Compare commits

..

1 Commits

Author SHA1 Message Date
psychedelicious
5e6b5c8fd6 feat(queue): take one functionality in session processor
Executes the next queue item, then pauses. Does nothing if the queue is already running.
2023-11-30 21:17:35 +11:00
1258 changed files with 243276 additions and 70090 deletions

View File

@@ -42,21 +42,6 @@ Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Merge Plan
<!--
A merge plan describes how this PR should be handled after it is approved.
Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is merged"
A merge plan is particularly important for large PRs or PRs that touch the
database in any way.
-->
## Added/updated tests?
- [ ] Yes

View File

@@ -22,22 +22,12 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v4
uses: actions/setup-node@v3
with:
node-version: '18'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:madge'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@@ -1,15 +1,13 @@
name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
inputs:
publish_package:
description: 'Publish build on PyPi? [true/false]'
required: true
default: 'false'
jobs:
build-and-release:
release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
@@ -17,43 +15,19 @@ jobs:
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: Checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
working-directory: invokeai/frontend/web
- name: Build frontend
run: pnpm run build
working-directory: invokeai/frontend/web
- name: Install python dependencies
- name: install deps
run: pip install --upgrade build twine
- name: Build python package
- name: build package
run: python3 -m build
- name: Upload build as workflow artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: dist
- name: Check distribution
- name: check distribution
run: twine check dist/*
- name: Check PyPI versions
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
@@ -62,6 +36,6 @@ jobs:
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: Publish build on PyPi
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
- name: upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

3
.gitignore vendored
View File

@@ -16,7 +16,7 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
@@ -187,4 +187,3 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/

View File

@@ -1,20 +1,6 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
@@ -32,21 +18,4 @@ mypy:
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports

View File

@@ -1,10 +1,10 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
[![discord badge]][discord link]
@@ -56,9 +56,7 @@ the foundation for multiple commercial products.
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
</div>
@@ -127,8 +125,8 @@ and go to http://localhost:9090.
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
@@ -272,7 +270,7 @@ upgrade script.** See the next section for a Windows recipe.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and

View File

@@ -2,17 +2,14 @@
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
#HOST_INVOKEAI_ROOT=../../invokeai-data
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
# INVOKEAI_ROOT=~/invokeai
# This **must** be an absolute path.
INVOKEAI_ROOT=
# Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup.
# GPU_DRIVER=nvidia #| rocm
# GPU_DRIVER=cuda # or rocm
# CONTAINER_UID=1000

View File

@@ -59,16 +59,14 @@ RUN --mount=type=cache,target=/root/.cache/pip \
# #### Build the Web UI ------------------------------------
FROM node:18-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack enable
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN pnpm run build
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
#### Runtime stage ---------------------------------------
@@ -102,8 +100,6 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
@@ -121,7 +117,7 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]

View File

@@ -1,14 +1,6 @@
# InvokeAI Containerized
All commands should be run within the `docker` directory: `cd docker`
## Quickstart :rocket:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
## Detailed setup
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
@@ -26,12 +18,12 @@ For more configuration options (using an AMD GPU, custom root directory location
This is done via Docker Desktop preferences
### Configure Invoke environment
## Quickstart
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`
1. `docker compose up`
The image will be built automatically if needed.
@@ -45,21 +37,19 @@ The runtime directory (holding models and outputs) will be created in the locati
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
```bash
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=nvidia
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.

11
docker/build.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker compose build args:"
echo $build_args
docker compose build $build_args

View File

@@ -2,8 +2,23 @@
version: '3.8'
x-invokeai: &invokeai
services:
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
# For AMD support, comment out the deploy section above and uncomment the devices section below:
#devices:
# - /dev/kfd:/dev/kfd
# - /dev/dri:/dev/dri
build:
context: ..
dockerfile: docker/Dockerfile
@@ -21,9 +36,7 @@ x-invokeai: &invokeai
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${INVOKEAI_ROOT:-/invokeai}
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
@@ -37,27 +50,3 @@ x-invokeai: &invokeai
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0
services:
invokeai-nvidia:
<<: *invokeai
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
invokeai-cpu:
<<: *invokeai
profiles:
- cpu
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
profiles:
- rocm

View File

@@ -1,32 +1,11 @@
#!/usr/bin/env bash
set -e -o pipefail
set -e
run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
cd "$scriptdir" || exit 1
# This script is provided for backwards compatibility with the old docker setup.
# it doesn't do much aside from wrapping the usual docker compose CLI.
local build_args=""
local profile=""
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
touch .env
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then
printf "%s\n" "docker compose build args:"
printf "%s\n" "$build_args"
fi
docker compose build $build_args
unset build_args
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
}
run
docker compose up -d
docker compose logs -f

View File

@@ -1,277 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

View File

@@ -10,36 +10,40 @@ model. These are the:
tracks the type of the model, its provenance, and where it can be
found on disk.
* _ModelLoadServiceBase_ Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
* _DownloadQueueServiceBase_ A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelInstallServiceBase_ A service for installing models to
disk. It uses `DownloadQueueServiceBase` to download models and
their metadata, and `ModelRecordServiceBase` to store that
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _DownloadQueueServiceBase_ (**CURRENTLY UNDER DEVELOPMENT - NOT IMPLEMENTED**)
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelLoadServiceBase_ (**CURRENTLY UNDER DEVELOPMENT - NOT IMPLEMENTED**)
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
## Location of the Code
All four of these services can be found in
`invokeai/app/services` in the following directories:
* `invokeai/app/services/model_records/`
* `invokeai/app/services/downloads/`
* `invokeai/app/services/model_loader/`
* `invokeai/app/services/model_install/`
* `invokeai/app/services/model_loader/` (**under development**)
* `invokeai/app/services/downloads/`(**under development**)
With the exception of the install service, each of these is a thin
shell around a corresponding implementation located in
`invokeai/backend/model_manager`. The main difference between the
modules found in app services and those in the backend folder is that
the former add support for event reporting and are more tied to the
needs of the InvokeAI API.
Code related to the FastAPI web API can be found in
`invokeai/app/api/routers/model_records.py`.
`invokeai/app/api/routers/models.py`.
***
@@ -161,6 +165,10 @@ of the fields, including `name`, `model_type` and `base_model`, are
shared between `ModelConfigBase` and `ModelBase`, and this is a
potential source of confusion.
** TO DO: ** The `ModelBase` code needs to be revised to reduce the
duplication of similar classes and to support using the `key` as the
primary model identifier.
## Reading and Writing Model Configuration Records
The `ModelRecordService` provides the ability to retrieve model
@@ -354,7 +362,7 @@ model and pass its key to `get_model()`.
Several methods allow you to create and update stored model config
records.
#### add_model(key, config) -> AnyModelConfig:
#### add_model(key, config) -> ModelConfigBase:
Given a key and a configuration, this will add the model's
configuration record to the database. `config` can either be a subclass of
@@ -378,356 +386,27 @@ fields to be updated. This will return an `AnyModelConfig` on success,
or raise `InvalidModelConfigException` or `UnknownModelException`
exceptions on failure.
***TO DO:*** Investigate why `update_model()` returns an
`AnyModelConfig` while `add_model()` returns a `ModelConfigBase`.
### rename_model(key, new_name) -> ModelConfigBase:
This is a special case of `update_model()` for the use case of
changing the model's name. It is broken out because there are cases in
which the InvokeAI application wants to synchronize the model's name
with its path in the `models` directory after changing the name, type
or base. However, when using the ModelRecordService directly, the call
is equivalent to:
```
store.rename_model(key, {'name': 'new_name'})
```
***TO DO:*** Investigate why `rename_model()` is returning a
`ModelConfigBase` while `update_model()` returns a `AnyModelConfig`.
***
## Model installation
The `ModelInstallService` class implements the
`ModelInstallServiceBase` abstract base class, and provides a one-stop
shop for all your model install needs. It provides the following
functionality:
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
- Probing of models to determine their type, base type and other key
information.
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
- Downloading a model from an arbitrary URL and installing it in
`models_dir` (_implementation pending_).
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link (_implementation pending_).
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16. (_implementation pending_)
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
in `ApiDependencies.invoker.services.model_install` and can
also be retrieved from an invocation's `context` argument with
`context.services.model_install`.
In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config, logger)
store = ModelRecordServiceSQL(db)
installer = ModelInstallService(config, store)
```
The full form of `ModelInstallService()` takes the following
required parameters:
| **Argument** | **Type** | **Description** |
|------------------|------------------------------|------------------------------|
| `config` | InvokeAIAppConfig | InvokeAI app configuration object |
| `record_store` | ModelRecordServiceBase | Config record storage database |
| `event_bus` | EventServiceBase | Optional event bus to send download/install progress events to |
Once initialized, the installer will provide the following methods:
#### install_job = installer.import_model()
The `import_model()` method is the core of the installer. The
following illustrates basic usage:
```
from invokeai.app.services.model_install import (
LocalModelSource,
HFModelSource,
URLModelSource,
)
source1 = LocalModelSource(path='/opt/models/sushi.safetensors') # a local safetensors file
source2 = LocalModelSource(path='/opt/models/sushi_diffusers') # a local diffusers folder
source3 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5') # a repo_id
source4 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5', subfolder='vae') # a subfolder within a repo_id
source5 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5', variant='fp16') # a named variant of a HF model
source6 = URLModelSource(url='https://civitai.com/api/download/models/63006') # model located at a URL
source7 = URLModelSource(url='https://civitai.com/api/download/models/63006', access_token='letmein') # with an access token
for source in [source1, source2, source3, source4, source5, source6, source7]:
install_job = installer.install_model(source)
source2job = installer.wait_for_installs()
for source in sources:
job = source2job[source]
if job.status == "completed":
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.status == "error":
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of
sources, including local safetensors files, local diffusers folders,
HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `import_model()` return a `ModelInstallJob` job,
an object which tracks the progress of the install.
If a remote model is requested, the model's files are downloaded in
parallel across a multiple set of threads using the download
queue. During the download process, the `ModelInstallJob` is updated
to provide status and progress information. After the files (if any)
are downloaded, the remainder of the installation runs in a single
serialized background thread. These are the model probing, file
copying, and config record database update steps.
Multiple install jobs can be queued up. You may block until all
install jobs are completed (or errored) by calling the
`wait_for_installs()` method as shown in the code
example. `wait_for_installs()` will return a `dict` that maps the
requested source to its job. This object can be interrogated
to determine its status. If the job errored out, then the error type
and details can be recovered from `job.error_type` and `job.error`.
The full list of arguments to `import_model()` is as follows:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | The source of the model, Path, URL or repo_id |
| `inplace` | bool | True | Leave a local model in its current location |
| `variant` | str | None | Desired variant, such as 'fp16' or 'onnx' (HuggingFace only) |
| `subfolder` | str | None | Repository subfolder (HuggingFace only) |
| `config` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
| `access_token` | str | None | Provide authorization information needed to download |
The `inplace` field controls how local model Paths are handled. If
True (the default), then the model is simply registered in its current
location by the installer's `ModelConfigRecordService`. Otherwise, a
copy of the model put into the location specified by the `models_dir`
application configuration parameter.
The `variant` field is used for HuggingFace repo_ids only. If
provided, the repo_id download handler will look for and download
tensors files that follow the convention for the selected variant:
- "fp16" will select files named "*model.fp16.{safetensors,bin}"
- "onnx" will select files ending with the suffix ".onnx"
- "openvino" will select files beginning with "openvino_model"
In the special case of the "fp16" variant, the installer will select
the 32-bit version of the files if the 16-bit version is unavailable.
`subfolder` is used for HuggingFace repo_ids only. If provided, the
model will be downloaded from the designated subfolder rather than the
top-level repository folder. If a subfolder is attached to the repo_id
using the format `repo_owner/repo_name:subfolder`, then the subfolder
specified by the repo_id will override the subfolder argument.
`config` can be used to override all or a portion of the configuration
attributes returned by the model prober. See the section below for
details.
`access_token` is passed to the download queue and used to access
repositories that require it.
#### Monitoring the install job process
When you create an install job with `import_model()`, it launches the
download and installation process in the background and returns a
`ModelInstallJob` object for monitoring the process.
The `ModelInstallJob` class has the following structure:
| **Attribute** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `status` | `InstallStatus` | An enum of ["waiting", "running", "completed" and "error" |
| `config_in` | `dict` | Overriding configuration values provided by the caller |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `local_path` | `Path` | If a remote model, holds the path of the model after it is downloaded; if a local model, same as `source` |
| `error_type` | `str` | Name of the exception that led to an error status |
| `error` | `str` | Traceback of the error |
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as an event of type `EventServiceBase.model_event`, a timestamp and
the following event names:
- `model_install_started`
The payload will contain the keys `timestamp` and `source`. The latter
indicates the requested model source for installation.
- `model_install_progress`
Emitted at regular intervals when downloading a remote model, the
payload will contain the keys `timestamp`, `source`, `current_bytes`
and `total_bytes`. These events are _not_ emitted when a local model
already on the filesystem is imported.
- `model_install_completed`
Issued once at the end of a successful installation. The payload will
contain the keys `timestamp`, `source` and `key`, where `key` is the
ID under which the model has been registered.
- `model_install_error`
Emitted if the installation process fails for some reason. The payload
will contain the keys `timestamp`, `source`, `error_type` and
`error`. `error_type` is a short message indicating the nature of the
error, and `error` is the long traceback to help debug the problem.
#### Model confguration and probing
The install service uses the `invokeai.backend.model_manager.probe`
module during import to determine the model's type, base type, and
other configuration parameters. Among other things, it assigns a
default name and description for the model based on probed
fields.
When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
retrieved from the HuggingFace and Civitai model repositories.
The probed values can be overriden by providing a dictionary in the
optional `config` argument passed to `import_model()`. You may provide
overriding values for any of the model's configuration
attributes. Here is an example of setting the
`SchedulerPredictionType` and `name` for an sd-2 model:
This is typically used to set
the model's name and description, but can also be used to overcome
cases in which automatic probing is unable to (correctly) determine
the model's attribute. The most common situation is the
`prediction_type` field for sd-2 (and rare sd-1) models. Here is an
example of how it works:
```
install_job = installer.import_model(
source='stabilityai/stable-diffusion-2-1',
variant='fp16',
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
```
### Other installer methods
This section describes additional methods provided by the installer class.
#### jobs = installer.wait_for_installs()
Block until all pending installs are completed or errored and then
returns a list of completed jobs.
#### jobs = installer.list_jobs([source])
Return a list of all active and complete `ModelInstallJobs`. An
optional `source` argument allows you to filter the returned list by a
model source string pattern using a partial string match.
#### jobs = installer.get_job(source)
Return a list of `ModelInstallJob` corresponding to the indicated
model source.
#### installer.prune_jobs
Remove non-pending jobs (completed or errored) from the job list
returned by `list_jobs()` and `get_job()`.
#### installer.app_config, installer.record_store,
installer.event_bus
Properties that provide access to the installer's `InvokeAIAppConfig`,
`ModelRecordServiceBase` and `EventServiceBase` objects.
#### key = installer.register_path(model_path, config), key = installer.install_path(model_path, config)
These methods bypass the download queue and directly register or
install the model at the indicated path, returning the unique ID for
the installed model.
Both methods accept a Path object corresponding to a checkpoint or
diffusers folder, and an optional dict of config attributes to use to
override the values derived from model probing.
The difference between `register_path()` and `install_path()` is that
the former creates a model configuration record without changing the
location of the model in the filesystem. The latter makes a copy of
the model inside the InvokeAI models directory before registering
it.
#### installer.unregister(key)
This will remove the model config record for the model at key, and is
equivalent to `installer.record_store.del_model(key)`
#### installer.delete(key)
This is similar to `unregister()` but has the additional effect of
conditionally deleting the underlying model file(s) if they reside
within the InvokeAI models directory
#### installer.unconditionally_delete(key)
This method is similar to `unregister()`, but also unconditionally
deletes the corresponding model weights file(s), regardless of whether
they are inside or outside the InvokeAI models hierarchy.
#### List[str]=installer.scan_directory(scan_dir: Path, install: bool)
This method will recursively scan the directory indicated in
`scan_dir` for new models and either install them in the models
directory or register them in place, depending on the setting of
`install` (default False).
The return value is the list of keys of the new installed/registered
models.
#### installer.sync_to_config()
This method synchronizes models in the models directory and autoimport
directory to those in the `ModelConfigRecordService` database. New
models are registered and orphan models are unregistered.
#### installer.start(invoker)
The `start` method is called by the API intialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.
# The remainder of this documentation is provisional, pending implementation of the Download and Load services
## Let's get loaded, the lowdown on ModelLoadService
The `ModelLoadService` is responsible for loading a named model into
@@ -1184,3 +863,351 @@ other resources that it might have been using.
This will start/pause/cancel all jobs that have been submitted to the
queue and have not yet reached a terminal state.
## Model installation
The `ModelInstallService` class implements the
`ModelInstallServiceBase` abstract base class, and provides a one-stop
shop for all your model install needs. It provides the following
functionality:
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
- Downloading a model from an arbitrary URL and installing it in
`models_dir`.
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link. Any metadata provided
by Civitai, such as trigger terms, are captured and placed in the
model config record.
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
- Probing of models to determine their type, base type and other key
information.
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
in `ApiDependencies.invoker.services.model_install_service` and can
also be retrieved from an invocation's `context` argument with
`context.services.model_install_service`.
In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download_manager import DownloadQueueServive
from invokeai.app.services.model_record_service import ModelRecordServiceBase
config = InvokeAI.get_config()
queue = DownloadQueueService()
store = ModelRecordServiceBase.open(config)
installer = ModelInstallService(config=config, queue=queue, store=store)
```
The full form of `ModelInstallService()` takes the following
parameters. Each parameter will default to a reasonable value, but it
is recommended that you set them explicitly as shown in the above example.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `config` | InvokeAIAppConfig | Use system-wide config | InvokeAI app configuration object |
| `queue` | DownloadQueueServiceBase | Create a new download queue for internal use | Download queue |
| `store` | ModelRecordServiceBase | Use config to select the database to open | Config storage database |
| `event_bus` | EventServiceBase | None | An event bus to send download/install progress events to |
| `event_handlers` | List[DownloadEventHandler] | None | Event handlers for the download queue |
Note that if `store` is not provided, then the class will use
`ModelRecordServiceBase.open(config)` to select the database to use.
Once initialized, the installer will provide the following methods:
#### install_job = installer.install_model()
The `install_model()` method is the core of the installer. The
following illustrates basic usage:
```
sources = [
Path('/opt/models/sushi.safetensors'), # a local safetensors file
Path('/opt/models/sushi_diffusers/'), # a local diffusers folder
'runwayml/stable-diffusion-v1-5', # a repo_id
'runwayml/stable-diffusion-v1-5:vae', # a subfolder within a repo_id
'https://civitai.com/api/download/models/63006', # a civitai direct download link
'https://civitai.com/models/8765?modelVersionId=10638', # civitai model page
'https://s3.amazon.com/fjacks/sd-3.safetensors', # arbitrary URL
]
for source in sources:
install_job = installer.install_model(source)
source2key = installer.wait_for_installs()
for source in sources:
model_key = source2key[source]
print(f"{source} installed as {model_key}")
```
As shown here, the `install_model()` method accepts a variety of
sources, including local safetensors files, local diffusers folders,
HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `install_model()` will return a `ModelInstallJob` job, a
subclass of `DownloadJobBase`. The install job has additional
install-specific fields described in the next section.
Each install job will run in a series of background threads using
the object's download queue. You may block until all install jobs are
completed (or errored) by calling the `wait_for_installs()` method as
shown in the code example. `wait_for_installs()` will return a `dict`
that maps the requested source to the key of the installed model. In
the case that a model fails to download or install, its value in the
dict will be None. The actual cause of the error will be reported in
the corresponding job's `error` field.
Alternatively you may install event handlers and/or listen for events
on the InvokeAI event bus in order to monitor the progress of the
requested installs.
The full list of arguments to `model_install()` is as follows:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | The source of the model, Path, URL or repo_id |
| `inplace` | bool | True | Leave a local model in its current location |
| `variant` | str | None | Desired variant, such as 'fp16' or 'onnx' (HuggingFace only) |
| `subfolder` | str | None | Repository subfolder (HuggingFace only) |
| `probe_override` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
| `metadata` | ModelSourceMetadata | None | Provide metadata that will be added to model's config |
| `access_token` | str | None | Provide authorization information needed to download |
| `priority` | int | 10 | Download queue priority for the job |
The `inplace` field controls how local model Paths are handled. If
True (the default), then the model is simply registered in its current
location by the installer's `ModelConfigRecordService`. Otherwise, the
model will be moved into the location specified by the `models_dir`
application configuration parameter.
The `variant` field is used for HuggingFace repo_ids only. If
provided, the repo_id download handler will look for and download
tensors files that follow the convention for the selected variant:
- "fp16" will select files named "*model.fp16.{safetensors,bin}"
- "onnx" will select files ending with the suffix ".onnx"
- "openvino" will select files beginning with "openvino_model"
In the special case of the "fp16" variant, the installer will select
the 32-bit version of the files if the 16-bit version is unavailable.
`subfolder` is used for HuggingFace repo_ids only. If provided, the
model will be downloaded from the designated subfolder rather than the
top-level repository folder. If a subfolder is attached to the repo_id
using the format `repo_owner/repo_name:subfolder`, then the subfolder
specified by the repo_id will override the subfolder argument.
`probe_override` can be used to override all or a portion of the
attributes returned by the model prober. This can be used to overcome
cases in which automatic probing is unable to (correctly) determine
the model's attribute. The most common situation is the
`prediction_type` field for sd-2 (and rare sd-1) models. Here is an
example of how it works:
```
install_job = installer.install_model(
source='stabilityai/stable-diffusion-2-1',
variant='fp16',
probe_override=dict(
prediction_type=SchedulerPredictionType('v_prediction')
)
)
```
`metadata` allows you to attach custom metadata to the installed
model. See the next section for details.
`priority` and `access_token` are passed to the download queue and
have the same effect as they do for the DownloadQueueServiceBase.
#### Monitoring the install job process
When you create an install job with `model_install()`, events will be
passed to the list of `DownloadEventHandlers` provided at installer
initialization time. Event handlers can also be added to individual
model install jobs by calling their `add_handler()` method as
described earlier for the `DownloadQueueService`.
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as a singular event type named `model_event` with a payload of
`job`. You can then retrieve the job and check its status.
** TO DO: ** consider breaking `model_event` into
`model_install_started`, `model_install_completed`, etc. The event bus
features have not yet been tested with FastAPI/websockets, and it may
turn out that the job object is not serializable.
#### Model metadata and probing
The install service has special handling for HuggingFace and Civitai
URLs that capture metadata from the source and include it in the model
configuration record. For example, fetching the Civitai model 8765
will produce a config record similar to this (using YAML
representation):
```
5abc3ef8600b6c1cc058480eaae3091e:
path: sd-1/lora/to8contrast-1-5.safetensors
name: to8contrast-1-5
base_model: sd-1
model_type: lora
model_format: lycoris
key: 5abc3ef8600b6c1cc058480eaae3091e
hash: 5abc3ef8600b6c1cc058480eaae3091e
description: 'Trigger terms: to8contrast style'
author: theovercomer8
license: allowCommercialUse=Sell; allowDerivatives=True; allowNoCredit=True
source: https://civitai.com/models/8765?modelVersionId=10638
thumbnail_url: null
tags:
- model
- style
- portraits
```
For sources that do not provide model metadata, you can attach custom
fields by providing a `metadata` argument to `model_install()` using
an initialized `ModelSourceMetadata` object (available for import from
`model_install_service.py`):
```
from invokeai.app.services.model_install_service import ModelSourceMetadata
meta = ModelSourceMetadata(
name="my model",
author="Sushi Chef",
description="Highly customized model; trigger with 'sushi',"
license="mit",
thumbnail_url="http://s3.amazon.com/ljack/pics/sushi.png",
tags=list('sfw', 'food')
)
install_job = installer.install_model(
source='sushi_chef/model3',
variant='fp16',
metadata=meta,
)
```
It is not currently recommended to provide custom metadata when
installing from Civitai or HuggingFace source, as the metadata
provided by the source will overwrite the fields you provide. Instead,
after the model is installed you can use
`ModelRecordService.update_model()` to change the desired fields.
** TO DO: ** Change the logic so that the caller's metadata fields take
precedence over those provided by the source.
#### Other installer methods
This section describes additional, less-frequently-used attributes and
methods provided by the installer class.
##### installer.wait_for_installs()
This is equivalent to the `DownloadQueue` `join()` method. It will
block until all the active jobs in the install queue have reached a
terminal state (completed, errored or cancelled).
##### installer.queue, installer.store, installer.config
These attributes provide access to the `DownloadQueueServiceBase`,
`ModelConfigRecordServiceBase`, and `InvokeAIAppConfig` objects that
the installer uses.
For example, to temporarily pause all pending installations, you can
do this:
```
installer.queue.pause_all_jobs()
```
##### key = installer.register_path(model_path, overrides), key = installer.install_path(model_path, overrides)
These methods bypass the download queue and directly register or
install the model at the indicated path, returning the unique ID for
the installed model.
Both methods accept a Path object corresponding to a checkpoint or
diffusers folder, and an optional dict of attributes to use to
override the values derived from model probing.
The difference between `register_path()` and `install_path()` is that
the former will not move the model from its current position, while
the latter will move it into the `models_dir` hierarchy.
##### installer.unregister(key)
This will remove the model config record for the model at key, and is
equivalent to `installer.store.unregister(key)`
##### installer.delete(key)
This is similar to `unregister()` but has the additional effect of
deleting the underlying model file(s) -- even if they were outside the
`models_dir` directory!
##### installer.conditionally_delete(key)
This method will call `unregister()` if the model identified by `key`
is outside the `models_dir` hierarchy, and call `delete()` if the
model is inside.
#### List[str]=installer.scan_directory(scan_dir: Path, install: bool)
This method will recursively scan the directory indicated in
`scan_dir` for new models and either install them in the models
directory or register them in place, depending on the setting of
`install` (default False).
The return value is the list of keys of the new installed/registered
models.
#### installer.scan_models_directory()
This method scans the models directory for new models and registers
them in place. Models that are present in the
`ModelConfigRecordService` database whose paths are not found will be
unregistered.
#### installer.sync_to_config()
This method synchronizes models in the models directory and autoimport
directory to those in the `ModelConfigRecordService` database. New
models are registered and orphan models are unregistered.
#### hash=installer.hash(model_path)
This method is calls the fasthash algorithm on a model's Path
(either a file or a folder) to generate a unique ID based on the
contents of the model.
##### installer.start(invoker)
The `start` method is called by the API intialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.
This method should not ordinarily be called manually.

