:00
Mary Hipp
b6a05629ef add default workflow for flux t2i 2024-08-26 20:17:50 -04:00
Mary Hipp
fbaa820643 exclude flux models from main model dropdown 2024-08-26 20:17:50 -04:00
Brandon Rising
db2a2d5e38 Some cleanup of the tags and description of flux nodes 2024-08-26 20:17:50 -04:00
Brandon Rising
8ba6e6b1f8 Add t5 encoders and clip embeds to the model manager 2024-08-26 20:17:50 -04:00
Brandon Rising
57168d719b Fix styling/lint 2024-08-26 20:17:50 -04:00
Brandon Rising
dee6d2c98e Fix support for 8b quantized t5 encoders, update exception messages in flux loaders 2024-08-26 20:17:50 -04:00
Ryan Dick
e49105ece5 Add tqdm progress bar to FLUX denoising. 2024-08-26 20:17:50 -04:00
Ryan Dick
0c5e11f521 Fix FLUX output image clamping. And a few other minor fixes to make inference work with the full bfloat16 FLUX transformer model. 2024-08-26 20:17:50 -04:00
Brandon Rising
a63f842a13 Select dev/schnell based on state dict, use correct max seq len based on dev/schnell, and shift in inference, separate vae flux params into separate config 2024-08-26 20:17:50 -04:00
Brandon Rising
4bd7fda694 Install sub directories with folders correctly, ensure consistent dtype of tensors in flux pipeline and vae 2024-08-26 20:17:50 -04:00
Brandon Rising
81f0886d6f Working inference node with quantized bnb nf4 checkpoint 2024-08-26 20:17:50 -04:00
Brandon Rising
2eb87f3306 Remove unused param on _run_vae_decoding in flux text to image 2024-08-26 20:17:50 -04:00
Brandon Rising
723f3ab0a9 Add nf4 bnb quantized format 2024-08-26 20:17:50 -04:00
Brandon Rising
1bd90e0fd4 Run ruff, setup initial text to image node 2024-08-26 20:17:50 -04:00
Brandon Rising
436f18ff55 Add backend functions and classes for Flux implementation, Update the way flux encoders/tokenizers are loaded for prompt encoding, Update way flux vae is loaded 2024-08-26 20:17:50 -04:00
Brandon Rising
cde9696214 Some UI cleanup, regenerate schema 2024-08-26 20:17:50 -04:00
Brandon Rising
2d9042fb93 Run Ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
9ed53af520 Run Ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
56fda669fd Manage quantization of models within the loader 2024-08-26 20:17:50 -04:00
Brandon Rising
1d8545a76c Remove changes to v1 workflow 2024-08-26 20:17:50 -04:00
Brandon Rising
5f59a828f9 Setup flux model loading in the UI 2024-08-26 20:17:50 -04:00
Ryan Dick
1fa6bddc89 WIP on moving from diffusers to FLUX 2024-08-26 20:17:50 -04:00
Ryan Dick
d3a5ca5247 More improvements for LLM.int8() - not fully tested. 2024-08-26 20:17:50 -04:00
Ryan Dick
f01f56a98e LLM.int8() quantization is working, but still some rough edges to solve. 2024-08-26 20:17:50 -04:00
Ryan Dick
99b0f79784 Clean up NF4 implementation. 2024-08-26 20:17:50 -04:00
Ryan Dick
e1eb104345 NF4 inference working 2024-08-26 20:17:50 -04:00
Ryan Dick
5c2f95ef50 NF4 loading working... I think. 2024-08-26 20:17:50 -04:00
Ryan Dick
b63df9bab9 wip 2024-08-26 20:17:50 -04:00
Ryan Dick
a52c899c6d Split a FluxTextEncoderInvocation out from the FluxTextToImageInvocation. This has the advantage that we benfit from automatic caching when the prompt isn't changed. 2024-08-26 20:17:50 -04:00
Ryan Dick
eeabb7ebe5 Make quantized loading fast for both T5XXL and FLUX transformer. 2024-08-26 20:17:50 -04:00
Ryan Dick
8b1cef978c Make quantized loading fast. 2024-08-26 20:17:50 -04:00
Ryan Dick
152da482cd WIP - experimentation 2024-08-26 20:17:50 -04:00
Ryan Dick
3cf0365a35 Make float16 inference work with FLUX on 24GB GPU. 2024-08-26 20:17:50 -04:00
Ryan Dick
5870742bb9 Add support for 8-bit quantizatino of the FLUX T5XXL text encoder. 2024-08-26 20:17:50 -04:00
Ryan Dick
01d8c62c57 Make 8-bit quantization save/reload work for the FLUX transformer. Reload is still very slow with the current optimum.quanto implementation. 2024-08-26 20:17:50 -04:00
Ryan Dick
55a242b2d6 Minor improvements to FLUX workflow. 2024-08-26 20:17:50 -04:00
Ryan Dick
45263b339f Got FLUX schnell working with 8-bit quantization. Still lots of rough edges to clean up. 2024-08-26 20:17:50 -04:00
Ryan Dick
3319491861 Use the FluxPipeline.encode_prompt() api rather than trying to run the two text encoders separately. 2024-08-26 20:17:50 -04:00
Ryan Dick
e687afac90 Add sentencepiece dependency for the T5 tokenizer. 2024-08-26 20:17:50 -04:00
Ryan Dick
b39031ea53 First draft of FluxTextToImageInvocation. 2024-08-26 20:17:50 -04:00
Ryan Dick
0b77511271 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-26 20:17:50 -04:00
Ryan Dick
c99cd989c1 Update imports for compatibility with bumped diffusers version. 2024-08-26 20:17:50 -04:00
Ryan Dick
317fdadb21 Bump diffusers version to include FLUX support. 2024-08-26 20:17:50 -04:00
Mary Hipp
4e294f9e3e disable export button if no non-default presets 2024-08-26 09:23:15 -04:00
Jonathan
526e0f30a0 Added support for bounding boxes in the Invocation API
Adding built-in bounding boxes as a core type would help developers of nodes that include bounding box support.
2024-08-26 08:03:30 +10:00
psychedelicious
231e5ec94a chore: bump version v4.2.8post1 2024-08-23 06:55:30 +10:00
Mary Hipp
e5bb6f9693 lint fix 2024-08-23 06:46:19 +10:00
Mary Hipp
da7dee44c6 fix(ui): use empty string fallback if unable to parse prompts when creating style preset from existing image 2024-08-23 06:46:19 +10:00
Eugene Brodsky
83144f4fe3 fix(docs): follow-up docker readme fixes 2024-08-22 11:19:07 -04:00
psychedelicious
c451f52ea3 chore(ui): lint 2024-08-22 21:00:09 +10:00
psychedelicious
8a2c78f2e1 fix(ui): dynamic prompts not recalculating when deleting or updating a style preset
The root cause was the active style preset not being reset when it was deleted, or no longer present in the list of style presets.

- Add extra reducer to `stylePresetSlice` to reset the active preset if it is deleted or otherwise unavailable
- Update the dynamic prompts listener to trigger on delete/update/list of style presets
2024-08-22 21:00:09 +10:00
psychedelicious
bcc78bde9b chore: bump version to v4.2.8 2024-08-22 21:00:09 +10:00
Васянатор
054bb6fe0a translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1367 of 1367 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
Riccardo Giovanetti
4f4aa6d92e translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1346 of 1367 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1346 of 1367 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
Hosted Weblate
eac51ac6f5 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-22 13:09:56 +10:00
psychedelicious
9f349a7c0a fix(ui): do not constrain width of hide/show boards button
lets translations display fully
2024-08-22 11:36:07 +10:00
psychedelicious
918afa5b15 fix(ui): show more of current board name 2024-08-22 11:36:07 +10:00
psychedelicious
eb1113f95c feat(ui): add translation string for "Upscale" 2024-08-22 11:36:07 +10:00
psychedelicious
4f4ba7b462 tidy(ui): clean up ActiveStylePreset markup 2024-08-21 09:06:41 +10:00
Mary Hipp
2298be0e6b fix(ui): error handling if unable to convert image URL to blob 2024-08-21 09:06:41 +10:00
Mary Hipp
63494dfca7 remove extra slash in exports path 2024-08-21 09:06:41 +10:00
Mary Hipp
36a1d39454 fix(ui): handle badge styling when template name is long 2024-08-21 09:06:41 +10:00
Mary Hipp
a6f6d5c400 fix(ui): add loading state to button when creating or updating a style preset 2024-08-21 09:06:41 +10:00
Mary Hipp
e85f221aca fix(ui): clear prompt template when prompts are recalled 2024-08-21 09:04:35 +10:00
Mary Hipp
d4797e37dc fix(ui): properly unwrap delete style preset API request so that error is caught 2024-08-19 16:12:39 -04:00
Mary Hipp
3e7923d072 fix(api): allow updating of type for style preset 2024-08-19 16:12:39 -04:00
psychedelicious
a85d69ce3d tidy(ui): getViewModeChunks.tsx -> .ts 2024-08-19 08:25:39 +10:00
psychedelicious
96db006c99 fix(ui): edge case with getViewModeChunks 2024-08-19 08:25:39 +10:00
psychedelicious
8ca57d03d8 tests(ui): add tests for getViewModeChunks 2024-08-19 08:25:39 +10:00
psychedelicious
6c404ce5f8 fix(ui): prompt template preset preview out of order 2024-08-19 08:25:39 +10:00
psychedelicious
584e07182b fix(ui): use translations for style preset strings 2024-08-17 21:27:53 +10:00
psychedelicious
f787e9acf6 chore: bump version v4.2.8rc2 2024-08-16 21:47:06 +10:00
psychedelicious
5a24b89e54 fix(app): include style preset defaults in build 2024-08-16 21:47:06 +10:00
psychedelicious
9b482e2a4f chore: bump version to v4.2.8rc1 2024-08-16 10:53:19 +10:00
Max
df4dbe2d57 Fix invoke.sh not detecting symlinks
When invoke.sh is executed using a symlink with a working directory outside of InvokeAI's root directory, it will fail.

invoke.sh attempts to cd into the correct directory at the start of the script, but will cd into the directory of the symlink instead. This commit fixes that.
2024-08-16 10:40:59 +10:00
psychedelicious
713bd11177 feat(ui, api): prompt template export (#6745)
## Summary

Adds option to download all prompt templates to a CSV

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-16 10:38:50 +10:00
psychedelicious
182571df4b Merge branch 'main' into maryhipp/export-presets 2024-08-16 10:17:07 +10:00
psychedelicious
29bfe492b6 ui: translations update from weblate (#6746)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widget/invokeai/web-ui/horizontal-auto.svg)
2024-08-16 10:16:51 +10:00
psychedelicious
3fb4e3050c feat(ui): focus in textarea after inserting placeholder 2024-08-16 10:14:25 +10:00
psychedelicious
39c7ec3cd9 feat(ui): per type fallbacks for templates 2024-08-16 10:11:43 +10:00
psychedelicious
26bfbdec7f feat(ui): use buttons instead of menu for preset import/export 2024-08-16 09:58:19 +10:00
psychedelicious
7a3eaa8da9 feat(api): save file as prompt_templates.csv 2024-08-16 09:51:46 +10:00
Mary Hipp
599db7296f export only user style presets 2024-08-15 16:07:32 -04:00
Riccardo Giovanetti
042aab4295 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1340 of 1359 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-15 20:44:02 +02:00
Mary Hipp
24f298283f clean up, add context menu to import/download templates 2024-08-15 12:39:55 -04:00
Mary Hipp
68dac6349d Merge remote-tracking branch 'origin/main' into maryhipp/export-presets 2024-08-15 11:21:56 -04:00
chainchompa
b675fc19e8 feat: add base prop for selectedWorkflow to allow loading a workflow on launch (#6742)
## Summary
added a base prop for selectedWorkflow to allow loading a workflow on
launch

<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
can test by loading InvokeAIUI with a selectedWorkflow prop of the
workflow ID
<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-15 10:52:23 -04:00
chainchompa
659019cfd6 Merge branch 'main' into chainchompa/preselect-workflows 2024-08-15 10:40:44 -04:00
Mary Hipp
dcd61e1f82 pin ruff version in python check gha 2024-08-15 09:47:49 -04:00
Mary Hipp
f5c99b1488 exclude jupyter notebooks from ruff 2024-08-15 09:47:49 -04:00
Mary Hipp
810be3e1d4 update import directions to include JSON 2024-08-15 09:47:49 -04:00
psychedelicious
60d754d1df feat(api): tidy style presets import logic
- Extract parsing into utility function
- Log import errors
- Forbid extra properties on the imported data
2024-08-15 09:47:49 -04:00
psychedelicious
bd07c86db9 feat(ui): make style preset menu trigger look like button 2024-08-15 09:47:49 -04:00
psychedelicious
bcbf8b6bd8 feat(ui): revert to using {prompt} for prompt template placeholder 2024-08-15 09:47:49 -04:00
psychedelicious
356661459b feat(api): support JSON for preset imports
This allows us to support Fooocus format presets.
2024-08-15 09:47:49 -04:00
psychedelicious
deb917825e feat(api): use pydantic validation during style preset import
- Enforce name is present and not an empty string
- Provide empty string as default for positive and negative prompt
- Add `positive_prompt` as validation alias for `prompt` field
- Strip whitespace automatically
- Create `TypeAdapter` to validate the whole list in one go
2024-08-15 09:47:49 -04:00
psychedelicious
15415c6d85 feat(ui): use dropzone for style preset upload
Easier to accept multiple file types and supper drag and drop in the future.
2024-08-15 09:47:49 -04:00
Mary Hipp
76b0380b5f feat(ui): create component to upload CSV of style presets to import 2024-08-15 09:47:49 -04:00
Mary Hipp
2d58754789 feat(api): add endpoint to take a CSV, parse it, validate it, and create many style preset entries 2024-08-15 09:47:49 -04:00
chainchompa
9cdf1f599c Merge branch 'main' into chainchompa/preselect-workflows 2024-08-15 09:25:19 -04:00
chainchompa
268be97ba0 remove ref, make options optional for useGetLoadWorkflow 2024-08-15 09:18:41 -04:00
Mary Hipp
a9014673a0 wip export 2024-08-15 09:00:11 -04:00
psychedelicious
d36c43a10f ui: translations update from weblate (#6727)
Translations update from [Hosted Weblate](https://hosted.weblate.org)
for [InvokeAI/Web
UI](https://hosted.weblate.org/projects/invokeai/web-ui/).



Current translation status:

![Weblate translation
status](https://hosted.weblate.org/widget/invokeai/web-ui/horizontal-auto.svg)
2024-08-15 08:48:03 +10:00
Phrixus2023
54a5c4e482 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1320 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-15 00:46:01 +02:00
Riccardo Giovanetti
5e09a244e3 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1336 of 1355 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1302 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-15 00:46:01 +02:00
chainchompa
88648dca1a change selectedWorkflow to selectedWorkflowId 2024-08-14 11:22:37 -04:00
chainchompa
8840df2b00 Merge branch 'main' into chainchompa/preselect-workflows 2024-08-14 09:02:12 -04:00
chainchompa
af159acbdf cleanup 2024-08-14 08:58:38 -04:00
chainchompa
471719bbbe add base prop for selectedWorkflow to allow loading a workflow on launch 2024-08-14 08:47:02 -04:00
psychedelicious
b126f2ffd5 feat(ui, api): prompt templates (#6729)
## Summary

Adds prompt templates to the UI. Demo video is attached.
* added default prompt templates to seed database on startup (these
cannot be edited or deleted by users via the UI)
* can create fresh prompt template, create from an image in gallery that
has prompt metadata, or copy an existing prompt template and modify
* if a template is active, can view what your prompt will be invoked as
by switching to "view mode"



https://github.com/user-attachments/assets/32d84e0c-b04c-48da-bae5-aa6eb685d209



## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-08-14 12:49:31 +10:00
psychedelicious
9938f12ef0 Merge branch 'main' into maryhipp/style-presets 2024-08-14 12:33:30 +10:00
psychedelicious
982c266073 tidy: remove extra characters in prompt templates 2024-08-14 12:31:57 +10:00
psychedelicious
5c37391883 fix(ui): do not show [prompt] in preset preview 2024-08-14 12:29:05 +10:00
psychedelicious
ddeafc6833 fix(ui): minimize layout shift when overlaying preset prompt preview 2024-08-14 12:24:57 +10:00
psychedelicious
41b2d5d013 fix(ui): prompt preview not working preset starts with [prompt] 2024-08-14 12:21:38 +10:00
psychedelicious
29d6f48901 fix(ui): prompt shows thru prompt label text 2024-08-14 12:01:49 +10:00
psychedelicious
d5c9f4e47f chore(ui): revert framer-motion upgrade
`framer-motion` 11 breaks a lot of stuff in profoundly unintuitive ways, holy crap. UI lib rolled back its dep, pulling in latest version of that
2024-08-14 06:12:00 +10:00
psychedelicious
24d73387d8 build(ui): fix chakra deps
We had multiple versions of @emotion/react, stemming from an extraneous dependency on @chakra-ui/react. Removed the extraneosu dep
2024-08-14 06:12:00 +10:00
Mary Hipp
e0d3927265 feat: add flag for allowPrivateStylePresets that shows a type field when creating a style preset 2024-08-13 14:08:54 -04:00
Mary Hipp
e5f7c2a9b7 add type safety / validation to form data payloads and allow type to be passed through api 2024-08-13 13:00:31 -04:00
Mary Hipp
b0760710d5 add the rest of default style presets, update image service to return default images correctly by name, add tooltip popover to images in UI 2024-08-13 11:33:15 -04:00
Mary Hipp
764accc921 update config docstring 2024-08-12 15:17:40 -04:00
Mary Hipp
6a01fce9c1 fix payloads for stringified data 2024-08-12 15:16:22 -04:00
Mary Hipp
9c732ac3b1 Merge remote-tracking branch 'origin/main' into maryhipp/style-presets 2024-08-12 14:53:45 -04:00
Mary Hipp
b70891c661 update descriptoin of placeholder in modal 2024-08-12 13:37:04 -04:00
Mary Hipp
4dbf851741 ui: add labels to prompt boxes 2024-08-12 13:33:39 -04:00
Mary Hipp
6c927a9fd4 move mdoal state into nanostore 2024-08-12 12:46:02 -04:00
Mary Hipp
096f001634 ui: add ability to copy template 2024-08-12 12:32:31 -04:00
Mary Hipp
4837e578b2 api: update dir path for style preset images, update payload for create/update formdata 2024-08-12 12:00:14 -04:00
Mary Hipp
1e547ef912 UI more pr feedback 2024-08-12 11:59:25 -04:00
psychedelicious
f6b8970bd1 fix(app): create reference to events task to prevent accidental GC
This wasn't a problem, but it's advised in the official docs so I've done it.
2024-08-12 07:49:58 +10:00
psychedelicious
29325a7214 fix(app): use asyncio queue and existing event loop for events
Around the time we (I) implemented pydantic events, I noticed a short pause between progress images every 4 or 5 steps when generating with SDXL. It didn't happen with SD1.5, but I did notice that with SD1.5, we'd get 4 or 5 progress events simultaneously. I'd expect one event every ~25ms, matching my it/s with SD1.5. Mysterious!

Digging in, I found an issue is related to our use of a synchronous queue for events. When the event queue is empty, we must call `asyncio.sleep` before checking again. We were sleeping for 100ms.

Said another way, every time we clear the event queue, we have to wait 100ms before another event can be dispatched, even if it is put on the queue immediately after we start waiting. In practice, this means our events get buffered into batches, dispatched once every 100ms.