View File

@@ -46,18 +46,17 @@ We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](http
```bash
node --version
```
2. Install [pnpm](https://pnpm.io/) and confirm it is installed by running this:
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global pnpm
pnpm --version
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `pnpm install` to get everything set up.
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `pnpm dev`
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
@@ -73,4 +72,4 @@ For a number of technical and logistical reasons, we need to commit UI build art
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `pnpm build`.
To build for production, run `yarn build`.

View File

@@ -154,16 +154,14 @@ groups in `invokeia.yaml`:
### Web Server
| Setting | Default Value | Description |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].

View File

@@ -120,7 +120,7 @@ Generate an image with a given prompt, record the seed of the image, and then
use the `prompt2prompt` syntax to substitute words in the original prompt for
words in a new prompt. This works for `img2img` as well.
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because the words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because of the word words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
- `a cat playing with a ball in the forest`
- `a dog playing with a ball in the forest`

View File

@@ -293,19 +293,6 @@ manager, please follow these steps:
## Developer Install
!!! warning
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
PR introduces a schema change.
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
`use_memory_db: true` under `Path:` in your `invokeai.yaml` file.
If this is untenable, you should run the application via the official installer or a manual install of the
python package from pypi. These releases will not break your database.
If you have an interest in how InvokeAI works, or you would like to
add features or bugfixes, you are encouraged to install the source
code for InvokeAI. For this to work, you will need to install the
@@ -401,5 +388,3 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939

View File

@@ -1,10 +0,0 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "b5973bb1-476b-451e-8cf4-98de86745a10");
script.setAttribute("data-project-name", "Invoke.AI");
script.setAttribute("data-project-color", "#11213C");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/113954515?s=280&v=4");
script.async = true;
document.head.appendChild(script);
});

View File

@@ -13,12 +13,7 @@ If you'd prefer, you can also just download the whole node folder from the linke
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
- Community Nodes
+ [Adapters-Linked](#adapters-linked-nodes)
+ [Average Images](#average-images)
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
+ [Close Color Mask](#close-color-mask)
+ [Clothing Mask](#clothing-mask)
+ [Contrast Limited Adaptive Histogram Equalization](#contrast-limited-adaptive-histogram-equalization)
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Film Grain](#film-grain)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
@@ -27,24 +22,16 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Halftone](#halftone)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image Dominant Color](#image-dominant-color)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Image Resize Plus](#image-resize-plus)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations)
+ [Match Histogram](#match-histogram)
+ [Metadata-Linked](#metadata-linked-nodes)
+ [Negative Image](#negative-image)
+ [Nightmare Promptgen](#nightmare-promptgen)
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Remote Image](#remote-image)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [Unsharp Mask](#unsharp-mask)
@@ -54,19 +41,6 @@ To use a community workflow, download the the `.json` node graph file and load i
- [Help](#help)
--------------------------------
### Adapters Linked Nodes
**Description:** A set of nodes for linked adapters (ControlNet, IP-Adaptor & T2I-Adapter). This allows multiple adapters to be chained together without using a `collect` node which means it can be used inside an `iterate` node without any collecting on every iteration issues.
- `ControlNet-Linked` - Collects ControlNet info to pass to other nodes.
- `IP-Adapter-Linked` - Collects IP-Adapter info to pass to other nodes.
- `T2I-Adapter-Linked` - Collects T2I-Adapter info to pass to other nodes.
Note: These are inherited from the core nodes so any update to the core nodes should be reflected in these.
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
--------------------------------
### Average Images
@@ -74,46 +48,6 @@ Note: These are inherited from the core nodes so any update to the core nodes sh
**Node Link:** https://github.com/JPPhoto/average-images-node
--------------------------------
### Clean Image Artifacts After Cut
Description: Removes residual artifacts after an image is separated from its background.
Node Link: https://github.com/VeyDlin/clean-artifact-after-cut-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clean-artifact-after-cut-node/master/.readme/node.png" width="500" />
--------------------------------
### Close Color Mask
Description: Generates a mask for images based on a closely matching color, useful for color-based selections.
Node Link: https://github.com/VeyDlin/close-color-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/close-color-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Clothing Mask
Description: Employs a U2NET neural network trained for the segmentation of clothing items in images.
Node Link: https://github.com/VeyDlin/clothing-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clothing-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Contrast Limited Adaptive Histogram Equalization
Description: Enhances local image contrast using adaptive histogram equalization with contrast limiting.
Node Link: https://github.com/VeyDlin/clahe-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clahe-node/master/.readme/node.png" width="500" />
--------------------------------
### Depth Map from Wavefront OBJ
@@ -230,16 +164,6 @@ This includes 15 Nodes:
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
--------------------------------
### Image Dominant Color
Description: Identifies and extracts the dominant color from an image using k-means clustering.
Node Link: https://github.com/VeyDlin/image-dominant-color-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-dominant-color-node/master/.readme/node.png" width="500" />
--------------------------------
### Image to Character Art Image Nodes
@@ -261,17 +185,6 @@ View:
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Image Resize Plus
Description: Provides various image resizing options such as fill, stretch, fit, center, and crop.
Node Link: https://github.com/VeyDlin/image-resize-plus-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
--------------------------------
### Load Video Frame
@@ -296,16 +209,6 @@ View:
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
--------------------------------
### Mask Operations
Description: Offers logical operations (OR, SUB, AND) for combining and manipulating image masks.
Node Link: https://github.com/VeyDlin/mask-operations-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/mask-operations-node/master/.readme/node.png" width="500" />
--------------------------------
### Match Histogram
@@ -323,37 +226,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
--------------------------------
### Metadata Linked Nodes
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes
--------------------------------
### Negative Image
Description: Creates a negative version of an image, effective for visual effects and mask inversion.
Node Link: https://github.com/VeyDlin/negative-image-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
--------------------------------
### Nightmare Promptgen
**Description:** Nightmare Prompt Generator - Uses a local text generation model to create unique imaginative (but usually nightmarish) prompts for InvokeAI. By default, it allows you to choose from some gpt-neo models I finetuned on over 2500 of my own InvokeAI prompts in Compel format, but you're able to add your own, as well. Offers support for replacing any troublesome words with a random choice from list you can also define.
**Node Link:** [https://github.com/gogurtenjoyer/nightmare-promptgen](https://github.com/gogurtenjoyer/nightmare-promptgen)
--------------------------------
### Oobabooga
@@ -417,15 +289,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
--------------------------------
### Remove Background
Description: An integration of the rembg package to remove backgrounds from images using multiple U2NET models.
Node Link: https://github.com/VeyDlin/remove-background-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/remove-background-node/master/.readme/node.png" width="500" />
--------------------------------
### Retroize
@@ -438,17 +301,6 @@ View:
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Simple Skin Detection
Description: Detects skin in images based on predefined color thresholds.
Node Link: https://github.com/VeyDlin/simple-skin-detection-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/simple-skin-detection-node/master/.readme/node.png" width="500" />
--------------------------------
### Size Stepper Nodes
@@ -534,7 +386,6 @@ See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/READ
<img src="https://github.com/skunkworxdark/XYGrid_nodes/blob/main/images/collage.png" width="300" />
--------------------------------
### Example Node Template

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,8 +1,8 @@
{
"name": "Text to Image - SD1.5",
"name": "Text to Image",
"author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
"version": "1.1.0",
"version": "1.0.1",
"contact": "invoke@invoke.ai",
"tags": "text2image, SD1.5, SD2, default",
"notes": "",
@@ -18,19 +18,10 @@
{
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"fieldName": "prompt"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "width"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "height"
}
],
"meta": {
"category": "default",
"version": "2.0.0"
"version": "1.0.0"
},
"nodes": [
{
@@ -39,56 +30,44 @@
"data": {
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "compel",
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Negative Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": ""
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"type": "ConditioningField",
"fieldKind": "output"
}
}
},
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 259,
"height": 261,
"position": {
"x": 1000,
"y": 350
"x": 995.7263915923627,
"y": 239.67783573351227
}
},
{
@@ -97,60 +76,37 @@
"data": {
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"nodePack": "invokeai",
"inputs": {
"seed": {
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
"name": "seed",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"width": {
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
"name": "width",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"height": {
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
"name": "height",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512
},
"use_cpu": {
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
"name": "use_cpu",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
}
},
@@ -158,40 +114,35 @@
"noise": {
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
"name": "noise",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 388,
"height": 389,
"position": {
"x": 600,
"y": 325
"x": 993.4442117555518,
"y": 605.6757415334787
}
},
{
@@ -200,24 +151,13 @@
"data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "main_model_loader",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"model": {
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
"name": "model",
"type": "MainModelField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
@@ -229,40 +169,35 @@
"unet": {
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
"name": "unet",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"type": "UNetField",
"fieldKind": "output"
},
"clip": {
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
"name": "clip",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"type": "ClipField",
"fieldKind": "output"
},
"vae": {
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
"name": "vae",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"type": "VaeField",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 226,
"position": {
"x": 600,
"y": 25
"x": 163.04436745878343,
"y": 254.63156870373479
}
},
{
@@ -271,56 +206,44 @@
"data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "compel",
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Positive Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "Super cute tiger cub, national geographic award-winning photograph"
"value": ""
},
"clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"type": "ConditioningField",
"fieldKind": "output"
}
}
},
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 259,
"height": 261,
"position": {
"x": 1000,
"y": 25
"x": 595.7263915923627,
"y": 239.67783573351227
}
},
{
@@ -329,36 +252,21 @@
"data": {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int",
"label": "Random Seed",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": {
"low": {
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
"name": "low",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0
},
"high": {
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
"name": "high",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647
}
},
@@ -366,20 +274,23 @@
"value": {
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
"name": "value",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "Random Seed",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": false,
"version": "1.0.0"
},
"width": 320,
"height": 32,
"height": 218,
"position": {
"x": 600,
"y": 275
"x": 541.094822888628,
"y": 694.5704476446829
}
},
{
@@ -388,224 +299,144 @@
"data": {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "denoise_latents",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.0",
"nodePack": "invokeai",
"inputs": {
"positive_conditioning": {
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"negative_conditioning": {
"id": "9393779e-796c-4f64-b740-902a1177bf53",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
"label": ""
},
"noise": {
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
"name": "noise",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"steps": {
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
"name": "steps",
"type": "integer",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 50
"value": 10
},
"cfg_scale": {
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
"name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5
},
"denoising_start": {
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
"name": "denoising_start",
"type": "float",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
},
"denoising_end": {
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
"name": "denoising_end",
"type": "float",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1
},
"scheduler": {
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
"name": "scheduler",
"type": "Scheduler",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "unipc"
"value": "euler"
},
"unet": {
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
"label": ""
},
"control": {
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
"name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
"label": ""
},
"ip_adapter": {
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
"label": ""
},
"t2i_adapter": {
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
},
"cfg_rescale_multiplier": {
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
"label": ""
},
"latents": {
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"denoise_mask": {
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
"name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
"label": ""
}
},
"outputs": {
"latents": {
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
"name": "latents",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
},
"width": 320,
"height": 703,
"height": 646,
"position": {
"x": 1400,
"y": 25
"x": 1476.5794704734735,
"y": 256.80174342731783
}
},
{
@@ -614,185 +445,153 @@
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "l2i",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": false,
"useCache": true,
"version": "1.2.0",
"nodePack": "invokeai",
"inputs": {
"metadata": {
"id": "ab375f12-0042-4410-9182-29e30db82c85",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
"label": ""
},
"latents": {
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
"label": ""
},
"vae": {
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
"label": ""
},
"tiled": {
"id": "da52059a-0cee-4668-942f-519aa794d739",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false
},
"fp32": {
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
"value": false
}
},
"outputs": {
"image": {
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
"name": "image",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
"name": "width",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
"name": "height",
"fieldKind": "output",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
"type": "integer",
"fieldKind": "output"
}
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 266,
"height": 267,
"position": {
"x": 1800,
"y": 25
"x": 2037.9648469717395,
"y": 426.10844427600136
}
}
],
"edges": [
{
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "default",
"sourceHandle": "value",
"targetHandle": "seed"
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"targetHandle": "seed",
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"type": "default"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "default",
"sourceHandle": "clip",
"targetHandle": "clip"
"targetHandle": "clip",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"type": "default"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "default",
"sourceHandle": "clip",
"targetHandle": "clip"
"targetHandle": "clip",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"type": "default"
},
{
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "noise",
"targetHandle": "noise"
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "noise",
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"type": "default"
},
{
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning",
"targetHandle": "positive_conditioning"
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"type": "default"
},
{
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "unet",
"targetHandle": "unet"
"targetHandle": "negative_conditioning",
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"type": "default"
},
{
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "unet",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "unet",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"type": "default"
},
{
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"sourceHandle": "latents",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default",
"targetHandle": "latents",
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"type": "default"
},
{
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "vae",
"targetHandle": "vae"
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"targetHandle": "vae",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"type": "default"
}
]
}
}

View File

@@ -2,72 +2,43 @@
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
function git_show {
git show -s --format='%h %s' $1
}
cd "$(dirname "$0")"
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
echo "A virtual environment is activated. Please deactivate it before proceeding".
exit -1
fi
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
PATCH=""
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v3-latest"
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
# ---------------------- FRONTEND ----------------------
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
pushd ../invokeai/frontend/web >/dev/null
echo
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
echo "Building frontend..."
echo
pnpm build
popd
git push origin :refs/tags/$VERSION
if ! git tag -fa $VERSION ; then
echo "Existing/invalid tag"
exit -1
fi
# ---------------------- BACKEND ----------------------
git push origin :refs/tags/$LATEST_TAG
git tag -fa $LATEST_TAG
echo
echo "Building wheel..."
echo
echo "remember to push --tags!"
fi
# ----------------------
echo Building the wheel
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
@@ -75,15 +46,12 @@ if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build"
pip install --user build
fi
rm -rf ../build
rm -r ../build
python -m build --wheel --outdir dist/ ../.
# ----------------------
echo
echo "Building installer zip files for InvokeAI ${VERSION}..."
echo
echo Building installer zip fles for InvokeAI $VERSION
# get rid of any old ones
rm -f *.zip
@@ -91,11 +59,9 @@ rm -rf InvokeAI-Installer
# copy content
mkdir InvokeAI-Installer
for f in templates *.txt *.reg; do
for f in templates lib *.txt *.reg; do
cp -r ${f} InvokeAI-Installer/
done
mkdir InvokeAI-Installer/lib
cp lib/*.py InvokeAI-Installer/lib
# Move the wheel
mv dist/*.whl InvokeAI-Installer/lib/
@@ -106,13 +72,13 @@ cp install.sh.in InvokeAI-Installer/install.sh
chmod a+x InvokeAI-Installer/install.sh
# Windows
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in > InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
# clean up
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
rm -rf InvokeAI-Installer tmp dist
exit 0

View File

@@ -244,9 +244,9 @@ class InvokeAiInstance:
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch==2.1.2",
"torch==2.1.0",
"torchmetrics==0.11.4",
"torchvision>=0.16.2",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,

View File

@@ -1,71 +0,0 @@
#!/bin/bash
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
}
function git_show_ref {
git show-ref --dereference $1 --abbrev 7
}
function git_show {
git show -s --format='%h %s' $1
}
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
git push origin --tags
fi
exit 0

View File

@@ -2,7 +2,7 @@
from logging import Logger
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.workflow_image_records.workflow_image_records_sqlite import SqliteWorkflowImageRecordsStorage
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -11,7 +11,6 @@ from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
@@ -24,13 +23,14 @@ from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.graph import GraphExecutionState
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService
@@ -67,9 +67,8 @@ class ApiDependencies:
logger.debug(f"Internet connectivity is {config.internet_available}")
output_folder = config.output_path
image_files = DiskImageFileStorage(f"{output_folder}/images")
db = init_db(config=config, logger=logger, image_files=image_files)
db = SqliteDatabase(config, logger)
configuration = config
logger = logger
@@ -80,16 +79,14 @@ class ApiDependencies:
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_files = DiskImageFileStorage(f"{output_folder}/images")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
download_queue_service = DownloadQueueService(event_bus=events)
model_install_service = ModelInstallService(
app_config=config, record_store=model_record_service, event_bus=events
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
@@ -97,6 +94,7 @@ class ApiDependencies:
session_processor = DefaultSessionProcessor()
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_image_records = SqliteWorkflowImageRecordsStorage(db=db)
workflow_records = SqliteWorkflowRecordsStorage(db=db)
services = InvocationServices(
@@ -107,6 +105,7 @@ class ApiDependencies:
configuration=configuration,
events=events,
graph_execution_manager=graph_execution_manager,
graph_library=graph_library,
image_files=image_files,
image_records=image_records,
images=images,
@@ -115,8 +114,6 @@ class ApiDependencies:
logger=logger,
model_manager=model_manager,
model_records=model_record_service,
download_queue=download_queue_service,
model_install=model_install_service,
names=names,
performance_statistics=performance_statistics,
processor=processor,
@@ -124,10 +121,14 @@ class ApiDependencies:
session_processor=session_processor,
session_queue=session_queue,
urls=urls,
workflow_image_records=workflow_image_records,
workflow_records=workflow_records,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
db.clean()
@staticmethod