This explains why I was getting batches of 4 or 5 SD1.5 progress events at once, but not the intermittent SDXL delay.

But this 100ms wait has another effect when the events are put on the queue in intervals that don't perfectly line up with the 100ms wait. This is most noticeable when the time between events is >100ms, and can add up to 100ms delay before the event is dispatched.

For example, say the queue is empty and we start a 100ms wait. Then, immediately after - like 0.01ms later - we push an event on to the queue. We still need to wait another 99.9ms before that event will be dispatched. That's the SDXL delay.

The easy fix is to reduce the sleep to something like 0.01 seconds, but this feels kinda dirty. Can't we just wait on the queue and dispatch every event immediately? Not with the normal synchronous queue - but we can with `asyncio.Queue`.

I switched the events queue to use `asyncio.Queue` (as seen in this commit), which lets us asynchronous wait on the queue in a loop.

Unfortunately, I ran into another issue - events now felt like their timing was inconsistent, but in a different way than with the 100ms sleep. The time between pushing events on the queue and dispatching them was not consistently ~0ms as I'd expect - it was highly variable from ~0ms up to ~100ms.

This is resolved by passing the asyncio loop directly into the events service and using its methods to create the task and interact with the queue. I don't fully understand why this resolved the issue, because either way we are interacting with the same event loop (as shown by `asyncio.get_running_loop()`). I suppose there's some scheduling magic happening.
2024-08-12 07:49:58 +10:00
psychedelicious
8ecf72838d fix(api): image downloads with correct filename
Closes #6730
2024-08-10 09:53:56 -04:00
psychedelicious
c3ab8a6aa8 chore(ui): bump rest of deps 2024-08-10 07:45:23 -04:00
psychedelicious
1931aa3e70 chore(ui): typegen 2024-08-10 07:45:23 -04:00
psychedelicious
d3d8055055 feat(ui): update typegen script 2024-08-10 07:45:23 -04:00
psychedelicious
476b0a0403 chore(ui): bump openapi-typescript 2024-08-10 07:45:23 -04:00
psychedelicious
f66584713c fix(api): sort OpenAPI schema properties for InvocationOutputMap
This makes the schema output deterministic!
2024-08-10 07:45:23 -04:00
psychedelicious
33624fc2fa fix(api): duplicate operation id for get_image_full
There's a FastAPI bug that results in the OpenAPI spec outputting the same operation id for each operation when specifying multiple HTTP methods.

- Discussion: https://github.com/tiangolo/fastapi/discussions/8449
- Pending PR to fix: https://github.com/tiangolo/fastapi/pull/10694

In our case, we have a `get_image_full` endpoint that handles GET and HEAD.

This results in an invalid OpenAPI schema. A workaround is to use two route decorators for the operation handler. This works as expected - HEAD requests get the header, and GET requests get the resource. And the OpenAPI schema is valid.
2024-08-10 07:45:23 -04:00
Mary Hipp
41c3e73a3c fix tests 2024-08-09 16:31:42 -04:00
Mary Hipp
97553a7de2 API/DB updates per PR feedback 2024-08-09 16:27:37 -04:00
Mary Hipp
12ba15bfa9 UI updates per PR feedback 2024-08-09 16:00:13 -04:00
Mary Hipp
09d1e190e7 show warning for maxUpscaleDimension if model tab is disabled 2024-08-09 14:07:55 -04:00
Mary Hipp
8eb5d08499 missed translation 2024-08-08 16:01:16 -04:00
Mary Hipp
9be6acde7d require name to submit style preset 2024-08-08 15:53:21 -04:00
Mary Hipp
5f83bb0069 update config docstring 2024-08-08 15:20:43 -04:00
Mary Hipp
b138882abc fix tests? 2024-08-08 15:18:32 -04:00
Mary Hipp
0cd7cdb52e remove send2trash 2024-08-08 15:13:36 -04:00
Mary Hipp
1d8b7e2bcf ruff 2024-08-08 15:08:45 -04:00
Mary Hipp
6461f4758d lint fix 2024-08-08 15:07:58 -04:00
Mary Hipp
3189ab6863 get dynamic prompts working 2024-08-08 15:07:23 -04:00
Mary Hipp
3f9a674d4b seed default presets and handle them in UI 2024-08-08 15:02:41 -04:00
Mary Hipp
587f59b25b focus on prompt textarea when exiting view mode by clicking 2024-08-08 14:38:50 -04:00
Mary Hipp
4952eada87 ruff format 2024-08-08 14:22:40 -04:00
Mary Hipp
581029ebaa ruff 2024-08-08 14:21:37 -04:00
Mary Hipp
42d68780de lint 2024-08-08 14:19:33 -04:00
Mary Hipp
28032a2f80 more cleanup 2024-08-08 14:18:05 -04:00
Mary Hipp
e381e021e9 knip lint 2024-08-08 14:00:17 -04:00
Mary Hipp
641af64f93 regnerate schema 2024-08-08 13:58:25 -04:00
Mary Hipp
a7b83c8b5b Merge remote-tracking branch 'origin/main' into maryhipp/style-presets 2024-08-08 13:56:59 -04:00
Mary Hipp
4cc41e0188 translations and lint fix 2024-08-08 13:56:37 -04:00
Mary Hipp
442fc02429 resize images to 100x100 for style preset images 2024-08-08 12:56:55 -04:00
Mary Hipp
9a4d075074 fix path for style_preset_images, fix png type when converting blobs to files, built view mode components 2024-08-08 12:31:20 -04:00
Sergey Borisov
17ff8196cb Remove tmp code 2024-08-07 22:06:05 -04:00
Sergey Borisov
68f993998a Add support for norm layer 2024-08-07 22:06:05 -04:00
Sergey Borisov
7da6120b39 Fix LoKR refactor bug 2024-08-07 22:06:05 -04:00
blessedcoolant
6cd40965c4 Depth Anything V2 (#6674)
- Updated the previous DepthAnything manual implementation to use the
`transformers` implementation instead. So we can get upstream features.
- Plugged in the DepthAnything models to be handled by Invoke's Model
Manager.
- `small_v2` model will use DepthAnythingV2. This has been added as a
new model option and is now also the default in the Linear UI.


![opera_TxRhmbFole](https://github.com/user-attachments/assets/2a25abe3-ba0b-4f97-b75a-2ce5fd6246e6)


# Merge

Review and merge.
2024-08-07 20:26:58 +05:30
Kent Keirsey
408a1d6dbb Merge branch 'main' into depth_anything_v2 2024-08-07 10:45:56 -04:00
Mary Hipp
0b0abfbe8f clean up image implementation 2024-08-07 10:36:38 -04:00
Mary Hipp
cc96dcf0ed style preset images 2024-08-07 09:58:27 -04:00
Mary Hipp
2604fd9fde a whole bunch of stuff 2024-08-06 15:31:13 -04:00
Hosted Weblate
140670d00e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Phrixus2023
70233fae5d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1321 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Alexander Eichhorn
6f457a6c4c translationBot(ui): update translation (German)
Currently translated at 65.1% (860 of 1321 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
B N
5c319f5356 translationBot(ui): update translation (German)
Currently translated at 64.8% (857 of 1321 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
Riccardo Giovanetti
991a04f090 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1303 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1294 of 1312 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
psychedelicious
c39fa75113 docs(ui): add comment in useIsTooLargeToUpscale 2024-08-06 11:49:35 +10:00
psychedelicious
f7863e17ce docs(ui): add docstring for maxUpscaleDimension 2024-08-06 11:49:35 +10:00
psychedelicious
7c526390ed fix(ui): compare upscaledPixels vs square of max dimension 2024-08-06 11:49:35 +10:00
Mary Hipp
2cff20f87a update translations, change config value to be dimension instead of total pixels 2024-08-06 11:49:35 +10:00
Mary Hipp
90ec757802 lint 2024-08-06 11:49:35 +10:00
Mary Hipp
4b85dfcefe (ui): restore optioanl limit on upcsale output resolution 2024-08-06 11:49:35 +10:00
Mary Hipp
21deefdc41 (ui): add image resolution badge to initial upscale image 2024-08-06 11:49:35 +10:00
Mary Hipp
857d74bbfe wip apply and calculate prompt with interpolation 2024-08-05 19:11:48 -04:00
Mary Hipp
fd7a635777 (ui) the most basic crud ui: view list of presets, create a new preset, edit/delete existing presets 2024-08-05 15:48:23 -04:00
Mary Hipp
af9110e964 fix prompt concat logic 2024-08-05 13:42:28 -04:00
Mary Hipp
a61209206b remove custom SDXL prompts component 2024-08-05 13:40:46 -04:00
Mary Hipp
e05cc62e5f add style presets API layer to UI 2024-08-05 13:37:07 -04:00
psychedelicious
4d4f921a4e build: exclude matplotlib 3.9.1
There was a problem w/ this release on windows and the builds were pulled from pypi. When installing invoke on windows, pip attempts to build from source, but most (all?) systems won't have the prerequisites for this and installs fail.

This also affects GH actions.

The simple fix is to exclude version 3.9.1 from our deps.

For more information, see https://github.com/matplotlib/matplotlib/issues/28551
2024-08-05 08:38:44 +10:00
psychedelicious
98db8f395b feat(app): clean up DiskImageStorage types 2024-08-04 09:43:20 +10:00
psychedelicious
f465a956a3 feat(ui): remove "images can be restored" messages 2024-08-04 09:43:20 +10:00
psychedelicious
9edb02d7ef build: remove send2trash dependency 2024-08-04 09:43:20 +10:00
psychedelicious
6c4cf58a31 feat(app): delete model_images instead of using send2trash 2024-08-04 09:43:20 +10:00
psychedelicious
08993c0d29 feat(app): delete images instead of using send2trash
Closes #6709
2024-08-04 09:43:20 +10:00
blessedcoolant
4f8a4b0f22 Merge branch 'main' into depth_anything_v2 2024-08-03 00:38:57 +05:30
blessedcoolant
a743f3c9b5 fix: implement model to func for depth anything 2024-08-03 00:37:17 +05:30
Mary Hipp
217fe40d99 feat(api): add style_presets router, make sure all CRUD is working, add is_default 2024-08-02 12:29:54 -04:00
Mary Hipp
b76bf50b93 feat(db,api): create new table for style presets, build out record storage service for style presets 2024-08-01 22:20:11 -04:00
Mary Hipp
571ba87e13 fix(ui): include upscale metadata for SDXL multidiffusion 2024-08-01 21:30:42 -04:00
Ryan Dick
f27b6e2b44 Add Grounded SAM support (text prompt image segmentation) (#6701)
## Summary

This PR enables Grounded SAM workflows
(https://arxiv.org/pdf/2401.14159) via the following:
- `GroundingDinoInvocation` for running a Grounding DINO model.
- `SegmentAnythingModelInvocation` for running a SAM model.
- `MaskTensorToImageInvocation` for convenient visualization.

Other notes:
- Uses the transformers implementation of Grounding DINO and SAM.
- The new models are treated as 'utility models' meaning that they are
not visible in the Models tab, and are downloaded automatically the
first time that they are used.

<img width="874" alt="image"
src="https://github.com/user-attachments/assets/1cbaa97d-0e27-4943-86b1-dc7327ba8675">

## Example

Input image

![be10ec0c-20a8-4ac7-840e-d1a05fffdb6a](https://github.com/user-attachments/assets/bf21572c-635d-4703-b4ab-7aba658a9671)

Prompt: "wheels", all other configs default
Result:

![2221c44e-64e6-4b18-b4cb-610514b7a554](https://github.com/user-attachments/assets/344b91f4-7f4a-4b70-8e2e-3b4a0e55176d)

## Related Issues / Discussions

Thanks to @blessedcoolant for the initial draft here:
https://github.com/invoke-ai/InvokeAI/pull/6678

## QA Instructions

Manual tests:
- [ ] Test that default settings work well.
- [ ] Test with / without apply_polygon_refinement
- [ ] Test mask_filter options
- [ ] Test detection_threshold values
- [ ] Test RGB input image
- [ ] Test RGBA input image
- [ ] Test grayscale input image
- [ ] Smoke test that an empty mask is returned when 0 objects are
detected
- [ ] Test on CPU
- [ ] Test on MPS (Works on Mac OS, but had to force both models to run
on CPU instead of MPS)

Performance:
- Peak GPU memory utilization with both Grounding DINO and SAM models
loaded is ~4.5GB. (The models do not need to be loaded at the same time,
so could be offloaded by the MM if needed.)
- On an RTX4090, with the models already cached, node execution takes
~0.6 secs.
- On my CPU, with the models cached, node execution takes ~10secs.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-08-01 20:40:18 +02:00
Ryan Dick
981475a624 Merge branch 'main' into ryan/grounded-sam 2024-08-01 20:30:35 +02:00
Ryan Dick
27ac61a4fb Expose all model options in the GroundingDinoInvocation and the SegmentAnythingInvocation. 2024-08-01 14:23:32 -04:00
Ryan Dick
675ffc2757 Remove BoundingBoxInvocation field name overrides. 2024-08-01 14:05:44 -04:00
Ryan Dick
44b21f10f1 Add a pydantic model_validator to BoundingBoxField to check the validity of the coords. 2024-08-01 14:00:57 -04:00
Ryan Dick
c6d49e8b1f Shorten SegmentAnythingInvocation and GroundingDinoInvocatino docstrings, since they are used as the invocation descriptions in the UI. 2024-08-01 10:17:42 -04:00
Ryan Dick
e6a512aa86 (minor) Tweak order of mask operations. 2024-08-01 10:12:24 -04:00
Ryan Dick
c3a6a6fb22 Rename SegmentAnythingModelInvocation -> SegmentAnythingInvocation. 2024-08-01 10:00:36 -04:00
Ryan Dick
b9dc3460ba Rename SegmentAnythingModel -> SegmentAnythingPipeline. 2024-08-01 09:57:47 -04:00
Ryan Dick
63581ec980 (minor) Add None check to fix static type checking error. 2024-08-01 09:51:53 -04:00
chainchompa
08b1feeed7 add base prop for destination to direct users to different tabs on initial load (#6706)
## Summary
- we want a way to load the studio while being directed to a specific
tab, introduced a destination prop to achieve that
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 19:25:36 -04:00
blessedcoolant
f5cfdcf32d feat: Add BoundingBox Primitive Node 2024-08-01 04:09:08 +05:30
chainchompa
e78fb428f0 simplify destination prop handling 2024-07-31 18:06:22 -04:00
chainchompa
31e270e32c add base prop for destination to direct users to different tabs 2024-07-31 17:20:51 -04:00
Ryan Dick
b5832768dc Return a MaskOutput from SegmentAnythingModelInvocation. And add a MaskTensorToImageInvocation. 2024-07-31 17:16:14 -04:00
Ryan Dick
4ce64b69cb Modular backend - LoRA/LyCORIS (#6667)
## Summary

Code for lora patching from #6577.
Additionally made it the way, that lora can patch not only `weight`, but
also `bias`, because saw some loras which doing it.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Replace old lora patcher with new after review done.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 21:31:31 +02:00
Ryan Dick
5a9173f766 Merge branch 'main' into stalker-modular_lora 2024-07-31 15:13:22 -04:00
Ryan Dick
0bb7ed44f6 Add some docs to OriginalWeightsStorage and fix type hints. 2024-07-31 15:08:24 -04:00
blessedcoolant
332bc9da5b fix: Update depth anything node default to v2 2024-07-31 23:52:29 +05:30
blessedcoolant
08def3da95 fix: Update canvas depth anything processor default to v2 2024-07-31 23:50:13 +05:30
blessedcoolant
daf899f9c4 fix: Move the manual image resizing out of the depth anything pipeline 2024-07-31 23:38:12 +05:30
blessedcoolant
13fb2d1f49 fix: Add Depth Anything V2 as a new option
It is also now the default in the UI replacing Depth Anything V1 small
2024-07-31 23:29:43 +05:30
blessedcoolant
95dde802ea fix: assert the return depth map to be a PIL image 2024-07-31 23:22:01 +05:30
Ryan Dick
fca119773b Split invokeai/backend/image_util/segment_anything/ dir into grounding_dino/ and segment_anything/ 2024-07-31 12:28:47 -04:00
Ryan Dick
0193267a53 Split GroundedSamInvocation into GroundingDinoInvocation and SegmentAnythingModelInvocation. 2024-07-31 12:20:23 -04:00
blessedcoolant
b4cf78a95d fix: make DA Pipeline a subclass of RawModel 2024-07-31 21:14:49 +05:30
Ryan Dick
73386826d6 Make GroundingDinoPipeline and SegmentAnythingModel subclasses of RawModel for type checking purposes. 2024-07-31 10:25:34 -04:00
Ryan Dick
9f448fecb7 Move invokeai/backend/grounded_sam -> invokeai/backend/image_util/grounded_sam 2024-07-31 10:00:30 -04:00
Ryan Dick
bcd1483a14 Re-order GroundedSAMInvocation._to_numpy_masks(...) to do slightly more work on the GPU. 2024-07-31 09:51:14 -04:00
Ryan Dick
e206890e25 Use staticmethods rather than inner functions for the Grounding DINO and SAM model loaders. 2024-07-31 09:28:52 -04:00
Ryan Dick
0a7048f650 (minor) Simplify GroundedSAMInvocation._merge_masks(...). 2024-07-31 08:58:51 -04:00
Ryan Dick
e8ecf5e155 (minor) Move apply_polygon_refinement condition up a layer. 2024-07-31 08:50:56 -04:00
Ryan Dick
33e8604b57 Make Grounding DINO DetectionResult a Pydantic model. 2024-07-31 08:47:00 -04:00
Ryan Dick
cec7399366 (minor) Use a new variable name to satisfy type checks. 2024-07-31 08:27:01 -04:00
Ryan Dick
bdae81e429 (minor) Simplify GroundedSAMInvocation._filter_detections() 2024-07-31 08:25:19 -04:00
Ryan Dick
67c32f3d6c Fix typo: zip(..., strict=True) 2024-07-31 08:15:28 -04:00
blessedcoolant
94d64b8a78 Fix gradient mask values range (#6688)
## Summary

Gradient mask node outputs mask tensor with values in range [-1, 1],
which unexpected range for mask.
It handled in denoise node the way it translates to [0, 2] mask, which
looks even more wrongly)
From discussion with @dunkeroni I understand him as he thought that
negative values will be treated same as 0, so clamping values not change
intended node logic.

## Related Issues / Discussions

#6643 

## QA Instructions

\-

## Merge Plan

\-

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:37:32 +05:30
blessedcoolant
fa3c0c81b3 Merge branch 'main' into stalker7779/fix_gradient_mask 2024-07-31 06:30:44 +05:30
blessedcoolant
66547b99c1 Add more karras schedulers (#6695)
## Summary

Add karras variants of `deis`, `unipc`, `kdpm2` and `kdpm_2_a`
schedulers.
Also added `dpmpp_3` schedulers, but `dpmpp_3s` currently bugged, so
added only 3m:
https://github.com/huggingface/diffusers/issues/9007

## Related Issues / Discussions

\-

## QA Instructions

\-

## Merge Plan

~@psychedelicious We need to decide what to do with schedulers order, as
it looks a bit broken:~

![image](https://github.com/user-attachments/assets/e41674af-d87c-4432-8014-c90bd86965a6)

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:09:26 +05:30
blessedcoolant
328e58be4c Merge branch 'main' into stalker7779/new_karras_schedulers 2024-07-31 05:56:13 +05:30
blessedcoolant
18f89ed5ed fix: Make DepthAnything work with Invoke's Model Management 2024-07-31 03:57:54 +05:30
Ryan Dick
5701c79fab Prevent Grounding DINO and Segment Anything from being moved to MPS - they don't work on MPS devices. 2024-07-30 23:04:15 +02:00
Ryan Dick
2da9f913f3 Add detection_result.py - was forgotten in a prior commit 2024-07-30 16:04:29 -04:00
Ryan Dick
6b10b59abe Make GroundedSAMInvocation work with any input image mode (RGB, RGBA, grayscale). 2024-07-30 15:55:57 -04:00
Ryan Dick
918f77bce0 Move some logic from GroundedSAMInvocation to the backend classes. 2024-07-30 15:34:33 -04:00
blessedcoolant
f170697ebe Merge branch 'main' into depth_anything_v2 2024-07-31 00:53:32 +05:30
blessedcoolant
556c6a1d84 fix: Update DepthAnything to use the transformers implementation 2024-07-31 00:51:55 +05:30
Ryan Dick
aca2a2fa13 Add mask_filter and detection_threshold options to the GroundedSAMInvocation. 2024-07-30 14:22:40 -04:00
Ryan Dick
ff6398f7d8 Add a GroundedSamInvocation for image segmentation from a text prompt (Grounding DINO + Segment Anything Model). 2024-07-30 11:12:26 -04:00
Sergey Borisov
cf996472b9 Suggested changes
Co-Authored-By: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-07-30 04:50:56 +03:00
Sergey Borisov
156d14c349 Run api regen 2024-07-30 04:05:21 +03:00
Sergey Borisov
86f705bf48 Optimize weights handling 2024-07-30 03:39:01 +03:00
Sergey Borisov
1fd9631f2d Comments fix
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:39:50 +03:00
Sergey Borisov
2227a2357f Suggested changes + simplify weights logic in patching
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:34:37 +03:00
Sergey Borisov
58e7ab157d Ruff format 2024-07-29 22:59:17 +03:00
Sergey Borisov
8d16fa6a49 Remove dpmpp_3s schedulers as it bugged now 2024-07-29 22:55:45 +03:00
Sergey Borisov
55e810efa3 Add dpmpp_3 schedulers 2024-07-29 22:52:15 +03:00
chainchompa
2755316021 update delete board modal to be more descriptive (#6690)
## Summary

<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-29 13:43:17 -04:00
chainchompa
6525f18610 Merge branch 'main' into chainchompa/board-delete-info 2024-07-29 12:52:36 -04:00
Ryan Dick
2ad13ac7eb Modular backend - inpaint (#6643)
## Summary

Code for inpainting and inpaint models handling from
https://github.com/invoke-ai/InvokeAI/pull/6577.
Separated in 2 extensions as discussed briefly before, so wait for
discussion about such implementation.

## Related Issues / Discussions

#6606

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.
Try and compare outputs between backends in cases:
- Normal generation on inpaint model
- Inpainting on inpaint model
- Inpainting on normal model

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-29 10:27:25 -04:00
Ryan Dick
693a3eaff5 Merge branch 'main' into stalker-modular_inpaint-2 2024-07-29 10:14:45 -04:00
chainchompa
ffca792d5b edited copy for deleted boards message 2024-07-29 09:46:08 -04:00
Sergey Borisov
86a92bb6b5 Add more karras schedulers 2024-07-29 15:14:34 +03:00
psychedelicious
171a4e6d80 fix(ui): race condition when deleting a board and resetting selected/auto-add
We were checking the selected and auto-add board ids against the query cache to see if they still exist. If not, we reset.

This only works if the query cache is updated by the time we do the check - race condition!

We already have the board id from the query args, so there's no need to check the query cache - just compare the deleted board ID directly.

Previously this file's several listeners were all in a single one and I had adapted/split its logic up a bit wonkily, introducing these problems.
2024-07-29 11:36:03 +10:00
psychedelicious
e3a75a8adf fix(ui): fix logic to reset selected/auto-add boards when toggling show archived boards
The logic was incorrect in two ways:
1. We only ran the logic if we _enable_ showing archived boards. It should be run we we _disable_ showing archived boards.
2. If we couldn't find the selected board in the query cache, we didn't do the reset. This is wrong - if the board isn't in the query cache, we _should_ do the reset. This inverted logic makes more sense before the fix for issue 1.
2024-07-29 11:36:03 +10:00
Ryan Dick
ee7503ce13 Modular backend - T2I Adapter (#6662)
## Summary

T2I Adapter code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-28 15:52:04 -04:00
Sergey Borisov
8500bac3ca Use logger for warning 2024-07-28 22:51:52 +03:00
Ryan Dick
310719eb4c Merge branch 'main' into stalker-modular_t2i_adapter 2024-07-28 15:30:00 -04:00
Ryan Dick
e8e24822ec Modular backend - Seamless (#6651)
## Summary

Seamless code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-28 13:57:38 -04:00
Ryan Dick
c57a7afb87 Merge branch 'main' into stalker7779/modular_seamless 2024-07-28 13:49:43 -04:00
Sergey Borisov
84d028898c Revert wrong comment copy 2024-07-27 13:20:58 +03:00
Sergey Borisov
ed0174fbc6 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-27 13:18:28 +03:00
Sergey Borisov
9e582563eb Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-27 04:25:15 +03:00
Sergey Borisov
faa88f72bf Make lora as separate extensions 2024-07-27 02:39:53 +03:00
chainchompa
0d69a31df0 Merge branch 'main' into chainchompa/board-delete-info 2024-07-26 14:03:18 -04:00
brandonrising
daa5a88eb2 Update docker image to use pnpm version 8 2024-07-26 13:57:33 -04:00
Sergey Borisov
5b84e117b2 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 20:51:12 +03:00
chainchompa
eb257d2d28 update delete board modal to be more descriptive 2024-07-26 13:34:25 -04:00
Sergey Borisov
5810cee6c9 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 19:47:28 +03:00
Sergey Borisov
eef88d1f83 Update gradient mask node version 2024-07-26 19:33:41 +03:00
Sergey Borisov
78f6850fc0 Fix gradient mask values range 2024-07-26 19:28:00 +03:00
Sergey Borisov
bd8890be11 Revert "Fix create gradient mask node output"
This reverts commit 9d1fcba415.
2024-07-26 19:24:46 +03:00
Sergey Borisov
adf1a977ea Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 19:22:26 +03:00
Mary Hipp
e1509bcb45 bump version to 4.2.7 2024-07-26 09:11:17 -07:00
psychedelicious
edcaf8287d feat(app): remove beta from multidiffusion workflows 2024-07-26 13:47:51 +10:00
psychedelicious
39bd30f2a0 feat(app): update default workflows
- Update `MultiDiffusion SDXL (Beta)`
- Add `MultiDiffusion SD1.5 (Beta)`
2024-07-26 13:47:51 +10:00
psychedelicious
102b47190f feat(ui): update qr code cnet starter model
- For SD1.5, use the new V2 version
- Add the SDXL version
2024-07-26 13:34:32 +10:00
Mary Hipp
269fe2e3bb track accordions in tabs separately so open/close state isnt shared 2024-07-26 08:20:24 +10:00
Mary Hipp
b32aa1c77f fix missing quote in translation 2024-07-26 08:20:24 +10:00
Mary Hipp Rogers
6656544ed5 tooltip copy updates
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-07-26 08:20:24 +10:00
Mary Hipp
4c75b93410 feat(ui): add informational popovers for upscale params 2024-07-26 08:20:24 +10:00
Mary Hipp
5be0de967d feat(ui): close generation and advanced accordions when switching to upscale tab 2024-07-26 08:20:24 +10:00
psychedelicious
f8e27b837b fix(ui): memoize model manager components 2024-07-26 07:52:10 +10:00
psychedelicious
47414be1e6 fix(ui): dropped model config cache breaking model edit UI
The model edit UI's composition allows for the model edit form to be instantiated before the model's config has been received. This results in the form having no values - all the fields are blank instead of populated by the model config.

Part of the fix is to pass the model config around directly instead of relying on _all_ components to fetch the model directly.

I also fixed a crapload of performance issues related to improper use of redux selectors.
2024-07-26 07:52:10 +10:00
psychedelicious
74cef38bcf fix(backend): add refiner to single-file load_classes
Fixes single-file refiner loading.
2024-07-26 05:08:01 +10:00
psychedelicious
bb876b8d4e fix(ui): copied edges must have new ids set
Problems this was causing:
- Deleting an edge was a copy of another edge deletes both edges
- Deleting a node that was a copy-with-edges of another node deletes its edges and it's original edges, leaving what I will call "ghost noodles" behind
2024-07-26 04:54:33 +10:00
psychedelicious
ba747373db feat(ui): add button to disable info popovers from info popover 2024-07-25 08:06:41 -04:00
psychedelicious
95661c8b21 feat(ui): enable info popovers by default 2024-07-25 08:06:41 -04:00
blessedcoolant
e5d9ca013e fix: use v1 models for large and base versions 2024-07-25 17:24:12 +05:30
blessedcoolant
4166c756ce wip: depth_anything_v2 init lint fixes 2024-07-25 14:41:22 +05:30
blessedcoolant
4f0dfbd34d wip: depth_anything_v2 initial implementation 2024-07-25 13:53:06 +05:30
psychedelicious
b70ac88684 perf(ui): throttle page changes
Previously you could spam the next/prev buttons and really thrash the server. Throttled to 500ms, which feels like a happy medium between responsive and not-thrash-y.
2024-07-25 11:57:54 +10:00
psychedelicious
24609da6ab feat(ui): tweak pagination styles 2024-07-25 11:57:54 +10:00
psychedelicious
524647b1f1 fix(ui): jumpto interactions
- Autofocus on popover open
- Autoselect number on popover open
- Enter works to change page when input is focused
- Esc works to close popover when input is focused
2024-07-25 11:57:54 +10:00
Mary Hipp
cf1af94f53 feat(ui): make jump to page a popover 2024-07-25 11:57:54 +10:00
Mary Hipp
2a9fdc6314 feat(ui): add jump to option for gallery pagination 2024-07-25 11:57:54 +10:00
Sergey Borisov
46c632e7cc Change layer detection keys according to LyCORIS repository 2024-07-25 02:10:47 +03:00
Sergey Borisov
653f63ae71 Add layer keys check 2024-07-25 02:03:08 +03:00
Sergey Borisov
8a9e2f57a4 Handle bias in full/diff lora layer 2024-07-25 02:02:37 +03:00
Sergey Borisov
31949ed2f2 Refactor code a bit 2024-07-25 02:00:30 +03:00
psychedelicious
3657285b1b chore: bump version v4.2.7rc1 2024-07-25 06:23:50 +10:00
Hosted Weblate
e4b5975305 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
gallegonovato
b59825edc0 translationBot(ui): update translation (Spanish)
Currently translated at 34.4% (448 of 1300 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
Riccardo Giovanetti
25788f6869 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1289 of 1307 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1277 of 1296 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
Sergey Borisov
0ccb304b8b Ruff format 2024-07-24 16:01:29 +03:00
psychedelicious
ca5a4ee59d fix(ui): few cases where board totals don't updated when moving 2024-07-24 22:30:44 +10:00
psychedelicious
4fdefe58c7 feat(ui): clear gallery search on esc key 2024-07-24 14:10:16 +10:00
psychedelicious
9870f5a96f fix(ui): race condition with gallery search
It was possible to clear the search term while a debounced setSearchTerm is still pending. This resulted in the gallery getting out of sync w/ the search term.

To fix this, we need to lift the state up a bit and  cancel any pending debounced setSearchTerm calls when closing the search or clearing the search term box.
2024-07-24 14:10:16 +10:00
psychedelicious
c296ae8cfe feat(ui): add useAssertSingleton hook
Use this to enforce singleton components and hooks.
2024-07-24 14:10:16 +10:00
psychedelicious
17493f4ae0 fix(ui): close boards search when toggling panel 2024-07-24 14:10:16 +10:00
psychedelicious
2503dca813 fix(ui): show boards panel when opening board search 2024-07-24 14:10:16 +10:00
psychedelicious
cb61ef9bb1 feat(ui): use color instead of super tiny icon change to indicate board search toggle state
You can't even see the icon, no point in changing it. Blue = active/open, Grey = closed.
2024-07-24 14:10:16 +10:00
psychedelicious
1831ed620f fix(ui): gallery tabs layout 2024-07-24 14:10:16 +10:00
psychedelicious
c385e76356 fix(ui): DeleteBoardModal must be a singleton 2024-07-24 14:10:16 +10:00
psychedelicious
ff1972fbb3 fix(ui): spacing issue w/ boards search 2024-07-24 14:10:16 +10:00
psychedelicious
c4b3405bfa fix(ui): make uncategorized and board components same height 2024-07-24 14:10:16 +10:00
psychedelicious
ab2548c0cd feat(ui): minor padding tweaks in boardslist 2024-07-24 14:10:16 +10:00
psychedelicious
dc2a3363b0 feat(ui): layout shift when using a collapse w/ flex gap
the gap isn't handled smoothly, there's always a jump. cannot use gap in the collapsible's container
2024-07-24 14:10:16 +10:00
psychedelicious
d7a5fe2805 feat(ui): make arrow icon rotate on boards list 2024-07-24 14:10:16 +10:00
psychedelicious
4e49689d46 feat(ui): make isPrivate required on BoardsList 2024-07-24 14:10:16 +10:00
psychedelicious
ca8441a32f fix(ui): alignment & overflow on gallery header 2024-07-24 14:10:16 +10:00
psychedelicious
44284d671c feat(ui): tweak padding for boards in list 2024-07-24 14:10:16 +10:00
psychedelicious
e89de1d5b7 feat(ui): tweak board tooltip styles
When the totals were high enough, the image looked really off. Also fixed some inconsistent padding.
2024-07-24 14:10:16 +10:00
psychedelicious
6db63349f8 fix(ui): missing key on list element 2024-07-24 14:10:16 +10:00
Mary Hipp
7f6f892533 fix circular dep 2024-07-24 14:10:16 +10:00
Mary Hipp
d1bbd0cf80 cleanup 2024-07-24 14:10:16 +10:00
Mary Hipp
bd73b6b2af reorganize the gallery - move board name to top of image grid, add hide/view boards button for toggle 2024-07-24 14:10:16 +10:00
Mary Hipp
0d40a7d865 exclude uncategorized from search and make sure list is always correct 2024-07-24 14:10:16 +10:00
Mary Hipp
c2f6b80246 move Uncategorized back to private board list 2024-07-24 14:10:16 +10:00
Mary Hipp
80f5f8210a increase font size of Move for boards 2024-07-24 14:10:16 +10:00
Mary Hipp
b7383cc0e5 board UI updates: always show search for boards and images if a term is entered, clear search when view is toggled off 2024-07-24 14:10:16 +10:00
Mary Hipp
2172e4d292 board UI updates: font tweaks, add cover image to tooltip, move uncategorized out of board list, allow collapsible board list if private enabled 2024-07-24 14:10:16 +10:00
Sergey Borisov
ab0bfa709a Handle loras in modular denoise 2024-07-24 05:07:29 +03:00
Sergey Borisov
6af659b1da Handle t2i adapter in modular denoise 2024-07-24 02:55:33 +03:00
psychedelicious
db664afc49 fix(ui): model select overflowing when model names are too long 2024-07-24 09:35:32 +10:00
psychedelicious
b99a53e64e tidy(ui): organise postprocessing listeners 2024-07-24 08:22:46 +10:00
psychedelicious
5f4ce6fda3 tidy(ui): organise postprocessing files 2024-07-24 08:22:46 +10:00
psychedelicious
93e95ce53f chore(ui): lint 2024-07-24 08:22:46 +10:00
psychedelicious
2997f0a1f8 fix(ui): ts issue 2024-07-24 08:22:46 +10:00
psychedelicious
40b262bcc2 tidy(ui): "simpleUpscale" -> "postProcessing" 2024-07-24 08:22:46 +10:00
psychedelicious
a26f050cbb feat(ui): rename ad-hoc upscale stuff to post-processing 2024-07-24 08:22:46 +10:00
psychedelicious
94b5b2a467 feat(ui): improve starter model search for spandrel models 2024-07-24 08:22:46 +10:00
psychedelicious
b4519ea61f tidy(ui): remove unused maxUpscalePixels config 2024-07-24 08:22:46 +10:00
psychedelicious
7f7ce291b5 feat(ui): revised simple upscale warning UI 2024-07-24 08:22:46 +10:00
psychedelicious
aeb53563ff feat(ui): use graph util for ad-hoc upscale graph 2024-07-24 08:22:46 +10:00
psychedelicious
e8d2e2330e fix(ui): set board in ad-hoc upscale graph 2024-07-24 08:22:46 +10:00
psychedelicious
4c6b9ce7c9 fix(ui): use spandrel autoscale node in upscaling tab 2024-07-24 08:22:46 +10:00
psychedelicious
87a2221d72 chore(ui): typegen 2024-07-24 08:22:46 +10:00
psychedelicious
76aa6bdf05 feat(nodes): split spandrel node
`spandrel_image_to_image` now just runs the model with no changes.

`spandrel_image_to_image_autoscale` runs the model repeatedly until the desired scale is reached. previously, `spandrel_image_to_image` did this.
2024-07-24 08:22:46 +10:00
Sergey Borisov
416d29fb83 Ruff format 2024-07-24 01:17:28 +03:00
psychedelicious
0c1994d682 fix(ui): restore pnpm-lock.yaml
#6645 inadvertently removed the lockfile
2024-07-24 08:07:32 +10:00
Sergey Borisov
19c00241c6 Use non-inverted mask generally(except inpaint model handling) 2024-07-24 00:59:13 +03:00
Lincoln Stein
633bbb4e85 [MM2] Use typed ModelRecordChanges for model_install() rather than untyped dict (#6645)
* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* remove v9 pnpm lockfile

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* remove v9 pnpm lockfile

* regenerate schema.ts

* prettified

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-23 21:41:00 +00:00
psychedelicious
a221ab2fb6 fix(ui): upsell menuitem styling 2024-07-24 06:58:27 +10:00
psychedelicious
0279a27f66 fix(ui): render settingsmenu in portal, no zindex 2024-07-24 06:58:27 +10:00
chainchompa
54aef4959c cleanup 2024-07-24 06:56:02 +10:00
chainchompa
4017609b91 clean up useIsAllowedToUpscale since its no longer necessary 2024-07-24 06:56:02 +10:00
chainchompa
cb0bffedd5 fix board handling for simple upscale 2024-07-24 06:56:02 +10:00
chainchompa
1fd2a91ccd only show warning for simple upscale if no simple upscale model is available 2024-07-24 06:56:02 +10:00
Sergey Borisov
c323a760a5 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 23:34:28 +03:00
Sergey Borisov
9d1fcba415 Fix create gradient mask node output 2024-07-23 23:29:28 +03:00
chainchompa
075e0405f9 Update Simple Upscale Button to work with spandrel models (#6649)
## Summary
Update Simple Upscale Button to work with spandrel models, add
UpscaleWarning when models aren't available, clean up ESRGAN logic
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 13:33:01 -04:00
chainchompa
bf6066d834 Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 13:27:48 -04:00
Mary Hipp
5635f65ee9 feat(ui): add upsells for pro edition to settings menu 2024-07-23 13:27:00 -04:00
chainchompa
6317cf8ef9 move handleSimpleUpscaleModels logic into handleSpandrelImageToImageModels listener 2024-07-23 13:13:21 -04:00
chainchompa
9e1daf06f7 Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 12:16:44 -04:00
chainchompa
e1a718b512 cleanup 2024-07-23 12:16:35 -04:00
chainchompa
cbce89162b update simple upscale metadata to match upscale metadata 2024-07-23 12:15:26 -04:00
chainchompa
b46b20210d handle simple upscale models on modelsLoaded 2024-07-23 11:53:43 -04:00
chainchompa
8e89157a83 reuse ParamSpandrelModel for simple upscale 2024-07-23 11:36:46 -04:00
Sergey Borisov
ca21996a97 Remove old seamless class 2024-07-23 18:04:33 +03:00
Sergey Borisov
62aa064e56 Handle seamless in modular denoise 2024-07-23 18:03:59 +03:00
Ryan Dick
7c975f0d00 Modular backend - add ControlNet (#6642)
## Summary

ControlNet code from #6577.