View File

@@ -1,11 +1,7 @@
import typing
from enum import Enum
from importlib.metadata import PackageNotFoundError, version
from pathlib import Path
from platform import python_version
from typing import Optional
import torch
from fastapi import Body
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
@@ -44,24 +40,6 @@ class AppVersion(BaseModel):
version: str = Field(description="App version")
class AppDependencyVersions(BaseModel):
"""App depencency Versions Response"""
accelerate: str = Field(description="accelerate version")
compel: str = Field(description="compel version")
cuda: Optional[str] = Field(description="CUDA version")
diffusers: str = Field(description="diffusers version")
numpy: str = Field(description="Numpy version")
opencv: str = Field(description="OpenCV version")
onnx: str = Field(description="ONNX version")
pillow: str = Field(description="Pillow (PIL) version")
python: str = Field(description="Python version")
torch: str = Field(description="PyTorch version")
torchvision: str = Field(description="PyTorch Vision version")
transformers: str = Field(description="transformers version")
xformers: Optional[str] = Field(description="xformers version")
class AppConfig(BaseModel):
"""App Config Response"""
@@ -76,29 +54,6 @@ async def get_version() -> AppVersion:
return AppVersion(version=__version__)
@app_router.get("/app_deps", operation_id="get_app_deps", status_code=200, response_model=AppDependencyVersions)
async def get_app_deps() -> AppDependencyVersions:
try:
xformers = version("xformers")
except PackageNotFoundError:
xformers = None
return AppDependencyVersions(
accelerate=version("accelerate"),
compel=version("compel"),
cuda=torch.version.cuda,
diffusers=version("diffusers"),
numpy=version("numpy"),
opencv=version("opencv-python"),
onnx=version("onnx"),
pillow=version("pillow"),
python=python_version(),
torch=torch.version.__version__,
torchvision=version("torchvision"),
transformers=version("transformers"),
xformers=xformers,
)
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ["tile", "lama", "cv2"]

View File

@@ -1,111 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for the download queue."""
from typing import List, Optional
from fastapi import Body, Path, Response
from fastapi.routing import APIRouter
from pydantic.networks import AnyHttpUrl
from starlette.exceptions import HTTPException
from invokeai.app.services.download import (
DownloadJob,
UnknownJobIDException,
)
from ..dependencies import ApiDependencies
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
@download_queue_router.get(
"/",
operation_id="list_downloads",
)
async def list_downloads() -> List[DownloadJob]:
"""Get a list of active and inactive jobs."""
queue = ApiDependencies.invoker.services.download_queue
return queue.list_jobs()
@download_queue_router.patch(
"/",
operation_id="prune_downloads",
responses={
204: {"description": "All completed jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_downloads():
"""Prune completed and errored jobs."""
queue = ApiDependencies.invoker.services.download_queue
queue.prune_jobs()
return Response(status_code=204)
@download_queue_router.post(
"/i/",
operation_id="download",
)
async def download(
source: AnyHttpUrl = Body(description="download source"),
dest: str = Body(description="download destination"),
priority: int = Body(default=10, description="queue priority"),
access_token: Optional[str] = Body(default=None, description="token for authorization to download"),
) -> DownloadJob:
"""Download the source URL to the file or directory indicted in dest."""
queue = ApiDependencies.invoker.services.download_queue
return queue.download(source, dest, priority, access_token)
@download_queue_router.get(
"/i/{id}",
operation_id="get_download_job",
responses={
200: {"description": "Success"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def get_download_job(
id: int = Path(description="ID of the download job to fetch."),
) -> DownloadJob:
"""Get a download job using its ID."""
try:
job = ApiDependencies.invoker.services.download_queue.id_to_job(id)
return job
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i/{id}",
operation_id="cancel_download_job",
responses={
204: {"description": "Job has been cancelled"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def cancel_download_job(
id: int = Path(description="ID of the download job to cancel."),
):
"""Cancel a download job using its ID."""
try:
queue = ApiDependencies.invoker.services.download_queue
job = queue.id_to_job(id)
queue.cancel_job(job)
return Response(status_code=204)
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i",
operation_id="cancel_all_download_jobs",
responses={
204: {"description": "Download jobs have been cancelled"},
},
)
async def cancel_all_download_jobs():
"""Cancel all download jobs."""
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
return Response(status_code=204)

View File

@@ -8,11 +8,10 @@ from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, ValidationError
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator, WorkflowFieldValidator
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID, WorkflowWithoutIDValidator
from ..dependencies import ApiDependencies
@@ -74,7 +73,7 @@ async def upload_image(
workflow_raw = pil_image.info.get("invokeai_workflow", None)
if workflow_raw is not None:
try:
workflow = WorkflowWithoutIDValidator.validate_json(workflow_raw)
workflow = WorkflowFieldValidator.validate_json(workflow_raw)
except ValidationError:
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
pass
@@ -185,18 +184,6 @@ async def get_image_metadata(
raise HTTPException(status_code=404)
@images_router.get(
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=Optional[WorkflowWithoutID]
)
async def get_image_workflow(
image_name: str = Path(description="The name of image whose workflow to get"),
) -> Optional[WorkflowWithoutID]:
try:
return ApiDependencies.invoker.services.images.get_workflow(image_name)
except Exception:
raise HTTPException(status_code=404)
@images_router.api_route(
"/i/{image_name}/full",
methods=["GET", "HEAD"],

View File

@@ -4,7 +4,7 @@
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional
from typing import List, Optional
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
@@ -12,7 +12,6 @@ from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
@@ -26,7 +25,7 @@ from invokeai.backend.model_manager.config import (
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
model_records_router = APIRouter(prefix="/v1/model/record", tags=["models"])
class ModelsList(BaseModel):
@@ -44,25 +43,15 @@ class ModelsList(BaseModel):
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[str] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type))
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
found_models.extend(record_store.search_by_attr(model_type=model_type))
return ModelsList(models=found_models)
@@ -128,17 +117,12 @@ async def update_model_record(
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
installer.delete(key)
record_store = ApiDependencies.invoker.services.model_records
record_store.del_model(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
@@ -157,7 +141,7 @@ async def del_model_record(
status_code=201,
)
async def add_model_record(
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")]
) -> AnyModelConfig:
"""
Add a model using the configuration information appropriate for its type.
@@ -178,145 +162,3 @@ async def add_model_record(
# now fetch it out
return record_store.get_model(config.key)
@model_records_router.post(
"/import",
operation_id="import_model_record",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def import_model(
source: ModelSource,
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
The source object is a discriminated Union of LocalModelSource,
HFModelSource and URLModelSource. Set the "type" field to the
appropriate value:
* To install a local path using LocalModelSource, pass a source of form:
`{
"type": "local",
"path": "/path/to/model",
"inplace": false
}`
The "inplace" flag, if true, will register the model in place in its
current filesystem location. Otherwise, the model will be copied
into the InvokeAI models directory.
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
`{
"type": "hf",
"repo_id": "stabilityai/stable-diffusion-2.0",
"variant": "fp16",
"subfolder": "vae",
"access_token": "f5820a918aaf01"
}`
The `variant`, `subfolder` and `access_token` fields are optional.
* To install a remote model using an arbitrary URL, pass:
`{
"type": "url",
"url": "http://www.civitai.com/models/123456",
"access_token": "f5820a918aaf01"
}`
The `access_token` field is optonal
The model's configuration record will be probed and filled in
automatically. To override the default guesses, pass "metadata"
with a Dict containing the attributes you wish to override.
Installation occurs in the background. Either use list_model_install_jobs()
to poll for completion, or listen on the event bus for the following events:
"model_install_started"
"model_install_completed"
"model_install_error"
On successful completion, the event's payload will contain the field "key"
containing the installed ID of the model. On an error, the event's payload
will contain the fields "error_type" and "error" describing the nature of the
error and its traceback, respectively.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
result: ModelInstallJob = installer.import_model(
source=source,
config=config,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""
Return list of model install jobs.
If the optional 'source' argument is provided, then the list will be filtered
for partial string matches against the install source.
"""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
return jobs
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""
Prune all completed and errored jobs from the install job list.
"""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories. Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)

View File

@@ -93,6 +93,18 @@ async def Pause(
return ApiDependencies.invoker.services.session_processor.pause()
@session_queue_router.put(
"/{queue_id}/processor/take_one",
operation_id="take_one",
responses={200: {"model": SessionProcessorStatus}},
)
async def take_one(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionProcessorStatus:
"""Executes the next-in-line queue item, pausing the processor afterwards. Has no effect if the queue is resumed."""
return ApiDependencies.invoker.services.session_processor.take_one()
@session_queue_router.put(
"/{queue_id}/cancel_by_batch_ids",
operation_id="cancel_by_batch_ids",

View File

@@ -23,11 +23,10 @@ class DynamicPromptsResponse(BaseModel):
)
async def parse_dynamicprompts(
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse:
"""Creates a batch process"""
max_prompts = min(max_prompts, 10000)
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try:
error: Optional[str] = None

View File

@@ -1,19 +1,7 @@
from typing import Optional
from fastapi import APIRouter, Body, HTTPException, Path, Query
from fastapi import APIRouter, Path
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.workflow_records.workflow_records_common import (
Workflow,
WorkflowCategory,
WorkflowNotFoundError,
WorkflowRecordDTO,
WorkflowRecordListItemDTO,
WorkflowRecordOrderBy,
WorkflowWithoutID,
)
from invokeai.app.invocations.baseinvocation import WorkflowField
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
@@ -22,76 +10,11 @@ workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
"/i/{workflow_id}",
operation_id="get_workflow",
responses={
200: {"model": WorkflowRecordDTO},
200: {"model": WorkflowField},
},
)
async def get_workflow(
workflow_id: str = Path(description="The workflow to get"),
) -> WorkflowRecordDTO:
) -> WorkflowField:
"""Gets a workflow"""
try:
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)
except WorkflowNotFoundError:
raise HTTPException(status_code=404, detail="Workflow not found")
@workflows_router.patch(
"/i/{workflow_id}",
operation_id="update_workflow",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def update_workflow(
workflow: Workflow = Body(description="The updated workflow", embed=True),
) -> WorkflowRecordDTO:
"""Updates a workflow"""
return ApiDependencies.invoker.services.workflow_records.update(workflow=workflow)
@workflows_router.delete(
"/i/{workflow_id}",
operation_id="delete_workflow",
)
async def delete_workflow(
workflow_id: str = Path(description="The workflow to delete"),
) -> None:
"""Deletes a workflow"""
ApiDependencies.invoker.services.workflow_records.delete(workflow_id)
@workflows_router.post(
"/",
operation_id="create_workflow",
responses={
200: {"model": WorkflowRecordDTO},
},
)
async def create_workflow(
workflow: WorkflowWithoutID = Body(description="The workflow to create", embed=True),
) -> WorkflowRecordDTO:
"""Creates a workflow"""
return ApiDependencies.invoker.services.workflow_records.create(workflow=workflow)
@workflows_router.get(
"/",
operation_id="list_workflows",
responses={
200: {"model": PaginatedResults[WorkflowRecordListItemDTO]},
},
)
async def list_workflows(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of workflows per page"),
order_by: WorkflowRecordOrderBy = Query(
default=WorkflowRecordOrderBy.Name, description="The attribute to order by"
),
direction: SQLiteDirection = Query(default=SQLiteDirection.Ascending, description="The direction to order by"),
category: WorkflowCategory = Query(default=WorkflowCategory.User, description="The category of workflow to get"),
query: Optional[str] = Query(default=None, description="The text to query by (matches name and description)"),
) -> PaginatedResults[WorkflowRecordListItemDTO]:
"""Gets a page of workflows"""
return ApiDependencies.invoker.services.workflow_records.get_many(
page=page, per_page=per_page, order_by=order_by, direction=direction, query=query, category=category
)
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)

View File

@@ -20,7 +20,6 @@ class SocketIO:
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
async def _handle_queue_event(self, event: Event):
await self.__sio.emit(
@@ -29,13 +28,10 @@ class SocketIO:
room=event[1]["data"]["queue_id"],
)
async def _handle_sub_queue(self, sid, data, *args, **kwargs) -> None:
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid, data, *args, **kwargs) -> None:
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.leave_room(sid, data["queue_id"])
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])

View File

@@ -45,7 +45,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
app_info,
board_images,
boards,
download_queue,
images,
model_records,
models,
@@ -117,7 +116,6 @@ app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(model_records.model_records_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
@@ -221,19 +219,18 @@ def overridden_redoc() -> HTMLResponse:
web_root_path = Path(list(web_dir.__path__)[0])
# Only serve the UI if we it has a build
if (web_root_path / "dist").exists():
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
@app.get("/", include_in_schema=False, name="ui_root")
def get_index() -> FileResponse:
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# # Must mount *after* the other routes else it borks em
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
@app.get("/", include_in_schema=False, name="ui_root")
def get_index() -> FileResponse:
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# # Must mount *after* the other routes else it borks em
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
def invoke_api() -> None:
@@ -274,8 +271,6 @@ def invoke_api() -> None:
port=port,
loop="asyncio",
log_level=app_config.log_level,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)

View File

@@ -4,7 +4,6 @@ from __future__ import annotations
import inspect
import re
import warnings
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
@@ -17,7 +16,6 @@ from pydantic.fields import FieldInfo, _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import uuid_string
@@ -39,19 +37,6 @@ class InvalidFieldError(TypeError):
pass
class Classification(str, Enum, metaclass=MetaEnum):
"""
The classification of an Invocation.
- `Stable`: The invocation, including its inputs/outputs and internal logic, is stable. You may build workflows with it, having confidence that they will not break because of a change in this invocation.
- `Beta`: The invocation is not yet stable, but is planned to be stable in the future. Workflows built around this invocation may break, but we are committed to supporting this invocation long-term.
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
"""
Stable = "stable"
Beta = "beta"
Prototype = "prototype"
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
@@ -452,7 +437,6 @@ class UIConfigBase(BaseModel):
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
model_config = ConfigDict(
validate_assignment=True,
@@ -468,7 +452,6 @@ class InvocationContext:
queue_id: str
queue_item_id: int
queue_batch_id: str
workflow: Optional[WorkflowWithoutID]
def __init__(
self,
@@ -477,14 +460,12 @@ class InvocationContext:
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
workflow: Optional[WorkflowWithoutID],
):
self.services = services
self.graph_execution_state_id = graph_execution_state_id
self.queue_id = queue_id
self.queue_item_id = queue_item_id
self.queue_batch_id = queue_batch_id
self.workflow = workflow
class BaseInvocationOutput(BaseModel):
@@ -621,7 +602,6 @@ class BaseInvocation(ABC, BaseModel):
schema["category"] = uiconfig.category
if uiconfig.node_pack is not None:
schema["node_pack"] = uiconfig.node_pack
schema["classification"] = uiconfig.classification
schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
@@ -725,10 +705,8 @@ class _Model(BaseModel):
pass
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=DeprecationWarning)
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
@@ -797,7 +775,6 @@ def invocation(
category: Optional[str] = None,
version: Optional[str] = None,
use_cache: Optional[bool] = True,
classification: Classification = Classification.Stable,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
"""
Registers an invocation.
@@ -808,7 +785,6 @@ def invocation(
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
"""
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
@@ -829,12 +805,11 @@ def invocation(
cls.UIConfig.title = title
cls.UIConfig.tags = tags
cls.UIConfig.category = category
cls.UIConfig.classification = classification
# Grab the node pack's name from the module name, if it's a custom node
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
if is_custom_node:
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
module_name = cls.__module__.split(".")[0]
if module_name.endswith(CUSTOM_NODE_PACK_SUFFIX):
cls.UIConfig.node_pack = module_name.split(CUSTOM_NODE_PACK_SUFFIX)[0]
else:
cls.UIConfig.node_pack = None
@@ -928,6 +903,24 @@ def invocation_output(
return wrapper
class WorkflowField(RootModel):
"""
Pydantic model for workflows with custom root of type dict[str, Any].
Workflows are stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The workflow")
WorkflowFieldValidator = TypeAdapter(WorkflowField)
class WithWorkflow(BaseModel):
workflow: Optional[WorkflowField] = Field(
default=None, description=FieldDescriptions.workflow, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
)
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
@@ -950,13 +943,3 @@ class WithMetadata(BaseModel):
orig_required=False,
).model_dump(exclude_none=True),
)
class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()

View File

@@ -1,3 +1,4 @@
import re
from dataclasses import dataclass
from typing import List, Optional, Union
@@ -16,7 +17,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import ModelNotFoundException, ModelType
from ...backend.util.devices import torch_dtype
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -87,7 +87,7 @@ class CompelInvocation(BaseInvocation):
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
@@ -210,7 +210,7 @@ class SDXLPromptInvocationBase:
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
name = trigger[1:-1]
try:
ti_list.append(

View File

@@ -24,10 +24,9 @@ from controlnet_aux import (
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
@@ -40,6 +39,7 @@ from .baseinvocation import (
InvocationContext,
OutputField,
WithMetadata,
WithWorkflow,
invocation,
invocation_output,
)
@@ -76,16 +76,17 @@ class ControlField(BaseModel):
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
"""Validate that all control weights in the valid range"""
if isinstance(v, list):
for i in v:
if i < -1 or i > 2:
raise ValueError("Control weights must be within -1 to 2 range")
else:
if v < -1 or v > 2:
raise ValueError("Control weights must be within -1 to 2 range")
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
@@ -95,17 +96,17 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1")
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.0")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
default=1.0, description="The weight given to the ControlNet"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
@@ -113,17 +114,6 @@ class ControlNetInvocation(BaseInvocation):
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
@@ -139,7 +129,7 @@ class ControlNetInvocation(BaseInvocation):
# This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation, WithMetadata):
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process")
@@ -163,7 +153,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
"""Builds an ImageOutput and its ImageField"""
@@ -183,7 +173,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
@@ -206,7 +196,7 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
@@ -235,7 +225,7 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
@@ -257,7 +247,7 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
@@ -280,7 +270,7 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
@@ -305,7 +295,7 @@ class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
@@ -332,7 +322,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
@@ -349,7 +339,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.0"
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.1.0"
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
@@ -372,7 +362,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.0"
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.1.0"
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
@@ -399,7 +389,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
@@ -429,7 +419,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
@@ -445,7 +435,7 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
@@ -468,7 +458,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
@@ -497,7 +487,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
@@ -537,7 +527,7 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
@@ -579,7 +569,7 @@ class SamDetectorReproducibleColors(SamDetector):
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.0",
version="1.1.0",
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""

View File

@@ -6,6 +6,7 @@ import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.app.invocations.baseinvocation import CUSTOM_NODE_PACK_SUFFIX
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
@@ -33,7 +34,7 @@ for d in Path(__file__).parent.iterdir():
continue
# load the module, appending adding a suffix to identify it as a custom node pack
spec = spec_from_file_location(module_name, init.absolute())
spec = spec_from_file_location(f"{module_name}{CUSTOM_NODE_PACK_SUFFIX}", init.absolute())
if spec is None or spec.loader is None:
logger.warn(f"Could not load {init}")