## Related Issues / Discussions

#6606

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Merge #6641 firstly, to be able see output difference properly.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 10:37:25 -04:00
chainchompa
8107884c8d Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 10:28:11 -04:00
chainchompa
a2f49ef7c1 cleanup esrgan frontend code 2024-07-23 10:22:38 -04:00
Ryan Dick
e2e47fd606 Merge branch 'main' into stalker-modular_controlnet 2024-07-23 10:19:12 -04:00
chainchompa
c098edc6b2 updated simple upscale to use spandrel node and list of available spandrel models 2024-07-23 10:15:31 -04:00
chainchompa
bc1d9748ce updated upscale warning to work for simple upscale 2024-07-23 10:04:31 -04:00
Ryan Dick
7b8e25f525 Modular backend - add FreeU (#6641)
## Summary

FreeU code from https://github.com/invoke-ai/InvokeAI/pull/6577.
Also fix issue with sometimes slightly different output.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 10:02:56 -04:00
Ryan Dick
db52f5606f Merge branch 'main' into stalker-modular_freeu 2024-07-23 09:53:32 -04:00
Ryan Dick
de39c5ed21 Modular backend - add rescale cfg (#6640)
## Summary

Rescale CFG code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.
~~Note: for some reasons there slightly different output from run to
run, but I able sometimes to get same output on main and this branch.~~
Fix presented in #6641.

## Merge Plan

~~Nope.~~ Merge #6641 firstly, to be able see output difference
properly.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 09:45:30 -04:00
Ryan Dick
d014dc94fd Merge branch 'main' into stalker7779/modular_rescale_cfg 2024-07-23 09:34:22 -04:00
Ryan Dick
39e804d0f8 Use consistent param names in patch_extension(...) functions: context -> ctx. 2024-07-23 09:18:04 -04:00
psychedelicious
154e8f6e78 chore(ui): lint 2024-07-23 15:42:16 +10:00
psychedelicious
2d31b82e60 feat(ui): tweak layout for warning message 2024-07-23 15:42:16 +10:00
psychedelicious
8f934747f3 feat(ui): updated upscale tab warnings 2024-07-23 15:42:16 +10:00
psychedelicious
4352341a00 feat(ui): starter models filter matches spandrel models to "upscale" search term 2024-07-23 15:42:16 +10:00
psychedelicious
d7e0ec52ff feat(ui): make model install tab controlled
This lets us navigate directly to eg the Starter Models tab
2024-07-23 15:42:16 +10:00
psychedelicious
1072b74c0e fix(ui): edge cases in starter models search 2024-07-23 15:42:16 +10:00
psychedelicious
46dc8c6641 chore(ui): lint 2024-07-23 15:42:16 +10:00
psychedelicious
a8bc6ab5b1 fix(ui): typos 2024-07-23 15:42:16 +10:00
Kent Keirsey
bd91bd4a84 Math Updates 2024-07-23 15:42:16 +10:00
psychedelicious
8756a6b8c3 fix(ui): remove sharpness param 2024-07-23 10:55:54 +10:00
psychedelicious
2e0cebb571 fix(ui): bug where viewer would disappear on upscaling tab 2024-07-23 10:55:54 +10:00
psychedelicious
c3a8184431 feat(ui): add number input to scale slider 2024-07-23 10:55:54 +10:00
psychedelicious
ffa39d74b3 feat(ui): remove first unsharp from upscale graph 2024-07-23 10:55:54 +10:00
psychedelicious
f9d3966ea2 feat(ui): add scale param to upscaling tab 2024-07-23 10:55:54 +10:00
psychedelicious
7cee4e42a7 feat(ui): add addEdgeToMetadata graph helper 2024-07-23 10:55:54 +10:00
psychedelicious
071c7c7c7e chore(ui): typegen 2024-07-23 10:55:54 +10:00
psychedelicious
818045f678 tidy(ui): use × instead of translation string 2024-07-23 10:55:54 +10:00
psychedelicious
7edefbefff feat(ui): add translation for upscaling tab 2024-07-23 10:55:54 +10:00
psychedelicious
29efab70b7 feat(nodes): spandrel_image_to_image.scale defaults to 4.0 2024-07-23 10:55:54 +10:00
psychedelicious
ac6adc392a feat(nodes): add scale and fit_to_multiple_of_8 to spandrel node 2024-07-23 10:55:54 +10:00
psychedelicious
a2ef5d56ee feat(nodes): split out spandrel node upscale logic into utils 2024-07-23 10:55:54 +10:00
Mary Hipp
13f3560e55 more lint fixes 2024-07-23 10:55:54 +10:00
Mary Hipp
c4bd60e00f knip fix 2024-07-23 10:55:54 +10:00
Mary Hipp
54eda9163c remove tiledVAE option and make it true 2024-07-23 10:55:54 +10:00
Mary Hipp
582f384fff lint fix 2024-07-23 10:55:54 +10:00
Mary Hipp
a43211e650 math updates for controlnet tiles 2024-07-23 10:55:54 +10:00
Mary Hipp
6cb0581b0d add description to upscale model dropdown tooltip 2024-07-23 10:55:54 +10:00
Mary Hipp
845d77916e lint fix 2024-07-23 10:55:54 +10:00
Mary Hipp
f18431a999 use fn to get width/height of output image 2024-07-23 10:55:54 +10:00
Mary Hipp
5060bf2f62 lint fix 2024-07-23 10:55:54 +10:00
Mary Hipp
7854d913b2 add upscaling data to metadata 2024-07-23 10:55:54 +10:00
Mary Hipp
890a3ce32a add limited metadata 2024-07-23 10:55:54 +10:00
Mary Hipp
fb4b3f3350 fix creativity/sharpness/structure scales, move where loras are added, get scale const working 2024-07-23 10:55:54 +10:00
Mary Hipp
d166b08b6a restore scale but hardcode it to 2 regardless of upscale model 2024-07-23 10:55:54 +10:00
psychedelicious
5266e9e682 fix(ui): remove unused scale param 2024-07-23 10:55:54 +10:00
psychedelicious
d0265e21b0 fix(ui): use spandrel node for upscaling 2024-07-23 10:55:54 +10:00
psychedelicious
3126e8e49a chore(ui): typegen 2024-07-23 10:55:54 +10:00
Mary Hipp
9e3412d776 translations and lint fix 2024-07-23 10:55:54 +10:00
Mary Hipp
4a09cc57be use the tile conttrolnet in graph instad of marys hardcoded key 2024-07-23 10:55:54 +10:00
Mary Hipp
5ab36e0433 add warning if no upscale model or no tile controlnet for base model 2024-07-23 10:55:54 +10:00
Mary Hipp
d2bf3629bf base scale off of upscale model selected 2024-07-23 10:55:54 +10:00
Mary Hipp
d9b217d908 hook up sharpness, structure, and creativity 2024-07-23 10:55:54 +10:00
Mary Hipp
2847f1b5ac add vae toggle, lint fix 2024-07-23 10:55:54 +10:00
Mary Hipp
bc30850f3a hardcode marys tile cnet key 2024-07-23 10:55:54 +10:00
Mary Hipp
7668dc68a0 cleanup, add loras 2024-07-23 10:55:54 +10:00
Mary Hipp
ea449f5a0a upscale graph built, no multidiffusion yet 2024-07-23 10:55:54 +10:00
Mary Hipp
5a1ed99ca1 restore adhoc upscale button 2024-07-23 10:55:54 +10:00
Mary Hipp
3a2707ac02 disable invoke button properly for upscaling tab 2024-07-23 10:55:54 +10:00
Mary Hipp
ce5b1103ed add send to upscale to context menu 2024-07-23 10:55:54 +10:00
Mary Hipp
fd91b83d86 build out the rest of the accordions 2024-07-23 10:55:54 +10:00
Mary Hipp
a0a54348e8 removed upscale button, created spandrel model dropdown, created upscale initial image that works with dnd 2024-07-23 10:55:54 +10:00
Mary Hipp
43b3e242b0 tidy(ui): refactor parameters panel components to be 1:1 with tabs 2024-07-23 10:55:54 +10:00
Sergey Borisov
4e8dcb7a1a Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 01:46:29 +03:00
Sergey Borisov
3cb13d6288 Rename as suggested in other PRs
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 01:01:18 +03:00
chainchompa
4f01c0f2d3 fix: update uncategorized board totals when deleting and moving images (#6646)
## Summary
- currently the total for uncategorized images is not updating when
moving and deleting images, this will update that count when making
those actions
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-22 17:10:52 -04:00
Sergey Borisov
87eb018380 Revert debug change 2024-07-22 23:49:20 +03:00
Sergey Borisov
5003e5d763 Same changes as in other PRs, add check for running inpainting on inpaint model without source image
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 23:47:39 +03:00
chainchompa
e92af52fb8 fix moving items to uncategorized updating 2024-07-22 16:11:36 -04:00
Sergey Borisov
5f0fe3c8a9 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 23:09:11 +03:00
chainchompa
339dddd018 update uncategorized board totals when deleting and moving images 2024-07-22 16:03:01 -04:00
Sergey Borisov
1b359b55cb Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 22:17:29 +03:00
Sergey Borisov
58f3072b91 Handle inpainting on normal models 2024-07-21 22:17:29 +03:00
Sergey Borisov
9e7b470189 Handle inpaint models 2024-07-21 20:45:55 +03:00
Sergey Borisov
42356ec866 Add ControlNet support to denoise 2024-07-21 20:01:30 +03:00
Sergey Borisov
1748848b7b Ruff fixes 2024-07-21 18:37:20 +03:00
Sergey Borisov
5772965f09 Fix slightly different output with old backend 2024-07-21 18:31:30 +03:00
Sergey Borisov
e046e60e1c Add FreeU support to denoise 2024-07-21 18:31:10 +03:00
Sergey Borisov
9a1420280e Add rescale cfg support to denoise 2024-07-21 17:33:43 +03:00
1142 changed files with 63710 additions and 54375 deletions

View File

@@ -13,6 +13,12 @@ on:
tags:
- 'v*.*.*'
workflow_dispatch:
inputs:
push-to-registry:
description: Push the built image to the container registry
required: false
type: boolean
default: false
permissions:
contents: write
@@ -50,16 +56,15 @@ jobs:
df -h
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Docker meta
id: meta
uses: docker/metadata-action@v4
uses: docker/metadata-action@v5
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
images: |
ghcr.io/${{ github.repository }}
${{ env.DOCKERHUB_REPOSITORY }}
tags: |
type=ref,event=branch
type=ref,event=tag
@@ -72,49 +77,33 @@ jobs:
suffix=-${{ matrix.gpu-driver }},onlatest=false
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
uses: docker/setup-buildx-action@v3
with:
platforms: ${{ env.PLATFORMS }}
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v2
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# - name: Login to Docker Hub
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
# uses: docker/login-action@v2
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v4
uses: docker/build-push-action@v6
with:
context: .
file: docker/Dockerfile
platforms: ${{ env.PLATFORMS }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: |
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
type=gha,scope=main-${{ matrix.gpu-driver }}
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
# - name: Docker Hub Description
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
# uses: peter-evans/dockerhub-description@v3
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
# short-description: ${{ github.event.repository.description }}

View File

@@ -62,7 +62,7 @@ jobs:
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff
run: pip install ruff==0.6.0
shell: bash
- name: ruff check

View File

@@ -60,7 +60,7 @@ jobs:
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
os: macOS-14
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022

View File

@@ -55,6 +55,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build

View File

@@ -1,20 +1,22 @@
# Invoke in Docker
- Ensure that Docker can use the GPU on your system
- This documentation assumes Linux, but should work similarly under Windows with WSL2
First things first:
- Ensure that Docker can use your [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] GPU.
- This document assumes a Linux system, but should work similarly under Windows with WSL2.
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
## Quickstart :lightning:
## Quickstart
No `docker compose`, no persistence, just a simple one-liner using the official images:
No `docker compose`, no persistence, single command, using the official images:
**CUDA:**
**CUDA (NVIDIA GPU):**
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm:**
**ROCm (AMD GPU):**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
@@ -22,12 +24,20 @@ docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invok
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
> [!TIP]
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
### Data persistence
To persist your generated images and downloaded models outside of the container, add a `--volume/-v` flag to the above command, e.g.:
```bash
docker run --volume /some/local/path:/invokeai {...etc...}
```
`/some/local/path/invokeai` will contain all your data.
It can *usually* be reused between different installs of Invoke. Tread with caution and read the release notes!
## Customize the container
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
The included `run.sh` script is a convenience wrapper around `docker compose`. It can be helpful for passing additional build arguments to `docker compose`. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
@@ -38,11 +48,14 @@ cp .env.sample .env
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
>[!TIP]
>When using the `run.sh` script, the container will continue running after Ctrl+C. To shut it down, use the `docker compose down` command.
## Docker setup in detail
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
1. Ensure buildkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
3. Ensure docker daemon is able to access the GPU.
@@ -98,25 +111,7 @@ GPU_DRIVER=cuda
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even More Customizing!
---
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory
Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```yaml
command:
- invokeai-configure
- --yes
```
Or install models:
```yaml
command:
- invokeai-model-install
```
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html

View File

@@ -196,6 +196,22 @@ tips to reduce the problem:
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Checkpoint Models Load Slowly or Use Too Much RAM
The difference between diffusers models (a folder containing multiple
subfolders) and checkpoint models (a file ending with .safetensors or
.ckpt) is that InvokeAI is able to load diffusers models into memory
incrementally, while checkpoint models must be loaded all at
once. With very large models, or systems with limited RAM, you may
experience slowdowns and other memory-related issues when loading
checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.
## Memory Leak (Linux)

View File

@@ -17,7 +17,7 @@
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
scriptdir=$(dirname $(readlink -f "$0"))
cd "$scriptdir"
. .venv/bin/activate

View File

@@ -1,5 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from logging import Logger
import torch
@@ -31,6 +32,8 @@ from invokeai.app.services.session_processor.session_processor_default import (
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -63,7 +66,12 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
def initialize(
config: InvokeAIAppConfig,
event_handler_id: int,
loop: asyncio.AbstractEventLoop,
logger: Logger = logger,
) -> None:
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
@@ -74,6 +82,7 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -84,7 +93,7 @@ class ApiDependencies:
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
events = FastAPIEventService(event_handler_id, loop=loop)
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
@@ -109,6 +118,8 @@ class ApiDependencies:
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
services = InvocationServices(
board_image_records=board_image_records,
@@ -134,6 +145,8 @@ class ApiDependencies:
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -218,9 +218,8 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.api_route(
@images_router.get(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@@ -231,6 +230,18 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@@ -242,6 +253,7 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@@ -3,10 +3,12 @@
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from enum import Enum
from tempfile import TemporaryDirectory
from typing import Any, Dict, List, Optional, Type
from typing import List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse, HTMLResponse
@@ -17,6 +19,7 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.config import get_config
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
@@ -31,6 +34,7 @@ from invokeai.backend.model_manager.config import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
@@ -50,6 +54,13 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
class CacheType(str, Enum):
"""Cache type - one of vram or ram."""
RAM = "RAM"
VRAM = "VRAM"
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
"""Add a cover image URL to a model configuration."""
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
@@ -430,13 +441,11 @@ async def delete_model_image(
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
access_token: Optional[str] = Query(description="access token for the remote resource", default=None),
config: ModelRecordChanges = Body(
description="Object containing fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
example={"name": "string", "description": "string"},
),
access_token: Optional[str] = None,
) -> ModelInstallJob:
"""Install a model using a string identifier.
@@ -451,8 +460,9 @@ async def install_model(
- model/name:fp16:path/to/model.safetensors
- model/name::path/to/model.safetensors
`config` is an optional dict containing model configuration values that will override
the ones that are probed automatically.
`config` is a ModelRecordChanges object. Fields in this object will override
the ones that are probed automatically. Pass an empty object to accept
all the defaults.
`access_token` is an optional access token for use with Urls that require
authentication.
@@ -737,7 +747,7 @@ async def convert_model(
# write the converted file to the convert path
raw_model = converted_model.model
assert hasattr(raw_model, "save_pretrained")
raw_model.save_pretrained(convert_path)
raw_model.save_pretrained(convert_path) # type: ignore
assert convert_path.exists()
# temporarily rename the original safetensors file so that there is no naming conflict
@@ -750,12 +760,12 @@ async def convert_model(
try:
new_key = installer.install_path(
convert_path,
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"source": model_config.source,
},
config=ModelRecordChanges(
name=original_name,
description=model_config.description,
hash=model_config.hash,
source=model_config.source,
),
)
except Exception as e:
logger.error(str(e))
@@ -798,3 +808,83 @@ async def get_starter_models() -> list[StarterModel]:
model.dependencies = missing_deps
return starter_models
@model_manager_router.get(
"/model_cache",
operation_id="get_cache_size",
response_model=float,
summary="Get maximum size of model manager RAM or VRAM cache.",
)
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
"""Return the current RAM or VRAM cache size setting (in GB)."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
value = 0.0
if cache_type == CacheType.RAM:
value = cache.max_cache_size
elif cache_type == CacheType.VRAM:
value = cache.max_vram_cache_size
return value
@model_manager_router.put(
"/model_cache",
operation_id="set_cache_size",
response_model=float,
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
)
async def set_cache_size(
value: float = Query(description="The new value for the maximum cache size"),
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
) -> float:
"""Set the current RAM or VRAM cache size setting (in GB). ."""
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
app_config = get_config()
# Record initial state.
vram_old = app_config.vram
ram_old = app_config.ram
# Prepare target state.
vram_new = vram_old
ram_new = ram_old
if cache_type == CacheType.RAM:
ram_new = value
elif cache_type == CacheType.VRAM:
vram_new = value
else:
raise ValueError(f"Unexpected {cache_type=}.")
config_path = app_config.config_file_path
new_config_path = config_path.with_suffix(".yaml.new")
try:
# Try to apply the target state.
cache.max_vram_cache_size = vram_new
cache.max_cache_size = ram_new
app_config.ram = ram_new
app_config.vram = vram_new
if persist:
app_config.write_file(new_config_path)
shutil.move(new_config_path, config_path)
except Exception as e:
# If there was a failure, restore the initial state.
cache.max_cache_size = ram_old
cache.max_vram_cache_size = vram_old
app_config.ram = ram_old
app_config.vram = vram_old
raise RuntimeError("Failed to update cache size") from e
return value
@model_manager_router.get(
"/stats",
operation_id="get_stats",
response_model=Optional[CacheStats],
summary="Get model manager RAM cache performance statistics.",
)
async def get_stats() -> Optional[CacheStats]:
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats

View File

@@ -11,6 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByDestinationResult,
ClearResult,
EnqueueBatchResult,
PruneResult,
@@ -105,6 +106,21 @@ async def cancel_by_batch_ids(
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
@session_queue_router.put(
"/{queue_id}/cancel_by_destination",
operation_id="cancel_by_destination",
responses={200: {"model": CancelByBatchIDsResult}},
)
async def cancel_by_destination(
queue_id: str = Path(description="The queue id to perform this operation on"),
destination: str = Query(description="The destination to cancel all queue items for"),
) -> CancelByDestinationResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
queue_id=queue_id, destination=destination
)
@session_queue_router.put(
"/{queue_id}/clear",
operation_id="clear",

View File

@@ -0,0 +1,274 @@
import csv
import io
import json
import traceback
from typing import Optional
import pydantic
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
from invokeai.app.services.style_preset_records.style_preset_records_common import (
InvalidPresetImportDataError,
PresetData,
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordWithImage,
StylePresetWithoutId,
UnsupportedFileTypeError,
parse_presets_from_file,
)
class StylePresetFormData(BaseModel):
name: str = Field(description="Preset name")
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
type: PresetType = Field(description="Preset type")
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
@style_presets_router.get(
"/i/{style_preset_id}",
operation_id="get_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def get_style_preset(
style_preset_id: str = Path(description="The style preset to get"),
) -> StylePresetRecordWithImage:
"""Gets a style preset"""
try:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
except StylePresetNotFoundError:
raise HTTPException(status_code=404, detail="Style preset not found")
@style_presets_router.patch(
"/i/{style_preset_id}",
operation_id="update_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def update_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
style_preset_id: str = Path(description="The id of the style preset to update"),
data: str = Form(description="The data of the style preset to update"),
) -> StylePresetRecordWithImage:
"""Updates a style preset"""
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
else:
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
changes = StylePresetChanges(name=name, preset_data=preset_data, type=type)
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
style_preset_id=style_preset_id, changes=changes
)
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
@style_presets_router.delete(
"/i/{style_preset_id}",
operation_id="delete_style_preset",
)
async def delete_style_preset(
style_preset_id: str = Path(description="The style preset to delete"),
) -> None:
"""Deletes a style preset"""
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
@style_presets_router.post(
"/",
operation_id="create_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def create_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
data: str = Form(description="The data of the style preset to create"),
) -> StylePresetRecordWithImage:
"""Creates a style preset"""
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
@style_presets_router.get(
"/",
operation_id="list_style_presets",
responses={
200: {"model": list[StylePresetRecordWithImage]},
},
)
async def list_style_presets() -> list[StylePresetRecordWithImage]:
"""Gets a page of style presets"""
style_presets_with_image: list[StylePresetRecordWithImage] = []
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
for preset in style_presets:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
style_presets_with_image.append(style_preset_with_image)
return style_presets_with_image
@style_presets_router.get(
"/i/{style_preset_id}/image",
operation_id="get_style_preset_image",
responses={
200: {
"description": "The style preset image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The style preset image could not be found"},
},
status_code=200,
)
async def get_style_preset_image(
style_preset_id: str = Path(description="The id of the style preset image to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
response = FileResponse(
path,
media_type="image/png",
filename=style_preset_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@style_presets_router.get(
"/export",
operation_id="export_style_presets",
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
status_code=200,
)
async def export_style_presets():
# Create an in-memory stream to store the CSV data
output = io.StringIO()
writer = csv.writer(output)
# Write the header
writer.writerow(["name", "prompt", "negative_prompt"])
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
for preset in style_presets:
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
csv_data = output.getvalue()
output.close()
return Response(
content=csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
)
@style_presets_router.post(
"/import",
operation_id="import_style_presets",
)
async def import_style_presets(file: UploadFile = File(description="The file to import")):
try:
style_presets = await parse_presets_from_file(file)
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
except InvalidPresetImportDataError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=400, detail=str(e))
except UnsupportedFileTypeError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail=str(e))

View File

@@ -30,6 +30,7 @@ from invokeai.app.api.routers import (
images,
model_manager,
session_queue,
style_presets,
utilities,
workflows,
)
@@ -55,11 +56,13 @@ mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -106,6 +109,7 @@ app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -184,8 +188,6 @@ def invoke_api() -> None:
check_cudnn(logger)
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app=app,
host=app_config.host,

View File

@@ -20,7 +20,6 @@ from typing import (
Type,
TypeVar,
Union,
cast,
)
import semver
@@ -80,7 +79,7 @@ class UIConfigBase(BaseModel):
version: str = Field(
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
node_pack: str = Field(description="The node pack that this node belongs to, will be 'invokeai' for built-in nodes")
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
model_config = ConfigDict(
@@ -230,18 +229,16 @@ class BaseInvocation(ABC, BaseModel):
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
if uiconfig is not None:
if uiconfig.title is not None:
schema["title"] = uiconfig.title
if uiconfig.tags is not None:
schema["tags"] = uiconfig.tags
if uiconfig.category is not None:
schema["category"] = uiconfig.category
if uiconfig.node_pack is not None:
schema["node_pack"] = uiconfig.node_pack
schema["classification"] = uiconfig.classification
schema["version"] = uiconfig.version
if title := model_class.UIConfig.title:
schema["title"] = title
if tags := model_class.UIConfig.tags:
schema["tags"] = tags
if category := model_class.UIConfig.category:
schema["category"] = category
if node_pack := model_class.UIConfig.node_pack:
schema["node_pack"] = node_pack
schema["classification"] = model_class.UIConfig.classification
schema["version"] = model_class.UIConfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
schema["class"] = "invocation"
@@ -312,7 +309,7 @@ class BaseInvocation(ABC, BaseModel):
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
)
UIConfig: ClassVar[Type[UIConfigBase]]
UIConfig: ClassVar[UIConfigBase]
model_config = ConfigDict(
protected_namespaces=(),
@@ -441,30 +438,25 @@ def invocation(
validate_fields(cls.model_fields, invocation_type)
# Add OpenAPI schema extras
uiconfig_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconfig_name:
cls.UIConfig = type(uiconfig_name, (UIConfigBase,), {})
cls.UIConfig.title = title
cls.UIConfig.tags = tags
cls.UIConfig.category = category
cls.UIConfig.classification = classification
# Grab the node pack's name from the module name, if it's a custom node
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
if is_custom_node:
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
else:
cls.UIConfig.node_pack = None
uiconfig: dict[str, Any] = {}
uiconfig["title"] = title
uiconfig["tags"] = tags
uiconfig["category"] = category
uiconfig["classification"] = classification
# The node pack is the module name - will be "invokeai" for built-in nodes
uiconfig["node_pack"] = cls.__module__.split(".")[0]
if version is not None:
try:
semver.Version.parse(version)
except ValueError as e:
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
cls.UIConfig.version = version
uiconfig["version"] = version
else:
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
cls.UIConfig.version = "1.0.0"
uiconfig["version"] = "1.0.0"
cls.UIConfig = UIConfigBase(**uiconfig)
if use_cache is not None:
cls.model_fields["use_cache"].default = use_cache

View File

@@ -80,12 +80,12 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
@@ -175,13 +175,13 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),

View File

@@ -21,6 +21,8 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -44,13 +46,12 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@@ -592,7 +593,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
@@ -600,28 +608,33 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.2",
version="1.1.3",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
default="small_v2", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
@invocation(

View File

@@ -39,7 +39,7 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
version="1.2.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@@ -93,6 +93,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
blur_tensor[blur_tensor < 0] = 0.0
threshold = 1 - self.minimum_denoise

View File

@@ -37,9 +37,9 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
@@ -58,7 +58,15 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.extensions.t2i_adapter import T2IAdapterExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
@@ -177,7 +185,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
ui_order=8,
)
@@ -463,6 +471,65 @@ class DenoiseLatentsInvocation(BaseInvocation):
return controlnet_data
@staticmethod
def parse_controlnet_field(
exit_stack: ExitStack,
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
ext_manager: ExtensionsManager,
) -> None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
for control_info in control_list:
model = exit_stack.enter_context(context.models.load(control_info.control_model))
ext_manager.add_extension(
ControlNetExt(
model=model,
image=context.images.get_pil(control_info.image.image_name),
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
)
@staticmethod
def parse_t2i_adapter_field(
exit_stack: ExitStack,
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
) -> None:
if t2i_adapters is None:
return
# Handle the possibility that t2i_adapters could be a list or a single T2IAdapterField.
if isinstance(t2i_adapters, T2IAdapterField):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
model_id=t2i_adapter_field.t2i_adapter_model,
image=context.images.get_pil(t2i_adapter_field.image.image_name),
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
resize_mode=t2i_adapter_field.resize_mode,
)
)
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
@@ -672,7 +739,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
return mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
@@ -730,10 +797,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype = TorchDevice.choose_torch_dtype()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
@@ -766,6 +829,52 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
### preview
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
ext_manager.add_extension(PreviewExt(step_callback))
### cfg rescale
if self.cfg_rescale_multiplier > 0:
ext_manager.add_extension(RescaleCFGExt(self.cfg_rescale_multiplier))
### freeu
if self.unet.freeu_config:
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
### lora
if self.unet.loras:
for lora_field in self.unet.loras:
ext_manager.add_extension(
LoRAExt(
node_context=context,
model_id=lora_field.lora,
weight=lora_field.weight,
)
)
### seamless
if self.unet.seamless_axes:
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
### inpaint
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
# prevalent, we will have to revisit how we initialize the inpainting extensions.
if unet_config.variant == ModelVariantType.Inpaint:
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
elif mask is not None:
ext_manager.add_extension(InpaintExt(mask, is_gradient_mask))
# Initialize context for modular denoise
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
@@ -781,31 +890,31 @@ class DenoiseLatentsInvocation(BaseInvocation):
scheduler=scheduler,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
# context for loading additional models
with ExitStack() as exit_stack:
# later should be smth like:
# for extension_field in self.extensions:
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
### preview
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
ext_manager.add_extension(PreviewExt(step_callback))
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(unet),
# ext: freeu, seamless, ip adapter, lora
ext_manager.patch_unet(model_state_dict, unet),
):
sd_backend = StableDiffusionBackend(unet, scheduler)
denoise_ctx.unet = unet
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
# ext: freeu, seamless, ip adapter, lora
ext_manager.patch_unet(unet, cached_weights),
):
sd_backend = StableDiffusionBackend(unet, scheduler)
denoise_ctx.unet = unet
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.detach().to("cpu")
@@ -820,6 +929,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint).
# We invert the mask here for compatibility with the old backend implementation.
if mask is not None:
mask = 1 - mask
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
@@ -862,14 +975,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet),
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
@@ -40,14 +40,18 @@ class UIType(str, Enum, metaclass=MetaEnum):
# region Model Field Types
MainModel = "MainModelField"
FluxMainModel = "FluxMainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
FluxVAEModel = "FluxVAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
T5EncoderModel = "T5EncoderModelField"
CLIPEmbedModel = "CLIPEmbedModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
@@ -125,13 +129,17 @@ class FieldDescriptions:
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
t5_encoder = "T5 tokenizer and text encoder"
clip_embed_model = "CLIP Embed loader"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
flux_model = "Flux model (Transformer) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
@@ -173,7 +181,7 @@ class FieldDescriptions:
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
denoise_mask = "A mask of the region to apply the denoising process to."
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
@@ -231,6 +239,12 @@ class ColorField(BaseModel):
return (self.r, self.g, self.b, self.a)
class FluxConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
@@ -242,6 +256,31 @@ class ConditioningField(BaseModel):
)
class BoundingBoxField(BaseModel):
"""A bounding box primitive value."""
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
score: Optional[float] = Field(
default=None,
ge=0.0,
le=1.0,
description="The score associated with the bounding box. In the range [0, 1]. This value is typically set "
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
class MetadataField(RootModel[dict[str, Any]]):
"""
Pydantic model for metadata with custom root of type dict[str, Any].

View File

@@ -0,0 +1,249 @@
from typing import Callable, Optional
import torch
import torchvision.transforms as tv_transforms
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling_utils import (
clip_timestep_schedule,
generate_img_ids,
get_noise,
get_schedule,
pack,
unpack,
)
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_denoise",
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run denoising process with a FLUX transformer model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.denoise_mask,
input=Input.Connection,
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
transformer: TransformerField = InputField(
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
)
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
# Prepare input noise.
noise = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
transformer_info = context.models.load(self.transformer.transformer)
is_schnell = "schnell" in transformer_info.config.config_path
# Calculate the timestep schedule.
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=image_seq_len,
shift=not is_schnell,
)
# Clip the timesteps schedule based on denoising_start and denoising_end.
timesteps = clip_timestep_schedule(timesteps, self.denoising_start, self.denoising_end)
# Prepare input latent image.
if init_latents is not None:
# If init_latents is provided, we are doing image-to-image.
if is_schnell:
context.logger.warning(
"Running image-to-image with a FLUX schnell model. This is not recommended. The results are likely "
"to be poor. Consider using a FLUX dev model instead."
)
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * noise + (1.0 - t_0) * init_latents
else:
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
if self.denoising_start > 1e-5:
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
x = noise
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
# denoising steps.
if len(timesteps) <= 1:
return x