View File

@@ -8,11 +8,11 @@ from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata):
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.1.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Simple inpaint using opencv."""
image: ImageField = InputField(description="The image to inpaint")
@@ -41,7 +41,7 @@ class CvInpaintInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -17,6 +17,7 @@ from invokeai.app.invocations.baseinvocation import (
InvocationContext,
OutputField,
WithMetadata,
WithWorkflow,
invocation,
invocation_output,
)
@@ -437,8 +438,8 @@ def get_faces_list(
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.0")
class FaceOffInvocation(BaseInvocation, WithMetadata):
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.1.0")
class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
image: ImageField = InputField(description="Image for face detection")
@@ -507,7 +508,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
@@ -531,8 +532,8 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.0")
class FaceMaskInvocation(BaseInvocation, WithMetadata):
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.1.0")
class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Face mask creation using mediapipe face detection"""
image: ImageField = InputField(description="Image to face detect")
@@ -626,7 +627,7 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
@@ -649,9 +650,9 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.0"
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.1.0"
)
class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
class FaceIdentifierInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect")
@@ -715,7 +716,7 @@ class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -13,15 +13,7 @@ from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import (
BaseInvocation,
Classification,
Input,
InputField,
InvocationContext,
WithMetadata,
invocation,
)
from .baseinvocation import BaseInvocation, Input, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@@ -44,14 +36,8 @@ class ShowImageInvocation(BaseInvocation):
)
@invocation(
"blank_image",
title="Blank Image",
tags=["image"],
category="image",
version="1.2.0",
)
class BlankImageInvocation(BaseInvocation, WithMetadata):
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.1.0")
class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Creates a blank image and forwards it to the pipeline"""
width: int = InputField(default=512, description="The width of the image")
@@ -70,7 +56,7 @@ class BlankImageInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -80,14 +66,8 @@ class BlankImageInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_crop",
title="Crop Image",
tags=["image", "crop"],
category="image",
version="1.2.0",
)
class ImageCropInvocation(BaseInvocation, WithMetadata):
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.1.0")
class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Crops an image to a specified box. The box can be outside of the image."""
image: ImageField = InputField(description="The image to crop")
@@ -110,7 +90,7 @@ class ImageCropInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -175,14 +155,8 @@ class CenterPadCropInvocation(BaseInvocation):
)
@invocation(
"img_paste",
title="Paste Image",
tags=["image", "paste"],
category="image",
version="1.2.0",
)
class ImagePasteInvocation(BaseInvocation, WithMetadata):
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.1.0")
class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Pastes an image into another image."""
base_image: ImageField = InputField(description="The base image")
@@ -225,7 +199,7 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -235,14 +209,8 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"tomask",
title="Mask from Alpha",
tags=["image", "mask"],
category="image",
version="1.2.0",
)
class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.1.0")
class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Extracts the alpha channel of an image as a mask."""
image: ImageField = InputField(description="The image to create the mask from")
@@ -263,7 +231,7 @@ class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -273,14 +241,8 @@ class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_mul",
title="Multiply Images",
tags=["image", "multiply"],
category="image",
version="1.2.0",
)
class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.1.0")
class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
image1: ImageField = InputField(description="The first image to multiply")
@@ -300,7 +262,7 @@ class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -313,14 +275,8 @@ class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation(
"img_chan",
title="Extract Image Channel",
tags=["image", "channel"],
category="image",
version="1.2.0",
)
class ImageChannelInvocation(BaseInvocation, WithMetadata):
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.1.0")
class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Gets a channel from an image."""
image: ImageField = InputField(description="The image to get the channel from")
@@ -339,7 +295,7 @@ class ImageChannelInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -352,14 +308,8 @@ class ImageChannelInvocation(BaseInvocation, WithMetadata):
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
@invocation(
"img_conv",
title="Convert Image Mode",
tags=["image", "convert"],
category="image",
version="1.2.0",
)
class ImageConvertInvocation(BaseInvocation, WithMetadata):
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.1.0")
class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Converts an image to a different mode."""
image: ImageField = InputField(description="The image to convert")
@@ -378,7 +328,7 @@ class ImageConvertInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -388,14 +338,8 @@ class ImageConvertInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_blur",
title="Blur Image",
tags=["image", "blur"],
category="image",
version="1.2.0",
)
class ImageBlurInvocation(BaseInvocation, WithMetadata):
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.1.0")
class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Blurs an image"""
image: ImageField = InputField(description="The image to blur")
@@ -419,7 +363,7 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -429,64 +373,6 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"unsharp_mask",
title="Unsharp Mask",
tags=["image", "unsharp_mask"],
category="image",
version="1.2.0",
classification=Classification.Beta,
)
class UnsharpMaskInvocation(BaseInvocation, WithMetadata):
"""Applies an unsharp mask filter to an image"""
image: ImageField = InputField(description="The image to use")
radius: float = InputField(gt=0, description="Unsharp mask radius", default=2)
strength: float = InputField(ge=0, description="Unsharp mask strength", default=50)
def pil_from_array(self, arr):
return Image.fromarray((arr * 255).astype("uint8"))
def array_from_pil(self, img):
return numpy.array(img) / 255
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mode = image.mode
alpha_channel = image.getchannel("A") if mode == "RGBA" else None
image = image.convert("RGB")
image_blurred = self.array_from_pil(image.filter(ImageFilter.GaussianBlur(radius=self.radius)))
image = self.array_from_pil(image)
image += (image - image_blurred) * (self.strength / 100.0)
image = numpy.clip(image, 0, 1)
image = self.pil_from_array(image)
image = image.convert(mode)
# Make the image RGBA if we had a source alpha channel
if alpha_channel is not None:
image.putalpha(alpha_channel)
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image.width,
height=image.height,
)
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",
@@ -507,14 +393,8 @@ PIL_RESAMPLING_MAP = {
}
@invocation(
"img_resize",
title="Resize Image",
tags=["image", "resize"],
category="image",
version="1.2.0",
)
class ImageResizeInvocation(BaseInvocation, WithMetadata):
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.1.0")
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Resizes an image to specific dimensions"""
image: ImageField = InputField(description="The image to resize")
@@ -540,7 +420,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -550,14 +430,8 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_scale",
title="Scale Image",
tags=["image", "scale"],
category="image",
version="1.2.0",
)
class ImageScaleInvocation(BaseInvocation, WithMetadata):
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.1.0")
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Scales an image by a factor"""
image: ImageField = InputField(description="The image to scale")
@@ -588,7 +462,7 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -598,14 +472,8 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_lerp",
title="Lerp Image",
tags=["image", "lerp"],
category="image",
version="1.2.0",
)
class ImageLerpInvocation(BaseInvocation, WithMetadata):
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.1.0")
class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
@@ -628,7 +496,7 @@ class ImageLerpInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -638,14 +506,8 @@ class ImageLerpInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_ilerp",
title="Inverse Lerp Image",
tags=["image", "ilerp"],
category="image",
version="1.2.0",
)
class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.1.0")
class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Inverse linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp")
@@ -668,7 +530,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -678,14 +540,8 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_nsfw",
title="Blur NSFW Image",
tags=["image", "nsfw"],
category="image",
version="1.2.0",
)
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.1.0")
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Add blur to NSFW-flagged images"""
image: ImageField = InputField(description="The image to check")
@@ -710,7 +566,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -731,9 +587,9 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
title="Add Invisible Watermark",
tags=["image", "watermark"],
category="image",
version="1.2.0",
version="1.1.0",
)
class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Add an invisible watermark to an image"""
image: ImageField = InputField(description="The image to check")
@@ -750,7 +606,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -760,14 +616,8 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"mask_edge",
title="Mask Edge",
tags=["image", "mask", "inpaint"],
category="image",
version="1.2.0",
)
class MaskEdgeInvocation(BaseInvocation, WithMetadata):
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.1.0")
class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Applies an edge mask to an image"""
image: ImageField = InputField(description="The image to apply the mask to")
@@ -802,7 +652,7 @@ class MaskEdgeInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -817,9 +667,9 @@ class MaskEdgeInvocation(BaseInvocation, WithMetadata):
title="Combine Masks",
tags=["image", "mask", "multiply"],
category="image",
version="1.2.0",
version="1.1.0",
)
class MaskCombineInvocation(BaseInvocation, WithMetadata):
class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
mask1: ImageField = InputField(description="The first mask to combine")
@@ -839,7 +689,7 @@ class MaskCombineInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -849,14 +699,8 @@ class MaskCombineInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"color_correct",
title="Color Correct",
tags=["image", "color"],
category="image",
version="1.2.0",
)
class ColorCorrectInvocation(BaseInvocation, WithMetadata):
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.1.0")
class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""
Shifts the colors of a target image to match the reference image, optionally
using a mask to only color-correct certain regions of the target image.
@@ -956,7 +800,7 @@ class ColorCorrectInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -966,14 +810,8 @@ class ColorCorrectInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"img_hue_adjust",
title="Adjust Image Hue",
tags=["image", "hue"],
category="image",
version="1.2.0",
)
class ImageHueAdjustmentInvocation(BaseInvocation, WithMetadata):
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.1.0")
class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Adjusts the Hue of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -1002,7 +840,7 @@ class ImageHueAdjustmentInvocation(BaseInvocation, WithMetadata):
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -1075,9 +913,9 @@ CHANNEL_FORMATS = {
"value",
],
category="image",
version="1.2.0",
version="1.1.0",
)
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Add or subtract a value from a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -1112,7 +950,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -1146,9 +984,9 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
"value",
],
category="image",
version="1.2.0",
version="1.1.0",
)
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Scale a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust")
@@ -1187,7 +1025,7 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=context.workflow,
workflow=self.workflow,
metadata=self.metadata,
)
@@ -1205,10 +1043,10 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
title="Save Image",
tags=["primitives", "image"],
category="primitives",
version="1.2.0",
version="1.1.0",
use_cache=False,
)
class SaveImageInvocation(BaseInvocation, WithMetadata):
class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
image: ImageField = InputField(description=FieldDescriptions.image)
@@ -1226,7 +1064,7 @@ class SaveImageInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -1244,7 +1082,7 @@ class SaveImageInvocation(BaseInvocation, WithMetadata):
version="1.0.1",
use_cache=False,
)
class LinearUIOutputInvocation(BaseInvocation, WithMetadata):
class LinearUIOutputInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Handles Linear UI Image Outputting tasks."""
image: ImageField = InputField(description=FieldDescriptions.image)

View File

@@ -13,7 +13,7 @@ from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
@@ -118,8 +118,8 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class InfillColorInvocation(BaseInvocation, WithMetadata):
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
@@ -144,7 +144,7 @@ class InfillColorInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -154,8 +154,8 @@ class InfillColorInvocation(BaseInvocation, WithMetadata):
)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class InfillTileInvocation(BaseInvocation, WithMetadata):
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.1")
class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
@@ -181,7 +181,7 @@ class InfillTileInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -192,9 +192,9 @@ class InfillTileInvocation(BaseInvocation, WithMetadata):
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0"
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0"
)
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
@@ -235,7 +235,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -245,8 +245,8 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class LaMaInfillInvocation(BaseInvocation, WithMetadata):
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
@@ -264,7 +264,7 @@ class LaMaInfillInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -274,8 +274,8 @@ class LaMaInfillInvocation(BaseInvocation, WithMetadata):
)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class CV2InfillInvocation(BaseInvocation, WithMetadata):
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill")
@@ -293,7 +293,7 @@ class CV2InfillInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -2,7 +2,7 @@ import os
from builtins import float
from typing import List, Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -15,7 +15,6 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
@@ -40,6 +39,7 @@ class IPAdapterField(BaseModel):
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
@@ -47,17 +47,6 @@ class IPAdapterField(BaseModel):
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("ip_adapter_output")
class IPAdapterOutput(BaseInvocationOutput):
@@ -65,7 +54,7 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
@@ -75,27 +64,18 @@ class IPAdapterInvocation(BaseInvocation):
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
)
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
default=1, ge=-1, description="The weight given to the IP-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.services.model_manager.model_info(

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import contextlib
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import List, Literal, Optional, Union
@@ -65,6 +64,7 @@ from .baseinvocation import (
OutputField,
UIType,
WithMetadata,
WithWorkflow,
invocation,
invocation_output,
)
@@ -79,12 +79,6 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
# HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
# be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
# factor is hard-coded to a literal '8' rather than using this constant.
# The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
LATENT_SCALE_FACTOR = 8
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
@@ -221,7 +215,7 @@ def get_scheduler(
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.1",
version="1.5.0",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@@ -280,7 +274,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
ui_order=7,
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
latents: Optional[LatentsField] = InputField(
default=None,
@@ -400,9 +394,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
@@ -717,23 +711,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
**self.unet.unet.model_dump(),
context=context,
)
# Prepare seamless context, if configured.
seamless_context = contextlib.nullcontext()
seamless_config = self.unet.seamless
if seamless_config is not None:
seamless_context = set_seamless(
model=unet_info.context.model,
axes=seamless_config.axes,
skipped_layers=seamless_config.skipped_layers,
skip_second_resnet=seamless_config.skip_second_resnet,
skip_conv2=seamless_config.skip_conv2,
)
with (
ExitStack() as exit_stack,
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
seamless_context,
set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
@@ -815,9 +796,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.2.0",
version="1.1.0",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata):
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Generates an image from latents."""
latents: LatentsField = InputField(
@@ -840,19 +821,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
context=context,
)
# Prepare seamless context, if configured.
seamless_context = contextlib.nullcontext()
seamless_config = self.vae.seamless
if seamless_config is not None:
seamless_context = set_seamless(
model=vae_info.context.model,
axes=seamless_config.axes,
skipped_layers=seamless_config.skipped_layers,
skip_second_resnet=seamless_config.skip_second_resnet,
skip_conv2=seamless_config.skip_conv2,
)
with seamless_context, vae_info as vae:
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
@@ -911,7 +880,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(
@@ -940,12 +909,12 @@ class ResizeLatentsInvocation(BaseInvocation):
)
width: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
multiple_of=8,
description=FieldDescriptions.width,
)
height: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
multiple_of=8,
description=FieldDescriptions.width,
)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
@@ -959,7 +928,7 @@ class ResizeLatentsInvocation(BaseInvocation):
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
@@ -1197,60 +1166,3 @@ class BlendLatentsInvocation(BaseInvocation):
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, blended_latents)
return build_latents_output(latents_name=name, latents=blended_latents)
# The Crop Latents node was copied from @skunkworxdark's implementation here:
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
@invocation(
"crop_latents",
title="Crop Latents",
tags=["latents", "crop"],
category="latents",
version="1.0.0",
)
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
# Currently, if the class names conflict then 'GET /openapi.json' fails.
class CropLatentsCoreInvocation(BaseInvocation):
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
divisible by the latent scale factor of 8.
"""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
x: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
y: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
width: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
height: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
x1 = self.x // LATENT_SCALE_FACTOR
y1 = self.y // LATENT_SCALE_FACTOR
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
cropped_latents = latents[..., y1:y2, x1:x2]
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, cropped_latents)
return build_latents_output(latents_name=name, latents=cropped_latents)

View File

@@ -19,13 +19,6 @@ from .baseinvocation import (
)
class SeamlessSettings(BaseModel):
axes: List[str] = Field(description="Axes('x' and 'y') to which apply seamless")
skipped_layers: int = Field(description="How much down layers skip when applying seamless")
skip_second_resnet: bool = Field(description="Skip or not second resnet in down blocks when applying seamless")
skip_conv2: bool = Field(description="Skip or not conv2 in down blocks when applying seamless")
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
@@ -43,8 +36,8 @@ class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
seamless: Optional[SeamlessSettings] = Field(default=None, description="Seamless settings applied to model")
class ClipField(BaseModel):
@@ -57,7 +50,7 @@ class ClipField(BaseModel):
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
seamless: Optional[SeamlessSettings] = Field(default=None, description="Seamless settings applied to model")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("unet_output")
@@ -458,11 +451,6 @@ class SeamlessModeInvocation(BaseInvocation):
)
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
skipped_layers: int = InputField(default=0, input=Input.Any, description="How much model's down layers to skip")
skip_second_resnet: bool = InputField(
default=True, input=Input.Any, description="Skip or not second resnet in down layers"
)
skip_conv2: bool = InputField(default=True, input=Input.Any, description="Skip or not conv2 in down layers")
def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y
@@ -477,19 +465,9 @@ class SeamlessModeInvocation(BaseInvocation):
seamless_axes_list.append("y")
if unet is not None:
unet.seamless = SeamlessSettings(
axes=seamless_axes_list,
skipped_layers=self.skipped_layers,
skip_second_resnet=self.skip_second_resnet,
skip_conv2=self.skip_conv2,
)
unet.seamless_axes = seamless_axes_list
if vae is not None:
vae.seamless = SeamlessSettings(
axes=seamless_axes_list,
skipped_layers=self.skipped_layers,
skip_second_resnet=self.skip_second_resnet,
skip_conv2=self.skip_conv2,
)
vae.seamless_axes = seamless_axes_list
return SeamlessModeOutput(unet=unet, vae=vae)

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
import inspect
import re
# from contextlib import ExitStack
from typing import List, Literal, Union
@@ -20,7 +21,6 @@ from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@@ -31,6 +31,7 @@ from .baseinvocation import (
UIComponent,
UIType,
WithMetadata,
WithWorkflow,
invocation,
invocation_output,
)
@@ -78,7 +79,7 @@ class ONNXPromptInvocation(BaseInvocation):
]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
@@ -325,9 +326,9 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
title="ONNX Latents to Image",
tags=["latents", "image", "vae", "onnx"],
category="image",
version="1.2.0",
version="1.1.0",
)
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Generates an image from latents."""
latents: LatentsField = InputField(
@@ -377,7 +378,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -1,6 +1,6 @@
from typing import Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -14,7 +14,6 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType
@@ -38,17 +37,6 @@ class T2IAdapterField(BaseModel):
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("t2i_adapter_output")
class T2IAdapterOutput(BaseInvocationOutput):
@@ -56,7 +44,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1"
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.0"
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""
@@ -73,7 +61,7 @@ class T2IAdapterInvocation(BaseInvocation):
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
default=0, ge=-1, le=2, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
@@ -83,17 +71,6 @@ class T2IAdapterInvocation(BaseInvocation):
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
return T2IAdapterOutput(
t2i_adapter=T2IAdapterField(

View File

@@ -1,308 +0,0 @@
from typing import Literal
import numpy as np
from PIL import Image
from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
Input,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.tiles.tiles import (
calc_tiles_even_split,
calc_tiles_min_overlap,
calc_tiles_with_overlap,
merge_tiles_with_linear_blending,
merge_tiles_with_seam_blending,
)
from invokeai.backend.tiles.utils import Tile
class TileWithImage(BaseModel):
tile: Tile
image: ImageField
@invocation_output("calculate_image_tiles_output")
class CalculateImageTilesOutput(BaseInvocationOutput):
tiles: list[Tile] = OutputField(description="The tiles coordinates that cover a particular image shape.")
@invocation(
"calculate_image_tiles",
title="Calculate Image Tiles",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
overlap: int = InputField(
ge=0,
default=128,
description="The target overlap, in pixels, between adjacent tiles. Adjacent tiles will overlap by at least this amount",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_with_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
overlap=self.overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_even_split",
title="Calculate Image Tiles Even Split",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
num_tiles_x: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the x axis",
)
num_tiles_y: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the y axis",
)
overlap: int = InputField(
default=128,
ge=0,
multiple_of=8,
description="The overlap, in pixels, between adjacent tiles.",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_even_split(
image_height=self.image_height,
image_width=self.image_width,
num_tiles_x=self.num_tiles_x,
num_tiles_y=self.num_tiles_y,
overlap=self.overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_min_overlap",
title="Calculate Image Tiles Minimum Overlap",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
min_overlap: int = InputField(default=128, ge=0, description="Minimum overlap between adjacent tiles, in pixels.")
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_min_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.min_overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation_output("tile_to_properties_output")
class TileToPropertiesOutput(BaseInvocationOutput):
coords_left: int = OutputField(description="Left coordinate of the tile relative to its parent image.")
coords_right: int = OutputField(description="Right coordinate of the tile relative to its parent image.")
coords_top: int = OutputField(description="Top coordinate of the tile relative to its parent image.")
coords_bottom: int = OutputField(description="Bottom coordinate of the tile relative to its parent image.")
# HACK: The width and height fields are 'meta' fields that can easily be calculated from the other fields on this
# object. Including redundant fields that can cheaply/easily be re-calculated goes against conventional API design
# principles. These fields are included, because 1) they are often useful in tiled workflows, and 2) they are
# difficult to calculate in a workflow (even though it's just a couple of subtraction nodes the graph gets
# surprisingly complicated).
width: int = OutputField(description="The width of the tile. Equal to coords_right - coords_left.")
height: int = OutputField(description="The height of the tile. Equal to coords_bottom - coords_top.")
overlap_top: int = OutputField(description="Overlap between this tile and its top neighbor.")
overlap_bottom: int = OutputField(description="Overlap between this tile and its bottom neighbor.")
overlap_left: int = OutputField(description="Overlap between this tile and its left neighbor.")
overlap_right: int = OutputField(description="Overlap between this tile and its right neighbor.")
@invocation(
"tile_to_properties",
title="Tile to Properties",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
tile: Tile = InputField(description="The tile to split into properties.")
def invoke(self, context: InvocationContext) -> TileToPropertiesOutput:
return TileToPropertiesOutput(
coords_left=self.tile.coords.left,
coords_right=self.tile.coords.right,
coords_top=self.tile.coords.top,
coords_bottom=self.tile.coords.bottom,
width=self.tile.coords.right - self.tile.coords.left,
height=self.tile.coords.bottom - self.tile.coords.top,
overlap_top=self.tile.overlap.top,
overlap_bottom=self.tile.overlap.bottom,
overlap_left=self.tile.overlap.left,
overlap_right=self.tile.overlap.right,
)
@invocation_output("pair_tile_image_output")
class PairTileImageOutput(BaseInvocationOutput):
tile_with_image: TileWithImage = OutputField(description="A tile description with its corresponding image.")
@invocation(
"pair_tile_image",
title="Pair Tile with Image",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
# TODO(ryand): The only reason that PairTileImage is needed is because the iterate/collect nodes don't preserve
# order. Can this be fixed?
image: ImageField = InputField(description="The tile image.")
tile: Tile = InputField(description="The tile properties.")
def invoke(self, context: InvocationContext) -> PairTileImageOutput:
return PairTileImageOutput(
tile_with_image=TileWithImage(
tile=self.tile,
image=self.image,
)
)
BLEND_MODES = Literal["Linear", "Seam"]
@invocation(
"merge_tiles_to_image",
title="Merge Tiles to Image",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
"""Merge multiple tile images into a single image."""
# Inputs
tiles_with_images: list[TileWithImage] = InputField(description="A list of tile images with tile properties.")
blend_mode: BLEND_MODES = InputField(
default="Seam",
description="blending type Linear or Seam",
input=Input.Direct,
)
blend_amount: int = InputField(
default=32,
ge=0,
description="The amount to blend adjacent tiles in pixels. Must be <= the amount of overlap between adjacent tiles.",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
images = [twi.image for twi in self.tiles_with_images]
tiles = [twi.tile for twi in self.tiles_with_images]
# Infer the output image dimensions from the max/min tile limits.
height = 0
width = 0
for tile in tiles:
height = max(height, tile.coords.bottom)
width = max(width, tile.coords.right)
# Get all tile images for processing.
# TODO(ryand): It pains me that we spend time PNG decoding each tile from disk when they almost certainly
# existed in memory at an earlier point in the graph.
tile_np_images: list[np.ndarray] = []
for image in images:
pil_image = context.services.images.get_pil_image(image.image_name)
pil_image = pil_image.convert("RGB")
tile_np_images.append(np.array(pil_image))
# Prepare the output image buffer.
# Check the first tile to determine how many image channels are expected in the output.
channels = tile_np_images[0].shape[-1]
dtype = tile_np_images[0].dtype
np_image = np.zeros(shape=(height, width, channels), dtype=dtype)
if self.blend_mode == "Linear":
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
elif self.blend_mode == "Seam":
merge_tiles_with_seam_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
raise ValueError(f"Unsupported blend mode: '{self.blend_mode}'.")
# Convert into a PIL image and save
pil_image = Image.fromarray(np_image)
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
# TODO: Populate this from disk?
# TODO: Use model manager to load?
@@ -29,8 +29,8 @@ if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.0")
class ESRGANInvocation(BaseInvocation, WithMetadata):
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.2.0")
class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image")
@@ -118,7 +118,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
workflow=self.workflow,
)
return ImageOutput(