inpaint_mask = self._prep_inpaint_mask(context, x)
b, _c, h, w = x.shape
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
# Pack all latent tensors.
init_latents = pack(init_latents) if init_latents is not None else None
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
noise = pack(noise)
x = pack(x)
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
assert image_seq_len == x.shape[1]
# Prepare inpaint extension.
inpaint_extension: InpaintExtension | None = None
if inpaint_mask is not None:
assert init_latents is not None
inpaint_extension = InpaintExtension(
init_latents=init_latents,
inpaint_mask=inpaint_mask,
noise=noise,
)
with transformer_info as transformer:
assert isinstance(transformer, Flux)
x = denoise(
model=transformer,
img=x,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
guidance=self.guidance,
inpaint_extension=inpaint_extension,
)
x = unpack(x.float(), self.height, self.width)
return x
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
"""Prepare the inpaint mask.
- Loads the mask
- Resizes if necessary
- Casts to same device/dtype as latents
- Expands mask to the same shape as latents so that they line up after 'packing'
Args:
context (InvocationContext): The invocation context, for loading the inpaint mask.
latents (torch.Tensor): A latent image tensor. In 'unpacked' format. Used to determine the target shape,
device, and dtype for the inpaint mask.
Returns:
torch.Tensor | None: Inpaint mask.
"""
if self.denoise_mask is None:
return None
mask = context.tensors.load(self.denoise_mask.mask_name)
_, _, latent_height, latent_width = latents.shape
mask = tv_resize(
img=mask,
size=[latent_height, latent_width],
interpolation=tv_transforms.InterpolationMode.BILINEAR,
antialias=False,
)
mask = mask.to(device=latents.device, dtype=latents.dtype)
# Expand the inpaint mask to the same shape as `latents` so that when we 'pack' `mask` it lines up with
# `latents`.
return mask.expand_as(latents)
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback

View File

@@ -0,0 +1,92 @@
from typing import Literal
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import FluxConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.conditioner import HFEncoder
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
@invocation(
"flux_text_encoder",
title="FLUX Text Encoding",
tags=["prompt", "conditioning", "flux"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class FluxTextEncoderInvocation(BaseInvocation):
"""Encodes and preps a prompt for a flux image."""
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
t5_max_seq_len: Literal[256, 512] = InputField(
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
)
prompt: str = InputField(description="Text prompt to encode.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
# Note: The T5 and CLIP encoding are done in separate functions to ensure that all model references are locally
# scoped. This ensures that the T5 model can be freed and gc'd before loading the CLIP model (if necessary).
t5_embeddings = self._t5_encode(context)
clip_embeddings = self._clip_encode(context)
conditioning_data = ConditioningFieldData(
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
)
conditioning_name = context.conditioning.save(conditioning_data)
return FluxConditioningOutput.build(conditioning_name)
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
prompt = [self.prompt]
with (
t5_text_encoder_info as t5_text_encoder,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(t5_tokenizer, T5Tokenizer)
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
prompt_embeds = t5_encoder(prompt)
assert isinstance(prompt_embeds, torch.Tensor)
return prompt_embeds
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
prompt = [self.prompt]
with (
clip_text_encoder_info as clip_text_encoder,
clip_tokenizer_info as clip_tokenizer,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
pooled_prompt_embeds = clip_encoder(prompt)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return pooled_prompt_embeds

View File

@@ -0,0 +1,60 @@
import torch
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_decode",
title="FLUX Latents to Image",
tags=["latents", "image", "vae", "l2i", "flux"],
category="latents",
version="1.0.0",
)
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
image = self._vae_decode(vae_info=vae_info, latents=latents)
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,67 @@
import einops
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_vae_encode",
title="FLUX Image to Latents",
tags=["latents", "image", "vae", "i2l", "flux"],
category="latents",
version="1.0.0",
)
class FluxVaeEncodeInvocation(BaseInvocation):
"""Encodes an image into latents."""
image: ImageField = InputField(
description="The image to encode.",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
# TODO(ryand): Expose seed parameter at the invocation level.
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
# should be used for VAE encode sampling.
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
image_tensor = image_tensor.to(
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
)
latents = vae.encode(image_tensor, sample=True, generator=generator)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)

View File

@@ -0,0 +1,100 @@
from pathlib import Path
from typing import Literal
import torch
from PIL import Image
from transformers import pipeline
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField
from invokeai.app.invocations.primitives import BoundingBoxCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
GroundingDinoModelKey = Literal["grounding-dino-tiny", "grounding-dino-base"]
GROUNDING_DINO_MODEL_IDS: dict[GroundingDinoModelKey, str] = {
"grounding-dino-tiny": "IDEA-Research/grounding-dino-tiny",
"grounding-dino-base": "IDEA-Research/grounding-dino-base",
}
@invocation(
"grounding_dino",
title="Grounding DINO (Text Prompt Object Detection)",
tags=["prompt", "object detection"],
category="image",
version="1.0.0",
)
class GroundingDinoInvocation(BaseInvocation):
"""Runs a Grounding DINO model. Performs zero-shot bounding-box object detection from a text prompt."""
# Reference:
# - https://arxiv.org/pdf/2303.05499
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: GroundingDinoModelKey = InputField(description="The Grounding DINO model to use.")
prompt: str = InputField(description="The prompt describing the object to segment.")
image: ImageField = InputField(description="The image to segment.")
detection_threshold: float = InputField(
description="The detection threshold for the Grounding DINO model. All detected bounding boxes with scores above this threshold will be returned.",
ge=0.0,
le=1.0,
default=0.3,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BoundingBoxCollectionOutput:
# The model expects a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
detections = self._detect(
context=context, image=image_pil, labels=[self.prompt], threshold=self.detection_threshold
)
# Convert detections to BoundingBoxCollectionOutput.
bounding_boxes: list[BoundingBoxField] = []
for detection in detections:
bounding_boxes.append(
BoundingBoxField(
x_min=detection.box.xmin,
x_max=detection.box.xmax,
y_min=detection.box.ymin,
y_max=detection.box.ymax,
score=detection.score,
)
)
return BoundingBoxCollectionOutput(collection=bounding_boxes)
@staticmethod
def _load_grounding_dino(model_path: Path):
grounding_dino_pipeline = pipeline(
model=str(model_path),
task="zero-shot-object-detection",
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(grounding_dino_pipeline, ZeroShotObjectDetectionPipeline)
return GroundingDinoPipeline(grounding_dino_pipeline)
def _detect(
self,
context: InvocationContext,
image: Image.Image,
labels: list[str],
threshold: float = 0.3,
) -> list[DetectionResult]:
"""Use Grounding DINO to detect bounding boxes for a set of labels in an image."""
# TODO(ryand): I copied this "."-handling logic from the transformers example code. Test it and see if it
# actually makes a difference.
labels = [label if label.endswith(".") else label + "." for label in labels]
with context.models.load_remote_model(
source=GROUNDING_DINO_MODEL_IDS[self.model], loader=GroundingDinoInvocation._load_grounding_dino
) as detector:
assert isinstance(detector, GroundingDinoPipeline)
return detector.detect(image=image, candidate_labels=labels, threshold=threshold)

View File

@@ -6,13 +6,19 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
ColorField,
FieldDescriptions,
ImageField,
InputField,
OutputField,
WithBoard,
WithMetadata,
)
@@ -1007,3 +1013,62 @@ class MaskFromIDInvocation(BaseInvocation, WithMetadata, WithBoard):
image_dto = context.images.save(image=mask, image_category=ImageCategory.MASK)
return ImageOutput.build(image_dto)
@invocation_output("canvas_v2_mask_and_crop_output")
class CanvasV2MaskAndCropOutput(ImageOutput):
offset_x: int = OutputField(description="The x offset of the image, after cropping")
offset_y: int = OutputField(description="The y offset of the image, after cropping")
@invocation(
"canvas_v2_mask_and_crop",
title="Canvas V2 Mask and Crop",
tags=["image", "mask", "id"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class CanvasV2MaskAndCropInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Handles Canvas V2 image output masking and cropping"""
source_image: ImageField | None = InputField(
default=None,
description="The source image onto which the masked generated image is pasted. If omitted, the masked generated image is returned with transparency.",
)
generated_image: ImageField = InputField(description="The image to apply the mask to")
mask: ImageField = InputField(description="The mask to apply")
mask_blur: int = InputField(default=0, ge=0, description="The amount to blur the mask by")
def _prepare_mask(self, mask: Image.Image) -> Image.Image:
mask_array = numpy.array(mask)
kernel = numpy.ones((self.mask_blur, self.mask_blur), numpy.uint8)
dilated_mask_array = cv2.erode(mask_array, kernel, iterations=3)
dilated_mask = Image.fromarray(dilated_mask_array)
if self.mask_blur > 0:
mask = dilated_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
return ImageOps.invert(mask.convert("L"))
def invoke(self, context: InvocationContext) -> CanvasV2MaskAndCropOutput:
mask = self._prepare_mask(context.images.get_pil(self.mask.image_name))
if self.source_image:
generated_image = context.images.get_pil(self.generated_image.image_name)
source_image = context.images.get_pil(self.source_image.image_name)
source_image.paste(generated_image, (0, 0), mask)
image_dto = context.images.save(image=source_image)
else:
generated_image = context.images.get_pil(self.generated_image.image_name)
generated_image.putalpha(mask)
image_dto = context.images.save(image=generated_image)
# bbox = image.getbbox()
# image = image.crop(bbox)
return CanvasV2MaskAndCropOutput(
image=ImageField(image_name=image_dto.image_name),
offset_x=0,
offset_y=0,
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -24,7 +24,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@@ -59,7 +59,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:

View File

@@ -1,9 +1,10 @@
import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
@invocation(
@@ -118,3 +119,32 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"tensor_mask_to_image",
title="Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.1.0",
)
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Convert a mask tensor to an image."""
mask: TensorField = InputField(description="The mask tensor to convert.")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Squeeze the channel dimension if it exists.
if mask.dim() == 3:
mask = mask.squeeze(0)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy()
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,5 +1,5 @@
import copy
from typing import List, Optional
from typing import List, Literal, Optional
from pydantic import BaseModel, Field
@@ -13,7 +13,14 @@ from invokeai.app.invocations.baseinvocation import (
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.flux.util import max_seq_lengths
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
CheckpointConfigBase,
ModelType,
SubModelType,
)
class ModelIdentifierField(BaseModel):
@@ -60,6 +67,15 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
class T5EncoderField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@@ -122,6 +138,78 @@ class ModelIdentifierInvocation(BaseInvocation):
return ModelIdentifierOutput(model=self.model)
@invocation_output("flux_model_loader_output")
class FluxModelLoaderOutput(BaseInvocationOutput):
"""Flux base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
max_seq_len: Literal[256, 512] = OutputField(
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
title="Max Seq Length",
)
@invocation(
"flux_model_loader",
title="Flux Main Model",
tags=["model", "flux"],
category="model",
version="1.0.4",
classification=Classification.Prototype,
)
class FluxModelLoaderInvocation(BaseInvocation):
"""Loads a flux base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.flux_model,
ui_type=UIType.FluxMainModel,
input=Input.Direct,
)
t5_encoder_model: ModelIdentifierField = InputField(
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
)
clip_embed_model: ModelIdentifierField = InputField(
description=FieldDescriptions.clip_embed_model,
ui_type=UIType.CLIPEmbedModel,
input=Input.Direct,
title="CLIP Embed",
)
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
transformer_config = context.models.get_config(transformer)
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),
max_seq_len=max_seq_lengths[transformer_config.config_path],
)
@invocation(
"main_model_loader",
title="Main Model",

View File

@@ -7,10 +7,12 @@ import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
FluxConditioningField,
ImageField,
Input,
InputField,
@@ -413,6 +415,17 @@ class MaskOutput(BaseInvocationOutput):
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("flux_conditioning_output")
class FluxConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
conditioning: FluxConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "FluxConditioningOutput":
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
@@ -469,3 +482,42 @@ class ConditioningCollectionInvocation(BaseInvocation):
# endregion
# region BoundingBox
@invocation_output("bounding_box_output")
class BoundingBoxOutput(BaseInvocationOutput):
"""Base class for nodes that output a single bounding box"""
bounding_box: BoundingBoxField = OutputField(description="The output bounding box.")
@invocation_output("bounding_box_collection_output")
class BoundingBoxCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of bounding boxes"""
collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes")
@invocation(
"bounding_box",
title="Bounding Box",
tags=["primitives", "segmentation", "collection", "bounding box"],
category="primitives",
version="1.0.0",
)
class BoundingBoxInvocation(BaseInvocation):
"""Create a bounding box manually by supplying box coordinates"""
x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex")
y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex")
x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex")
y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max)
return BoundingBoxOutput(bounding_box=bounding_box)
# endregion

View File

@@ -0,0 +1,161 @@
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
}
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.0.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
default=True,
)
mask_filter: Literal["all", "largest", "highest_box_score"] = InputField(
description="The filtering to apply to the detected masks before merging them into a final output.",
default="all",
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if len(self.bounding_boxes) == 0:
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
else:
masks = self._segment(context=context, image=image_pil)
masks = self._filter_masks(masks=masks, bounding_boxes=self.bounding_boxes)
# masks contains bool values, so we merge them via max-reduce.
combined_mask, _ = torch.stack(masks).max(dim=0)
mask_tensor_name = context.tensors.save(combined_mask)
height, width = combined_mask.shape
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
@staticmethod
def _load_sam_model(model_path: Path):
sam_model = AutoModelForMaskGeneration.from_pretrained(
model_path,
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(sam_model, SamModel)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(
self,
context: InvocationContext,
image: Image.Image,
) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:
masks = self._apply_polygon_refinement(masks)
return masks
def _process_masks(self, masks: torch.Tensor) -> list[torch.Tensor]:
"""Convert the tensor output from the Segment Anything model from a tensor of shape
[num_masks, channels, height, width] to a list of tensors of shape [height, width].
"""
assert masks.dtype == torch.bool
# [num_masks, channels, height, width] -> [num_masks, height, width]
masks, _ = masks.max(dim=1)
# Split the first dimension into a list of masks.
return list(masks.cpu().unbind(dim=0))
def _apply_polygon_refinement(self, masks: list[torch.Tensor]) -> list[torch.Tensor]:
"""Apply polygon refinement to the masks.
Convert each mask to a polygon, then back to a mask. This has the following effect:
- Smooth the edges of the mask slightly.
- Ensure that each mask consists of a single closed polygon
- Removes small mask pieces.
- Removes holes from the mask.
"""
# Convert tensor masks to np masks.
np_masks = [mask.cpu().numpy().astype(np.uint8) for mask in masks]
# Apply polygon refinement.
for idx, mask in enumerate(np_masks):
shape = mask.shape
assert len(shape) == 2 # Assert length to satisfy type checker.
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
np_masks[idx] = mask
# Convert np masks back to tensor masks.
masks = [torch.tensor(mask, dtype=torch.bool) for mask in np_masks]
return masks
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
"""Filter the detected masks based on the specified mask filter."""
assert len(masks) == len(bounding_boxes)
if self.mask_filter == "all":
return masks
elif self.mask_filter == "largest":
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
# cases the scores should all be non-None when using this filtering mode. That being said, -1.0 is a
# reasonable fallback since the expected score range is [0.0, 1.0].
max_score_idx = max(range(len(bounding_boxes)), key=lambda i: bounding_boxes[i].score or -1.0)
return [masks[max_score_idx]]
else:
raise ValueError(f"Invalid mask filter: {self.mask_filter}")

View File

@@ -1,3 +1,5 @@
from typing import Callable
import numpy as np
import torch
from PIL import Image
@@ -21,7 +23,7 @@ from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.1.0")
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel)."""
@@ -35,7 +37,8 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."
)
def _scale_tile(self, tile: Tile, scale: int) -> Tile:
@classmethod
def scale_tile(cls, tile: Tile, scale: int) -> Tile:
return Tile(
coords=TBLR(
top=tile.coords.top * scale,
@@ -51,20 +54,22 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
),
)
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
@classmethod
def upscale_image(
cls,
image: Image.Image,
tile_size: int,
spandrel_model: SpandrelImageToImageModel,
is_canceled: Callable[[], bool],
) -> Image.Image:
# Compute the image tiles.
if self.tile_size > 0:
if tile_size > 0:
min_overlap = 20
tiles = calc_tiles_min_overlap(
image_height=image.height,
image_width=image.width,
tile_height=self.tile_size,
tile_width=self.tile_size,
tile_height=tile_size,
tile_width=tile_size,
min_overlap=min_overlap,
)
else:
@@ -85,60 +90,164 @@ class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# Prepare input image for inference.
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# Scale the tiles for re-assembling the final image.
scale = spandrel_model.scale
scaled_tiles = [cls.scale_tile(tile, scale=scale) for tile in tiles]
# Prepare the output tensor.
_, channels, height, width = image_tensor.shape
output_tensor = torch.zeros(
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on each tile.
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
# Exit early if the invocation has been canceled.
if is_canceled():
raise CanceledException
# Scale the tiles for re-assembling the final image.
scale = spandrel_model.scale
scaled_tiles = [self._scale_tile(tile, scale=scale) for tile in tiles]
# Extract the current tile from the input tensor.
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Prepare the output tensor.
_, channels, height, width = image_tensor.shape
output_tensor = torch.zeros(
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Convert the output tile into the output tensor's format.
# (N, C, H, W) -> (C, H, W)
output_tile = output_tile.squeeze(0)
# (C, H, W) -> (H, W, C)
output_tile = output_tile.permute(1, 2, 0)
output_tile = output_tile.clamp(0, 1)
output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu"))
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
# Exit early if the invocation has been canceled.
if context.util.is_canceled():
raise CanceledException
# Extract the current tile from the input tensor.
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
# Convert the output tile into the output tensor's format.
# (N, C, H, W) -> (C, H, W)
output_tile = output_tile.squeeze(0)
# (C, H, W) -> (H, W, C)
output_tile = output_tile.permute(1, 2, 0)
output_tile = output_tile.clamp(0, 1)
output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu"))
# Merge the output tile into the output tensor.
# We only keep half of the overlap on the top and left side of the tile. We do this in case there are
# edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers
# it seems unnecessary, but we may find a need in the future.
top_overlap = scaled_tile.overlap.top // 2
left_overlap = scaled_tile.overlap.left // 2
output_tensor[
scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom,
scaled_tile.coords.left + left_overlap : scaled_tile.coords.right,
:,
] = output_tile[top_overlap:, left_overlap:, :]
# Merge the output tile into the output tensor.
# We only keep half of the overlap on the top and left side of the tile. We do this in case there are
# edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers
# it seems unnecessary, but we may find a need in the future.
top_overlap = scaled_tile.overlap.top // 2
left_overlap = scaled_tile.overlap.left // 2
output_tensor[
scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom,
scaled_tile.coords.left + left_overlap : scaled_tile.coords.right,
:,
] = output_tile[top_overlap:, left_overlap:, :]
# Convert the output tensor to a PIL image.
np_image = output_tensor.detach().numpy().astype(np.uint8)
pil_image = Image.fromarray(np_image)
return pil_image
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Upscale the image
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@invocation(
"spandrel_image_to_image_autoscale",
title="Image-to-Image (Autoscale)",
tags=["upscale"],
category="upscale",
version="1.0.0",
)
class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel) until the target scale is reached."""
scale: float = InputField(
default=4.0,
gt=0.0,
le=16.0,
description="The final scale of the output image. If the model does not upscale the image, this will be ignored.",
)
fit_to_multiple_of_8: bool = InputField(
default=False,
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
)
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
target_width = int(image.width * self.scale)
target_height = int(image.height * self.scale)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# First pass of upscaling. Note: `pil_image` will be mutated.
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
# Some models don't upscale the image, but we have no way to know this in advance. We'll check if the model
# upscaled the image and run the loop below if it did. We'll require the model to upscale both dimensions
# to be considered an upscale model.
is_upscale_model = pil_image.width > image.width and pil_image.height > image.height
if is_upscale_model:
# This is an upscale model, so we should keep upscaling until we reach the target size.
iterations = 1
while pil_image.width < target_width or pil_image.height < target_height:
pil_image = self.upscale_image(pil_image, self.tile_size, spandrel_model, context.util.is_canceled)
iterations += 1
# Sanity check to prevent excessive or infinite loops. All known upscaling models are at least 2x.
# Our max scale is 16x, so with a 2x model, we should never exceed 16x == 2^4 -> 4 iterations.
# We'll allow one extra iteration "just in case" and bail at 5 upscaling iterations. In practice,
# we should never reach this limit.
if iterations >= 5:
context.logger.warning(
"Upscale loop reached maximum iteration count of 5, stopping upscaling early."
)
break
else:
# This model doesn't upscale the image. We should ignore the scale parameter, modifying the output size
# to be the same as the processed image size.
# The output size is now the size of the processed image.
target_width = pil_image.width
target_height = pil_image.height
# Warn the user if they requested a scale greater than 1.
if self.scale > 1:
context.logger.warning(
"Model does not increase the size of the image, but a greater scale than 1 was requested. Image will not be scaled."
)
# We may need to resize the image to a multiple of 8. Use floor division to ensure we don't scale the image up
# in the final resize
if self.fit_to_multiple_of_8:
target_width = int(target_width // 8 * 8)
target_height = int(target_height // 8 * 8)
# Final resize. Per PIL documentation, Lanczos provides the best quality for both upscale and downscale.
# See: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters-comparison-table
pil_image = pil_image.resize((target_width, target_height), resample=Image.Resampling.LANCZOS)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)

View File

@@ -91,6 +91,7 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -153,6 +154,7 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -300,6 +302,11 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the models directory, resolved to an absolute path.."""
return self._resolve(self.models_dir)
@property
def style_presets_path(self) -> Path:
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""

View File

@@ -88,6 +88,8 @@ class QueueItemEventBase(QueueEventBase):
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
origin: str | None = Field(default=None, description="The origin of the queue item")
destination: str | None = Field(default=None, description="The destination of the queue item")
class InvocationEventBase(QueueItemEventBase):
@@ -95,8 +97,6 @@ class InvocationEventBase(QueueItemEventBase):
session_id: str = Field(description="The ID of the session (aka graph execution state)")
queue_id: str = Field(description="The ID of the queue")
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
invocation: AnyInvocation = Field(description="The ID of the invocation")
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