View File

@@ -1,14 +0,0 @@
from typing import Union
def validate_weights(weights: Union[float, list[float]]) -> None:
"""Validate that all control weights in the valid range"""
to_validate = weights if isinstance(weights, list) else [weights]
if any(i < -1 or i > 2 for i in to_validate):
raise ValueError("Control weights must be within -1 to 2 range")
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
"""Validate that begin_step_percent is less than end_step_percent"""
if begin_step_percent >= end_step_percent:
raise ValueError("Begin step percent must be less than or equal to end step percent")

View File

@@ -4,7 +4,7 @@ from typing import Optional, cast
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .board_image_records_base import BoardImageRecordStorageBase
@@ -20,6 +20,63 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,

View File

@@ -3,7 +3,7 @@ import threading
from typing import Union, cast
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.util.misc import uuid_string
from .board_records_base import BoardRecordStorageBase
@@ -28,6 +28,52 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()

View File

@@ -1,5 +1,6 @@
"""Init file for InvokeAI configure package."""
"""
Init file for InvokeAI configure package
"""
from .config_default import InvokeAIAppConfig, get_invokeai_config
__all__ = ["InvokeAIAppConfig", "get_invokeai_config"]
from .config_base import PagingArgumentParser # noqa F401
from .config_default import InvokeAIAppConfig, get_invokeai_config # noqa F401

View File

@@ -173,7 +173,7 @@ from __future__ import annotations
import os
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf
from pydantic import Field, TypeAdapter
@@ -221,9 +221,6 @@ class InvokeAIAppConfig(InvokeAISettings):
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# SSL options correspond to https://www.uvicorn.org/settings/#https
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
@@ -337,7 +334,7 @@ class InvokeAIAppConfig(InvokeAISettings):
)
@classmethod
def get_config(cls, **kwargs: Dict[str, Any]) -> InvokeAIAppConfig:
def get_config(cls, **kwargs) -> InvokeAIAppConfig:
"""Return a singleton InvokeAIAppConfig configuration object."""
if (
cls.singleton_config is None
@@ -356,7 +353,7 @@ class InvokeAIAppConfig(InvokeAISettings):
else:
root = self.find_root().expanduser().absolute()
self.root = root # insulate ourselves from relative paths that may change
return root.resolve()
return root
@property
def root_dir(self) -> Path:
@@ -386,17 +383,17 @@ class InvokeAIAppConfig(InvokeAISettings):
return db_dir / DB_FILE
@property
def model_conf_path(self) -> Path:
def model_conf_path(self) -> Optional[Path]:
"""Path to models configuration file."""
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self) -> Path:
def legacy_conf_path(self) -> Optional[Path]:
"""Path to directory of legacy configuration files (e.g. v1-inference.yaml)."""
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self) -> Path:
def models_path(self) -> Optional[Path]:
"""Path to the models directory."""
return self._resolve(self.models_dir)

View File

@@ -1,12 +0,0 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",
"DownloadQueueServiceBase",
"DownloadQueueService",
"TqdmProgress",
"DownloadJobStatus",
"UnknownJobIDException",
]

View File

@@ -1,217 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""Model download service."""
from abc import ABC, abstractmethod
from enum import Enum
from functools import total_ordering
from pathlib import Path
from typing import Any, Callable, List, Optional
from pydantic import BaseModel, Field, PrivateAttr
from pydantic.networks import AnyHttpUrl
class DownloadJobStatus(str, Enum):
"""State of a download job."""
WAITING = "waiting" # not enqueued, will not run
RUNNING = "running" # actively downloading
COMPLETED = "completed" # finished running
CANCELLED = "cancelled" # user cancelled
ERROR = "error" # terminated with an error message
class DownloadJobCancelledException(Exception):
"""This exception is raised when a download job is cancelled."""
class UnknownJobIDException(Exception):
"""This exception is raised when an invalid job id is referened."""
class ServiceInactiveException(Exception):
"""This exception is raised when user attempts to initiate a download before the service is started."""
DownloadEventHandler = Callable[["DownloadJob"], None]
@total_ordering
class DownloadJob(BaseModel):
"""Class to monitor and control a model download request."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
# automatically assigned on creation
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
bytes: int = Field(default=0, description="Bytes downloaded so far")
total_bytes: int = Field(default=0, description="Total file size (bytes)")
# set when an error occurs
error_type: Optional[str] = Field(default=None, description="Name of exception that caused an error")
error: Optional[str] = Field(default=None, description="Traceback of the exception that caused an error")
# internal flag
_cancelled: bool = PrivateAttr(default=False)
# optional event handlers passed in on creation
_on_start: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_progress: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_complete: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_error: Optional[DownloadEventHandler] = PrivateAttr(default=None)
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
def cancel(self) -> None:
"""Call to cancel the job."""
self._cancelled = True
# cancelled and the callbacks are private attributes in order to prevent
# them from being serialized and/or used in the Json Schema
@property
def cancelled(self) -> bool:
"""Call to cancel the job."""
return self._cancelled
@property
def on_start(self) -> Optional[DownloadEventHandler]:
"""Return the on_start event handler."""
return self._on_start
@property
def on_progress(self) -> Optional[DownloadEventHandler]:
"""Return the on_progress event handler."""
return self._on_progress
@property
def on_complete(self) -> Optional[DownloadEventHandler]:
"""Return the on_complete event handler."""
return self._on_complete
@property
def on_error(self) -> Optional[DownloadEventHandler]:
"""Return the on_error event handler."""
return self._on_error
@property
def on_cancelled(self) -> Optional[DownloadEventHandler]:
"""Return the on_cancelled event handler."""
return self._on_cancelled
def set_callbacks(
self,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadEventHandler] = None,
) -> None:
"""Set the callbacks for download events."""
self._on_start = on_start
self._on_progress = on_progress
self._on_complete = on_complete
self._on_error = on_error
self._on_cancelled = on_cancelled
class DownloadQueueServiceBase(ABC):
"""Multithreaded queue for downloading models via URL."""
@abstractmethod
def start(self, *args: Any, **kwargs: Any) -> None:
"""Start the download worker threads."""
@abstractmethod
def stop(self, *args: Any, **kwargs: Any) -> None:
"""Stop the download worker threads."""
@abstractmethod
def download(
self,
source: AnyHttpUrl,
dest: Path,
priority: int = 10,
access_token: Optional[str] = None,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadEventHandler] = None,
) -> DownloadJob:
"""
Create a download job.
:param source: Source of the download as a URL.
:param dest: Path to download to. See below.
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
:returns: A DownloadJob object for monitoring the state of the download.
The `dest` argument is a Path object. Its behavior is:
1. If the path exists and is a directory, then the URL contents will be downloaded
into that directory using the filename indicated in the response's `Content-Disposition` field.
If no content-disposition is present, then the last component of the URL will be used (similar to
wget's behavior).
2. If the path does not exist, then it is taken as the name of a new file to create with the downloaded
content.
3. If the path exists and is an existing file, then the downloader will try to resume the download from
the end of the existing file.
"""
pass
@abstractmethod
def list_jobs(self) -> List[DownloadJob]:
"""
List active download jobs.
:returns List[DownloadJob]: List of download jobs whose state is not "completed."
"""
pass
@abstractmethod
def id_to_job(self, id: int) -> DownloadJob:
"""
Return the DownloadJob corresponding to the integer ID.
:param id: ID of the DownloadJob.
Exceptions:
* UnknownJobIDException
"""
pass
@abstractmethod
def cancel_all_jobs(self):
"""Cancel all active and enquedjobs."""
pass
@abstractmethod
def prune_jobs(self):
"""Prune completed and errored queue items from the job list."""
pass
@abstractmethod
def cancel_job(self, job: DownloadJob):
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
pass
@abstractmethod
def join(self):
"""Wait until all jobs are off the queue."""
pass

View File

@@ -1,418 +0,0 @@
# Copyright (c) 2023, Lincoln D. Stein
"""Implementation of multithreaded download queue for invokeai."""
import os
import re
import threading
import traceback
from logging import Logger
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
DownloadEventHandler,
DownloadJob,
DownloadJobCancelledException,
DownloadJobStatus,
DownloadQueueServiceBase,
ServiceInactiveException,
UnknownJobIDException,
)
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
class DownloadQueueService(DownloadQueueServiceBase):
"""Class for queued download of models."""
_jobs: Dict[int, DownloadJob]
_max_parallel_dl: int = 5
_worker_pool: Set[threading.Thread]
_queue: PriorityQueue[DownloadJob]
_stop_event: threading.Event
_lock: threading.Lock
_logger: Logger
_events: Optional[EventServiceBase] = None
_next_job_id: int = 0
_accept_download_requests: bool = False
_requests: requests.sessions.Session
def __init__(
self,
max_parallel_dl: int = 5,
event_bus: Optional[EventServiceBase] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
Initialize DownloadQueue.
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._jobs = {}
self._next_job_id = 0
self._queue = PriorityQueue()
self._stop_event = threading.Event()
self._worker_pool = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
self._event_bus = event_bus
self._requests = requests_session or requests.Session()
self._accept_download_requests = False
self._max_parallel_dl = max_parallel_dl
def start(self, *args: Any, **kwargs: Any) -> None:
"""Start the download worker threads."""
with self._lock:
if self._worker_pool:
raise Exception("Attempt to start the download service twice")
self._stop_event.clear()
self._start_workers(self._max_parallel_dl)
self._accept_download_requests = True
def stop(self, *args: Any, **kwargs: Any) -> None:
"""Stop the download worker threads."""
with self._lock:
if not self._worker_pool:
raise Exception("Attempt to stop the download service before it was started")
self._accept_download_requests = False # reject attempts to add new jobs to queue
queued_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.WAITING]
active_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.RUNNING]
if queued_jobs:
self._logger.warning(f"Cancelling {len(queued_jobs)} queued downloads")
if active_jobs:
self._logger.info(f"Waiting for {len(active_jobs)} active download jobs to complete")
with self._queue.mutex:
self._queue.queue.clear()
self.join() # wait for all active jobs to finish
self._stop_event.set()
self._worker_pool.clear()
def download(
self,
source: AnyHttpUrl,
dest: Path,
priority: int = 10,
access_token: Optional[str] = None,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadEventHandler] = None,
) -> DownloadJob:
"""Create a download job and return its ID."""
if not self._accept_download_requests:
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
with self._lock:
id = self._next_job_id
self._next_job_id += 1
job = DownloadJob(
id=id,
source=source,
dest=dest,
priority=priority,
access_token=access_token,
)
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[id] = job
self._queue.put(job)
return job
def join(self) -> None:
"""Wait for all jobs to complete."""
self._queue.join()
def list_jobs(self) -> List[DownloadJob]:
"""List all the jobs."""
return list(self._jobs.values())
def prune_jobs(self) -> None:
"""Prune completed and errored queue items from the job list."""
with self._lock:
to_delete = set()
for job_id, job in self._jobs.items():
if self._in_terminal_state(job):
to_delete.add(job_id)
for job_id in to_delete:
del self._jobs[job_id]
def id_to_job(self, id: int) -> DownloadJob:
"""Translate a job ID into a DownloadJob object."""
try:
return self._jobs[id]
except KeyError as excp:
raise UnknownJobIDException("Unrecognized job") from excp
def cancel_job(self, job: DownloadJob) -> None:
"""
Cancel the indicated job.
If it is running it will be stopped.
job.status will be set to DownloadJobStatus.CANCELLED
"""
with self._lock:
job.cancel()
def cancel_all_jobs(self, preserve_partial: bool = False) -> None:
"""Cancel all jobs (those not in enqueued, running or paused state)."""
for job in self._jobs.values():
if not self._in_terminal_state(job):
self.cancel_job(job)
def _in_terminal_state(self, job: DownloadJob) -> bool:
return job.status in [
DownloadJobStatus.COMPLETED,
DownloadJobStatus.CANCELLED,
DownloadJobStatus.ERROR,
]
def _start_workers(self, max_workers: int) -> None:
"""Start the requested number of worker threads."""
self._stop_event.clear()
for i in range(0, max_workers): # noqa B007
worker = threading.Thread(target=self._download_next_item, daemon=True)
self._logger.debug(f"Download queue worker thread {worker.name} starting.")
worker.start()
self._worker_pool.add(worker)
def _download_next_item(self) -> None:
"""Worker thread gets next job on priority queue."""
done = False
while not done:
if self._stop_event.is_set():
done = True
continue
try:
job = self._queue.get(timeout=1)
except Empty:
continue
try:
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job)
except DownloadJobCancelledException:
self._signal_job_cancelled(job)
self._cleanup_cancelled_job(job)
finally:
job.job_ended = get_iso_timestamp()
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
def _do_download(self, job: DownloadJob) -> None:
"""Do the actual download."""
url = job.source
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
open_mode = "wb"
# Make a streaming request. This will retrieve headers including
# content-length and content-disposition, but not fetch any content itself
resp = self._requests.get(str(url), headers=header, stream=True)
if not resp.ok:
raise HTTPError(resp.reason)
content_length = int(resp.headers.get("content-length", 0))
job.total_bytes = content_length
if job.dest.is_dir():
file_name = os.path.basename(str(url.path)) # default is to use the last bit of the URL
if match := re.search('filename="(.+)"', resp.headers.get("Content-Disposition", "")):
remote_name = match.group(1)
if self._validate_filename(job.dest.as_posix(), remote_name):
file_name = remote_name
job.download_path = job.dest / file_name
else:
job.dest.parent.mkdir(parents=True, exist_ok=True)
job.download_path = job.dest
assert job.download_path
# Don't clobber an existing file. See commit 82c2c85202f88c6d24ff84710f297cfc6ae174af
# for code that instead resumes an interrupted download.
if job.download_path.exists():
raise OSError(f"[Errno 17] File {job.download_path} exists")
# append ".downloading" to the path
in_progress_path = self._in_progress_path(job.download_path)
# signal caller that the download is starting. At this point, key fields such as
# download_path and total_bytes will be populated. We call it here because the might
# discover that the local file is already complete and generate a COMPLETED status.
self._signal_job_started(job)
# "range not satisfiable" - local file is at least as large as the remote file
if resp.status_code == 416 or (content_length > 0 and job.bytes >= content_length):
self._logger.warning(f"{job.download_path}: complete file found. Skipping.")
return
# "partial content" - local file is smaller than remote file
elif resp.status_code == 206 or job.bytes > 0:
self._logger.warning(f"{job.download_path}: partial file found. Resuming")
# some other error
elif resp.status_code != 200:
raise HTTPError(resp.reason)
self._logger.debug(f"{job.source}: Downloading {job.download_path}")
report_delta = job.total_bytes / 100 # report every 1% change
last_report_bytes = 0
# DOWNLOAD LOOP
with open(in_progress_path, open_mode) as file:
for data in resp.iter_content(chunk_size=DOWNLOAD_CHUNK_SIZE):
if job.cancelled:
raise DownloadJobCancelledException("Job was cancelled at caller's request")
job.bytes += file.write(data)
if (job.bytes - last_report_bytes >= report_delta) or (job.bytes >= job.total_bytes):
last_report_bytes = job.bytes
self._signal_job_progress(job)
# if we get here we are done and can rename the file to the original dest
in_progress_path.rename(job.download_path)
def _validate_filename(self, directory: str, filename: str) -> bool:
pc_name_max = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 260 # hardcoded for windows
pc_path_max = (
os.pathconf(directory, "PC_PATH_MAX") if hasattr(os, "pathconf") else 32767
) # hardcoded for windows with long names enabled
if "/" in filename:
return False
if filename.startswith(".."):
return False
if len(filename) > pc_name_max:
return False
if len(os.path.join(directory, filename)) > pc_path_max:
return False
return True
def _in_progress_path(self, path: Path) -> Path:
return path.with_name(path.name + ".downloading")
def _signal_job_started(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.RUNNING
if job.on_start:
try:
job.on_start(job)
except Exception as e:
self._logger.error(e)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_started(str(job.source), job.download_path.as_posix())
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
try:
job.on_progress(job)
except Exception as e:
self._logger.error(e)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_progress(
str(job.source),
download_path=job.download_path.as_posix(),
current_bytes=job.bytes,
total_bytes=job.total_bytes,
)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
if job.on_complete:
try:
job.on_complete(job)
except Exception as e:
self._logger.error(e)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_complete(
str(job.source), download_path=job.download_path.as_posix(), total_bytes=job.total_bytes
)
def _signal_job_cancelled(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.CANCELLED
if job.on_cancelled:
try:
job.on_cancelled(job)
except Exception as e:
self._logger.error(e)
if self._event_bus:
self._event_bus.emit_download_cancelled(str(job.source))
def _signal_job_error(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.ERROR
if job.on_error:
try:
job.on_error(job)
except Exception as e:
self._logger.error(e)
if self._event_bus:
assert job.error_type
assert job.error
self._event_bus.emit_download_error(str(job.source), error_type=job.error_type, error=job.error)
def _cleanup_cancelled_job(self, job: DownloadJob) -> None:
self._logger.warning(f"Cleaning up leftover files from cancelled download job {job.download_path}")
try:
if job.download_path:
partial_file = self._in_progress_path(job.download_path)
partial_file.unlink()
except OSError as excp:
self._logger.warning(excp)
# Example on_progress event handler to display a TQDM status bar
# Activate with:
# download_service.download('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().job_update
class TqdmProgress(object):
"""TQDM-based progress bar object to use in on_progress handlers."""
_bars: Dict[int, tqdm] # the tqdm object
_last: Dict[int, int] # last bytes downloaded
def __init__(self) -> None: # noqa D107
self._bars = {}
self._last = {}
def update(self, job: DownloadJob) -> None: # noqa D102
job_id = job.id
# new job
if job_id not in self._bars:
assert job.download_path
dest = Path(job.download_path).name
self._bars[job_id] = tqdm(
desc=dest,
initial=0,
total=job.total_bytes,
unit="iB",
unit_scale=True,
)
self._last[job_id] = 0
self._bars[job_id].update(job.bytes - self._last[job_id])
self._last[job_id] = job.bytes

View File

@@ -1 +0,0 @@
from .events_base import EventServiceBase # noqa F401

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Optional
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
@@ -17,8 +16,6 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
class EventServiceBase:
queue_event: str = "queue_event"
download_event: str = "download_event"
model_event: str = "model_event"
"""Basic event bus, to have an empty stand-in when not needed"""
@@ -33,20 +30,6 @@ class EventServiceBase:
payload={"event": event_name, "data": payload},
)
def __emit_download_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.download_event,
payload={"event": event_name, "data": payload},
)
def __emit_model_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.model_event,
payload={"event": event_name, "data": payload},
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
@@ -330,146 +313,3 @@ class EventServiceBase:
event_name="queue_cleared",
payload={"queue_id": queue_id},
)
def emit_download_started(self, source: str, download_path: str) -> None:
"""
Emit when a download job is started.
:param url: The downloaded url
"""
self.__emit_download_event(
event_name="download_started",
payload={"source": source, "download_path": download_path},
)
def emit_download_progress(self, source: str, download_path: str, current_bytes: int, total_bytes: int) -> None:
"""
Emit "download_progress" events at regular intervals during a download job.
:param source: The downloaded source
:param download_path: The local downloaded file
:param current_bytes: Number of bytes downloaded so far
:param total_bytes: The size of the file being downloaded (if known)
"""
self.__emit_download_event(
event_name="download_progress",
payload={
"source": source,
"download_path": download_path,
"current_bytes": current_bytes,
"total_bytes": total_bytes,
},
)
def emit_download_complete(self, source: str, download_path: str, total_bytes: int) -> None:
"""
Emit a "download_complete" event at the end of a successful download.
:param source: Source URL
:param download_path: Path to the locally downloaded file
:param total_bytes: The size of the downloaded file
"""
self.__emit_download_event(
event_name="download_complete",
payload={
"source": source,
"download_path": download_path,
"total_bytes": total_bytes,
},
)
def emit_download_cancelled(self, source: str) -> None:
"""Emit a "download_cancelled" event in the event that the download was cancelled by user."""
self.__emit_download_event(
event_name="download_cancelled",
payload={
"source": source,
},
)
def emit_download_error(self, source: str, error_type: str, error: str) -> None:
"""
Emit a "download_error" event when an download job encounters an exception.
:param source: Source URL
:param error_type: The name of the exception that raised the error
:param error: The traceback from this error
"""
self.__emit_download_event(
event_name="download_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)
def emit_model_install_started(self, source: str) -> None:
"""
Emitted when an install job is started.
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_started",
payload={"source": source},
)
def emit_model_install_completed(self, source: str, key: str) -> None:
"""
Emitted when an install job is completed successfully.
:param source: Source of the model; local path, repo_id or url
:param key: Model config record key
"""
self.__emit_model_event(
event_name="model_install_completed",
payload={
"source": source,
"key": key,
},
)
def emit_model_install_progress(
self,
source: str,
current_bytes: int,
total_bytes: int,
) -> None:
"""
Emitted while the install job is in progress.
(Downloaded models only)
:param source: Source of the model
:param current_bytes: Number of bytes downloaded so far
:param total_bytes: Total bytes to download
"""
self.__emit_model_event(
event_name="model_install_progress",
payload={
"source": source,
"current_bytes": int,
"total_bytes": int,
},
)
def emit_model_install_error(
self,
source: str,
error_type: str,
error: str,
) -> None:
"""
Emitted when an install job encounters an exception.
:param source: Source of the model
:param exception: The exception that raised the error
"""
self.__emit_model_event(
event_name="model_install_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)

View File

@@ -4,8 +4,7 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.invocations.baseinvocation import MetadataField, WorkflowField
class ImageFileStorageBase(ABC):
@@ -34,7 +33,7 @@ class ImageFileStorageBase(ABC):
image: PILImageType,
image_name: str,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
workflow: Optional[WorkflowField] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
@@ -44,8 +43,3 @@ class ImageFileStorageBase(ABC):
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
@abstractmethod
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
"""Gets the workflow of an image."""
pass

View File

@@ -7,9 +7,8 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.baseinvocation import MetadataField, WorkflowField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from .image_files_base import ImageFileStorageBase
@@ -57,7 +56,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image: PILImageType,
image_name: str,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
workflow: Optional[WorkflowField] = None,
thumbnail_size: int = 256,
) -> None:
try:
@@ -65,19 +64,12 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
pnginfo = PngImagePlugin.PngInfo()
info_dict = {}
if metadata is not None:
metadata_json = metadata.model_dump_json()
info_dict["invokeai_metadata"] = metadata_json
pnginfo.add_text("invokeai_metadata", metadata_json)
pnginfo.add_text("invokeai_metadata", metadata.model_dump_json())
if workflow is not None:
workflow_json = workflow.model_dump_json()
info_dict["invokeai_workflow"] = workflow_json
pnginfo.add_text("invokeai_workflow", workflow_json)
pnginfo.add_text("invokeai_workflow", workflow.model_dump_json())
# When saving the image, the image object's info field is not populated. We need to set it
image.info = info_dict
image.save(
image_path,
"PNG",
@@ -129,13 +121,6 @@ class DiskImageFileStorage(ImageFileStorageBase):
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def get_workflow(self, image_name: str) -> WorkflowWithoutID | None:
image = self.get(image_name)
workflow = image.info.get("invokeai_workflow", None)
if workflow is not None:
return WorkflowWithoutID.model_validate_json(workflow)
return None
def __validate_storage_folders(self) -> None:
"""Checks if the required output folders exist and create them if they don't"""
folders: list[Path] = [self.__output_folder, self.__thumbnails_folder]

View File

@@ -75,7 +75,6 @@ class ImageRecordStorageBase(ABC):
image_category: ImageCategory,
width: int,
height: int,
has_workflow: bool,
is_intermediate: Optional[bool] = False,
starred: Optional[bool] = False,
session_id: Optional[str] = None,

View File

@@ -100,7 +100,6 @@ IMAGE_DTO_COLS = ", ".join(
"height",
"session_id",
"node_id",
"has_workflow",
"is_intermediate",
"created_at",
"updated_at",
@@ -146,7 +145,6 @@ class ImageRecord(BaseModelExcludeNull):
"""The node ID that generated this image, if it is a generated image."""
starred: bool = Field(description="Whether this image is starred.")
"""Whether this image is starred."""
has_workflow: bool = Field(description="Whether this image has a workflow.")
class ImageRecordChanges(BaseModelExcludeNull, extra="allow"):
@@ -190,7 +188,6 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
deleted_at = image_dict.get("deleted_at", get_iso_timestamp())
is_intermediate = image_dict.get("is_intermediate", False)
starred = image_dict.get("starred", False)
has_workflow = image_dict.get("has_workflow", False)
return ImageRecord(
image_name=image_name,
@@ -205,5 +202,4 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
deleted_at=deleted_at,
is_intermediate=is_intermediate,
starred=starred,
has_workflow=has_workflow,
)

View File

@@ -5,7 +5,7 @@ from typing import Optional, Union, cast
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .image_records_base import ImageRecordStorageBase
from .image_records_common import (
@@ -32,6 +32,91 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `images` table."""
# Create the `images` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "starred" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
)
def get(self, image_name: str) -> ImageRecord:
try:
self._lock.acquire()
@@ -323,7 +408,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
image_category: ImageCategory,
width: int,
height: int,
has_workflow: bool,
is_intermediate: Optional[bool] = False,
starred: Optional[bool] = False,
session_id: Optional[str] = None,
@@ -345,10 +429,9 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
session_id,
metadata,
is_intermediate,
starred,
has_workflow
starred
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
@@ -361,7 +444,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
metadata_json,
is_intermediate,
starred,
has_workflow,
),
)
self._conn.commit()

View File

@@ -3,7 +3,7 @@ from typing import Callable, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.baseinvocation import MetadataField, WorkflowField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
@@ -12,7 +12,6 @@ from invokeai.app.services.image_records.image_records_common import (
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
class ImageServiceABC(ABC):
@@ -52,7 +51,7 @@ class ImageServiceABC(ABC):
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
workflow: Optional[WorkflowField] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@@ -86,11 +85,6 @@ class ImageServiceABC(ABC):
"""Gets an image's metadata."""
pass
@abstractmethod
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
"""Gets an image's workflow."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""

View File

@@ -24,6 +24,11 @@ class ImageDTO(ImageRecord, ImageUrlsDTO):
default=None, description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists."""
workflow_id: Optional[str] = Field(
default=None,
description="The workflow that generated this image.",
)
"""The workflow that generated this image."""
def image_record_to_dto(
@@ -31,6 +36,7 @@ def image_record_to_dto(
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
workflow_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
@@ -38,4 +44,5 @@ def image_record_to_dto(
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
workflow_id=workflow_id,
)

View File

@@ -2,10 +2,9 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.baseinvocation import MetadataField, WorkflowField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from ..image_files.image_files_common import (
ImageFileDeleteException,
@@ -43,7 +42,7 @@ class ImageService(ImageServiceABC):
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
workflow: Optional[WorkflowField] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
@@ -56,6 +55,12 @@ class ImageService(ImageServiceABC):
(width, height) = image.size
try:
if workflow is not None:
created_workflow = self.__invoker.services.workflow_records.create(workflow)
workflow_id = created_workflow.model_dump()["id"]
else:
workflow_id = None
# TODO: Consider using a transaction here to ensure consistency between storage and database
self.__invoker.services.image_records.save(
# Non-nullable fields
@@ -64,7 +69,6 @@ class ImageService(ImageServiceABC):
image_category=image_category,
width=width,
height=height,
has_workflow=workflow is not None,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
@@ -74,6 +78,8 @@ class ImageService(ImageServiceABC):
)
if board_id is not None:
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
if workflow_id is not None:
self.__invoker.services.workflow_image_records.create(workflow_id=workflow_id, image_name=image_name)
self.__invoker.services.image_files.save(
image_name=image_name, image=image, metadata=metadata, workflow=workflow
)
@@ -137,6 +143,7 @@ class ImageService(ImageServiceABC):
image_url=self.__invoker.services.urls.get_image_url(image_name),
thumbnail_url=self.__invoker.services.urls.get_image_url(image_name, True),
board_id=self.__invoker.services.board_image_records.get_board_for_image(image_name),
workflow_id=self.__invoker.services.workflow_image_records.get_workflow_for_image(image_name),
)
return image_dto
@@ -157,15 +164,18 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Problem getting image DTO")
raise e
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
def get_workflow(self, image_name: str) -> Optional[WorkflowField]:
try:
return self.__invoker.services.image_files.get_workflow(image_name)
except ImageFileNotFoundException:
self.__invoker.services.logger.error("Image file not found")
raise
except Exception:
self.__invoker.services.logger.error("Problem getting image workflow")
workflow_id = self.__invoker.services.workflow_image_records.get_workflow_for_image(image_name)
if workflow_id is None:
return None
return self.__invoker.services.workflow_records.get(workflow_id)
except ImageRecordNotFoundException:
self.__invoker.services.logger.error("Image record not found")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image DTO")
raise e
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
@@ -213,6 +223,7 @@ class ImageService(ImageServiceABC):
image_url=self.__invoker.services.urls.get_image_url(r.image_name),
thumbnail_url=self.__invoker.services.urls.get_image_url(r.image_name, True),
board_id=self.__invoker.services.board_image_records.get_board_for_image(r.image_name),
workflow_id=self.__invoker.services.workflow_image_records.get_workflow_for_image(r.image_name),
)
for r in results.items
]

View File

@@ -108,7 +108,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
queue_batch_id=queue_item.session_queue_batch_id,
workflow=queue_item.workflow,
)
)
@@ -179,7 +178,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
session_queue_item_id=queue_item.session_queue_item_id,
session_queue_id=queue_item.session_queue_id,
graph_execution_state=graph_execution_state,
workflow=queue_item.workflow,
invoke_all=True,
)
except Exception as e:

View File

@@ -1,12 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
@@ -18,6 +15,5 @@ class InvocationQueueItem(BaseModel):
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
workflow: Optional[WorkflowWithoutID] = Field(description="The workflow associated with this queue item")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)

View File

@@ -11,7 +11,6 @@ if TYPE_CHECKING:
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .config import InvokeAIAppConfig
from .download import DownloadQueueServiceBase
from .events.events_base import EventServiceBase
from .image_files.image_files_base import ImageFileStorageBase
from .image_records.image_records_base import ImageRecordStorageBase
@@ -22,14 +21,14 @@ if TYPE_CHECKING:
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_install import ModelInstallServiceBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .model_records import ModelRecordServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .shared.graph import GraphExecutionState
from .shared.graph import GraphExecutionState, LibraryGraph
from .urls.urls_base import UrlServiceBase
from .workflow_image_records.workflow_image_records_base import WorkflowImageRecordsStorageBase
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
@@ -44,6 +43,7 @@ class InvocationServices:
configuration: "InvokeAIAppConfig"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
graph_library: "ItemStorageABC[LibraryGraph]"
images: "ImageServiceABC"
image_records: "ImageRecordStorageBase"
image_files: "ImageFileStorageBase"
@@ -51,8 +51,6 @@ class InvocationServices:
logger: "Logger"
model_manager: "ModelManagerServiceBase"
model_records: "ModelRecordServiceBase"
download_queue: "DownloadQueueServiceBase"
model_install: "ModelInstallServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
@@ -61,6 +59,7 @@ class InvocationServices:
invocation_cache: "InvocationCacheBase"
names: "NameServiceBase"
urls: "UrlServiceBase"
workflow_image_records: "WorkflowImageRecordsStorageBase"
workflow_records: "WorkflowRecordsStorageBase"
def __init__(
@@ -72,6 +71,7 @@ class InvocationServices:
configuration: "InvokeAIAppConfig",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
graph_library: "ItemStorageABC[LibraryGraph]",
images: "ImageServiceABC",
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
@@ -79,8 +79,6 @@ class InvocationServices:
logger: "Logger",
model_manager: "ModelManagerServiceBase",
model_records: "ModelRecordServiceBase",
download_queue: "DownloadQueueServiceBase",
model_install: "ModelInstallServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
@@ -89,6 +87,7 @@ class InvocationServices:
invocation_cache: "InvocationCacheBase",
names: "NameServiceBase",
urls: "UrlServiceBase",
workflow_image_records: "WorkflowImageRecordsStorageBase",
workflow_records: "WorkflowRecordsStorageBase",
):
self.board_images = board_images
@@ -98,6 +97,7 @@ class InvocationServices:
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.image_files = image_files
self.image_records = image_records
@@ -105,8 +105,6 @@ class InvocationServices:
self.logger = logger
self.model_manager = model_manager
self.model_records = model_records
self.download_queue = download_queue
self.model_install = model_install
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue
@@ -115,4 +113,5 @@ class InvocationServices:
self.invocation_cache = invocation_cache
self.names = names
self.urls = urls
self.workflow_image_records = workflow_image_records
self.workflow_records = workflow_records

View File

@@ -2,8 +2,6 @@
from typing import Optional
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from .invocation_queue.invocation_queue_common import InvocationQueueItem
from .invocation_services import InvocationServices
from .shared.graph import Graph, GraphExecutionState
@@ -24,7 +22,6 @@ class Invoker:
session_queue_item_id: int,
session_queue_batch_id: str,
graph_execution_state: GraphExecutionState,
workflow: Optional[WorkflowWithoutID] = None,
invoke_all: bool = False,
) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed.
@@ -46,7 +43,6 @@ class Invoker:
session_queue_batch_id=session_queue_batch_id,
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
workflow=workflow,
invoke_all=invoke_all,
)
)

View File

@@ -5,7 +5,7 @@ from typing import Generic, Optional, TypeVar, get_args
from pydantic import BaseModel, TypeAdapter
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .item_storage_base import ItemStorageABC

View File

@@ -5,8 +5,6 @@ from typing import Union
import torch
from invokeai.app.services.invoker import Invoker
from .latents_storage_base import LatentsStorageBase
@@ -19,10 +17,6 @@ class DiskLatentsStorage(LatentsStorageBase):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._delete_all_latents()
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
@@ -38,21 +32,3 @@ class DiskLatentsStorage(LatentsStorageBase):
def get_path(self, name: str) -> Path:
return self.__output_folder / name
def _delete_all_latents(self) -> None:
"""
Deletes all latents from disk.
Must be called after we have access to `self._invoker` (e.g. in `start()`).
"""
deleted_latents_count = 0
freed_space = 0
for latents_file in Path(self.__output_folder).glob("*"):
if latents_file.is_file():
freed_space += latents_file.stat().st_size
deleted_latents_count += 1
latents_file.unlink()
if deleted_latents_count > 0:
freed_space_in_mb = round(freed_space / 1024 / 1024, 2)
self._invoker.services.logger.info(
f"Deleted {deleted_latents_count} latents files (freed {freed_space_in_mb}MB)"
)

View File

@@ -5,8 +5,6 @@ from typing import Dict, Optional
import torch
from invokeai.app.services.invoker import Invoker
from .latents_storage_base import LatentsStorageBase
@@ -25,18 +23,6 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
start_op = getattr(self.__underlying_storage, "start", None)
if callable(start_op):
start_op(invoker)
def stop(self, invoker: Invoker) -> None:
self._invoker = invoker
stop_op = getattr(self.__underlying_storage, "stop", None)
if callable(stop_op):
stop_op(invoker)
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:

View File

@@ -1,25 +0,0 @@
"""Initialization file for model install service package."""
from .model_install_base import (
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
UnknownInstallJobException,
URLModelSource,
)
from .model_install_default import ModelInstallService
__all__ = [
"ModelInstallServiceBase",
"ModelInstallService",
"InstallStatus",
"ModelInstallJob",
"UnknownInstallJobException",
"ModelSource",
"LocalModelSource",
"HFModelSource",
"URLModelSource",
]

View File

@@ -1,305 +0,0 @@
import re
import traceback
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
class StringLikeSource(BaseModel):
"""
Base class for model sources, implements functions that lets the source be sorted and indexed.
These shenanigans let this stuff work:
source1 = LocalModelSource(path='C:/users/mort/foo.safetensors')
mydict = {source1: 'model 1'}
assert mydict['C:/users/mort/foo.safetensors'] == 'model 1'
assert mydict[LocalModelSource(path='C:/users/mort/foo.safetensors')] == 'model 1'
source2 = LocalModelSource(path=Path('C:/users/mort/foo.safetensors'))
assert source1 == source2
assert source1 == 'C:/users/mort/foo.safetensors'
"""
def __hash__(self) -> int:
"""Return hash of the path field, for indexing."""
return hash(str(self))
def __lt__(self, other: object) -> int:
"""Return comparison of the stringified version, for sorting."""
return str(self) < str(other)
def __eq__(self, other: object) -> bool:
"""Return equality on the stringified version."""
if isinstance(other, Path):
return str(self) == other.as_posix()
else:
return str(self) == str(other)
class LocalModelSource(StringLikeSource):
"""A local file or directory path."""
path: str | Path
inplace: Optional[bool] = False
type: Literal["local"] = "local"
# these methods allow the source to be used in a string-like way,
# for example as an index into a dict
def __str__(self) -> str:
"""Return string version of path when string rep needed."""
return Path(self.path).as_posix()
class HFModelSource(StringLikeSource):
"""A HuggingFace repo_id, with optional variant and sub-folder."""
repo_id: str
variant: Optional[str] = None
subfolder: Optional[str | Path] = None
access_token: Optional[str] = None
type: Literal["hf"] = "hf"
@field_validator("repo_id")
@classmethod
def proper_repo_id(cls, v: str) -> str: # noqa D102
if not re.match(r"^([.\w-]+/[.\w-]+)$", v):
raise ValueError(f"{v}: invalid repo_id format")
return v
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = self.repo_id
base += f":{self.subfolder}" if self.subfolder else ""
base += f" ({self.variant})" if self.variant else ""
return base
class URLModelSource(StringLikeSource):
"""A generic URL point to a checkpoint file."""
url: AnyHttpUrl
access_token: Optional[str] = None
type: Literal["generic_url"] = "generic_url"
def __str__(self) -> str:
"""Return string version of the url when string rep needed."""
return str(self.url)
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."
)
inplace: bool = Field(
default=False, description="Leave model in its current location; otherwise install under models directory"
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
error_type: Optional[str] = Field(default=None, description="Class name of the exception that led to status==ERROR")
error: Optional[str] = Field(default=None, description="Error traceback") # noqa #501
def set_error(self, e: Exception) -> None:
"""Record the error and traceback from an exception."""
self.error_type = e.__class__.__name__
self.error = "".join(traceback.format_exception(e))
self.status = InstallStatus.ERROR
class ModelInstallServiceBase(ABC):
"""Abstract base class for InvokeAI model installation."""
@abstractmethod
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional["EventServiceBase"] = None,
):
"""
Create ModelInstallService object.
:param config: Systemwide InvokeAIAppConfig.
:param store: Systemwide ModelConfigStore
:param event_bus: InvokeAI event bus for reporting events to.
"""
@abstractmethod
def start(self, *args: Any, **kwarg: Any) -> None:
"""Start the installer service."""
@abstractmethod
def stop(self, *args: Any, **kwarg: Any) -> None:
"""Stop the model install service. After this the objection can be safely deleted."""
@property
@abstractmethod
def app_config(self) -> InvokeAIAppConfig:
"""Return the appConfig object associated with the installer."""
@property
@abstractmethod
def record_store(self) -> ModelRecordServiceBase:
"""Return the ModelRecoreService object associated with the installer."""
@property
@abstractmethod
def event_bus(self) -> Optional[EventServiceBase]:
"""Return the event service base object associated with the installer."""
@abstractmethod
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe and register the model at model_path.
This keeps the model in its current location.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:returns id: The string ID of the registered model.
"""
@abstractmethod
def unregister(self, key: str) -> None:
"""Remove model with indicated key from the database."""
@abstractmethod
def delete(self, key: str) -> None:
"""Remove model with indicated key from the database. Delete its files only if they are within our models directory."""
@abstractmethod
def unconditionally_delete(self, key: str) -> None:
"""Remove model with indicated key from the database and unconditionally delete weight files from disk."""
@abstractmethod
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe, register and install the model in the models directory.
This moves the model from its current location into
the models directory handled by InvokeAI.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:returns id: The string ID of the registered model.
"""
@abstractmethod
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob:
"""Install the indicated model.
:param source: ModelSource object
:param config: Optional dict. Any fields in this dict
will override corresponding autoassigned probe fields in the
model's config record. Use it to override
`name`, `description`, `base_type`, `model_type`, `format`,
`prediction_type`, `image_size`, and/or `ztsnr_training`.
This will download the model located at `source`,
probe it, and install it into the models directory.
This call is executed asynchronously in a separate
thread and will issue the following events on the event bus:
- model_install_started
- model_install_error
- model_install_completed
The `inplace` flag does not affect the behavior of downloaded
models, which are always moved into the `models` directory.
The call returns a ModelInstallJob object which can be
polled to learn the current status and/or error message.
Variants recognized by HuggingFace currently are:
1. onnx
2. openvino
3. fp16
4. None (usually returns fp32 model)
"""
@abstractmethod
def get_job(self, source: ModelSource) -> List[ModelInstallJob]:
"""Return the ModelInstallJob(s) corresponding to the provided source."""
@abstractmethod
def list_jobs(self) -> List[ModelInstallJob]: # noqa D102
"""
List active and complete install jobs.
"""
@abstractmethod
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
@abstractmethod
def wait_for_installs(self) -> List[ModelInstallJob]:
"""
Wait for all pending installs to complete.
This will block until all pending installs have
completed, been cancelled, or errored out. It will
block indefinitely if one or more jobs are in the
paused state.
It will return the current list of jobs.
"""
@abstractmethod
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]:
"""
Recursively scan directory for new models and register or install them.
:param scan_dir: Path to the directory to scan.
:param install: Install if True, otherwise register in place.
:returns list of IDs: Returns list of IDs of models registered/installed
"""
@abstractmethod
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the model record database."""