@@ -114,6 +114,8 @@ class InvocationStartedEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -147,6 +149,8 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -184,6 +188,8 @@ class InvocationCompleteEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -216,6 +222,8 @@ class InvocationErrorEvent(InvocationEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
@@ -253,6 +261,8 @@ class QueueItemStatusChangedEvent(QueueItemEventBase):
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
origin=queue_item.origin,
destination=queue_item.destination,
session_id=queue_item.session_id,
status=queue_item.status,
error_type=queue_item.error_type,
@@ -279,12 +289,14 @@ class BatchEnqueuedEvent(QueueEventBase):
description="The number of invocations initially requested to be enqueued (may be less than enqueued if queue was full)"
)
priority: int = Field(description="The priority of the batch")
origin: str | None = Field(default=None, description="The origin of the batch")
@classmethod
def build(cls, enqueue_result: EnqueueBatchResult) -> "BatchEnqueuedEvent":
return cls(
queue_id=enqueue_result.queue_id,
batch_id=enqueue_result.batch.batch_id,
origin=enqueue_result.batch.origin,
enqueued=enqueue_result.enqueued,
requested=enqueue_result.requested,
priority=enqueue_result.priority,

View File

@@ -1,46 +1,44 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import (
EventBase,
)
from invokeai.app.services.events.events_common import EventBase
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int) -> None:
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
self.event_handler_id = event_handler_id
self._queue = Queue[EventBase | None]()
self._queue = asyncio.Queue[EventBase | None]()
self._stop_event = threading.Event()
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._loop = loop
# We need to store a reference to the task so it doesn't get GC'd
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
self._background_tasks: set[asyncio.Task[None]] = set()
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._background_tasks.add(task)
task.add_done_callback(self._background_tasks.remove)
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._queue.put(None)
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
def dispatch(self, event: EventBase) -> None:
self._queue.put(event)
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = self._queue.get(block=False)
event = await self._queue.get()
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from typing import Optional, Union
from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
@@ -20,18 +19,12 @@ from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = {}
self.__cache_ids = Queue()
self.__cache: dict[Path, PILImageType] = {}
self.__cache_ids = Queue[Path]()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -103,7 +96,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
image_path.unlink()
if image_path in self.__cache:
del self.__cache[image_path]
@@ -111,7 +104,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
thumbnail_path.unlink()
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:

View File

@@ -4,6 +4,8 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
if TYPE_CHECKING:
from logging import Logger
@@ -61,6 +63,8 @@ class InvocationServices:
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -85,3 +89,5 @@ class InvocationServices:
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files

View File

@@ -2,7 +2,6 @@ from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
@@ -70,7 +69,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
path.unlink()
except Exception as e:
raise ModelImageFileDeleteException from e

View File

@@ -3,7 +3,7 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from typing import List, Optional, Union
from pydantic.networks import AnyHttpUrl
@@ -12,7 +12,7 @@ from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
@@ -64,7 +64,7 @@ class ModelInstallServiceBase(ABC):
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str:
"""
Probe and register the model at model_path.
@@ -72,7 +72,7 @@ class ModelInstallServiceBase(ABC):
This keeps the model in its current location.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:param config: ModelRecordChanges object that will override autoassigned model record values.
:returns id: The string ID of the registered model.
"""
@@ -92,7 +92,7 @@ class ModelInstallServiceBase(ABC):
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str:
"""
Probe, register and install the model in the models directory.
@@ -101,7 +101,7 @@ class ModelInstallServiceBase(ABC):
the models directory handled by InvokeAI.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:param config: ModelRecordChanges object that will override autoassigned model record values.
:returns id: The string ID of the registered model.
"""
@@ -109,14 +109,14 @@ class ModelInstallServiceBase(ABC):
def heuristic_import(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
r"""Install the indicated model using heuristics to interpret user intentions.
:param source: String source
:param config: Optional dict. Any fields in this dict
:param config: Optional ModelRecordChanges object. Any fields in this object
will override corresponding autoassigned probe fields in the
model's config record as described in `import_model()`.
:param access_token: Optional access token for remote sources.
@@ -147,7 +147,7 @@ class ModelInstallServiceBase(ABC):
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
"""Install the indicated model.

View File

@@ -2,13 +2,14 @@ import re
import traceback
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Set, Union
from typing import Literal, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.app.services.model_records import ModelRecordChanges
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
@@ -102,7 +103,7 @@ class HFModelSource(StringLikeSource):
if self.variant:
base += f":{self.variant or ''}"
if self.subfolder:
base += f":{self.subfolder}"
base += f"::{self.subfolder.as_posix()}"
return base
@@ -133,8 +134,9 @@ class ModelInstallJob(BaseModel):
id: int = Field(description="Unique ID for this job")
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
config_in: ModelRecordChanges = Field(
default_factory=ModelRecordChanges,
description="Configuration information (e.g. 'description') to apply to model.",
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."

View File

@@ -163,26 +163,27 @@ class ModelInstallService(ModelInstallServiceBase):
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["source_type"] = ModelSourceType.Path
config = config or ModelRecordChanges()
if not config.source:
config.source = model_path.resolve().as_posix()
config.source_type = ModelSourceType.Path
return self._register(model_path, config)
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
config = config or ModelRecordChanges()
info: AnyModelConfig = ModelProbe.probe(
Path(model_path), config.model_dump(), hash_algo=self._app_config.hashing_algorithm
) # type: ignore
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config, hash_algo=self._app_config.hashing_algorithm)
if preferred_name := config.get("name"):
if preferred_name := config.name:
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
dest_path = (
@@ -204,7 +205,7 @@ class ModelInstallService(ModelInstallServiceBase):
def heuristic_import(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
@@ -216,7 +217,7 @@ class ModelInstallService(ModelInstallServiceBase):
source_obj.access_token = access_token
return self.import_model(source_obj, config)
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
def import_model(self, source: ModelSource, config: Optional[ModelRecordChanges] = None) -> ModelInstallJob: # noqa D102
similar_jobs = [x for x in self.list_jobs() if x.source == source and not x.in_terminal_state]
if similar_jobs:
self._logger.warning(f"There is already an active install job for {source}. Not enqueuing.")
@@ -318,16 +319,17 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = self._app_config.models_path / model_path
model_path = model_path.resolve()
config: dict[str, Any] = {}
config["name"] = model_name
config["description"] = stanza.get("description")
config = ModelRecordChanges(
name=model_name,
description=stanza.get("description"),
)
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
config.config_path = str(legacy_config_path)
try:
id = self.register_path(model_path=model_path, config=config)
self._logger.info(f"Migrated {model_name} with id {id}")
@@ -500,11 +502,11 @@ class ModelInstallService(ModelInstallServiceBase):
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
job.config_in.source = str(job.source)
job.config_in.source_type = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
job.config_in.source_api_response = job.source_metadata.api_response
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
@@ -639,11 +641,11 @@ class ModelInstallService(ModelInstallServiceBase):
return new_path
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
self, model_path: Path, config: Optional[ModelRecordChanges] = None, info: Optional[AnyModelConfig] = None
) -> str:
config = config or {}
config = config or ModelRecordChanges()
info = info or ModelProbe.probe(model_path, config, hash_algo=self._app_config.hashing_algorithm)
info = info or ModelProbe.probe(model_path, config.model_dump(), hash_algo=self._app_config.hashing_algorithm) # type: ignore
model_path = model_path.resolve()
@@ -674,11 +676,13 @@ class ModelInstallService(ModelInstallServiceBase):
precision = TorchDevice.choose_torch_dtype()
return ModelRepoVariant.FP16 if precision == torch.float16 else None
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
def _import_local_model(
self, source: LocalModelSource, config: Optional[ModelRecordChanges] = None
) -> ModelInstallJob:
return ModelInstallJob(
id=self._next_id(),
source=source,
config_in=config or {},
config_in=config or ModelRecordChanges(),
local_path=Path(source.path),
inplace=source.inplace or False,
)
@@ -686,7 +690,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_hf(
self,
source: HFModelSource,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
if source.access_token is None:
@@ -702,7 +706,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_url(
self,
source: URLModelSource,
config: Optional[Dict[str, Any]],
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
@@ -717,7 +721,7 @@ class ModelInstallService(ModelInstallServiceBase):
source: HFModelSource | URLModelSource,
remote_files: List[RemoteModelFile],
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
config: Optional[ModelRecordChanges],
) -> ModelInstallJob:
if len(remote_files) == 0:
raise ValueError(f"{source}: No downloadable files found")
@@ -730,7 +734,7 @@ class ModelInstallService(ModelInstallServiceBase):
install_job = ModelInstallJob(
id=self._next_id(),
source=source,
config_in=config or {},
config_in=config or ModelRecordChanges(),
source_metadata=metadata,
local_path=destdir, # local path may change once the download has started due to content-disposition handling
bytes=0,
@@ -779,8 +783,9 @@ class ModelInstallService(ModelInstallServiceBase):
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
path_to_remove = top / subfolder # sdxl-turbo/vae/
subfolder_rename = subfolder.name.replace("/", "_").replace("\\", "_")
path_to_add = Path(f"{top}_{subfolder_rename}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")

View File

@@ -18,6 +18,7 @@ from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelSourceType,
ModelType,
ModelVariantType,
SchedulerPredictionType,
@@ -66,10 +67,17 @@ class ModelRecordChanges(BaseModelExcludeNull):
"""A set of changes to apply to a model."""
# Changes applicable to all models
source: Optional[str] = Field(description="original source of the model", default=None)
source_type: Optional[ModelSourceType] = Field(description="type of model source", default=None)
source_api_response: Optional[str] = Field(description="metadata from remote source", default=None)
name: Optional[str] = Field(description="Name of the model.", default=None)
path: Optional[str] = Field(description="Path to the model.", default=None)
description: Optional[str] = Field(description="Model description", default=None)
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
type: Optional[ModelType] = Field(description="Type of model", default=None)
key: Optional[str] = Field(description="Database ID for this model", default=None)
hash: Optional[str] = Field(description="hash of model file", default=None)
format: Optional[str] = Field(description="format of model file", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None

View File

@@ -6,6 +6,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -95,6 +96,11 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with matching batch IDs"""
pass
@abstractmethod
def cancel_by_destination(self, queue_id: str, destination: str) -> CancelByDestinationResult:
"""Cancels all queue items with the given batch destination"""
pass
@abstractmethod
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
"""Cancels all queue items with matching queue ID"""

View File

@@ -77,6 +77,14 @@ BatchDataCollection: TypeAlias = list[list[BatchDatum]]
class Batch(BaseModel):
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
origin: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
)
destination: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
)
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
graph: Graph = Field(description="The graph to initialize the session with")
workflow: Optional[WorkflowWithoutID] = Field(
@@ -195,6 +203,14 @@ class SessionQueueItemWithoutGraph(BaseModel):
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
priority: int = Field(default=0, description="The priority of this queue item")
batch_id: str = Field(description="The ID of the batch associated with this queue item")
origin: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results.",
)
destination: str | None = Field(
default=None,
description="The origin of this queue item. This data is used by the frontend to determine how to handle results",
)
session_id: str = Field(
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
)
@@ -294,6 +310,8 @@ class SessionQueueStatus(BaseModel):
class BatchStatus(BaseModel):
queue_id: str = Field(..., description="The ID of the queue")
batch_id: str = Field(..., description="The ID of the batch")
origin: str | None = Field(..., description="The origin of the batch")
destination: str | None = Field(..., description="The destination of the batch")
pending: int = Field(..., description="Number of queue items with status 'pending'")
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
completed: int = Field(..., description="Number of queue items with status 'complete'")
@@ -328,6 +346,12 @@ class CancelByBatchIDsResult(BaseModel):
canceled: int = Field(..., description="Number of queue items canceled")
class CancelByDestinationResult(CancelByBatchIDsResult):
"""Result of canceling by a destination"""
pass
class CancelByQueueIDResult(CancelByBatchIDsResult):
"""Result of canceling by queue id"""
@@ -433,6 +457,8 @@ class SessionQueueValueToInsert(NamedTuple):
field_values: Optional[str] # field_values json
priority: int # priority
workflow: Optional[str] # workflow json
origin: str | None
destination: str | None
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
@@ -453,6 +479,8 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
batch.origin, # origin
batch.destination, # destination
)
)
return values_to_insert

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchStatus,
CancelByBatchIDsResult,
CancelByDestinationResult,
CancelByQueueIDResult,
ClearResult,
EnqueueBatchResult,
@@ -127,8 +128,8 @@ class SqliteSessionQueue(SessionQueueBase):
self.__cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow)
VALUES (?, ?, ?, ?, ?, ?, ?)
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
@@ -417,11 +418,7 @@ class SqliteSessionQueue(SessionQueueBase):
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
current_queue_item, batch_status, queue_status
)
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self.__conn.rollback()
raise
@@ -429,6 +426,46 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return CancelByBatchIDsResult(canceled=count)
def cancel_by_destination(self, queue_id: str, destination: str) -> CancelByDestinationResult:
try:
current_queue_item = self.get_current(queue_id)
self.__lock.acquire()
where = """--sql
WHERE
queue_id == ?
AND destination == ?
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
"""
params = (queue_id, destination)
self.__cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
params,
)
count = self.__cursor.fetchone()[0]
self.__cursor.execute(
f"""--sql
UPDATE session_queue
SET status = 'canceled'
{where};
""",
params,
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.destination == destination:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return CancelByDestinationResult(canceled=count)
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
try:
current_queue_item = self.get_current(queue_id)
@@ -541,7 +578,9 @@ class SqliteSessionQueue(SessionQueueBase):
started_at,
session_id,
batch_id,
queue_id
queue_id,
origin,
destination
FROM session_queue
WHERE queue_id = ?
"""
@@ -621,7 +660,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.acquire()
self.__cursor.execute(
"""--sql
SELECT status, count(*)
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
@@ -633,6 +672,8 @@ class SqliteSessionQueue(SessionQueueBase):
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
total = sum(row[1] for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
destination = result[0]["destination"] if result else None
except Exception:
self.__conn.rollback()
raise
@@ -641,6 +682,8 @@ class SqliteSessionQueue(SessionQueueBase):
return BatchStatus(
batch_id=batch_id,
origin=origin,
destination=destination,
queue_id=queue_id,
pending=counts.get("pending", 0),
in_progress=counts.get("in_progress", 0),

View File

@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.app.util.step_callback import flux_step_callback, stable_diffusion_step_callback
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
@@ -557,6 +557,24 @@ class UtilInterface(InvocationContextInterface):
is_canceled=self.is_canceled,
)
def flux_step_callback(self, intermediate_state: PipelineIntermediateState) -> None:
"""
The step callback emits a progress event with the current step, the total number of
steps, a preview image, and some other internal metadata.
This should be called after each denoising step.
Args:
intermediate_state: The intermediate state of the diffusion pipeline.
"""
flux_step_callback(
context_data=self._data,
intermediate_state=intermediate_state,
events=self._services.events,
is_canceled=self.is_canceled,
)
class InvocationContext:
"""Provides access to various services and data for the current invocation.

View File

@@ -16,6 +16,8 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_15 import build_migration_15
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -49,6 +51,8 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.register_migration(build_migration_14())
migrator.register_migration(build_migration_15())
migrator.run_migrations()
return db

View File

@@ -0,0 +1,61 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration14Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_style_presets(cursor)
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
"""Create the table used to store style presets."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS style_presets (
id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
preset_data TEXT NOT NULL,
type TEXT NOT NULL DEFAULT "user",
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS style_presets
AFTER UPDATE
ON style_presets FOR EACH ROW
BEGIN
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_14() -> Migration:
"""
Build the migration from database version 13 to 14..
This migration does the following:
- Create the table used to store style presets.
"""
migration_14 = Migration(
from_version=13,
to_version=14,
callback=Migration14Callback(),
)
return migration_14

View File

@@ -0,0 +1,34 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration15Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._add_origin_col(cursor)
def _add_origin_col(self, cursor: sqlite3.Cursor) -> None:
"""
- Adds `origin` column to the session queue table.
- Adds `destination` column to the session queue table.
"""
cursor.execute("ALTER TABLE session_queue ADD COLUMN origin TEXT;")
cursor.execute("ALTER TABLE session_queue ADD COLUMN destination TEXT;")
def build_migration_15() -> Migration:
"""
Build the migration from database version 14 to 15.
This migration does the following:
- Adds `origin` column to the session queue table.
- Adds `destination` column to the session queue table.
"""
migration_15 = Migration(
from_version=14,
to_version=15,
callback=Migration15Callback(),
)
return migration_15

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -0,0 +1,33 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class StylePresetImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, style_preset_id: str) -> PILImageType:
"""Retrieves a style preset image as PIL Image."""
pass
@abstractmethod
def get_path(self, style_preset_id: str) -> Path:
"""Gets the internal path to a style preset image."""
pass
@abstractmethod
def get_url(self, style_preset_id: str) -> str | None:
"""Gets the URL to fetch a style preset image."""
pass
@abstractmethod
def save(self, style_preset_id: str, image: PILImageType) -> None:
"""Saves a style preset image."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset image."""
pass

View File

@@ -0,0 +1,19 @@
class StylePresetImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message: str = "Style preset image file not found"):
super().__init__(message)
class StylePresetImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message: str = "Style preset image file not saved"):
super().__init__(message)
class StylePresetImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message: str = "Style preset image file not deleted"):
super().__init__(message)

View File

@@ -0,0 +1,88 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_images.style_preset_images_common import (
StylePresetImageFileDeleteException,
StylePresetImageFileNotFoundException,
StylePresetImageFileSaveException,
)
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, style_preset_images_folder: Path):
self._style_preset_images_folder = style_preset_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, style_preset_id: str) -> PILImageType:
try:
path = self.get_path(style_preset_id)
return Image.open(path)
except FileNotFoundError as e:
raise StylePresetImageFileNotFoundException from e
def save(self, style_preset_id: str, image: PILImageType) -> None:
try:
self._validate_storage_folders()
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise StylePresetImageFileSaveException from e
def get_path(self, style_preset_id: str) -> Path:
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
if style_preset.type is PresetType.Default:
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
path = default_images_dir / (style_preset.name + ".png")
else:
path = self._style_preset_images_folder / (style_preset_id + ".webp")
return path
def get_url(self, style_preset_id: str) -> str | None:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, style_preset_id: str) -> None:
try:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
raise StylePresetImageFileNotFoundException
path.unlink()
except StylePresetImageFileNotFoundException as e:
raise StylePresetImageFileNotFoundException from e
except Exception as e:
raise StylePresetImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -0,0 +1,146 @@
[
{
"name": "Photography (General)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Studio Lighting)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Landscape)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Portrait)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Black and White)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
"negative_prompt": "painting, digital art. sketch, colour+"
}
},
{
"name": "Architectural Visualization",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Concept Art (Fantasy)",
"type": "default",
"preset_data": {
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Sci-Fi)",
"type": "default",
"preset_data": {
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Character)",
"type": "default",
"preset_data": {
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Painterly)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
"negative_prompt": "photo. smooth. border. frame"
}
},
{
"name": "Environment Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
}
},
{
"name": "Interior Design (Visualization)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
"negative_prompt": "photo, distorted. sketch."
}
},
{
"name": "Product Rendering",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
}
},
{
"name": "Sketch",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
}
},
{
"name": "Line Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
}
},
{
"name": "Anime",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
}
},
{
"name": "Illustration",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
}
},
{
"name": "Vehicles",
"type": "default",
"preset_data": {
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
"negative_prompt": "sketch. digital art. greyscale. painting"
}
}
]

View File

@@ -0,0 +1,42 @@
from abc import ABC, abstractmethod
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetRecordDTO,
StylePresetWithoutId,
)
class StylePresetRecordsStorageBase(ABC):
"""Base class for style preset storage services."""
@abstractmethod
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Get style preset by id."""
pass
@abstractmethod
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
"""Creates a style preset."""
pass
@abstractmethod
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
"""Creates many style presets."""
pass
@abstractmethod
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
"""Updates a style preset."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset."""
pass
@abstractmethod
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
"""Gets many workflows."""
pass

View File

@@ -0,0 +1,139 @@
import codecs
import csv
import json
from enum import Enum
from typing import Any, Optional
import pydantic
from fastapi import UploadFile
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
from invokeai.app.util.metaenum import MetaEnum
class StylePresetNotFoundError(Exception):
"""Raised when a style preset is not found"""
class PresetData(BaseModel, extra="forbid"):
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
PresetDataValidator = TypeAdapter(PresetData)
class PresetType(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class StylePresetChanges(BaseModel, extra="forbid"):
name: Optional[str] = Field(default=None, description="The style preset's new name.")
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
type: Optional[PresetType] = Field(description="The updated type of the style preset")
class StylePresetWithoutId(BaseModel):
name: str = Field(description="The name of the style preset.")
preset_data: PresetData = Field(description="The preset data")
type: PresetType = Field(description="The type of style preset")
class StylePresetRecordDTO(StylePresetWithoutId):
id: str = Field(description="The style preset ID.")
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
return StylePresetRecordDTOValidator.validate_python(data)
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
class StylePresetRecordWithImage(StylePresetRecordDTO):
image: Optional[str] = Field(description="The path for image")
class StylePresetImportRow(BaseModel):
name: str = Field(min_length=1, description="The name of the preset.")
positive_prompt: str = Field(
default="",
description="The positive prompt for the preset.",
validation_alias=AliasChoices("positive_prompt", "prompt"),
)
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
StylePresetImportList = list[StylePresetImportRow]
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
class UnsupportedFileTypeError(ValueError):
"""Raised when an unsupported file type is encountered"""
pass
class InvalidPresetImportDataError(ValueError):
"""Raised when invalid preset import data is encountered"""
pass
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
"""Parses style presets from a file. The file must be a CSV or JSON file.
If CSV, the file must have the following columns:
- name
- prompt (or positive_prompt)
- negative_prompt
If JSON, the file must be a list of objects with the following keys:
- name
- prompt (or positive_prompt)
- negative_prompt
Args:
file (UploadFile): The file to parse.
Returns:
list[StylePresetWithoutId]: The parsed style presets.
Raises:
UnsupportedFileTypeError: If the file type is not supported.
InvalidPresetImportDataError: If the data in the file is invalid.
"""
if file.content_type not in ["text/csv", "application/json"]:
raise UnsupportedFileTypeError()
if file.content_type == "text/csv":
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
data = list(csv_reader)
else: # file.content_type == "application/json":
json_data = await file.read()
data = json.loads(json_data)
try:
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
style_presets: list[StylePresetWithoutId] = []
for imported in imported_presets:
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
style_presets.append(style_preset)
except pydantic.ValidationError as e:
if file.content_type == "text/csv":
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
else: # file.content_type == "application/json":
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
raise InvalidPresetImportDataError(msg) from e
finally:
file.file.close()
return style_presets

View File

@@ -0,0 +1,215 @@
import json
from pathlib import Path
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordDTO,
StylePresetWithoutId,
)
from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._sync_default_style_presets()
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = self._cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
self._lock.acquire()
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
self._lock.acquire()
# Change the name of a style preset
if changes.name is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET name = ?
WHERE id = ?;
""",
(changes.name, style_preset_id),
)
# Change the preset data for a style preset
if changes.preset_data is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET preset_data = ?
WHERE id = ?;
""",
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE from style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
try:
self._lock.acquire()
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
if type is not None:
self._cursor.execute(main_query, (type,))
else:
self._cursor.execute(main_query)
rows = self._cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
# Next, parse and create the default style presets
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)
for preset in presets:
style_preset = StylePresetWithoutId.model_validate(preset)
self.create(style_preset)

View File

@@ -13,3 +13,8 @@ class UrlServiceBase(ABC):
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass
@abstractmethod
def get_style_preset_image_url(self, style_preset_id: str) -> str:
"""Gets the URL for a style preset image"""
pass

View File

@@ -19,3 +19,6 @@ class LocalUrlService(UrlServiceBase):
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"
def get_style_preset_image_url(self, style_preset_id: str) -> str:
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"

View File

@@ -0,0 +1,407 @@
{
"name": "FLUX Image to Image",
"author": "InvokeAI",
"description": "A simple image-to-image workflow using a FLUX dev model. ",
"version": "1.0.4",
"contact": "",
"tags": "image2image, flux, image-to-image",
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend using FLUX dev models for image-to-image workflows. The image-to-image performance with FLUX schnell models is poor.",
"exposedFields": [
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "t5_encoder_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "clip_embed_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "vae_model"
},
{
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
"fieldName": "denoising_start"
},
{
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"fieldName": "prompt"
},
{
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
"fieldName": "num_steps"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"nodes": [
{
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
"type": "invocation",
"data": {
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
"type": "flux_vae_encode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"image": {
"name": "image",
"label": "",
"value": {
"image_name": "8a5c62aa-9335-45d2-9c71-89af9fc1f8d4.png"
}
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 732.7680166609682,
"y": -24.37398171806909
}
},
{
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
"type": "invocation",
"data": {
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
"type": "flux_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"denoise_mask": {
"name": "denoise_mask",
"label": ""
},
"denoising_start": {
"name": "denoising_start",
"label": "",
"value": 0.04
},
"denoising_end": {
"name": "denoising_end",
"label": "",
"value": 1
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_text_conditioning": {
"name": "positive_text_conditioning",
"label": ""
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"num_steps": {
"name": "num_steps",
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
"value": 30
},
"guidance": {
"name": "guidance",
"label": "",
"value": 4
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 1182.8836633018684,
"y": -251.38882958913183
}
},
{
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "invocation",
"data": {
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "flux_vae_decode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1575.5797431839133,
"y": -209.00150975507415
}
},
{
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "invocation",
"data": {
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "flux_model_loader",
"version": "1.0.4",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"model": {
"name": "model",
"label": "Model (dev variant recommended for Image-to-Image)"
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_embed_model": {
"name": "clip_embed_model",
"label": "",
"value": {
"key": "fa23a584-b623-415d-832a-21b5098ff1a1",
"hash": "blake3:17c19f0ef941c3b7609a9c94a659ca5364de0be364a91d4179f0e39ba17c3b70",
"name": "clip-vit-large-patch14",
"base": "any",
"type": "clip_embed"
}
},
"vae_model": {
"name": "vae_model",
"label": "",
"value": {
"key": "74fc82ba-c0a8-479d-a890-2126f82da758",
"hash": "blake3:ce21cb76364aa6e2421311cf4a4b5eb052a76c4f1cd207b50703d8978198a068",
"name": "FLUX.1-schnell_ae",
"base": "flux",
"type": "vae"
}
}
}
},
"position": {
"x": 328.1809894659957,
"y": -90.2241133566946
}
},
{
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "invocation",
"data": {
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "flux_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"clip": {
"name": "clip",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"t5_max_seq_len": {
"name": "t5_max_seq_len",
"label": "T5 Max Seq Len",
"value": 256
},
"prompt": {
"name": "prompt",
"label": "",
"value": "a cat wearing a birthday hat"
}
}
},
"position": {
"x": 745.8823365057267,
"y": -299.60249175851914
}
},
{
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "invocation",
"data": {
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 725.834098928012,
"y": 496.2710031089931
}
}
],
"edges": [
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bheight-ace0258f-67d7-4eee-a218-6fff27065214height",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "height",
"targetHandle": "height"
},
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bwidth-ace0258f-67d7-4eee-a218-6fff27065214width",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "width",
"targetHandle": "width"
},
{
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912blatents-ace0258f-67d7-4eee-a218-6fff27065214latents",
"type": "default",
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-2981a67c-480f-4237-9384-26b68dbf912bvae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "2981a67c-480f-4237-9384-26b68dbf912b",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-ace0258f-67d7-4eee-a218-6fff27065214latents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
"type": "default",
"source": "ace0258f-67d7-4eee-a218-6fff27065214",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-ace0258f-67d7-4eee-a218-6fff27065214seed",
"type": "default",
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-ace0258f-67d7-4eee-a218-6fff27065214transformer",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-ace0258f-67d7-4eee-a218-6fff27065214positive_text_conditioning",
"type": "default",
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
"sourceHandle": "conditioning",
"targetHandle": "positive_text_conditioning"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "max_seq_len",
"targetHandle": "t5_max_seq_len"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "clip",
"targetHandle": "clip"
}
]
}

View File

@@ -0,0 +1,326 @@
{
"name": "FLUX Text to Image",
"author": "InvokeAI",
"description": "A simple text-to-image workflow using FLUX dev or schnell models.",
"version": "1.0.4",
"contact": "",
"tags": "text2image, flux",
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend 4 steps for FLUX schnell models and 30 steps for FLUX dev models.",
"exposedFields": [
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "t5_encoder_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "clip_embed_model"
},
{
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"fieldName": "vae_model"
},
{
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"fieldName": "prompt"
},
{
"nodeId": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"fieldName": "num_steps"
}
],
"meta": {
"version": "3.0.0",
"category": "default"
},
"nodes": [
{
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"type": "invocation",
"data": {
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"type": "flux_denoise",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"denoise_mask": {
"name": "denoise_mask",
"label": ""
},
"denoising_start": {
"name": "denoising_start",
"label": "",
"value": 0
},
"denoising_end": {
"name": "denoising_end",
"label": "",
"value": 1
},
"transformer": {
"name": "transformer",
"label": ""
},
"positive_text_conditioning": {
"name": "positive_text_conditioning",
"label": ""
},
"width": {
"name": "width",
"label": "",
"value": 1024
},
"height": {
"name": "height",
"label": "",
"value": 1024
},
"num_steps": {
"name": "num_steps",
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
"value": 30
},
"guidance": {
"name": "guidance",
"label": "",
"value": 4
},
"seed": {
"name": "seed",
"label": "",
"value": 0
}
}
},
"position": {
"x": 1186.1868226120378,
"y": -214.9459927686657
}
},
{
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "invocation",
"data": {
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"type": "flux_vae_decode",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": false,
"useCache": true,
"inputs": {
"board": {
"name": "board",
"label": ""
},
"metadata": {
"name": "metadata",
"label": ""
},
"latents": {
"name": "latents",
"label": ""
},
"vae": {
"name": "vae",
"label": ""
}
}
},
"position": {
"x": 1575.5797431839133,
"y": -209.00150975507415
}
},
{
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "invocation",
"data": {
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"type": "flux_model_loader",
"version": "1.0.4",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"model": {
"name": "model",
"label": ""
},
"t5_encoder_model": {
"name": "t5_encoder_model",
"label": ""
},
"clip_embed_model": {
"name": "clip_embed_model",
"label": ""
},
"vae_model": {
"name": "vae_model",
"label": ""
}
}
},
"position": {
"x": 381.1882713063478,
"y": -95.89663532854017
}
},
{
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "invocation",
"data": {
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"type": "flux_text_encoder",
"version": "1.0.0",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": true,
"inputs": {
"clip": {
"name": "clip",
"label": ""
},
"t5_encoder": {
"name": "t5_encoder",
"label": ""
},
"t5_max_seq_len": {
"name": "t5_max_seq_len",
"label": "T5 Max Seq Len",
"value": 256
},
"prompt": {
"name": "prompt",
"label": "",
"value": "a cat"
}
}
},
"position": {
"x": 778.4899149328337,
"y": -100.36469216659502
}
},
{
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "invocation",
"data": {
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
"type": "rand_int",
"version": "1.0.1",
"label": "",
"notes": "",
"isOpen": true,
"isIntermediate": true,
"useCache": false,
"inputs": {
"low": {
"name": "low",
"label": "",
"value": 0
},
"high": {
"name": "high",
"label": "",
"value": 2147483647
}
}
},
"position": {
"x": 800.9667463219505,
"y": 285.8297267547506
}
}
],
"edges": [
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-4fe24f07-f906-4f55-ab2c-9beee56ef5bdtransformer",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "transformer",
"targetHandle": "transformer"
},
{
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-4fe24f07-f906-4f55-ab2c-9beee56ef5bdpositive_text_conditioning",
"type": "default",
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "conditioning",
"targetHandle": "positive_text_conditioning"
},
{
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-4fe24f07-f906-4f55-ab2c-9beee56ef5bdseed",
"type": "default",
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"sourceHandle": "value",
"targetHandle": "seed"
},
{
"id": "reactflow__edge-4fe24f07-f906-4f55-ab2c-9beee56ef5bdlatents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
"type": "default",
"source": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
"sourceHandle": "vae",
"targetHandle": "vae"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "max_seq_len",
"targetHandle": "t5_max_seq_len"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "t5_encoder",
"targetHandle": "t5_encoder"
},
{
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
"type": "default",
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
"sourceHandle": "clip",
"targetHandle": "clip"
}
]
}

View File

@@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": invocation_output_map_properties,
"properties": dict(sorted(invocation_output_map_properties.items())),
"required": invocation_output_map_required,
}

View File

@@ -38,6 +38,25 @@ SD1_5_LATENT_RGB_FACTORS = [
[-0.1307, -0.1874, -0.7445], # L4
]
FLUX_LATENT_RGB_FACTORS = [
[-0.0412, 0.0149, 0.0521],
[0.0056, 0.0291, 0.0768],
[0.0342, -0.0681, -0.0427],
[-0.0258, 0.0092, 0.0463],
[0.0863, 0.0784, 0.0547],
[-0.0017, 0.0402, 0.0158],
[0.0501, 0.1058, 0.1152],
[-0.0209, -0.0218, -0.0329],
[-0.0314, 0.0083, 0.0896],
[0.0851, 0.0665, -0.0472],
[-0.0534, 0.0238, -0.0024],
[0.0452, -0.0026, 0.0048],
[0.0892, 0.0831, 0.0881],
[-0.1117, -0.0304, -0.0789],
[0.0027, -0.0479, -0.0043],
[-0.1146, -0.0827, -0.0598],
]
def sample_to_lowres_estimated_image(
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
@@ -94,3 +113,32 @@ def stable_diffusion_step_callback(
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)
def flux_step_callback(
context_data: "InvocationContextData",
intermediate_state: PipelineIntermediateState,
events: "EventServiceBase",
is_canceled: Callable[[], bool],
) -> None:
if is_canceled():
raise CanceledException
sample = intermediate_state.latents
latent_rgb_factors = torch.tensor(FLUX_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
latent_image_perm = sample.permute(1, 2, 0).to(dtype=sample.dtype, device=sample.device)
latent_image = latent_image_perm @ latent_rgb_factors
latents_ubyte = (
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF) # change scale from -1..1 to 0..1 # to 0..255
).to(device="cpu", dtype=torch.uint8)
image = Image.fromarray(latents_ubyte.cpu().numpy())
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
events.emit_invocation_denoise_progress(
context_data.queue_item,
context_data.invocation,
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)

View File

@@ -0,0 +1,56 @@
from typing import Callable
import torch
from tqdm import tqdm
from invokeai.backend.flux.inpaint_extension import InpaintExtension
from invokeai.backend.flux.model import Flux
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
def denoise(
model: Flux,
# model input
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
# sampling parameters
timesteps: list[float],
step_callback: Callable[[PipelineIntermediateState], None],
guidance: float,
inpaint_extension: InpaintExtension | None,
):
step = 0
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
preview_img = img - t_curr * pred
img = img + (t_prev - t_curr) * pred
if inpaint_extension is not None:
img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev)
step_callback(
PipelineIntermediateState(
step=step,
order=1,
total_steps=len(timesteps),
timestep=int(t_curr),
latents=preview_img,
),
)
step += 1
return img

View File

@@ -0,0 +1,35 @@
import torch
class InpaintExtension:
"""A class for managing inpainting with FLUX."""
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
"""Initialize InpaintExtension.
Args:
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0). In 'packed' format.
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
inpainted region with the background. In 'packed' format.
noise (torch.Tensor): The noise tensor used to noise the init_latents. In 'packed' format.
"""
assert init_latents.shape == inpaint_mask.shape == noise.shape
self._init_latents = init_latents
self._inpaint_mask = inpaint_mask
self._noise = noise
def merge_intermediate_latents_with_init_latents(
self, intermediate_latents: torch.Tensor, timestep: float
) -> torch.Tensor:
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
trajectory.
This function should be called after each denoising step.
"""
# Noise the init latents for the current timestep.
noised_init_latents = self._noise * timestep + (1.0 - timestep) * self._init_latents
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
return intermediate_latents * self._inpaint_mask + noised_init_latents * (1.0 - self._inpaint_mask)

View File

@@ -0,0 +1,32 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import torch
from einops import rearrange
from torch import Tensor
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

View File

@@ -0,0 +1,117 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from invokeai.backend.flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img

View File

@@ -0,0 +1,324 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: list[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = torch.nn.functional.silu(h)
h = self.conv1(h)
h = self.norm2(h)
h = torch.nn.functional.silu(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = torch.nn.functional.silu(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = torch.nn.functional.silu(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __init__(self, chunk_dim: int = 1):
super().__init__()
self.chunk_dim = chunk_dim
def forward(self, z: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if sample:
std = torch.exp(0.5 * logvar)
# Unfortunately, torch.randn_like(...) does not accept a generator argument at the time of writing, so we
# have to use torch.randn(...) instead.
return mean + std * torch.randn(size=mean.size(), generator=generator, dtype=mean.dtype, device=mean.device)
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian()
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
def encode(self, x: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
"""Run VAE encoding on input tensor x.
Args:
x (Tensor): Input image tensor. Shape: (batch_size, in_channels, height, width).
sample (bool, optional): If True, sample from the encoded distribution, else, return the distribution mean.
Defaults to True.
generator (torch.Generator | None, optional): Optional random number generator for reproducibility.
Defaults to None.
Returns:
Tensor: Encoded latent tensor. Shape: (batch_size, z_channels, latent_height, latent_width).
"""
z = self.reg(self.encoder(x), sample=sample, generator=generator)
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: Tensor) -> Tensor:
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def forward(self, x: Tensor) -> Tensor:
return self.decode(self.encode(x))

View File

@@ -0,0 +1,33 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from torch import Tensor, nn
from transformers import PreTrainedModel, PreTrainedTokenizer
class HFEncoder(nn.Module):
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
super().__init__()
self.max_length = max_length
self.is_clip = is_clip
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
self.tokenizer = tokenizer
self.hf_module = encoder
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key]

View File

@@ -0,0 +1,253 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from invokeai.backend.flux.math import attention, rope
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

View File

@@ -0,0 +1,135 @@
# Initially pulled from https://github.com/black-forest-labs/flux
import math
from typing import Callable
import torch
from einops import rearrange, repeat
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
rand_device = "cpu"
rand_dtype = torch.float16
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=rand_device,
dtype=rand_dtype,
generator=torch.Generator(device=rand_device).manual_seed(seed),
).to(device=device, dtype=dtype)
def time_shift(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def _find_last_index_ge_val(timesteps: list[float], val: float, eps: float = 1e-6) -> int:
"""Find the last index in timesteps that is >= val.
We use epsilon-close equality to avoid potential floating point errors.
"""
idx = len(list(filter(lambda t: t >= (val - eps), timesteps))) - 1
assert idx >= 0
return idx
def clip_timestep_schedule(timesteps: list[float], denoising_start: float, denoising_end: float) -> list[float]:
"""Clip the timestep schedule to the denoising range.
Args:
timesteps (list[float]): The original timestep schedule: [1.0, ..., 0.0].
denoising_start (float): A value in [0, 1] specifying the start of the denoising process. E.g. a value of 0.2
would mean that the denoising process start at the last timestep in the schedule >= 0.8.
denoising_end (float): A value in [0, 1] specifying the end of the denoising process. E.g. a value of 0.8 would
mean that the denoising process end at the last timestep in the schedule >= 0.2.
Returns:
list[float]: The clipped timestep schedule.
"""
assert 0.0 <= denoising_start <= 1.0
assert 0.0 <= denoising_end <= 1.0
assert denoising_start <= denoising_end
t_start_val = 1.0 - denoising_start
t_end_val = 1.0 - denoising_end
t_start_idx = _find_last_index_ge_val(timesteps, t_start_val)
t_end_idx = _find_last_index_ge_val(timesteps, t_end_val)
clipped_timesteps = timesteps[t_start_idx : t_end_idx + 1]
return clipped_timesteps
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""Unpack flat array of patch embeddings to latent image."""
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
def pack(x: torch.Tensor) -> torch.Tensor:
"""Pack latent image to flattented array of patch embeddings."""
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
return rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""Generate tensor of image position ids.
Args:
h (int): Height of image in latent space.
w (int): Width of image in latent space.
batch_size (int): Batch size.
device (torch.device): Device.
dtype (torch.dtype): dtype.
Returns:
torch.Tensor: Image position ids.
"""
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
return img_ids

View File

@@ -0,0 +1,71 @@
# Initially pulled from https://github.com/black-forest-labs/flux
from dataclasses import dataclass
from typing import Dict, Literal
from invokeai.backend.flux.model import FluxParams
from invokeai.backend.flux.modules.autoencoder import AutoEncoderParams
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
max_seq_lengths: Dict[str, Literal[256, 512]] = {
"flux-dev": 512,
"flux-schnell": 256,
}
ae_params = {
"flux": AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
)
}
params = {
"flux-dev": FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
"flux-schnell": FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
}

View File

@@ -1,90 +0,0 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@@ -0,0 +1,31 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -1,145 +0,0 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -1,183 +0,0 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -1,227 +0,0 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -0,0 +1,22 @@
from pydantic import BaseModel, ConfigDict
class BoundingBox(BaseModel):
"""Bounding box helper class."""
xmin: int
ymin: int
xmax: int
ymax: int
class DetectionResult(BaseModel):
"""Detection result from Grounding DINO."""
score: float
label: str
box: BoundingBox
model_config = ConfigDict(
# Allow arbitrary types for mask, since it will be a numpy array.
arbitrary_types_allowed=True
)

View File

@@ -0,0 +1,37 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.raw_model import RawModel
class GroundingDinoPipeline(RawModel):
"""A wrapper class for a ZeroShotObjectDetectionPipeline that makes it compatible with the model manager's memory
management system.
"""
def __init__(self, pipeline: ZeroShotObjectDetectionPipeline):
self._pipeline = pipeline
def detect(self, image: Image.Image, candidate_labels: list[str], threshold: float = 0.1) -> list[DetectionResult]:
results = self._pipeline(image=image, candidate_labels=candidate_labels, threshold=threshold)
assert results is not None
results = [DetectionResult.model_validate(result) for result in results]
return results
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK(ryand): The GroundingDinoPipeline does not work on MPS devices. We only allow it to be moved to CPU or
# CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
# HACK(ryand): Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

Some files were not shown because too many files have changed in this diff Show More