View File

@@ -1,399 +0,0 @@
"""Model installation class."""
import threading
from hashlib import sha256
from logging import Logger
from pathlib import Path
from queue import Queue
from random import randbytes
from shutil import copyfile, copytree, move, rmtree
from typing import Any, Dict, List, Optional, Set, Union
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase, UnknownModelException
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import Chdir, InvokeAILogger
from .model_install_base import (
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
)
# marker that the queue is done and that thread should exit
STOP_JOB = ModelInstallJob(
source=LocalModelSource(path="stop"),
local_path=Path("/dev/null"),
)
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
_app_config: InvokeAIAppConfig
_record_store: ModelRecordServiceBase
_event_bus: Optional[EventServiceBase] = None
_install_queue: Queue[ModelInstallJob]
_install_jobs: List[ModelInstallJob]
_logger: Logger
_cached_model_paths: Set[Path]
_models_installed: Set[str]
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional[EventServiceBase] = None,
):
"""
Initialize the installer object.
:param app_config: InvokeAIAppConfig object
:param record_store: Previously-opened ModelRecordService database
:param event_bus: Optional EventService object
"""
self._app_config = app_config
self._record_store = record_store
self._event_bus = event_bus
self._logger = InvokeAILogger.get_logger(name=self.__class__.__name__)
self._install_jobs = []
self._install_queue = Queue()
self._cached_model_paths = set()
self._models_installed = set()
@property
def app_config(self) -> InvokeAIAppConfig: # noqa D102
return self._app_config
@property
def record_store(self) -> ModelRecordServiceBase: # noqa D102
return self._record_store
@property
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
return self._event_bus
def start(self, *args: Any, **kwarg: Any) -> None:
"""Start the installer thread."""
self._start_installer_thread()
self.sync_to_config()
def stop(self, *args: Any, **kwarg: Any) -> None:
"""Stop the installer thread; after this the object can be deleted and garbage collected."""
self._install_queue.put(STOP_JOB)
def _start_installer_thread(self) -> None:
threading.Thread(target=self._install_next_item, daemon=True).start()
def _install_next_item(self) -> None:
done = False
while not done:
job = self._install_queue.get()
if job == STOP_JOB:
done = True
continue
assert job.local_path is not None
try:
self._signal_job_running(job)
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
except (OSError, DuplicateModelException, InvalidModelConfigException) as excp:
self._signal_job_errored(job, excp)
finally:
self._install_queue.task_done()
self._logger.info("Install thread exiting")
def _signal_job_running(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.RUNNING
self._logger.info(f"{job.source}: model installation started")
if self._event_bus:
self._event_bus.emit_model_install_started(str(job.source))
def _signal_job_completed(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.COMPLETED
assert job.config_out
self._logger.info(
f"{job.source}: model installation completed. {job.local_path} registered key {job.config_out.key}"
)
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
key = job.config_out.key
self._event_bus.emit_model_install_completed(str(job.source), key)
def _signal_job_errored(self, job: ModelInstallJob, excp: Exception) -> None:
job.set_error(excp)
self._logger.info(f"{job.source}: model installation encountered an exception: {job.error_type}")
if self._event_bus:
error_type = job.error_type
error = job.error
assert error_type is not None
assert error is not None
self._event_bus.emit_model_install_error(str(job.source), error_type, error)
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
return self._register(model_path, config)
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
info: AnyModelConfig = self._probe_model(Path(model_path), config)
old_hash = info.original_hash
dest_path = self.app_config.models_path / info.base.value / info.type.value / model_path.name
new_path = self._copy_model(model_path, dest_path)
new_hash = FastModelHash.hash(new_path)
assert new_hash == old_hash, f"{model_path}: Model hash changed during installation, possibly corrupted."
return self._register(
new_path,
config,
info,
)
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob: # noqa D102
if not config:
config = {}
# Installing a local path
if isinstance(source, LocalModelSource) and Path(source.path).exists(): # a path that is already on disk
job = ModelInstallJob(
source=source,
config_in=config,
local_path=Path(source.path),
)
self._install_jobs.append(job)
self._install_queue.put(job)
return job
else: # here is where we'd download a URL or repo_id. Implementation pending download queue.
raise UnknownModelException("File or directory not found")
def list_jobs(self) -> List[ModelInstallJob]: # noqa D102
return self._install_jobs
def get_job(self, source: ModelSource) -> List[ModelInstallJob]: # noqa D102
return [x for x in self._install_jobs if x.source == source]
def wait_for_installs(self) -> List[ModelInstallJob]: # noqa D102
self._install_queue.join()
return self._install_jobs
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
unfinished_jobs = [
x for x in self._install_jobs if x.status not in [InstallStatus.COMPLETED, InstallStatus.ERROR]
]
self._install_jobs = unfinished_jobs
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the config record store database."""
self._scan_models_directory()
if autoimport := self._app_config.autoimport_dir:
self._logger.info("Scanning autoimport directory for new models")
installed = self.scan_directory(self._app_config.root_path / autoimport)
self._logger.info(f"{len(installed)} new models registered")
self._logger.info("Model installer (re)initialized")
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback)
self._models_installed: Set[str] = set()
search.search(scan_dir)
return list(self._models_installed)
def _scan_models_directory(self) -> None:
"""
Scan the models directory for new and missing models.
New models will be added to the storage backend. Missing models
will be deleted.
"""
defunct_models = set()
installed = set()
with Chdir(self._app_config.models_path):
self._logger.info("Checking for models that have been moved or deleted from disk")
for model_config in self.record_store.all_models():
path = Path(model_config.path)
if not path.exists():
self._logger.info(f"{model_config.name}: path {path.as_posix()} no longer exists. Unregistering")
defunct_models.add(model_config.key)
for key in defunct_models:
self.unregister(key)
self._logger.info(f"Scanning {self._app_config.models_path} for new and orphaned models")
for cur_base_model in BaseModelType:
for cur_model_type in ModelType:
models_dir = Path(cur_base_model.value, cur_model_type.value)
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
def _sync_model_path(self, key: str, ignore_hash_change: bool = False) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
Call this after updating a model's attributes in order to move
the model's path into the location indicated by its basetype, type and
name. Applies only to models whose paths are within the root `models_dir`
directory.
May raise an UnknownModelException.
"""
model = self.record_store.get_model(key)
old_path = Path(model.path)
models_dir = self.app_config.models_path
if not old_path.is_relative_to(models_dir):
return model
new_path = models_dir / model.base.value / model.type.value / model.name
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
new_hash = FastModelHash.hash(new_path)
model.path = new_path.relative_to(models_dir).as_posix()
if model.current_hash != new_hash:
assert (
ignore_hash_change
), f"{model.name}: Model hash changed during installation, model is possibly corrupted"
model.current_hash = new_hash
self._logger.info(f"Model has new hash {model.current_hash}, but will continue to be identified by {key}")
self.record_store.update_model(key, model)
return model
def _scan_register(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
try:
id = self.register_path(model)
self._sync_model_path(id) # possibly move it to right place in `models`
self._logger.info(f"Registered {model.name} with id {id}")
self._models_installed.add(id)
except DuplicateModelException:
pass
return True
def _scan_install(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
try:
id = self.install_path(model)
self._logger.info(f"Installed {model} with id {id}")
self._models_installed.add(id)
except DuplicateModelException:
pass
return True
def unregister(self, key: str) -> None: # noqa D102
self.record_store.del_model(key)
def delete(self, key: str) -> None: # noqa D102
"""Unregister the model. Delete its files only if they are within our models directory."""
model = self.record_store.get_model(key)
models_dir = self.app_config.models_path
model_path = models_dir / model.path
if model_path.is_relative_to(models_dir):
self.unconditionally_delete(key)
else:
self.unregister(key)
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
path = self.app_config.models_path / model.path
if path.is_dir():
rmtree(path)
else:
path.unlink()
self.unregister(key)
def _copy_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
if old_path.is_dir():
copytree(old_path, new_path)
else:
copyfile(old_path, new_path)
return new_path
def _move_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
# if path already exists then we jigger the name to make it unique
counter: int = 1
while new_path.exists():
path = new_path.with_stem(new_path.stem + f"_{counter:02d}")
if not path.exists():
new_path = path
counter += 1
move(old_path, new_path)
return new_path
def _probe_model(self, model_path: Path, config: Optional[Dict[str, Any]] = None) -> AnyModelConfig:
info: AnyModelConfig = ModelProbe.probe(Path(model_path))
if config: # used to override probe fields
for key, value in config.items():
setattr(info, key, value)
return info
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
info = info or ModelProbe.probe(model_path, config)
key = self._create_key()
model_path = model_path.absolute()
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
info.path = model_path.as_posix()
# add 'main' specific fields
if hasattr(info, "config"):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(key, info)
return key

View File

@@ -6,11 +6,3 @@ from .model_records_base import ( # noqa F401
UnknownModelException,
)
from .model_records_sql import ModelRecordServiceSQL # noqa F401
__all__ = [
"ModelRecordServiceBase",
"ModelRecordServiceSQL",
"DuplicateModelException",
"InvalidModelException",
"UnknownModelException",
]

View File

@@ -7,7 +7,10 @@ from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType
# should match the InvokeAI version when this is first released.
CONFIG_FILE_VERSION = "3.2.0"
class DuplicateModelException(Exception):
@@ -29,6 +32,12 @@ class ConfigFileVersionMismatchException(Exception):
class ModelRecordServiceBase(ABC):
"""Abstract base class for storage and retrieval of model configs."""
@property
@abstractmethod
def version(self) -> str:
"""Return the config file/database schema version."""
pass
@abstractmethod
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
@@ -106,7 +115,6 @@ class ModelRecordServiceBase(ABC):
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@@ -114,7 +122,6 @@ class ModelRecordServiceBase(ABC):
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
If none of the optional filters are passed, will return all
models in the database.

View File

@@ -49,12 +49,12 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelFormat,
ModelType,
)
from ..shared.sqlite.sqlite_database import SqliteDatabase
from ..shared.sqlite import SqliteDatabase
from .model_records_base import (
CONFIG_FILE_VERSION,
DuplicateModelException,
ModelRecordServiceBase,
UnknownModelException,
@@ -78,6 +78,85 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db = db
self._cursor = self._db.conn.cursor()
with self._db.lock:
# Enable foreign keys
self._db.conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._db.conn.commit()
assert (
str(self.version) == CONFIG_FILE_VERSION
), f"Model config version {self.version} does not match expected version {CONFIG_FILE_VERSION}"
def _create_tables(self) -> None:
"""Create sqlite3 tables."""
# model_config table breaks out the fields that are common to all config objects
# and puts class-specific ones in a serialized json object
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT NOT NULL,
type TEXT NOT NULL,
name TEXT NOT NULL,
path TEXT NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
# metadata table
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_manager_metadata (
metadata_key TEXT NOT NULL PRIMARY KEY,
metadata_value TEXT NOT NULL
);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
AFTER UPDATE
ON model_config FOR EACH ROW
BEGIN
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
)
# Add indexes for searchable fields
for stmt in [
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
]:
self._cursor.execute(stmt)
# Add our version to the metadata table
self._cursor.execute(
"""--sql
INSERT OR IGNORE into model_manager_metadata (
metadata_key,
metadata_value
)
VALUES (?,?);
""",
("version", CONFIG_FILE_VERSION),
)
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@@ -96,13 +175,21 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
"""--sql
INSERT INTO model_config (
id,
base,
type,
name,
path,
original_hash,
config
)
VALUES (?,?,?);
VALUES (?,?,?,?,?,?,?);
""",
(
key,
record.base,
record.type,
record.name,
record.path,
record.original_hash,
json_serialized,
),
@@ -127,6 +214,22 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
return self.get_model(key)
@property
def version(self) -> str:
"""Return the version of the database schema."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata_value FROM model_manager_metadata
WHERE metadata_key=?;
""",
("version",),
)
rows = self._cursor.fetchone()
if not rows:
raise KeyError("Models database does not have metadata key 'version'")
return rows[0]
def del_model(self, key: str) -> None:
"""
Delete a model.
@@ -166,11 +269,14 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._cursor.execute(
"""--sql
UPDATE model_config
SET
SET base=?,
type=?,
name=?,
path=?,
config=?
WHERE id=?;
""",
(json_serialized, key),
(record.base, record.type, record.name, record.path, json_serialized, key),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
@@ -226,7 +332,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@@ -234,7 +339,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
If none of the optional filters are passed, will return all
models in the database.
@@ -251,9 +355,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
if model_type:
where_clause.append("type=?")
bindings.append(model_type)
if model_format:
where_clause.append("format=?")
bindings.append(model_format)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
with self._db.lock:
self._cursor.execute(
@@ -273,7 +374,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE path=?;
WHERE model_path=?;
""",
(str(path),),
)

View File

@@ -22,6 +22,11 @@ class SessionProcessorBase(ABC):
"""Pauses the session processor"""
pass
@abstractmethod
def take_one(self) -> SessionProcessorStatus:
"""Takes one session from the queue and executes it"""
pass
@abstractmethod
def get_status(self) -> SessionProcessorStatus:
"""Gets the status of the session processor"""

View File

@@ -25,6 +25,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
self.__resume_event = ThreadEvent()
self.__stop_event = ThreadEvent()
self.__poll_now_event = ThreadEvent()
self.__take_one_event = ThreadEvent()
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_queue_event)
@@ -36,6 +37,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
"stop_event": self.__stop_event,
"poll_now_event": self.__poll_now_event,
"resume_event": self.__resume_event,
"take_one_event": self.__take_one_event,
},
)
self.__thread.start()
@@ -81,6 +83,13 @@ class DefaultSessionProcessor(SessionProcessorBase):
self.__resume_event.clear()
return self.get_status()
def take_one(self) -> SessionProcessorStatus:
if self.__queue_item is None and not self.__resume_event.is_set():
self.__resume_event.set()
self.__take_one_event.set()
self._poll_now()
return self.get_status()
def get_status(self) -> SessionProcessorStatus:
return SessionProcessorStatus(
is_started=self.__resume_event.is_set(),
@@ -92,9 +101,11 @@ class DefaultSessionProcessor(SessionProcessorBase):
stop_event: ThreadEvent,
poll_now_event: ThreadEvent,
resume_event: ThreadEvent,
take_one_event: ThreadEvent,
):
try:
stop_event.clear()
take_one_event.clear()
resume_event.set()
self.__threadLimit.acquire()
queue_item: Optional[SessionQueueItem] = None
@@ -114,11 +125,14 @@ class DefaultSessionProcessor(SessionProcessorBase):
session_queue_id=queue_item.queue_id,
session_queue_item_id=queue_item.item_id,
graph_execution_state=queue_item.session,
workflow=queue_item.workflow,
invoke_all=True,
)
queue_item = None
if take_one_event.is_set():
resume_event.clear()
take_one_event.clear()
if queue_item is None:
self.__invoker.services.logger.debug("Waiting for next polling interval or event")
poll_now_event.wait(POLLING_INTERVAL)

View File

@@ -8,10 +8,6 @@ from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, NodeNotFoundError
from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowWithoutID,
WorkflowWithoutIDValidator,
)
from invokeai.app.util.misc import uuid_string
# region Errors
@@ -70,9 +66,6 @@ class Batch(BaseModel):
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
graph: Graph = Field(description="The graph to initialize the session with")
workflow: Optional[WorkflowWithoutID] = Field(
default=None, description="The workflow to initialize the session with"
)
runs: int = Field(
default=1, ge=1, description="Int stating how many times to iterate through all possible batch indices"
)
@@ -171,14 +164,6 @@ def get_session(queue_item_dict: dict) -> GraphExecutionState:
return session
def get_workflow(queue_item_dict: dict) -> Optional[WorkflowWithoutID]:
workflow_raw = queue_item_dict.get("workflow", None)
if workflow_raw is not None:
workflow = WorkflowWithoutIDValidator.validate_json(workflow_raw, strict=False)
return workflow
return None
class SessionQueueItemWithoutGraph(BaseModel):
"""Session queue item without the full graph. Used for serialization."""
@@ -228,16 +213,12 @@ class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
class SessionQueueItem(SessionQueueItemWithoutGraph):
session: GraphExecutionState = Field(description="The fully-populated session to be executed")
workflow: Optional[WorkflowWithoutID] = Field(
default=None, description="The workflow associated with this queue item"
)
@classmethod
def queue_item_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItem":
# must parse these manually
queue_item_dict["field_values"] = get_field_values(queue_item_dict)
queue_item_dict["session"] = get_session(queue_item_dict)
queue_item_dict["workflow"] = get_workflow(queue_item_dict)
return SessionQueueItem(**queue_item_dict)
model_config = ConfigDict(
@@ -353,7 +334,7 @@ def populate_graph(graph: Graph, node_field_values: Iterable[NodeFieldValue]) ->
def create_session_nfv_tuples(
batch: Batch, maximum: int
) -> Generator[tuple[GraphExecutionState, list[NodeFieldValue], Optional[WorkflowWithoutID]], None, None]:
) -> Generator[tuple[GraphExecutionState, list[NodeFieldValue]], None, None]:
"""
Create all graph permutations from the given batch data and graph. Yields tuples
of the form (graph, batch_data_items) where batch_data_items is the list of BatchDataItems
@@ -384,7 +365,7 @@ def create_session_nfv_tuples(
return
flat_node_field_values = list(chain.from_iterable(d))
graph = populate_graph(batch.graph, flat_node_field_values)
yield (GraphExecutionState(graph=graph), flat_node_field_values, batch.workflow)
yield (GraphExecutionState(graph=graph), flat_node_field_values)
count += 1
@@ -410,14 +391,12 @@ def calc_session_count(batch: Batch) -> int:
class SessionQueueValueToInsert(NamedTuple):
"""A tuple of values to insert into the session_queue table"""
# Careful with the ordering of this - it must match the insert statement
queue_id: str # queue_id
session: str # session json
session_id: str # session_id
batch_id: str # batch_id
field_values: Optional[str] # field_values json
priority: int # priority
workflow: Optional[str] # workflow json
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
@@ -425,7 +404,7 @@ ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new_queue_items: int) -> ValuesToInsert:
values_to_insert: ValuesToInsert = []
for session, field_values, workflow in create_session_nfv_tuples(batch, max_new_queue_items):
for session, field_values in create_session_nfv_tuples(batch, max_new_queue_items):
# sessions must have unique id
session.id = uuid_string()
values_to_insert.append(
@@ -437,7 +416,6 @@ def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new
# must use pydantic_encoder bc field_values is a list of models
json.dumps(field_values, default=to_jsonable_python) if field_values else None, # field_values (json)
priority, # priority
json.dumps(workflow, default=to_jsonable_python) if workflow else None, # workflow (json)
)
)
return values_to_insert

View File

@@ -28,7 +28,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
prepare_values_to_insert,
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite import SqliteDatabase
class SqliteSessionQueue(SessionQueueBase):
@@ -42,14 +42,14 @@ class SqliteSessionQueue(SessionQueueBase):
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_session_event)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self.__lock = db.lock
self.__conn = db.conn
self.__cursor = self.__conn.cursor()
self._create_tables()
def _match_event_name(self, event: FastAPIEvent, match_in: list[str]) -> bool:
return event[1]["event"] in match_in
@@ -97,6 +97,114 @@ class SqliteSessionQueue(SessionQueueBase):
except SessionQueueItemNotFoundError:
return
def _create_tables(self) -> None:
"""Creates the session queue tables, indicies, and triggers"""
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS session_queue (
item_id INTEGER PRIMARY KEY AUTOINCREMENT, -- used for ordering, cursor pagination
batch_id TEXT NOT NULL, -- identifier of the batch this queue item belongs to
queue_id TEXT NOT NULL, -- identifier of the queue this queue item belongs to
session_id TEXT NOT NULL UNIQUE, -- duplicated data from the session column, for ease of access
field_values TEXT, -- NULL if no values are associated with this queue item
session TEXT NOT NULL, -- the session to be executed
status TEXT NOT NULL DEFAULT 'pending', -- the status of the queue item, one of 'pending', 'in_progress', 'completed', 'failed', 'canceled'
priority INTEGER NOT NULL DEFAULT 0, -- the priority, higher is more important
error TEXT, -- any errors associated with this queue item
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')), -- updated via trigger
started_at DATETIME, -- updated via trigger
completed_at DATETIME -- updated via trigger, completed items are cleaned up on application startup
-- Ideally this is a FK, but graph_executions uses INSERT OR REPLACE, and REPLACE triggers the ON DELETE CASCADE...
-- FOREIGN KEY (session_id) REFERENCES graph_executions (id) ON DELETE CASCADE
);
"""
)
self.__cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_item_id ON session_queue(item_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_session_id ON session_queue(session_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_batch_id ON session_queue(batch_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_created_priority ON session_queue(priority);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_created_status ON session_queue(status);
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_completed_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'completed'
OR NEW.status = 'failed'
OR NEW.status = 'canceled'
BEGIN
UPDATE session_queue
SET completed_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_started_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'in_progress'
BEGIN
UPDATE session_queue
SET started_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_updated_at
AFTER UPDATE
ON session_queue FOR EACH ROW
BEGIN
UPDATE session_queue
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = old.item_id;
END;
"""
)
self.__conn.commit()
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
def _set_in_progress_to_canceled(self) -> None:
"""
Sets all in_progress queue items to canceled. Run on app startup, not associated with any queue.
@@ -172,8 +280,8 @@ class SqliteSessionQueue(SessionQueueBase):
self.__cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow)
VALUES (?, ?, ?, ?, ?, ?, ?)
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority)
VALUES (?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)

View File

@@ -207,12 +207,10 @@ class IterateInvocationOutput(BaseInvocationOutput):
item: Any = OutputField(
description="The item being iterated over", title="Collection Item", ui_type=UIType._CollectionItem
)
index: int = OutputField(description="The index of the item", title="Index")
total: int = OutputField(description="The total number of items", title="Total")
# TODO: Fill this out and move to invocations
@invocation("iterate", version="1.1.0")
@invocation("iterate", version="1.0.0")
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
@@ -223,7 +221,7 @@ class IterateInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IterateInvocationOutput:
"""Produces the outputs as values"""
return IterateInvocationOutput(item=self.collection[self.index], index=self.index, total=len(self.collection))
return IterateInvocationOutput(item=self.collection[self.index])
@invocation_output("collect_output")

View File

@@ -0,0 +1,48 @@
import sqlite3
import threading
from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
sqlite_memory = ":memory:"
class SqliteDatabase:
conn: sqlite3.Connection
lock: threading.RLock
_logger: Logger
_config: InvokeAIAppConfig
def __init__(self, config: InvokeAIAppConfig, logger: Logger):
self._logger = logger
self._config = config
if self._config.use_memory_db:
location = sqlite_memory
logger.info("Using in-memory database")
else:
db_path = self._config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
location = str(db_path)
self._logger.info(f"Using database at {location}")
self.conn = sqlite3.connect(location, check_same_thread=False)
self.lock = threading.RLock()
self.conn.row_factory = sqlite3.Row
if self._config.log_sql:
self.conn.set_trace_callback(self._logger.debug)
self.conn.execute("PRAGMA foreign_keys = ON;")
def clean(self) -> None:
try:
self.lock.acquire()
self.conn.execute("VACUUM;")
self.conn.commit()
self._logger.info("Cleaned database")
except Exception as e:
self._logger.error(f"Error cleaning database: {e}")
raise e
finally:
self.lock.release()

View File

@@ -1,10 +0,0 @@
from enum import Enum
from invokeai.app.util.metaenum import MetaEnum
sqlite_memory = ":memory:"
class SQLiteDirection(str, Enum, metaclass=MetaEnum):
Ascending = "ASC"
Descending = "DESC"

View File

@@ -1,67 +0,0 @@
import sqlite3
import threading
from logging import Logger
from pathlib import Path
from invokeai.app.services.shared.sqlite.sqlite_common import sqlite_memory
class SqliteDatabase:
"""
Manages a connection to an SQLite database.
:param db_path: Path to the database file. If None, an in-memory database is used.
:param logger: Logger to use for logging.
:param verbose: Whether to log SQL statements. Provides `logger.debug` as the SQLite trace callback.
This is a light wrapper around the `sqlite3` module, providing a few conveniences:
- The database file is written to disk if it does not exist.
- Foreign key constraints are enabled by default.
- The connection is configured to use the `sqlite3.Row` row factory.
In addition to the constructor args, the instance provides the following attributes and methods:
- `conn`: A `sqlite3.Connection` object. Note that the connection must never be closed if the database is in-memory.
- `lock`: A shared re-entrant lock, used to approximate thread safety.
- `clean()`: Runs the SQL `VACUUM;` command and reports on the freed space.
"""
def __init__(self, db_path: Path | None, logger: Logger, verbose: bool = False) -> None:
"""Initializes the database. This is used internally by the class constructor."""
self.logger = logger
self.db_path = db_path
self.verbose = verbose
if not self.db_path:
logger.info("Initializing in-memory database")
else:
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self.logger.info(f"Initializing database at {self.db_path}")
self.conn = sqlite3.connect(database=self.db_path or sqlite_memory, check_same_thread=False)
self.lock = threading.RLock()
self.conn.row_factory = sqlite3.Row
if self.verbose:
self.conn.set_trace_callback(self.logger.debug)
self.conn.execute("PRAGMA foreign_keys = ON;")
def clean(self) -> None:
"""
Cleans the database by running the VACUUM command, reporting on the freed space.
"""
# No need to clean in-memory database
if not self.db_path:
return
with self.lock:
try:
initial_db_size = Path(self.db_path).stat().st_size
self.conn.execute("VACUUM;")
self.conn.commit()
final_db_size = Path(self.db_path).stat().st_size
freed_space_in_mb = round((initial_db_size - final_db_size) / 1024 / 1024, 2)
if freed_space_in_mb > 0:
self.logger.info(f"Cleaned database (freed {freed_space_in_mb}MB)")
except Exception as e:
self.logger.error(f"Error cleaning database: {e}")
raise

View File

@@ -1,34 +0,0 @@
from logging import Logger
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_1 import build_migration_1
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_2 import build_migration_2
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import build_migration_3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileStorageBase) -> SqliteDatabase:
"""
Initializes the SQLite database.
:param config: The app config
:param logger: The logger
:param image_files: The image files service (used by migration 2)
This function:
- Instantiates a :class:`SqliteDatabase`
- Instantiates a :class:`SqliteMigrator` and registers all migrations
- Runs all migrations
"""
db_path = None if config.use_memory_db else config.db_path
db = SqliteDatabase(db_path=db_path, logger=logger, verbose=config.log_sql)
migrator = SqliteMigrator(db=db)
migrator.register_migration(build_migration_1())
migrator.register_migration(build_migration_2(image_files=image_files, logger=logger))
migrator.register_migration(build_migration_3())
migrator.run_migrations()
return db

View File

@@ -1,372 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration1Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
"""Migration callback for database version 1."""
self._create_board_images(cursor)
self._create_boards(cursor)
self._create_images(cursor)
self._create_model_config(cursor)
self._create_session_queue(cursor)
self._create_workflow_images(cursor)
self._create_workflows(cursor)
def _create_board_images(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `board_images` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);",
"CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_boards(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `boards` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
]
indices = ["CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);"]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_images(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `images` table, indices and triggers. Adds the `starred` column."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
]
indices = [
"CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);",
"CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);",
"CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);",
"CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
]
# Add the 'starred' column to `images` if it doesn't exist
cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in cursor.fetchall()]
if "starred" not in columns:
tables.append("ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;")
indices.append("CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);")
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_model_config(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `model_config` table, `model_manager_metadata` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT NOT NULL,
type TEXT NOT NULL,
name TEXT NOT NULL,
path TEXT NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
""",
"""--sql
CREATE TABLE IF NOT EXISTS model_manager_metadata (
metadata_key TEXT NOT NULL PRIMARY KEY,
metadata_value TEXT NOT NULL
);
""",
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
AFTER UPDATE
ON model_config FOR EACH ROW
BEGIN
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_session_queue(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS session_queue (
item_id INTEGER PRIMARY KEY AUTOINCREMENT, -- used for ordering, cursor pagination
batch_id TEXT NOT NULL, -- identifier of the batch this queue item belongs to
queue_id TEXT NOT NULL, -- identifier of the queue this queue item belongs to
session_id TEXT NOT NULL UNIQUE, -- duplicated data from the session column, for ease of access
field_values TEXT, -- NULL if no values are associated with this queue item
session TEXT NOT NULL, -- the session to be executed
status TEXT NOT NULL DEFAULT 'pending', -- the status of the queue item, one of 'pending', 'in_progress', 'completed', 'failed', 'canceled'
priority INTEGER NOT NULL DEFAULT 0, -- the priority, higher is more important
error TEXT, -- any errors associated with this queue item
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')), -- updated via trigger
started_at DATETIME, -- updated via trigger
completed_at DATETIME -- updated via trigger, completed items are cleaned up on application startup
-- Ideally this is a FK, but graph_executions uses INSERT OR REPLACE, and REPLACE triggers the ON DELETE CASCADE...
-- FOREIGN KEY (session_id) REFERENCES graph_executions (id) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_item_id ON session_queue(item_id);",
"CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_session_id ON session_queue(session_id);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_batch_id ON session_queue(batch_id);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_created_priority ON session_queue(priority);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_created_status ON session_queue(status);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_completed_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'completed'
OR NEW.status = 'failed'
OR NEW.status = 'canceled'
BEGIN
UPDATE session_queue
SET completed_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
""",
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_started_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'in_progress'
BEGIN
UPDATE session_queue
SET started_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
""",
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_updated_at
AFTER UPDATE
ON session_queue FOR EACH ROW
BEGIN
UPDATE session_queue
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = old.item_id;
END;
""",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_workflow_images(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflow_images (
workflow_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between workflows and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (workflow_id) REFERENCES workflows (workflow_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_workflow_images_workflow_id ON workflow_images (workflow_id);",
"CREATE INDEX IF NOT EXISTS idx_workflow_images_workflow_id_created_at ON workflow_images (workflow_id, created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflow_images_updated_at
AFTER UPDATE
ON workflow_images FOR EACH ROW
BEGIN
UPDATE workflow_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id AND image_name = old.image_name;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_workflows(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflows (
workflow TEXT NOT NULL,
workflow_id TEXT GENERATED ALWAYS AS (json_extract(workflow, '$.id')) VIRTUAL NOT NULL UNIQUE, -- gets implicit index
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')) -- updated via trigger
);
"""
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflows_updated_at
AFTER UPDATE
ON workflows FOR EACH ROW
BEGIN
UPDATE workflows
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id;
END;
"""
]
for stmt in tables + triggers:
cursor.execute(stmt)
def build_migration_1() -> Migration:
"""
Builds the migration from database version 0 (init) to 1.
This migration represents the state of the database circa InvokeAI v3.4.0, which was the last
version to not use migrations to manage the database.
As such, this migration does include some ALTER statements, and the SQL statements are written
to be idempotent.
- Create `board_images` junction table
- Create `boards` table
- Create `images` table, add `starred` column
- Create `model_config` table
- Create `session_queue` table
- Create `workflow_images` junction table
- Create `workflows` table
"""
migration_1 = Migration(
from_version=0,
to_version=1,
callback=Migration1Callback(),
)
return migration_1

View File

@@ -1,209 +0,0 @@
import sqlite3
from logging import Logger
from pydantic import ValidationError
from tqdm import tqdm
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import ImageFileNotFoundException
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
from invokeai.app.services.workflow_records.workflow_records_common import (
UnsafeWorkflowWithVersionValidator,
)
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
class Migration2Callback:
def __init__(self, image_files: ImageFileStorageBase, logger: Logger):
self._image_files = image_files
self._logger = logger
def __call__(self, cursor: sqlite3.Cursor):
self._add_images_has_workflow(cursor)
self._add_session_queue_workflow(cursor)
self._drop_old_workflow_tables(cursor)
self._add_workflow_library(cursor)
self._drop_model_manager_metadata(cursor)
self._recreate_model_config(cursor)
self._migrate_model_config_records(cursor)
self._migrate_embedded_workflows(cursor)
def _add_images_has_workflow(self, cursor: sqlite3.Cursor) -> None:
"""Add the `has_workflow` column to `images` table."""
cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in cursor.fetchall()]
if "has_workflow" not in columns:
cursor.execute("ALTER TABLE images ADD COLUMN has_workflow BOOLEAN DEFAULT FALSE;")
def _add_session_queue_workflow(self, cursor: sqlite3.Cursor) -> None:
"""Add the `workflow` column to `session_queue` table."""
cursor.execute("PRAGMA table_info(session_queue)")
columns = [column[1] for column in cursor.fetchall()]
if "workflow" not in columns:
cursor.execute("ALTER TABLE session_queue ADD COLUMN workflow TEXT;")
def _drop_old_workflow_tables(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `workflows` and `workflow_images` tables."""
cursor.execute("DROP TABLE IF EXISTS workflow_images;")
cursor.execute("DROP TABLE IF EXISTS workflows;")
def _add_workflow_library(self, cursor: sqlite3.Cursor) -> None:
"""Adds the `workflow_library` table and drops the `workflows` and `workflow_images` tables."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflow_library (
workflow_id TEXT NOT NULL PRIMARY KEY,
workflow TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated manually when retrieving workflow
opened_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Generated columns, needed for indexing and searching
category TEXT GENERATED ALWAYS as (json_extract(workflow, '$.meta.category')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(workflow, '$.name')) VIRTUAL NOT NULL,
description TEXT GENERATED ALWAYS as (json_extract(workflow, '$.description')) VIRTUAL NOT NULL
);
""",
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_workflow_library_created_at ON workflow_library(created_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_updated_at ON workflow_library(updated_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_opened_at ON workflow_library(opened_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_category ON workflow_library(category);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_name ON workflow_library(name);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_description ON workflow_library(description);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflow_library_updated_at
AFTER UPDATE
ON workflow_library FOR EACH ROW
BEGIN
UPDATE workflow_library
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `model_manager_metadata` table."""
cursor.execute("DROP TABLE IF EXISTS model_manager_metadata;")
def _recreate_model_config(self, cursor: sqlite3.Cursor) -> None:
"""
Drops the `model_config` table, recreating it.
In 3.4.0, this table used explicit columns but was changed to use json_extract 3.5.0.
Because this table is not used in production, we are able to simply drop it and recreate it.
"""
cursor.execute("DROP TABLE IF EXISTS model_config;")
cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
"""After updating the model config table, we repopulate it."""
model_record_migrator = MigrateModelYamlToDb1(cursor)
model_record_migrator.migrate()
def _migrate_embedded_workflows(self, cursor: sqlite3.Cursor) -> None:
"""
In the v3.5.0 release, InvokeAI changed how it handles embedded workflows. The `images` table in
the database now has a `has_workflow` column, indicating if an image has a workflow embedded.
This migrate callback checks each image for the presence of an embedded workflow, then updates its entry
in the database accordingly.
"""
# Get all image names
cursor.execute("SELECT image_name FROM images")
image_names: list[str] = [image[0] for image in cursor.fetchall()]
total_image_names = len(image_names)
if not total_image_names:
return
self._logger.info(f"Migrating workflows for {total_image_names} images")
# Migrate the images
to_migrate: list[tuple[bool, str]] = []
pbar = tqdm(image_names)
for idx, image_name in enumerate(pbar):
pbar.set_description(f"Checking image {idx + 1}/{total_image_names} for workflow")
try:
pil_image = self._image_files.get(image_name)
except ImageFileNotFoundException:
self._logger.warning(f"Image {image_name} not found, skipping")
continue
except Exception as e:
self._logger.warning(f"Error while checking image {image_name}, skipping: {e}")
continue
if "invokeai_workflow" in pil_image.info:
try:
UnsafeWorkflowWithVersionValidator.validate_json(pil_image.info.get("invokeai_workflow", ""))
except ValidationError:
self._logger.warning(f"Image {image_name} has invalid embedded workflow, skipping")
continue
to_migrate.append((True, image_name))
self._logger.info(f"Adding {len(to_migrate)} embedded workflows to database")
cursor.executemany("UPDATE images SET has_workflow = ? WHERE image_name = ?", to_migrate)
def build_migration_2(image_files: ImageFileStorageBase, logger: Logger) -> Migration:
"""
Builds the migration from database version 1 to 2.
Introduced in v3.5.0 for the new workflow library.
:param image_files: The image files service, used to check for embedded workflows
:param logger: The logger, used to log progress during embedded workflows handling
This migration does the following:
- Add `has_workflow` column to `images` table
- Add `workflow` column to `session_queue` table
- Drop `workflows` and `workflow_images` tables
- Add `workflow_library` table
- Drops the `model_manager_metadata` table
- Drops the `model_config` table, recreating it (at this point, there is no user data in this table)
- Populates the `has_workflow` column in the `images` table (requires `image_files` & `logger` dependencies)
"""
migration_2 = Migration(
from_version=1,
to_version=2,
callback=Migration2Callback(image_files=image_files, logger=logger),
)
return migration_2

View File

@@ -1,75 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
class Migration3Callback:
def __init__(self) -> None:
pass
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._drop_model_manager_metadata(cursor)
self._recreate_model_config(cursor)
self._migrate_model_config_records(cursor)
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `model_manager_metadata` table."""
cursor.execute("DROP TABLE IF EXISTS model_manager_metadata;")
def _recreate_model_config(self, cursor: sqlite3.Cursor) -> None:
"""
Drops the `model_config` table, recreating it.
In 3.4.0, this table used explicit columns but was changed to use json_extract 3.5.0.
Because this table is not used in production, we are able to simply drop it and recreate it.
"""
cursor.execute("DROP TABLE IF EXISTS model_config;")
cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
"""After updating the model config table, we repopulate it."""
model_record_migrator = MigrateModelYamlToDb1(cursor)
model_record_migrator.migrate()
def build_migration_3() -> Migration:
"""
Build the migration from database version 2 to 3.
This migration does the following:
- Drops the `model_config` table, recreating it
- Migrates data from `models.yaml` into the `model_config` table
"""
migration_3 = Migration(
from_version=2,
to_version=3,
callback=Migration3Callback(),
)
return migration_3

View File

@@ -1,148 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
import json
import sqlite3
from hashlib import sha1
from logging import Logger
from pathlib import Path
from typing import Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import TypeAdapter
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import (
DuplicateModelException,
UnknownModelException,
)
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
from invokeai.backend.util.logging import InvokeAILogger
ModelsValidator = TypeAdapter(AnyModelConfig)
class MigrateModelYamlToDb1:
"""
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.5.0).
The class has one externally useful method, migrate(), which scans the
currently models.yaml file and imports all its entries into invokeai.db.
Use this way:
from invokeai.backend.model_manager/migrate_to_db import MigrateModelYamlToDb
MigrateModelYamlToDb().migrate()
"""
config: InvokeAIAppConfig
logger: Logger
cursor: sqlite3.Cursor
def __init__(self, cursor: sqlite3.Cursor = None) -> None:
self.config = InvokeAIAppConfig.get_config()
self.config.parse_args()
self.logger = InvokeAILogger.get_logger()
self.cursor = cursor
def get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self.config.model_conf_path
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
def migrate(self) -> None:
"""Do the migration from models.yaml to invokeai.db."""
try:
yaml = self.get_yaml()
except OSError:
return
for model_key, stanza in yaml.items():
if model_key == "__metadata__":
assert (
stanza["version"] == "3.0.0"
), f"This script works on version 3.0.0 yaml files, but your configuration points to a {stanza['version']} version"
continue
base_type, model_type, model_name = str(model_key).split("/")
hash = FastModelHash.hash(self.config.models_path / stanza.path)
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()
stanza["base"] = BaseModelType(base_type)
stanza["type"] = ModelType(model_type)
stanza["name"] = model_name
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
try:
if original_record := self._search_by_path(stanza.path):
key = original_record.key
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
self._update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {model_key}")
self._add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
except UnknownModelException:
self.logger.warning(f"Model at {stanza.path} could not be found in database")
def _search_by_path(self, path: Path) -> Optional[AnyModelConfig]:
self.cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self.cursor.fetchall()]
return results[0] if results else None
def _update_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
self.cursor.execute(
"""--sql
UPDATE model_config
SET
config=?
WHERE id=?;
""",
(json_serialized, key),
)
if self.cursor.rowcount == 0:
raise UnknownModelException("model not found")
def _add_model(self, key: str, config: AnyModelConfig) -> None:
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
try:
self.cursor.execute(
"""--sql
INSERT INTO model_config (
id,
original_hash,
config
)
VALUES (?,?,?);
""",
(
key,
record.original_hash,
json_serialized,
),
)
except sqlite3.IntegrityError as exc:
raise DuplicateModelException(f"{record.name}: model is already in database") from exc

View File

@@ -1,164 +0,0 @@
import sqlite3
from typing import Optional, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field, model_validator
@runtime_checkable
class MigrateCallback(Protocol):
"""
A callback that performs a migration.
Migrate callbacks are provided an open cursor to the database. They should not commit their
transaction; this is handled by the migrator.
If the callback needs to access additional dependencies, will be provided to the callback at runtime.
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
class MigrationError(RuntimeError):
"""Raised when a migration fails."""
class MigrationVersionError(ValueError):
"""Raised when a migration version is invalid."""
class Migration(BaseModel):
"""
Represents a migration for a SQLite database.
:param from_version: The database version on which this migration may be run
:param to_version: The database version that results from this migration
:param migrate_callback: The callback to run to perform the migration
Migration callbacks will be provided an open cursor to the database. They should not commit their
transaction; this is handled by the migrator.
It is suggested to use a class to define the migration callback and a builder function to create
the :class:`Migration`. This allows the callback to be provided with additional dependencies and
keeps things tidy, as all migration logic is self-contained.
Example:
```py
# Define the migration callback class
class Migration1Callback:
# This migration needs a logger, so we define a class that accepts a logger in its constructor.
def __init__(self, image_files: ImageFileStorageBase) -> None:
self._image_files = ImageFileStorageBase
# This dunder method allows the instance of the class to be called like a function.
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._add_with_banana_column(cursor)
self._do_something_with_images(cursor)
def _add_with_banana_column(self, cursor: sqlite3.Cursor) -> None:
\"""Adds the with_banana column to the sushi table.\"""
# Execute SQL using the cursor, taking care to *not commit* a transaction
cursor.execute('ALTER TABLE sushi ADD COLUMN with_banana BOOLEAN DEFAULT TRUE;')
def _do_something_with_images(self, cursor: sqlite3.Cursor) -> None:
\"""Does something with the image files service.\"""
self._image_files.get(...)
# Define the migration builder function. This function creates an instance of the migration callback
# class and returns a Migration.
def build_migration_1(image_files: ImageFileStorageBase) -> Migration:
\"""Builds the migration from database version 0 to 1.
Requires the image files service to...
\"""
migration_1 = Migration(
from_version=0,
to_version=1,
migrate_callback=Migration1Callback(image_files=image_files),
)
return migration_1
# Register the migration after all dependencies have been initialized
db = SqliteDatabase(db_path, logger)
migrator = SqliteMigrator(db)
migrator.register_migration(build_migration_1(image_files))
migrator.run_migrations()
```
"""
from_version: int = Field(ge=0, strict=True, description="The database version on which this migration may be run")
to_version: int = Field(ge=1, strict=True, description="The database version that results from this migration")
callback: MigrateCallback = Field(description="The callback to run to perform the migration")
@model_validator(mode="after")
def validate_to_version(self) -> "Migration":
"""Validates that to_version is one greater than from_version."""
if self.to_version != self.from_version + 1:
raise MigrationVersionError("to_version must be one greater than from_version")
return self
def __hash__(self) -> int:
# Callables are not hashable, so we need to implement our own __hash__ function to use this class in a set.
return hash((self.from_version, self.to_version))
model_config = ConfigDict(arbitrary_types_allowed=True)
class MigrationSet:
"""
A set of Migrations. Performs validation during migration registration and provides utility methods.
Migrations should be registered with `register()`. Once all are registered, `validate_migration_chain()`
should be called to ensure that the migrations form a single chain of migrations from version 0 to the latest version.
"""
def __init__(self) -> None:
self._migrations: set[Migration] = set()
def register(self, migration: Migration) -> None:
"""Registers a migration."""
migration_from_already_registered = any(m.from_version == migration.from_version for m in self._migrations)
migration_to_already_registered = any(m.to_version == migration.to_version for m in self._migrations)
if migration_from_already_registered or migration_to_already_registered:
raise MigrationVersionError("Migration with from_version or to_version already registered")
self._migrations.add(migration)
def get(self, from_version: int) -> Optional[Migration]:
"""Gets the migration that may be run on the given database version."""
# register() ensures that there is only one migration with a given from_version, so this is safe.
return next((m for m in self._migrations if m.from_version == from_version), None)
def validate_migration_chain(self) -> None:
"""
Validates that the migrations form a single chain of migrations from version 0 to the latest version,
Raises a MigrationError if there is a problem.
"""
if self.count == 0:
return
if self.latest_version == 0:
return
next_migration = self.get(from_version=0)
if next_migration is None:
raise MigrationError("Migration chain is fragmented")
touched_count = 1
while next_migration is not None:
next_migration = self.get(next_migration.to_version)
if next_migration is not None:
touched_count += 1
if touched_count != self.count:
raise MigrationError("Migration chain is fragmented")
@property
def count(self) -> int:
"""The count of registered migrations."""
return len(self._migrations)
@property
def latest_version(self) -> int:
"""Gets latest to_version among registered migrations. Returns 0 if there are no migrations registered."""
if self.count == 0:
return 0
return sorted(self._migrations, key=lambda m: m.to_version)[-1].to_version

Some files were not shown because too many files have changed in this diff Show More